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Abstract. The contribution of this paper is to present a results of appli-
cations of set theory and relations in modeling a complex distributed
systems, based on parallel computing platform. The advantages of using
the set theory are: the possibility of a formal examination of the local
problems, and the possibility to organize individuals as elements of the
considered classes, defined globally. To govern the collective behavior we
propose three key relations and mappings determined taxonomic order
on them. That can insulate us from reductionism and single-cause think-
ing, as people deal with complexity before. On three examples, we show
how take advantage of the new parallel programming tools to obtain
more effective multiple inputs in parallel way, than assigning sequen-
tially single causes for any outputs.
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1 Introduction

There are many systems in nature that we can undoubtedly name it as a complex
system. Very often, however, calling something as complex, we generally think
how complex is its model, not exactly the system itself. For creating a model
we employ the conceptual frameworks from the fields of mathematics, physics,
chemistry etc. It is obvious, that the selection of these concepts/abstractions
significantly determines the nature and complexity of the resulting model.

Because of selectively revealing only some aspects of the complex system, the
models are always a restriction of the observed reality. Agreeing with these selec-
tivity of transition from system to its model, we should decide what properties
of real system should characterize well-suited projection of mapping the reality.
If the behavior of complex system is really complex to our mind, the models we
develop are certainly complicated, but they will become simpler when we under-
stand it better. It turns out that complexity reflects inability to develop simple
models to describe the behavior of these systems.

Another issue is the choice of tools suitable to model and to analyze complex
systems. Along with creating better models, we must also figure out how to
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evaluate success when choosing tools for working on them. The proper selection
of system modeling tools, results in transparent model and facilitates its further
analysis. Ill-suited selection of methods and tools leads to increased complexity
of the model and indirectly will be a reason of future problems that undoubtedly
will appear during analysis of its behavior.

2 Complex Systems Properties

Modern development of computer technology allows for extensive use of parallel
computing techniques for modeling a behavior of complex systems. New GPUs
and streaming multiprocessor’s card, assisted by the parallel programming tech-
nology opens a wide range for their use.

One of the areas, where these new technologies especially comes in handy, is
the modeling of complex systems. However, the definition of a complex system
is still the basic problem. We can find, in the literature, a lot of opinions what is
a complex system. Some papers discuss the relativity of this idea, claiming that;
the same system, that by one may be seen as complex and unpredictable, by
another may be seen as simple and easily understood. Another researches state
that, complexity is a measure of the observer misunderstanding what system is
being examined. Before going any further, in this paper we follow Corning, Lloyd,
Northrop [3,5,9] who argue that complexity generally possess three attributes:

(a) a complex system has many parts (items, units, parameters, variables),
(b) there are many relationships, interactions between the parts,
(c) the parts produce combined effects (synergies) that are not easily foreseen

and may often be novel, surprising, unexpected, chaotic.

There are many examples of complex system characterized by having many
parts, parameters or states that are functionally interconnected and generally
leading to non-intuitive system behavior. For our purpose let us consider a few
of them.

3 Computational Complexity

Mathematics occupies special place in the development of the complex systems
models. For centuries, mathematicians has been attempting to develop tools to
study these problems. So, at the beginning, we start with a pure mathemati-
cal example with intricacy measure classified as computational complexity. The
problem is referred to as the problem of n-queens and may be formulated as
follows: How can N queens be placed on an N × N chessboard, so that no
two of them attack each other? For the sake of a full problem formulation, it
must be recalled that a chessboard queens can attack horizontally, vertically,
and diagonally.

The considered problem has no counterparts in nature or technology. Its
peculiarity is that the relationships between elements are very clear and simple.
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One simple sentence surely was enough to describe these relationships precisely.
Moreover, it is difficult to find any complex and unpredictable behavior as a
whole. Even if the we assume that someone has no computational background
and very little mathematical background, essentially it is not difficult to explain
him what the problem is. So, where lies the complexity of this issue? The answer
is: the multitude of solutions necessary to be checked makes this issue compu-
tationally hard. Even if we skillfully perform this check (not brute force), the
number of operations required, soared with increasing number of chessboard
fields.

Today, N = 26 is the maximum value for which we know the number of
N-queens problem solutions. It is an order of magnitude of 2 · 1016.

The number of all squares in N × N chessboard (CB) is defined as
card(CB) = N2 = 262 = 676, while the number of all subsets of CB is
Pow(CB) = 2card(CB) = 2(N ·N) = 2676 � 3 ∗ 10203. This is an awfully big
number. We reduce it, putting the requirement that every solution must consist
of N = 26 elements, although we know that for N = 8 the domination number
(minimum number) of queens that meet the required condition is 5. As a result
we obtain the reduction of the search space to the value of N ! = 26! � 4 · 1026.
It’s still a very large number, so we are looking for an algorithms which exploit
the idea of propagation and backtracking.

Implementing a backtracking algorithm, and using tree pruning techniques
of the state space, the algorithm will examine only a fraction 1 % of the entire
state space. It sounds optimistic, but 1 % means that obtained reduction of the
entire problem is an order of magnitude 102, but this is meager compared with
the enormous number 1026 of states.

So, we are still on the road! Neither the implementation of parallel computing,
nor application of special hardware, can improve this situation. Let us remem-
ber about the rules governing the parallelization of algorithms (e.g. Amdahl’s
rule) and the fact, that even we had an infinite number of cores, we can reach
all solutions in linear time. Alas, we do not have an infinite number of cores.
Therefore, in this way we can only obtain an speed-up of computation, but not
solution of the problem.

Mathematics, while attempting to develop tools to study these (NP-hard)
problems, will be sought new conceptual frameworks. The first signal we have
already. In complex systems relationships and topological properties play an
important role. Considering propagation and backtracking algorithms; they work
in state space tree locally (neighborhood is a topological abstraction) using such
relations as: subordination (parent-child), tolerance (promising node) and col-
lision (dead end node). To cope with complexity we tend to use both, a wide
variety of mathematical techniques (e.g., combinatorial or arithmetic functions
and differential equations) as well as topological, relational and set theory frame-
works. The latter possess substantive advantages over their analytical counter-
parts, and are devoid of profound assumptions and some limitations.
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4 Structuring a Complex Systems Models

Let us consider water distribution network as another example of a complex
system possesses (a), (b) attributes from the Corning, Lloyd, Northrop [3,5,9]
list presented above.

Water distribution network is a technical system with a large degree of com-
plexity, both structural, technological and computational. It extends over large
areas, so it is geographically distributed system. Moreover, it is distributed due
to decision-making. The spatial distribution of water consumers demand varies
in time. Decisions on this matter are taken by consumers individually. When
pressure in network will increase, the consumer reduce tap water, what locally
decrease the flow, and affects the activity of whole system. Also, decisions about
supply parameters although coordinated, however, strongly depend on the local
conditions that temporary prevail in neighborhood of reservoirs and pumping
stations.

Multi-loop structure of the pipeline network, multitude and diversity of com-
ponents (pipes, nodes, valves, tanks, pumps, fittings) entails the diversity of
relationships between system elements. So, we have fulfill locally both, functions
(especially for pipe sections) as well as relationships which can be calculated
from the nomograph of a transit function (in case of fittings). Good knowledge
of local physical rules provide us:

(i) Darcy-Weisbach equation for a head loss due to the friction along a given
length of pipe segment, to the average velocity of the water flow.

(ii) Hazen-Williams equation which relates the flow of water in a pipeline with
the physical properties of the pipeline and the pressure drop caused by
friction.

(iii) Mannings equation estimating the average velocity of a water flowing in an
open channel (i.e. driven by a gravity).

(iv) Hydraulic Grade Line, the sum of pressure head and elevation head
(v) Velocity profile in a pipeline, which generally is greatest at the center of

the pipe.

Topological properties of a pipeline network as a whole (so globally) are
described by incidence matrix A[m×n] (where m denotes the number of nodes,
and n is number of pipe segments) and by loop matrix B[n×o] (where o represents
the number of loops). First and second Kirchhoff’s laws forming two global rela-
tionships in whole water distribution network. The first law - material continuity
at a node

A · y = σ. (1)

where y ∈ Rn and σ ∈ Rm is a vector of consumer demands.
The second law - loop equations

B · x = 0; 0 ∈ Rn (2)

where x is a vector of head difference between two ends of a pipeline segment.
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Fig. 1. Three examples of node P topological neighborhood (a.- nodes-edges, first
order, b.- nodes-edges, second order, c.- loops-edges neighborhood.)

Fig. 2. Different type of tree structure according to global ordering relation
(a.- for chosen pipe diameters, b.- minimum spanning tree, c.- trunk pipeline).

The model of water distribution network consists of set of Eqs. (1)–(2), deter-
mining the global relationships, extended with plenty of local dependencies
(i)–(v). While modeling water distribution network [1,6,7,12] we could tackle it
using sequential programing. In such a case, putting the expressions (i)–(v) into
Eqs. (1)–(2) cause that these latter become nonlinear. Moreover, using sequential
approach we have to treat network as a whole, although it is evident that water
distribution network consists of many divers elements. Consequently, even when
something changes locally, we should re-calculate the model of all network. So,
in that case a global perspective overshadow local activity, evoking a number of
undesirable computational consequences.

Local and global activities are not actually in competition, because the best
approach is to combine them. That is what we would like to do using parallel pro-
graming techniques. Having at our disposal many (hundreds or thousands) cores
(Fig. 3), we can harnessed many of them to calculate local dependencies within
neighborhoods. Simultaneously, other cores can support the process of casting
some global laws (Kirchhoff’s) from the whole network area to the neighborhood.

The incidence (A) and loop (B) matrices reflect a topological properties of
the whole pipeline network. Employing the theories of sets and relations, we
can shape the neighborhood abstraction, according to individual requirements
of modeling (Figs. 1 and 2). The number of possible neighborhoods is huge.
More than enough to model (using this topological framework) a very diverse
situations that can occur in the water supply network.
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5 Modeling of Collective Animal Behavior

Presented in the previous section the water distribution system, despite the high
degree of complexity is (as a technical layout) fully predictable. Its mathematical
model consisting of set of nonlinear equations, can exhibit unstable, chaotic
behavior. However, this chaotic behavior is, in fact, deterministic. Its occurrence,
at first may appear random, but for example, the conditions of high frequency
oscillation in pipeline are very well known. Not all complex systems possess such
a property. In many of occurring in nature complex systems [14] we can observe
such features as chaotic behavior and a tipping points. How to model the chaotic
behavior?

Flocking starlings is a good example of a natural complex system with col-
lective chaotic behavior, so it is worth to spend some time on it. The papers
dealing with complexity of a natural complex systems appear regularly in jour-
nals. Plenty of them raises the issue of collective animal behavior.

At first glance it seems that flocking birds or shoaling fish, using the clas-
sification outlined in Chapter 2, should be characterized by all three attributes
(a), (b), (c). It means; has many parts; there are many relationships between the
parts; and the parts produce combined effects that are not easily foreseen and
may often be novel, surprising, unexpected, chaotic. However, the most authors
emphasize that in these collectivizes there are no many relationships between
the members.

One of the best known model of the birds collective behavior was proposed by
Reynolds [11]. He claims that, in order to properly model the collective behavior

Fig. 3. Structuring the water supply network model using multicores structure (Kepler
GK110, 3 · 4 · 16 · 15 = 2880 cores).
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of birds, is sufficient to consider three types of local interactions between indi-
viduals forming the flock. Each bird should follow three rules:

– Dispersion, as a result of the collision avoidance. The bird maintains a mini-
mum distance from other birds thereby avoid collisions with the neighbors.

– Alignment, as a result of the velocity matching, i.e. birds matches its own
velocity (as a vector) with the neighbors.

– Cohesion, as attraction toward the birds within the neighborhood. The bird
steer to move toward the average position of local flockmates.

Remarkably, these three very simple rules govern the local interactions
between neighbors to each other, and produce a realistic-looking flocking behav-
ior. The Craig model confirms that complex behavior, like flocking, need not
have many and complex rules.

Craig’s work has shown, how the control of local activity has an impact on
the behavior of the whole, but only for one, selected (starlings) group of birds.
Craig’s model does not explain how a delta of ducks or V-shaped formation of
geese [13] are formed. To do this, we use parallel programming, the set theory
[4], and relations defined on them.

If we use the topological abstractions, we can structure the flock (using order-
ing relation), and to obtain the encountered in the nature, well shaped structures
of birds flock. Usage of the relations; subordination (π), tolerance (ϑ) and colli-
sion (κ) is indirect descendant of Craig’s ideas. Indeed, subordination is global
exemplification of Alignment while both global tolerance and collision are ana-
logue to local Cohesion, and Dispersion.

A three global relations; subordination, tolerance and collision allow coordi-
nation of the behavior of individuals in the group as a whole. And so, dwindling
subordination produces the effects of chaos noticeable in the behavior of flocking
starlings. Consistently, strengthen coordination with simultaneous reduction in
the tolerance, resulting in the formation as delta of ducks or V-shaped formation
of geese and finally line of oystercatchers, as we observe on the sky [8]. Finally,
the presence in the model of these three relations, allows to model the influence
of environmental stimuli on whole group behavior. Predator - prey interactions
like flash expansions of flocking birds forming eddies on the sky or bait balls of
schooling fish cruising parabolas [10] are good examples of such behavior.

6 Conclusion

A major challenge in dealing with complex system is, how to formulate its math-
ematical model [2,9], which allow us to predict the system’s behavior. For this
purpose, unprecedented technological progress in the construction of computer
hardware realizing highly paralleled computing, has given us a new tool to per-
form computer calculations. Parallel computations are the tool which have the
biggest impact on complex system modeling.

Parallel computing tools accelerate calculation in case of problem that’s hard
because of computational complexity, but above all that, with its help we can
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more accurately model real complex systems. Having at our disposal a computer
operating parallel, we are looking for solutions tailored just for such equipment.

As a result, now we can model distributed system, using neighborhood rela-
tion in natural way, as a set of distributed elements cooperating with each other.
Moreover, we can use relations to insulate us from reductionism and single-cause
thinking, as people deal with complexity before. Our experience has indicated
that (for complex, distributed systems) it is generally more effective to try mul-
tiple inputs in parallel way, than assigning single causes for any outputs.
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