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Abstract. This paper presents an approach to underwater glider path
planning (UGPP), where the population size reduction mechanism is
introduced into the differential evolution (DE) meta-heuristic and two
types of DE strategies (DE/best and DE/rand) are applied interchange-
ably. The newly proposed DE instance algorithms using population size
reduction on the best and rand DE strategies are assessed and compared
on 12 test scenarios using the proposed approach. A Bonferroni-Dunns
statistical hypothesis testing is conducted to confirm out-performance
of the favoured DE/best strategy over the DE/rand strategy for the 12
UGGP scenarios utilized. The analysis suggests that the approach can
benefit from gradually reducing the population size and also tuning the
DE parameters. Thereby, this contributes to extend the operational capa-
bilities of the glider vehicle and to improve its value as a marine sensor,
facilitating the implementation of flexible sampling schemes.
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1 Introduction

This paper fosters the meta-heuristics research on Underwater Glider Path Plan-
ning (UGPP) [13] and Differential Evolution (DE) [24], as initially proposed in
the first study on DE and UGPP [26]. Compared to this first study [26], two
additional mechanism are included now into the DE metaheuristic and used for
the UGPP, (1) the population size reduction from [5,24] and (2) interchangeable
use of two types of DE strategies (DE/best and DE/rand) from [24]. The extended
abstract of this paper was published in [25]. The proposed improvement aims in
contributing to extend the operational capabilities of the glider vehicle and to
improve its value as a marine sensor, facilitating the implementation of flexible
sampling schemes.
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2 Related Work

In this section, related work on optimization with differential evolution and the
underwater glider path planning challenge are presented, defined in [5,26].

2.1 Differential Evolution and Optimization

Differential Evolution (DE) was introduced by Storn and Price [22] with a
floating-point encoding evolutionary algorithm [10] for global optimization over
continuous spaces. Its main performance advantages over other evolutionary
algorithms [3,4] lie in floating-point encoding and a good combination of evolu-
tionary operators, the mutation step size adaptation, and elitist selection. The
DE has a main evolution loop in which a population of vectors is computed for
each generation of the evolution loop. During one generation g, for each vec-
tor x;, Vi € {1,2,..., NP} in the current population, DE employs evolutionary
operators, namely mutation, crossover, and selection, to produce a trial vector
(offspring) and to select one of the vectors with the best fitness value. NP denotes
population size and g € {1,2,...,G}, the current generation number [26].

Mutation creates a mutant vector v; 411 for each corresponding population
vector. Among many proposed, one of the most popular DE mutation strate-
gies [19,22] are the ‘rand/1”

Vig+l = Xpy g T F(Xry 9 — Xpg,g)

and the ‘best/1"
Vig+1 = Xbest,g + F(Xr g =Xy ),

where the indexes 1, 9, and r3 represent the random and mutually different inte-
gers generated within the range {1,2, ..., NP} and also different from index i. The
Xpest,g denotes the currently best vector. F' is an amplification factor of the dif-
ference vector within the range [0, 2], but usually less than 1. The first term in
the mutation operators defined above is a base vector. Following, the difference of
two chosen vectors denotes a difference vector which after multiplication with F,
is known as amplified difference vector. The simple DE mutation ‘rand /1’ is by far
most widely used [8], however, a form of ‘best/1’ mutation has also been signified
beneficial, especially in more restrictive evaluation scenarios [2,15,24,26].

After mutation the mutant vector v; 441 is taken into recombination
process with the target vector x; 4, to create a trial vector u; g4+1 = {u;1,g+1,
U;,2 g4+15--s Wi, D,g+1}- Lhe binary crossover operates as follows:

Ui jos] = Vi j,g+1 if rcmd(O, 1) < CRor j = jrand
It Tij.g otherwise ’

where j € {1,2,...,D} denotes the j-th search parameter of D-dimensional
search space, rand(0,1) € [0,1] denotes a uniformly distributed random num-
ber, and j,qnq denotes a uniform randomly chosen index of the search parameter,
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which is always exchanged to prevent cloning of target vectors. CR denotes the
crossover rate [23].

Finally, the selection operator propagates the fittest individual [7] in the new
generation (for minimization problem):

Juigr if f(uige) < f(Xiyg)
Xi,g+1 = . .
Xi,g otherwise

In [5], population size reduction was introduced, where population size is
reduced by half, when number of generations exceeds ratio between the number
of function evaluations allowed and the population size:

G Nmax,Feval
P NP, -~
Pmax p

2.2 Underwater Glider Path Planning

An ocean glider is an autonomous vehicle that propels itself changing its buoy-
ancy. The resultant vertical velocity is transformed into an effective horizontal
displacement by means of the active modification of the pitch angle and the effect
of the control surfaces. The glider motion pattern is constituted by a series of
“v” descending/ascending profiles between two target maximum and minimum
depths, after which the vehicle returns to surface to transmit data and update
its target way-points [26].

Ocean gliders constitute an important advance in the highly demanding ocean
monitoring scenario. Their efficiency, endurance, and increasing robustness make
these vehicles an ideal observing platform for many long-term oceanographic
applications [20]. Nevertheless, they have proved to be useful as well in the
opportunistic short-term characterization of dynamic structures. Among these,
mesoscale eddies are of particular interest due to the relevance they have in many
oceanographic processes [13]. The characterization of pollution and harmful algal
bloom episodes have been also included as part of recent glider missions. Having
the potential of fully autonomous operation, usual control scheme of ocean gliders
does not exploit this capacities too much and relies mainly in a human-in-the-
loop approach.

Path planning plays a main role in glider navigation [9] as a consequence of
the special motion characteristics these vehicles present. Indeed, ocean current
velocities are comparable to or even exceed low speed of a glider, typically around
1km/h (0.28 m/s). In such situations a feasible path must be prescribed to make
the glider reach the desired destination. This can be accomplished by analyzing
the evolution of the ocean currents predicted by a numerical model. The problem
is not trivial, as the planner must take into account a 4D, spatio-temporally
varying field over which to optimize. Also, since increasing the number of function
evaluations (FES) degrades the optimization execution time and jeopardizes
mission planning time (limiting the optimization time to minutes), it is inevitable
to put a restriction on FES; e.g. limit to roughly 2000 FES which may compute
in a few minutes.
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Different solutions to the glider path planning problem can be found in the
literature. Inanc et al. [14] propose a method that applies Nonlinear Trajectory
Generation (NTG) on a Lagrangian Coherent Structures (LCS) model to gener-
ate near-optimal routes for gliders on dynamic environments. Alvarez et al. [1]
use Genetic Algorithms (GA) to produce suitable paths in presence of strong
currents while trying to minimize energy consumption. Other authors have put
the focus on the coordination of glider fleets to define optimal sampling strate-
gies [17]. A multi-objective GA was also applied to autonomous underwater
vehicles for sewage outfall plume dispersion observations [18], which considered
two objectives, i.e. the maximum number of water samples besides total travel
distance minimization.

In the particular case of eddies, the complexity of the path planning sce-
nario is aggravated by the high spatio-temporal variability of these structures
and their specific sampling requirements [12]. Garau et al. [11] use an A* search
algorithm to find optimal paths over a set of eddies with variable scale and
dynamics. Smith et al. [21] propose an iterative optimization method based on
the Regional Ocean Modeling System (ROMS) predictions to generate optimal
tracking and sampling trajectories for evolving ocean processes. Their scheme
includes near real-time data assimilation and has been tested both in simulation
and real field experiments. The current state-of-the-art for glider path planning
uses optimization based on a Nelder-Mead algorithm [6] (the fmisearch Mat-
lab implementation [16]) or genetic algorithms (GA) [13]. In [26], UGPP was
addressed using DE and other evolutionary algorithms, where it was suggested
that the use of DE is beneficial on the 12 test scenarios, and a real mission was
carried out to confirm the viability of the approach.

3 Approach Extension

The population size reduction [5] is used inside DE in this study. Two mechanism
are included now into the DE metaheuristic and used for the UGPP, extending
the initial approach [26]:

1. the population size reduction from [5,24]
2. interchangeable use of two types of DE strategies (DE/best and DE/rand)
from [24].

All other parameter are kept same as in [26]. In the following section, we present
the performance differing with the parameterization of the population size reduc-
tion mechanism for different N P, pmazx, and N P,.;, parameter values. Also, the
difference among using DE/best and DE/rand with different parameter sets, is
studied.
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Fig. 1. Phenotype paths obtained using DE/best (Color figure online).

4 Results

In Fig. 1, phenotype paths obtained using DE/best are shown. Trajectory sim-
ulations for the 12 bearings computed with best taking population size (NP)
as the study factor. For DE/best and NP values are 8 (blue), 32 (purple), 128
(yellow), and 512 (green). Shown are the 120 runs subsampled with step 10 (one
run drawn per NP, resulting in 12 trajectories shown).

In Fig.2, different population sizing settings impact on mean final fitness
value for different minimal NP (N Ppn;,) and number of reductions (pmazx) are
shown for DE/best, aggregated on 10 independent runs. Also, standard deviation
values of the means values are drawn.

In Fig. 3, Bonferroni-Dunn’s statistical test of DE/best and DE/rand with
some selected different parameter sets are presented. The control algorithm is
DE/best setting #47, i.e. DE/best with NP=64, pmax=>5, N Py,;,=20), this
is a setting #47 out of 84. The control algorithm (we propose this one as
favorable) outperforms some DE/best and all DE/rand variants. The sample
index identifiers are denoted using the Sample number, listing NV Py, values and
then repeating these for different values of pmax (as indicated in Fig.2). The
value Sample No equals the zero-based index number in the N Py, = {40, 20,10}
array, added the zero-based index in the pmaz = {20,15, 10,5} array multiplied
by 3 and added the zero-based index in the initial NP = {512,256,128,64}
array multiplied by 12, e.g. for the setting #47 this is 47 =14+ 0% 3 + 3% 12:
these indices are 1, 0, and 3, respectively, i.e. NPy, = 20, pmax = 20, and
NP = 64.
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Fig. 2. Different population sizing settings impact on mean final fitness value for
DE/best.
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Fig. 3. Bonferroni-Dunn’s statistical test of DE/best and DE/rand with different para-
meter sets.

5 Conclusion

In this paper, we presented an extension of our meta-heuristics research on
Underwater Glider Path Planning (UGPP) [13] and Differential Evolution
(DE) [24], as initially proposed in the first study on DE and UGPP [26]. Com-
pared to this first study [26], two additional mechanism are included now into
the DE metaheuristic and used for the UGPP, (1) the population size reduction
from [5,24] and (2) interchangeable use of two types of DE strategies (DE/best
and DE/rand) from [24]. The extended abstract of this paper was published
in [25].

All other parameter are kept same as in [26]. We presented experimental
results for the performance differing with the parameterization of the population
size reduction mechanism for different N P, pmax, and N Py, parameter values.
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Also, the difference among using DE/best and DE/rand with different parameter
sets, was presented and the DE/best proposed as a better candidate in the test
framework. Thereby, the proposed confirmed improvement contributes to extend
the operational capabilities of the glider vehicle and to improve its value as a
marine sensor, facilitating the implementation of flexible sampling schemes.

In the future work, the approach could be extended using even more aspects
of evolutionary algorithm features, including multi-objective optimization and
constraint handling.
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