
Fungal Biology

Pradeep Kumar
Vijai Kumar Gupta
Ajay Kumar Tiwari
Madhu Kamle    Editors 

Current Trends in Plant 
Disease Diagnostics and 
Management Practices



   Fungal Biology    

        Series editor 
   Vijai        Kumar   Gupta   
  National University of Ireland Galway 
School of Natural Sciences 
  Galway  ,   Ireland   

   Maria        G.   Tuohy   
  National University of Ireland Galway 
 School of Natural Sciences 
  Galway  ,   Ireland   



   Fungal biology has an integral role to play in the development of the biotechnology 
and biomedical sectors. It has become a subject of increasing importance as new 
fungi and their associated biomolecules are identifi ed. The interaction between 
fungi and their environment is central to many natural processes that occur in the 
biosphere. The hosts and habitats of these eukaryotic microorganisms are very 
diverse; fungi are present in every ecosystem on Earth. The fungal kingdom is 
equally diverse, consisting of seven different known phyla. Yet detailed knowledge 
is limited to relatively few species. The relationship between fungi and humans has 
been characterized by the juxtaposed viewpoints of fungi as infectious agents of 
much dread and their exploitation as highly versatile systems for a range of 
economically important biotechnological applications. Understanding the biology 
of different fungi in diverse ecosystems as well as their interactions with living and 
non-living is essential to underpin effective and innovative technological 
developments. This Series will provide a detailed compendium of methods and 
information used to investigate different aspects of mycology, including fungal 
biology and biochemistry, genetics, phylogenetics, genomics, proteomics, molecular 
enzymology, and biotechnological applications in a manner that refl ects the many 
recent developments of relevance to researchers and scientists investigating the 
Kingdom Fungi.  Rapid screening techniques based on screening specifi c regions in 
the DNA of fungi have been used in species comparison and identifi cation, and are 
now being extended across fungal phyla. The majorities of fungi are multicellular 
eukaryotic systems and therefore may be excellent model systems by which to 
answer fundamental biological questions. A greater understanding of the cell 
biology of these versatile eukaryotes will underpin efforts to engineer certain fungal 
species to provide novel cell factories for production of pro   
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  Pref ace   

 Plant diseases are of signifi cant concern due to the intimate relationship between 
plant health and the welfare of people, animals, and the environment. The ability to 
provide adequate food and fi ber has become increasingly strained, and continuous 
improvement for sustainable plant disease management is required to help meet 
these demands. Plant diseases incited by fungal pathogens are one of the major 
concerns in agriculture commodities worldwide, and some of plant diseases are 
symptomatic and are caused by biotic and abiotic factors or in combination. 
Symptoms are usually the results of a morphological change and alteration or 
damage to plant tissue and/or cells due to an interference of the plant’s metabolism. 
Typically, the appearance of a biotic symptom will indicate the relatively late stage 
of an infection and colonization of a pathogen. Pathogens pose a threat to plants in 
natural communities, horticultural commodities, and cultivated crops. Risks of 
pathogen spread have increased with increased human mobility and the globalization 
of trade. The failure in accurate disease diagnosis and management may lead to 
huge losses in plant production and related commodities that cause nutritional food 
scarcity. Plant health testing is an essential management tool for the control of 
fungal diseases, pathogen detection, and the implementation of effective management 
strategies. Diagnosis of plant pathogens can be even more diffi cult with infected 
seeds, soils, and asymptomatic infected plant materials. It is thus, signifi cant to have 
expert diagnosis strategies and integrated management practices advanced with 
molecular diagnostic techniques to retain plants free from pathogens. 

 This volume consists of 20 chapters and basically illustrates various fungal plant 
diseases and management strategies. The chapters in this volume include expert 
view on new approaches, update knowledge and worthy information of plant 
diseases which compiles “  Molecular Diagnosis of Killer Pathogen of Potato: 
 Phytophthora infestans  and Its Management    ” (Chap. 1), “  Biocontrol Mechanism of 
 Bacillus  for Fusarium Wilt Management in Cumin ( Cuminum cyminum  L.)    ” (Chap. 2), 
“  Eco-friendly Management of Damping-Off Disease of Chilli Caused by  Pythium 
aphanidermatum  (Edson) Fitzp    ” (Chap. 3), “  Biological Agents in Fusarium Wilt 
Diagnostics for Sustainable Pigeon Pea Production, Opportunities and Challenges    ” 
(Chap. 4), “  Recent Diagnostics and Detection Tools: Implications for Plant 
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Pathogenic  Alternaria  and Their Disease Management    ” (Chap. 5), “  Molecular 
Prospecting: An Advancement in Diagnosis and Control of  Rhizoctonia solani     ” 
(Chap. 6), “   Fusarium moniliforme  Associated with Sugarcane Leaf Binding Disease 
in India and Its Possible Management    ” (Chap. 7), “   Macrophomina phaseolina : The 
Most Destructive Soybean Fungal Pathogen of Global Concern    ” (Chap. 8), 
“   Colletotrichum gloeosporioides : Pathogen of Anthracnose Disease in Mango 
 (Mangifera indica L.)     ” (Chap. 9), “  Current Scenario of Mango Malformation and 
Its Management Strategies: An Overview    ” (Chap. 10), “  Paradigm Shift in Plant 
Disease Diagnostics: A Journey from Conventional Diagnostics to Nano- 
diagnostics    ” (Chap. 11), “  Detection of Plant Pathogenic Fungi: Current Techniques 
and Future Trends    ” (Chap. 12), “  Molecular Diagnostics and Application of DNA 
Markers in the Management of Major Diseases of Sugarcane    ” (Chap. 13), 
“  Physiological and Molecular Signaling Involved in Disease Management Through 
 Trichoderma : An Effective Biocontrol Paradigm    ” (Chap. 14), “  Biotechnology in 
the Diagnosis and Management of Infectious Diseases    ” (Chap. 15), “  Antimycotic 
Potential of Fungal Endophytes Associated with  Schima wallichii  by Synthesizing 
Bioactive Natural Products    ” (Chap. 16), “  The Biological Control Possibilities of 
Seed-Borne Fungi    ” (Chap. 17), “  Mycotoxin Menace in Stored Agricultural 
Commodities and Their Management by Plant Volatiles: An Overview    ” (Chap. 18), 
“  Diagnostics of Seed-Borne Pathogens in Quarantine and Conservation of Plant 
Genetic Resources    ” (Chap. 19), “  Afl atoxigenic Fungi in Food Grains: Detection, Its 
Impact on Handlers and Management Strategies    ” (Chap. 20). 

 In this book, expert researchers share their research knowledge and key literature 
which are vital towards the diagnosis of fungal plant diseases across the globe, 
addressing traditional plant pathology techniques, as well as advanced molecular 
diagnostic approach. We are extremely grateful to all the authors who have made the 
production of this volume edition possible. Authors are experts in their fi eld, and we 
appreciate their willingness to contribute to this book which will be useful for all 
scientists and researchers around the globe gave compilation of this book  Current 
Trends in Plant Disease Diagnostics and Management Practices . 

 We are grateful to the Series Editors Dr. V. K. Gupta and Dr. Maria Tuohy, Editor 
(Botany) Eric Stannard, and others concerned with Springer for their help in various 
ways. Many thanks to Springer Project Coordinator (Books) Rekha Udaiyar for her 
continuous efforts and immense support in the preparation of this volume to which 
we are highly indebted. We are grateful to all the contributors for their concern and 
concerted effects in making this volume. It is our intense hope that information 
presented in this book/volume will make a valuable contribution to the science of 
plant disease diagnosis and management. We believe and trust that it will stimulate 
further discussions in the pursuit of new knowledge. We also hope that it will be 
useful to all concerned.  
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      Molecular Diagnosis of Killer Pathogen 
of Potato:  Phytophthora infestans  
and Its Management                     

       Touseef     Hussain      and     Bir     Pal     Singh   

       Potato ( Solanum tuberosum  L.) a unique tuber crop and a member of the Solanaceae 
family, which is often quoted as the “Future food” & “Apple of soil” fi nds its roots 
of origin in the Andes of South America, also the original home of Late blight 
(Widmark  2010 ), which was introduced in India, in early seventeenth century and 
since then, it has been adopted through the length and breadth of the country. After 
Rice, and wheat, Potato is third most important non-grain food crop in the world, 
from the point of human consumption and is central to global food security. Looking 
at its good gustative as well as high nutritional qualities and can be grown under 
various climates thats why Food and Agriculture Organization (FAO) has declared 
the year 2008 the international year of the potato. Indeed, potato can helpfull-fi ll the 
fi rst United Nations Organization’s (UNO) millennium development goal that aims 
at eradicating extreme poverty and hunger in the world. Potato production and con-
sumption is accelerating in most of the developing countries including India pri-
marily because of increasing industrialization. In fact, Potato production in 
developing countries surpassed that of developed countries. India is the second larg-
est potato producer in the world after China. In India, Potatoes are grown under 
varied climatic conditions ranging from tropics, subtropics to temperate highlands. 
India also export (both seed and table potato), through which foreign exchange is 
also generated. Potatoes belong to the crops that grow even in unfavourable condi-
tions and at high altitudes. Moreover, a few other crops produce a comparably high 
yield of nutrients per cultivated area – a quality that is particularly welcome in 
regions where land is scarce. This is why potatoes are highly important for many 
farming families in the world’s mountain regions. Consequently, the spectrum of 
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insect-pests and diseases is very large. All of them put together have the potential to 
limit potato production upto 85 % depending upon the weather/region. Under 
favourable conditions for potato, diseases development are frequently the same as 
the conditions needed for potato growth: temperature ranges from 10 to 25 °C, with 
high humidity, medium pH, etc. In most cases, potato pathogens develop specifi c 
survival forms, dissemination ways and host penetration methods. The genetic vari-
ability of the pathogens implies the use of adapted diagnostic and control 
methods. 

 Throughout the World, potato is becoming a more and more important foodstuff 
it is therefore essential to control diseases which cause direct yield losses and 
decrease of farmer’s incomes due to downgrading the quality of affected tubers in 
seed industry. That’s why, knowledge about the pathogens as well as factors which 
are infl uencing disease severity is needed to setup effi cient control strategies. 

 Detection of plant pathogens has enabled to setup adapted control measures and 
avoid disease expansion and helps in yield losses, even if the infestation level is 
low. Infected seeds are the most important carrier of pathogens for trans-regional 
and long-distance dissemination. Diagnosis and management of seed borne dis-
eases through quality control programmes helps in monitoring of seeds which are 
from harvest to purchase, for marketing and sowing in the fi eld, to ensure high 
quality, pathogen free and which are genetically pure seed. Healthy potato tuber/
seeds are the base of the potato production chain and the most critical factor for 
success. 

  P. infestans  is the most devastating diseases of potatoes in the world. This epi-
demic had totally destroyed potato crops in the 1840s which led to mass starvation 
in Europe. For example, in the Great Irish Famine of 1845–1847, up to one million 
people died and a similar number of people emigrated to the rest of Europe and the 
USA. There were, of course, factors that contributed to the starvation, including the 
land-tenure system in Ireland at that time, and the almost total dependence of 
the poorer working population on potatoes as their source of food. Nevertheless, 
potato blight ranks as one of the most devastating diseases in human history. Even 
today it is one of the major pathogens that chemical companies target in their search 
for new fungicides. 

 However, the relatively recent migration of the A2 mating type of  P. infestans  
from its presumed centre of origin, Central Mexico (Niederhauser  1991 ; Goodwin 
et al.  1994a ,  b ), to different parts of the world during 1970s and 1980s has resulted 
in increased diseases severity and has refocused its attention on the disease emer-
gence (Fry et al.  1993 ; Goodwin  1997 ). The occurrence of both mating types of 
 P. infestans  has resulted in the emergence of sexual oospores (Goodwin and Drenth 
 1997 ), that allow survival of the pathogen in the soil (Singh et al.  1994 ). 

 Losses upto 85 % have been reported if crop (susceptible cultivar) remains 
unprotected. Disease appears every year in epiphytotic forms in hills as well as in 
plains. The causal organism of late blight is  Phytophthora infestans  (Mont.) de 
bary.  Phytophthora  in greek word means: Plant destroyer,  Phytophthora  has 
branched sporangiophore that produced lemon shaped sporangia at their tips. At 
the places where sporangia are produced, spornagiophores form swellings that are 
characteristics of  P. infestans  (Hussain et al.  2015 ). 
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    Morphology 

 The mycelium is hyaline, branched, co-enocytic and produces indeterminate 
 sympodially-branched sporangiophores distinguishable from somatic hyphae. The 
thin walled, lemon–shaped, hylanie sporangium (21–38 × 12–23 m), having an apical 
papilla, is borne at the tip of the branched and, as it matures, the tip of the branch 
swells and continues to elongate, resulting in the sporangium being turned laterally. A 
sporulating hypha is characterized by periodic swelling that marks the points at which 
sporangia had been attached. Most strains are heterothallic and production of the 
sexual spore (oospore) requires two compatibility groups (mating types). Reproductive 
structures are anthredia and oogonia from opposite mating types. During the develop-
ment of these structures, the antherdium is punctured by oogonium, which grows 
through it and matures into a round body above the antheridium-an arrangement 
termed amphygynous. The oospores has a thicked walled that renders it resistant to 
unfavourable conditions (Fig.  1 ). It germinates to form a zoosporangium.

       Losses 

 The losses form the diseases in potatoes are of two different kinds: First losses 
caused by foliage infection which leads to premature death of the plant and conse-
quently in tuber yield; and another caused by tuber infection and loss through rottage 
of infected tubers in the fi eld and storage (Bhattacharyya et al.  1990 ; Robertson 
 1991 ). Losses are more in hilly regions where crop is grown under rain- fed condition 
in comparison to plains. Late blight attacks both the foliage and tubers of the potato 

  Fig. 1     P. infestans  sexual 
Oospore (A2 mating type)       
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crops. The diseases has potential of quickly developing into an epiphytotic form and 
often responsible for heavy loss in yield resulting even complete crop failure. Cox 
and Large ( 1960 ) have reviewed that blight losses reported in different countries. 
The loss yield due to defoliation may be negligible in countries like Australia while 
it may vary on average form 10–20 % in most countries. Currenlty causing losses 
estimated at US $6 billion around the world every year,   www.huttonac.uk     james 
 hutton institute newsletter, 10 Feb 2016. In India, losses are much larger in unsprayed 
crop which go as high as 90 % (Bhattacharyya et al.  1990 ). In the plains (irrigated 
crop) losses mainly depends on the time of diseases appearance and its subsequent 
build-up. The tomato crop is also affected because of late blight diseases.  

    Symptoms 

 The diseases affect all the plant parts viz .  leaves, stem and tubers. Symptoms appear 
at fi rst as water soaked spot, usually at edges of lower leaves. The lesion starts as a 
pale green spot that turns brown in 1 or 2 days. These spots develop and may become 
nearly black. On the under surface of the leaf a white mildews growth develops 
around the lesion and is characteristics features of disease (Fig.  2a, b ). On stem, 
blight brown elongated lesion are formed which encircle stems as well as Tubers 
develop reddish brown, shallow, to deep dry rot lesions in the potato plant. The 
affected tuber fl eshes become caramelised with sugary texture. A tan brown, dry 
granular rot characteristically extend into the infected tuber upto 1.5 cm depth 

a

b

  Fig. 2    ( a ) Late blight 
infected Potato leaf. ( b ) 
Late blight infected potato 
crop in fi eld       
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(Fig.  3 ). In cold store, the pathogen does not advance inside the tubers but such 
tubers become susceptible for soft rot infection.

    Appearance and build-up of late blight depend solely on weather conditions. 
There are specifi c requirements of temperature and humidity for initiation and fur-
ther build-up of disease. Temperature requirements are different for fungus growth 
(16–20 °C), spore production (18–22 °C), spore germination (10–20 °C) and for 
infection and disease development (10–22 °C with 18 + 1 °C). Spore germination 
and infection requires 100 % humidity and spores get killed under low humidity 
(<75 %). Fungal spores are produced during the night and are sensitive to light. 

  Temperature     Maximum: 18 ± 2 °C 
 Minimum: 10 ± 2 °C 
 Relative humidity: 80–95 % 
 Thick clouds/fog during day intermittent rain, heavy dew during night and light 

wind velocity  

  Spread     sporangia are responsible for fresh infection. The infected crop under 
favourable weather is generally killed within 10–15 days.  

  Special advice     if the crop is 65–70 days old and the diseases has damaged on 
fourth crop than cut the haulm and remove them from the fi eld. Remove diseases 
infected tubers at the time of harvest before storage.   

    Epidemiology 

 Appearance of late blight of potato and its subsequent build-up and spread depends on 
many other factors also. They include sources of inoculum (Karolev  1978 ), host resis-
tance per se (Fry  1977 ; Van der Plank  1984 ), Plant protection support provided 
through fungicides sprays, deployment of host resistance varieties in the fi eld 
(Bhattacharyya et al.  1990 ) and weather conditions (Cook  1947 ). Field infection is the 
most successful under cool, moist conditions. However, infections takes place over a 
range of environment conditions, sporangial production is most rapid and prolifi c at 

  Fig. 3    Late blight infected 
potato tuber       
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100 % relative humidity and at 20 °C. Sporangia are sensitive to desiccation and, after 
disposal by wind or splashing water, they require free water for germination. The 
optimal temperature for indirect germination via zoospores is 10 °C, whereas that for 
direct germination of sporangia via germ-tubes is 24 °C. In both types of germinations 
occur at by overlapping temperatures. Zoospores are quickly killed by drying. In the 
presence of free water they produces germ tube and penetration occurs at tempera-
tures between 10 and 29 °C. Once penetration has occurred, in the plant infection and 
subsequent development of the diseases is most rapid at 21 °C. 

 Tubers, particularly those inadequately covered by soil, may be infected in the 
fi eld by spore that have been washed form infected leaves into the soil by rain or 
irrigation (Fig.  3 ). Rapid tubers growth frequently causes soil to crack, exposing 
tubers infection. Tuber infection may also occur during wet harvest conditions via 
contact between tubers and sporangia. 

 Today one of the major challenges for plant pathologist is to develop detection 
techniques for plant pathogens, so that appropriate measures are taken for their 
management. Accurate detection and easy identifi cation of plant pathogens is a pre- 
request of diseases management to sustain highly yield potential crops. Therefore 
continuous efforts are being made to develop simple, reliable, raid and safe methods 
for disease diagnosis. The use of diagnostics to investigate the extent of pathogen 
contamination in potato stocks, the factors affecting disease development during 
growth and storage and the relationship between inoculums load and diseases risk 
is considered. 

 Looking into the economic importance of potato, early pathogen detection in the 
fi eld and storage facilities is a crucial step because sometime few contaminated 
tubers plants are enough to spread the infection and causing severely compromise 
production and reduction in yield (Trout et al.  1997 ; Judelson and Tooley  2000 ; 
Jayan et al.  2002 ; Hussain et al.  2005 ,  2013 ,  2013c ,  2014 ). Besides being a destruc-
tive plant pathogen,  P. infestans  is also a model organism for oomycetes group 
(Haas et al.  2009 ). Therefore, producers as well as plant breeders and researchers, 
benefi ts form methodologies by allowing the accurate measurement of  P. infestans  
growth (Dorrance and Inglis  1997 ). 

 The early, accurate reliable detection and identifi cation of fungal and oomycete 
pathogens are required for quick plant quarantine decisions and effective plant 
diseases management. Traditionally, identifi cation, and detection of fungal patho-
gens were mainly relied on culture based morphological approaches (Tsao and 
Guy  1977 ; Jeffers and Aldwinkle  1987 ). The identifi cation of plant pathogenic 
fungi based on morphology is a laborious, time – consuming and mycological 
expertise – intensive task, therefore, a fats, rapid, sensitive and robust diagnostic 
tools are very important for the production of clean, safe planting, quarantine 
inspections and safe conservation and exchange of germplasm and tissue culture 
materials. 

 In the last three decades, molecular detection of plant pathogens has seen a very 
signifi cant changes. The advents of Immunology based detection, i.e. the monoclo-
nal antibodies and the Enzyme Linked Immunosorbent Assay (ELISA), which was 
an important turning point in virology and bacteriology. Then came the DNA based 
technology, like PCR, which totally changes the face of molecular diagnostics. 
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Furthermore, diagnostic PCR has been greatly improved by the introduction of sec-
ond generation of PCR, which are known as Real Time PCR. The DNA Microarray 
technology, originally designed to study gene expression Single Nucleotide 
Polymorphism (SNP) is currently a new emerging pathogen diagnostic technology, 
which in theory, opens a new platform for unlimited multiplexing capability. It is 
viewed as a technology that fundamentally alter molecular diagnostics. 

 Sometimes molecular methods cant’ provide all the results but have proved a 
valuable tools that consisted of teams of experienced plant pathologist, mycologist 
and ecologist Despite the technology advances reported in this chapter, there is 
considerable scope for improvement. There is an ongoing need for fi led kits for 
rapid and accurate on–site detection of specifi c pathogens and advances in automa-
tion and miniaturisation. 

 Several diagnostic tests are being used to fulfi l the diagnostic mandate. Such 
tests should be ideally be:

    1.    Sensitive – able to detect low numbers of pathogens   
   2.    Specifi c – able to differentiate between pathogenic and harmless organisms,   
   3.    Rapid – so that results can be obtained quickly,   
   4.    Automatable – amenable to being used as a large-scale screening method,   
   5.    Affordable – the price cannot signifi cantly affect production costs of the crop 

produced.     

    Diagnosis Methods for Seed Borne Pathogens 

 The selection of a method depends upon the purpose of the test i.e. whether the 
seeds are to be tested for seed certifi cation, seed treatment, quarantine etc. If the 
purpose is for quarantine, then a highly sensitive methods are preferred, which can 
detect even traces of inoculum. 

 Diagnostics methods based on nucleic acid began to develop a real momentum 
after the introduction of PCR in the mid-1980s. New approaches based on DNA are 
highly specifi c rapid, reliable were developed for accurate diagnosis of seed borne 
pathogens. These Diagnostic assays are based on PCR technique which have been 
developed for major seed borne diseases of potato. 

 Before any PCR protocol, three major points are very important:

    1.    Target region of DNA specifi c to the pathogen   
   2.    DNA extraction from pathogen infected planting material, and   
   3.    A good protocol for the diagnosis of the specifi c/targeted pathogen present in the 

sample     

 In each case, specifi c primers were designed within the internal transcribed 
spacer (ITS) regions of the rDNA repeat. ITS regions are most commonly used 
targets regions widely used in  diagnostic assays of  Phytophthora  spp. because they 
are present in multiple copies, can be easily amplifi ed, sequenced with universal 
primers and possess conserved as well as variable sequences (White et al.  1990 ; 
Bonants et al.  1997 ). Moreover, the availability of ITS sequence database easily 
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facilitates the alignment of sequences of a wide range of species for the selection of 
species-specifi c primers. Its means that, the ITS sequence database will help in 
designing of species specifi c primers for the specifi c detection of every phytoph-
thora spp. to differentiate from other species.  

    Molecular Identifi cation 

 One of the most widely used molecular approach to differentiating different species 
of plant pathogenic fungi is sequencing analysis of the internally, transcribed spacer 
region (ITS) of the ribosomal RNA gene cluster (Fig.  4 ). It has no protein product 
but is transcribed and may be signifi cant in the folding and secondary structure of 
the rRNA molecule (Gottschling and Plötner  2004 ). Sequence variation is generally 
greatest at the 3′ and 5′ termini of the spacers and although sequence variation can 
defi ne species boundaries, variation, within species is not consistent.

   A phylogenetic analysis of 50 described  Phytophthora  taxa, based on ITS1 and 
ITS2 rDNA sequences, clustered the taxa into eight main lineages designated Clades 
1–8 (Cooke et al.  2000 ). Several species specifi c markers were designed from ITS 
region by several workers (Kong et al.  2004 ; Chowdappa et al.  2003b ; Hussain et 
al.  2010 ,  2013 ,  2013a ), for detection and identifi cation of  Phytophthora  sp. 
Mitochondrial genes are another set of genes used to identify and determine phylo-
genetic analysis of  Phytophthora . TrnG-TrnY region (mitochondrial genome region 
between gene tranG (gcc) and gene trnY (gua)), Atp9-Nad9 (Mitochondrial genome 
region between gene Atp9 and gene Nad9), Cox2-Cox-1 region (mitochondrial 
genome region between cox2 and gene cox1) and TrnY-Rns region (mitochondrial 
genome between gene trnY(gua) and gene RNA) etc. were analysed by Schena and 
Cooke ( 2006 ). In Cox2-Cox1 region were more appropriate for identifi cation, taxo-
nomic and phylogenetic studies. That can amplifi ed easily and aligned as the total 
length is quite similar in all  Phytophthoras . 

 The intergeneric (IGS1& IGS2) regions of rDNA seem to which have great 
potential as alternative in comparison to ITS regions. Because, they are present in 
multicopy (up to 200 copies per haploid genome) but their large length 
 (4000–5000 bp) which also provides a considerable scope for primers development. 

5, 3,

ITS5m ITS3

ITS2 ITS4
18S 5.8S 26SITS–2ITS–1

  Fig. 4    The three coding and two internal transcribed spacer regions of the nuclear ribosomal DNA 
repeat unit.  Arrows  indicate approximate locations of the four primers used for PCR amplifi cation       

 

T. Hussain and B.P. Singh



9

Specifi c primers to detect  P. medicaginis  were developed by using IGS2 region 
because of diffi culties in discriminating the closely related species on the basis of 
ITS regions which were unable to differentiate them (Liew et al.  1998 ). Earlier, a 
new set of Universal primers using IGS regions were developed and utilized for 
PCR amplifi cation of approximately 450 bp in IGS regions very close to the 28S 
rDNA gene (Schena and Cooke  2006 ). 

 This technique of RAPD has been used as an auxiliary tool to determine the 
genetic analysis, classifi cation or identifi cation of soil-borne pathogens such as 
 Fusarium, Rhizoctonia , or  Colletrichum  and for other ptahogens also (Angela et al. 
 1996 ; Kim et al.  1998 ). Dobrowolski ( 1998 ) reported that many of the product gen-
erated by RAPD-PCR are derived from repetitive DNA sequences and are fre-
quently species-specifi c; in fact in recent years the SCAR markers were successfully 
used to produce species-specifi c probes and PCR primers in  Phytophthora  (Schubert 
et al.  1999 ; Hussain et al,  in press ) and in other fungal species (Hermosa et al.  2001 ; 
Mercado-Blanco et al.  2001 ; Taylor et al.  2001 ).  

    Nuclear-Encoded Genes 

 The nuclear-encoded ribosomal RNA genes (rDNA) provide attractive targets which 
are used to design specifi c primers as they are highly stable, which can be amplifi ed 
and sequenced with universal primers also and occur in a multiple copies, and pos-
sess conserved as well as variable sequences (White et al.  1990 ). Another example 
of nuclear genes used for taxonomic studies of  Phytophthora  is ras-related protein 
(Ypt1) gene. They are highly polymorphic in nature and contain conserved coding 
regions fl anking very variable introns. The Ypt1gene helps in the differentiation of 
all closely related species such as  P. pseudosyringae ,  P. nemorosa ,  P. psychrophila , 
and  P. ilicistaht  which have almost an identical ITS regions. This region is free from 
any intraspecifi c variation that could cause problems for diagnostic programme 
when Compared to other available targets sequences So, Ypt1 gene has the enor-
mous advantages to enable the design specifi c primers in short DNA segment but it 
is having the disadvantages of being single copy gene (Chen and Roxby  1996 ).  

    DNA Probes 

 DNA probes or also known as gene probe or genetic probe. These probes are Short, 
specifi c (complementary to desired gene) artifi cially produced segments of DNA 
which are combined with and detect the presence of specifi c segment of genes with 
a chromosomes. If a DNA probes of known composition and length is mingled with 
pieces of DNA(gene) from a known composition, the probe will matched to its exact 
counterpart in the chromosomal DNA pieces (genes), by forming a stable-double 
stranded hybrid. DNA probes were among the fi rst molecular techniques applied in 
the detection, identifi cation and phylogenetic analysis of fungal pathogens 
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(Manicon et al.  1987 ; Rollo et al.  1987 ). Now a days generation of DNA probes is 
based on sequences amplifi ed by PCR (Williams et al.  2001a ,  b ). If DNA of soil 
borne pathogens is extracted directly from soil samples, attention must be drawn to 
 co-extraction of humic acids or other inhibitory substances. In this case, appropriate 
modifi cations of DNA isolation protocols (e.g. use of resin columns) have been 
developed (Cullens and Hirsch  1998 ). DNA probes have been widely applied in 
molecular fungal diagnostics especially before the development of the PCR tech-
niques. Among the numerous examples about the use of DNA probes in plant patho-
gens is the detection of several species of the  P. parasitica  both in soil and in host 
tissues (Goodwin et al.  1989 ). 

 DNA array technology has been used for detection and identify multiple 
pathogens simultaneously to species and intra-species levels with highly detec-
tors oligonucleotides (Bodrossy et al.  2004 ; Lievens and Thomma  2005 ). The 
microarray enables higher oligonucleotide density where thousands of detector 
oligonucleotides can be spotted on a single slide. Therefore, one microarray is 
capable of detecting hundreds of different pathogens, but each array can be used 
only once.  

    Nested PCR 

 The Nested PCR assay was used to detect  P. cactorum  infected strawberry plant 
because of it higher sensitivity and fl exibility, by using two different sets of primers. 
This assays provide detection even in early stages of diseases development (Glen 
et al.  2007 ). Nested PCR increased the detection sensitivity of  P. melonis  1000 fold, 
in comparison to a single round PCR, non-nested PCR (Wang et al.  2007 ). This 
PCR assay also provides facilitates for use of relatively non-specifi c PCR primers in 
the fi rst round of PCR for amplifi cation of multiple pathogen specifi c primers in the 
second round of PCR (Hussain et al.  2005 ). These two PCR main steps has been 
used for the detection of  P. fragariae  var.  Fragariae ,  V. dahliae , etc. Affecting 
strawberry (Bhat and Browne  2007 ). One of the disadvantage of using nested PCR 
is that it is not worthy for quantifying target DNA concentrations. Along with sen-
sitivity to DNA concentrations, therefore appropriate precautions (Coleman and 
Tsongalis  1997 ) should be taken while carried out this technique.  

    Multiplex PCR 

 To overcome the shortcoming of PCR and also to increase the diagnostic capacity 
of PCR, a variant termed multiplex PCR has been described. In multiplex PCR more 
than one target sequence can be amplifi ed by including more than one pair of prim-
ers in single reaction tube (Hussain et al.  2014 ). Multiplex PCR has the potential to 
produce considerable savings of time and effort within the laboratory without com-
promising test utility. Since, its introduction, multiplex PCR has been successfully 
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applied in many areas of nucleic acid diagnostics, including gene deletion analysis 
(Browine et al.  1997 ; Chamberlian et al.  1988 ), mutation and polymorphism analy-
sis, quantitative analysis, and RNA detection.  

    Real Time PCR Assay 

 Real-Time PCR represents a recent advances in PCR methodology. Real Time test-
ing is less time consuming that conventional PCR tests that requires post-PCR 
manipulations such as visualizing products on a gel. Several studies have demon-
strated that the sensitivity of Real Time PCR may also exceed that of conventional 
PCR by up to 100 times (Mumford et al.  2004 ; Ratti et al.  2004 ). Addition, real time 
PCR can be used to quantify targets nucleic acids in a range of sample types. Real 
time reverse transcription PCR has been used previously to investigate the levels of 
defence associated gene transcripts within plants in the presence of non-pathogenic 
pathogens (Wen et al.  2005 ). 

 Several detection systems are now available and are either based on  hybridization 
probes such as Taqman probes (Holland et al.  1991 ), Molecular Beacons (Tyagi and 
Kramer  1996 ), and Scorpions (Whitecombe et al.  1999 ) or on intercalation by fl uo-
rescent dyes, such as the ds-DNA-binding dye SYBR® Green I (Roche Diagnostics, 
Penzberg, Germany) (Morrison et al.  1998 ; Wittwer et al.  1997 ). While hybridiza-
tion probes offer the advantage of target sequence specifi city, a specifi c probe is 
required which required an both additional manipulation as well as extra cost for the 
probe. 

 The SYBR Green dye is the widely used intercalating dye for fungal disease 
diagnosis and detection is based on emitting of fl uorescent light when intercalated 
with into double stranded DNA (dsDNA) (Hussain et al.  2013b ). This dye is a sim-
ple and reliable low cost method for fungal pathogen progression, detection and 
quantifi cation. Flurophores such as FAM, TE, TAMRA, HEX, JOE, ROX, CY5 and 
Texas Red and quenchers such as TAMRA, DABCYL and Methyl Red are the com-
monly used in fl uorescent resonance energy transfer (FRET) probes. The ability to 
quantify pathogen populations using quantitative real-time PCR holds great poten-
tial for epidemiological studies, for determining seed-borne or plant-borne inocu-
lum and for establishing and monitoring transmission thresholds as bases for 
improved disease management (Gitaitis and Walcott  2007 ).  

    Detecting Multiple Species 

 Many other techniques has been used and described for detection of more than one 
 Phytophthora  spp. within a sample. One such approach is PCR-ELISA in which 
digoxygenin-11-UTP (DIG) is incorporated into the amplicon during the amplifi ca-
tion phase (Bailey et al.  2002 ). These amplicons are hybridized to oligonucleotides 
capture probe immobilied into microtiter plate wells after that amount of DIG 
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retained in the well is determined through ELISA type reaction (Bailey et al.  2002 ). 
Capture probes for different species of  Phytophthora  can be immobilized in differ-
ent wells, and hence multiple species can be detected simultaneously by this tech-
nique. Similarly, Bonants et al.  2004 , found the sensitivity PCR-ELISA for detection 
of  P. fragariae  compared with that of Taqman PCR. 

 DNA Chips or DNA arrays is set of unabled oligonucleotides detectors specifi c 
for the taxa under study are immobilized using a solid support (usually a nylon 
membrane or glass slide). DNA is subsequently prepared from the samples (e.g., 
soil, irrigation water or plant tissues) and labelled during or after PCR amplifi cation, 
the resulting complex labelled during mixture representing an array of different 
microorganisms is then hybridized to the membrane under stringent conditions. 

 Now a days with emergence of new machinery ideas has attracted an attention 
for identifi cation of microbial species through MALDI-TOF mass spectroscopy 
(MALDI-TOF MS) (Leushner and Chiu  2000 ; Kim et al.  2005 ; Jackson et al.  2007 ). 
By using species specifi c primers annealed to template DNA are extended by a 
single nucleotide, in this technique, dissociated from the template and separated by 
mass. Since each of the four nucleotides has a different mass, four products are 
obtained for each primer, and since multiple primers can be annealed to the template 
the resolving power of the technique is very high. Its attractive features draw the 
attentions of Researchers because it is very high throughput, cost effective, and 
amenable to automation. Although the application of MALDI-TOF MS to diagnosis 
of plant pathogens is in its infancy, preliminary studies have revealed that it can dif-
ferent  Phytophthora  spp. can be differentiated using soil DNA sample (Siricord and 
O’Brien  2008 ).  

    DNA Array Hybridization 

 DNA array hybridization, also known as Reverse Dot Blot Hybridization (RDBH) 
or macroarray, is a technique based on hybridization of amplifi ed and labelled 
genome regions of interest to immobilized oligonucleotides which is spotted on a 
solid support platform. It was originally used developed to detect mutations in 
human genes, and is still an important diagnostic tool in clinical research (Chehab 
and Wall  1992 ; Zhang et al.  1991 ). It is now considered a powerful and practical 
technique for the detection and identifi cation of fungi and other microbes, such as 
bacteria, from a very dense complex samples collected form the environment with 
no the need of isolation in culture (Chen et al.  2009 ; Lévesque et al .   1998 ; Tambong 
et al .   2006 ; Uehara et al.  1999 ; Zhang et al .   2007 ,  2008 ). For this type of application, 
oligonucleotides, or microcodes (Summerbell et al.  2005 ), are designed from a taxo-
nomically complete dataset of suitable genome region(s) (Chen et al.  2009 ; Tambong 
et al.  2006 ). The oligonucleotides can be selected manually, by analysing different 
multi-sequence alignments, or computer programs, such as SigOli and Array 
Designer (Premier Biosoft International, Palo Alto, CA). Synthesized oligonucle-
otides with 5′-amine modifi cations are then spotted onto a supporting platform, such 
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as a nylon membrane or glass slide, either manually or robotically. Robotic spotting 
can signifi cantly increase the maximum density of the array which can favour the 
detection of broader taxonomic groups (Chen et al.  2009 ). Amplicons of the target 
gene region(s) are amplifi ed by PCR, labelled with digoxygenin (DIG) and sub-
jected to the DNA hybridization procedure previously described (Fessehaie et al .  
 2003 ). A positive reaction between an amplicon and a perfectly matched (PM) oli-
gonucleotide generates a chemiluminescent signal which can be detected by X-ray 
fi lm or by using a digital camera in dark room. Captured images are then analysed 
on a computer program such as GenePix Pro (Molecular Devices, Sunnyvale, CA). 

 DNA arrays was developed for the diagnosis of plant pathogens which has 
been large scale of environmental samples, like as greenhouse crops (Le Floch 
et al.  2007 ; Lievens et al .   2003 ), potatoes (Fessehaie et al.  2003 ), ginseng (Punja 
et al.  2007 ), and fruits (Robideau et al.  2008 ; Sholberg et al.  2005 ,  2006 ). 
Macroarrays are also effective diagnostic tools for the detection of phytopatho-
genic bacteria (Fessehaie et al.  2003 ), fungi and fungus-like organisms (Chen 
et al.  2009 ; Tambong et al.  2006 ), nematodes (Uehara et al.  1999 ), and viruses 
(Agindotan and Perry  2007 ,  2008 ). In a recent study, DNA arrays were  constructed 
from multiple loci of  Phytophthora  species, including  ITS ,  cox 1 and the inter-
genic region ( cox 2-1 spacer,  CS ) between cytochrome c oxidase 2 ( cox 2) and  cox 1 
(Chen and Roxby  1996 ). In comparison to the  cox 1 region, the length variation 
and the presence of indelsin both sequence alignments of  ITS  and  CS  provided 
better opportunities to select highly specifi c oligonucleotides. The combination of 
all three arrays increased the discrimination potential, detection accuracy, and 
redundancy of the assay.  

    Multiplex Tandem PCR Assay 

 Multiplexed-tandem PCR (MT-PCR) is a technology platform developed for highly 
multiplexed gene expression profi ling and the rapid identifi cation of clinically 
important pathogens (Stanley and Szewczuk  2005 ). This assay consists of two 
rounds of amplifi cation. In the fi rst round a multiplex PCR is performed at 
10–15 cycles which allow enrichment of the target DNA without creating competi-
tion between amplicons (Lau et al.  2009 ). Now this product is further diluted and 
used as template for the second amplifi cation that consists of multiple individual 
quantitative PCR reactions with primers nested within those used in the multiplex 
PCR. Up to 72 different PCR reactions can be multiplexed and performed simulta-
neously. Fluorescence is measured by SYBR green technology at after fi nal exten-
sion cycle, and melt-curve analysis data provides species-specifi c or gene-specifi c 
identifi cation. The incorporation of two sets of species-specifi c primers for each 
target ensures correct amplifi cation and detection, thus avoiding the expense of 
DNA probes. SYBR green detection also increases the multiplexing and quantita-
tive capacity of real-time PCR systems, which are usually limited by the availability 
of fl uorescent channels and the need to optimize each individual multiplex PCR.   
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    Biosensors 

 Biosensors contains an analytical devices which have combination of a biological 
recognition ligand with physical or chemical signaling devices called (transducers). 
This recorded biomolecular interactions are transformed into digital signals which are 
then interpreted by a computer-aided readout, thereby providing the user with are 
presentation of the interaction that occurs between the bound (ligand) and free (ana-
lyte) entities (Fig.  5 ). Different formats of sensor have been utilised for pathogen 
analysis using antibodies; common namely are electrochemical, mass-based, mag-
netic and optical. Their sensitivities of these assays are dependent on the properties of 
the transducer and the quality of the antibody. An overview of each sensor type and an 
explanation of how antibodies can be incorporated for pathogen detection follows.

      Lateral Flow Devices 

 Since the fi rst report of plant virus detection by enzyme-linked immunosorbent 
assay (ELISA) (Clark and Adams  1977 ), the incorporation of serological methods 
into routine diagnosis for plant pathogens has improved the sensitivity and reliabil-
ity of diseases diagnosis. ELISA has generally superseded most other immunologi-
cal approaches, such as gel diffusion and agglutination assays, to become the 
standard laboratory method. ELISA is particularly suited to large-scale testing of 
fi eld samples, and antibodies have been developed for major plant pathogens. 
However, there remains a need for the detection of pathogens on site, in fi eld condi-
tions, using a test that can rapidly and reliably confi rm the presence or absence of a 
particular pathogen in symptomatic tissue. 

 However, serological techniques to detect fungal pathogens of plants have not 
been widely reported until recently. Harrsion et al. ( 1990 ) developed a polyclonal 
antiserum, which reacted with crushed mycelial extracts of  Phytophthora  spp. But 
not cross react with other pathogens of potato.  P. infestans  was readily detected by 

Analyte

Protein A

Dextran

Transducer Data analysis

Outputs
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Biorecognition element

  Fig. 5    Diagrammatic display of a biosensor. Here, a full-length antibody is captured on protein A 
immobilised on a carboxymethylated dextran-coated sensor surface and is used for the capture of 
an analyte. This interaction produces a specifi c physicochemical change, such as a change in mass, 
temperature or electrical potential. This is then converted (via a transducer) to a signal which the 
user can interpret       
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ELISA using both plate trapped antigen or F (ab’) antibody fragment techniques. 
This indicates that, although polyclonal antibodies may be useful for detecting a 
range of  Phytophthora  spp., it is likely that monoclonal antibodies will be required 
to identify individual species. Commercial ELISA based kits are available and cur-
rently are used by some growers and state seed certifi cation laboratories in 
USA. However, such kits are only genus specifi c and do not allow differentiation of 
 P. infestans  from other species such as those causing pink rot. The PCR allows a 
greater level of species specifi city than available with ELISA based products and is 
comparable in terms of cost and therefore it is an ideal tool to identify  P. infestans . 
However, for quantifi cation, we have to rely on ELISA test only. 

 Variations include competitive ELISAs in which surface-bound antigen and anti-
gen in solution competes for antibody binding. In this system, comparison of signal 
antigen signals form known antigen standards allow very accurate quantifi cation. In 
double antibody sandwich ELISA (DAS-ELISA), surface-bound antibody is used to 
capture the antigen, followed by detection using a second enzyme-labelled anti-
body. Sandwich ELISAs are extremely specifi c as the antigen must react within 
second antibodies to be detected. Typically, antibodies are conjugated to alkane-
phosphatase or peroxidise and the signal observed as a colour development follow-
ing substrate incubation. ELISAs are run in 96 well plates and scanned by automated 
devices. Several commercial DAS-ELSIA’s exist for plant pathogen detection and 
these are mostly used for detection of pathogens in homogenised plant tissues.  

    Immunofl uorescence Microscopy Assays 

 In direct immunofl uorescence assays (IFA), the pathogen sample is fi xed onto a 
microscope slide, and analysed with a drop of pathogen specifi c antibody labelled 
with a suitable fl urochromeisothiosyanate, FITHC), unbound FITC-conjugate is 
rinsed off, and the slide is examined under an epifl uorescent microscope. If anti-
body has bound, the sample will display a great fl uorescence signal, not present in 
control samples. Indirect IFA’s can also be performed, in which pathogen specifi c 
antibody is detected by FITC-labelled anti-species immunoglobin (Goldsby et al. 
 2003 ). IFA methods are laboratory-based and require an epifl uorescent microscope 
equipped with appropriate excitation and emission fi lters. Also, relatively few sam-
ples can be examined per day, and the analysis of results is subjective and requires 
experienced personal.  

    Later Flow Immunoassays 

 Lateral Flow immunoassays (LFIA) is becoming increasingly popular as on –site 
diagnostic tools for plant pathogen detection. The assay consists of an immunoreac-
tions and a chromatography step (often termed immune chromatography) and the 
power of the technique lies in the speed of analysis. The technology has been 
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available for many years in clinical diagnostics. The most popular and well known 
is the home pregnancy test, which detects the glycoprotein hormone, human chori-
onic Gonadotrophin (Hcg) in the urine of pregnant women. The assays involve the 
unidirectional fl ow of particles (e.g. latex, silica, carbon) coated with analyte- 
specifi c antibody along a nitrocellulose membrane. A basic sandwich type LFIA 
exemplifi ed by viral detection is seen in Fig.  6 . Applied samples are transferred 
along the membrane by capillary fl ow, which allows for good sample separation as 
the reactant site is different from the application site. The antibody-coated particles 
are present in the application site, where the particles capture the antigen as they are 
applied to the strip. As the antigen-particle complex migrates in the membrane, the 
complex is selectively bound by an immobilized antigen antibody, thereby generat-
ing a solid line visible to the naked eye. Particles that did not bind antigen continue 
to migrate up the membrane, where they are bound by an anti-species antibody. For 
a positive result both the test line and the control line must appear (Danks and 
Barker  2000 ). In addition to the sandwich type assay described here, competitive 
and inhibition type assays exist. LFIA’s are user friendly, relatively inexpensive, and 
suited for on-site testing by minimally trained personal. However, LFIA’s have 
major limitations as only qualitative results are obtained (i.e. it gives “yes” or “No” 
answer).

       Dipstick Assays 

 Different dipstick assays type exist. One of the widely used consists of a dipstick 
(typically nitrocellulose) coated with pathogen specifi c antibody. The dipstick is 
emerged into the sample and if present, the pathogen is specifi cally captured by the 
antibody. Following extensive washing of the dipstick, a second pathogen-specifi c 
enzyme conjugate antibody is added. After incubation in enzyme substrate, a 
colour development is indicative of pathogen contamination. Another format con-
sists of a blank dipstick which is emerged into the sample. Pathogen will bind the 
dipstick and enzyme conjugate pathogen specifi c antibody is added. Again a colour 
development after the addition of enzyme substrate, suggests the presence of the 
pathogen in question (Dewey et al.  1990 ). As with LFIA’s analysis these methods 
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  Fig. 6    Lateral fl ow immunoassay (Source: mpdi.com)       
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are fast and can be operated by non-scientifi cally personals, but quantitatively data 
are hard to obtain.  

    Multiplex Immunoassays 

 Promising new assays types, termed multiplex immunoassays have been developed 
in recent years. Multiplexing is defi ned as the detection of several pathogens simul-
taneously and is usually performed on the Luminex system. During this technology, 
based on use of beads (microspheres of 5.6 μm), which is internally stained with 
two fl urochromes. A hundred different bead sets are available, with unique compo-
sitions of red and infrared fl uorochromes. This makes detection of up to 100 differ-
ent antigens possible. Both antibodies and nucleic probes can be covalently linked 
to the activated microspheres. In a Microsphere Immunoassay (MIA), sample are 
incubated with antibody coated beads. The pathogen/antigen are caught by the 
bead-antibody where after secondary antibodies with a reporter dye, are added, 
resulting in a sandwich type of assay. The samples are applied to a Luminex analy-
ser, where one laser excites the internal dyes to identify each microsphere particle, 
and another laser excites the reporter dye on the secondary antibodies captured. 
This gives detailed data of the presence of pathogen. Several different beads (with 
different antibodies attached) can be added to one sample, which can thereby be 
scanned for the presence of many different pathogens (Vignali  2000 ). The technique 
has successfully been used for multiplex detection of three viral plant pathogens and 
four bacterial plant pathogens (Van der Wolf et al.  2005 ).  

    Automatic Diagnostic 

 Now a days Automatic detection of Plant disease within a short period of time is an 
essential research topic that can prove benefi ts in monitoring a large fi elds of crops, 
and thus automatically detect the symptoms of diseases as soon as they appear on 
plant leaves (Al-Bashish et al.  2011 ; Rumpf et al.  2010 ; Hillnhuetter and Mahlein 
 2008 ). Therefore, looking for fast, automatic, less expensive and accurate methods 
to detect plant disease cases is of great realistic signifi cance (Prasad Babu and 
Srinivasa Rao  2010 ). Machine learning based detection and recognition of diseases 
part of plant can provide clues to detect, identify and treat the diseases in its early 
stages (Rumpf et al.  2010 ; Hillnhuetter and Mahlein  2008 ). Comparatively, visually 
identifying plant diseases is expensive, ineffi cient, and diffi cult. Which also, requires 
the expertise of trained personals in this area (Al-Bashish et al.  2011 ). 

 Now a days a fast and accurate new methods is/techniques are being developed 
which are based on computer image processing for differentiating/grading of plant 
disease, for that, leaf region was segmented by using Ostu method (Ostu  1979 ; 
Sezgin and Sankur  2003 ). After that the disease spot regions were segmented by 
using Sobel operator to detect the disease spot edges and Finally, that plant diseases 
are graded by calculating the quotient of disease spot and leaf areas.  
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    LAMP Method 

 In contrast, to PCR, isothermal amplifi cation methods avoid the use of thermal 
cycling equipment, allowing reactions to be carried out incubated in a simple water 
bath or simple heated block. It is performed in a single temperature. This Loop 
mediated isothermal amplifi cation (LAMP) is an amplifi cation method which uses 
two sets of primers (internal and external primers) and a DNA polymerase with 
strand-displacing activity to produce amplifi cation products containing loop regions 
to which further primers can bind, allowing amplifi cation to continue without ther-
mal cycling. The Amplifi cation reaction is accelerated by the use of an additional set 
of primes (loop primers) which binds to those loops which are of the in-corrected 
orientation for the internal primers to bind (Gill and Ghaemi  2008 ). This technique 
has previously been described for the detection of a different range of plant patho-
gen (Fukuta et al.  2003a ,  b ,  2004 ; Tomlinson et al.  2007 ; Varga and James  2006 ). In 
case of this method the products can be detected by conventional agarose gel elec-
trophoresis, by the use of spectrophotometric equipment to measure turbidity (Mori 
et al.  2004 ), in real time using intercalating fl uorescent dyes (Lane et al.  2007 ), or 
by visual inspection through naked eyes) of turbidity or colour changes (Iwamtoo 
et al.  2003 ; Mori et al.  2001 ). Although this technique has advantages of requiring 
no use of any costly equipment, on the basis of colour or turbidity with the unaided 
eye. So, Equipment-free methods for unambiguous detection of LAMP products 
would increase the feasibility of using LAMP for diagnosis of phytopathogens out-
side the laboratory. 

 Advantages of LAMP method:

    1.    Amplifi cation of DNA takes place at an isothermal condition (63–65 °C) with 
greater effi ciency.   

   2.    Thermal denaturation of double stranded DNA is not required.   
   3.    This technique helps in specifi c amplifi cation as it designs four primers to 

recognize six distinct regions on the target gene.   
   4.    It is cost effective as it does not require special reagents or sophisticated 

equipment.   
   5.    This technology can be used for the amplifi cation of RNA templates in presence 

of reverse transcriptase.   
   6.    This assay takes less time for amplifi cation and detection.      

    Integrated Diseases Management 

 In recent era we have observed that a single method for the management of late 
blight is not suffi cient. Therefore, it is demand of time, that we should follow inte-
grated diseases management. Although late blight can be managed by growing 
resistant varieties, but sooner or later all the varieties develop some blight. Breeding 
new varieties is a key to success.  
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    Cultural Control 

 They are employed to reduces/eliminates the initial inoculum of late blight form the 
seed tubers. Fields and to check the spread of the diseases. Important cultural meth-
ods include:

    1.    Selection of well drained soils for healthy cultivation of Potato   
   2.    High ridging (about 15 cm) to avoid exposure of infected seed tubers which can 

act as source of the diseases.   
   3.    Scouting of the fi eld for identifying primary infection foci and their destruction 

by removal of the infected plants after drenching them with recommended 
fungicides.   

   4.    As soon as the weather condition becomes congenial for late blight, irrigation 
should be stopped wherever applicable. Only light irrigation may be given later 
if required.   

   5.    Destroy and remove the haulms form the fi elds when the diseases severity 
reaches >80 % (to avoid tuber infection).   

   6.     Use of healthy Seed:  only disease free seed should be used. Avoid seed from 
a fi eld which has been infected by late blight in the previous year. In case the 
seed from the infected fi elds has to be used, the seed tubers should be thor-
oughly checked for late blight infection. The infected tubers should be 
removed and buried in the soil. This practice of sorting out late blight symp-
toms are east to be identifi ed in cut-pieces where bronzing of the fl esh can be 
seen.      

    Resistant Varieties 

 Northern Indian Plains: Kufri Anand, Kufri Pukhraj, K. Badshah, K. Chipsona I and 
II, K. Jawahar, Kufri Satluj, Kufri Surya,  Kufri Khayati, Kufri Chipsona III, Kufri 
Arun, Kufri Lalima 

 HP Hills: K. Jyoti, K. Giriraj; K. Megha; K. Kanchan, Kufri Girdhari, Kufri 
Himalini, Kufri Shailja, Kufri Sawrna, Kufri Neelema  

    Chemical Control 

 Internationally, to protect the standing crops Protective sprays with a contact fungi-
cide, viz., Mancozeb (0.2 %) before appearance of the disease is effective. 
Subsequent sprays if necessary should be repeated at 8–10 days interval. However 
if severe blight attack, one more sprays of Metalaxyl (0.25 %) are given to check the 
further spread of the disease. Similarly again Mancozeb is applied at an interval of 
15 days after the Metalaxyl application. 
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 A spray schedule of minimum of four fungicides sprays is recommended for 
managing late blight. However, the number sprays may b increased or decreased 
depending on diseases pressure. 

  1st spray     as prophylactic measure, spray the crop with contact fungicides like 
macozeb 75 % WP (0.2 %), propioneb 70 % WP (0.2 %) or chlorothalonil (0.2 %) 
as soon as the weather conditions become congenial for late blight. do not wait or 
allow late blight to appear and establish in the fi eld. Always use a sticker @ 0.1 % 
for proper sticking and uniform spread of fungicides on leaf surface.  

  2nd spray     as soon as the diseases is noticed in the fi eld, apply any of the systemic 
fungicides viz. Metalaxyl based (0.25 %) or cymoxanil based (0.3 %) fungicides.  

  3rd spray     apply contact fungicides viz. Mancozeb (0.2 %), propioneb (0.2 %) or 
chlorothalonil (0.2 %) after 8–10 days of second application of fungicides. However, 
if weather is highly congenial, repeat application of cymoxanil based fungicides 
may be restored to.  

  4th spray     apply systemic fungicides or contact fungicides as mentioned above 
depending on diseases severity and weather conditions.  

 A minimum of 400 litre water (during early growth period) to 1000 litre water 
would be required to spray 1 ha crop area. Ensure through coverage of plants to bot-
tom with fungicides. Special attention should be given to lower leaves which need 
to be covered with fungicides. Biological Control is emerging as a new ray of hope 
for future control of harmful plant pathogens (Tomar et al.  2010 ,  2014 ).  

    Late Blight Forecasting 

 Development of late blight mainly depends on moisture, temperature and cloudi-
ness. In India, the rains are heavy and the weather is cool and cloudy/foggy during 
summer in the hills but in plains the weather is generally clear with scanty rains 
(during autumn or spring) and therefore, the disease epidemic is not a regular 
feature. The monsoon moves from East to West in the Himalayas. Therefore, the 
blight occurs early in the eastern Himalayas. Taking weather parameters in 
account, Bhattacharya et al. ( 1983 ) developed forecasting models for Shimla, 
Shillong and Ootacamund i.e. (i) if the 7-day moving precipitation (30 mm for 
Shimla, 28.9 mm for Ootacamund and 38.5 mm for Shillong observed to be criti-
cal rainfall lines) associated with mean temperature of 23.9 °C or less continues 
for seven consecutive days, late blight would appear within 3 weeks and (ii) if 
hourly temperature ranges from 10 to 20 °C associated with high RH (80 % or 
more) for continuous 18 h for two consecutive days, the blight would appear 
within a week. Based on these criteria a late blight warning service was started 
since 1978 for Shimla hills and successful warnings are issued through All India 
Radio, Shimla every year. 
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 Late blight forecasting in the sub-tropical plains is different to that of temperate 
highlands. In the hills, environmental conditions (temperature, RH, rainfall) favour-
able for late blight appearance are assured. There are plenty of rains during the crop 
season which led to high RH (>80 %) throughout the crop season. Temperature 
remains moderate and congenial throughout. It is therefore, possible to rely on 
weather parameters like, rainfall, RH and temperature for making disease forecasts. 
Such situations, however, do not exist in the sub-tropical plains, where there are 
scanty rains during the crop season. In such a situation, role of micro- climate, fog 
dew and sunshine becomes critical for the appearance of the disease. Besides, 
weather data for substantial period is required to develop reliable empirical 
models. 

 A late blight forecasting system has been developed for western Uttar Pradesh 
using temperature, RH and rainfall data. It consists of two models, one each for 
rainy and non-rainy years.   

    Future Requirements 

 Of late, the awareness of the diseases diagnostic and quality concern for planting 
material has crept into the minds of powers; more reliable kits are required to be 
developed for managing crop diseases. Fine tuning of detection techniques developed 
for hotriculture as well as agriculture crop pathogens is needed. Sampling is one of 
the major criteria for quality testing and certifi cation which needs to be optimized for 
each pathogen attacking all fruit crops. Along with all these steps their will be a need 
of a specializes trained personal who are Crop-pathogen expert in identifi cation, 
detection, for better understanding and helps in monitoring of the pathogen. Detection 
of pathogenic prologues in soil before establishing the planting will be helpful to 
keep the area free of diseases.  

    Conclusion 

 The utilization of a novel biomarker, a gene coding for green fl uorescent protein 
(GFP) isolated from  Aequorea Victoria , a jelly fi sh that live in the Pacifi c Ocean, has 
offered new possibilities in the area of host pathogen interaction, permitting histo-
pathological studies, pathogen monitoring, during pathogenesis and ramifi cation 
and quantifi cation of pathogen in the host tissues like never before. Nevertheless, 
there are instances where nucleic acid based tests may be better value for money, for 
example, greater sensitivity may allow for samples to be bulked together, resulting 
in fewer assays being needed. This approach makes sense where negative result is 
the norm in a screening programme. Testing could also be carried out directly on 
tuber material, resulting in savings of time as well as costs. The nucleic acid based 
detection of fungal pathogens has emerged as a supplement to overcome these bot-
tlenecks. The recent advancement in the area of PCR based approaches further 
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extended its versatility. Assays like real-time PCR, multiplex PCR, nested PCR, 
Bio-PCR, repetitive PCR, LAMP are among the detection options that provides 
rapid data analysis with specifi city. However, one has to choose the best or combi-
nation of options depending upon the needs. For example, when multiple pathogens 
are to be detected in a minimum time multiplex-PCR would be the best options. 
While, the pathogen detection limit in a sample is at zero tolerance level, nested 
PCR, bio-PCR should be carried out. Lastly a more sensitive test gives greater secu-
rity. Detection of  P. infestans  is very essential in developing countries. Because 
there are seed production systems is semi-organise. After rigorous scrutinized of 
potato bags should issue the phytosanitry certifi cate for transportation of potato 
seed from one state to another state, so that movement of inoculums can be restricted.     
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      Biocontrol Mechanism of  Bacillus  
for  Fusarium  Wilt Management in Cumin 
( Cuminum cyminum  L.)                     

       H.  P.     Gajera     ,     Disha     D.     Savaliya    ,     Darshana     G.     Hirapara    ,     S.  V.     Patel    , 
and     B.  A.     Golakiya   

          Origin of Cumin 

 Cumin ( Cuminum cyminum  L.) is cultivated and grown in many countries including 
Malta, India, Sicily, Iran, Saudi Arabia, Mexico, and China. The crop is quite easy 
to grow and adapts well in many climates (Azeez  2008 ). Earlier, cumin was noticed 
in the Bible, particularly in the Old Testament (Isaiah 28:27) and the New Testament 
(Matthew 23:23) (Edison et al.  1991 ). The crop was initiated to cultivate in Iran and 
the Mediterranean region. The use of cumin bring up to the second millennium BC 
as indicated by the Syrian site Tell ed-Der. Spanish and Portuguese colonists were 
commenced the crop to start in Americas. The cultivation of cumin also spread in 
Southern England with turned down the frequency of its occurrence (Chattopadhyay 
and Maiti  1990 ). This spice has became popular in the middle ages, probably due to 
the renewed interest in ethnic dishes and spicy foods (Thamaraikannan and 
Sengottuvel  2012 ).
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       Uses of Cumin 

 The distinctive fl avour and aroma of cumin seeds make it used as a spice. The 
cumin seeds used as essential fl avouring in many countries like South Asian, 
Northern African and Latin American cuisines. Cumin can be utilized in some 
cheeses and breads to make the product palatable. Cumin seeds contained dietary 
fi bre and minerals like iron, copper, calcium, potassium, manganese, selenium, 
zinc and magnesium. It also be full of phyto-chemicals having antioxidant, car-
minative and anti-fl atulent properties. Cumin seeds also restrain good amounts of 
vitamins A, C, E and B-complex like thiamin, pyridoxal, niacin, ribofl avin. 
Cumin is wealthy in iron for pregnant and lactating mothers. Presence of many 
phenolics including fl avonoids, anti-oxidants such as carotenes zeaxanthin and 
lutein are formulate the cumin seeds for therapeutic uses (Thamaraikannan and 
Sengottuvel  2012 ).  

    Production Constraints 

 Cumin requires a dry and cool environment for better growth, with a temperature 
between 25 and 30 °C. Cumin grows best on well drained sandy loam to loamy soils 
with a pH range of 6.8–8.3. Acidic soils and alkaline soils reduce yield unless soil 
acidity is lowered to pH 7.5 (Weiss  2002 ). The average yield of this crop is affected 

   Taxonomic classifi cation of cumin             

  Kingdom   Plantae 

      

 ( Unranked )  Angiosperms 
 ( Unranked )  Eudicots 
 ( Unranked )  Asterids 
  Order   Apiales 
  Family   Apiaceae 
  Genus    Cuminum  
  Species    C. cyminum  
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due to unawareness scientifi c cultural practices, short of superior varieties, and sus-
ceptibility to diseases like wilt, blight and powdery mildew incited by  Fusarium 
oxysporum  f. sp.  cumini ,  Alternaria burnsii  and  Erysiphe polygoni , respectively. 
Among the diseases,  Fusarium  wilt causes yield losses up to 35 % in cumin (Vyas 
and Mathur  2002 ). The fi rst described  Fusarium  wilt in pulse crops was reported by 
Butler ( 1910 ). The disease appeared in naturally infected soils and confi rmed the 
causal agent as  Fusarium  spp.  

     Fusarium  Wilt in Cumin 

  T he soil borne fungus  Fusarium oxysporum  have a many specialized forms and 
races that causes  Fusarium  wilts in crop plants. The pathogen  F. oxysporum  can be 
found in a variety of soil types and also in many any host plants, once the fungus is 
introduced into a garden, nursery, greenhouse, or fi eld. Thus, a broad range of 
economically imperative crops are infected by  F. oxysporum  to cause wilt disease 
(Booth  1984 ). The  Fusarium  is an anamorphic species confi ned by macro and micro 
morphological descriptors like colony colour, conidiophore structure, presence or 
absence of microconidia and chlamydospores, size and shape of the macroconidium 
(Nelson et al.  1981 ; Windels  1993 ). 

 The most of  Fusarium  species are virulence and cause disease to plants. At least 
one  Fusarium -associated disease is found on many crop plants (Leslie et al.  2006 ). 
The plant diseases such as crown rots, head blights, scabs, vascular wilts, root rots, 
and cankers were caused by this fungi. The mycotoxin produced by  Fusarium  
species affects 25 % of the world food crops and pose a severe threat to plant, animal 
and human health (Nik  2008 ).

    Fusarium oxysporum  is asymptomatic fungi and isolated mostly from roots of 
crop plants (Gordon and Martyn  1997 ).  Fusarium oxysporum  has an aptitude to 
stick without choice to pathogenesis. This fungial strains are found in agricultural 
soils throughout the world and having nature of pathogenic and non-pathogenic. 
Mostly, strains of  Fusarium oxysporum  are found in cultivated soils and wild plant 
systems (Gordon and Martyn  1997 ). 

 Tawfi k and Allam ( 2004 ) isolated the causal pathogen  Fusarium oxysporum  f. 
sp.  cumini  from infected cumin plants by using hyphal tip technique. The pathogen 
was separated by placing surface sterilized root and stem parts in Petri-dishes 
containing acidifi ed potato dextrose agar (PDA) medium to prevent bacterial 
contamination. The fungus was purifi ed by transferring the culture and identifi ed as 
 Fusarium oxysporum  f. sp.  cumini  based on their macro and micro-morphological 
characteristics of mycelia and spores as described by Booth ( 1977 ). 
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    Distribution and Diversity of  Fusarium  Species 

  Fusarium  species is extensively dispensed in soils, plants, and air and well dis-
tributed across many geographical regions and substrates (Booth  1971 ; Burgess 
et al.  1994 ; Nelson et al.  1994 ; Summerell et al.  2003 ). Species occur predomi-
nantly in tropical, subtropical regions and cool to warm temperate regions while 
some species distributes in cosmopolitan geographic region (Burgess et al. 
 1994 ). The  Fusarium  species are also examined near to offi ces and hospitals 
buildings.

   Temperature in different climatic regions also affects the species distribution 
and virulence. The  Fusarium  infection to cause disease in alfalfa was increased 
when the temperature is low (Saremi et al.  1999 ; Richard et al.  1982 ). Total 43 
species were identifi ed and isolated from various sources of crop plants like 
tobacco, rice, asparagus, banana, sugarcane, grass, soil, in Malaysia. Besides, Lim 
( 1967 ) isolated fi ve species of  Fusarium  from rice fi eld soil in California which 
includes  F. moniliforme  (now known as  F. fujikuroi ) The stain was fi rst reported of 
its species to be isolated from soil. However, ten  Fusarium  species were found 
with high diversity isolated from infected rice causing bakanae disease in Malaysia 
(Nur et al.  2011 ).   

   Taxonomy of  Fusarium oxysporum  (Booth  1971 )             

  Kingdom   Fungi 

      

  Phylum   Ascomycota 
  Class   Sordariomycetes 
  Order   Hypocreales 
  Family   Nectriaceae 
  Genus    Fusarium  

  Species    Fusarium oxysporum  f. sp.  cumini  (Pure culture and SEM image) 

   The distribution of  Fusarium  species in climate regions             

 Most climatic regions  Temperate regions  Subtropical and tropical regions 

  F. chlamydosporum    F. acmuminatum    F. beomiforme  
  F. equiseti    F. avenaceum    F. compactum  
  F. proliferatum    F. crookwellense    F. decemcellulare  
  F. oxysporum    F. culmorum    F. longipes  
  F. poae    F. graminearum  
  F. semitectum    F. sambucinum  
  F. tricinctum    F. subglutinans  
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    Disease Cycle in Crop Plants 

 The fungus may be seed borne and also survive in plant debris in soil. The fungus 
grows once within the plant, it multiplies in the vascular system (water and food 
conducting tissues) of the roots (Anonymous  1998 ). 

    Symptomatology 

 Typical symptoms of  Fusarium  wilt include the leaves started to become yellow and 
dropped, often starting on one side, and stunting of the plant. Disease symptoms initiated 
at the bottom of the stem and progress upwards, causing the leaves and fl ower heads to 
wilt, wither, and die. The lower stem parts are became dark and discolored, constantly 
on the inside and sometimes on the outside. The brown to black streaks are evident when 
infected stems are splitted in the vascular system (Fig.  1 ) (Anonymous  1998 ).

Vascular system
colonised; conidia
formed

Foliage starts to wilt
and die

Microsclerotia
develop in
dead tissue

Root exudate stimulates
microsclerotial
germination

Root tip
penetrated

Hyphae colonise
root cortex

Hyphae enter
stem xylem

Plant dies;
microsclerotia remain
in dead plant tissue and soil

  Fig. 1    Disease cycle of  Fusarium oxysporum  f. sp.  cumini        
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         Fusarium  Wilt Management 

 The control of  Fusarium  fungi are diffi cult. The ability of the fungi to survive in soil 
for long periods, with or without a host plant, and the colonization of the vascular 
tissues within a plant are limited to eradicate the pathogen. Management of  Fusarium  
wilt is mainly use of resistant cultivars and soil fumigation with fungicides. The 
broad spectrum of fungicides like methyl bromide used to fumigate soil before 
planting to control the soil borne pathogen which damage the soil environment par-
ticularly soil fl ora and fauna. Several measures can be taken, as listed below, to 
reduce the effects of the disease once  Fusarium  has been identifi ed as producing the 
symptoms on the host plants (Anonymous  1998 ).

•    Fumigate the soil with methyl bromide, chloropicrin, vorlex, or vapam and dis-
infest greenhouse, seedbed, and potting soil before planting.  

•   Crop rotation for 5–10 years may help to reduce the amount of infection and 
avoid to grow susceptible plants in  Fusarium -infested soil where the same or 
closely related plants have grown previously.  

•   Plant materials like seeds cuttings, transplants, bulbs, corms should be healthy, 
top-quality and disease-free.  

•   Crop should be avoided with overwatering, deep planting, over fertilizing of 
nitrogen or phosphorus, and injuring plants when planting, cultivating, harvest-
ing, grading, or sorting of the crop.    

 Extensive use of pesticides creates health hazards for humans and adverse effects 
on other non-target organisms. So, development of eco-friendly and safer plant dis-
ease control measure like use of biological control becomes a top priority for mod-
ern agriculture. For biological control of disease, an antagonism among 
microorganisms can be utilized to control plant pathogens. Biological control was 
relatively less effective in combating pathogens than insect pests (Butt et al.  2001 ). 
However, biological control could be included as one of the components of the 
integrated disease management strategies for wilt of cumin. 

    Biocontrol Antagonists on Plant Pathogen 

 Biological controllers like antagonistic microorganisms are an environmentally 
friendly and becoming more and more attentive to cope with problems associated 
with chemical control (Whipps  2001 ). Among the various bio-controllers,  Bacillus 
subtilis  has been frequently reported for inhibitory effect on plant pathogenic fungi 
in laboratory, greenhouse, and fi eld studies (Pusey and Wilson  1984 ). 

 Soil-borne disease reduced yield and quality of agricultural products and a major 
problem of soil pollution. In this context, an effective way to solve this problem is a 
ecological remediation of soil.  Bacillus subtilis  SY1 was successfully utilized to 
antagonist soil borne fungal pathogens in eggplant (Yang et al.  2009 ). Tawfi k and 
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Allam ( 2004 ) screened three fungal isolates ( Trichoderma harzianum ,  T. humatum , 
and  T. viride ) and one bacterial ( Bacillus subtilis ) isolate on the basis of a preliminary 
in vitro antagonism test. Results showed that  Bacillus subtilis  (B7) was found with 
the most antagonistic bacterial isolate.  Trichoderma  spp. and  Bacillus subtilis  as an 
effective antagonistic reaction of the  Fusarium  wilt pathogen in different plant 
species were extensively documented (Larkin and Fravel  1998 ). 

 Landa et al. ( 2001 ) isolated rhizobacteria from the chickpea rhizospheres and uti-
lized for suppression of  Fusarium  wilt in chickpea ( Cicer arietinum ) cv. PV 61 by seed 
and soil treatments. They studied the effects of temperature and inoculum density of 
 F. oxysporum  f. sp.  ciceris  race 5 to infect the disease and found that disease develop-
ment was better at 25 °C compared with 20 and 30 °C. Total 23 bacterial isolates were 
tested, out of which 19  Bacillus ,  Paenibacillus ,  Pseudomonas , and  Stenotrophomonas  
spp. were found to inhibit  F. oxysporum  f. sp.  ciceris  in vitro. Among the bacterial 
isolates, two strains –  Bacillus megaterium  RGAF 51 and  Paenibacillus macerans  
RGAF 101 were the antagonists that signifi cantly decreased the pathogen hyphal 
growth during in vitro conditions but did not suppress the disease. 

 Evaluation of antagonistic activity of three bacteria and fungi with direct con-
frontation method was carried out by Karkachi et al. ( 2010 ) and the fi ltrates cul-
ture against the growth of  F. oxysporum  f. sp.  lycopersici  showed the inhibition of 
the mycelia growth of test pathogen with  Bacillus cereus  energized the low 
activity. 

 Khan et al. ( 2011 ) used soil samples from different crop fi elds of paddy to isolate 
 Bacillus  species. Culture broth of the identifi ed bacterial strain was tested for 
antifungal potential by disc diffusion technique against selected fungi such as 
 Candida albicans ,  Aspergillus niger ,  Rhizoctonia solani  and  Fusarium oxysporum . 
Among the test fungi,  R. solani  was comparatively more sensitive to antifungal 
compound produced from the soil isolate of  B. subtilis . 

 Gajbhiye et al. ( 2010 ) isolated  Bacillus subtilis  from cotton rhizosphere and 
evaluated it as biocontrol agent against  Fusarium oxysporum . The performance of 
the pathogenic fungi in presence of the screened isolates was detected by poison 
food technique using antifungal assay medium. Twenty-one  Bacillus  isolates were 
obtained with antagonistic activity in the primary screening.  

    Antagonistic Activity of  Bacillus  spp. Against Phytopathogens 

 Biological control is the control of plant diseases, pest and weeds by other living 
organisms (Trigiano et al.  2004 ). Bio-control of plant diseases usually involves 
interactions between the antagonist, pathogen and host.  Bacillus subtilis  is one of 
the important bio-controller. The  Bacillus  commonly resident of soil is widely 
recognized as a powerful bio-controller.  Bacilli  including  B. subtilis  are potentially 
useful for biologic control of plant diseases due to ability to form endospores and 
produce different biologically active compounds with a broad spectrum of activity 
and a broad host range (Nagorska et al.  2007 )
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        Biocontrol Mechanism of Antagonist to Inhibit 
Fungal Pathogen 

 The  Bacillus  has been known for many years with the most profuse genus in the 
rhizosphere. This bacteria have antifungal and PGPR activities with a broad 
knowledge of the mechanisms involved (Probanza et al.  2002 ; Gutiérrez Mañero 
et al.  2003 ). The bacterial strain has a capacity to release number of antibiotics and 
metabolites which strongly inhibit the growth of fungal pathogen and affect the 
environment by increasing nutrient availability of the plants. 

  B. subtilis  is naturally present in the instant vicinity of plant roots and able to 
maintain stable contact with higher plants to promote their growth. Besides that, 
bacterial inoculation at the beginning of the acclimatisation phase can be observed 
from the perspective of the establishment of the soil microbiota  rhizosphere in a 
micropropagated plant system.  Bacillus licheniformis  can be used as a biofertilizer 
without changing normal management in greenhouses when  inoculated on tomato 
and pepper with showing considerable colonisation (Garcia et al.  2004 ). 

 Jaizme-Vega et al. ( 2004 ) evaluated two micropropagated bananas on the fi rst 
developmental stages for the effect of a rhizobacteria consortium of  Bacillus  spp. 
and summarized that this bacterial consortium can be useful to protect the plant 
against diseases and increases survival rates in commercial nurseries.  Bacillus  is 
examined for potential to increase the yield, growth and nutrition of raspberry plant 
under organic growing conditions (Orhan et al.  2006 ). 

   Taxonomic classifi cation of antagonists ( Bacillus )               

  Domain   Bacteria 

      

      

  Division   Firmicutes  Bacillus isolates in 
specifi c HiChrome media 
and antagonism with 
 Fusarium oxysporum  f. 
sp.  ciceri  

 SEM image of  Bacillus  
  Class   Bacilli 
  Order   Bacillales 
  Family   Bacillaceae 
  Genus    Bacillus  
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    Competition for Nutrients and Siderophore Production 

 Classical’ mode of action of biological control involves competition between 
biocontrol antagonist and phytopathogen for space and nutrient (Kaur et al.  2007 ; 
Bull et al.  1991 ). Siderophores are produced by microorganisms act as iron chelating 
molecules resulted to make low environmental iron concentrations. These molecules 
create iron limiting conditions for pathogenic microorganisms and help the bio- 
controller Bacillus to acquire iron, which is frequently biologically unavailable in 
the environment (Meyer and Stintzi  1998 ). 

 Many bacteria are able to produce several different antibiotics that have a broad 
range and sometimes overlap in their function (Leifert et al.  1995 ; Raaijmakers 
et al.  2002 ; Yu et al.  2002 ; Risoen et al.  2004 ). Some bacteria are genetically 
improved to produce new antibiotics to provide better protection (Bainton et al. 
 2004 ). Gupta and Gopal ( 2008 ) determined that under iron-limiting conditions, 
many bacteria secrete ferric iron-specifi c ligands, generically termed siderophores, 
which aid in sequestering and transport of iron. Siderophores produced PGPR 
bacteria was assayed by chrome azurol S method which is independent of 
siderophore structure and a general test. 

  Bacillus  strains isolated from rhizosphere of soybean plants were characterized 
for their use as potential plant growth promoting rhizobacteria (Wahyudi et al. 
 2011 ). Out of 12, 3 isolates were able to inhibit the growth of  Fusarium oxysporum , 
9 isolates inhibited the growth of  Rhizoctonia solani , and 1 isolate of  Bacillus  sp. 
inhibited the growth of  Sclerotium rolfsii . All 12 isolates produced antibiotics 
siderophore to antagonize fungal pathogen and out of 12, 11 isolates possess extra 
PGPR activity and able to solubilize phosphate.  

    Production of Defence Related Substances 

 Synthesis of salicylic acid by bacteria can make the plant more tolerant to pests and 
pathogens by stimulating systemic acquired resistance (SAR), a common defense 
program induced in plants to combat pathogens (Bostock  2005 ). Induced systemic 
resistance (ISR) in the plant is another way that bacteria can protect plants (Van 
Loon et al.  1998 ). 

 Zhang et al. ( 2002 ) determine the role of salicylic acid (SA) in ISR against blue 
mold disease of tobacco elicited by PGPR. When plants treated with  Bacillus pumilus  
strain SE34 were challenged with  P. tabacina , levels of SA increased markedly 1 day 
after challenge, compared to the non-bacterized and challenged control. However, a 
similar increase in SA 1 day after pathogen challenge did not occur in plants treated 
with PGPR strains 90-166 or  Pseudomonas fl uorescens  strain 89B-61. 

 Characterization of  Bacillus  sp. strains isolated from rhizosphere of soybean 
plants for their use as potential plant growth promoting rhizobacteria was carried 
out by Wahyudi et al. ( 2011 ). Out of 118  Bacillus  isolates, 90 isolates able to 
produced phytohormone indole acetic acid (IAA). Ahmad et al. ( 2008 ) monitored 
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PGPR activities of free-living rhizospheric bacteria. These isolates were screened 
in vitro for production of indoleacetic acid (IAA), ammonia (NH3), hydrogen 
cyanide (HCN), siderophore, phosphate solubilization and antifungal activity. The 
IAA production was highest in the  Pseudomonas  followed by  Azotobacter  and 
 Bacillus  isolates at 50–500 mg ml −1  concentration of tryptophan.  

    Production of Mycolytic Enzymes (Fungal Cell Wall 
Degrading Enzymes) 

 Plant resistance to pathogenic fungi involves multiple reaction pathways like accu-
mulation of hydrolytic chitinases and β-1,3 glucanase enzymes (Boller  1985 ). 
Bacteria are able to synthesize enzymes like chitinases, proteases, lipases and ß-1, 
3-glucanases that are harmful for phytopathogens and further improve the biocontrol 
effi ciency (Whipps  2001 ). 

 Chitinases have been implicated more in the plant defense mechanism 
(Schlumbaum et al.  1986 ; Linthrost et al.  1991 ). It is known that chitinases degrade 
chitin in fungal cell wall (Schlumbaum et al.  1986 ) and also act as synergistically 
with the β-1, 3 glucanase for inhibiting fungal growth (Mauch et al.  1984 ). 

 Chitinases are grouped in to 11 groups based on their primary structures and 
immunological properties. The enzyme can either be induced by pathogens (Van 
et al.  1991 ) or elicitors/chemicals (Boller and Mauch  1988 ). They are constitutively 
expressed at low levels in leaves and high level in roots and seeds. Increased levels 
of gene expression or enzymatic activity have been observed after elicitation. 

 Chitinases are extractable in acidic buffer, have low molecular weights (25–
36 KDa), resistant to proteases and secreted extracellularly (Bol et al.  1990 ; 
Linthrost et al.  1991 ). Chen et al. ( 2009 ) identifi ed the best antagonist  Bacillus 
subtilis  B579 against  F. oxysporum  f. sp.  cucumerinum  causing the disease in 
cucumber ( Cucumis sativus  L.) by dual plate assay. The strain B579 were evaluated 
for production of chitinase, ß -1, 3-glucanase, siderophores, indole-3-acetic acid 
(IAA), hydrogen cyanide (HCN), and phosphate solubilization, with the selected 
medium by in vitro tests. The vacuolation, swelling and lysis of fungal hyphae were 
found by the cell-free culture fi ltrate of B579 (20 % v/v). 

 Pleban et al. ( 1997 ) observed that  Bacillus cereus  65 produce and excrete a chi-
tinase with an apparent molecular mass of 36 kDa. The enzyme was classifi ed as a 
chitobiosidase and application of  B. cereus  65 directly to soil signifi cantly protected 
cotton seedlings from root rot disease caused by  Rhizoctonia solani . Melent’ev 
et al. ( 2001 ) determined the antifungal role of chitinase produced by  Bacillus  sp. 
739. They noticed that both crude and purifi ed chitinases were capable to lyse the 
cell walls of fungal mycelia. Besides, the role of chitinase produced by antagonists 
Bacillus sp. 739 is to utilize chitin present on cell wall of pathogenic fungi, it may 
also be inferred the antagonistic activity against micromycetes which is largely 
determined by low-molecular-weight nonenzymatic substances. 
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 β- 1,3-glucanases belong to family of pathogenesis-related proteins. These 
enzymes catalyze the cleavage of β-1,3-glucosidic bonds of β-1,3-glucan, another 
constituent of the fungal cell wall. Unlike chitinases, the substrate for β-1,3- 
glucanases is widespread in plants and therefore these proteins are implicated in 
diverse physiological functions as well as in plant defense (Pan et al.  1991 ; Saikia 
et al.  2005 ; Ahmadzadeh et al.  2006 ). The enzyme can either be induced by infection 
with the pathogens (Van et al.  1991 ) or treatment with elicitors/chemicals (Boller 
and Mauch  1988 ) and wounding (Hedrick et al.  1988 ). 

 Leelasuphakul et al. ( 2005 ) studied an antagonistic activity of  Bacillus subtilis  
NSRS 89-24 against rice blast and sheath blight. They purifi ed and characterized 
the ß -1,3-glucanase activity and found that glucanase activity in the culture medium 
of  B. subtilis  NSRS 89-24 was inducible in the presence of 0.3 % chitin. The activity 
was evident maximum at 5 days incubations. 

 Plant resistance to pathogenic fungi involves multiple reaction pathways 
including the accumulation of hydrolytic enzymes such as chitinases and β-1, 
3-glucanases (Boller  1985 ). Both the enzymes act synergistically and their optimal 
functions may be important in plant defense. β-1,3 glucan is an important component 
of fungal cell wall polysaccharide. Some β-1, 3- glucanase like the many other 
pathogenesis related proteins are acidic buffer extractable, have low molecular 
weights (25–36 KDa), resistant to proteases and secreted extra cellularly (Bol et al. 
 1990 ; Linthrost et al.  1991 ). Mandavia et al. ( 1999 ) reported the rise in level of cell 
wall degrading enzymes (Polymethyl galacturonase (PMG) and cellulase in cumin 
seedlings infected with  Fusarium oxysporum  f. sp.  cumini . The increase in level of 
enzymes was varied according to degree of the infection. Our study (Gajera et al. 
 2012 ) reported in vitro inhibition  Macrophomina phaseolina  by  Trichoderma  to 
control root rot disease in castor.  T. koningii  inhibited maximum growth inhibition 
(74.3 %) of test pathogen followed by  T. harzianum  (61.4 %). The antagonistic 
effect of  Trichoderma  was due to induction of pathogenesis related enzymes 
(chitinase, ß-1, 3 glucanase) during antagonism which were positively correlated 
with growth inhibition of test pathogen and coiling pattern of antagonists. 

 Trichoderma is well documented for biologic control of fungal pathogen. Our 
study (Gajera et al.  2014 ) indicates  T. viride  JAU60 mediated systemic induction of 
phenolics for biologic control and their probable role in protecting groundnut 
against  A. niger  infection. Results confi rmed that  T. viride  JAU60 treatment induces 
phenolics like gallic, ferulic and salicylic acids in groundnut seedlings challenged 
with rot pathogen. These phenolics may be synthesized upon activation of PAL by 
 Trichoderma  in groundnut seedlings under pathogen infestation. 

 It was observed that when  T. viride  JAU60 interact with  A. niger  and in vitro 
antagonism revealed the highest production of cell wall degrading enzymes. Study 
exhibited in vitro percent growth inhibition of  A. niger  and production of cell wall 
degrading enzymes chitinase, β-1,3 glucanase and protease in the culture medium 
of antagonist treatment are positively correlated and established a relationship to 
inhibit the growth of fungal pathogen by increasing the levels of these lytic enzymes 
(Gajera and Vakharia  2010 ).  T. viride  JAU60 also signifi es induction of a 
lipoxygenase (LOX) related defense response to combat the collar rot disease 
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incidence in groundnut seedlings (Gajera et al.  2015 ). The results showed that 
pathogen infection is necessary for LOX activation in tolerant (J-11, GG-2, GAUG- 
10) groundnut varieties but it is signifi cantly enhanced upon seed treatment with 
strain  T. viride  JAU60 in susceptible varieties (GG-13, GG-20). Our work on 
groundnut treated with  T. viride  JAU60 suggests a pathogen-dependant systemic 
activation of the defense reaction.   

    Molecular Characterization of  Bacillus  Associated 
with Antagonism 

 Molecular characterization provides an immense source of data for identity, 
relatedness, diversity and selection of proper candidates for biological control. 
Molecular markers also offer a means of constructing quality control tests that are 
essential throughout the developmental processes (Avis et al.  2001 ). Polymerase 
chain reaction (PCR) refers to in vitro amplifi cation of particular DNA sequences 
using arbitrary or specifi c primers and a thermostable DNA polymerase enzyme 
(Joshi  1999 ). 

    Randomly Amplifi ed Polymorphic DNA (RAPD) 

 The RAPD is an inexpensive yet powerful typing method for many bacterial species. 
This technique is based on the PCR and has been one of the most commonly used 
molecular techniques to develop DNA markers (Fevzi  2001 ). Gajbhiye et al. ( 2010 ) 
performed RAPD profi ling which revealed the diversity in the  Bacillus subtilis  
group, ranging from 10 % to 32 %. Total 700 bands were scored in the analysis of 
nine isolates using 60 RAPD primers. All the nine isolates characterized on the 
basis of the RAPD molecular markers produced highly polymorphic patterns. 

 Aiming to develop a DNA marker specifi c for  Bacillus anthracis  and able to 
discriminate this species from  Bacillus cereus ,  Bacillus thuringiensis  and  Bacillus 
mycoides , Daffonchio et al. ( 1999 ) applied RAPD fi ngerprinting technique to a 
collection of 101 strains of the genus  Bacillus , including 61 strains of the  B. cereus  
group. An 838-bp RAPD marker (SG-850) specifi c for  B. cereus ,  B. thuringiensis , 
 B. anthracis , and  B. mycoides  was identifi ed. This fragment included a putative 
(366-nucleotide) open reading frame highly homologous to the ypuA gene of 
 Bacillus subtilis . 

 RAPD-PCR technique was utilized for molecular characterization of the  Bacillus 
megaterium  isolates (Reddy et al.  2010 ). Selected two primers were used for fi nger-
printing and for estimation of genetic diversity among ten isolates of 
 B. megaterium  which generated a total of 20 RAPD bands. Out of 20 amplicons, 06 
bands were unique and 11 bands were shared polymorphic, which were informative 
in revealing the relationship among the genotypes while 3 bands were monomorphic. 
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 Hamshary et al. ( 2008 ) determined the genetic relationships of the six  Bacillus  
isolates by RAPD-PCR method with seven random primers. Primers shaped 
multiple band profi les with a number of amplifi ed DNA fragments ranging from 1 
to 11. These primers had amplifi ed 255 PCR product bands among 77 amplifi ed 
bands, out of which 63 were polymorphic bands and 14 were monomorphic bands. 
Nilsson et al. ( 1998 ) suggested that RAPD-PCR can be used for large scale typing 
of  Bacillus cereus . More than 3,000 strains of  B. cereus  were isolated from farms 
and dairies. Many different RAPD bands were observed and the GelcomparTM 
programme was used to analyse similarities between the strains. Jiyeon et al. ( 2011 ) 
obtained RAPD-PCR profi les of  B. cereus  strains using a 10-mer primer (S30) and 
a  B. cereus  specifi c 910 kb band was produced from all tested strains.  

    16s rDNA and 23s ITS Region Characterization 

 The  Bacillus  possess 16S–23S internal transcribed spacer (ITS) region which has 
been widely studied for the presence of functional motifs (Pfeiffer and Hartmann 
 1997 ), specifi c processing sites (Apirion and Miczak  1993 ) and secondary structures 
(Nour  1998 ; Liiv et al.  1998 ). The ITS-PCR fi ngerprints have been used to reveal 
length polymorphisms between  Bacillus  species (Daffonchio et al.  1998a ) and at the 
intra-specifi c level (Daffonchio et al.  1998b ). Specifi c part of the ITS region has 
been amplifi ed by PCR and used for designing probe for the detection, identifi cation 
and phylo-genetic analysis of Bacillus species (de Silva et al.  1998 ). 

 Beric et al. ( 2009 ) examined genetic diversity analysis of 205  Bacillus  isolates 
collected from different geographical and ecological niches in Serbia and correlated 
the antagonists with production of hydrolytic enzymes. They determined 13 
different groups of RAPD profi les within four species:  B. subtilis ,  B. cereus / B. 
thuringiensis ,  B. pumilus , and  B. fi rmus  based on combining RAPD analysis and 
16S rDNA sequencing,. Haque and Russell ( 2005 ) reported phenotypic and 
genotypic characterization of  Bacillus  cereus isolates from Bangladeshi rice. The 
sequence analysis of variable regions in the 16S rRNA gene gave four different 
groups by base differences at two positions. 

 Li et al. ( 2012 ) screened 400  Bacillus  using a modifi ed genotobiotic system for 
their capability in controlling  Fusarium  wilt of cucumber which were isolated from 
surface-sterilized roots of cucumber plants grown in greenhouses and fi elds. The 
molecular identifi cations of  Bacillus  by 16S rRNA gene and gyrA gene illustrated 
phylogenetic map indicating B068150 strain exhibits high levels of similarity to 
known  Bacillus  species. The B068150 strain was identifi ed as  B. subtilis  B068150. 
 Bacillus  strains were recognized by conventional biochemical methods, fatty acid 
methyl ester (FAME) analysis and partial 16S rDNA sequencing which were 
isolated from the coastal environment of cochin, India (Parvathi et al.  2009 ). 
Biochemical and molecular data revealed that  Bacillus pumilus ,  B. cereus  and 
 B. sphaericus  were the predominant species in the region of coastal environment of 
cochin. The  B. pumilus  isolates were also characterized for antibiotic sensitivity 
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profi ling, arbitrarily primed PCR (AP-PCR), and PCR screening for known toxin 
genes associated with  Bacillus  spp. 

 Xu and Cote ( 2003 ) compared 3′ end 16S rDNA and 5′ end 16S–23S ITS 
nucleotide sequences and established the phylogenetic relationships between 
 Bacillus  species and related genera. The forward primer designed from about 200 nt 
upstream from the 3′ end of the 16S rRNA gene, and reverse primer located about 
80 nt downstream from the 5′ end of the 23S rRNA gene, were amplifi ed last 200 bp 
of the 16S rRNA gene and the entire 16S–23S ITS region from 40 Bacillaceae 
species. The amplifi ed product was found in the range of 450–850 bp to identify the 
Bacillus.   

    Conclusions 

 The yield of cumin is affected by lack of superior varieties, scientifi c crop pro-
duction technology and vulnerability to diseases like wilt, blight and powdery 
mildew incited by  Fusarium oxysporum  f. sp.  cumini ,  Alternaria burnsii  and 
 Erysiphe polygoni , respectively. In these diseases,  Fusarium  wilt is most 
 common, results in yield losses up to 35 % in cumin.  Fusarium oxysporum  is a 
causative agent of wilt disease in a wide range of economically important crops. 
 Fusarium  species is well distributed across many geographical regions and sub-
strates, and also widely distributed in soils, plants, and air. The  Fusarium  species 
were distributed in different climatic regions according to temperature and 
virulence. 

 Cope with problems associated with chemical control, an environmentally 
friendly way of biological control using antagonistic microorganisms is becoming 
more and more attentive, and much research has been carried out in recent years. 
Soil-borne disease like  Fusarium  is a major problem of soil pollution, which affects 
yield and quality of agricultural products. Ecological remediation of soil is an 
effective way to solve this problem.  Bacillus  is the most abundant genus in the 
rhizosphere, and the PGPR activity of some of these strains has been known for 
many years, resulting in a broad knowledge of the mechanisms involved. The 
mechanism adopted by  Bacillus  for biologic control of  Fusarium  wilt viz., 
competition for nutrients and siderophore production, production of defense related 
substances, production of fungal cell wall degrading enzymes. Molecular 
characterization of antagonists and fungal pathogen provide an immense source of 
data for identity, relatedness, diversity and selection of proper candidates for bio-
logical control.     
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          Introduction 

 Tomato ( Lycopersicon esculentum  Miller.), chilli ( Capsicum annuum  L.) and brinjal 
( Solanum melongena  L.) are the major solanaceous vegetable crop and is native to 
sub tropics and tropics. Tomato is called as king of vegetables and it is cultivated for 
its fl eshy fruits and has a high nutritional value. It is also believed that it gives pro-
tection from or reduces the risk of contracting chronic degenerative diseases. India 
has been the second largest exporter of chilli in the international market, exporting 
products ranging from dried form of chilli to chilli powder. It is an economically 
important tropical and sub-tropical crop because of its pungency and its nutritional 
value. Brinjal occupies second position among the vegetable. It is known to have 
ayurvedic medicinal properties and good for diabetic patients. It has also been rec-
ommended as an good retrieve for those suffering from liver disorder. Although 
India has a large growing area, their productivity is relatively low when compared 
to other countries. The prominent reason for this is the high incidence of fungal and 
viral diseases. Of these, damping-off incited by  Pythium  species caused more than 
60 % death of seedlings in both nurseries and main fi eld (Manoranjitham and 
Prakasam  2000 ; Jadhav and Ambadkar  2007 ). 

 The infected tissue become soft and water soaked, the collar region rots and the 
seedlings ultimately collapse and die. The guaranteed supply of disease free seed-
lings in required quantities is a major pre requisite for stabilized production of 
tomato, chilli and brinjal. While raising seedlings in nursery beds, the farmers face 
major problem of damping off incited by  Pythium  spp. The damping off in solana-
ceous crop is caused by  Pythium  spp including  P. aphanidermatum , 
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 P. irregulare ,  P. debaryanum  and  P. ultimum  Trow, which can cause pre -emergence 
damping off and results in seed decay before the plants comes out from the soil. The 
post emergence damping off is designated by infection of the young tissues at the 
collar of the stem at above ground level. 

 The  Pythium  species are fungal-like organisms, commonly referred to as moisture 
loving fungi, (Domain Eukaryo; Kingdom Chromista; phylum Oomycota; class 
Oomycetes; order Pythiales and family Pythiaceae) are present all over the world and 
related with a wide variety of habitats ranging from terrestrial or aquatic environments, 
in cultivated or fallow soils, in plants or animals, in saline or fresh water. Among the 
oomycete class of fungi, the genus  Pythium  is one of the largest genus. It consists of 
more than 130 accepted species which are isolated from different crops and from dif-
ferent regions of the world (Paul et al.  2006 ; Bala et al.  2010 ; Robideau et al.  2011 ). 

 Almost all the  Pythium  species are known to affect the crop plants and ultimately 
cause severe damage (Hendrix and Campbell  1973 ; Kucharek and Mitchell  2000 ). In 
vegetables pre- and post-emergence damping-off caused by  Pythium  spp. is economi-
cally very important around the world (Whipps and Lumsden  1991 ). After exposure 
of sporangia ( Pythium ) to exudates or volatiles from seeds or roots (Osburn et al. 
 1989 ) followed by immediate infection make management of  Pythium  is very diffi cult 
(Whipps and Lumsden  1991 ). Damping-off disease in vegetables and fi eld crops con-
sidered as important limiting factor in successful cultivation of crop plants worldwide. 
Yield loss due to  Pythium  species in different crops has been estimated approximately 
of multibillion dollar worldwide (Van West et al.  2003 ). Among these,  P. aphanider-
matum  (Edson) Fitzp. is one of the most pathogenic and problematic species with host 
range and cause severe damage in many economically important crops. 

    Source of Inoculum 

 The spores of  P. aphanidermatum  may enter in to the crop plants through a number 
of ways viz., contaminated potting mixture (Moorman et al.  2002 ) and contami-
nated irrigation water (Hong and Moorman  2005 ).  P. aphanidermatum  can also 
survive in the form of oospores in soil, sporangia or mycelium in infected crop 
debris and farm implements (Moorman et al.  2002 ).  

    Host Range 

 Damping-off is a common nursery disease in a number of vegetable crop plants and 
it cause reduced germination percentage, vigour, quality and yield of crops. It also 
causes seedling rots, root rot, cottony-leak, cottony blight, stalk rot etc. It is known 
to cause infection on a wide range of plant species, belonging to different families 
viz.,  Amaranthaceae ,  Amaryllidaceae ,  Araceae ,  Basellaceae ,  Bromeliaceae , 
 Cactaceae ,  Chenopodiaceae ,  Compositae ,  Coniferae ,  Convolvulaceae ,  Cruciferae , 
 Cucurbitaceae ,  Euphorbiaceae ,  Gramineae ,  Leguminosae ,  Linaceae ,  Malvaceae , 
 Moraceae ,  Passifl oraceae ,  Rosaceae ,  Solanaceae ,  Umbelliferae ,  Violaceae , 
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 Vitaceae ,  Zingiberaceae  (Waterhouse and Waterston  1964 ). In greenhouse-grown 
crops damping-off and root rot caused by  P. aphanidermatum  is one of the most 
devastating diseases among them. Lot of research have been carried out on 
 P. aphanidermatum  in different parts of the world (Plaats-Niterink and Van Der  1981 ).  

    Distribution 

  Pythium  species has also been isolated from different regions of the world and from dif-
ferent diseases such as damping-off, vascular wilt and root rot of groundnuts in Australia 
(Bellgard and Ham  2004 ), damping-off of caulifl ower in India (Elliott  2003 ), damping-
off of fenugreek in India (Mehra  2005 ), ginger soft rot in India (Kavitha and Thomas 
 2007 ), damping-off of cucumber in Oman (Deadman et al.  2007 ),  Pythium  rot of fi g 
marigold in Japan (Kawarazaki et al.  2008 ), rhizome rot of ginger in India (Sagar et al. 
 2008 ), damping-off and root rot of soybean in USA (Rosso et al.  2008 ), damping-off of 
chilli in India (Manoranjitham and Prakasam  2000 ; Muthukumar et al.  2010a ; Zagade 
et al.  2012 ), damping-off of Cucumis melon China (Juan et al.  2009 ), damping-off dis-
ease of tobacco in India (Subhashini and Padmaja  2009 ), damping-off of mustard in 
India (Khare et al.  2010 ), rhizome rot of turmeric in India (Radhakrishnan and 
Balasubramanian  2009 ) and damping- off of cabbage seedlings in Japan (Kubota  2010 ) 
etc. 

 The management of  Pythium  damping-off relies on the use of fungicides. 
However, fungicide application leads to phytotoxicity and fungicide residues are 
major problems leading to environmental pollution altered the biological balance in 
the soil by destroying non-target and benefi cial microorganisms. Development of 
fungicide resistance in the pathogen has also been reported (Bharathi et al.  2004 ). 
Recent efforts have focused on developing environmentally safe, long lasting and 
effective biocontrol agents and plant products and plant essential oils for the 
management of damping-off disease.   

     Trichoderma  Species 

    Introduction 

  Trichoderma  spp. are very useful fi lamentous fungi. By producing benefi cial effects 
on crops, they have actually sustained the agricultural yields that have supported the 
human population over the millennia. Together with other benefi cial microbes, they 
help to maintain the general disease suppressiveness and fertility of soils, and aid in 
the maturation of compost for natural fertilizer production (Harman et al.  2004 ). 
 Trichoderma  spp. are ubiquitous and often predominant components of the myco-
fl ora in native and agricultural soils throughout all climatic zones. 

 They colonize aboveground and belowground plant organs and grow intercellu-
larly (endophytes), and they appear in plant litter, soil organic matter (saprophytes), 
and mammalian tissues (human pathogens). However, the ability of these fungi to 
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recognition, invade, and destroy other fungi has been the major driving force behind 
their commercial success as biopesticides. These fungi not only protect plants by 
killing other fungi and certain nematodes but induce resistance against plant patho-
gens, impart abiotic stress tolerance, improve plant growth and vigour, solubilize 
plant nutrients, and bioremediate heavy metals and environmental pollutants. 

 Better understanding of how  Trichoderma  evolved to interact with other fungi and 
with plants will improve and expand their applications. The ability to attack other 
fungi, most importantly soil borne plant dominated the interest in  Trichoderma  for 
many years. Recent years have witnessed a wave of interest in plant disease resistance 
namely induced systemic resistance (ISR); systemic acquired resistance (SAR) induced 
by the  Trichoderma -root symbiosis. These plant-centered mechanisms have rivaled 
mycoparasitism as an explanation for how  Trichoderma  controls plant diseases. The 
genome sequencing of  Trichoderma  species has stimulated the development of sys-
tems biological approaches, initiated and enhanced whole-genome expression studies, 
and provided unique data for phylogenetic and bioinformatic analyses toward under-
standing the roles of these opportunists in ecosystems (Mukherjee et al.  2013 ). 

 At present the, genome sequences of seven species:  Trichoderma reesei ,  T. virens , 
 T. atroviride ,  T. harzianum ,  T. asperellum ,  T. longibrachiatum , and  T. citrinoviride  
are available (Grigoriev et al.  2012 ). The genome of  Trichoderma  spp. has been 
extensively investigated and has proven to contain many useful genes, along with the 
ability to produce a great variety of expression patterns, which allows these fungi to 
adapt to many different environments (soil, water, dead tissues, inside the plant, etc.). 
Several laboratories have recently started or planned to use proteomic and functional 
genomic analysis in the attempt to obtain an overall picture of the changes that occur 
in the  Trichoderma , plant, and pathogen expressomes when they “talk” to each other, 
especially when an increase in disease resistance is generated.  Trichoderma  spp. are 
the most successful bio-fungicides used in today’s agriculture with more than 60 % 
of the registered biofungicides world-wide being  Trichoderma - based (Verma et al. 
 2007 ). In India alone, about 250 products are available for fi eld applications (Singh 
et al.  2009 ). Despite this remarkable success, the share of bio- fungicides is only a 
fraction of the fungicides market, dominated by synthetic chemicals. 

 The major limitations of microbe-based fungicides are their restricted effi cacy and 
their inconsistency under fi eld conditions. The origin of these diffi culties is that microbes 
are slow to act, compared to chemicals, and are infl uenced by environmental factors.  

     Trichoderma -Plant Interactions 

 Many  Trichoderma  spp. grow in the rhizosphere and are capable of penetrating and 
internally colonizing plant roots (Harman et al.  2004 ). This opportunistic/facultative 
symbiosis is driven by the ability of  Trichoderma  to derive sucrose or other nutrients 
from plants, in return for boosting plant immunity against invading pathogens. The 
presence of  Trichoderma  in the rhizosphere evokes a coordinated transcriptomic, 
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proteomic and metabolomic response in the plants (Shoresh and Harman  2008 ). 
This reprogramming of the plant is often benefi cial, improving growth, yield and 
resistance to pathogens. The combined ability to attack soil-borne pathogens while 
priming plant defenses, however, is what promotes  Trichoderma  as such a promising 
partner for sustainable management of plant diseases.  

    Mechanism of Action of  Trichoderma  Species 

 Of the bio-control agents,  Trichoderma  spp. has demonstrated effective and selective 
enough against most of the fungal diseases.  Trichoderma  spp. has developed numerous 
mechanisms by which they are attacking other fungi. These mechanisms include myco-
parasitism (Haran et al.  1996 ), production of inhibitory compounds (Sivasithamparam 
and Ghisalberti  1998 ), competition for space and nutrients (Elad et al.  1999 ), inactiva-
tion of the pathogen’s enzymes and induced resistance. Today, more than 50 different 
 Trichoderma -formulated agriculture products can be found and are sold and applied to 
protect and improve the yield of fruits, vegetables and ornamentals (Lorito  2005 ). 
 Trichoderma  is completely safe to the humans, animals and environment. 

    Attachment to Host 

 Attachment and infection of host fungi by mycoparasitic  Trichoderma  is accompanied 
by the formation of appressoria and/or mycoparasitism (Druzhinina et al.  2011 ). The 
genetic studies underlying attachment of pathogen to the host are not well understood, 
although proteins like structures are possibly involved. Though experimental evidence 
is lacking, indirect support for the involvement of hydrophobins comes from the fi nd-
ing that  T. virens  mutants in the transcriptional regulator of secondary metabolism and 
morphogenesis, which have decreased hydrophobin expression, were defective in both 
hydrophobicity and mycoparasitism (Mukherjee and Kenerley  2010 ).  

    Killing the Host 

  Trichoderma  species produces lytic enzymes (chitinase and glucanase) and antibiotics 
there by kill other fungi. Not surprisingly, the genomes of the mycoparasitic 
 Trichoderma  spp. are rich in genes encoding enzymes like chitinases and glucanases, 
and those for secondary metabolism like NRPSs (Kubicek et al.  2011 ). Glucanases 
are another group of cell wall-lytic enzymes with roles in mycoparasitism/biocontrol. 
Deletion of tvbgn3 (β-1, 6-glucanase-encoding) reduced the mycoparasitic and bio-
control potential of  T. virens  against  P. ultimum  (Viterbo and Horwotz  2010 ). In addi-
tion to chitinases and glucanases, proteases like Prb1/Sp1 are induced during 
mycoparasitism and play defi nitive roles in biocontrol (Djonovic et al.  2006 ).  
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    Antibiosis 

 Antibiosis occurs during interactions involving low-molecular-weight diffusible com-
pounds or antibiotics produced by  Trichoderma  strains that inhibit the growth of other 
microorganisms. Most  Trichoderma  strains produce volatile and nonvolatile toxic 
metabolites that impede colonization by antagonized microorganisms; among these 
metabolites, the production of harzianic acid, alamethicins, tricholin, peptaibols, anti-
biotics, 6-penthyl-α-pyrone, massoilactone, viridin, gliovirin, glisoprenins, heptelidic 
acid and others have been described (Vey et al.  2001 ). In some cases, antibiotic pro-
duction correlates with biocontrol ability, and purifi ed antibiotics mimic the effect of 
the whole agent. However, there are also examples of antibiotic-overproducing strains, 
such as gliovirin overproducing mutants of  T. virens , which provide control similar to 
that of the wild-type, and of gliovirin- defi cient mutants which failed to protect cotton 
seedlings from  P. ultimum , whereas the parental strain did (Chet et al.  1997 ). In gen-
eral, strains of  T. virens  with the best effi ciency as biocontrol agents are able to pro-
duce gliovirin (Howell  1998 ). Also, the most effective isolates of  T. harzianum  against 
 Gaeumannomyces graminis var. tritici  produce pyrone antibiotics, and the success of 
the strains was clearly related to the pyrones they produced. 

 Peptaibols-a class of linear peptides that generally have strong antimicrobial activity 
against gram-positive bacteria and fungi-act synergistically with cell-wall- degrading 
enzymes (CWDEs) to inhibit the growth of fungal pathogens and elicit plant resistance 
to pathogens (Wiest et al.  2002 ). In tobacco plants, exogenous applications of peptai-
bols trigger a defense response and reduce susceptibility to tobacco mosaic virus (Wiest 
et al.  2002 ). A peptaibol synthetase from  T. virens  has recently been purifi ed, and the 
corresponding gene, which has been cloned, will facilitate studies of this compound 
and its contribution to biocontrol. An extensive review on antibiosis and production of 
 Trichoderma  secondary metabolites is provided in Howell (Howell  1998 ,  2003 ).  

    Competition 

  Trichoderma  species are generally considered to be aggressive competitors, grow 
very fast and rapidly colonize substrates to exclude pathogens such as  Fusarium  spp. 
(Papavizas  1985 ). Rhizosphere competence, following seed treatment is an impor-
tant strategy to create a zone of protection against plant pathogens (Howell  2003 ). 
 Trichoderma  species, either added to the soil or applied as seed treatments, grow 
readily along with the developing root system of the treated plants (Ahmad and 
Baker  1987 ). Soil application with  T. harzianum  spores inhibited the infestations of 
 Fusarium oxysporum  f. sp.  vasinfectum  and  F. oxysporum  f. sp.  melonis . Competition 
was a proposed mechanism, although it was not proven to be the main activity.  

    Parasitism 

 In contrast to studies on hyphal parasitism, very little research has been done on the 
molecular mechanisms of parasitism of resting structures.  Trichoderm a spp. are pro-
lifi c producers of secondary metabolites and the genomes of the mycoparasitic 
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 Trichoderma  spp. are especially enriched in genes for secondary metabolism (Reino 
et al.  2008 ). Roles of antimicrobial secondary metabolites such as gliotoxin and glio-
virin in suppression of  R. solani  and  P. ultimum  have been suggested, although contra-
dictory reports exist (Viterbo and Horwotz  2010 ). Certain species like  T. atroviride  
produce the volatile metabolite which plays an important role in  Trichoderma -plant 
and  Trichoderma -fungal interactions.   

     Trichoderma  as Biological Control Agents (BCAs) 

  Trichoderma  is one of a small group of benefi cial fungi, which have been shown to act, 
and are commercially applied as BCAs against fungal pathogens.  Trichoderma  thrives in 
the leaf litter or mulch in orchard situations and it requires a minimum organic carbon level 
of 1 % to ensure proliferation in cropping locations. Weindling ( 1932 ) was fi rst to show the 
antagonistic effects of a soil fungus to  Sclerotium rolfsii . He observed that, the hyphae of 
 Trichoderma  spp. secreted some substance which was lethal to  S. rolfsii . Later it was iden-
tifi ed as gliotoxin.  Trichoderma  spp. have been successfully used for management of dis-
eases caused by  R. solani  in bean, tomato, peanut, rice, lettuce, by  S. rolfsii  in lupine, 
tomato, peanut, sugarbeet and  Pythium  spp. in pea, tomato and brinjal, tobacco and sugar 
beet, and by  Macrophomina phaseolina  in sesame, and in okra (Dubey et al.  1996 ).  

    Commercial Formulation of  Trichoderma  

 Many species of  Trichoderma  are now registered as bio-fungicides in several coun-
tries. Some of commercially available products of  Trichoderma  spp. formulated for 
the biocontrol of plant pathogens and/or plant growth promotion are Bio Fungus, 
Binab T, Root Pro, Root Shield/Plant Shield, T-22G, T-22 Planter Box, Trichodex, 
Trichopel,  Trichoderma  2000, Tusal, Supresivit, Trichoject, SoilGard and  Trieco .  

    Problems in Using  Trichoderma  Spp. 

 Although  Trichoderma  spp. is an effective biocontrol agent against several soil- borne 
fungal pathogens, possible adverse effects of this fungus on arbuscular mycorrhizal (AM) 
fungi might be a drawback in its use in plant protection. AM fungi are obligate biotrophic 
endosymbionts in roots of most of the herbaceous plants. These fungi grow from the 
roots out into the surrounding soil, forming an external hyphal network, which increases 
uptake of mineral nutrients and consequently promotes plant growth. The presence of  T. 
harzianum  in soil reduced root colonization by  G. intraradices . The external hyphal 
length and density of  G. intraradices  was reduced by the presence of  T. harzianum . 
Another problem has been low fi eld performance of  Trichoderma  as biocontrol agent. 
Understanding the mechanisms by which  Trichoderma  controls fungal diseases assume 
importance. Further recent molecular biological techniques can be used to exploit these 
mechanisms, so that, fungal diseases can be effectively controlled in the fi eld.
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    Trichoderma  as a biocontrol agent against  Pythium  species                 

 S. no  Antagonist(s)  Pathogen(s)  Crops(s)  References 

 1   Trichoderma  sp.   P. debaryanum   Sugar beet  Dumitars and Fratilescu-
Sesan ( 1979 ) 

 2   T. virens    P. ultimum   Cotton  Howell and Stipanovic 
( 1983 ) 

 3   T. viride    P. graminicolum   Tomato  Padmanaban and 
Alexander ( 1984 ) 

 4   T. harzianum    Pythium  spp.  Pea  Lifshitz et al. ( 1986 ) 
 5   T. viride    P. indicum   Tomato  Krishnamoorthy ( 1987 ) 
 6   T. viride    P. myriotylum   Ginger  Rathore et al. ( 1990 ) 
 7   T. harzianum  and  T. 

virens  
  P. aphanidermatum  
and  P. ultimum  

 Cucumber  Woleffhechel and Jensen 
( 1992 ) 

 8   T. viride    P. aphanidermatum   Ginger  Rathore et al. ( 1992 ) 
 9   T. koningii    P. ultimum   Peas  Nelson et al. ( 1992 ) 
 10   T. viride    P. aphanidermatum   Ginger  Shanmugam and Varma 

( 1999 ) 
 11   T. viride    P. aphanidermatum   Tobacco  Jackisch-Matsuura and 

Menezes ( 2000 ) 
 12   T. harzianum    P. aphanidermatum   Tomato  Hazarika et al. ( 2000 ) 
 13   T. viride    P. aphanidermatum   Tomato and 

Chilli 
 Manoranjitham et al. 
( 2000 ) 

 14   T. viride    P. aphanidermatum   Bhendi  Anitha and Tripathi ( 2001 ) 
 15   T. harzianum    P. aphanidermatum   Tomato  Pratibha Sharma et al. 

( 2003 ) 
 16   T. viride    P. aphanidermatum   Brinjal  Ramesh ( 2004 ) 
 17   T. viride    P. indicum   Tomato  Neelamegam ( 2004 ) 
 18   T. viride    P. aphanidermatum   Tobacco  Loganathan et al. ( 2004 ) 
 19   T. harzianum    P. aphanidermatum   Tomato  Jayaraj et al. ( 2006 ) 
 20   T. viride    P. aphanidermatum   Tomato  Rakesh Kumar and Indra 

Hooda ( 2007a ) 
 21   Trichoderma  sp.   P. aphanidermatum   Chilli  Muthukumar et al. ( 2008 ) 
 22   T. viride    P. aphanidermatum   Tomato  Bhuvaneshwari ( 2008 ) 
 23   T. viride    P. aphanidermatum   Turmeric  Ushamalini et al. ( 2008 ) 
 24   T. viride    P. aphanidermatum   Mustard  Khare et al. ( 2010 ) 
 25   T. viride    P. aphanidermatum   Chilli  Muthukumar et al. ( 2011 ) 
 26   T. viride  and  T. 

harzianum  
  P. aphanidermatum   Tomato  Jeyaseelan et al. ( 2012 ) 

 27   T. harzianum  and  T. 
longibrachatum  

  P. aphanidermatum   Sugarbeet  Abdollahi et al. ( 2012 ) 

 28   T. harzianum    P. aphanidermatum   Tomato  Marzano et al. ( 2013 ) 
 29   T. hamatum    P. ultimum   Soybean  Hudge ( 2014 ) 
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         Pseudomonas fl uorescens  and  Bacillus subtilis  

    Introduction 

  Pseudomonas fl uorescens  is a common gram negative, rod-shaped bacterium. The 
name itself, it secretes a soluble fl uorescent pigment is called as fl uorescein. It is an 
obligate aerobe, except for some strains that can utilize NO 3  as an electron acceptor 
in place of O 2 . It is motile by means of one/more polar fl agella. 

  P. fl uorescens  has simple nutritional requirements and grows well in mineral 
salts media supplemented with any of a large number of carbon sources (Palleroni 
 1984 ). Because they are well adapted in soil,  P. fl uorescens  strains are being 
investigated extensively for use in applications that require the release and survival 
of bacteria in the soil. Chief among these are biocontrol of pathogens in agriculture 
and bioremediation of various organic compounds. Certain members of the  P. 
fl uorescens  have been shown to be potential agents for the biocontrol which suppress 
plant diseases by protecting the seeds and roots from fungal infection. They are 
known to enhance plant growth promotion and reduce severity of many fungal 
diseases (Hoffl and et al.  1996 ; Wei et al.  1996 ). This effect is the result of the 
production of a number of secondary metabolites including antibiotics, siderophores 
and hydrogen cyanide (O’Sullivan and O’Gara  1992 ). Competitive exclusion of 
pathogens as the result of rapid colonization of the rhizosphere by  P. fl uorescens  
may also be an important factor in disease control.  

    Mode of Action 

    Direct Mechanisms 

   Facilitating Resource Acquisition 

 The best-studied mechanisms of bacterial plant growth promotion include providing 
plants with resources/nutrients that they lack such as fi xed nitrogen, iron, and 
phosphorus. Many agricultural soils lack a suffi cient amount of one or more of these 
compounds so that plant growth is suboptimal. To overcome this problem and obtain 
higher yields, farmers have become increasingly dependent on chemical sources of 
nitrogen and phosphorus. Besides being costly, the production of chemical fertilizers 
depletes non-renewable resources, the oil and natural gas used to produce these 
fertilizers, and poses human and environmental hazards. It would obviously be 
advantageous if effi cient biological means of providing nitrogen and phosphorus to 
plants could be used to substitute for at least a portion of the chemical nitrogen and 
phosphorus that is currently used.  
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   Nitrogen Fixation 

 Nitrogen (N) is the most vital nutrient for plant growth and productivity. 
Although, there is about 78 % N 2  in the atmosphere, it is unavailable to the 
growing plants. The atmospheric N 2  is converted into plant-utilizable forms by 
biological N 2  fi xation (BNF) which changes nitrogen to ammonia by nitrogen 
fi xing microorganisms using a complex enzyme system known as nitrogenase 
(Kim and Rees  1994 ). In fact, BNF accounts for approximately two-thirds of the 
nitrogen fi xed globally, while the rest of the nitrogen is industrially synthesized 
by the Haber-Bosch process (Rubio and Ludden  2008 ). Biological nitrogen fi xa-
tion occurs, generally at mild temperatures, by nitrogen fi xing microorganisms, 
which are widely distributed in nature (Raymond et al.  2004 ). Furthermore, 
BNF represents an economically benefi cial and environmentally sound alterna-
tive to chemical fertilizers (Ladha et al.  1997 ). Since the process of nitrogen 
fi xation requires a large amount of energy in the form of ATP, it would be advan-
tageous if bacterial carbon resources were directed toward oxidative phosphory-
lation, which results in the synthesis of ATP, rather than glycogen synthesis, 
which results in the storage of energy in the form of glycogen. In one experi-
ment, a strain of  Rhizobium tropici  was constructed with a deletion in the gene 
for glycogen synthase (Marroquí et al.  2001 ). 

 Treatment of bean plants with this engineered bacterium resulted in a signifi cant 
increase in both the number of nodules that formed and an increase in the plant dry 
weight in comparison with treatment with the wild-type strain. This is one of the 
very few examples of scientists genetically modifying the nitrogen fi xation apparatus 
of a bacterium and obtaining increased levels of fi xed nitrogen. Unfortunately, while 
this mutant increased nodule number and plant biomass in the fi eld, it does not sur-
vive well in the soil environment. 

 The genes for nitrogen fi xation, called nif genes are found in both symbiotic and free 
living systems (Kim and Rees  1994 ). Nitrogenase (nif) genes include structural genes, 
genes involved in activation of the Fe protein, iron molybdenum cofactor biosynthesis, 
electron donation, and regulatory genes required for the synthesis and function of the 
enzyme. The symbiotic activation of nif-genes in the Rhizobium is dependent on low 
oxygen concentration, which in turn is regulated by another set of genes called fi x-genes 
which are common for both symbiotic and free living nitrogen fi xation systems (Dean 
and Jacobson  1992 ; Kim and Rees  1994 ). Since nitrogen fi xation is a very energy 
demanding process, requiring at least 16 mol of ATP for each mole of reduced nitrogen, 
it would be advantageous if bacterial carbon resources were directed toward oxidative 
phosphorylation, which results in the synthesis of ATP, rather than glycogen synthesis, 
which results in the storage of energy in the form of glycogen (Glick  2012 ). For instance, 
treatment of legume plants with rhizobia having a deleted gene for glycogen synthase 
resulted in a considerable augmentation in both the nodule number and plant dry weight 
with reference to treatment with the wild-type strain (Marroqui et al.  2001 ).  
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   Phosphate Solubilization 

 Phosphorus is necessary for plant growth and is taken by the plants from soil as 
phosphate anions. Even so, phosphate anions are highly reactive and may be 
trapped via precipitation with cations such as Mg 2  + , Ca 2  + , Al 3  +  and Fe 3  +  depend-
ing on the quality of the soil. Phosphorus is extremely insoluble and unavailable 
to plants in these forms. As a result, the amount available to plants is usually a 
small proportion of this total. To overcome the P defi ciency in soils, there are 
frequent applications of phosphatic fertilizers in agricultural fi elds. Plants absorb 
fewer amounts of applied phosphatic fertilizers and the rest is rapidly converted 
into insoluble complexes in the soil (Mckenzie and Roberts  1990 ). But regular 
application of phosphate fertilizers is not only costly but is also environmentally 
undesirable. This has led to search for an ecologically safe and economically 
reasonable option for improving crop production in low P soils. In this context, 
organisms coupled with phosphate solubilizing activity, often termed as phos-
phate solubilizing microorganisms (PSM), may provide the available forms of P 
to the plants and hence a viable substitute to chemical phosphatic fertilizers 
(Khan et al.  2006 ). 

 Of the various PSM(s) inhabiting the rhizosphere, phosphate-solubilizing 
bacteria (PSB) are considered as promising biofertilizers since they can supply 
plants with P from sources otherwise poorly available by various mechanisms 
(Zaidi et al.  2009 ). Bacterial genera like  Azotobacter ,  Bacillus ,  Beijerinckia , 
 Burkholderia ,  Enterobacter ,  Erwinia ,  Flavobacterium ,  Microbacterium , 
 Pseudomonas ,  Rhizobium  and  Serratia  are reported as the most signifi cant 
phosphate solubilizing bacteria (Bhattacharyya and Jha  2012 ). Typically, the 
solubilization of inorganic phosphorus occurs as a consequence of the action of 
low molecular weight organic acids which are synthesized by various soil bac-
teria (Zaidi et al.  2009 ). 

 Conversely, the mineralization of organic phosphorus occurs through the 
synthesis of a variety of different phosphatases, catalyzing the hydrolysis of 
phosphoric esters (Glick  2012 ). Importantly, phosphate solubilization and min-
eralization can coexist in the same bacterial strain (Tao et al.  2008 ). Though, 
PSB are commonly found in most soils; their establishment and performances 
are severely affected by environmental factors especially under stress condi-
tions (Ahemad and Khan  2010a ,  b ,  2012a ,  b ). However, the benefi cial effects of 
the inoculation with PSB used alone (Ahemad and Khan  2011 ,  2012b ) or in 
combination with other rhizospheric microbes have been reported (Zaidi and 
Khan  2005 ; Vikram and Hamzehzarghani  2008 ). Besides providing P to the 
plants, the phosphate solubilizing bacteria also augment the growth of plants by 
stimulating the effi ciency of BNF, enhancing the availability of other trace ele-
ments by synthesizing important plant growth promoting substances (Suman 
et al.  2001 ; Ahmad et al.  2008 ; Zaidi et al.  2009 ).  
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   Sideropore Production 

  Sequestering Iron     Iron is one of the bulk mineral present in plenteous amount on 
earth, yet it is unavailable in the soil for the plants. This is because Fe 3+  (ferric ion) 
is common form of iron found in nature and is meagerly soluble. To overcome this 
problem, PGPR’s secrete siderophores. Siderophores are iron binding protein of 
low molecular mass and have a high binding affi nity with ferric ion. Siderophores 
secreted by PGPR’s improves plant growth and development by increasing the 
accessibility of iron in the soil surrounding the roots (Kloepper et al.  1980 ). 
Marschner and Romheld ( 1994 ) described that plants utilize siderophores secreted 
by PGPR for sequestering iron. Plants such as Oats, Sorghum, Cotton, Peanut, 
Sunfl ower and Cucumber demonstrate the ability to use microbial siderophores as 
sole source of iron than their own siderophores (Bar-Ness et al.  1991 ; Wang et al. 
 1993 ). Microbial siderophores are also reported to increase the chlorophyll content 
and plant biomass in plants of cucumber (Kloepper and Schroth  1978 ).   

   Phytohormone Production 

 Plant hormones play key roles in plant growth and development and in the response 
of plants to their environment (Davies  2004 ). Moreover, during its lifetime, a plant 
is often subjected to a number of nonlethal stresses that can limit its growth until 
either the stress is removed or the plant is able to adjust its metabolism to overcome 
the effects of the stress (Glick et al.  2007 ). When plants encounter growth limiting 
environmental conditions, they often attempt to adjust the levels of their endogenous 
phytohormones in order to decrease the negative effects of the environmental 
stressors (Salamone et al.  2005 ). While this strategy is sometimes successful, rhizo-
sphere microorganisms may also produce or modulate phytohormones under  in vitro  
conditions (Salamone et al.  2005 ) so that many PGPB can alter phytohormone lev-
els and thereby affect the plant’s hormonal balance and its response to stress (Glick 
et al.  2007 ).

    (a)     Indoleacetic Acid : Microbial synthesis of the phytohormone auxin (Indole-3- 
acetic acid/indole acetic acid/IAA) has been known for a long time. The most 
studied auxin, and much of the scientifi c literature considers auxin and IAA to 
be interchangeable terms (Spaepen et al.  2007 ) IAA affects plant cell division, 
extension and differentiation; stimulates seed and tuber germination; increases 
the rate of xylem and root development; control processes of vegetative growth; 
initiates lateral and adventitious root formation; mediates responses to light, 
gravity and fl orescence; affects photosynthesis, pigment formation, biosynthesis 
of various metabolites, and resistance to stressful conditions (Tsavkelova et al. 
 2006 ; Spaepen and Vanderleyden  2011 ). IAA produced by rhizobacteria likely, 
interfere the above physiological processes of plants by changing the plant auxin 
pool. Moreover, bacterial IAA increases root surface area and length, and thereby 
provides the plant greater access to soil nutrients. Also, rhizobacterial IAA 
 loosens plant cell walls and as a result facilitates an increasing amount of root 
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exudation that provides additional nutrients to support the growth of rhizosphere 
bacteria (Glick  2012 ). Thus, rhizobacterial IAA is identifi ed as an effector mol-
ecule in plant-microbe interactions, both in pathogenesis and phytostimulation 
(Spaepen and Vanderleyden  2011 ). Starting with tryptophan, at least fi ve differ-
ent pathways have been described for the synthesis of IAA, and most pathways 
show similarity to those described in plants, although some intermediates can 
differ (Patten and Glick  1996 ; Spaepen and Vanderleyden  2011 ).

    1.    IAA formation via indole-3-pyruvic acid and indole-3-acetic aldehyde is 
found in a majority of bacteria like,  Erwinia herbicola ; saprophytic species 
of the genera  Agrobacterium  and  Pseudomonas ; certain representatives of 
 Bradyrhizobium ,  Rhizobium ,  Azospirillum ,  Klebsiella , and  Enterobacter    

   2.    The conversion of tryptophan into indole-3-acetic aldehyde may involve an 
alternative pathway in which tryptamine is formed as in pseudomonads and 
azospirilla   

   3.    IAA biosynthesis via indole-3-acetamide formation is reported for 
phytopathogenic bacteria  Agrobacterium tumefaciens ,  Pseudomonas 
syringae , and  E. herbicola ; saprophytic pseudomonads like (e.g.  P. putida  
and  P. fl uorescens )   

   4.    IAA biosynthesis that involves tryptophan conversion into indole-3- 
acetonitrile is found in the cyanobacterium ( Synechocystis  sp.)   

   5.    The tryptophan-independent pathway, more common in plants, is also found 
in azospirilla and cyanobacteria.    

      (b)     1 - Aminocyclopropane - 1 - carboxylate  ( ACC )  deaminase : Generally, ethylene 
is an essential metabolite for the normal growth and development of plants 
(Khalid et al.  2006 ). This plant growth hormone is produced endogenously by 
approximately all plants and is also produced by different biotic and abiotic 
processes in soils and is important in inducing multifarious physiological 
changes in plants. Apart from being a plant growth regulator, ethylene has also 
been established as a stress hormone (Saleem et al.  2007 ). Under stress 
conditions like those generated by salinity, drought, water logging, heavy 
metals and pathogenicity, the endogenous level of ethylene is signifi cantly 
increased which negatively affects the overall plant growth. For instance, the 
high concentration of ethylene induces defoliation and other cellular processes 
that may lead to reduced crop performance (Saleem et al.  2007 ; Bhattacharyya 
and Jha  2012 ). Currently, bacterial strains exhibiting ACC deaminase activity 
have been identifi ed in a wide range of genera such as Acinetobacter, 
Achromobacter, Agrobacterium, Alcaligenes,  Azospirillum ,  Bacillus , 
 Burkholderia ,  Enterobacter ,  Pseudomonas ,  Ralstonia ,  Serratia  and  Rhizobium  
etc. (Nadeem et al.  2007 ; Zahir et al.  2008 ,  2009 ; Kang et al.  2010 ).   

   (c)     Cytokinins and Gibberellins : Several studies have shown that many soil bac-
teria in general, and PGPB in particular, can produce either cytokinins or 
gibberellins or both (Taller and Wong  1989 ; Timmusk et al.  1999 ; Salamone 
et al.  2001 ). Thus, for example, cytokinins have been detected in the cell-free 
medium of some strains of  Azotobacter  spp.,  Rhizobium  spp.,  Pantoea agglo-
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merans ,  Rhodospirillum rubrum ,  Pseudomonas fl uorescens ,  Bacillus subtilis  
and  Paenibacillus polymyxa . Moreover, plant growth promotion by some 
cytokinin- or gibberellin-producing PGPB has been reported (Joo et al.  2005 ; 
Kang et al.  2009 ).    

       Indirect Mechanisms 

 The application of microorganisms to control plant diseases, which is a form of 
biological control, is an environment-friendly approach (Lugtenberg and Kamilova 
 2009 ). The major indirect mechanism of plant growth promotion in rhizobacteria is 
through acting as biocontrol agents (Glick  2012 ). They are 

   Siderophore 

 Siderophores (from the Greek: “iron carriers”) are defi ned as relatively low 
molecular weight, ferric ion specifi c chelating agents elaborated by bacteria and 
fungi growing under low iron stress. Based on their iron-coordinating functional 
groups, structural features and types of ligands, bacterial siderophores have been 
classifi ed into four main classes (carboxylate, hydroxamates, phenol catecho-
lates and pyoverdines) (Crowley  2006 ). Hundreds of siderophores have been 
identifi ed and reported for cultivable microorganisms, some of which are widely 
recognized and used by different microorganisms, while others are species- 
 specifi c (Crowley  2006 ; Sandy and Butler  2009 ). The synthesis of siderophores 
in bacteria is induced by the low level of Fе 3+,  and, in acid soil, where solubility 
and availability grow, their protective effect comes down. In such conditions, the 
effi ciency of iron fi xation can be raised by gaining mutant strains capable of 
synthesizing siderophores. This process is independent of iron concentration in 
soil solution (Maksimov et al.  2011 ). Some rhizospheric bacteria can produce 
siderophores and there is evidence that a number of plant species can absorb 
bacterial Fe 3+  siderophore complexes (Bar-Ness et al.  1991 ). However the signifi -
cance of bacterial siderophore in the iron nutrition of plants is controversial 
(Vessey  2003 ). Some authors believe that the contribution of these siderophores 
to the overall iron requirements of plants is small (Glick  1995 ). The two bacterial 
siderophores (pseudobactin and ferrioxamine B) were ineffi cient as iron sources 
for plants and that rhizospheric siderophore-producing bacteria can be in compe-
tition with the plant for iron. Moreover microbial siderophores in the rhizosphere 
are frequently associated with biocontrol activities and not with plant nutrition 
(Vessey  2003 ). 

 Djibaoui and Ahmed ( 2005 ) tested the ability of  Pseudomonas  to grow and to 
produce siderophores is dependent on the iron content and the type of carbon 
sources in the medium. Under conditions of low-iron concentration the  Pseudomonas  
isolates produced yellow-green fl uorescent iron-binding peptide siderophores. 
Urszula ( 2006 ) tested the ability of six strains belonging to the genus  Pseudomonas  
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isolated from the rhizosphere of wheat to produce pyoverdin. The studied strains 
demonstrated a varied level of production of the siderophore, depending on the 
culture conditions. The highest level of pyoverdin was determined after 72 h of 
growth at 20–25 °C in iron-free medium supplemented with succinate. 

 The siderophores production by  Bacillus  and  Pseudomonas  when assessed both 
in the presence and in absence of technical grade of herbicides show that the 
metabolic activities of plant growth promoting rhizobacteria decline following her-
bicides application (Munees and Mohammad  2009 ).  

   Antibiotics and Lytic Enzymes 

 The synthesis of a range of different antibiotics is the PGPB trait that is most often 
associated with the ability of the bacterium to prevent the proliferation of plant 
pathogens (generally fungi) (Haas and Keel  2003 ; Mazurier et al.  2009 ). Some 
antagonistic bacteria produce enzymes including chitinases,  b   -1,3 glucanases, 
cellulases, proteases, and lipases that can lyse a portion of the cell walls of many 
pathogenic fungi. PGPB that synthesize one or more of these enzymes have been 
found to have biocontrol activity against a range of pathogenic fungi including 
 Botrytis cinerea ,  S. rolfsii ,  Fusarium oxysporum ,  R. solani , and  P. ultimum  (Singh 
et al.  1999 ; Kim et al.  2008 ).  

   Phosphate Solubilization 

 Phosphorus is one of the most essential nutrient requirements in plants. Ironically, 
soils may have large reservoir of total phosphorous (P) but the amounts available to 
plants are usually a small proportion of this total. This low availability of phosphorous 
to plants is because of the vast majority of soil P is found in insoluble forms, while 
the plants can only absorb it in two soluble forms, the monobasic (H 2 PO 4 ) and the 
diabasic (HPO4 2 ) ions (Glass  1989 ). 

 Several researchers consequently have isolated PSB from various soils and prove 
that inoculations of these bacteria increase the plant growth and yield (Sturz and 
Nowak  2000 ; Sudhakar et al.  2000 ; Mehnaz and Lazarovits  2006 ). The bacterial 
genera with phosphate solubilising capacity are  Alcaligenes ,  Actinobacter , 
 Arthrobacter ,  Azospirillum ,  Burkholderia ,  Bacillus ,  Enterobacter ,  Erwinia , 
 Flavobacterium ,  Pseudomonas ,  Rhizobium  and  Serratia . 

 Importantly, phosphate solubilization and mineralization can coexist in the same 
bacterial strain (Tao et al.  2008 ). Besides providing P to the plants, the PS bacteria 
also augment the growth of plants by stimulating the effi ciency of BNF, enhancing 
the availability of other trace elements (such as iron, zinc) and by synthesizing 
important plant growth promoting substances (Ponmurugan and Gopi  2006 ; Mittal 
et al.  2008 ). To make this form of P available for plant nutrition, it must be 
hydrolyzed to inorganic P by means of acid and alkaline phosphatase enzymes. 
Because the pH of most soils ranges from acidic to neutral values acid phosphatases 
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should play the major role in this process (Rodríguez and Fraga  1999 ). The 
possibility of enhancing P uptake of crops by artifi cial inoculation with P-solubilising 
strains of rhizobacteria presents an immense interest to agricultural microbiologists.  

   Ethylene 

 Ethylene is a plant hormone that differs from other plant hormones in being a gas. 
Both abiotic and biotic factors affect the Agricultural crops and its yield under stress 
conditions. The PGPR’s containing ACC deaminase activity are present in various 
soils and assures improvement of plant growth and development under stress 
conditions such as heavy metal stress, phytopathogens, fl ooding, drought and high 
salt concentration. Ethylene is a signifi cant phytohormone, but excess secretion of 
ethylene will lead to root curling and shortening, even it can result in plant death 
under extreme conditions. ACC deaminase property/activity of PGPR helps plant to 
combat abiotic stress by hydrolyzing ACC, the precursor of ethylene, to alpha- 
ketobutyrate and ammonia, and encourages plant growth under stress environment. 
Use of biofertilizer containing PGPR with ACC deaminase activity may improve 
the plant growth and development by relieving harmful effects of salt stress ethylene 
(Belimov et al.  2001 ). Besides this, heavy metal stress can also be alleviated using 
PGPR’s (Sharma et al.  2012 ).  

   Induced Systemic Resistance 

 Interaction of some rhizobacetria with the plant roots can result in plant resistance 
again some pathogenic bacteria, fungi and viruses. This phenomenon is called 
induced systemic resistance (ISR). Moreover, ISR involves jasmonate and ethylene 
signaling within the plant and these hormones stimulate the host plant’s defense 
responses against a variety of plant pathogens (Glick  2012 ). Many individual 
bacterial components induce ISR, such as lipopolysaccharides (LPS), fl agella, 
siderophores, cyclic lipopeptides 2,4-diacetylphloroglucinol, homoserine lactones, 
and volatiles like, acetoin and 2,3-butanediol (Lugtenberg and Kamilova  2009 ). 

 Moreover several researchers reported that  Bacillus  spp. produce a large number 
of antifungal metabolites such as bacitracin, gramicidin S, polymyxin, tyrotricidin, 
bacilysin, chlotetaine, iturin A, mycobacillin, bacilomycin, mycosubtilin, fungistatin 
and subsporin which are able to control plant disease (Collins and Jacobsen  2002 ; 
Trevor et al.  2003 ). 

   Antifungal Activity Against  Pythium  Species 

 Paulitz et al. ( 1992 ) reported that antifungal metabolites obtained from  Bacillus  spp. 
to control cucumber damping-off caused by  P. aphanidermatum . Koomen and 
Jeffries ( 1993 ), who stated that most strains of  Bacillus  spp. have potential as bacte-
rial antagonists against  P. aphanidermatum . Chilli seeds treated with  P. fl uorescens  
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reduced the damping-off incidence and increased the plant growth (shoot length and 
root length) and vigour (Harris et al.  1994 ). Pleban et al. ( 1995 ) reported that the 
bacterial antagonist like  Bacillus  and  Pseudomonas  spp. isolated from seeds and 
plants of different crops were tested for their antagonistic potential against various 
plant pathogenic fungi including  P. ultimum ,  R. solani  and  S. rolfsii . The isolates of 
 P. fl uorescens  were highly antagonistic to  P. ultimum  and  R. solani  by way of produc-
ing endochitinase and chitobiosidase (Nielson and Sorensen  1999 ). 

 Anitha and Tripathi ( 2001 ) recorded that  P. fl uorescens  inhibited the mycelial 
growth of  P. aphanidermatum  and  R. solani  inciting seedling disease of okra. The phyl-
loplane bacteria ( P. fl uorescens ) isolated from the rambutan leaf surface can be effec-
tive against some soil-born pathogens, especially  P. aphanidermatum  (Yenjit et al. 
 2004 ). Kavitha et al. ( 2005 ) reported that the production of phenazine derivatives which 
was effective against  P. aphanidermatum  (chilli damping-off) which disorganized the 
hyphal morphology by inducing the formation of vacuolation in hyphal cells, degen-
eration of cell content followed by hyphal lysis. The bacterial antagonist  P. chlorora-
phis  strain PA23 and  B. subtilis  strain BSCBE4 showed the maximum inhibitory effect 
on the mycelial growth of  P. aphanidermatum  causing chilli damping-off (Nakkeeran 
et al.  2006 ). Muthukumar and Bhaskaran ( 2007 ) reported that 12 isolates of  P. fl uores-
cens  were tested against the growth of  Pythium  sp. Of these,  P. fl uorescens  three and 
four were highly effective in inhibiting the mycelial growth of  Pythium  sp. Tomato 
seeds treated with  P. fl uorescens  increased the seed germination percentage, shoot 
length, root length and vigour of tomato seedlings (Valarmathi  2007 ). 

 Muthukumar ( 2008 ) reported that the endophytic bacterial isolate 5, 6 and 7 
(isolated from stem and root) showed highest inhibition on the mycelial growth of 
 P. aphanidermatum  (51.4, 41.7 and 40.0 %) inciting damping-off of chillies. All the 
bacterial strains have the capacity to inhibit the mycelial growth of  P. aphaniderma-
tum  causing tomato damping-off (Intana and Chamswarng  2007 ). Muthukumar 
et al. ( 2010a ) reported that among the isolates, EBS (endophytic bacteria stem 20) 
produced largest inhibition zone and the least mycelia growth of  P. aphaniderma-
tum . The same isolate produced more amounts of salicylic acid, sideropore and 
HCN. Chilli seeds treated with  P. fl uorescens , Thiram 75WS and Captan 50WP and 
formulations reduce damping off incidence and enhanced yield in chilli (Saha et al. 
 2011 ). Dar et al. ( 2012 ) reported that seed treatment and soil application with talc 
based formulations of  P. fl uorescens  reducing the damping-off of papaya caused by 
 P. debaryanum  and increased plant growth parameters of papaya seedlings. 

 Amaresan et al. ( 2014 ) reported that three bacterial isolates (BECS4, BECS5 and 
BECS7) showed highest antagonistic activity against  Pythium  sp. This type of antago-
nistic activity is might be due to the production of lytic enzymes (protease, cellulose, 
amylase and lipase). The three bacterial isolates ( P. fl uorescens -9A-14,  Pseudomonas  
sp.-8D-45 and  Bacillus subtilis -8B-1) were tested against the growth of  P. debaryanum  
inciting damping-off and root rot of cucumber. The results revealed that all the three 
bacterial isolates inhibited the mycelia growth of  Pythium  sp. and increased the plant 
growth under  in vitro  condition. Further, cucumber seeds treated with peat and talc 
based formulations of these antagonistic bacteria effectively controlled the disease inci-
dence and increased the plant growth (Khabbaz and Abbasi  2014 ).      
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    Plant Extract 

    Introduction 

 Bioactive compounds or plant secondary metabolites (SMs) consist of low- molecular 
weight compounds that are regarded as not essential for sustaining life, but as crucial 
for the survival of the producing organism (Hadacek  2002 ). More than 50,000 struc-
tures have been identifi ed in plants by NMR, MS and X-ray analysis. However, as 
only less than 20 % of all plants have been studied, it is very likely that the actual 
numbers of secondary metabolites (SMs) or bioactive compounds in the plant king-
dom would exceed 100,000 structures (Wink  2006 ). The site of synthesis for SMs is 
not necessarily the site of accumulation. Hydrophilic compounds (such as alkaloids, 
fl avonoids, tannins, and saponins) are stored in the vacuole while the lipophilic SMs 
(such as terpenoids) are sequestered in resin ducts, laticifers, oil cells, trichomes, or 
in the cuticle. Bioactive compounds affect the fungi via interference with molecular 
targets in their organs, tissues and cells. The major targets include: Biomembrane, 
proteins and nucleic acids. Bioactive compounds are still regarded as a valuable pool 
for discovering novel mode of action (Engelmeier and Hadacek  2006 ). 

    Why We Consider Botanicals? 

•     Reduce crop losses  
•   Easily decomposed  
•   Low cost  
•   Environmentally friendly approach  
•   Sustainable solutions in agriculture  
•   Integrated Diseases Management (IDM)     

    Major Groups of Antimicrobial Compounds 

 Plants produce a array of bioactive metabolites which serve as plant defense mecha-
nisms against pests and diseases. Some SMs give plants their odors (terpenoides), 
some are responsible for plant pigments (quinines and tannins) and others (e.g., some 
of terpenoids) are responsible for plant fl avor. Cowan ( 1999 ) he classifi ed the antimi-
crobial bioactive compounds into fi ve classes. They are (i) terpenoids and essential oils, 
(ii) phenolics, (iii) polyphenols, (iv) alkaloids and (v) polypeptides and mixtures (crude 
extract). Plants have the capacity to synthesize secondary metabolites, like phenols, 
phenolic acids, quinones, fl avones, fl avonoids, lavonols, tannins and coumarins (Cowan 
 1999 ). The components with phenolic structures, like carvacrol, eugenol, and thymol 
shows antimicrobial effect and serves as plant defence mechanisms against pathogenic 
microorganisms (Das et al.  2010 ). The volatile antimicrobial substance allicin (diallyl 
thio sulphinate) is synthesized in garlic when the tissues are damaged and the substrate 
alliin (S-allyl-L-cysteine Sulphoxide) mixes with the enzyme alliin-lyase. Allicin is 
readily membrane- permeable and undergoes thiol-disulphide exchange reactions with 
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free thiol groups in proteins. Lavanya et al. ( 2009 ) reported that the anti viral protein 
(AVP) extracted from  Bougainvillea spectabilis  and  Prosopis chilinesis  were found 
highly effective in reducing the sunfl ower necrosis virus (SFNV) infection both in cow-
pea and sunfl ower plants. At present, scientists are investigating for plant products of 
antimicrobial properties. It would be advantageous to standardize methods of extrac-
tion and in vitro antimicrobial effi cacy testing so that the search for new biologically 
active plant products could be more systematic. Thousands of phyto chemicals which 
have inhibitory effects on all types of microorganisms in vitro should be subjected 
in vivo testing to evaluate the effi cacy in controlling the incidence of diseases in crops, 
plants, and humans (Das et al.  2010 ).   

    Antimicrobial Secondary Metabolites 

 Plants have limitless ability to synthesize aromatic secondary metabolites, most of 
which are phenols or their oxygen-substituted derivatives. Important subclasses in this 
group of compounds include phenols, phenolic acids, quinones, fl avones, fl avonoids, 
fl avonols, tannins and coumarins. These groups of compounds show antimicrobial 
effect and serves as plant defense mechanisms against pathogenic microorganisms. 

  Phenols     Phenol, also known as carbolic acid, is an aromatic organic compound 
with the molecular formula C 6 H 5 OH. It is a white crystalline solid that is volatile. 
The molecule consists of a phenyl group (−C 6 H 5 ) bonded to a hydroxyl group (−
OH). Phenolic toxicity to microorganisms is due to the site(s) and number of 
hydroxyl groups present in the phenolic compound.  

  Quinone     A quinone is a class of organic compounds that are formally derived from 
aromatic compounds [such as benzene or naphthalene] by conversion of an even 
number of –CH= groups into –C(=O)– groups with any necessary rearrangement of 
double bonds resulting in a fully conjugated cyclic dione structure.  

  Flavones, fl avonoids and fl avonols     Flavones, fl avonoids and fl avonols are pheno-
lic structure with one carbonyl group. They are synthesized by plants in response to 
microbial infection and are often found effective  in vitro  as antimicrobial substance 
against a wide array of microorganisms.  

  Tannins     Tannin solutions are acid and have an astringent taste. It is responsible for 
the astringency, colour, and some of the fl avour in tea. These compounds are soluble 
in water, alcohol and acetone and give precipitates with proteins.  

  Coumarins     Coumarin is a phytochemical with a vanilla like fl avour. It is a oxygen 
heterocycle phenolic substances made of fused benzene and  α -pyrone rings.  

 The crude sap, volatile and essential oil extracted from whole plant or special-
ized plant parts like roots, stem, leaves, fl owers, fruits and seeds are widely used in 
preparing the antimicrobial compounds which are signifi cantly used against the dif-
ferent plant pathogens/diseases.
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 Botanicals against plant diseases 

 Plant  Part used  Preparations  Disease/Pathogen  References 

 Turmeric ( Curcuma 
longa  Linn.), Ginger 
( Zingiber offi cinale  
Rosc.) 

 Rhizome  Crude extract   Phytophthora 
infestens ,  Fusarium 
solani ,  Pyricularia 
oryzae  

 Bandara 
et al. ( 1989 ) 

 Garden croton 
( Codiaeum variegatum  
Linn.) 

 Leaf  Phenolic 
compound 

  Alternaria 
alternata ,  Fusarium 
oxysporum  

 Naidu ( 1988 ) 

 Spearmint ( Mentha 
spicata  Linn.), Greek 
Sage ( Salvia fruticosa  
Mill.),  Thymbra  spp. 

 Leaf  Essential oil   Rhizoctonia solani , 
 Sclerotium 
sclerotiorum  

 Yegen et al. 
( 1992 ) 

  Chloranthus japonicas , 
 Paulownia coreana  

 Roots, 
stem 

 Crude extract  Rice blast, rice 
sheath blight and 
wheat leaf rust 

 Choi et al. 
( 2004 ) 

 Neem/Margosa 
( Azadirachta indica  
A. Juss.), 

 Leaf  Achook 
formulations 
(azadirachtina) 

 Sheath blight of rice  Kandhari 
( 2007 ) 

 Oregano ( Origanum 
hercleoticum ) (weed 
species) 

 Leaf  Essential oils   Fusarium 
oxysporum ,  Phoma 
tracheiphila  

 Salomone 
et al. ( 2008 ) 

 Neem/Margosa 
( Azadirachta indica ), 
Black cumin ( Nigelia 
sativa  Linn.), Asfetida 
( Ferula asafoetida  Linn.) 

 Seeds  Essential oils   Fusarium 
oxysporum ,  A. 
niger ,  A. fl avus  

 Sitara et al. 
( 2008 ) 

 Indian aloe ( Aloe 
barbadensis  Mill.), 
Neem/Margosa 
( Azadirachta indica ), 
Tobacco Leaf ( Nicotiana 
tabacum  Linn.) 

 Leaf  Crude extract  Dry rot of yam  F. 
oxysporum ,  A. niger  

 Taiga ( 2009 ) 

   Mode of action of phytochemicals             

 Class  Sub-class  Mechanism 

 Phenolics  Simple 
-phenols 

 Membrane disruption, substrate deprivation 

 Phenolic acids  Phenolic acids  Bind to adhesins, complex with cell wall, 
inactivate enzymes 

 Terpenoids, essential oils  –  Membrane disruption 
 Alkaloids  –  Intercalate into cell wall 
 Tannins  –  Bind to proteins, enzyme inhibition, substrate 

deprivation 
 Flavonoids  –  Bind to adhesins, complex with cell wall, 

inactivate enzymes 
 Coumarins  –  Interaction with eukaryotic DNA 
 Lectins and polypeptides  –  Form disulfi de bridges 
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 Botanicals against plant diseases 

 Plant  Part used  Preparations  Disease/Pathogen  References 

 Ginger ( Zingiber 
offi cinale  Rosc.), Aloe 
( Aloe vera ), Bitter kola 
( Garcinia cola ) and 
Neem ( Azadirachta 
indica ) 

 Leaf, fruit 
and seed 

 Crude  Root rot disease of 
cow pea ( Vigna 
unguiculata  L.) 

 Suleiman and 
Emusa 
( 2009 ) 

  Eugenia aromatica , 
 Piper betle ,  Alpinia 
galanga  and 
 Sphaeranthus indicus  

 Leaf  Crude  Stem rot disease of 
vanilla 

 Suprapta and 
khalimi 
( 2009 ) 

  Metasequoia 
glyptostroboides  

 Leaf  Essential oil   Fusarium 
oxysporum ,  F. 
solani , 
 Phytophthora 
capsici , 
 Colletotrichum 
capsici ,  Sclerotinia 
sclerotiorum , 
 Botrytis cinerea  and 
 Rhizoctonia solani  

 Bajpai and 
Kang ( 2010 ) 

      Antifungal Activity of Plant Extracts Against  Pythium  Species 

 Among the plant products tested, bulb extract of  Allium sativum  (garlic) recorded 
the minimum mycelial growth (176 mg) of  P. aphanidermatum  causing chilli damp-
ing-off. This was followed by  Lawsonia inermis  leaf extract. Chilli seeds treated 
with bulb extract of  Allium sativum  recorded maximum germination percentage, 
growth and vigour of chilli seedlings (Kurucheve and Padmavathi  1997 ). 
Sutthivaiyakit et al. ( 2000 ) recorded that the alcoholic leaf extract of  Chrysanthemum 
coronarium  has been found to be very active against  P. ultimum ,  Aspergillus  spp. 
and  Botrytis cinerea . 

 Anti- Pythium  activity of all tested  Centaurea  species in present study indicated 
that these plants are potent antifungal plants with possible potential for the control 
of damping-off diseases in cucumber. The antifungal activity of the plants in this 
genus was reported earlier (Karakenderes et al.  2006 ; Bahraminejad et al.  2011 ). 
The antifungal activity of plant extracts against  Pythium  has been previously 
reported by several workers (Sagar et al.  2007 ; Haouala et al.  2008 ; Suleiman and 
Emua  2009 ; Muthukumar et al.  2010a ). Haouala et al. ( 2008 ) reported that water 
extract of fenugreek showed better inhibition on the mycelia growth of  P. 
aphanidermarum . 

 The effect of plant species against rot causing fungi,  P. aphanidermatum , has 
also been earlier investigated under  in vitro  and  in vivo  conditions (Sagar et al. 
 2007 ). The antimicrobial activity of some plant extracts against  P. aphaniderma-
tum  inciting rhizome rot of ginger has been previously reported (Haouala et al. 
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 2008 ; Suleiman and Emua  2009 ). Suleiman and Emua ( 2009 ) reported that PDA 
medium is poisoned with neem leaf extract found 55 % growth inhibition of  P. 
aphanidermatum  was observed. While ginger rhizome extract reduced 70 % damp-
ing-off infection on cowpea  in vivo . 

 Ginger and aloe could completely inhibit the mycelial growth of  P. aphanider-
matum  causing damping-off under  in vitro  condition (Suleiman and Emua  2009 ). 
Dana et al. ( 2010 ) reported that the aqueous extract of  Zygophyllum fabago  inhibits 
the mycelial growth of  P. aphanidermatum  causing damping-off in watermelon. 
The antifungal effects of 66 medicinal plants belonging to 41 families were evalu-
ated against  P. aphanidermatum , the causal agent of chilli damping-off. Of these, 
Zimmu ( Allium sativum  L. ×  Allium cepa  L.) leaf extract at 10 % concentration had 
the highest inhibitory effect (13.7 mm) against mycelial growth of  P. aphaniderma-
tum  (Muthukumar et al.  2010a ). 

 Gomathi et al. ( 2011 ) reported that the methanolic extracts of various plants 
such as  Murraya Koenigii  (Karuveppilei),  Pithecellobium dulce  (Kodukkapuli), 
 Vitex negundo  (Karunocci),  Aleo vera  (kattalai) individually tested for antifungal 
activity against  P. debaryanum  by agar well diffusion method. The results revealed 
that the methanolic extracts of  vitex negundo  showed considerably highest anti-
fungal activity against  P. debaryanum  than other plant extracts tested in the pres-
ent study. In another study, the antifungal activity of fi ve different medicinal 
plants namely  Lawsonia inermis  L,  Mimosa pudica  L,  Phyllanthus niruri  L., 
 Tephrosia purpurea  Pens.,  Vinca rosea  L. were tested against  P. debaryanum  
causing damping off of disease by agar well diffusion method. Among these, all 
the three solvents (n-butanol, methanol, aqueous) and the methanolic extracts of 
 Lawsonia inermis  showed maximum antifungal activity against  P. debaryanum  
 in vitro  (Ambikapathy et al.  2011 ). 

 Recently, Tahira Parveen and Kanika Sharma ( 2014 ) stated that among the 20 
plants tested,  Jacaranda mimosifolia ,  Moringa olifera , exhibited 27.7 % inhibition 
of mycelial growth of  P. aphanidermatum . Whereas,  Polyalthia longifolia  and 
 Terminallia arjuna  showed 22.2 % inhibition of  P. aphanidermatum . Besides these, 
 Lawsonia inermis ,  Aegle marmelos ,  Nigella sativa ,  Azadirachta indica , also 
exhibited maximum inhibitory activity against  P. aphanidermatum .  

    Limitations of Botanicals for Plant Disease Management 

•     Extraction methods are not regulated  
•   Most studies are confi ned to laboratory condition  
•   Rapid humiliation  
•   Not easily formulated  
•   Some chemical compounds are harmful to human and plants  
•   Less effective       
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    Plant Essential Oils 

    Introduction 

 Essential oils are volatile aromatic concentrated hydrophobic oily liquids which are 
obtained from various plant parts such as fl owers, buds, seeds, leaves, twigs, bark, 
woods, fruits and roots. They are usually terpenoids responsible for the aroma and 
fl avor associated with herbs, spices and perfumes, also called volatile oils because 
they easily diffuse into the air. The main constituents of essential oils are mono and 
sesquiterpenes including carbohydrates, phenols, alcohols, ethers, aldehydes and 
ketones are responsible for the biological activity as well as for their fragrance. 
Phenolic compounds present in essential oils have also been recognized as antimicro-
bial bioactive components (Sumonrat et al.  2008 ). Various plant materials are believed 
to have antifungal activity and many essential oils have been reported to have antifun-
gal activities with no side effects on humans and animals (Sokmen et al.  1999 ). 

 In general, plant-derived essential oils and extracts are considered as non- 
phytotoxic compounds and potentially effective against several microorganisms 
including many fungal pathogens (Chuang et al.  2007 ). Therefore, they can be used 
as a natural therapy to inhibit fungal pathogens causing superfi cial infections. The 
active antimicrobial compounds of essential oils are generally terpenes, which are 
phenolic in nature and the site of action is through cell wall and cell membrane. 
Thus, active phenolic compounds might have several invasive targets which could 
lead to the inhibition of human infectious fungal pathogens. 

 The increasing resistance to antifungal compounds and the reduced number of 
available drugs led us to search for the new alternatives among aromatic plants and 
their essential oils, used for their antifungal properties. The antifungal activity can 
be attributed to the presence of some components such as carvacrol, α-terpinly 
acetate, cymene, thymol, pinene, linalool which are already known to exhibit 
antimicrobial activity against plant pathogens (Cimanga et al.  2002 ). A number of 
scientifi c investigations have highlighted the importance and the contribution of 
many plant families used as medicinal plants (Sheetal and Singh  2008 ). Some of the 
plant families, their antifungal activity of essential oil are summarized below. 

    Important Plant Families and Their Antifungal Activity 

   Asteraceae 

 The members comes under this family are herbaceous, but a very few belongs to 
shrubs, vines and trees. This family is distributed all over the world and is most com-
mon in the arid and semi-arid regions of subtropical and lowers temperate regions 
(Barkley et al.  2006 ). The essential oil obtained from the fl ower heads of garland 
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chrysanthemum  Chrysanthemum coronarium  L. was evaluated against 12 plant patho-
gens (Alvarez -Castellanos et al.  2001 ). The results revealed that the oil was extremely 
effective against all the test pathogens. The main antifungal compounds present in the 
oil were camphor, α- and β-pinene and lyratyl acetate. Kordali et al. ( 2005 ) reported 
that the antimicrobial activity of essential oils from three  Artemisia  species i.e. 
 Artemisia absinthium ,  A. santonicum  and  A. spicigera . The results clearly indicated 
that all the oils had same inhibitory effects over all the fungi tested. The antifungal 
activity of plant oil obtained from  Tagetes patula  L. exerted complete growth inhibition 
of  Botrytis cinerea  and  Penicillium digitatum  (Romagnoli et al.  2005 ). Further, the 
antimicrobial compounds were obtained and identifi ed as piperitone and piperitenone. 
This was highly responsible for the inhibition of the pathogen. The essential oils from 
 Chrysactinia mexicana  Grag, caused complete mycelial growth inhibition of 
 Aspergillus fl avus  (Cardenas et al.  2005 ) and  Helichrysum italicum  (Roth) Don showed 
antifungal activity against  Pythium ultimum  (Tundis et al.  2005 ).  

   Rutaceae 

 This family is commonly known as rue or citrus family. The antifungal activities of 
essential oils from  Citrus limon ,  C. paradise ,  C. sinesis  were highly effective against 
fi ve phytopathogenic fungi (Sun et al.  2007 ). Pitipong et al. ( 2009 ) reported that 
essential oils from  Citrus hystrix  DC. showed strong antimicrobial activity against 
 Alternaria brassicicola ,  Aspergillus fl avus ,  Bipolaris oryzae ,  Fusarium moniliforme , 
 F. proliferatum ,  Pyricularia grisea  and  R. solani  the cause of rice seed-borne and 
sheath blight pathogen.  

   Liliaceae 

 Most of the ornamental plant are comes under this family and it is widely grown for 
their fragrance and beautiful fl owers. It is native to temperate and subtropical 
regions. The activity of essential oils from  Allium fi stulosum  L.,  A. sativum  L. and 
 A. cepa  L. were investigated against human pathogen (Pyun et al. 2006). There is no 
report available on plant pathogens.  

   Lamiaceae 

 The plants comes under this family has world wide distribution. It is mainly used for 
medicinal, culinary, ornamental and various commercial utilizations. Earlier studies 
clearly indicated that essential oils were obtained from these families have a strong 
antifungal activity (Baratta et al.  1998 ). The essential oil of  Ocimum basilicum  L. 
has the potential for the treatment of fungal infections (Rios and Recio  2005 ). The 
main antifungal component of this oil was linalool. 
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 Previous reports on the antimicrobial activity of the essential oils of some  Thymus  
species showed strong antifungal activity against viruses, bacteria, food-derived 
microbial strains and fungi. The major antimicrobial compound of this oil was pheno-
lic monoterpenes. These compounds were highly effective against  R. solani  and 
 Fusarium oxysporum , and less effective against  A. fl avus . The essential oil extracted 
from  Rosmarinus offi cinalis  L. by hydro-distillation process (Angioni et al.  2004 ) and 
the chemical composition of this oil was identifi ed as α-pinene, borneol, camphene, 
camphor, verbenone and bornyl acetate which has strong antimicrobial activity. 
Portillo et al. ( 2005 ) reported that essential oil obtained from the aerial parts of  Salvia 
mirzayanii  Rech. F. and Esfand. was tested against  F. solani , and  Candida albicans . 
The inhibitory effect was increased with increasing the concentration of essential oil. 
The major antifungal compounds present in this oils were linalool, linalyl acetate, 
α-terpinyl acetate, 1, 8-cineole, α-cadinol and δ-cadinene.  

   Verbenaceae 

 Tropical fl owering plants mainly comes under this mainly. It constitutes trees, 
shrubs and herbs. Simic et al. ( 2004 ) reported that the essential oils were obtained 
from the aerial parts of  Lantana achyranthifolia  Desf. and  Lippia graveolens  Kunth. 
showed highest antifungal activity against  F. sporotrichum ,  A. niger ,  Trichophyton 
mentagrophytes  and  F. moniliforme .  

   Lauraceae 

 It includes mostly fl owering plants, which occur mainly in warm temperate and 
tropical regions, especially Southeast Asia and South America. Earlier studies 
revealed that the essential oil is extracted from the bark of  C. zeylanicum  has 
fungitoxic properties against  A. niger ,  A. fumigatus ,  A. nidulans  and  A. fl avus  
(Bullerman et al.  1977 ). The essential oils from cinnamon have strong inhibitory 
effect against the growth of  A. fl avus  cause afl atoxin in ground nut and  Botrytis 
cinerea  (Montes-Belmont and Carvajal  1998 ; Lee et al.  2007 ; Sessou et al.  2012 ).  

   Apiaceae 

 This family is commonly called as carrot or parsley family. The oil extracted 
from carrot inhibited the mycelial growth of  A. niger ,  F. moniliforme  and 
 Curvularia lunata . A complete mycelia growth inhibition was obtained at a 6 μl 
dose of the oil. The chemical composition of ajwain essential oil showed the 
presence of 26 components. Of these, Thymol was found to be a major compo-
nent along with p-cymene, γ-terpinene, β-pinene and terpinen-4-ol (Sunita and 
Mahendra  2008 ).  
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   Zingiberaceae 

 Plants come under this family are distributed in Tropical Africa, Asia and America. 
It is a fl owering, aromatic perennial herbs with creeping horizontal or tuberous rhi-
zomes. Pandey et al. ( 2010 ) reported that the essential oils from ginger ( Zingiber 
offi cinale  Roscoe) exhibited strong fungicidal activity against mycotoxin producers 
 Aspergillus fl avus  and  A. parasiticus  and also effective against  F. oxysporum . The 
major antifungal components present in zinger is zingiberene (Farag et al.  1989 ).  

   Theaceae 

 Theaceae is a family of fl owering plants, composed of shrubs and trees. Pitipong 
et al. ( 2009 ) reported that essential oils from  Melaleuca alternifolia  (Maiden and 
Betche) Cheel showed strong antimicrobial activity against  Alternaria brassicicola , 
 Aspergillus fl avus ,  Bipolaris oryzae ,  Fusarium moniliforme ,  F. proliferatum , 
 Pyricularia grisea  and  R. solani  the cause of rice seed-borne and sheath blight 
pathogen.  

   Important essential oils and their antifungal compounds   

 Common name  Scientifi c name  Antimicrobial compounds  References 

 Ajowan   Trachyspermum 
ammi  

 Thymol  Park et al. ( 2007 ) 

 American wild 
mint 

  Mentha cervina   Pulegone, isomenthone  Goncalves et al. 
( 2007 ) 

 Basil   Ocimum sativum   Thymol  Soliman and Badea 
( 2002 )   Ocimum 

basilicum  
 Thymol 

 Brazilian 
rosewood 

  Aniba rosaedora   Linalool  Manjamalai and 
Berlin Grace ( 2012 ) 

 Bamboo piper   Piper 
angustifolium  

 Camphene  Tirillini et al. ( 1996 ) 

 Cascalote   Caesalpinia 
cacalaco  

 Gallic and tannic acids  Veloz-Garcia et al. 
( 2010 ) 

 Celery   Apium 
graveolens  

 Angelicin, bergaptan, 
columbianetin, xanthotoxin 

 Afek and Carmeli 
( 1995 ) 

 Chinese 
cinnamon 

  Cinnamomum 
zeylanicum  

 Trans-cinnamaldehyde  Pyun and Shin 
( 2006 ) 

 Cinnamon   Cinnamomum 
zeylanicum  

 Cinnamaldehyde eugenol  Paranagama ( 1991 ) 
and Velluti et al. 
( 2003 ) 

 Clove   Syzygium 
aromatium  

 Eugenol  Paranagama ( 1991 ) 
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 Common name  Scientifi c name  Antimicrobial compounds  References 

 Clove   Syzygium 
aromaticum  

 Eugenol  Paranagama ( 1991 ) 
and Ranasinghe et al. 
( 2002 ) 

 Calamint   Calamintha 
nepeta  

 Sardinia: pulegone Portugal: 
isomenthone, 1,8-cineole 

 Marongiu et al. 
( 2010 ) 

 sub sp.  nepeta  
 Cumin   Cuminum 

cyminum L . 
 γ-Terpinene, cucumin aldehyde  Marjanlo et al. 

( 2009 ) 
  Datura    Datura metel   Enzyme, peroxidase, β-1,3-

glucanase and chitinase 
 Devaiah et al. ( 2009 ) 

  Eucaluptus    Eucalyptus 
citriodora  

 Essential oil  Pattnaik et al. ( 1996 ) 

 Fringed Rue   Ruta chalepensis   2-undecanone, 2-decanone and 
2-do decanone 

 Mejri et al. ( 2010 ) 

 Garden thyme   Thymus vulgaris   Thymol, ρ-Cymene  Sun et al. (2007) 
 Geranium   Pelargonium 

graveolens  
 Essential oil  Pattnaik et al. ( 1996 ) 

 Golden shower 
tree 

  Cassia  sp  Cassia oil  Feng et al. ( 2008 ) 

 Himalayan   Podophllum 
hexandrum  

 4′-O-demethyldehdropodophllotoxin 
and picropodophllone 

 Rahman et al. ( 1995 ) 
 May Apple 
 Indian Aloe   Aloe vera   Crude extracts  Jasso de Rodriguez 

et al. ( 2005 ) 
 Kattukurumulagu   Piper barberi   1,8 ceneole, α-pinene, eugenol 

isomer, camphor 
 Raju and Maridass 
( 2011 ) 

 Long leaf arnica   Arnica 
longifolia  

 Camphor, 1,8-cineole  Nurhayat et al. 
( 2007 ) 

 Long pepper   Piper longum   Eugenol, piperine, 
piperlongumine and piperettine 

 Lee et al. ( 2009 ) 

 Lemon 
 Eucalyptus  

  Eucalyptus 
citriodora  

 Citronellal, isopulegol  Chuang et al. ( 2007 ) 

 Lemon grass   Cymbopogon 
citratus  

 Citral, geranial neral  Pranagama et al. 
( 2003 ) and Velluti 
et al. ( 2003 ) 

 Mustard   Brassica  spp.  Allyl iso thiocyanate  Dhingra et al. ( 2009 ) 
 Neem   Azadiracta 

indica  
 Oleic acid, hexadecanoic acid  Somda et al. ( 2007 ) 

 Parupukkirai   Chenopodium 
ambrosioides  

 M-cymene, myrtenol  Prasad et al. ( 2009 ) 

 Periwinkle   Catharanthus 
roseus  

 5-hdrox fl avones  Roy and Chatterjee 
( 2010 ) 

 Peppermint   Menthe piperita   Essential oil  Pattnaik et al. ( 1996 ) 
 Pine   Pinus  spp.  γ-terpineol  Knobloch et al. 

( 1989 ) 
 Quinoa   Chenopodium 

quinoa  
 Titerpenoid saponins  Stuardo and San 

Martin ( 2008 ) 

(continued)
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   Meliaceae 

 Mostly trees and shrubs of fl owering plant come under this family. It is used for 
vegetable oil, soap-making and insecticides. Several reports have been made on the 
antifungal properties of  Azadirachta indica  (L.)Adelb. (neem) oil (Sunita et al. 
2008). The essential oils from  A. indica  showed complete mycelial growth inhibi-
tion of  Alternaria alternata ,  A. niger  and  F. oxysporum  at 2–10 % neem oil (Sukatta 
et al.  2008 ).

        Antifungal Activity of Essential Oils Against  Pythium  Species 

 Pandey and Dube ( 1994 ) extracted essential oil from the leaves of 30 angiospermic 
plants for their antifungal activity against  P. aphanidermatum  and  P. debaryanum . 
Of these, essential oil from  Hyptis suaveolens ,  Murraa koenigii  and  Ocimum sanc-
tum  showed strong antifungal activity against  P. aphanidermatum  and  P. debarya-
num  causing damping-off disease of tomato. In  in vivo  condition, tomato seeds 
were soaked with essential oils of  H. suaveolens ,  M. koenigii  and  O. sanctum  

 Common name  Scientifi c name  Antimicrobial compounds  References 

 Sage   Saliva offi cinalis   Essential oil  Pinto et al.( 2007 ) 
 Sodom apple   Calotropis 

procera  
 Crude extract  Abdel-Monaim et al. 

( 2011 ) 
 Rosebay   Neerium 

oleander  
 Thulasi   Osmium 

basilicum  
 Spearmint   Mentha spicata   1-carvone  Knobloch et al. 

( 1989 ) 
 Tea tree oil   Melaleuca 

aternifolin  
 Terpinen-4-ol  Knobloch et al. 

( 1989 ) 
 Thymus   Thymus 

mastichina  sub 
sp.  matichina  

 Linalool  Faleiro et al. ( 2003 ) 

 Thymus   Thymus vulgaris   Thymol, carvacrol, linalool  Soliman and Badea 
( 2002 ) 

 Wild basil   Ocimum 
gratissimum  

 Thymol  Adekunle and Uma 
( 2005 ) 

 Wild carrot   Daucus carota  
subsp. 
 halophilus  

 Flowering umbels: sabinene, 
α-pinene, limonene; ripe umbels 
elemicin, sabinene 

 Tavares et al. ( 2008 ) 

 Yellow lavender   Lavandula 
viridis  

 1,8-cineole, camphor, α-pinene, 
linalool 

 Zuzarte et al. ( 2011 ) 

 Zinger   Zingiber 
offi cinale  

 Gingerenone A  Endoi et al. ( 1990 ) 

(continued)

A. Muthukumar et al.



77

exhibited 83.67 % and 50 %, respectively, in soil infected with  P. aphanidermatum  
and 86 %, 71 %, and 43 %, respectively in soil infected with  P. debaryanum . 

 Kishore and Dubey ( 2002 ) reported that seed treatment with Lippia oil exhibited 
88.9 % and 71.3 % reduction of tomato damping-off disease when challenge inocu-
lated with  P. aphanidermatum  and  P. debaryanum , respectively. Among the plant oils 
tested,  Eucalyptus  oil recorded the maximum mycelia growth inhibition of 
 P. aphanidermatum  causing chilli damping-off. This was followed by Citrodara oil and 
Plamarosa oil in the decreasing order of merit (Muthukumar and Sangeetha  2008 ). 

 Nafi seh et al. ( 2012 ) reported that the antimicrobial activity of essential oil from 
 Eucalyptus  ( Eucalyptus camaldulensis  Dehnh.) was evaluated against three post- 
harvest pathogenic fungi ( Penicillium digitatum ,  A. fl avus  and  Colletotrichum 
gloeosporioides ) and three soil borne pathogenic fungi ( P. ultimum ,  R. solani  and 
 Bipolaris sorokiniana ) under  in vitro . The result showed that complete mycelial 
growth inhibition of  P. ultimum ,  R. solani  was obtained from  Eucalyptus  oil in all 
concentrations tested and it is not effective against post-harvest pathogens. The 
essential oil extracted from  T. vulgaris  was the most effective and caused complete 
mycelial growth inhibition of  P. aphanidermatum  and  R. solani . The main antifungal 
compound present in  T. vulgaris  is thymol (Amini et al.  2012 ). 

 Recently, Fonseca et al. ( 2015 ) reported that the antifungal activity of  Origanum 
vulgare ,  O. majorana ,  Mentha piperita  and  R. offi cinalis  against  P. insidiosum . The 
results revealed that the essential oil obtained from  O. vulgare  showed highest 
effi cacy on  P. insidiosum .    

    Conclusion 

 The current status of research suggests that there are really alternatives to replace the 
synthetic fungicides for management of this notorious soil as well as seed borne fungi: 
 Pythium aphanidermatum  which causes loss of multimillion dollars. However the 
farmers uses the common synthetic fungicides which leads into ill effects as well as 
many of the commonly used synthetic fungicides are unable to control  P. aphanider-
matum  as it has got resistant against these synthetic fungicides. Hence, there is need to 
replace the chemical fungicides by bio-fungicides, prepared from plant extracts and 
essential oils and antagonistic microorganisms. Bio-fungicides will also be economical 
to the farmers and besides this, the use of biofungicides will not leave any ill effect in 
the soil, water as well as in the environment. It is possible that by combining these 
approaches, (use of plant extracts, essential oils and antagonistic micro-organisms) an 
economically viable alternative for crop production system can be developed. For the 
effective production of crops, formulation protocols as well as its using methods should 
be provided to the farmers. Formulation must have adequate shelf life, stability, and 
concentration. Before any formulated product is marketed, it must fi rst be thoroughly 
tested by growers, whose comments, analysis, and suggestions for improvement, must 
consider. In future, the integration of all the three components will be tested  in vitro  and 
 in vivo  conditions and these can serve as natural fungicides.     
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          Introduction 

 Pulses constitute one of the richest sources including valuable but incompletely 
balanced protein, particularly in vegetarian’s diet (Ghadge et al.  2008 ) and are 
consequently known as an important part of the diet in many regions on the earth 
(Arinathan et al.  2003 ,  2009 ). Among the pulses crops, Pigeon pea [ Cajanus cajan , 
(L.) Millspaugh] is a diploid (2n = 22, 44, or 66 chromosomes), most widely 
produced and consumed food legume worldwide. It also known as arhar, congo pea, 
tur dhal, frijol de árbol, gandul, gandure, gungo pea, no eye pea, poiscajan and red 
gram (Long and Lakela  1976 ) and belongs to family  Leguminosae . The fruit of the 
pigeon pea are classifi ed as a pod and each pod have three to fi ve seeds with round 
or lens like shape. 

 Pigeon pea is an important grain legume crop of rain-fed agriculture in the semi- 
arid tropics (Mallikarjuna et al.  2011 ), which have probably originated from India 
but some people believe that it may have come from Africa. It is evident that pigeon 
pea had been originated in India and Asia, and moved to African countries 
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(Onyebuashi  1986 ). India and Africa both have been the centres of diversity for the 
genus  Cajanus  (van der Maesen  1990 ). Nowadays pigeon pea has become 
prominently second most important pulse crop after chickpea in India and fi fth in 
the world. This pulse crop is widely cultivated between 30° N and 30° S in all 
tropical and semi-tropical zone of both the old and the new world including about 
50 countries of Asia, Africa, and the Americas for a variety of uses in addition of 
food and fodder. For instance, green manure, soil conservation, rearing lac insects, 
wind breaks, fuel wood, hedges, roofi ng, and so on (Long and Lakela  1976 ; Sharma 
et al.  2006 ; Mallikarjuna et al.  2011 ; Patel and Patel  2012 ). India is well known as 
the biggest producer and consumer of pigeon pea. India has been leading producer 
of pigeon pea since long decades producing about 265,000°MT followed by 
Myanmar (900,000°MT), Malawi (237,210°MT), United Republic of Tanzania 
(206,057°MT), Kenya (89,390°MT), Uganda (84,200°MT), Dominican Republic 
(27,998°MT) and Nepal (14,082°MT) (FAOSTAT  2012 ). 

 Pigeon pea is used as proteinaceous food crops as well as nutritional alternative 
for human consumption and animal feed along with cereals. It is also grown as 
forage/cover crop which symbiotically fi xes about 90 kg nitrogen per hectare (Adu- 
Gyamfi  et al.  1997 ). It is an economic crop which is considered as major source of 
proteins for poor communities in many tropical and subtropical parts of the world 
viz. India, Myanmar, Malawi, United Republic of Tanzania, Kenya, Uganda, 
Dominican Republic, Nepal etc. (Singh et al.  1984 ; ICRISAT  1986 ; FAOSTAT 
 2012 ). Many developing countries including India have inadequate availability of 
proteinaceous foods. This is a global concern because a large number of populations 
of these developing countries are suffering from protein malnutrition (Arinathan 
et al.  2009 ; Soris and Mohan  2011 ). Only 20–30 % of proteins are estimated to meet 
the demand of world’s population by the total legume production which is similar to 
wheat and over 50 % more than the rice or corn crop (Rockland and Radke  1981 ; 
Gopalan et al.  1985 ). Researchers are searching the available substitute of proteins 
for human nutrition that can impart the nutritional demand of pigeon pea in daily 
diet of human as protein contribute immense health-related benefi ts and also possess 
the best alternative due to their high nutritional value. Pigeon pea contain a high 
level of crude protein ranges from 21 % to 30 % and mostly some important essential 
amino acid like, methionine, lysine and tryptophan with phenyl alanine+tyrosine 
found to be of higher in content (110.4 mg/g of protein) (Udedibie and Igwe  1989 ; 
Amaefule and Onwudike  2000 ). Starch store energy and also known as the major 
constituent of pigeon pea (Ihekoronye and Ngoddy  1985 ). In addition, pigeon pea 
contains considerable amount of vitamin-B complex viz. thiamine, ribofl avin and 
niacin (Bressani and Elias  1974 ; Arora  1977 ). Thus, pigeon pea is a staple crop 
because of its nutritional potential. 

 Pigeon pea suffers by their natural enemies viz. fungi (83), bacteria (4), viruses 
and mycoplasma (19) and nematodes (104) over 210 pathogens, reported in 58 
countries (Nene et al.  1989 ,  1996 ; Reddy et al.  1990 ). Several fungal pathogens are 
involved to infect pigeon pea crop such as  Alternaria  spp.,  Colletotrichum  spp., 
 Cercosporaindica ,  Sclerotium rolfsii ,  Rhizoctonia  spp.,  Fusarium spp,  Phytophthora  
spp.,  Xanthomonas  spp.,  Pseudomonas  spp. etc. A list of fungal, bacterial, viral as 
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well as nematode diseases is summarized. (Table  1 ) (Kannaiyan et al.  1984 ; Hillocks 
et al.  2000 ; Joshi et al.  2001 ; Maisuria et al.  2008 ). The diseases of pigeon pea have 
signifi cant importance including Phytophthora blight ( Phytophthora drechsleri ) 
(Kannaiyan et al.  1984 ), powdery mildew (Reddy et al.  1993a ), sterility mosaic 
(Pigeon pea sterility mosaic virus) and wilt. Among them, FW is considered as most 
destructive disease which is described in detail.

   Table 1    Major diseases of pigeon pea and their pathogenic agents   

 Disease  Pathogenic agent 

 Fungal diseases 
   Alternaria     blight   AIternaria  spp.,  A. alternata  (Fries) Keissler,  A. tenuissima  (Kunze ex 

Persoon) Wiltshire 
 Anthracnose   Colletotrichum cajani  Rangel,  C. truncatum ,  C. graminicola  (Ces.) 

Wilson 
 Botrytis gray mold   Botrytis cinerea  Persoon ex Fries 
 Cercospora leaf spot   Mycovellosiella cajani  ( Cercospora cajani ),  Cercospora indica ,  C. 

instabilis ,  C. thirumalacharii  
 Collar rot   Sclerotium rolfsii  Saccardo,  Athelia rolfsii  [teleomorph] =  Corticium rolfsii  
 Dry root rot   Macrophomina phaseolina  (Tassi), Goidanich  Rhizoctonia bataticola  

(Taub.) Butler 
 Fusarium leaf blight   F. pallidoroseum  ( F. semitectum ) 
 Fusarium wilt   F. udum  Butler,  Gibberella indica  [teleomorph] 
 Phoma stem canker   Phoma cajani  (Rangel) 
 Phyllosticta leaf spot   Phyllosticta cajani Sydow 
 Phytophthora blight   Phytophthora drechsleri  Tucker  f. sp. cajani  
 Powdery mildew   Leveillula taurica  [Teleomorph],  Oidiopsis taurica  [Anamorph], 

 Ovulariopsis ellipsospora  
 Rust   Uredo cajani  Sydow 
 Bacterial diseases 
 Bacterial leaf spot 
and stem canker 

  Xanthomonas campestris  pv.  Cajani  

   Halo blight       Pseudomonas amygdali  pv.  Phaseolicola  
 Viral diseases 
 Phyllody  Mycoplasma-like organism vector: not known 
 Sterility mosaic  Vector: Eriophyid mite  Aceria cajani  Channabasavanna 
 Witches’ broom  Mycoplasma-like organism vector: leaf hopper  Empoasca  spp. 
 Yellow mosaic  Mung bean yellow mosaic virus (MBYMV) 

 Vector: India, Jamaica, Nepal, Puerto Rico, and Sri Lanka 
 Nematode diseases 
 Dirty root (reniform 
nematode) 

  Rotylenchulus reniformis  Linford and Oliveira 

 Pearly root (cyst 
nematode) 

  Heterodera cajani  Koshy 

 Root-knot (root-knot 
nematode) 

  Meloidogyne acronea  Coetzee,  M. arenaria  (Neal) Chitwood,  M. 
incognita  (Kofoid and White) Chitwood,  M. javanica  (Treub) Chitwood 

  Sources: Reddy et al. ( 1993b )  
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       Biological Agents for Plant Health Diagnostic (PHD), Why? 

 Plant health is a big issue throughout the world to fulfi l increasing food demand and 
balanced food supply. Outbrake of plant diseases and upsurge of insect-pests pose a 
serious threat to food security. Both of the agents affect plants health leading to 
signifi cant crop loss and hence productivity worldwide. These agents are needed to 
be controlled and more emphasis should be given to maintain the quality and 
abundance of food to mitigate the food demand of world’s population. Different 
approaches are used in disease diagnosis to maintain the plant health. Among them, 
biological agents have become most promising agents to secure plant health from 
their pathogens. Biological control is free from use of chemicals, so it is eco-friendly 
approach which can be helpful to discard some environmental problems like bio- 
accumulation, bio-magnifi cation and bio-diversity loss. 

 Plant health diagnostic (PHD) through biological agents is propitious contribution 
in crop productivity reported over the few decades. Miller et al. ( 2009 ) reviewed 
“Plant Disease Diagnostic, Capabilities and Networks” and stated that diagnostic of 
plant disease and detection of their pathogen are central to our ability to protect 
crops and natural plant systems, and are the crucial prelude to undertake management 
and prevention measures of PHD. According to Miller et al. ( 2009 ), Plant disease 
diagnostic is the determination of the cause of a disease or syndrome in a plant or 
plant population, whereas detection refers to the identifi cation of microorganisms or 
their products, e.g., toxins, in any number of substrates including plant tissues, soil, 
and water. 

 Recently, biological diagnostic of plant disease (BDPD) have been recognised as 
swift alternative to chemical fungicides (Fig.  1 ) and more focused by researches 
because of the sustainability and eco-friendly. Recently, BDPD has been emerged as 
a useful technique of organic, eco-friendly and sustainable agriculture involving the 
use of antagonistic microorganisms to combat the various diseases in most of the 
crops. BDPD can be proved as best tool to secure pigeon pea from pathogens and 
control the target organism without being harmful to humans or any benefi cial 
organisms in natural eco-systems. Nowadays the use of promising microorganisms 
or their formulations have been attracted attention due to increased incidence of 
disease. These promising microorganisms belong to bacterial as well as fungal 
genera are registered and commercially available (Table  2 ).

         Fusarium  Wilt (FW): Major Disease of Pigeon Pea 

  Fusarium  wilt (FW) caused by soil borne pathogenic fungus  Fusarium udum  
(Butler) is one of the major diseases of pigeon pea severely affecting demand, 
economy, production and seed yield worldwide (Kannaiyan et al.  1984 ; Reddy et al. 
 1990 ; Ajay et al.  2013 ). The loss of crop begins from pre pod stage. Total loss in 

D.K. Verma et al.



95

yield may ranges from 30 % to 100 % in pre-pod stage, about 67 % and 30 % at crop 
maturity and pre-harvest stage, respectively and almost 100 % yield losses in 
susceptible genotypes (Nene  1980 ; Upadhyay and Rai  1992 ; Kannaiyan and Nene 
 1981 ; Sheldrake et al.  1984 ; Reddy et al.  1990 ). The annual loss due to FW disease 
in India and eastern Africa is estimated to be approximately at US $71 and US $5 
million (Reddy et al.  1993a ,  b ; Saxena et al.  2002 ). The scenario of disease incidence 
in India is reported maximum in Maharashtra (22.6 %) and minimum in Rajasthan 
(0.1 %) (Kannaiyan et al.  1984 ; Upadhyay and Rai  1992 ). It is reported that the 
incidence of FW disease have to increased signifi cantly over the time (Gwata et al. 
 2006 ) with an average of 10–15 % incidence and 16–47 % of crop loss (Prasad et al. 
 2003 ). The global crop loss due to FW disease is reported by Kannaiyan et al. 
( 1984 ) and it was found to have 15.9 % (0–90 %), 20.4 % (0–60 %) and 36.6 % 
(0–90 %) in Kenya, Tanzania and Malawi respectively with annual loss estimated at 
5 million US$ in each of the countries with 96 % of disease incidence in Tanzania 
(Mbwaga  1995 ). This disease poses annual loss by 470,000 and 30,000 ton of total 
grain production in India and Africa respectively which affects the economy by 71 
million US$ (Reddy et al.  1993a ; Joshi et al.  2001 ).  

  Fig. 1    Biological 
diagnostic of plant disease 
(BDPD) as swift 
alternative to chemical 
fungicides       

  Table 2    Promising 
microorganisms and their 
formulated products in plant 
disease diagnostics  

 Bacterial genera  Fungal genera 

  Agrobacterium  spp.   Ampelomyces  spp. 
  Bacillus  spp.   Candida  spp. 
  Pseudomonas  spp.   Coniothyrium  spp. 
  Streptomyces  spp.   Gliocladium  spp. 

  Trichoderma  spp. 

  Source: Vinale et al. ( 2008 )  
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     Fusarium udum : The Pathogenic Agent 

  Fusarium udum  Butler. (Perfect stage:  Gibberella udum ) is causal organism of wilt 
disease of pigeon pea. In 1906, Butler fi rstly reported FW disease of pigeon pea in 
India (Butler  1906 ). The pathogenic agent was described as  F. udum  by Butler in 
1990 (Butler  1910 ) and the fungus has subsequent multiple names  F. butleri ,  F. 
lateritium  f. spp.  cajani ,  F. lateritium  var.  uncinatum ,  F. oxysporum  f. spp.  udum ,  F. 
udum  f. spp.  cajani  and  F. uncinatum  (Dhar et al.  2005 ). The name  F. udum  suggests 
the presence of prominent hook shaped macro-conidia (Booth  1971 ).  F. udum  is a 
host specifi c (pigeon pea) pathogen with consistent pathogenic variability and 
morphological differences (Padwick  1940 ; Subramanian  1963 ; Booth  1971 ). 

 The mycelium of this fungus may be parasitic or saprophytic, hyaline, slender 
and branched.  F. udum  produces different type conidia (like macro and micro) and 
chlamydospores (Fig.  2 ). Macroconidia are 1–5 septate (predominantly 3 septate), 
curved to almost hooked and abundant in sporodochia (Fig.  2a–d ) whereas 
microconidia are fusiform to reniform or oval and 0–1 septate (Fig.  2e–i ). 
Chlamydospores are round or oval, thick walled, hyaline, sometimes in short chains, 
5–10 μ in diameter (Fig.  2g–i ). Perfect stage of pathogen ( G. udum ) needs further 
investigations. So far, fi ve variants (strains) of  F. udum  have been identifi ed and 
documented (Reddy et al.  1996 ; Mishra  2004 ).

   In 2013, 14 isolates of  F. udum  from pigeon pea collected by Datta and Lal 
( 2013 ) from major pulse growing parts of India and confi rmed the genetic diversity 
between the races of FW in pigeon pea. A research paper was published in 1983 that 
revealed fi ve category of  F. udum  on the basis of virulence differences (Pawar and 
Mayee  1983 ). Patil ( 1984 ) reported 9.4–12.0 × 3.1–3.3 μm size of conidia, 
19.2 × 3.5–5.0 μm of macro conidia and it was mostly found to be whitish in the 
basal medium. Six isolates of  F. udum  described by Madhukeshwara and Sheshadri 
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  Fig. 2    Type of conidia produces by  F. udum , they are macroconidia ( a – d ) and microconidia ( e – i ) 
(Adapted from Leslie and Summerell ( 2006 ))       
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( 2001 ) with different colony characteristics, pigmentation and sporulation. One 
hundred ninety-fi ve isolates of  F. udum  has been isolated (IIPR 2007–2008) and 
revealed that 135 were highly pathogenic (>50 % wilt), 33 moderately pathogenic 
(30–50 % wilt) and 32 were weak pathogenic (<30 % wilt) agent. 

    Distribution of Pathogen 

 Currently, FW diseases is considered as highly destructive (Nene et al.  1989 ) and 
distributed in form of both, seed borne as well as soil borne in several countries 
namely Bangladesh, Ghana, Grenada, Grenada, India, Indonesia, Kenya, Malawi, 
Mauritius, Myanmar (Burma), Nepal, Nevis, Tanzania, Thailand, Tobago, Trinidad, 
Uganda, Venezuela, Zambia etc. throughout the globe at where the fi eld loss are 
widely prevalent (over 50 %) and more common in India, east Africa and Malawi 
(Kannaiyan and Nene  1981 ; Kannaiyan et al.  1984 ; Kimani  1991 ; Reddy et al. 
 1993a ; Marley and Hillocks  1996 ; Ajay et al.  2013 ).  

    Disease Symptoms 

 The fi rst symptoms of FW disease is usually seen in the fi eld during early develop-
mental stages (Fig.  3 ) when fl owering and podding appears in the crop, sometimes 
may also be seen at seedling stage (Prasad et al.  2003 ) but never visible in later 

  Fig. 3     Fusarium  wilt symptoms in the pigeon pea fi eld appear during fl owering and podding of 
early developmental stages but may be at seedling stage also       
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developmental stages of pigeon pea (Reddy et al.  1990 ; Hillocks et al.  2000 ). The 
pathogen infects the host via vascularisation of injured root tips causing chlorosis of 
leaves and branches, wilting and collapsing of root system (Jain and Reddy  1995 ; 
Butler  1906 ). The pioneer symptom of FW is interveinal clearing and loss of turgid-
ity in leaves with slight chlorosis. Leaves appear bright yellow before wilting 
(Reddy et al.  1990 ). FW infection is caused via tap root system and results into total 
wilt. There are many other factors that lead to partial wilting of plants like termite 
damage, drought and phytophthora blight (Nene  1980 ; Reddy et al.  1993a ,  b ).

   Diagnostic symptoms of FW appear as brown or black streaks on stem surface 
(Fig.  4a ) which turns dark purple extending towards the tip of the main stem (Fig.  4b ). 
The symptoms are more visible in interior section of the main stem or primary branch 
(Fig.  4c ) (Reddy et al.  1990 ,  1993b ). The severity of streaks reduces from base to the 
tip of the stem. Sometimes the streaks are not visible on main stem but lower branches 
start becoming non-viable due to die back symptoms which includes appearance of 
purple bands or streaks extending from upward to downward and blackening of 
xylem vessels (Fig.  4d ) (Reddy et al.  1993b ). It is also observed that young plants 
(1–2 months old) infested with FW may die due to partial wilt without showing char-
acteristic purple bands (Fig.  4b ).

a b c

d

  Fig. 4    ( a ) Prominent internal browning and blackening on 1–2 months old plants die from wilt 
( b ), Development of  dark purple  bands on the stem surface extending upwards from the base, ( c ) 
Visible  black  streaks in xylem strands on the main stem or primary branches when it split open, and 
( d ) Die-back symptoms with a purple band on branches extending from tip of the plant to 
downwards and starts drying (Pictures adapted from Reddy et al. ( 1993b ))       
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        Biological Agents in Diagnostic of  Fusarium  Wilt 

 Biological agents (including bacteria and fungi) have been listed as useful tool for 
disease diagnostic. Biological agents are devoid of chemical substances and can 
control target organism effi ciently (Romero et al.  2007 ; Suarez-Estrella et al.  2007 ; 
Whipps and McQuilken  2009 ). These agents are environmental friendly, can be 
utilized experimentally for the control the enemies of crop plants without causing ill 
affect to human health or any benefi cial organisms (Kaewchai et al.  2009 ). Some 
bacterial genera viz.  Bacillus ,  Pseudomonas  and  Rhizobium  and non-pathogenic, 
non-host  Fusarium  spp. are used as potent biological agent against the pigeon pea 
disease. Both in fi eld and vitro study inferred signifi cant reduction of disease 
incidence (Chérif et al.  2007 ). Biological agent mediated control has been a 
promising and attractive alternative for PHD and soil borne pathogens as it mitigate 
the adverse effects of fungicides and pesticides to the farmland. 

 There are many novel microorganism species viz.  Aspergillus  spp., Bacillus spp., 
 Pantoea  spp.,  Pseudomonas  spp. and  Trichoderma  spp. were evaluated as potential 
alternative to replace the chemical such as thiram, bavistin and benomyl etc. against 
fungal pathogen  F. udum  (Upadhyay and Rai  1981 ; Bhatnagar  1996 ; Somasekhara et al. 
 1996 ,  1998 ; Gundappagal and Bidari  1997 ; Biswas and Das  1999 ; Prasad et al.  2002 ; 
Khan and Khan  2002 ; Anjaiah et al.  2003 ; Sawant et al.  2003 ; Roy and Sitansu  2005 ; 
Dhar et al.  2006 ; Maisuria et al.  2008 ; Ram and Pandey  2011 ). Many profi table rhizo-
bacteria have been reported by many worker as bio-inoculants (Pusey  1989 ; Upadhyay 
and Rai  1992 ; Bapat and Shar  2000 ; Siddiqui et al.  2005 ; Siddiqui  2006 ; Siddiqui and 
Shakeel  2007 ). It has been shown that fungal or bacterial antagonists of pathogen inocu-
lated to soil reduces FW and its pathogenesis (Bapat and Shar  2000 ; Singh et al.  2002 ; 
Anjaiah et al.  2003 ; Mandhare and Suryawanshi  2005 ; Maisuria et al.  2008 ). The mech-
anism for biological diagnostic of pigeon pea disease is shown in Fig.  5 . The mecha-
nisms of biological diagnostic of pigeon pea have different modes of action which are 
not pathogen specifi c and many of these mechanisms may be synergistically active and 
used by the same biological agent (Chérif et al.  2002 ; Mandeel and Baker  1991 ) which 
may not have effi cacy to control the major diseases of pigeon pea.

   Upadhyay and Rai ( 1981 ) reported many species of fungi viz.  A. niger ,  A. fl avus , 
and  A terreus  could be used for suppression of the population of  F. udum . Soil 
antagonistic bacteria are well known to suppress the wilt through inducing resistance 
(Upadhyay and Rai  1981 ,  1992 ). Isolation of indigenous  Bacillus  spp. from the 
disease suppressive soil of the same environment may increase the probability of 
disease suppression (Cook and Baker  1983 ; Weller et al.  1985 ). Harman et al. 
( 1989 ) studied combined effective strains of  T. harzianum  and solid matrix priming 
for biological seed treatment. The production of antibiotics by  P. cepacia  was used 
as biological control agent for soil borne plant pathogens (Homma et al.  1989 ). 
Bhatnagar ( 1996 ) studied the antifungal activity of three  Trichoderma  spp. as 
multiple action bio-inoculants and to control variable pathogenesis against wilt 
pathogen at different pH, temperatures and C/N ratios and found that all of them 
were equally effi cient and showed maximum antagonistic properties at 35 ± 2 °C 
temperature and about of 6.5 pH. 
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 Apparently, Somasekhara et al. ( 1996 ) worked on two delivery systems (seed 
treatment and foliar application) by using six isolates of  Trichoderma  spp. and stud-
ied their effi cacy which was found to be extreme on the 35 days of inoculation. As 
the plant is resistance to dry period, Gundappagal and Bidari ( 1997 ) used  T. viride  
for seed treatment to resistant cultivar that can be effective in integrated disease 
management of pigeon pea under dry land cultivation.  Trichoderma  spp. are well 
known producer of extracellular volatile compound, which was found to be potent 
fungi toxic to wilt pathogen (Pandey and Upadhaya  1997 ). Somasekhara et al. 
( 1998 ) evaluated  Trichoderma  isolates and their antifungal extracts as potential bio-
control agents against pigeon pea wilt pathogen,  F. udum . Butler observed that non-
volatile antibiotics of  T. viride  was highly toxic followed by  T. harzianum , 
 T. harzianum  and  T. koningii . 

 Biswas and Das ( 1999 ) performed in-vitro experiments to reduce pathogenesis 
and tested fi ve  Trichoderma  spp.  T. harzianum  was found to be most effective 
antagonist followed by  T. hamatum ,  T. longiconis  and  T. koningii . They also reported 
that by giving seed treatment of  T. harzianum  to pigeon pea, inoculants spores failed 
to reduce pathogen growth while soil amendment with  T. harzianum  in maize meal: 
sand applied at 40–60 g/kg soil resulted a signifi cant reduction of wilt up to 90 %. 
Under fi eld conditions, Prasad et al. ( 2002 ) studied the effect of soil and seed 
application of  T. harzianum  on pigeon pea wilt caused by  F. udum  and inoculation 
with  T. harzianum  controls the disease by 22–61.5 %. Khan and Khan ( 2002 ) 
confi rmed differential behavior of multiple bio-control agents ( Trichoderma , 
 Bacillus ,  Pseudomonas ) controlling FW and recorded 17–48 % of decrease disease 

  Fig. 5    Biological 
diagnostic mechanism for 
pigeon pea disease. ( 1 ) 
ANB (Antibiosis), ( 2 ) AEP 
(Antifungal enzyme 
production), ( 3 ) CIS 
(Competition for infection 
sites), ( 4 ) D/HP (Direct/
Hyper parasitism), ( 5 ) ISR 
or HER (Induced systemic 
resistance or Enhanced 
host resistance, and ( 6 ) 
SCN (Saprophytic 
competition for nutrients) 
(Concept adapted from 
Chérif and Benhamou 
( 1990 ), Fuchs et al. ( 1997 ), 
and Chérif et al. ( 2002 , 
 2003 ))       
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incidence. Khan and Khan ( 2002 ) also observed that rhizospheric application of  
B. subtilis ,  P. fl uorescens ,  A. awamori ,  A. niger  and  Penicillium digitatum  resulted 
in signifi cant decline of  F. oxysporum . 

 Biological control of FW of pigeon pea had been reported by Vaidya et al. ( 2001 , 
 2003 ) with chitinolytic activity of  Alcaligenes xylosoxydans . Vaidya et al. ( 2003 ) 
conducted a pot experiment and fi eld trials.  A. xylosoxydans  was used to treat pigeon 
pea seeds because it has antifungal activity due to chitinase production. The treated 
seeds were sown in  Fusarium  infested soil. He found that the incidence of wilt was 
reduced by 43.5 % and grain yield was increased by 58 %. Anjaiah et al. ( 2003 ) 
studied bio-control experiment to investigate the effect of genotype and root 
colonization in biological control of FW and reported that disease incidence of wilt 
was drastically reduced after inoculation of  P. aeruginosa  (PNA1) to both chickpea 
and pigeon pea in naturally infested soil. de Boer et al. ( 2003 ) experimented on 
combined  P. putida  strains to control of FW as it has different disease-suppressive 
mechanisms. Siddiqui et al. ( 2008 ) studied biological control of wilt disease of 
pigeon pea by fl uorescent pseudomonads under pot and fi eld conditions. He isolated 
a  Pseudomonas  strain Pa324, known as strong antagonist of  F. udum  and reported 
that this strain had an ability to produce hydrogen cyanide (HCN) and siderophore 
in excessive amount. Sometimes HCN is called as prussic acid (Gail et al.  2005 ). 
These bacterial origin volatile compounds produced by many fl uorescent 
pseudomonads in the exponential growth phase in media containing FeCl 3  or 
inorganic phosphate may also infl uence plant root pathogen (Voisard et al.  1989 ) 
and suppresses the diseases (Glick  1995 ). 

 The effi cacy and comparison of different biological control agents and their 
products studied by Sawant et al. ( 2003 ) against wilt of pigeon pea showed reduced 
wilt incidence by  Trichoderma  spp., and seed treatment with its formulated cell 
mass at 8 g/kg seed recorded the lowest wilt incidence. Many mutational and 
recombinant bio-inoculants have been experimented in this fi eld to reduce the wilt 
incidence and found to be successful. 

 Roy and Sitansu ( 2005 ) published a research paper on biological control potential 
of some mutants of  T. harzianum  against wilt of pigeon pea and reported that 
recombinant  T. harzianum , 50Th3II and 125Th4I reduced the wilt disease in non- 
sterilized soil, while 75Th4IV reduced the wilt disease in sterilized soil with a 
percentage of 36.51 %, 33.86 % and 33.33 % respectively. The application of 
 Trichoderma  spp. for managing FW of pigeon pea has been recommended by 
Mandhare and Suryawanshi ( 2005 ) as a seed treatment and soil application. The 
effi cacy of  Trichoderma  spp. against pigeon pea wilt caused by  F. udum  was studied 
by Jayalakshmi et al. ( 2003 ). The observation of the study suggested that the seed 
of pigeon pea treated with  T. viride  followed by  T. harzianum  was found to be 
effective in reduction of the wilt disease by controlling  F. udum  effectively, when 
compared with individual treatments. In 2006, differential effi cacy of bioagents 
namely  T. viride ,  T. harzianum  and  Gliocladium virens were  combined used by 
Dhar et al. ( 2006 ) against  F. udum  isolates and showed up to 35.5–57.3 % of 
reduction in disease incidence in FW of pigeon pea. 
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  Burkholderia  spp. reported as potential biological control agent (Heydari and 
Misaghi  1998 ; Zaki et al.  1998 ). Pandey and Maheshwari ( 2007 ) studied on biofor-
mulation of  Burkholderia  spp. and reported antifungal properties against 
 F. udum . These properties were due to an antibiotic 2-hydroxymethyl-chroman-
4-one produced by  Burkholderia  spp. 

 Several  Bacillus  spp. have been proved to be used as bio-control agents for 
reduction of pathogen growth and disease incidence across the world (Siddiqui 
 2006 ). Many scientifi c evidences are available in literature, which have been 
reported that  Bacillus  species, most commonly found soil bacteria are excellent 
biocontrol agent (Dal-Soo et al.  1997 ; Bacon et al.  2001 ; Basha and Ulaganathan 
 2002 ; Chaurasia et al.  2005 ). Bapat and Shar ( 2000 ) used  B. brevis  as biological 
control agent of FW of pigeon pea as it produce antibiotic substance, which inhibit 
the growth of  F. oxysporum  and F.  udum  pathogen. Pandey et al. ( 2006 ) isolated 
HCN producing  Bacillus  spp. under in-vitro conditions. This inorganic compound 
reduces the radial growth of  F. udum . Siddiqui and Shakeel ( 2007 ) screened 
 Bacillus  strains (B603, B613, B615) which had biological control potential 
against wilt disease of pigeon pea ( C. cajan ) under greenhouse and small-Scale 
fi eld conditions. He found these agents can be used against  F. udum , in both pot 
and fi eld experiments and reported to be effective in terms of reduction in fungal 
growth and disease incidence. In 2008, Maisuria et al. ( 2008 ) reported  Pantoea 
dispersa  as biological control agent for FW of pigeon pea in fi eld assessment. 

 Integrated management was recommended by Mahesh et al. ( 2010 ) in a com-
bined way such as systemic fungicide, biological control agent and farmyard man-
agement as one of the most effective treatment of  F. udum  to control its infestation 
globally. The study showed considerable effi cacy in controlling wilt incidence and 
increasing yield compared to untreated control with mean wilt incidence of 63.53 % 
and an yield of 362.72 kg/ha. Recent reports (Ram and Pandey  2011 ) suggested the 
combined use of  T. viride  and  P. fl uorescens  for reduction of growth of  F. udum . In 
2011, by Gopalakrishnan et al. ( 2011 ) isolated fi ve strains of  Streptomyces  spp. 
(CAI-24, CAI-121, CAI-127, KAI-32 and KAI-90) from herbal vermicomposting 
and reported that they have potential for biological control of FW.  

    Challenges Raised to Biological Agents in Disease Diagnostics 

     Field Application 

 Antagonistic microorganism and its formulation application infl uences the success of 
fi eld trials, they are; (1) seed inoculation, (2) vegetative part inoculation, and (3) soil 
inoculation Several factors like, organic matter (%), pH, nutrient level, and moisture 
level of the soil infl uences the potential of antagonists from in vitro tests and effi cacy 
of biological control agents and they often fail to work effectively (Lee et al.  1999 ).  
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     Mixtures of Multiple Antagonists and Their Effi cacy 

 Several microorganisms and its association are needed to control most pathogens in 
fi eld. The appropriate combination of the microbial strains and their effi cacy against 
pathogen can be signifi cantly achieved with a higher level of protection (Becker 
et al.  1997 ; Raupach and Kloepper  1998 ; de Boer et al.  2003 ; Davelos et al.  2004 ).  

     Genetic Manipulation 

 The molecular techniques have been employed for strains modifi cation to improve 
their ability against the soil borne pathogens. Advanced technologies in molecular 
genetics and genomics are been introduced to enhance new possibilities for 
improving the characterization, selection and management of biological control. 
The development in functional genomics-proteomics can give us the expression of 
crucial genes of biological control agents during mass production, application and 
mechanism of action. The major challenges in genetic manipulation of biological 
agents for disease diagnostic are the insertion of appropriate genes that express their 
antagonists to achieve the effi cient control over plant pathogen (Baker  1989 ).  

     Whole-Genome Analysis 

 The revolutionary high throughput DNA sequencing of whole genomes have 
resulted tremendous success for understanding the mechanism of action of biological 
agents. The construction of artifi cial chromosome viz. bacterial artifi cial 
chromosome (BAC) and yeast artifi cial chromosome (YAC) libraries gene 
expression study and identifi cation of genes of interest is of great value, especially 
in bacteria whose genome has not been sequenced, but having promising disease 
diagnostic potential (Rondon et al.  1999 ).  

     Formulation and Methods of Application 

 A correct formulation and right method of application of biological agents and its 
formulation are the major challenges. There is a lack of best alternative to come out 
of these challenges because formulations are being carried out without methodology. 
Greater effi cacy, increased safety, lower production costs, ease of handling and 
compatibility with agricultural practices are major advantages of formulation.   
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    Opportunities for Future Research 

 Signifi cant efforts to broaden the genetic base and introduction of various traits for 
desirable biotic and abiotic stress are one of the important aspects of “Biological 
Agents in  Fusarium  Wilt (FW) Diagnostic for Sustainable Pigeon Pea Production, 
Opportunities and Challenges”. Currently, fundamental knowledge in computing, 
molecular biology, biotechnology, statistics and chemistry have led to new research 
aimed at characterizing the functions of biological agents, pathogens, and host plants at 
sub-cellular and ecological levels. Biological agents in disease diagnostic are of 
supreme importance in the present crop production scenario, but its potential is still to 
be utilized and needs attention to produce the commercial formulations. Biological 
agents and their formulations are commercially available in market. But not getting 
adequate attention due to lack of information regarding its importance and use for sus-
tainable production. Many research challenges are raised in this area to explore the 
biological agents for diagnostic of plant disease and have already been discussed above 
in fi ve major points (see sections “ Field Application ”, “ Mixtures of Multiple 
Antagonists and Their Effi cacy ”, “ Genetic Manipulation ”, “ Whole-Genome Analysis ”, 
and “ Formulation and Methods of Application ”). The challenges need to be addressed 
by the scientifi c community to solve the issue of use of multiple biological agents, their 
combined action on diagnostic of plan disease by controlling the plant pathogen.     
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          Introduction 

 Plant diseases caused by  Alternaria  species are very common all over the world. 
They occurred on numerous fi eld crops, vegetables, plantations, forest plants and in 
post harvest storage conditions. The genus  Alternaria  includes about 100 species 
which are reported worldwide over various agroclimtic zones and ecosystems and 
they are among the important phytopathogenic fungi. It is evidence that minimum 
20 % of agricultural produce spoilage is caused by phytopathogenic  Alternaria  spe-
cies. Many  Alternaria  species are known to produce a variety of secondary metabo-
lite in fruits, vegetables and fi eld crops; hence it plays important roles in quality of 
food items. Mycotoxins and secondary metabolites produced by  Alternaria  spp. 
mainly through fruits, vegetables and fi eld crops is also a matter of concern (Andersen 
et al.  2015 ). Most  Alternaria  species are plant pathogenic and some are saprophytes 
has potential to produce a variety of secondary metabolites, which play important 
role in plant quarantine, plant pathology, food quality and safety of agro based prod-
ucts (EFSA  2011 ; Logrieco et al.  2009 ). Isolation, detection, identifi cation and man-
agement of seed borne pathogens through various quality control practices from 
initial seeds harvest, purchase, marketing and applications in the agricultural fi elds 
are important for quality assurance of seeds, disease free material and genetic purity 
of seeds. The detection of these plant pathogens was generally done by conventional 
methods. However, with the advancement of technology, nucleic acid based 
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molecular methods (Chahal and Pannu  1997 ; Lopez et al.  2003 ), which are very 
specifi c, rapid and more reliable than conventional methods, were developed for 
rapid and accurate detection of seed borne plant pathogens. The molecular diagnos-
tics approaches developed rapidly after the development of PCR based techniques in 
1980s. In seed pathology, these diagnostic assays based on the PCR variants have 
been developed for seed borne diseases of wheat and other fi eld food crops. With the 
rapid advancement of genome wide techniques for detection and characterization of 
plant pathogens in recent era had made the techniques more simple and rapid for 
pathogen detection and identifi cation in disease complex. There are various species 
and strains of same genus, so it is important to have highly specifi c, rapid and reliable 
methods of identifying plant pathogens to develop strategies for effective plant dis-
ease management to minimize crop losses in agricultural produce and further preven-
tion of disease spread.  

    Symptomatology 

 Various symptoms of diseases are caused by fungal plant pathogens on infected 
plants. They are localized (restricted to infected plant tissues/organs or/and systemic 
infections (away from court of infection or inside the plant system), which are pro-
duced by pathogenic fungi. Generally, foliar plant parts like leaves, stems and repro-
ductive organs may show localized symptoms. Common symptoms like spots, blights 
in severe infections, shot holes appearance, rusts, and powdery mildews are observed 
mainly on foliar parts. Fruit spots and rots, fruit drops, head rots, grain discoloura-
tions are generally noticed when reproductive structures are infected with pathogens. 
Initially, the infection is restricted to tissues or organs at the point of infection. The 
systemic cause of pathogens infection leads to development of symptoms like damp-
ing off, smuts, downy mildews, root/stem rots and smuts as the pathogen spread from 
point of infection to other organs of host from site of infection. The recognition of 
systemic infection notices after long incubation period which are developed after 
initial stages of infection to the developed visible symptoms. The blights diseases are 
among major concern in crop production which cause heavy yield losses up to 
32–57 %, despite several diseases by  Alternaria  spp. (Conn and Tewari  1990 ). The 
typical symptoms of this disease consist of small, circular to irregular brown to dark 
coloured necrotic spots on leaves, pods, fruits, twigs and tender plant parts with char-
acteristics concentric rings of developed spots (Valkonen and Koponen  1990 ). As the 
disease progress, the spots coalesce to form large chlorotic patches, shot holes 
appearance on leaves in some cases, drying and blightening of leaves. 

 In case of apple infection by  Alternaria mali , the infection caused through the 
lenticels but fruit does not rot in fi eld stage or in storage conditions (Sawamura  1990 ). 
Ganie et al. ( 2013 ) reported that during earlier infection of early blight disease 
( Alternaria solani ) of potato ( Solanum tuberosum  L.) in Kashmir valley, the spots are 
small, circular to irregular, light to dark brown spots appears on lower leaves, measur-
ing up to 0.5 mm in size. As the disease progresses, the typically concentric ring are 
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formed at the end of July as result of growth pattern by the pathogen in the foliar tis-
sues. These lesions give ‘target spot’ like or ‘bulls eye’ appearance with disease devel-
opment. The disease lesion enlarges maximum to 7.4 mm in fi rst fortnight of August. 
Likewise, Kameniecki et al. ( 2013 ) observed small spots and lesions on the margins 
of  Terminalia australis  leaves after 20 days of inoculation of  Alternaria . The diseased 
foliage mostly showed withering and necrosis within 2 weeks. In case of severe infec-
tion, leaves are dropped off from plants. However, it has been reported that symptoms 
do not showed any visible symptoms even for long period of time, mostly in case of 
perennial crops. The early blight symptoms are caused by both  A. solani  and  A. alter-
nata . Several researchers have simultaneously isolated these pathogens from diseased 
plants (Babler et al.  2004 ). Several ecotypes of the  Alternaria  blight pathogens are 
observed worldwide in various agro-ecosystems and forests. The early blight is major 
disease of tomatoes in northern USA which is caused by  Alternaria solani  (El 1. and 
G. Martin) Sor. The symptoms of the disease include dark spots with typical concen-
tric rings, reported fi rst on fi rst matured lower leaves. 

 The host factors like level of resistance/susceptibility of germplasm or cultivars, 
edaphic factors, environmental conditions and degree of virulence of the pathogen 
decides the disease severity and induced symptoms caused by fungal pathogens. 
Various disease measurement scale/charts are available which represents level of dis-
ease severity by foliar fungal pathogens. Recently, the researchers have developed a 
digital image analysis method to measure disease severity for several foliar fungal 
diseases. The fl atbed scanner or digital camera captures the image and the data is 
analyzed by available software package. Especially, scion image method is utilized to 
measure the foliar colour changes or tissues damage by fungal infections or their 
sporulation in diseased plants. Wijekoon et al. ( 2008 ) reported that Digital Image 
analysis using scion image method can be utilized to detect diseases early and rapidly 
it can quantify wide range of foliar fungal diseases.  Alternaria  species are known to 
attack all the aerial parts of its host plant. In succulent leaves like vegetables and orna-
mentals, symptoms of fungi infection initially appears as small, circular and light 
brown to dark spots. As the disease progresses, these spots enlarge in diameter usually 
1 cm or more and turns brown to dark grey in colour. The disease on wheat plants 
appeared when plants are 7–8 weeks old and becomes severe when the crop is mature. 
Symptoms appeared as small spot, oval shape, discoloured irregular lesions and scat-
tered on the leaves. Finally turns dark brown to black in colour, coalesce and cover 
entire leaves. The older leaves are more susceptible than younger leaves. Infection at 
the milking/dough stage of seed, the disease advances to glume, earhead and seed. 
The disease symptoms in carrots known as Alternariose may be develop on visible 
plant parts like leaves, stems, umbels and diseased seeds. Normally,  Alternaria  leaf 
spot symptoms fi rst appear along the margin of the older leaves and later develops into 
irregular shape and turns dark brown to black in colour. However, the spots/lesions 
developed on the petioles and stems are dark brown in colour. As the disease pro-
gresses the whole leaves may wither, turns blighted and drop down. Akhtar et al. 
( 2004 ) observed symptoms fi rst on tomato leaves by tomato blight pathogen  Alternaria 
alternata  in Pakistan, initially started with yellowing and browning of older leaves 
and severity of disease increases with high humidity and congenial weather. The 
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symptoms are often develop at leaf tip and get progressed towards leaf petiole mar-
gins. In case of favourable weather and heavy infection of pathogen, diseased lesions 
enlarge rapidly, coalesce and results in blightening of leaves and shoots. Under high 
humidity, the dark coloured sporulation can be seen from concentric ring layers of 
blighted leaves. In such cases, defoliation of fl owers and shoots is observed with 
heavy yield losses. The environmental conditions plays major role in development of 
pathogens growth and subsequent disease developments. Thus, the growth of patho-
gen or spots appears as typical concentric rings. 

 Leaf spots caused by  Alternaria  species may kill plants also reduce aesthetic value 
of ornamentals and fl oricultural plants. These spots are the diagnostic for  Alternaria  
diseases but there are few other pathogens having similar type of symptoms. In case 
of severe infections, the shot hole symptom develops with blightening of the aerial/
foliar parts. However, in high relative humidity, brown to grey colour mycelia fuzzy 
growth develops on lesion of host. This is due to sporulation of fungus and death of 
host tissues leading to starvation. Many  Alternaria  species are known to produce tox-
ins which degrade the host cells and affects many normal physiological functions of 
host plants. Light to dark brown sunken spots caused by  Alternaria  species can be 
seen on various plant parts like leaves, fruits, stems, roots and rotting under storage 
conditions. Grayish to velvety growth of fungi may results on infected portion in 
humid conditions. Many foliar plant pathogens synthesized the metabolites which has 
role in development of disease symptoms (Strange  2007 ). In some cases, the host-
pathogen interactions resulted in a favorable environment for the production of many 
different chemical compounds which has economical importance in various fi elds. 
Agostini et al. ( 2003 ) reported that presence of mycotoxins in citrus plants for 
 Alternaria  brown spot disease ( Alternaria alternata  pv.  citri ) have been a reason of 
serious concern for citrus growers all over the world. These mycotoxins impart lesions 
on younger and tender leaves, branches and fruits with effects on almost the whole 
citrus plant. On citrus fruits, the spots are minute initially which turns into deep 
depressed lesions (Agostini et al.  2003 ; Akimitsu et al.  2003 ; Peres and Timmer 
 2006 ). In case of severe infections, the infected spots or pustules, the eruptions are 
common which are dislodged/distorted, irregular in shape, reducing fruits quality and 
yields and eventually the market price of fruits (Akimitsu et al.  2003 ).  

    The Pathogen 

 The genus  Alternaria  Nees ex Fr. Classifi ed into sub-division Pezizomycotina 
(Deuteromycotina) class Dothideomycetes (Hyphomycetes), order Pleosporales, fam-
ily Pleosporaceae (Dematiaceae). They are cosmopolitan with several species and sub 
species, survives as necrotropic, saprophytes and in some cases as weak pathogens. 
The genus is well known for the formation of typical type of polymorphic conidio-
phores and conidia, produced either singly or in groups, shorter or in long chains. The 
conidia are multicelled, featured with characteristics longitudinal as well as transverse 
septa and may bear short or long beaks.  Alternaria  conidia have typical and unique 
appearance which makes them easy to recognize their different species under a 
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microscope (Kirk et al.  2008 ). The fungi is having broad host range and spores/conidia 
can survives in the atmosphere, soil, water, plant debris and agricultural fi elds. The 
perfect/sexual stage (telemorph) is in rarely reported few species. Hence, they are 
placed in genus Pleospora class class Loculoascomycetes of sub-division Ascomycotina 
categorizing oval, muriform ascospores in bitunicate asci. The genus  Alternaria  was 
fi rst time reported by Nees in 1817. However, Berkeley ( 1836 ) isolated and identifi ed 
the pathogenic fungi from the plants of Brassicaceae, was named as  Macrosporium 
brassicae  Berk. But, it was then renamed as  Alternaria brassicae  (Berk.) Sacc 
(Saccardo  1886 ). The taxonomic description regarding Alternaria species were studied 
in details by Elliott ( 1917 ). Wiltshire ( 1933 ,  1938 ) did pioneer work in basic studies of 
 Alternaria  under class hyphomycetes. He worked on descriptive and fundamental stud-
ies of several fungi especially  Alternaria ,  Macrosporium  and  Stemphylium . However, 
Neergaard ( 1945 ) studied extensively on the taxonomy, classifi cation, parasitic nature 
and economic importance of the genus  Alternaria . Later, the morphological differen-
tiations of various  Alternaria  species were studied extensively by Joly ( 1959 ) and clas-
sifi ed them into three groups and gave a synoptical key for the identifi cation and 
classifi cation of common species (Joly  1964 ). Then, Ellis classifi ed the several species 
of  Alternaria  on the basis of their characteristics features and grouped them as 
“Dematiaceious Hyphomycetes” (Ellis  1971 ) as well as “More Dematiaceous 
Hyphomycetes” (Ellis  1976 ). The wide host range of phytopathogenic  Alternaria  spe-
cies caused heavy crop losses and post harvest damages to agricultural produce 
(Rimmer and Buchwaldt  1995 ). The transmission or spread of the pathogen spores by 
winds, rain splashes and infected plant parts in agricultural as well as in storage. It was 
reported that a minimum leaf wetness duration of 13 h and temperatures ranging from 
20 to 30 °C, ideal for sporulation and infection on host (Humpherson- Jones and Phelps 
 1989 ; Rotem  1994 ). Wild plants like  A. thaliana ,  C. sativa  and  C. bursa - pastoris  from 
cruciferaceae have ported to be resistance pathogen. But, no reliable source of resis-
tance has been noticed from agronomicaly important Brassica species (Conn et al. 
 1988 ; Westman et al.  1999 ; Sigareva and Earle  1999a ,  b ). The genetic strength of the 
germplasm were reported to have additive as well as dominant gene action (King 
 1994 ). Spores/conidia of Alternaria spp. are dark brown to olive in colour and borne 
singly or in chains. Some common  Alternaria  species are as follows.  

    Biology 

 The conidiogenus mycelia or conidiohores of most of the  Alternaria  species produce 
asexual spores or conidia and measurement ranging between 160 and 200 μm in 
length. In laboratory conditions, the sporulation occurs at 10–24 °C and maturity of 
the conidia develops after 14–24 h. The optimum temperature for sporulation ranged 
between 16 and 24 °C and time up to 12–14 h. The presences of moisture or high 
relative humidity are very important for sporulation and infection of fungal pathogen 
propagules. The minimum period of 9–18 h are crucial for most of the  Alternaria  
species (Humperson-Jones and Phelps  1989 ). High relative humidity (91.5 %) and 
temperature of 20 °C or sometimes in higher range will produce full grown conidia 
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in large quantities in period of 24 h (Humpherson-Jones and Phelps  1989 ). The plant 
pathogenic  Alternaria  spp. survives as spore and/or mycelium in the diseased crop 
debris, left over in fi elds and in infected seeds and/or fruits in storage conditions. The 
etiology of  Alternaria  diseases depends on mode of infection and carrier. In case of 
seed infection, they cause seedling damage, damping off, stem lesions or cankers, 
root or collar rot etc. However, soil moisture and relative humidity plays vital role in 
growth and sporulation of fungi in infected plant residues. Conidia are carried by 
winds, rain splashes, birds, anthropogenic activities onto healthy plant parts. The 
fungus can survives in alternate and/or collateral hosts, weeds or perennials in crop-
ping systems. The free water is essential for germination, sporulation and infection 
of fungi. The active penetration can be occurred on host surface or passively through 
natural openings. The old and weak host tissues are more susceptible to infection 
than healthy and vigorous hosts. The  A. japonica  is carried or transmitted by seeds of 
radish was confi rmed by seed germination tests. The pathogen propagules were 
noticed to present in the seed coat and can be seen in growing seedlings especially in 
cotyledons and epicotyl-hypocotyl. Generally, seed coats of most seeds are adhered 
to hypocotyls axes; hence in some cases the cotyledons may escape infection. The 
surface sterilization removes 90 % of  A. raphani  from the surface of seeds of radish. 
It was also reported that infected seeds by  Alternaria  spp. in  Brassica rapa  subsp. 
 Pekinensis  affected germination and produced symptoms like stripes or sharp-edged 
lesions on hypocotyls of developing seedling and killed them (Valkonen and Koponen 
 1990 ). The reduction in seed germination was up to 7 % where 35 % seeds may carry 
the fungus internally, externally or both (Fig.  1 ).

  Fig. 1    Disease cycle of phytopathogenic  Alternaria  spp       
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       Physiological Disorders in Host Plant 

 The pathogen,  Alternaria  spp. mostly affect the host plant generally at all growth 
stages results in symptoms on all the aerial parts including leaves, petioles, infl ores-
cence, stem, fruits, seeds and in some cases on roots. The pathogen mainly affects the 
foliar parts of plants thereby destructing the chlorophyll pigments, cell damages and 
normal metabolism thus reducing the photosynthetic potential of host plants. The 
symptoms initially appears on lower leaves or weak/older leaves as minute light 
brown to black spots, enlarges rapidly with round to irregular spots with concentric 
rings with variable shape, colour and intensity which are determined and depends on 
 Alternaria  spp., host attracted, genetic build up of host, nutritional level and climatic 
conditions. The rate of transpiration of the diseased plant increases exponentially and 
then declines results in malformation of leaves and infl orescence. With disease pro-
gression and severe infection, the foliar parts gets completely affected and results in 
foliage droppings. In case of infection to fruits, the marketing quality of fruits gets 
affected and cause unfavourable taste by released mycotoxins and metabolites. 
Similarly, in case of seeds, pods and fruits infections, the decaying is oftenly 
observed. Verma and Saharan ( 1994 ) noticed that in case of severe infection on the 
stem and pods of mustard results in premature ripening and seed shedding with 
heavy losses in yields. The diseases caused by various species of  Alternaria  signifi -
cantly affects normal physiology of host plants and damages its cellular organization 
by altering the cell permeability, disturbing the cell organelles and nutrition conduct-
ing cells/tissues. The corky lesions were reported in tangerines and tangoles on sur-
face of citrus fruits in post harvest storage by infections of  Alternaria alternata . It 
may develop into scar or crater like injury and turn into large necrotic patches. 
Occasionally, these spots developed into decayed and rotten portion. 

 Agarwal et al. ( 1997 ) reported the occurrence of degenerated chloroplast or pho-
tosynthetic potential and damaged mitochondria, with less number of cristae in 
mustard leaves when they are severely infected by  A. brassicae . Thus, it has been 
reported that  Alternaria  spp. causes several physiological disorders in plant systems 
infecting leaves, stems, fruits, reproductive organs, inner content of fruits etc. and 
severely affects normal metabolism of plant and physiology of hosts.  

    Epidemiology 

 The principal mode of carryover or transmission of pathogen are through infected 
plant propagating materials or seeds of infested lots where the spores/conidia/
mycelia are present on seed surface or mycelia invaded in seed coat and seed 
surfaces. The dispersal of conidia/spores gets carried by wind, water, rain splashes, 
agronomic tools, farm animals and anthropogenic activities. It has also ben noticed 
that the  Alternaria  spp. can thrive on alternate host, susceptible weeds and/or some 
perennial crops or host (Chupp and Sherf  1960 ; Maude and Humpherson-Jones 
 1980b ). The left over of crop residues after harvest of crops in agricultural fi elds are 
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also act as major source of infection of many  Alternaria  spp. It was noticed that the 
diseased leaves of oil rapeseed and cabbage in storage on soil surface were known 
to produce viable spores till the diseased leaves remained attached to plants. The 
viability of oilseed rapseed remains up to 8 weeks and in case of cabbage up to 
12 weeks after harvesting (Humpherson-Jones  1989 ). It is a well known fact that 
 Alternaria  has no perfect stage. Under unfavourable environmental conditions they 
are known to survive as mycelium/conidiospores or conidia on the left over debris, 
planting material, decaying plant material of previous crop (Humpherson-Jones 
 1989 ). In many cases, they are survived in alternate hosts, weeds or perennial crops 
(Maude and Humpherson-Jones  1980a ,  b ). The fungal pathogen ovewinters in 
diseased plant parts, propagating material, fruits or/seeds of mustard for minimum 
of 1 year at room temperature (Shrestha et al.  2003 ; Ahmad and Sinha  2002 ). The 
 Alternaria  blight is major disease of rapeseed and mustard. Chattopadhyay et al. 
( 2005 ) studied the time of appearance of  A. brassicae  on the host cultivar ( B. juncea  
var. varuna) and the role of environmental factors on disease severity of  Alternaria  
blight disease. They observed highest frequency of pathogen  A. brassicae  occurrence 
on leaves was between 67 and 84 DAS (days after sowing) whereas pods was 
between 67 and 142 DAS (days after sowing) respectively. They also reported that 
temperature ranging maximum from 18 to 27 °C and minimum 8–12 °C with an 
average RH >92 % reported as favour able  for initiation and spread of  Alternaria  
disease on the foliar parts. Likewise, temperature ranging from 20 to 30 °C along 
with an average RH >90 % supported with more than 9 h of sunlight and leaf 
wetness period of 10 h of favours the disease severity on pods. Singh and Verma 
( 2009 ) studied several epidemiological parameters of  Alternaria  blight disease of 
 Adhatoda vasica  caused by fungi  Alternaria alternata . The temperature plays vital 
role in disease development as it was noticed that disease severity was lowest in 
June when temperature exceeded than 34 °C and relative humidity was less than 
44 %. The survival of the pathogen was longer in laboratory conditions nearly 
10 months than in natural conditions (nearly 8 months). The plants were succumbing 
to  Alternaria alternata  infections ranging from 1 to 10 weeks of host age. The 
infection rate signifi cantly increases as host becomes older up to eighth week when 
the disease severity on leaves recorded highest (38.57 %). In laboratory conditions, 
survival or viability of  Alternaria alternata  was studied at different temperatures, 
time periods and relative humidity on conidial/spore germination. Th result revealed 
that, the temperature 25 °C recorded highest germination percentage (92.32 %) and 
minimum of (10.58 %) at 40 °C. The germination of spores was completely inhibited 
at relative humidity less than 40 %. However, it was highest (95.66 %) with relative 
humidity of 100 %. The incremental increase in temperature from 30 to 40 °C with 
30 min interval reduces spore germination. Similarly,  A. japonica  infection 
progresses rapidly in the temperature range of 22–26 °C in agricultural fi eld 
conditions. Th severe disease intensity was recorded in boreal-temperate ecosystems 
where crops are grown on large scale in summer season. Seidle et al. ( 1995 ) reported 
that in Canada disease intensity of oil rapeseed shows variation from year to year 
and depends on weather parameters. The huge losses are noticed during frequent 
rains, greater leaf wetness period/and pod formation stage.  
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    Detection and Diagnosis 

 Diagnosis of diseases caused by fungal pathogens induces certain characteristics 
and typical symptoms. On these basis the causative agents may predicted to some 
extent. However, the morphological characteristics of the fungal pathogens such as 
type, mycelia, shape, size and colour of sexual or asexual spore forms are generally 
used for their taxonomic studies and classifi cation with certain limitations. Thus, 
considerable expertise is required for their identifi cation and classifi cation and to 
establish the phylogenetic relationship among those related fungi. Symptoms 
caused by  Alternaria  spp. are very similar to those caused by many other foliar 
fungal pathogens. Therefore, rapid and accurate identifi cation of the fungal pathogen 
is important for effective disease management. 

    Morphological Characterization 

 Identifi cation of plant pathogens through morphological studies are often more dif-
fi cult, time consuming process and requires experience, extensive knowledge and 
expertise in the fi eld of mycology. Although, it is the integral part of plant pathology 
for identifi cation of fungal plant pathogens. The fungal pathogens, whose perfect 
stage has not been reported, are classifi ed into Deuteromycetes (Fungi imperfecti). 
Most often techniques used is direct agar plating techniques (DAPI). This technique 
isolates the fungal plant pathogens from diseased tissues and/or infected plant 
samples. The agar medium commonly used for this technique is potato dextrose 
agar (PDA) (Lopes and Martins  2008 ). The inoculated petri plates are generally 
incubated at 27 ± 2 °C for 4–7 days. Different species of  Alternaria  grows rapidly 
ranging from 30 to 90 mm in size when incubated at 25 °C up to 7 days on potato 
glucose agar (PGA) media. The colonies reported as fl at, woolly, brownish to 
grayish and sometimes short to aerial in growth. At initial stages the mycelia growth 
is whitish to grey in colour, which in turns becomes dark browns to olive brown in 
colour. When the reverse side of cultured petri plate is observed, it is noticed as 
brown to black due to pigment production(s) (Collier et al.  1998 ). Akhtar et al. 
( 2004 ) and Shakir et al. ( 1997 ) recorded that the fungus  Alternaria alternata  was 
successfully isolated from the diseased plants and identifi ed on the basis of 
morphological parameters. The fungus can grow well on PDA medium and produce 
grayish to dark brown colonies up to 90 mm in diameter when grown up to 7 days 
at incubation of 25 ± 2 °C. The conidia are formed in long chains, obclavate, 
muriform in shape, oftenly short, conical or cylindrical shape beak and generally 
one third lengths of the conidia. They have often three to seven transverse septa and 
more longitudinal or oblique arrangement of septa. Choi et al. ( 2014 ) observed that 
the colonies of fungus on PDA were dark brown and measured up to 47–54 mm in 
diameter with distinct margins and slightly raised mycelia. Whereas, on V8 juice 
agar medium, th colonies were profuse dark brown to black in colour and growth up 
to 52–60 mm in diameter with radial margins and slightly raised mycelia from the 
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medium. It has been reported that the mycelia can grow on PDA as well as V8 juice 
agar medium between 5 and 35 °C with optimum temperature range of 
25–30 °C. Corlett and Corlett ( 1999 ) and Malone and Muskett ( 1997 ) observed that 
the conidiophores of  Alternaria linicola  linseed/fl ax when grown on PDA are 
profuse in growth, occurs singly or in bunch, pale to olive brown in colour, septate 
mycelium and variable length ranging from 5 to 8 μm. On th other hand, conidia 
produce singly, smooth in appearance, olive brown in colour, long, obclavate, 
tapering at one end, short to long beak, muriform beak 4–16 μm, transverse septa, 
one to four longitudinal septa and may slightly constricted at septa. 

 El_Komy et al. ( 2012 ) reported that growth of  Alternaria  on potato dextrose agar 
(PDA) media plates when incubated at 25 °C for period of 7–10 days. When the 
cultures were grown at 25 °C for 6 days on PDA cultured plates near ultra violet 
radiation (UV) of 310–400 nm wavelength for 16 h per day, induces sporulation. 
Similarly, Ganie et al. ( 2013 ) reported that  A. solani  isolates of potato produces 
brown to dark colour mycelia, variable from grey, brown to olive brown in colour 
with tints. The colonies on media are cottony in texture, ranging from grey to brown-
ish black in colour and velvety in appearance. The mycelium on PDA is septate, 
dark brown to black in coloured possessing grey to black tints. The conidiophores 
are septate, simple, short to elongated, erect, pale to olive brown in colour. They 
generally measured from 50 to 90 × 9 μm in size with an average conidiophores size 
of 60 × 7 μm. The conidia are dark coloured as light to dark brown, muriform, gener-
ally 9–11 transverse septa and 2–3 longitudinal septa. The shape of conidia is ellip-
tical to oblong with short to long beak, occasionally as branched. The average size 
measured is 15−19 × 150−300 μm with mean average size of 17 × 163 μm of conidia. 
The beak of conidia is pale in colour and 2.0−5.0 μm wide. It is reported that infec-
tive pathogen fungus  Alternaria brassicola  of cruciferous plants, a semi selective 
medium (CW medium) favours better growth of fungus. It is noticed that the other 
fungal contaminates or saprophytic fungi growth was suppressed by CW medium 
(Wu and Chen  1999 ). Also, Strandberg ( 2002 ) developed a semi selective medium 
containing extracts of carrot leaves, glucose and minerals for the isolation of two 
fungal pathogens,  Alternaria dauci  and  A. radicina  from carrot seeds (Umbelliferae). 
The growth pattern of  A. dauci  conidiophores was reported by Lopes and Martins 
( 2008 ) as single or in small groups. They are short to elongated, straight, three to 
seven longitudinal septa and their sizes ranging from 40 to 94 × 6–9 μm. Conidia 
may be straight or curved, obclavate, elongated beak of conidia, brown to gray in 
colour, maximum length size of 100–350 μm, 16–25 μm thickness at middle, 7–11 
transverse septa, usually 1–4 longitudinal septa, mostly hyaline, occasionally 
branched and tapering at the apex. The growth of mycelium as immersed or semi-
immersed, hyphae is branched, septate and light to brown in colour. The full growths 
of colony (7–8 days) on PDA are olivaceous to browinish in colour and cottony or 
velvety growth. The conidia generally are produced singly as short to moderate in 
length on for 7 days growth on PCA (potato carrot agar). The mycelia growth was 
spare, light brown to gray in the center of petri plates of MA. They observed conidia 
measurement of 12.5–37.5 (24.0 μm) × 7.5–12.5 (10.0 μm), mostly 0–3 longitudinal 
septa and beak length of 0–12.5 (4 μm).  Alternaria tenuissima  isolate had a 
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 sporulation pattern of Group 4, branching chains turns to short bushy groups 
branched spores chains. Conidial measurement was 0–40.0 (25.0 μm) × 5.0–17.0 
(11.0 μm), mostly 0–4 longitudinal septa and a beak measurement of 0–7.5 (2.0 μm). 
These morphological features of conidia and conidiophores morpho-structures 
found silmilr with description of  A. alternata  (Fr.) Keissl. Guo-yin et al. ( 2013 ) 
observed that the fungus formed round grayish and aerial mycelial colonies of 
 Alternaria  and mycelia growth was dark green in colour with a clear zone at the 
backside of cultured plate. However, the colonies on potato carrot agar (PCA) were 
cottony white and dark grayish to olive black in colour. Their conidiophores were 
light brown, one or more septa and occasionally branched. Conidia were produced 
in long chains and occasionally as branched chains of 5–12 spores. These conidia 
were obclavate, dark brown in colour with 3–8 transverse septa and 0–2 longitudi-
nal/oblique septa. The average measurement of conidia were 60.2 (20–98) × 10.4 
(5.8–14.2) μm. Among all media, potato carrot agar (PCA) is best media (Roberts 
 2005 ) for growth and sporulation of plant pathogenic  Alternaraia  spp. under stan-
dard condition of incubation to observe morphological characters by extended keys 
by manual of Simmons ( 2007 ). These strains produced smooth, light brown conidia 
in branched chains, longer in shape, geniculate and conidiogenous conidiophores. 
However, on Dichloran Rose Bengal Yeast Extract Sucrose agar (DRYES; Samson 
et al.  2010 ), colonies were fl at, woolly and pinkish white to greyish white in colour. 
All these strains belonged to A. infectoria sp.-grp from wheat samples. Andersen 
et al. ( 2015 ) studied 87  Alternaria  strains from tomato, wheat, blueberries and wal-
nuts. Out of these four strains belonged to the  A. infectoria  sp.-grp., 6 to the  A. 
arborescens  sp.-grp., 6 noticed similar sporulation pattern of “M” as per Simmons, 
1 to that of  A. vaccinii , and others 70 categorized into a diverse morphological 
groups “G” and “H” of Simmons ( 2007 ). In addition to these, six strains (AP015, 
AP016, AP018, AP022, AP073 and AP075) showed similar sporulation pattern of 
 A. arborescens  sp.-grp.(group “L” in Simmons ( 2007 ). The primary conidiophores 
were long, occasionally sub-terminal branched conidia in chains and secondary 
conidiophores originated from conidial apex. However, colonies growths on DRYES 
were sulcate and light to dark green. These six strains were obtained from tomato 
samples, matched the four strains for the  A. arborescens  sp.-grp. (BA0961, BA1343, 
BA1382 and BA1422) in morphological studies. In addition to these, six other 
strains from tomato (AP004, AP012, AP014, AP021, AP076 and AP095) reported 
a similar sporulation pattern to that of “M” in Simmons ( 2007 ). Their primary 
conidiophores were aerial and cobweb-like, but not Exactly arborescent. Two strains 
(AP004 and AP012) had similar morphological structure to  A. arborescens  sp.-grp. 
whereas other four had dark grey coloured colonies on DRYES. The colonies were 
fl at, hairy texture and different from representative strains. A strain AP023 noticed 
a similar pattern of  A. vaccinii  E.G. Simmons ( 2007 ) with exceptionally long sec-
ondary conidiophores (up to 190 μm) with smooth conidia (16–46 × 10 μm) resem-
bles to morphological group “G” in Simmons ( 2007 ). Colonies growth on DRYES 
were fl at, light green with uneven edges. 

 The all other 70 Argentinean AP strains (Andersen et al.  2015 ) placed in distinct 
diverse group, without any identity representative strains, but these strains belonged 
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to the morphological groups “G” and “H” in Simmons ( 2007 ). The  Alternaria  spp. 
collection was fi rst done on the basis of mycelium morphology of fungal cultures, 
characteristics of the spores/conidia, fruiting bodies and reproductive structures 
(Gargouri-Kammoun et al.  2014 ). The fungus,  A. japonica  can be consistently 
isolated into pure form from the infected or diseased plant parts of raddish. The 
optimum growth of the fungus was 24–28 °C at pH ranging from 7.1 to 8.0 with 
profuse growth on PDA. However, the host decoction agar was reported as best 
medium for both and sporulation of fungus. The sporulation of fungus was highest 
at incubation temperature of 23–25 °C with treatment of 12 h alternating light and 
dark period of UV radiation (Verma and Saharan  1994 ).  

    Biochemical and Metabolic Profi ling 

  Alternaria  species are known to produce many toxins and metabolites like Alternariol 
(AOH), alternariol monomethyl ether (AME), tenuazonic acid (TeA), tentoxin (TEN) 
and altenuene (ALT) etc. These compound cause great risk to human health (EFSA 
 2011 ). The food inhabiting  Alternaria  species has potential to produce many other 
metabolites (Ostry  2008 ). The biochemical and toxicological data are very limited 
and incomplete. The compounds, AOH and AME are mutagenic (Prelle et al.  2013 ) 
and their presences in cereals are responsible high risk of human oesophageal cancer 
as reported in China (Liu et al.  1992 ). The Altertoxins (ALXs) are potent mutagens 
with acute toxicity to mice than AOH and AME (Scott  2004 ). Fleck et al. ( 2012 ) and 
Schwarz et al. ( 2012 ) noticed high genotoxic potency of ALX II in mammalian and 
human tissues. Tsuge et al. ( 2013 ) observed and identifi ed that host selective toxins 
(HSTs) have supernumerary chromosomes which encodes for HST gene clusters in 
pathogenesis of  A. alternata  and discussed their role in evolution of pathotypes or 
strains. From the view plant pathology, many other  Alternaria  metabolites are phy-
totoxics and damage the plant tissues (Montemurro and Visconti  1992 ). But, there 
are many metabolites like infectopyrones, phomapyrones and novae-zelandins whose 
role is still unknown. Many  Alternaria  spp. which produces metabolites are unclear 
about toxicity and their mode of actions. Therefore, for accurate identifi cation of 
phytopathogenic  Alternaria  spp., the biochemical as well as metabolic profi ling is 
very important. Recently, polyphasic approaches along with secondary metabolite 
profi ling, are being successfully used for the identifi cation of plant pathogenic 
 Alternaria  spp. (Andersen et al.  2008 ; Brun et al.  2013 ).  

    Enzyme Analysis and Protein Profi ling 

 The chemotaxonomic approaches have been used by several workers for the 
identifi cation and classifi cation some  Alternaria  species, was based on studies of 
known and unknown secondary metabolites with little success (Anderson et al. 
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 2005 ,  2008 ). The multi locus enzyme analysis is one of the popular methods utilized 
for identifi cation of unknown fungal species. Chowdappa and Lakshmi  2013  had 
identifi ed 13  Alternaria  spp., the studies based on multi-locus enzyme analysis. 
They obtained the zymograms for the 4 enzymes systems as well as for 13 different 
species of  Alternaria . MDH and GDH resulted in seven different types of enzymatic 
phyllogeny. The studies with different enzymes revealed that combined SOD, GDH, 
MDH, GPI data may be utilized for the differentiation and identifi cation of 
 Alternaria  species through combination of isoenzyme pattern studies of aconitase, 
malate dehydrogenase and isocitrate dehydrogenase. Similarly, Petrunak and Christ 
( 1992 ) also reported that isolates of  Alternaria solani and Alternaria alternata  can 
be differentiated on the basis of enzymatic fi ngerprinting pattern. Hwang et al. 
( 1987 ) studied  Alternaria  spp. apple isolates identifi cation on the basis of esterase 
isozymes of  A. mali  within geographic location as more closely related isolates than 
geographically differentiated isolates. The interpretations of proteomic studies and 
isozymes analyses are comparatively easier than expensive molecular techniques 
and protocols. These techniques can be used to differentiate the fungal isolates 
which are morphologically similar in structures (Micales and Bonde  1995 ). In 
addition to this, Oudemans and Coffey ( 1991 ) also reported that isozymatic studies 
may be used as markers in molecular and genetic studies.  

    Immunological Assays and Serological Methods 

 Immunodiagnostics and serological techniques are rapid, sensitive, highly specifi c 
and more accurate than other biological approaches for taxinomic classifi cation of 
fungal plant pathogens. Though several immunodiagnostics assays with their 
polyclonal antibodies (PAbs) are available but highly accurate and precise methods 
are not available with higher sensitivity. Different immunogen standards are made 
with whole fungal cells (Kraft and Boge  1994 ); crude fungal mycelia or  conidia/
spores extracts (Harrison et al.  1990 ); culture fi ltrates of extracellular metabolites 
(Brill et al.  1994 ), mycotoxins (Ward et al.  1990 ), less purifi ed soluble proteins or 
crude proteins (Velichetti et al.  1993 ) and in some cases mycelia cell wall extracts 
have been studied which has varied degree of specifi city and bioassays for detection 
of specifi c group of fungi. It has been reported that presence of high molecular 
weight immunodominant polysaccharides may have adverse effect on specifi city 
functions of PAbs. This problem had tried to solve by some workers by the use of 
certain purifi ed fungal components like ribosomes (Takenaka  1992 ), fungal mycelia 
proteins detected after the process of gel electrophoresis (Lind  1990 ) and in some 
instances, lectins (Kellens and Peumans  1991 ), to minimize these constraints of 
specifi city. For the effective management of plant pathogens, it is an immediate 
need to identify and remove all the primary sources/inoculums of plant pathogens 
from the new introduced area or fi elds by early detection and identifi cation of plant 
pathogens. This is very important to restrict the introduction and further spread of 
plant pathogens. One of the major drawbacks of conventional methods is that they 
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can not differentiate closely related species, biotypes/ecotypes and races of most of 
the species as reliable one. Thus, there is an immediate need to have development of 
rapid and more accurate methods for the identifi cation of plant pathogens. Generally, 
there are two methods are employed for the detection of phytopathogens. The 
specifi c methods for detection of certain species or group of after primary 
diagnostics, indicates the presence of specifi c pathogen. Another method is non 
specifi c which can be useful for the detection of non targeted or unknown 
phytopathogen (s). These techniques are very useful in quarantine and phytosanitory 
certifi cation of consignment at seaport and airports (Chu et al.  1989 ). Among all the 
diagnostics methods, immunodiagnostics assays and nucleic acid based techniques 
are considered as more rapid, specifi c and reliable than other morphological and 
biochemical methods which are non specifi c and less reliability (Narayanasamy 
 2001 ) though they are easy to use. 

 The early diagnostic, detection and precise identifi cation of fungal plant 
pathogens will enable timely and precise applications of fungicides for certain 
groups of plant pathogens or groups of pathogens at appropriate time (Narayanasamy 
 2001 ,  2005 ). The principles of immunological methods, its applications, advantages 
and limitations of several immunoassays for the diagnostics and identifi cation of 
fungal pathogens are discussed further. It is reported that, one among the major 
fungal pathogen,  Alternaria alternata , the melanins pigments obtained as derivative 
from 1, 8-dihydroxy naphthalene (DHN) has an important role in pathogenicity and 
survival in fi elds. It was demonstrated that Phage-displayed antibody (scFv) binds 
specifi c to 1,8 DHN present in the conidial septa and external primary walls of wild 
type of  A. alternata  conidia. Carzaniga et al. ( 2002 ) reported the importance in the 
utilization of M1 antibody to detect melanized fungal pathogens in infected host 
plant tissues has more scope for their detection in near future. It is well known fact 
that introduction of an antigen into a mammalian system results in activation of 
defense response. The lymphoid cells present in the mammalian body has receptors 
to recognize the antigen, results in secretion of antibodies specifi c to antigens known 
as humoral immunity. Similarly, cell mediated immunity involves activation of 
immune lymphocytes with specifi c antigen receptors without any concomitant 
liberation of circulating antibodies (Sissons and Oldstone  1980 ). The epitope may 
be continuous or discontinuous determinant sequence of amino acid residues 
depending on structures of protein (Atassi and Lee  1978 ). Another type is 
cryptotypes which are present in viral capsid proteins and becomes antigenically 
active only after depolymerization or denaturation of the antigen proteins (Jerne 
 1960 ). Polyclonal antisera among the plant pathogens for which polyclonal 
antibodies (PAbs) have been developed, consisting of viruses with simplest structure 
and bacteria, being single-celled with their complex structures. The fungi known to 
produce the various types of spores, fruiting bodies at different stages of their life 
cycle which again makes their antigens more complex in nature. Thus, the production 
of antisera by using the spores or mycelia in early growth stages may or may not be 
useful for detection of fungal pathogens in their early growth stages. Various 
mammals like rabbits, mouse, fowl and horses are being used for the production of 
antisera. However, among all, rabbits are extensively used as test animals for 
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production of antisera against several groups of plant pathogens. There are specifi c 
protocols available for the production of PAbs for various fungal pathogens which 
are considerably different. 

    Monoclonal Antibody 

 Kohler and Milstein ( 1975 ) developed and introduced a hybridoma technology as 
an advanced process to cope with problems associated with production of antibodies 
associated with utilization of PAbs. The major advantage of hybridoma technology 
is the continuous production of monoclonal antibodies (MAbs) released by 
hybridomas which are obtained by fusion of antibody producing ß-lymphocytes 
cells and myeloma cells which have capacity of indefi nite multiplication. They have 
the capacity to produce identical antibodies which are specifi c for each one of 
epitope present in the immunogen. Denis et al. ( 2012 ) worked on characterization 
 Alternaria alternata  which are specifi c monoclonal antibodies (mAbs) from rat. 
These mAbs were three in number and categorized into different isotypes of 
IgM. Among those, E5 types can recognise only the conidia/spores of  Alternaria  
spp., however, they were very close to  Ulocladium botrytis . These studies and types 
of E5 antibodies may be very useful for the immunodiagnostics assay for 
identifi cation of  Alternaria  and  Ulocladium  species.   

    Enzyme-Linked Immunosorbent Assay (ELISA) 

 Apart from the known molecular techniques, the development in enzyme-linked 
immunosorbent assay (ELISA) is considered as one of the important achievement 
among several serological diagnostics methods for diseases caused by several plant 
pathogens and particularly for viral diseases (Clark and Adams  1977 ). Though the 
molecular techniques are more advanced, the ELISA based techniques and their 
variants are being extensively used for the diagnostics, detection, identifi cation, 
classifi cation and quantifi cation of plant pathogens in host plant tissues and other 
residues. The main advantages of this techniques is that they are highly sensitive, 
more precise, availability of economical antiserum, quantifi able data and ease at 
large scale application, they are among the most popular and widely accepted 
technique. There are several variants of ELISA are available as per the need and 
suitability of experiments and researchers. The most common and popular method 
is double antibody sandwich (DAS)-ELSIA. The other widely adapted method is 
direct antigen coating (DAC)-ELISA method, Protein A coating (PAC)-ELISA as 
well as indirect method of ELISA by utilizing pathogen antibody along with labeled 
antiglobulin conjugate. Among all formats, DAS-ELISA is highly strain specifi c 
and having scope to use different antibody conjugate for specifi c strain or species of 
pathogen of interest and detection. Whereas, in PAC-ELISA method, the optimum 
concentration of protein A is very important as the higher concentrations may have 
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non specifi c results and lower concentrations may results negative and false results. 
It is reported that the labeled methods of pathogen detection and identifi cation, 
ELISA format have been used on large scale for the detection of several fungal 
pathogens.  

    Molecular Markers 

 For rapid and effective management of plant diseases, the proper identifi cation of the 
phytopathogens, their variability in the pathogen population at ecological as well as 
genetic level is important. The conventional techniques are labourious, time consum-
ing and mostly with non reproducible results. Thus, to reduce these drawbacks in 
conventional markers, identifi cation of genetic variability in pathogen populations 
through DNA fi ngerprinting technology by the use of molecular markers has been 
developed by geneticians, plant breeders and plant pathologists. The DNA fi nger-
printing techniques do not require any prior knowledge of variable sequences avail-
able in the database, but deals with genome-wide biodiversity. Most commonly used 
molecular markers used for the studies and assessments on variability in fungal 
pathogens includes 18-23S rDNA spacer regions, internal transcribed spacer regions 
(ITS), simple sequence repeats (SSR), sequence characterization spacer regions 
(SCAR), restriction fragment length polymorphism (RFLP), randomly amplifi ed 
polymorphic DNA (RAPD), amplifi ed fragment length polymorphism (AFLP), 
inter-simple sequence repeats (ISSRs), sequence tagged repeats (STR), single nucle-
otide polymorphism (SNPs), Loop mediated isothermal amplifi cation (LAMP) etc. 
The ITS regions are conserved parts in the fungal genome and most extensively used 
as preferred loci for DNA based studies in fungi at genera and species level. ITS 
regions of rDNA of  A. brassicae  and  A. brassicicola  were studied to evaluate the 
phylogenetic relatedness and lineage among the isolates. RAPD’s is popular DNA 
fi ngerprinting techniques, have been effectively employed to analyze the genetic 
variations in several  Alternaria  species (Cooke et al.  1998 ; Gherbawy  2005 ). 
However, it was noticed that, the results obtained by RAPD were not reproducible 
which questions the authenticity of identifi cation. Thus, the genetic variability stud-
ies in  Alternaria  species are being done with more sensitive techniques like AFLP 
(Bock et al.  2002 ) and with microsatellite markers (Avenot et al.  2005 ). Gargouri-
Kammoun et al. ( 2014 ) practiced the use of molecular techniques based on the 
amplifi cation of specifi c ITS1-5.8S-ITS2 region of rDNA and sequencing for several 
 Alternaria  spp. The detailed analysis of these data indicated that six species of 
 Alternaria  i.e.  A. alternata ,  A. tenuissima ,  A. mali ,  A. longipes ,  A. arborescens , and 
 A. brassicae . The dominant species isolated were  A. alternata  (36.1 %) and  A. tenui-
ssima  (30.6 %). Mmbaga et al. ( 2011 ) developed specifi c diagnostics primers for the 
detection of  Alternaria  sp. and  A. alternata  causing blight of lilac leaves, designed 
on the basis of ITS region as well as four different kinds of genes which are involved 
in the pathogenesis of  A. alternata  namely glucanase precursor (mixed-linked), his-
tone, endopolygalacturonase and hsp70. 
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 A novel method, Random Amplifi ed Microsatellites (RAMS) is comparatively 
cheaper, rapid and easier to use. This technique based on the principle of polymerase 
chain reaction (PCR), microsatellite sequences primers along with degenerate 
anchors at the 5′ end. It is more similar with RAPD technique (Random Amplifi ed 
Polymorphic DNA) but uses longer 18 nucletides primers and annealing temperature 
during PCR were not dynamic. It was also observed that genomic regions with 
microsatellites evolve rapidly and with higher mutation than other genomic areas of 
isolate. It occurs due to mispairing of strands during replication and it is depend on 
length of repeat (Burgess et al.  2001 ). Hence, PCR optimization with higher 
annealing temperatures with longer nucleotides primers are more promising in 
RAMS markers techniques than RAPD markers (Roberts et al.  2000 ; Peever et al. 
 2002 ). Thus, it was concluded that the RAMS markers are better and highly specifi c 
than RFLP analysis resulted from amplifi cation of rDNA (Aradhya et al.  2001 ) and 
ITS regions sequence analysis studying genetic variations among closely related 
fungal isolates (Kusaba and Tsuge  1995 ). It can be concluded that RAMS technique 
has advantages from RAPD and microsatellite markers analyses of isolates, for the 
genetic variability studies. Trivedi ( 2010 ), observed that in case of  Alternaria 
radicina  carrot seed application of quantitative PCR techniques were highly 
sensitive and rapid, detected even very low volume of DNA (100 fg) and atleast 10 
conidia in soil for single reaction (60 conidia/g soil). Loop mediated isothermal 
amplifi cation (LAMP) is one of the recent technique was employed by Amir et al. 
( 2014 ) for rapid identifi cation of plant pathogenic  Alternaria alternata  causing 
brown spot disease in citrus trees in Ramsar region of Iran. They utilized the specifi c 
pair of LAMP primers which were designed from ACT toxin gene. Though, the 
highly advanced molecular tools and techniques to study genetic variations among 
 Alternaria  at species, biotype and strains level, many areas are still remains 
unexplored and having great scope with extensive studies in different geographic 
locations and among variable hosts.  

    Nucleic Acid Based Identifi cation 

    Extraction of DNA from Samples 

 Several methods are available for the extraction of DNA from the fungal mycelia as 
well as diseased plant samples. General method consists of DNA to be extracted 
from fungal mycelia by directly scraping the surface of petri plate fungal colonies 
as well as collected by using microcentrifuge fi lters when DNA extracted from seed 
infected samples. Various DNA extraction methods are exist for different group of 
fungi and application of particular method is depends on their accuracy, rapid 
extraction, quality of DNA obtained and environmental condition from which 
sample is obtained for DNA extraction. Klimyuk et al. ( 1993 ) demonstrated a simple 
technique for isolation of DNA directly from fungal colonies extracted when grown 
on media and processed with extraction buffer. Guo et al. ( 2000 ) developed a 
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modifi ed CTAB protocol for extraction of genomic DNA from fungi. This is very 
effective method as it allowed extraction of DNA from large fungal colonies from 
media within a short period of time and their diluted DNA extract is suffi cient for 
PCR protocols. For the community analysis, the high quality of DNA is required 
when it is extracted and processed from environmental samples or requirement of 
large amount of DNA or for long term storage of DNA of fungal isolates. Also, the 
fungal DNA can be extracted from their colonies over media by several physical 
methods including grinding of mycelia in liquid nitrogen, bead beating method, cell 
wall degradation with enzymes and use of sodium dodecyl sulphate (SDS) 
detergents. The purifi cation of DNA is done by phenol and phenol-chloroform 
washing to remove cell contaminants and enzymes degrading nucleic acids. The 
DNA precipitation is done by isopropanol and salts were removed by washing of 
DNA by ethanol and subsequent air drying. Lee and Taylor ( 1990 ) used RNase to 
remove RNA present in sample and minimizes the PCR troubleshooting in reaction. 
Extraction of DNA from diseased seeds involves lysis with a detergent-containing 
buffer at high temperature, extraction by utilizing organic solvents and nucleic acid 
precipitation with alcohol. Goodwin and Lee ( 1993 ) used the microwave miniprep 
procedure for the isolation of nucleic acids for PCR method. Several commercial 
kits are also available in market with their specifi c protocols. The universal primers 
ITS1/ITS2 are used as a positive control for the assessment of the quality of the 
extracted nucleic acids (White et al.  1990 ). 

 Among several molecular methods and tools available for plant pathogen 
detection and diagnostics, the nucleic acid based techniques are widely adapted and 
are very useful, rapid, effi cient and more reliable detection methods. The nucleic 
acid based techniques mainly based on PCR variants are highly sensitive, rapid and 
more specifi c than most other methods of pathogen detection and identifi cation. 
These nucleic acid-based diagnostic methods are widely used for detection, 
identifi cation, quantifi cation of propagules as well as classifi cation of fungal 
pathogens in several crop plants and propagating plant materials. It is a well known 
fact that various species of  Alternaria  are carried by propagating plant materials and 
seeds of different plants. PCR technique is the selective amplifi cation of specifi c 
segment of DNA in controlled condition to detect their specifi c DNA/RNA sequence. 
It consist of two oligonucleotide primers which amplifi es the DNA fragment through 
repeated cycles of denaturation of DNA, primers annealing to complementary DNA 
sequences and primers extension with thermostable DNA polymerse (Mullis  1987 ). 
Hensen and French ( 1993 ) have made several attempt to develop specifi c PCR 
primers for the species specifi c fungal plant pathogens. The most widely used 
molecular markers for fungal evolutionary studies are fungal mitochondrial DNA 
analysis (Brunus et al.  1991 ). For the detection of two major fungal pathogens 
colonizing cereals grains i.e.  Alternaria alternata  and  A. solani , PCR-based method 
was developed. The most commonly used conserved region in fungal DNA for 
amplifi cation of pathogen DNA is ITS region. However, other functional as well as 
housekeeping genes are becoming popular especially β-tubulin gene (Fraaije et al. 
 1999 ; Hirsch et al.  2000 ), and in rare cases, mating type genes (Dyer et al.  2001 ; 
Foster et al.  2002 ). With the development of species specifi c primers, these 
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functional genes are more reliable and very useful for the development of diagnostics 
probes and primers (McCartney et al.  2003 ). The most common primers designed 
and developed are based on the sequences of ITS1 and ITS2 regions of the 5.8S 
rDNA. The extensive studies of housekeeping genes with greater variability are 
being used to develop the diagnostics for fungal pathogens. The nuclear housekeeping 
genes such as β-tubulin are mostly used for detection and identifi cation of fungi 
(Aroca et al.  2008 ; Fraaije et al.  2001 ; Mostert et al.  2006 ). Similarly, translation 
elongation factor 1 alpha or  TEF  1α (Geiser et al.  2004 ; Knutsen et al.  2004 ; 
Kristensen et al.  2005 ) were used by the researchers. In addition to this, calmodulin 
gene (Mule et al.  2004 ), various avirulent genes (Lievens et al.  2009 ) and most 
recently the mitochondrial genes including multicopy  cox  I and  cox  II with their 
intergenic region (Martin and Tooley  2003 ; Seifert et al.  2007 ; Nguyen and Seifert 
 2008 ) are extensively used for better identifi cation of fungal taxon. Peever et al. 
( 2004 ) differentiated  A. limicola  isolates on phylogenetic basis of mitochondrial- 
LSU as well as β-tubulin. Their spores are larger in shape and size than others small 
size spored isolates from citrus which causes leaf spot disease of Mexican lime 
fruits. It was diffi cult to differentiate on the basis of evolutionary relationships than 
other sporulating fungi from citrus and associated hosts. Recently, Dube ( 2014 ) 
concluded that specifi c GAPDH and EF1α gene regions may be used to differentiate 
several isolates of  Alternaria alternata  which causes brown spot disease of potato 
in South Africa and results were found similar according to morphological features. 
The cluster analysis of the RFLP among several isolates of  Alternaria  showed a low 
average genetic difference (0.62). The separate clusters resulted among these 
isolates and grouped them into  A. alternata  and  A. bataticola , despite of their 
geographical origin (Agnes  2009 ). 

 Zghair et al. ( 2014 ) observed that pathogen  A.alternata  can produce mycotoxin 
alternariol (AOH) govern by specifi c gene. The specifi c PKSJ primer was designed 
for target gene and amplifi ed by PCR method for all isolates except for isolates no. 
2 which is unable to produce AOH toxin. Finally, it was concluded that PKSJ primer 
is specifi c for polyketide synthase gene detection in  A. alternata . Though, the results 
were similar, the PCR based diagnostic assay has an advantage over the conventional 
method of identifi cation of pathogen. The results obtained by PCR based assay were 
reliable and rapid, thus are preferred over conventional methods (Konstantinova 
et al.  2002 ). The specifi c primers were designed for PCR by obtaining the sequences 
of ITS regions of rDNA for three fungal phytopathogens i.e.  A. brassicae , 
 A. brassicola  and  A. japonica  causing black spot disease. All these pathogens then 
were detected in the macerated seeds (Lacomi-Vasilescu et al.  2002 ). The further 
study and analysis revealed that two clustered genes were involve in the pathogenicity 
and these genes were used to design two different sets of primers that were studied 
in conventional PCR and real time PCR methods. Recently, Guo-yin et al. ( 2013 ) 
demonstrated that  Alt a1  genes sequences are very useful than ITS sequences of 
rDNA for the identifi cation of  Alternaria  spp. However, previous studies indicated 
that several species of  Alternaria  which were differentiated morphologically were 
signifi cantly distinguished from each other by variation of ITS1 and ITS2 sequences 
(Kusaba and Tsuge  1995 ). Likewise, mostly ITS regions and 5.8S genes were 
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employed to differentiate four different species of  Alternaria  i.e.  A. alternate ,  
A. brassicae ,  A. brassicicola  and  A. raphani  and which were isolated from crucifer-
ous crops (Jasalavich et al.  1995 ). Recently, Sharma et al. ( 2013 ) designed highly 
specifi c primer set for  A. brassicicola  which was designed from the sequences 
obtained from less conserved ITS region (100–110 bp 3′ end position and 520 bp 5′ 
end position), non specifi c to all other virulent and common  Alternaria  spp. Also, 
they were not specifi c to other seed mycofl ora including  Fusarium oxysporum  and 
 Aspergillus niger .  

    Molecular Techniques 

 Molecular method gives faster and more reliable results. The recent techniques and 
advanced molecular tool helped to answer complex questions on host-pathogens 
interaction and their biology. It will help for identifi cation and quantifi cation of 
inoculum sources, population behaviour and the epidemiology of  Alternaria  
diseases. 

 Molecular methods mainly involve the polymerase chain reaction (PCR), which 
are used extensively as tools for the identifi cation of several fungal plant pathogens 
(Fernandez et al.  1998 ; Niessen and Vogel  1998 ). The more common sensitive and 
rapid PCR based assay for the detection of fungal plant pathogens is based on 
amplifi cation of conserved nucleotide sequences of the internal transcribed spacer 
(ITS) regions of rDNA. This method has been used to detect  A. brassicicola  or  
A. japonica  infection in the cruciferous seeds (Lacomi-Vasilescu et al.  2002 ). However, 
the results were not specifi c to  A. brassicicola  and couldn’t differentiate the  A. bras-
sicae  contaminated seeds. The application of molecular techniques facilitates the 
identifi cation of  Alternaria  spp. Comparison of Basic Local Alignment Search Tool 
(BLAST and analysis), it is easy to identify unknown fungus on the basis of DNA 
sequences of various isolates/strain, submitted previously in NCBI Gen-Bank in to 
fi nd regions of similarity among these sequences (Pastor and Guarro  2008 ). 
Amplifi cation of various ITS region specifi c primers, for multiple rRNA’s and their 
sequencing of amplicon is very useful method for identifi cation of  Alternaria  spp. 
(Pastor and Guarro  2008 ). Guillemette et al. ( 2004 ) studied two sets of primers for 
conventional PCR and real-time PCR and  A. brassicae  was detected specifi cally 
using DNA extracted from seed. They also reported the effi cient quantifi cation by 
using real time PCR for seed infection by  A. brassicae . In case of  Alternaria  spp. 
host specifi city typically depend on mycotoxin production. Therefore, for the effi -
cient diagnostics and molecular probes for  Alternaria  spp. and their pathotypes dif-
ferentiation, cloning of genes which are involved in virulence are necessary. The 
several researchers have studied and analysed the sequence data of ITS regions, 
mitochondrial LSU, β-tubulin gene, translation alpha-elongation factor, anonymous 
genomic regions (OPA1 and OPA2, actin, chitin synthase and many housekeeping 
genes (Pryor and Gilbertson  2000 ; Chou and Wu  2002 ; de Hoog and Horre  2002 ; 
Pryor and Bigelow  2003 ; Peever et al.  2004 ) have advanced the taxonomic levels of 
various  Alternaria  species into distinct species-groups and strains.  
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    Real Time PCR 

 The techniques of real time PCR has open the new hope and avenues to detect, 
diagnose and study various plants pathogenic, antagonistic and mycotoxicant fungi. 
This method combines features of conventional PCR techniques by producing a 
specifi c fl uorescent signal generation as real time analysis and reaction kinetics 
providing the quantifi cation of DNA targets. The techniques of real time PCR detect 
the presence or absence of pathogen in plant sample as well as able to quantify the 
amount of DNA present in the sample(s), thus providing the quantitative assessment 
for distinct group of phytoathogens in the infected plant sample. 

 In case of real-time (RT) PCR, the fl uorescent detection system has effectively 
reduced inoculum detection problem and better quantitative assessment and 
diagnostics of PCR amplicon. The variants of specifi c and non specifi c real time 
PCR have been proved to be highly sensitive, specifi c and rapid method as compared 
to conventional PCR techniques. Taylor et al. ( 2001 ) demonstrated that the technique 
of real-time PCR is highly sensitive, rapid and effective for the detection and 
quantifi cation of DNA. Thus, applications of real time PCR would help in accurate 
assessment and quantifi cation of several species of  Alternaria  in diseased sample. 
This method has prove a worth in early detection, quantifi cation and assessment of 
two  Alternaria  species infecting potato leaves in early stages of pathogenesis and 
effective differentiation of two  Alternaria  spp. The application of real time PCR 
will help to know the disease within the host system by  Alternaria  spp. progression 
over the time, which will be help in epidemiology and forecasting of early blight 
disease. Thus, the technique of real time PCR was employed for the effective 
differentiation of  A. solani  and  A. alternata . This advantage of real-time PCR will 
provides sensitive and rapid assessment of several  Alternaria  species infecting 
various fi elds, horticultural and plantation crop along with the etiology of  Alternaria  
diseases and for effective disease management. Leiminger et al. ( 2014 ) stated that 
real time PCR is a very powerful tool for quantitative estimation of pathogen 
propagules during early stages of pathogenesis and further disease development in 
host plant. It was reported that higher amount of  A. alternata  DNA was reported as 
compared to other  Alternaria  spp. thus, indicating the dominant species in diseased 
samples. This technique also provided highly specifi c and sensitive detection of 
 Alternaria  spp. and the differentiation in radish as  A. brassicola  and  A. japonica , 
also in radish and cabbage for phytopathogen  A. alternata .  

    Reverse Transcription (RT)-PCR 

 One of the most important drawbacks in molecular techniques of pathogen detection 
is that they are unable to distinguish the living or dead fungal pathogens or 
propagules. Therefore, these results are to be cross checked for accurate detection 
and identifi cation of fungal plant pathogens by routine pathogenicity tests. Sheridan 
et al. ( 1998 ) noticed that the mRNA of the dead cells of pathogens degrades very 
rapidly and therefore detection of mRNA by RT-PCR method gives better account 
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of the cell viability. Similarly, Yang et al. ( 2010 ) revealed that RT-PCR techniques 
have very important application in the fungal plant pathology for the detection and 
analysis of fungal gene expression during pathogenesis and disease development in 
host plant. It is also very useful for the quantitative estimation of pathogen population 
in the fi elds. Several workers did gene expression studies by RT-PCR during disease 
development. McMaugh and Lyon ( 2003 ) and Schenk et al. ( 2003 ) worked out the 
application of RT-PCR for detection and quantifi cation of expressed fungal pathogen 
genes during disease development expression of host plant genes and activation of 
disease resistance genes.  

    Nested-Polymerase Chain Reaction 

 Nested PCR approach is important when there is need for higher sensitivity and 
specifi city of detection. Porter-Jordan et al. ( 1990 ) stated that nested PCR technique 
consist of two consecutive rounds of amplifi cation where two external primers are 
applied to amplify large amplicon and thereby act as template for second round of 
amplifi cation by applying two internal primers. These two reactions are carried in 
separate PCR tubes. Thus, it is time consuming, skillful work and increases the 
chances of faulty positive results by contamination. However, the method has 
improved over the time by employing relative concentrations of both external and 
internal primers for two reactions in a single closed tube resulting high output. 
Several workers have widely employed this technique for the detection, identifi cation 
and subsequent characterization of many fungi (Aroca and Raposo  2007 ; Hong 
et al.  2010 ; Langrell et al.  2008 ; Meng and Wang  2010 ; Qin et al.  2011 ; Wu et al. 
 2011 ). The sensitivity, accuracy and detection of fungal pant pathogens in host plant 
tissues can be remarkably improved by the application of nested-PCR technique. It 
was reported that the sensitivity of nested PCR was 1,000 time more sensitive than 
conventional PCR techniques. This technique was applied in various samples from 
various fi eld infection sites, crops, water and from different agro cultivation sites for 
analyzing and validation by nested PCR techniques (Grote et al.  2002 ).  

    Multiplex-PCR Assay 

 The multiplex PCR method involves the use of several PCR primers in a single 
reaction targeting highly sensitive detection of different DNA and their simultaneous 
amplifi cation, thus reducing the time and cost than other methods. This method is 
very useful when the plants are infected by more than one pathogen and it is diffi cult 
to identify them by conventional methods. Thus, the specifi c fragment of target 
fungal DNA’s are simultaneously amplifi ed and can be identifi ed on the basis of gel 
electrophoresis and detection on the basis of molecular sizes of amplicon. However, 
the effi ciency of amplifi cation is infl uenced to greater extent by the amplicon size 
(smaller amplicon amplify more than longer ones). Hence, proper designing of 
primers, their sensitivity and accuracy, optimization of PCR protocols are very 
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important to solve these problems to have an enhanced and improved detection of 
fungi of interest. Chen et al. ( 2008 ) used this method has been used for simultaneous 
detection and distinguish two pathogenic fungi, i.e.  Podosphaera xanthii  and 
 Golovinomyces cichoracearum  in sunfl ower. The differentiation of two mating type 
pathogens i.e.  Tapesia yallundae  and  T. acuformis  was performed by Dyer et al. 
( 2001 ). The two pathotypes of  Verticilliun albo - atrum  infecting hop plant was 
differentiated by the use of multiples PCR technique (Radisek et al.  2004 ). Recently, 
eleven taxa of wood decaying fungi infecting hardwood trees were distinguished by 
this technique (Guglielmo et al.  2007 ). This method does not employ the isolation 
of fungal plant pathogen from the diseased host plant tissues. Therefore, this method 
provides an extra advantage for the rapid detection and identifi cation of fungal 
pathogens.  

    Amplifi ed Fragment Length Polymorphism 

 AFLP technique literally is a combination of two molecular techniques i.e. RFLP 
and RAPD. This method consists of assisted specifi c amplifi cation of higher number 
of restricted nucleotide fragment. Generally, 50–100 fragments are amplifi ed and 
detected on gels by poly acrylamide gel electrophoresis. This is highly sensitive 
method to study polymorphism in genome wide studies and hence it is becoming 
very popular technique. This technique provides generation of large number of 
restriction fragment bands and therefore helps in detection of polymorphic bands 
giving better identifi cation of pathogens (Skrede et al.  2012 ; Chen et al.  2012 ). 
Gannibal et al. ( 2007 ) studied the variation for 101 isolates of  A. tenuissima  by 
AFLP analysis of Russian isolates from obtained from wheat kernels and other 
associated hosts. The analysis of AFLP banding pattern obtained from the results 
showed that distinct genetic distance was present among isolates. The results also 
revealed that narrow level of gene fl ow indicating between eastern and two other 
group nearby to European parts of the country. They also indicated that similarity 
was present between North West regions and Caucasus isolates were wider in 
genetic distance. It was also stated that  Alternaria  isolates from wheat and Barley 
were not signifi cantly distinct from each other, analysed on the basis of the Wright’s 
fi xation index. Similarly, Martınez et al. ( 2004 ) noticed the variability among 
 Alternaria solani  isolates from Cuban and other international strains isolated from 
different hosts and locations through AFLP method. The phylogenetic UPGMA 
clustering indicated the difference between  A. solani  isolates and others species. 
However,  A. porri  could be separated from group of  A. solani . The major rapeseed 
pathogen,  Alternaria brassicicola  was analysed by AFLP genetic analysis and 
detected genetic variations among isolates (Bock et al.  2002 ). They analysed 18 
isolates of  A. brassicicola  obtained from different locations noticed low level of 
genetic diversity among  A. brassicicola  populatins including New South Wales 
coast, Australia. Thus, it can be concluded that AFLP tools are very useful and 
reliable tool for the genetic studies and identifi cation of  A. brassicicola  populations. 
Hong et al. ( 2006 ) evaluated genetic similarities among  Alternaria  species by AFLP 
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fi ngerprinting and observed that  A. alternata  and  A. tenuissima  grouped into a single 
lineage. However,  A. arborescens  isolates placed into a distinct lineage. Oviedo 
et al. ( 2013 ) identifi ed the isolates of  Alternaria  by using AFLP genetic markers to 
species level and also analysed the intra as well as inter specifi c level genetic 
variation among  A. alternata  and  A.infectoria  isolates from wheat. The distinct and 
specifi c polymorphic band pattern grouped  A. alternata  and  A. infectoria  species 
despite of primer combinations employed in PCR. Thus, the polymorphic banding 
patterns analysed as intra as well as inter species level of  A. alternata  and  
A. infectoria  by AFLP would be very useful for identifi cation. The intra specifi c 
variation and assessment in  A. alternata  and  A. infectoria  isolates forms a 
homogeneous group with greater similarity among them.  

    Random Amplifi ed Polymorphic DNA (RAPD) Technique 

 This molecular method of genomic fi ngerprinting or marker system was given by 
Welsh and McClelland in  1991 . This method is based on the principles of PCR 
techniques where genomic DNA from the fungal pathogen is used as template 
and short oligonuleotide primer(s) (about 10 mer). In this technique, the amplifi -
cation of DNA is from a conserved region which is fl anked by 10 bp priming site. 
The amplifi cation of DNA for particular region of one individual but may not be 
for other individual thus indicating specifi c DNA polymorphism and can be used 
as genetic marker. The random amplifi ed polymorphic DNA (RAPD) technique 
is based on PCR method employing arbitrary primers and hence it is very useful 
to distinguish species, races, biotype, strains and virulent or non virulent isolates 
of fungi. The lengths of the primers used in RAPD technique are very short in 
length (10 or more length bp) of nucleotides from known source. The PCR prod-
ucts obtained through RAPD technique when analyzed on gel electrophoresis, 
polymorphic bands are formed and some bands pattern may be very specifi c to 
particular group of fungal species, intraspecies, isolates, and/or stains. Thus, the 
particular banding pattern may be very useful for the detection, diagnosis and 
identifi cation of certain plant pathogenic fungi. The highly specifi c bands may be 
cut down from the gel, sequence it and can produce highly specifi c primers for 
precise PCR amplifi cation of individual fungi or in some cases may be useful for 
the development of probes in fungi detection protocols. Several workers have 
demonstrated the usefulness of RAPD analysis for detection, identifi cation, con-
fi rmation and validation of taxonomic classes (Zheng and Ward  1998 ; Roberts 
et al.  2000 ; Pryor and Michailides  2002 ; Gherbawy  2005 ). Morris et al. ( 2000 ) 
used 29 different RAPD primers for the analysis of 69  Alternaria alternata  iso-
lates in California indicated high degree of genetic diversity and identifi ed two 
major phylogenetic groups (Group 1 with 55 isolates and Group 2 with 14). The 
results also revealed that higher degree of variation or clustering among the iso-
lates wasn’t present in all over California. Whereas, Aneja et al. ( 2014 ) evaluated 
the banding pattern of RAPD fi ngerprinting and reported high degree of genetic 
variation among  Alternaria  isolates as  A. brassicae  (57–78 %),  A. brassicicola  
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(78–92 %) and  A. alternata  (89–100 %). Pusz ( 2009 ) used OPA and OPB primers 
for the genetic variation of  A. alternata  by PCR amplifi cation (RAPD-PCR), 
revealed that moderate level of genetic variation was present in  A. alternata  from 
Amaranthus host. Similarly, Kakvan et al. ( 2012 ) analysed the clusters fragments 
of  Alternaria  spp. of Iran obtained from RAPD-PCR of all applied primers and 
placed them into fi ve groups at 85 % similarity. They indicated that genetic diver-
sity of isolates was infl uenced by geographic locations, host plant affected and 
their virulence potential.  

    RFLP 

 Restriction fragment length polymorphism (RFLP) is based on restriction diges-
tion of PCR amplicon or PCR products of amplifi ed DNA by specifi c enzyme and 
thereby separation of these products by gel electrophoresis in agarose or polyac-
rilamide gels to obtain fragments and then analysis of these fragments to study 
differences in the banding pattern separated amplicon. The polymorphic banding 
pattern obtained by restriction digestion of PCR product, the cleavage sites are 
used for the differentiation of various fungi species. Several workers (Thies  2007 ; 
Kim et al.  2010 ; Martínez-García et al.  2011 ) have been used RFLP technique to 
study diversity of mycorrhizal fungi and soils inhabiting fungal populations. 
Likewise, Hyakumachi et al. ( 2005 ) employed this technique for the diversity 
studies and grouping of pathogenic fungi. This technique has been well supported 
by the other fi ngerprinting techniques based on PCR principles. The generation of 
polymorphic band pattern through hybridization indicates the sequence difference 
between the targeted pathogen populations. Abass ( 2013 ) did the characterization 
of  A. alternata  isolates obtained from date palm by analysis of ITS-RFLP. ITS-
PCR amplicons were digested with restriction enzymes ( EcoR I and  Sma I). The 
banding profi le pattern resulted from the restriction digestion of endonucleases, 
grouped into three categories. A type: Based on one undigested fragment, B type: 
Based on two fragments pattern (60–532 bp) and C type: Based on three frag-
ments pattern. B type pattern resulted in ITS-RFLP analysis from  EcoR I digestion 
of  A. alternata ,  A. niger ,  P. expansum  and  P. glabrum . However, in acse of other 
fungal species, no detectable restriction digestion was observed. Similarly, restric-
tion digestions through SmaI of PCR products were similar with previous results. 
The analysis of ITS-RFLP banding pattern indicated that  A. clavatus  fungal spe-
cies were classifi ed into C type. But,  A. alternata  and  A. citri  isolates categorized 
into A type. 

 Aradhya et al. ( 2001 ) evaluated the genetic variations in  Alternaria alternata  
causing late blight in pistachio by RFLP pattern of rDNA through restriction 
digestion via  Eco RI,  Hin dIII, and  Xba I restriction enzymes. Analysis of molecular 
variation revealed a signifi cant amount of genetic diversity within populations 
(85 ± 8 %), with only marginal variation accounting for differentiation among 
populations. In addition to this, RFLP pattern analysis of rDNA did by many 
researchers (Shrama and Tewari  1998 ; Pryor and Michailides  2002 ).  
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    Microsatellites Marker 

 Nowadays, the microsatellites markers are becoming very popular for genome wide 
fi ngerprinting of fungal pathogens, also known as simple sequence repeats (SSRs) or 
short tandem repeats (STRs), generally involves short motif of one to six nucleotides 
repeats in several times (especially in non-coding regions). These nucleotides regions 
may differ in repeat number among their communities and the distribution of these 
repeats is almost random genome wide. The utilization of fl anking primers, variable 
regions PCR amplicon of different length sizes can obtain. Therefore, the microsatel-
lites markers have potential to be use as dynamic genetic markers which are being 
exploited on large scale for DNA fi ngerprinting studies in fungi. One of the major 
benefi t of these SSR or STR or microsatellites markers are that they involves multial-
lelic variation, co- dominance, highly polymorphic and huge amount of potentially 
polymorphic band pattern or markers are available. Similarly, the important advan-
tage of these techniques is the analysis by low amount of DNA or degraded DNA is 
possible with repetitive results. However, there is requirement of large amount of 
microsatellite marker loci for the development of quality construction of phylogeny 
of related populations. But, with the advancement of next-generation sequencing 
technologies as well as multiplexing microsatellites, have reduced these problems. 
Recently, the cost of microsatellites development has reduced by new technique 
known as sequence tagged microsatellites (STMs). Hayden et al. ( 2002 ) reported that 
sequence tagged microsatellites (STMs) is amplifi ed for conserved DNA sequence 
with single specifi c primer, fl anking microsatellite repeat combinely with a universal 
primer attached to 5′-ends of the microsatellites.  

    Gel Electroforetic Profi ling 

 The chemotaxonomic studies supported with molecular techniques for detection and 
identifi cation is also very important in characterization of fungal pathogens. The stem 
canker of tomato is caused by fungus  Alternaria arborescens  (previously known as  
A. alternata  f. sp.  lycopersici ) produces host specifi c AAL toxin which has particular 
role in pathogenesis (Yamagishi et al.  2006 ). The pulsed fi eld gel electrophoresis 
(PFGE) studies and analysis revealed that fungus  A. arborescens  produced one CDC 
of 1.0-Mb (Akamatsu et al.  1999 ; Akamatsu  2004 ). Chowdappa and Lakshmi ( 2013 ) 
identifi ed several species of  Alternaria  by studying and observing total proteins and 
isoenzyme system approaches (superoxide dismutase, malate dehydrogenase, gluta-
mate dehydrogenase and glucose phosphate isomarase). The analysis was done for 
both native and dissociated proteins of  Alternaria  spp. The study revealed that the 
banding patterns for these native as well as dissociated proteins were recorded between 
20 and 205 KDa. The unique protein mass absorption spectroscopy (MAS) was 
obtained for both native proteins. However, SDS-PAGE profi le was noticed from sev-
eral isolates of  Alternaria  species including  A.solani ,  A.porri ,  A.macrospora ,  A.dauci , 
 A.alternata ,  A.brassicae ,  A.brassicicola ,  A.sesami ,  A.helianthi ,  A.ricini ,  A.carthami , 
 A.brunsii , and  A.mali . The phylogenetic analyses which were developed on the basis 
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of native as well as SDS-PAGE protein profi ling patterns indicated that these isolates 
belonging to different groups related to 13 different  Alternaria  spp., thus, it can be 
concluded that these methods are very useful for detection and identifi cation of 
 Alternaria  species on the basis of specifi c protein masses  of Alternaria  spp. In addi-
tion to this, the zygograms developed for the 4 isoenzymes and for 13 different species 
of  Alternaria  GPI resulted into 5 distinct zygograms with 4 zygograms for SOD. These 
zygograms were highly specifi c for their particular species and differentiated for 13 
 Alternaria  species. But, it was also reported that the isozyme patterns of isolates 
within species were identical. Rotem ( 1994 ) reported that four  Alternaria  spp. includ-
ing  A.solani ,  A.porri ,  A.dauci  and  A.macrospora  were grouped into same clade of 
 A.porri  group. Whereas, another  Alternaria  species i.e.  A.longipes ,  A.gaisen ,  A.citri  
and  A.mali  were specifi cally grouped into  A. alternata  group (Anderson et al.  2001 ). 
Several workers have been successfully employed the techniques of electrophoretic 
profi ling for native as well as dissociated proteins in differentiating the species, intra-
species, biotypes of fungal plant pathogens.  

    Fourier Transform Infrared Spectroscopy (FTIR) 

 The presently available methods of detection and identifi cation of fungi such as 
molecular approaches, immunological, serological tests and several variants of PCR 
(polymerase chain reaction) may not be sensitive, rapid and specifi c. In many cases 
they are labourious and time consuming. Recently, Fourier-transform infrared 
(FTIR) attenuated total refl ection (ATR) spectroscopy technique is highly advanced, 
comprehensive and sensitive method for detection of molecular changes even in 
intact cells. FTIR–ATR is highly sensitive, precise and effective method for the 
detection and differentiation of different groups of fungal genera (Naumann et al.  
 1991 ). Gupta et al. ( 2005 ) and Lamprell et al. ( 2006 ) have successfully used FTIR 
spectroscopy methods for detection and identifi cation of several microorganism, 
particularly in food products. However, some studies also revealed that results are 
helpful not only for differentiating fungal genera but also for different species 
(Beattie et al.  1998 ; Lefi er et al.  1997 ) and even at strain levels by Lamprell et al. 
( 2006 ) and Udelhoven et al. ( 2000 ). The infrared spectra results in detail informa-
tion on various cellular biomolecules like proteins, polysaccharides and lipids 
(Helm and Naumann  1995 ). However, these spectra are complex but consist of 
information from all other biomolecules. The technique of FTIR spectroscopy is a 
very important tool and have been successfully used in detection, identifi cation, dif-
ferentiation and the classifi cation of specifi c group of microorganisms (Branan and 
Wells  2007 ; Erukhimovitch et al.  2005 ; Salman et al.  2002 ). It has been successfully 
employed in discrimination of several fungal species (Fischer et al.  2006 ; Naumann 
et al.  2005 ; Santos et al.  2010 ). FTIR technique also very useful for detection of 
changes in cellular components different stress conditions, detection and identifi ca-
tion of fungal species when grown in optimum and/or stress conditions (Kaminskyj 
et al.  2008 ; Szeghalmi et al.  2007 ). Shoaib et al. ( 2013 ) observed the biochemical 
variation in canola plant when it was infected with  A. destruens  fungal blight 
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pathogen by the application of FTIR technique to obtain specifi c pattern of changes 
in host to particular infection. 

 The infrared spectra of biochemical and/or biomolecules generate highly specifi c 
profi le pattern and can act as effi cient “fi nger print”. The large amount of data is 
available about spectral bands produced from FTIR spectroscopy of living cells. 
Thus, FTIR spectroscopy method provided greater scope for detection, identifi cation 
and classifi cation of plant pathogens.  

    DNA Microarray 

 A recent DNA microarray technology is new and highly advanced tool for diagnostics 
of pathogens was developed originally to study gene expression studies through the 
development of single nucleotide polymorphism (SNP) profi les. The DNA microarray 
technology is a powerful tool which provides a strong platform with wide scope and 
multiple potential. This technology was fi rst time introduced by Schena et al. in  1995  
applying in various fi elds of biological sciences. The advancement of oligonucleotide 
microarrays technology, it is possible to customize and identify the presence and quan-
tifi cation of specifi c fungal plant pathogenic species or taxon group by ITS or rRNA 
database available and their functional genes specially virulence and resistance and/or 
tolerance genes. The community analysis of microorganisms from the environmental 
samples is possible by screening several thousands of oligonuleotide probes already 
available with microchip in DNA microarray machine. The DNA obtained from the 
environmental samples is labeled and the resulting profi le patterns are analyzed as com-
pared to database of reference known organisms. Upadhyay et al. ( 2014 ) worked on the 
differential gene expression pattern during pathogenesis (PR) related protein genes in 
tomato by inoculation with virulent fungus,  A. solani . The analysis of the results indi-
cated that 32 genes were classifi ed in this group which showed promising changes in 
resistant and susceptible germplasm (EC-520061 and CO-3). Out of 32 genes, 22 genes 
showed up regulation in resistant germplasm, however non signifi cant up regulation 
reported in fold change (FC) in susceptible germplasm. 

 Hence, the DNA microarray technology is very useful to study all fungal com-
munity in particular environmental for their detection as well as quantifi cation. It is 
estimated that soil consists of over 30 millions different types of genes in 1 g of soil 
as compared to about 30,000 genes in human genome which might increase the 
complexity when we analyze environmental samples, may produce false positive 
results. Therefore, it is very important to specify certain techniques to isolate 
specifi c group of nucleic acids from these samples.  

    Genomics and Proteomics 

 The combination of all available approaches like comparative genomic and pro-
teomics, pathogenesis (PR proteins) induced proteins, resistance/tolerance pro-
teins when combine with other advanced techniques i.e. DNA microarray 
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technology, functional genomics, biochemical and metabolomic profi ling and 
host- pathogen interaction studies, provides better idea on account of protein func-
tion in fungal pathogens. Bouws et al. ( 2008 ) and Kim et al. ( 2008 ) reported that 
comprehensive work has been done on development of catalogue of several fungal 
structures including morphological studies of mycelia, spores/conidia and released 
proteins known as secretome, among all database of different group of fungal spe-
cies. These approaches are well supported by protein identifi cation following 
recent techniques of SDS-PAGE and/or 2D-PAGE separation of different molecu-
lar weight of proteins or proteomics studies by analyzing total digestion of fungal 
proteins through tandem LC-MS techniques and results in development of protein 
database (Carberry et al.  2006 ; Braaksma et al.  2010 ). Recently, Hu et al. ( 2012 ) 
reported that the virulence of one of the major pathogen of tomato i.e.  Alternaria 
arborescens  determined by availability of conditionally dispensable chromosome 
(CDC) consisting of hot specifi c toxin producing genes. In case of plant patho-
genic  Alternaria  species, several species carries conditionally dispensable chro-
mosomes (CDCs) (Johnson et al.  2001 ; Hatta et al.  2002 ). It was reported that 
these chromosomes normally less than 2 MB in size and more frequently may 
horizontally transferred among the sub species or strains of their population and 
may impart new pathogenic potential or features to new recipient strain(s) 
(Salamiah et al.  2001 ; Masunaka et al.  2005 ). The CDCs are known to carry sev-
eral gene clusters coding genes for host specifi c toxins (HSTs). Similarly, 
Nakashima et al. ( 1985 ) reported AK-toxin from the pathotype of Japanese pear 
and tangerine pathotype producing ACT-toxin. Mukherjee et al. ( 2010 ) worked on 
proteomics of  Arabidopsis thaliana , a model test plant when it was infected with 
fungal pathogen,  Alternaria brassicicola . The study revealed that the host patho-
gen interaction of  Arabidopsis – A. brassicicola  can be developed into a model 
genetic system as this is a unique incompatible host plant-fungi interaction. It was 
resulted from the experiment that pathogenesis related protein PR4, glycosyl 
hydrolase and antifungal protein osmotin were highly up regulated. It was also 
reported that two members from Arabidopsis glutathione S-transferase (GST) 
family observed in higher quantity in diseased leaves. Similarly, Kannan et al. 
( 2012 ) analysed the expression of MAP2K9 and MAPK6 during disease develop-
ment when  Arabidopsis thaliana  (ecotype Columbia) infected with  Alternaria . 
They concluded that MAP2K9 and MAPK6 pathway module may play an impor-
tant role during infection of  Alternaria . These genetic expression studies and 
modulation with test plant in Arabidopsis and/or Brassica will be help in develop-
ing suitable genetic modifi cation of host plant to develop defense management 
practices against  Alternaria  blight. 

 Hatta et al. ( 2002 ), it was concluded and gave hypothesis that genomic constitu-
tion of CDCs in  Alternaria  species were transmitted through horizontal gene trans-
fer (HGT) among those populations. Within the advancement of technology of 
whole genome sequencing and de-novo assembly strategies, Hu et al. ( 2012 ) noticed 
CDC sequences in fungal pathogen,  A. arborescens . The comparison of nucleotide 
mapping between CDC and EC contigs, it was found that it is more likely the host 
specifi c toxin genes are transferred through HGT in  A. arborescens .   
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    Management of Diseases 

 A judicious use of various methods is very effective for management of fungal 
diseases. 

    Cultural Practices 

 For the effective management of  Alternaria  blight diseases several cultural practices 
can be adapted in the fi eld as well as in storage condition. Meena et al. ( 2002 ) 
reported that early sowing of clean, certifi ed and well stored seed lot, deep ploughing 
of agricultural fi elds, strategic weeding practices, optimum population of crop 
density in fi eld can effi ciently manage  Alternaria  blight disease. The irrigation 
practices should be avoided during fl owering and pod formation stages for better 
disease control.  

    Source of Planting Material 

 Use of the disease resistant varieties is one of the major tools in integrated disease 
management for effi cient management of  Alternaria  blight as it provides the 
resistance or tolerance to crop plant throughout life cycle of plant. The resistant or 
tolerant varieties released for the cultivation improve the cost benefi t ratio to farm-
ers as they reduce the cost of cultivation on disease and/pest management. 

 Host plant resistance is an integral part of integrated disease management and 
very important in host-pathogen interaction studies for effective diseases 
management. The development and release of resistant varieties with strong genetic 
constitution against pathogens provide economically and ecofriendly options to 
farmers in crop cultivation. Katiyar et al. ( 2001a ,  b ) recorded three varieties of 
bottle gourd i.e. Azad Harit 7002 and 7003 resistant to  A. cucumerina  fungal 
pathogen. Matharu et al. ( 2006 ) reported several resistant germplasm of tomato like 
Arka Saurabh, Arka meghali, IIHR-305, IIHR-308, IIHR-2266, IIHR-2285 and 
IIHR-2288 resistant against  Alternaria  early blight of tomato. Recently, the 
researchers all over the world are developing varieties with expression of various 
genes which encodes proteins and induces the resistance in crops. Ethiopian mustard 
( B. carinata ) observed to high degree of tolerance to  Alternaria  blight (Kolte  1996 ), 
but reported with undesirable agronomic characters and not cultivated on large scale 
in India. The inheritance of resistance in  Alternaria  blight of oilseed brassicas is 
goverened by additive genes; hence there are very limited sources of resistance 
genes (Krishnia et al.  2000 ). Good resistance sources are available in wild and 
related species of Brassicas. Also, it was reported that in case of commercial apple 
varieties, resistance is governed by a single recessive gene (Saito and Takeda  1984 ; 
Shin and Ko  1992 ).  A. mali  is major pathogen among all the apple growing areas 
and hence the development of resistant varieties is among the top priorities for 
Asian breeding programs in  Malus  spp. through conventional breeding programmes 
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with resistant varieties (Saito and Takeda  1984 ). In present era, few  A. mali  resistant 
cultivar have been released in world market from by targeted disease resistant 
breeding programme.  

    Epidemiology and Forecasting Models 

 The epidemiology and forecasting of plant diseases is one of the effective strategies 
of plant diseases management. Most of leaf spot and blight pathogen of Alternaria 
spp. can be transmitted though infected seeds and infected planting materials and 
also survives in plant debris or left over of crop after harvesting. The spread of 
inoculums or propagule of the pathogenic fungus is depends on several parameters 
like primary amount of inoculums present in diseased material, temperature of 
atmosphere, leaf wetness period and susceptibility of hosts. As it is well known fact 
that  Alternaria  spp. are seed borne in nature and reported in most of the areas where 
there is cultivation of carrots. Since, it was reported that cool weather favours by  
A. dauci  for the disease progression and this was evidenced in Portugal that the fungal 
pathogen o the symptoms of the disease observed in late season of September and 
October during harvest time of  D. carota  (Anonymous  2005 ). Filajdic and Sutton 
( 1992 b) developed the disease prediction model in North Carolina for  Alternaria  
leaf blotch disease symptoms. This model was based on the similar pattern with 
earlier reported fungal plant pathogenic prediction models like in case of warning 
systems in Apple scab diseases (Black spot), it also considers the environmental 
conditions or parameters like air temperatures, rainfall, leaf wetness periods and 
level of disease severity in early stages. Madden et al. ( 1978 ) had developed a com-
puterized forecasting system (FAST) for the prediction of  Alternaria solani disease  
severity in tomato crop for the identifi cation of critical periods when environmental 
parameters becomes favourable for the development of early blight of tomato and 
proper scheduling for effi cient applications of fungicides. Generally, the forecasting 
systems is based on two empirical models considering day to day environmental 
conditions i.e. maximum and minimum air temperature, leaf wetness period in 
hours, maximum and minimum leaf wetness period, relative humidity period in 
hours (>90 %) and precipitation over period. The FAST forecasting model sched-
ules resulted in lesser requirement of fungicides applications for the management of 
same level of disease as in regular weekly schedules of disease control. The efforts 
are being made to improve the forecasting models from collection of more data 
from similar type of experiments and etiology of the pathogen considering inocu-
lums, spread of propagules and spore ecology as well as survival for possible dis-
ease spread based on climatic and environmental variables. It is the best strategy to 
employ the area and variety specifi c crop model for forecasting of diseases through 
regression analysis especially at early weeks after sowing, age of crop at which dif-
ferent diseases appears mainly on leaves and pods as well as highest disease severity 
at maturity of crop age. The predictions will help farmers to arrange the strategic 
application of effective fungicides spray schedule. Very few epidemiological data 
sets were reported with reasonable prediction accuracy with an independent datas. 
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Van der Waals et al. ( 2003 ); in South Africa stated that early blight of potato fore-
casting model (PLANT-Plus) predicted timely application of fungicides for effec-
tively management of disease and reduced the spray schedules without affecting the 
yield as compared to traditional methods of fungicides applications.  

    Strategies to Impart Fungal Disease Resistance 

 Conventional as well as molecular approaches are being utilized either singly or in 
combination to insert desirable traits and to improve the genetic constitution into 
new cultivar(s). However, nowadays, many germplasm lines and cultivars are 
available as resistance sources for many diseases. Inter and intraspecifi c hybridization 
methods with tolerance/resistant lines with desirable agronomic characters are used 
to produce disease resistant cultivars.  

    Hot Water Treatment 

 It is also very effective for the management of diseases when the propagative materi-
als are cane sets, tubers, fruits and any vegetative portion. Mohsan et al. ( 2011 ) 
reported that hot water treatments of mango fruits signifi cantly reduced development 
of decay caused by  Alternaria alternaria . These studies revealed that hot water treat-
ment of 55–60 °C proved effective against  Alternaria alternate  black rot of mango 
fruits. Nega et al. ( 2003 ) used the hot water treatment for the management of seed 
borne pathogens of vegetable seeds produced in organic farming and noticed the sig-
nifi cant reduction in seed borne pathogen without much germination losses at hot 
water treatment of 50 °C for 20–30 min and 53 °C for 10–30 min. The recorded hot 
water treatment against several  Alternaria  species ( A. dauci ,  A. radicina ,  A. alternata , 
 A. brassicicola ) was more than 95 %. However, Tohamy et al. ( 2004 ) observed that 
in vitro suspensions of  A. alternata  spore when treated with hot water at 55 °C for 
7 min, could not germinate. Similarly, fungal discs when exposed to hot air of 40 °C 
for 72 h, signifi cantly suppress the growth. It is also reported that dip treatment of 
tomato fruits in hot water at 55 °C for 7 min or with hot air at 38 °C for 72 h reduced 
decay by  Alternaria alternata  for 15 days at 20 °C. In addition to these, Le et al. 
( 2010 ) reported that optimizing the conditions of hot water at 55 °C for 3 min and 
vapour heat treatment at 46.5 °C for 40 min with special treatment of 3 °C at storage 
condition reduce incidence of  A. alternata  in native Taiwan mango fruits (Tuu Shien).  

    Crop Rotation 

 Crop rotation is one of the important strategies in management of plant diseases. 
The successive planting of crops from different family or groups in the same 
agricultural fi eld from one season to another is widely adapted cultural practice in 
crop cultivation. The concept may also include a fallow period or land kept in rested 
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condition without cultivation of land. These practices improves the soil organic 
matter, nutrition, overall soil fertility, moisture content, soil texture, management of 
weeds and disease control. It has been noticed that successful results are observed 
with greater fallow period to the crops than the survival period of pathogens in the 
fi eld conditions. 

 The pulse crops should be followed by cereals in the successive season to avoid 
the carryovers of pathogen inocula from one season to another season. Guillemette 
et al. ( 2004 ) observed that crop rotations with non-cruciferous crops, destruction of 
crop residues and weed management also help to reduce the incidence of  Alternaria 
brassicae  disease in cruciferous seed. The deep ploughing and burying of diseased 
crop plants in soil decomposes the crop residues and lowers  Alternaria  viability and 
infection. Hampton et al. ( 2012 ) observed that  A. radicina  fungal pathogen of carrot 
reduced by 29 % (from 240 CFU/g) in pot culture trial experiment when grown with 
wheat plants for a period of 4.5 months. It was also noticed signifi cant reduction in 
presence of barley and feba bean but not with perennial ryegrass or pea. The 
inhibition of fungal pathogens may results due to root exudates containing antifungal 
compounds.  

    Biological Control 

 In the era of organic farming and eco-friendly disease management, biological 
control is considered as one of the important and promising tool as alternative to 
fungicides where the applications of microorganisms to seeds, planting materials, 
crop plants, fruits and vegetables helps to protect the crops from virulent plant 
pathogens (Janisiewicz and Korsten  2002 ; Spadaro and Gullino  2004 ). There are 
several antagonists bacteria, fungi, actinomycetes are reported which can be used as 
effective bio-control agents (BCA). They are being increasingly popular and are 
nature friendly without any harmful effect on crop plants and human beings. Many 
of them have dual strategies of pathogen control ability and plant growth promoting 
traits. Babu et al. ( 2000 ) observed signifi cant inhibition of fungal mycelia of 
 A. solani  causing blight disease of tomato by bioagents like  Bacillus subtilis  and 
 Trichoderma viridae . Similarly, Zhao et al. ( 2008 ) reported that  Bacillus  and 
 Pantoea  bacteria have strong antifungal property under in vitro and in vivo 
conditions. However,  Curtobacterium  and  Sphingomonas  noticed antifungal prop-
erties only under in vitro against  A. solani  fungal pathogen of tomato. 

 Many commercialized technologies are used like Mycostop (formulation of 
Streptomyces) for seed treatment against  A. brassicicola  (White et al.  1990 ), soil 
isolates of  Trichoderma virdie  (Meena et al.  2004 ) and bulb extracts of  Allium 
sativum  (Meena et al.  2004 ; Patni and Kolte  2006 ) for  B. juncea  in oilseed brassicas. 
Kantwa et al. ( 2014 ) concluded that among botanicals, garlic clove extract had 
strong inhibition potential against growth of mycelium and sporulation of  Alternaria 
alternata  under in vitro. The next effective plant extracts were neem and datura leaf 
extract. Rivillas-Acevedo and Soriano Garcia ( 2007 ) isolated antifungal peptide, 
Ay-AMP from the seeds of  Amaranthus hypochondriacus , found effective for the 
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management of  A. alternata  at least doses. It was reported that Ay-AMP degrades 
chitin layer of fungal pathogen, resistant to proteases and high temperature. Cheng 
et al. ( 2008 ) observed that methanol extracts obtained from leaves and stems of 
 Myoporum bontioides  have antifungal property against  A. alternata  with inhibition 
more than 58 % after 12 h at 10 gL −1 . The analysis revealed that the antifungal 
compounds was (−) epingaione. It was also noticed that ethanol extracts  Glycyrrhiza 
glabra  and metannol extract of  Taverniera cunefolia  have inhibitory effect on  
A. brassicicola  at 0.02 % concentrations (Zore et al.  2004 ). Similarly, Kumar et al. 
( 2004 ) reported comparative effect of four neem based products on  A. brassicae , 
achook and bioneem were effective than furpume and nimbicidine. The extensive 
screening of botanicals (20 plants) against  A. brassicae  was done by Bhardwaj and 
Laura ( 2007 ) and noticed signifi cant antifungal activity by extracts of  Camellia 
sinensis  (leaves). The next superior botanicals against pathogen were  Asparagus 
racemosus ,  Aloe vera ,  Acacia nilotica  and  Anthocephalus cadamba  (all root 
extracts) with moderate effect by  Astercantha longifolia . 

 Trivedi ( 2010 ) reported that two times applications of fungal biocontrol agent 
 Ulocladium oudemansii  with 2 × 1,011 CFUs/ha, signifi cantly reduce  A. radicina  as 
reported in harvested seeds when applied at weekly interval before swathing. The 
early blight of tomato caused by A.  solani , mycelium growth was signifi cantly 
inhibited by  Bacillus subtilis  and  Trichoderma viride  (Babu et al.  2000 ). 

 Panwar et al. ( 2006 ) observed the bacterial strains  Brevibacillus brevis  KH-7 and 
 Bacillus fi rmus  M-10 showed signifi cant inhibition against  A. solani  and resulted in 
improved growth and yield of potato. Recently, Waghe et al. ( 2015 ) recorded 
signifi cant inhibition by botanicals with Neem extract (63.05 % and 68.88 %) 
followed by Karanj extract (56.38 % and 63.60 %) at 10 % and 20 %, respectively. 
Also, Amein et al. ( 2011 ) observed effi cient strain of  P. fl uorescens  L18 and 
 Trichoderma viride  TV6903 which reduced the disease incidence and increased 
healthy cabbage by 20 %. 

 The neem leaf extracts are very effective in inhibiting the mycelia growth of  
A. solani  (43.3 %) at 0.1 % concentration (Sharma et al.  2007 ). Pandey ( 2010 ) used 
the culture plate method to study antagonistic effect of  Trichoderma harzianum  and 
 Trichoderma viride  against  Alternaria alternata  of  Capsicum frutescens  and 
reported reduction in growth of  Alternaria alternata  (67.07 %) by  Trichoderma 
harzianum  and  Trichoderma viridae  by 66.67 % reduction of pathogenic fungi. 
Ramjegathesh et al. ( 2011 ) evaluated bioeffi cacy of plant oils, botanicals extracts 
and microbial bioagents against  Alternaria alternata  causing leaf blight of onion. 
Field study indicated that two sprays of neem oil (3 %), fi rst at disease appearance 
and second after 15 days later signifi cantly reduced the percent disease index 
(22.22 %) of onion blight and enhances the yield. On the other hand, among 
botanicals, rhizome extract (10 %) of  Acorus calamus  was found effective in reduc-
ing disease incidence (34.78 %). Abdalla et al. ( 2014 ) noticed four Bacillus spp. 
(Bacillus B25, B35, B41, B45) as effective bioagents against early blight of tomato 
caused by  Alternaria alternata . Thakur and Harsh ( 2014 ) assessed the effi cacy of 
antagonist fungi against  A. alternata  causing disease of Spilanths oleraces. They 
reported several strains of Trichoderma spp. i.e.  Trichoderma harzianum  ISO-1, 
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 T.harzianum  ISO-2 and  T. piluliferum  with maximum inhibition of  A. alternata  by 
90 %. 

 Siddiqui ( 2007 ) isolated fl uorescent pseudomonads and  Bacillus  spp. were 
isolated from  Alternaria triticina  suppressive soils of wheat fi elds. It was found that 
strain  Pseudomonas  sp. B28 was best in enhancing growth of wheat in presence of 
 A. triticina . Pane and Zaccardelli ( 2015 ) noticed that spore-forming bacteria which 
were isolated from phylloplane of solanaceous crops, were evaluated under in vitro 
condition for antagonistic activity against early blight pathogen of tomato i.e. 
 Alternaria alternata . Out of total bacteria, four strains of  Bacillus  spp. were effec-
tive in reducing disease intensity of  Alternaria . Ganie et al. ( 2013 ) evaluated the 
bioeffi cacy of botanicals and bioagents against  Alternaria solani  and recorded sig-
nifi cant inhibition of  A. solani  mycelia by  T. harzianum  (71.85 %) and among 
botanical extract of  D. stramonium  reported signifi cant inhibition (61.12 %) of  
A. solani  mycelia growth. Hence, it can be concluded that there are several biocin-
trolagents, botanical extracts and essential oils which are reported to have signifi -
cant potential of disease control ability caused by  Alternaria  spp. without any 
harmful effect on human beings and environment.  

    Fungicidal Management of Diseases 

 The applications of fungicides in the management of the diseases caused by 
 Alternaria  spp. are among the effective disease control strategies. 

 Seed/planting material treatment with broad spectrum fungicides, after the hot 
water treatment will reduce inocula associated with the seed/planting material and 
will reduce pre-emergence seedling blight/rots caused by many fungal pathogens. 
Dubey et al. ( 2000 ) worked on the fungicidal management of blight of broad bean 
caused by  Alternaria alternata  under in vitro condition and reported 100 % 
inhibition by contaf fungicide. Ahmad ( 2009 ) evaluated the systemic and non- 
systemic fungicides for the management of  Alternaria mali causing  blotch of apple. 
It was observed that, hexaconazole 5EC (0.05 %) was signifi cant in reduction of 
disease among systemic fungicides (PDI 0.9 %). Whereas, copper oxychloride and 
ziram among non-systemic fungicides both at 0.4 % concentrations were effective 
in reducing disease intensity by (PDI 4.8 %) and PDI 4.6 %), respectively as 
compared to control (PDI 25.6 %). Sharma et al. ( 2013 ) evaluated the effect of 
fungicides for the management of blight of cumin caused by  Alternaria burnsii . 
They recorded that propiconazole have at par results with carbendazim + iprodione 
and chlorothalonil with minimum percent disease index (PDI) as compared to other 
treatments. Arun Kumar et al. ( 2011 ) studied the effect of fungicides in fi eld 
condition against  Alternaria alternata  causing chrysanthemum leaf blight. They 
reported hexaconazole (0.1 %) as most effective fungicide for disease management 
with least PDI (4.49) than Chlorothalonil (0.2 %) and Mancozeb (0.2 %). 
Venkataramanamma et al. ( 2014 ) studied the effi cacy of  Alternaria helianthi  caus-
ing blight of sunfl ower and noticed that seed treatment with SAAF@3 
g/kg+Propiconazole (0.1 %) resulted highest seed yield with lowest PDI. Similar 
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results were obtained when experiment repeated for the 3 years. Recently, 
Ramdaswaghunde et al. ( 2014 ) studied the effect of fungicides under in vitro 
condition and noticed that at 1,000 and 1,500 ppm concentrations, the fungicides 
like hexaconazole, combination of thiophanate methyl and hexaconazole 
(5 %)+captan (70 %) had 100 % inhibition of fungal mycelia and sporulation. 
Whereas, Waghe et al. ( 2015 ) noticed that SAAF at 2,000 ppm (90.36 %) was 
recorded with signifi cant inhibition of fungal growth than with Mancozeb at 
2,500 ppm (88.88 %) under in vitro. The most signifi cant fungicide in controlling 
fungal growth of  A. solani  was mancozeb (0.2 %) as reported by Choulwar et al. 
( 1989 ) and confi rmed by Singh et al. ( 2001 ). Verma and Verma ( 2010 ) reported that 
hexaconazole inhibit cent percent growth of fungal mycelium of  A. alternata  blight 
of tomato. Katiyar et al. ( 2001a ,  b ) reported the best control of bottle gourd leaf spot 
disease caused by  Alternaria  with spray application of Indofi l M-45 (0.2 %). Among 
the newer method of disease management, sulfanilamide derivatives (chitosan) 
noticed most effective against  A. solani  at different concentration ranging from 50 
to 500 μg/ml (Mei et al.  2007 ). In addition to this, potassium bicarbonate, sodium 
bicarbonate and Nerol (essential oil fractions from citrus) had signifi cant inhibition 
against  A. solani  causing early blight disease of potato. Abd-el-Kareem ( 2007 ) 
reported 100 % inhibition of  Alternaria  fungus by potassium or sodium bicarbonate 
(each @2 % and Nerol @0.5 %). 

 Mohsan et al. ( 2011 ) studied the effect of fi ve different fungicides like pro-
chloraz, deconil, carbendazim, TBZ (thiabendazol) and mancozeb through dip 
treatments for the management of black spot decay of mango acused by ( Alternaria 
alternata ) during storage at 20 °C. The fungicides, mancozeb and prochloraz 
were proved as the most effective fungicides with minimum development of 
lesion on mango fruits. Balai and Singh ( 2013 ) noticed that two way management 
of disease by seed treatment as well as fungicidal spray of Mancozeb along with 
biocontrol agent fungi  T. viride  was reported as most effective in reduction of 
disease severity. They reported management of disease (11.37 % and 72.69 %) 
thereby combination of Mancozeb with  T. harzianum  (11.43 % and 72.53 %) and 
Mancozeb (11.49 % and 72.40 %) respectively. Several researchers have reported 
that seed dressing with different types of fungicides are very effective in the man-
agement of many seed borne pathogens. Mondal et al. ( 1989 ) and Verma and 
Saharan ( 1994 ) reported signifi cant control of  A. japonica  by seed dressings with 
different groups of fungicides. 

 The chemical control are effective but they may have residual toxicity problem 
and their indiscriminate use causes many environmental and health problems. 
They also reported to kill many benefi cial micro fl ora and results in development 
of resistance in target pathogen. It has been reported to affect the quality of the 
produce (McCartney et al.  1999 ). Despite of many deleterious effects caused by 
the use of synthetic fungicides, recently the focus is on the development of novel 
biotechnological tools for the development of sustainable disease resistant/toler-
ant cultivars, adaptive in adverse environmental conditions and high degree of 
crop produce.  
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    Biotechnological Approaches 

 Despite of conventional methods of cultivar improvement and pest management, 
nowadays biotechnological techniques like tissue culture and genetic transformation 
based recombinant DNA technologies have revolutionized research on desirable 
agronomic traits and pest resistant genes in germplasm. These tools have provided 
great access to transform traits from distantly related wild races/cultivars for 
development of improved and superior varieties of crops.  

    Tissue Culture Techniques 

 Embryo rescue one of the most successful techniques was employed for the 
production of inter-specifi c and inter-generic hybrids from naturally incompatible 
crosses. This technique has proved a very effective for transfer of  Alternaria  blight 
tolerance in oilseed brassicas (Aneja and Agnihotri  2013 ). The hybrids resulted 
from these crosses are then multiply using somatic embryogenesis techniques. 
Gupta et al. ( 2010 ) used inter-specifi c hybridization method with in vitro ovule 
culture to incorporate high tolerance trait to  Alternaria  blight. Somatic hybridization 
consists of isolation of protoplasts by removal of cell wall which then fused with 
desired germplasm protoplasts to produce hybrids. This technique has been reported 
in  Alternaria  blight resistant trait from  Moricandida arvensis  to  B. oleracea  
(Toriyama et al.  1987 ), and from  Sinapis alba  to  B. napus  (Primard et al.  1988 ). 
Four highly resistant hybrids were developed after repeated back crosses by somatic 
hybrids between  S. alba  x  B. oleracea  by protoplast fusion followed by embryo 
rescue technique (Sigareva and Earle  1999a ,  b ,  c ). Somaclonal variations refer to 
chromosomal rearrangements of species at different ploidy levels in outcrossing, 
inbreeding, vegetatively and seed propagated crops under in-vitro conditions. 
Sharma and Singh ( 1995 ) reported the use of somaclonal variations by incorporating 
disease resistance/tolerance traits against  Alternaria  blight. The chemical 
mutagenesis treatment with ethyl methanesulfonate (EMS) and ethyl nitrosourea 
(ENU) microspores/microspore derived embryos (Agnihotri et al.  2009 ).  

    Transgenic Plants 

 Production of transgenic plants through recombinant DNA technology is another 
biotechnological approach to incorporate disease resistance genes from resistant/
tolerant genotypes to the agronomically and economically important superior 
varieties. Transgenic in  B. juncea  have been developed which imparts delayed 
development of the  Alternaria  blight. Low disease intensity of  Alternaria  blight was 
developed in  B. juncea  cv. RLM-198 by Kanrar et al. ( 2002 ), cDNA sequence 
encoding “hevein-rubber tree lectin” from  Hevea brasiliensis  by genetic 
transformation. Chitinase, which has major role in plant defenses, gene tagged with 
over expressing promoter 35S CaMV transformed in  B. juncea  (cv. RLM198) 
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(Mondal et al.  2003 ). These transformed plants reported to have delayed disease 
progression and 12–56 % approx. reduction in fungal colonization. A transformed 
 B. juncea with  Osmotin protein, which has role in signal transduction, also reported 
tolerance to  A. brassicae  (Taj et al.  2004 ). Likewise, Mondal et al. ( 2007 ) developed 
genetic transformed Indian mustard expressing “class I glucanase” gene under 
CaMV 35S promoter. Recently, Verma et al. ( 2012 ) reported the introgression of 
cysteine rich-antimicrobial peptide, PmAMP1 from  Pinus monticola  into  B. napus , 
imparting enhanced protection against broad spectrum of fungal pathogens like 
 A. brassicae ,  Leptosphaeria maculans  and  Sclerotinia sclerotiorum .  

    Induced Host Resistance 

 The plant disease management through induced systemic resistance by the 
application of biotic and abiotic agents is one of the important strategies under eco- 
friendly disease management. Under abiotic activators of inducing host resistance 
against plant pathogens, application salicylic acid, jasmonic acid and phosphatic 
salts are common. Klessig and Malamy ( 1994 ) reported that chemicals like salicylic 
acid, jasmonic acid, cow urine and microbial bioagents like  Pseudomonas  sp. 
induces systemic host resistance with challenge inoculation of these agents/
compounds in certain quantities. Ratnam et al. ( 2001 ) observed that sunfl ower seeds 
when treated with salicylic acid (5 mM) and bion (5 mM) induces systemic host 
plant resistance as evidenced from higher phenol content in host plant and recoreded 
reduced disease severity. 

 The avirulent strain or weak pathogens are inoculated on plants which acti-
vates the defense related genes in comparatively susceptible plants (Deverall 
 1995 ). The avirulent strain or weak pathogen triggers the cascade of defense 
related genes by bringing the metabolic shift through release of elicitors and 
results in production of PR proteins (pathogenesis related) and/or pathogen 
inhibiting compounds. Similarly, some abiotic agents like phosphate salts also 
activate the defense related pathways in plants. To have the benefi ts of durable 
host plant resistance by challenge inoculations of biotic and abiotic agents, it is 
important to understand the pattern and behavior of pathogens development, 
pathogenesis on various hosts, etiology of diseases in different ecological con-
ditions. Surekha et al. ( 2014 ) noticed that defense related enzymes and phenolic 
content in the host plant ( Vigna mungo ) when challenge inoculated with 
 Trichoderma viride  in presence of phytopathogens,  Fusarium oxysporum  and 
 Alternaria alternata . The defense related enzymes induced by  T. viride  in the 
host were peroxidase, polyphenol oxidase and phenyl alanine ammonia lyase 
and the phenolic contents. Hence, it was then concluded that induced plant 
defense enzymes play major role in reducing biotic stress in black gram by  T. 
viride  as biocontrol agent. Recently, Song et al. ( 2011 ) concluded that applica-
tion of abscisic acid improves the host resistance against seedlings of  Alternaria 
solani . There was rapid up-regulation of defense related genes i.e. PR1, b-1, 
3-glucanase, PPO, POD, and superoxide dismutase by external application of 
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ABA. They suggested that application of ABA may impart resistance to  A. 
solani  infection in tomato by defense genes activation and mediate the produc-
tion of defense related enzymes. 

 Induced host resistance was reported in susceptible  B. juncea  cv. PR-15 against 
highly virulent isolate  A. brassicae  A (AbA) and considerably virulent isolate C 
(AbC) from  B. carinata  cv. PPCS-1 by challenge inoculation with avirulent isolate 
D (AbD) which was isolated from same cultivar (Vishwanath et al.  1999 ). There 
was up to 60 % reduction in disease intensity against both AbA and AbC pathogenic 
isolates by induction of defense response. But, the mechanism of defense activation 
in otherwise susceptible host is still unclear with limited studies in molecular 
characterization and host pathogen interactions. The taxonomic position and 
etiological studies of pathogen causing diseases will help to plan the induction of 
stable resistance against pathogenic  Alternaria  spp. in diverse agro ecological zones 
and cropping systems. This will provide a path towards ecofriendly management of 
diseases, reduction of harmful chemical fungicides for sustainable crop production.    

    Conclusions 

 From the various experiments and studies, it can be concluded that diseases caused by 
 Alternaria  spp. are very devastating and widespread on several economically impor-
tant fi eld crops, vegetables, forests, horticultural, ornamentals and plantation crops. 

 However, with the advancement of molecular and technological developments, it 
has been signifi cantly improved the accurate detection, characterization and identi-
fi cation of various  Alternaria  spp. and related strains and biotypes. Recently, sig-
nifi cant progress has been made on host-pathogen interaction, biosynthesis of 
biochemical/toxins pathways, role in disease development and molecular basis of 
pathogenesis. The utilization of several variants of PCR, development of molecular 
and protein/enzymes markers, genetic studies, pathogenesis cascade will help to 
understand the multiple role of virulence factors in disease development and impact 
on normal physiology of host plants. The high end techniques like FTIR, DNA 
microarray, proteomics and genomics studies of host-pathogen interaction will pro-
vide new insight into disease development and to work out possible measurement of 
disease management. The most common method in the management of  Alternaria  
diseases is through application of fungicides. However, due to indiscriminate use of 
chemicals for the disease management, they have caused serious health hazards and 
environmental problems. By considering these problems, efforts are being made to 
employ disease resistant/tolerant varieties, use of botanical extracts and oils, plant 
defense activators, biocontrol agents and improved cultural/agronomic practices 
etc. Also, these are important part of integrated disease management (IDM), organic 
farming and sustainable agriculture. They are safe, cost effective and eco-friendly. 
Due to continuous and higher dose of fungicides for disease control, resistant popu-
lations in  Alternaria  spp. have been reported rapidly in cultivated plants. Therefore, 
it is an immediate need to adapt anti resistant strategies for the disease management. 
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Resistance was noticed in  pistachio orchards by  Alternaria  to azoxystrobin and to 
strobilurins by  Alternaria  causing late blight. The oilseed brassicas, saafl ower and 
sunfl ower are heavily damaged by severe infection of  Alternaria  spp. therefore, 
immediate efforts to be made for effective management of  Alternaria  diseases, 
reduce losses, high yields and disease free production and development of improved 
cultivars in crops. With development in biotechnological fi eld, the conventional 
plant breeding process gets highly benefi ted and enabled to incorporate and com-
bine superior agronomic, disease and pest resistant and quality traits. Though, lots 
of studies and efforts have been made on incorporation of disease resistant/tolerant 
characters, gene pyramiding especially against blight in oilseed brassicas cause by 
 Alternaria  spp., needs some improved target specifi c and thorough research. The 
pathogen,  Alternaria  spp. is cosmopolitan and attacks to crop wide host range dis-
tributed over different geographic and agro-climatic zones with greater variability 
in inter and intra species of  Alternaria . It has been noticed that the most of the 
 Alternaria  spp. have been common lineage of  A. alternata ,  A. brassicae  and  A. 
brassicicola  and their subspecies also grouped into these categories. Therefore, it is 
very important to correlate the  Alternaria  spp. on the basis of morphological, physi-
ological, biochemical, aggressiveness and virulence factors with molecular diver-
sity and lineage of the pathogen. The recent approaches is the extensive studies on 
pathogen associated molecular pattern (PAMPs) and the signal transduction path-
ways and mechanism of  Alternaria  spp. for better understanding of host-pathogen 
interaction and activation of defense related genes during pathogenesis. The detec-
tion and accurate identifi cation of pathogenesis related proteins (PR-proteins) and 
defense related proteins/enzymes generated during infection of  Alternaria  diseases 
will help botanist, geneticist, molecular biologist and plant pathologist to develop 
 Alternaria  resistant/tolerant crops/varieties and/or plausible genetic modifi cations. 
This will eliminate environmental hazards by reducing application of toxic fungi-
cides. It can be summarized that we have to combine both the traditional, biotech-
nological as well as advanced techniques to develop strategies for integrated disease 
management (IDM) including durable germplasm, disease resistant/tolerant variet-
ies of crops/plants along with superior agronomic characters.     
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          Introduction 

 Agriculture is one of the most dependable and widely used resources to satisfy the 
food need of the living world, including human being. This tends us to pay prime 
attention to grow healthy plants and protect them from phytopathogens to achieve 
more quantity of good quality food. In the history of mankind, agriculture is one of 
the oldest trading sector and play major role in the world economy. The scope of 
agriculture is not limited to food production only, while it is contributing to fulfi lling 
other needs such as fi ber production, feed for animal farming, moreover attempts 
were also made for fuel production. In growing years, commercialization of food 
products through globalization as well as alarming population growth lead 
agricultural practices more evolved aiming more production with available 
resources. In one report by Tom ( 2009 ), the world population will jump from seven 
billion to nine billion by 2050, and food production will be required to be doubled 
by then to keep proper pace. The agriculture business is on the third revolution 
stage, also known as “Green Revolution”, which corresponds to twentieth century 
and involves biotechnology, genetic engineering, chemical fertilizers, and many 
more to achieve mass agricultural production (web link as on June 30th, 2015: 
Growing a Nation). According to Lori ( 2013 ), it was analyzed that farmers are 
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producing 262 % more food at this stage with 2 % fewer inputs such as seeds, labor, 
fertilizers, etc., than they did in 1950s, which indicates evolving agricultural prac-
tices in view of sustainable agriculture. 

 Phytopathogens or plant pathogens are known as the organisms parasitic on plant 
host and causes disease in plants, which results in unusual plant growth and reduced 
production capacity compared to non-diseased plant, i.e. absence of typical 
phytopathogen. In modern agriculture, to overcome these harmful organisms, 
intensive use of fertilizers and pesticides is being practiced irrelevant to the crop 
type, land quality and more importantly the phytopathogen (Higa and Parr  1994 ). 
This ultimately results reduced land fertility, environmental degradation through 
saturation and resistance in phytopathogens for these chemical compounds and or 
pesticides (Tilman et al.  2002 ). In case of cotton, the world agricultural land use is 
around 2.4 %, while it accounts for 24 % and 11 % of global sale of insecticide and 
pesticide, respectively (Web link: Farming pollution). Based on crop and their 
diverse growth conditions, various organisms has pathogenic attributes such as 
fungi, bacteria, viruses, nematodes, oomycetes, phytoplasmas, viroids, virus like 
organisms, protozoa and algae with wide host range to cause infection and express 
disease symptoms (Lopez and Castano  2012 ). Among phytopathogens,  Rhizoctonia  
holds attention being important phytopathogens, as it has a remarkable history 
almost as long as the history of plant pathology (Ogoshi  1996 ).  R. solani  is an 
ecologically diverse and globally occurred common soilborne pathogen with wide 
host range including soybean ( Glycine max  L.), cotton ( Gossypium hirsutum  L.), 
canola ( Brassica campestris  L.), wheat ( Triticum aestivum  L.), beet ( Beta vulgaris  
L.), potato ( Solanum tuberosum  L. subsp., tuberosum), and rosemary ( Rosemarinus 
offi cinalis  L.), turfgrass, tobacco and many more (Baker  1970 ; Anderson  1982 ; 
Blazier and Conway  2004 ). It has the ability to cause various infections such as 
damping off, root rot, collar rot, stem canker, crown rot, bud and fruit rots and 
foliage blight on range of susceptible hosts (Baker  1970 ; Anderson  1982 ). The 
ability of infecting various plant parts including below ground level, such as the 
seeds, hypocotyls, and roots as well as above ground level, such as pods, fruits, 
leaves and stems, enable  R. solani  a potent and eye catching phytopathogen 
(Parmeter  1970 ). It has distinctive ability to cause infection at various stages of its 
life cycle such as mycelium, sclerotia as well as basidiospore, where later one can 
serve as a source for rapid and long distance dispersal of this pathogenic fungus 
(Parmeter  1970 ). The control of such widespread phytopathogen from being 
disseminating and spread of infection will certainly serve for the betterment of 
economy and ecology. 

 Plant pathology is usually defi ned as a scientifi c study of plant diseases caused 
due to phytopathogens. It has been well elaborated by Singh ( 2008 ) as a study deals 
with the cause, etiology, resulting losses and control or management of the plant 
diseases. Also the objectives were designated for plant pathology as study of living 
as well as non-living entities involved in plant disease or disorder, mechanism 
involved in plant disease, the host-pathogen interactions and the methods involved 
in plant disease management aiming to reduce losses (Singh  2008 ). Traditionally, 
plant pathology involves taxonomical tools for identifi cation of pathogens from 
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infected plant parts, which takes hours, that too results less specifi c diagnosis 
(Khiyami et al.  2014 ). It also involves recognizing disease symptoms, isolation of 
pathogens, followed by their preliminary identifi cation based on biochemical and 
physiological methods such as microscopy, immunological techniques, etc., (Fox 
 1993 ). However, advancement in rapid and highly sensitive in-situ diagnosis of 
phytopathogens for immediate action towards restricting the epidemic spread of the 
causative agent is highly recommended. The molecular plant pathology includes 
diagnosis of pathogens through advanced tools such as PCR, qPCR, DNA 
sequencing, etc., and plant disease management for protecting crop yield (Sue et al. 
 2014 ). In recent years, very few reports were available as a step ahead, showing 
nano-diagnosis of phytopathogens to make disease control much faster and cheaper 
(Khiyami et al.  2014 ). This review sheds light on the emphasis of advancements in 
plant pathology modules during the agricultural revolution in the past few decades, 
over time consuming traditional methods considering  R. solani  as representative of 
high impact phytopathogens.  

     Rhizoctonia solani  

  Rhizoctonia  was fi rst described as a genus by DeCandolle in 1815 following 
 R. crocorum  (Pers.) as the type species (Sneh et al.  1998 ) while Kuhn in  1858  stated 
 R. solani  as the most important species of  Rhizoctonia  (Ogoshi  1996 ).  R. solani  is 
widely spread fungal plant pathogen belongs to the phylum basidiomycete means 
they does not produce any asexual spores (called conidia) and may sometimes 
produce sexual spores (basidiospores). In the early phase of  Rhizoctonia  
classifi cation, due to lack of genus specifi c characteristic features, many irrelevant 
fungi were grouped as  Rhizoctonia  spp. (Parmeter and Whitney  1970 ; Moore  1987 ), 
while in growing years, Ogoshi ( 1975 ) remarkably specify the genus concept of 
 Rhizoctonia  and was elaborated the characteristic features of  R. solani  at genus 
level. On this basis of revealed genus concept,  Rhizoctonia  species being classifi ed 
using color of mycelia, nuclei per young vegetative hyphal cell as well as the 
morphology of their teleomorph. The teleomorph of  Rhizoctonia  spp., belongs to 
the sub-division Basidiomycota, class Hymenomycetes (Yang and Li  2012 ).  

    Taxonomic Grouping: Classical and Molecular 

 As mentioned above, the classifi cation of genus  Rhizoctonia  founds tricky due to 
unavailability of specifi c characteristics, the classical intraspecies grouping of  R. 
solani  and other  Rhizoctonia  species was performed on the basis of affi nity for 
hyphal fusion, i.e. anastomosis (Parmeter et al.  1969 ; Parmeter and Whitney  1970 ; 
Burpee et al.  1980 ; Ogoshi et al.  1983 ). Based on anastomosis grouping,  R. solani  
have been grouped in 13 anastomosis groups (AG), while very recently AG-BI has 
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been reported as 14th AG group (Carling  1996 ,  2002a ,  b ). The interaction scale, 
such as perfect fusion, imperfect fusion, contact fusion and no fusion (Matsumoto 
et al.  1932 ; Yang and Li  2012 ), led anastomosis to categorize in four groups viz. 
C3–C0, as follows (Carling  1996 ).

    C3 :  walls fuse; membranes fuse, accompanied with protoplasm connection; anasto-
mosis point frequently is not obvious; diameter of anastomosis point is equal or 
nearly equal hyphal diameter; anastomosing cells and adjacent cells may die, 
but generally do not. This category occurs in the same anastomosis group, same 
vegetative compatibility populations (VCPs) and the same isolate.  

   C2 :  wall connection is obvious, but membrane contact is uncertain; anastomosing 
and adjacent cells always die. This category occurs in same AG, but not between 
different VCPs.  

   C1 :  wall contact between hyphae is apparent, but both wall penetration and mem-
brane membrane contact do not occur; occasionally one or both anastomosing 
cells and adjacent cells die. This category occurs between different AGs or in 
the same AG.  

   C0 :  no reaction. This category occurs between different AGs.    

 The members of the same AG group represent ≥50 % frequency for hyphal 
fusion (i.e. From C3 to C1 reaction), except non-self-anastomosing isolates 
(Hyakumachi and Ui  1988 ), while there occurs low frequency ≤30 % or no fusion 
among members of different AG (i.e. C0 reaction). 

 On the other hand, the most reliable and widely accepted molecular biology has 
observed to be crucial and undetachable module towards determining the appropriate 
classifi cation and grouping of organisms on the basis of genetic information and 
evolutionary base (Hebert and Gregory  2005 ). Though molecular biology involves 
advanced tools to determine taxonomical relatedness, it concurrently supports 
classical groupings of organisms and was observed in the case of  R. solani , as 
molecular markers based clustering as well as percent sequence similarity found 
supportive of the AGs and subgroups based on hyphal fusion anastomosis (Sharon 
et al.  2006 ).  

    Host Range and Diseases Caused by  R. solani  

 The genus  Rhizoctonia  known to have wide host range and hence is known to be an 
economically important plant pathogen all over the globe. It has a destructive 
lifestyle as a non-obligate parasite causes necrosis and damping-off on various host 
plant species and host range of  R. solani  is extensive and it affected the growth of 
various economic signifi cant crop plants throughout the world (Table  1 ) including 
species in the  Asteraceae ,  Braccicaceae ,  Fabaceae ,  Poaceae , and  Solanaceae  in 
addition to forest trees and ornamental plants (Ogoshi  1996 ). Disease symptoms 
contain damping-off, rots on roots, leaf spots, leaf blights, aerial blight, shoots and 
fruits, canker lesions on sprouts and stolons, and sclerotial diseases, while few of 
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   Table 1    Host range and plant diseases associated with  Rhizoctonia  anastomosis groups   

 Host  Disease  AG  Reference 

 Barley  Root rot  AG5  Rush et al. ( 1994 ) 
 Stunt  AG8  Burton et al. ( 1988 ) 

 Broan bean  Reduced growth  AG5  Valkonen et al. ( 1993 ) 
 Buckwheat  Damping-off  AG1  Herr and Fulton ( 1995 ) 
 Cabbage  Bottom rot  AG1  Tu et al. ( 1996 ) 

 Web blight  AG4 
HGI 

 Yang et al. ( 2007 ) 

 Carrot  Damping-off  AG1  Grisham and Anderson ( 1983 ) 
 Crown and brace root rot  AG-2-4  Sumner and Phatak ( 2003 ) 

 Cereals  Bare patch  AG8  Mazzola et al. ( 1996 ) 
 Clover  Root rot  AG2  Wong and Sivasithamparam ( 1985 ) 

 Damping-off  AG2  Wong and Sivasithamparam ( 1985 ) 
 Common bean  Leaf blight  AG1  Muyolo et al. ( 1993 ) 

 Web blight  AG1  Muyolo et al. ( 1993 ) 
 Root rot  AG2  Muyolo et al. ( 1993 ) 
 Root rot  AG4  Muyolo et al. ( 1993 ) 
 Reduced growth  AG5  Valkonen et al. ( 1993 ) 

 Corn  Leaf blight  AG1  Tomaso-Peterson and Trevathan 
( 2007 ) 

 Root rot  AG4  Mazzola et al. ( 1996 ) 
 Cotton  Root rot  AG4  Rothrock ( 1996 ) 

 Root canker  AG7  Baird and Carling ( 1997 ) 
 Minor pathogen  AG13  Carling et al. ( 2002a ) 

 Eggplant  Brown spot  AG3  Kodama et al. ( 1982 ) 
 Flower bulbs  Root rot  AG2  Dijst and Schneider ( 1996 ) 
 Lettuce  Damping-off  AG1  Herr ( 1993 ) 
 Lupin  Late emergence  AG5  Valkonen et al. ( 1993 ) 

 Minor pathogen  AG10  MacNish et al. ( 1995 ) 
 Narrow-leafed 
lupins 

 Damping-off and 
hypocotyl rot 

 AG11  Kumar et al. ( 2002 ) 

 Oilseed rape  Damping-off  AG2  Kataria et al. ( 1991 ) 
 Basal rot  AG4  Verma ( 1996a ) 

 Onion  Damping-off  AG4  Erper et al. ( 2005 ) 
 Orchid  Mycorrhizal  AG6  Perkins and Mcgee ( 1995 ) 

 Mycorrhizal  AG12  Carling et al. ( 1999 ) 
 Pea  Stem rot  AG4  Hwang et al. ( 2007 ) 
 Pea  Root rot  AG4  Hwang et al. ( 2007 ) 
 Potato  Stem canker  AG2  Chand and Logan ( 1983 ) 

 Stem canker  AG4  Anguiz and Martin ( 1989 ) 
 Stem canker  AG5  Bandy et al. ( 1984 ) 
 Black scurf  AG5  Bandy et al. ( 1984 ) 
 Minor pathogen  AG9  Carling et al. ( 1994 ) 

(continued)
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them have symbiotic mycorrhizal relationships with orchid plants (Carling et al. 
 1999 ; Chang and Chou  2007 ). This fungus is able to persist as hyphae and sclerotia 
in both soil and plant parts.  R. solani  infection begins when sclerotium germinating 
mycelia or hyphae starts to grow towards a suitable host as a result of drawing 
chemical exudates, like amino acids, organic acids, sugars, protein substances and 
phenols, from the plants (Keijer  1996 ). After the primary contact, unfastened and 
still separated hypha starts to nurture over the plant and after few hours the hypha 
fl attens and directional growth over the epidermal cells is initiated (Lehtonen  2009 ). 
Before actual active penetration of the host, T-shaped hyphal branches form thick 
infection cushions that fasten strongly to the host epidermis (Keijer  1996 ). 
Topological signaling and host recognition by its surface structure play the 
signifi cant role in the establishment of the infection (Lehtonen  2009 ). The fungus 
enters actively in to the plant by weak spots, where it can rupture the defensive layer 
(Weinhold and Sinclair  1996 ), on the other hand the passive entry happens rarely 
and stay limited for leaf pathogenic isolates (Weinhold and Sinclair  1996 ) and the 
passive entry is not the usual infection mechanism for soilborne  R. solani  (Keijer 
 1996 ). Swollen hyphal tips on infection lesion parallely form infection pegs and 
then enters through the cuticle and epidermal cell walls into the host epidermal 

Table 1 (continued)

 Host  Disease  AG  Reference 

 Radish  Root rot  AG2  Grisham and Anderson ( 1983 ) 
 Rice  Sheath blight  AG1  Sayler and Yang ( 2007 ) 

 Web blight  AG1  Hashiba and Kobayashi ( 1996 ) 
 Sheath blight  AG2  Hashiba and Kobayashi ( 1996 ) 

 Snapbean  Web blight  AG4 
HGI 

 Yang et al. ( 2007 ) 

 Soybean  Rot  AG1  Yang et al. ( 1990 ) 
 Bud rot  AG1  Hwang et al. ( 1996 ) 
 Damping-off  AG2  Nelson et al. ( 1996 ) 
 Root rot  AG4  Liu and Sinclair ( 1991 ) 
 Root rot  AG5  Nelson et al. ( 1996 ) 

 Sugarbeet  Root rot  AG2  Herr ( 1996 ) 
 Damping-off  AG2  Herr ( 1996 ) 
 Leaf blight  AG2  Herr ( 1996 ) 

 Tobacco  Target spot  AG3  Ogoshi ( 1987 ) 
 Tomato  Leaf blight  AG3  Date et al. ( 1984 ) 

 Root rot  AG4  Montealegre et al. ( 2010 ) 
 Fruit rot  AG4  Strashnov et al. ( 1985 ) 

 Turfgrass  Brown patch  AG1  Herr and Fulton ( 1995 ) 
 Brown patch  AG2  Herr and Fulton ( 1995 ) 
 Large patch  AG2  Burpee and Martin ( 1996 ) 

 Wheat  Root rot  AG5  Rush et al. ( 1994 ) 

  Lehtonen ( 2009 )  
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tissue and outer layer of the cortex (Demirci and Döken  1998 ). Lytic enzymes such 
as cutinases (Baker and Bateman  1978 ), pectinases (Bertagnolli et al.  1996 ; 
Jayasinghe et al.  2004 ) and xylanases (Peltonen  1995 ), are most probably involved 
in infection and penetration, where hydrostatic pressure also plays role (Demirci 
and Döken  1998 ). Inside the host, it grows and degrades inter- and intracellular 
tissues, which can be seen as necrotic lesions on epidermal tissue of shoot, root, 
stolon or as young seedlings damping-off (Demirci and Döken  1998 ). This pathogen 
is known for damping-off, root rot, stem rot and sometimes in leaf blight, cankers, 
yellow spots etc., (Lehtonen  2009 ). Moderately moist soil conditions and temperate 
soil favored this pathogen. The members of the different AGs may have different 
pathogenic attributes, physical characteristics and evolutionary relationship in past 
(Gonzalez et al.  2006 ).  R. solani  is known to be one of the most destructive pathogen 
for rice, as it causes sheath blight which is one of the most prevalent rice diseases 
(Willocquet and Savary  2011 ). Members of AG8 have ability to cause bare patch of 
cereals and legumes (MacNish and Neate  1996 ), and severe root rot in canola 
(Khangura et al.  1999 ). According to Cook et al. ( 2002 ) AG8 patches were associated 
with up to 30 % yield loss of rice in the US and around $59 m of annual losses of 
wheat in Australia (Murray and Brennan  2009 ). Moreover, AG2-1 is extremely 
pathogenic on canola, causes severe hypocotyl rot on mustard and mild symptoms 
of hypocotyl rot on narrow-leafed lupin and clover, but failed to infect cereals, such 
as wheat, oats, barley, and ryegrass (Khangura et al.  1999 ). Other  R. solani  isolates 
cause severe diseases for other crops including potato,    (Banville  1989 ; Hide et al. 
 1992 ), canola (Verma  1996a ,  b ), maize (Kluth and Varrelmann  2010 ) and sugar beet 
(Kiewnick et al.  2001 ; Kühn et al.  2009 ). Carling et al. ( 1989 ) and Read et al. ( 1989 ) 
have reported yield losses up to 10–30 % on marketable size potato tubers by 
 Rhizoctonia  disease. Similarly, Olaya and Abawi ( 1994 ) also reported that AG 2-2 
caused 88 % loss in table beet in western New York and Galindo et al. ( 1982 ) 
observed that AG 4 caused 55 % loss in snap bean and AG-1 on cabbage (Abawi and 
Martin  1985 ). While members of the AG-5, AG-4, AG-2-1 and binucleate 
 Rhizoctonia  are known to be associated with table beets infection (Olaya and Abawi 
 1994 ). Those associated with snap beans belonged to AG-1 and AG-2 (Galindo 
et al.  1982 ).  

    Conventional Approach to Diagnose and Control  R. solani  

 In the early years, by conventional means, plant infection or the presence of the 
pathogen was determined by visual observation of disease symptoms followed by 
isolation of plant pathogen from diseased plant part, such as in black scurf disease 
caused by  R. solani  (Narayanasamy  2011 ). These methods involve cultivation of 
diseased plant part using appropriate growth medium to grow phytopathogens in 
specifi c or non-specifi c manner. This further involves determining morphological 
characteristics of the pathogens through visual observation or light microscopy, 
which requires knowledge of taxonomy, time consuming and laborious too. The 
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inability of conventional methods to discriminate among closely related species 
and/ or strains of the same species made it non-specifi c and less reliable 
(Narayanasamy  2001 ). In some cases, detection of pathogen becomes diffi cult, 
especially when pathogen levels are low, low/ no fruiting bodies, latent infection, 
indistinct disease symptoms, etc., (Agrios  1988 ). The isolation methods sometimes 
consumes much time, i.e. from 1 to 4 weeks (Errampalli et al.  2001 ; Kristensen 
et al.  2007 ), however delays cannot be affordable when deals with high cash crops 
and quick diagnosis and rapid measures are preferred to control disease spread in 
host plants (Chakrabarty et al.  2007 ). Based on target pathogen and single or 
multiple pathogens, detection method can be categorized as specifi c as well as non- 
specifi c for ease of isolation and characterization (Chu et al.  1989 ). 

 In the old era of agriculture, the  Rhizoctonia  infection was controlled through 
general or non-specifi c approaches such as soil fumigation, soil amendments, 
planting tricks, maintaining soil moisture, etc., either single or in combination. 
Where soil fumigation was carried out using methyl bromide (bromomethol), 
metam sodium in combination with seed coating using some fungicidal or pesticidal 
compounds such as pencycuron, thiram, imidacloprid, captafol, etc., of which, 
pesticidal activity has the ability to restrict few other pathogens also. However the 
high costs and harmful effects of these compounds on the environment made them 
out of competition in the growing years. The agricultural practices such as irrigation 
intervals and planting tricks, either alone or in combination found more effective 
than earlier mentioned approaches (Narayanasamy  2011 ).  

    Molecular Approaches 

    PCR Based Tools 

 In current timeframe, polymerase chain reaction (PCR) based tools have been used 
widely due to its high sensitivity (Bounoua et al.  1999 ). PCR amplifi es the low copy 
number of DNA by millions of times with high sensitivity in view of easy diagnosis. 
The design of primers for use in PCR (Liu et al.  1995 ) that recognize unique DNA 
sequences can result in direct detection of very low levels of target DNA in plant 
material and soil. Such PCR methods have been used to detect  R. solani  AG-1-IB 
(Grosch et al.  2007 ), AG-2 and subgroups (Salazar et al.  2000 ), AG-3 in potatoes 
(Bounoua et al.  1999 ), AG-4 and AG-8 in wheat (Brisbane et al.  1995 ) and AG-8 in 
soil (Whisson et al.  1995 ). To develop species specifi c diagnostic kit for R. solani 
seems challenging because of its multiple AG’s composition. However, Bounoua 
et al. ( 1999 ) reported a PCR-based restriction mapping method, using one restric-
tion endonuclease,  Xho  I for the detection of  R. solani  AG-3 and this detection 
method is very specifi c and reliable and it can be applied on plant tissue and soil. 
Moreover, Toda et al. ( 2004 ) has also concluded that PCR-based technique using 
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specifi c primers A091-F/R is useful for the rapid detection of  R. solani  AG 2-2 LP 
isolates from leaf sheaths of zoysia grass exhibiting large-patch symptoms. 
Likewise, Pannecoucque and Höfte ( 2009 ) used two enzymes  Ava II and/or  Hinc II 
for PCR RFLP analysis and they observed the same level of diversity within the 
strains of  R. solani  as they shares common cluster in sequence based grouping.   

    Analysis Based on  rRNA  Genes 

 Generally, taxonomic and phylogenetic studies based on the known conserved 
genes with enough sequence variant are selected for designing PCR diagnostic 
assays. The DNA sequences that encode ribosomal RNA genes have been extensively 
utilized for characterization of phylogenetic analysis of fungal genera (Cubeta et al. 
 1996 ). In case of fungi, these genes are usually positioned in either mitochondria or 
nuclei (Gardes and Bruns  1993 ). Fungal nuclear rRNA gene contains several hun-
dreds of tandem repeats per genome and each unit enclosed with three genes, viz. 
small rRNA genes 18S and 5.8S and the large rRNA gene 28S (Capote et al.  2012 ). 
These genes are regularly used for fungal taxonomy and phylogeny of fungal spe-
cies (Vilgalys et al.  1994 ). The conserved sequences exist in large subunits (LSU) 
and small subunits (SSU), while the internal transcribed spacer (ITS) regions 
between the subunits are variable and hence use to differentiate among closely 
related taxa (Gardes and Bruns  1993 ). In one report by Vilgalys and Gonzales 
( 1990 ), it was determined that  Thanatephorus praticola  (anamorph:  R. solani  AG 4) 
have rDNA repeats of length about 8.8 kb and the predictable number of rDNA 
copies to be 59 per haploid genome. Sequence database of ITS region (ITS1-5.8S- 
ITS2) of  R. solani  is widely available in the gene banks and these ITS database 
facilitates expanded phylogenetic analysis of  R. solani . Similarly, the sequences of 
the 18S subunit and the large (28S) subunit (LSU) regions are available for  R. solani  
isolates. The rRNA gene sequences were utililized to investigate the genetic 
relatedness within an AG and sometimes within AG subgroups and confi rmed that 
they are genetically distinct and it has concurrency with DNA/DNA hybridization, 
RFLP analysis, PCR fi ngerprinting and other methods (Capote et al.  2012 ). All 
available data have discovered a completely conserved 5.8S region, but show 
enormous deviation in internal transcribed spacers (ITS) regions (Boysen et al. 
 1996 ; Kuninaga et al.  1997 ; Salazar et al.  2000 ; Gonzalez et al.  2001 ; Carling et al. 
 2002a ,  b ). Gonzalez et al. ( 2001 ) concluded that the ITS region was not easy to align 
and exhibited more homology than the large subunit region and ITS region were 
concentrated in six highly variable regions. The difference in ITS regions and rDNA 
nucleotide sequence correlate with differences in biological properties like 
pathogenicity and habitat (Boysen et al.  1996 ; Kuninaga et al.  1997 ; Salazar et al. 
 2000 ; Gonzalez et al.  2001 ; Carling et al.  2002b ) indicates authenticity of the 
molecular tools to be used in diagnosis.  
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    Real Time PCR 

 Now a day’s Real-time PCR method is considered as one of the advanced diagnostic 
tool for detecting plant pathogens. The remarkable benefi t of this technique is to 
detect, amplify and quantify even very less quantity of DNA in targets sample 
(Wittwer et al.  1997 ). Quantitative real-time PCR (qPCR) is appropriate for taxon- 
specifi c quantifi cation of pathogen DNA in infected host tissue or soil samples. 
Apart from delivering quantitative data, qPCR is faster and more sensitive than 
conventional PCR. Chemistry of RT-PCR can be based on the use of doubled- 
stranded DNA binding dyes, such as SYBR Green, specifi c fl uorescent labeled 
probes such as TaqMan, Molecular Beacons, or Scorpions, or dye-primer based 
systems, for example hairpin primers or Plexor system. Guo et al. ( 2012 ) has 
described the qPCR for quantifi cation of  R. solani  AG2-2 IIIB in soil and plant 
samples with signifi cant observations. The qPCR assays can also quantify  R. solani  
AG-8 in natural soils at levels below population densities of 57–87 ppg associated 
with patches in the fi eld (Paulitz and Schroeder  2005 ; Okubara et al.  2008 ). Budge 
et al. ( 2009 ) have developed and reported the sophisticated protocol for the DNA 
extraction from soil as well as real-time PCR assays for 11 AGs and subgroups of 
 R. solani . Real-time PCR assay for AG-2-1 has demonstrated that in naturally 
infected fi eld soils,  R. solani  target on the upper soil layers (Budge et al.  2009 ). 
Edel-Hermann et al. ( 2009 ) has also reported the quantifi cation of the  R. solani  
AG-2-2 in the soil originating from the diseased sugar beet fi eld at different time 
points. Zhao et al. ( 2014 ) observed the  R. solani  AG-3 from infected tobacco tissue 
and soil by using a specifi c primer pair based on the internal transcribed spacer 
region of the fungal pathogen DNA sequence,  R. solani  AG-3 DNA at quantities as 
low as 100 fg of purifi ed pathogen DNA could be successfully detect by qPCR.  

    DNA-DNA Hybridization 

 DNA-DNA hybridization is the earliest molecular methods for the detection and 
identifi cation of  Rhizoctonia  species (Kuninaga  1996 ). Kuninaga and Yokosawa 
( 1985a ,  b ) and Vilgalys ( 1988 ) utilized the DNA comparison method to resolve the 
genetic relatedness within AGs of  R. solani  and each AG isolate showed the highly 
similar kind of GC content. But, the  R. solani  complex was showed wide dissimilar-
ity in GC content which range from 43.2 to 49.5 % (Kuninaga  1996 ). A case study 
by Kurtzman in 1987 on fungal strains had accomplished that diverse isolates showed 
2.0–2.5 % different by GC contents belonged to different species (Kuninaga  1996 ). 
Though a wide range of GC contents values among the different  R. solani  isolates 
showed the possibility of DNA-DNA hybridization technique based separations pro-
vide more conclusive evidence to support this concept. The isolates belongs the same 
AGs showed a very high association (≥90 %), and vice-versa (Lübeck  2004 ). In AGs 
2-1, 3, 5, 7, 8 and BI, the members of the same AG hybridized with each other at a 
rate of ≥91 %. The hybridization studies also showed 11 considerable genetic 
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differences among subgroups of the certain AGs, viz. 1, 2, 4, 6 and 9 (Lübeck  2004 ). 
AG subgroups with low relatedness were compatible with earlier identifi ed sub-
groups based on cultural, morphology, pathogenicity and vitamin requirements 
(Kuninaga  1996 ). Between different AGs, the hybridization value is normally less 
than 15 %, while within an AG is mostly less than 60 % (Lübeck  2004 ). The genomic 
DNA-DNA hybridization experiments not only determine the genetic relatedness, 
but also may possibly reveal the former unknown heterogeneity. New subgroups of 
AG 4 and AG 6 were assessed by this method and between members of AG 4-HGI 
and HGII were 30–47 % hybridization values occurs and isolates of AG 6 subgroups 
HGI and GV were showed 47–62 % hybridization values which confi rm their rela-
tionship to separate subgroups (Kuninaga  1996 ). AG of the  R. solani  complex repre-
senting distinct evolutionary units corresponding by DNA relatedness into separate 
species was termed as “genomic species” by Kuninaga ( 1996 ). On the darker side of 
the technique, only few things can be noted such as time consuming, need genomic 
DNA rather gene specifi c region, and hence in modern era it has been replaced by 
newer, easier and quicker methods such as polymerase chain reaction (PCR) based 
fi ngerprinting techniques (Lübeck  2004 ).  

    PCR Fingerprinting Techniques 

 PCR fi ngerprinting techniques allow the amplifi cation of tandem repeats of random 
regions present on the genomic DNA, which helps identifying species-specifi c pattern 
when conserved genes have not enough difference to successfully identify the species 
(McCartney et al.  2003 ). Fingerprinting analyses are normally used to study the phy-
logenetic structure of microbial populations. In the present era, PCR fi ngerprinting 
techniques (RAPD and DAF) have been widely used to assess genetic differences 
among AG subgroups of  R. solani  (Ceresini et al.  2002 ; Priyatmojo et al.  2001 ; Stodart 
et al.  2007 ). Moreover, universally primed PCR (UP-PCR) method also very similar 
to RAPD for PCR fi ngerprinting and being used widely (Trigiano et al.  2004 ; Lübeck 
and Lübeck  2005 ).  R. solani  isolates obtained from diseased sugar beets and potatoes 
in many cases enabled to their identifi cation by visual assessment of aligned UP-PCR 
banding profi les with reference isolates (Lübeck and Poulsen  2001 ). Various PCR 
fi ngerprinting techniques uses only based on the same principle of DNA polymerase 
mediated amplifi cation of DNA fragments to generate multiple copies of target 
genome sites. The difference of these techniques depends on primarily in the design 
or choice of primers and level of stringency. However, amplifi ed fragment length 
polymorphism (AFLP) is different than the above methods (Vos et al.  1995 ; Lübeck 
 2004 ; Lübeck and Lübeck  2005 ). Majer et al. ( 1996 ) have tested AFLP to detect inter- 
and intra-specifi c genetic variation of two fungal pathogens  Cladosporium fulvum  and 
 Pyrenopeziza brassicae , proved that AFLP showed effi cient polymorphism as com-
pared to RFLP analysis. The number of bands generated from AFLP was in the range 
of 50–70. The advantages of this method are higher reproducibility and higher propor-
tion of the genome being analyzed per reaction.  
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    UP-PCR Based Cross-Hybridization 

 Cross-hybridization of universally primed polymerase chain reaction (UP-PCR) is 
a kind of the UP-PCR method, which results from a single UP-primer and can be 
used to examine the sequence similarity (homology) of unknown  Rhizoctonia  
strains to that of UP-PCR hybridization groups (Lübeck and Lübeck  2005 ). The 
UP-PCR products from different strains are blotted on to a membrane fi rst and then 
readily labeled UP-PCR products of a reference strain are used as a hybridization 
probe in each blot. The major advantage of this method is the ability to examine 
sequence homology of numerous strains simultaneously. Probe DNA can be labeled 
by radioactive phosphorus or a non-radioactive molecule, for example digoxigenin 
(DIG). The hybridization signal strength is observed to determine the relatedness of 
the strain to the unknown one. Radioactive probe shows strong, visible signals by 
autoradiograph after one hour and these signals indicate that the hybridized strains 
belong to the same UP-PCR hybridization group. The signal intensity is directly 
proportional to the degree of similarity, such as weak signals shows less degree of 
similarity, while no signal means no relationship among the tested strains. Antigen- 
antibody reactions are used on same working principle as non-radioactive detection 
method. Lübeck and Poulsen ( 2001 ) have reported to use a UP-PCR cross- 
hybridization assay for rapid detection and grouping of 21  Rhizoctonia  isolates to 
11 AGs using single UP primer. They have concluded the strong level cross 
hybridization within isolates of same AG subgroups, while modest or no cross- 
hybridization among different AGs. Moreover, 16  Rhizoctonia  isolates were 
determined using this tool have found concurrently similar to that of total DNA- 
DNA hybridization.  

    SCAR Approach 

 A sequence-characterized amplifi ed region (SCARs) is a PCR based approach, 
especially intended to amplify members of the same genus (Lübeck and Lübeck 
 2005 ). However, these markers have the ability to zoom in at genus level; the same 
is unable to discriminate the population at species level. This approach can be used, 
particularly in the cases where intra-species evolutionary relationship is strong and 
hence, members can be diagnosed from soil or infected plant parts at the genus level 
with high specifi city (Lübeck and Lübeck  2005 ). Nevertheless, to detect the unique 
molecular markers present in the target organisms, the fi ngerprinting methods with 
UP-PCR can be used for rapid identifi cation of organisms of interest. The sequence 
information of the SCAR markers can also be used to develop primers that selectively 
amplify the marker in identifying the target organisms in diagnostic assays. This 
tool leads the rapid detection of the disease causing agents in view of the rapid 
disease management. It is recommended that the SCAR markers need to be identifi ed 
at an AG subgroup level in order to use this technique in a meaningful way. However, 
UP-PCR derived markers for strains of a subgroup may not be available. As an 
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example, UP-PCR method has been used to selectively distinguish a single 
antagonistic strain of  Clonostachys rosea  (syn.  Gliocladium roseum ) which is a well 
known mycoparasite of many soil borne pathogens (Bulat et al.  2000 ). The 
antagonists were screened by UP-PCR and afterward, a strain specifi c marker was 
identifi ed for the strain GR5. The marker was rehabilitated into a SCAR and a 
specifi c primer pair was designed for selective amplifi cation of GR5. Eighty two 
strains and DNA from 31 soil samples, mostly of Danish origin, were tested for 
specifi city of SCAR markers. Out of 82 strains two responded to SCAR primers 
which were similar to GR5 but not identical. The total DNA extracted from soil 
samples infested with and without GR5 demonstrated the SCAR primers could 
detect GR5 in a pool of mixed DNA and that this particular marker was not present 
in other microorganisms, indicating high specifi city of the approach.  

    A DNA Sequence Based Approach 

 Morphological characters are not always giving the proper identifi cation of  R. solani  
like pathogen, especially when having members of the closely related groups such 
as AG. Sequence data analysis of PCR amplifi cation of a target gene with universal 
primers amplifying a conserved region in the, followed by comparison with the 
reference databases is becoming an important tool for characterizing new fungal 
species. On the other hand, the use of sequence databases based on DNA similarity 
may have few drawbacks such as incomplete sequences, sequences associated with 
misidentifi ed organisms, the inability to easily change or update data, and problems 
associated with defi ning species boundaries, all of them leading to erroneous inter-
pretation of search results. To procure proper identifi cation high quality data by the 
researcher community should be the remedy of this drawback (Kang et al.  2010 ). 

 The Sanger sequencing technique has been upgraded or replaced to several “next-
generation” sequencing technologies able to generate a high number of short 
sequences from multiple organisms in short time (Capote et al.  2012 ). Massive 
sequencing technologies offer dramatic increases in commercial sequence through-
put, having a tremendous impact on genomic research. For example, Hane et al. 
( 2014 ) reported that a high quality genome of  R. solani  AG8 isolate WAC10335 was 
isolated from lupin was assembled and a manually curated set of 13,964 genes sup-
ported by RNA-seq. The heterozygous SNP mutation rate within single isolate of 
AG8 was scrutinized to be superior as compared to SNP mutation rates observed 
across the fungal populations. Comparative analyses were combined to predict bio-
logical processes relevant to AG8 and 308 proteins with effector-like characteristics, 
forming a valuable resource for further study of this pathosystem. Predicted effector-
like proteins had elevated levels of non-synonymous point mutations relative to syn-
onymous mutations (dN/dS), suggesting that they may be under diversifying selection 
pressures. Moreover, signifi cant genomic resources for other AGs of  R. solani  have 
also recently become publicly available, formerly been limited to EST libraries of 
AG1-IA and AG4 (Lakshman et al.  2012 ; Hane et al.  2014 ).  

Molecular Prospecting: Advancement in Diagnosis and Control of Rhizoctonia solani



178

    Future Perspectives 

 Being an essential component of the plant disease control, an early diagnosis of 
phytopathogens plays a key role and is generally carried out through various 
means. The advancements in the diagnostic tools from time-consuming culture 
dependent techniques to the rapid and precise molecular techniques made it one 
of the widely accepted approach. The early diagnosis of phytopathogen helps in 
controlling the disease as well as its further spread. In the current time frame, vari-
ous diagnostic tools have been reported, however, accuracy and reproducibility is 
equally essential along with rapidity. Molecular tools are usually facilitating qual-
itative as well as quantitative estimation of phytopathogens, which may help to 
determine the specifi c pathovar as well as infection scale. The qPCR and loop-
mediated isothermal amplifi cation (LAMP) are the most commonly used molecu-
lar tools for detecting phytopathogens in rapid and precise manner (Heard and 
West  2014 ). Along with molecular tools, many other techniques such as biosen-
sor, lateral fl ow devices, immune based techniques such as fl uorescence micros-
copy, resonance imaging, ELISA, bookmakers for detection of volatile or 
particular toxin, metabolites using electrochemical sensors, etc., have been imple-
mented for the same (West et al.  2013 ). The use of air samplers has also been 
reported as single tool or in combination with other techniques for in situ determi-
nation of pathogen (West et al.  2013 ). The molecular plant pathology is seems to 
extend its horizon in growing years, where few reports can be seen about the use 
of nano-sensors for rapid diagnosis of multiple phytopathogens in the fi eld itself. 
It indicates the future potential and scope of the molecular prospecting in the plant 
pathology for the betterment of the agriculture.  

    Conclusion 

 The advancements in the agricultural practices have marked as an important move 
for maintaining the agricultural economy through determining phytopathogens at 
an early stage of infection followed by plant disease control. The strength of 
molecular tools such as highly specifi c, rapid, and in situ diagnosis of phytopathogens, 
made them superior over other available tools. These tools can potentially diagnose 
and discriminate between closely related pathogenic strains belongs to same genus 
or species such as pathovars or biovars including multiple pathogens. Though, in 
situ detection of phytopathogen is highly appreciable in view of broadcasting of the 
fi eld details such as disease information, infection scale, etc., in the public domain 
towards sustainable agriculture.     
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          Introduction 

 Plant pathogens like viruses, fungi, bacteria, phytoplasma and nematodes have become 
serious threat to commercial crops including sugarcane. Sugarcane is highly demand-
ing crop in India and widely cultivated in many states of the India, because of it’s cash 
generating capability to the farmers. Being an annual crop, sugarcane faces many biotic 
and abiotic stresses. More than 100 plant diseases have been reported on sugarcane 
crop across the world which signifi cantly reduce yields (Tiwari et al.  2010 ; Vishwanathan 
and Rao  2011 ). Among the biotic stress, the most devastating pathogens of the sugar-
cane are fungi which cause enormous economical losses to sugarcane. 

 Leaf binding disease of sugarcane was fi rst observed in 1918 in Argentina (Abbott 
 1964 ) caused by  Myrigenospora aciculispore  V. and it was called  Myrigenospora  leaf 
binding disease or Tangle top disease. In India so far no report is available about the leaf 
binding disease, In the present study we identifi ed the causal organism s characteristics 
and also attempted the control prospective of this disease by utilizing fungicides. 

  F. moniliforme  also known as  Fusarium verticillioides  belongs to the subdivision 
 Deuteromycotina  of class  Sardariomycetes  and has earlier been reported to be asso-
ciated with the wilt,  Pokkah boeng  and Knife knut disease in sugarcane in India 
(Vishwanathan and Rao  2011 ; Teher Khani et al.  2013 ).  
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    Materials and Methods 

 Surveys were conducted during June to September 2011 and 2012 in sugarcane fi elds at 
Sugarcane Research Institute (SRI), Shahjahnapur, U.P., India. Three sugarcane varieties 
CoS 07250, CoS 98259 and CoSe 01434 showing leaf binding disease symptoms were 
collected and brought to laboratory for proper identifi cation of the causal pathogen(s). 

 The small cut leaf bits were washed under running tap water for 5 min, surface steril-
ized with 0.1 % mercuric chloride for 1 min and fi nally washed with distilled water. The 
bits were placed on Oat Meal Agar (OMA) in Petri-dishes under aseptic conditions and 
maintained at 25 ± 2 °C temperature until the mycelial growth initiated. These cultures 
were further purifi ed by a single spore isolation and regularly transferred at an interval 
of 10–12 days to the fresh OMA medium and incubated at 25 ± 2 °C until sporulation. 
The cultures were submitted to Culture Type Collection Repository, Agarkar Research 
Institute (ARI), Pune, India for its identifi cation. The associated pathogen was also iden-
tifi ed with the help of its morphological and cultural characteristics. 

 Fungal DNA was extracted from 0.5 g of fresh mycelial mat using a cetyltrimeth-
ylammonium bromide (CTAB) protocol (Saghai-Maroof et al.  1984 ), with a slight 
modifi cation i.e., in place of lyophilized fungal mat, fresh mycelial mat was ground 
in liquid nitrogen. The DNA concentration was determined through agarose gel 
electrophoresis using known concentration of k-uncut DNA as standard. Equal 
amount of three such isolations were pooled and used as templates in the poly-
merase chain reaction (PCR). 

 PCR was carried out in 50 μl reaction volume containing 1 μl DNA, 1 μl of each 
primers, 25 μl PCR Master Mix (Takara, Japan) and rest water. Amplifi cation was 
performed using an universal primer pairs ITS-1 and ITS-4 in a DNA Engine 
thermal cycler (BIOCHEM) with the conditions: initial denaturation at 94 °C for 
5 min, denaturation at 94 °C for 30 s, annealing at 60 °C for 30 s, and extension at 
72 °C for 40 s. A fi nal extension was given at 72 °C for 10 min. 

 The PCR amplifi ed products were resolved on 2 % (w/v) agarose gel containing 
0.5 μg/ml ethidium bromide using 1X TBE buffer. Resolved products were 
visualized and photographed under UV light source using an alpha-imager system. 
The amplifi ed products were eluted (PCR clean-up, Germany) and directly 
sequenced and consensus sequences were submitted in the GenBank. These 
sequences were used as query sequences in BLAST search. 

 Foliar spray of Copper oxychloride (@ 0.25 %), Mancozeb (@0.25 %) and 
Bavistin (@0.1 %) was applied twice during the grand growth period (July–September) 
at fortnightly interval to check the incidence of the disease in affected plots.  

    Results and Discussion 

 During the fi eld survey at SRI, Shahjahanpur, UP, India three varieties (CoS 07250, 
CoS 98259, CoSe 01434) were found with the symptoms of mechanical binding with 
necrosis of leaves (Fig.  1 ). Early death of affected shoots and the dwarfi ng and fasci-
nation of affected clumps were also noticed. No symptoms were observed on the 
stalks of the affected sugarcane cultivars. The growth of the affected plants was 
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checked due to the disease as compared to the non symptomatic plants standing in the 
same fi eld. The occurrence of the disease was only observed during monsoon period 
(June last week to September) which is the grand growth period of sugarcane.

   The incidence of the disease varied from 8 to 15 % on the varieties CoS 07250, CoS 
98259 and CoSe 01434. It was higher in variety CoS 07250 which was around 15 %, 
however other two varieties viz.CoS 98259 and CoSe 01434 were found with the inci-
dence of 8 and 11 %, respectively (incidence was calculated on clump basis). Culture of 
infected leaves of such symptomatic plants showed Cottony growth and pinkish colour 
appeared in Petri dishes on placing the symptomatic leaf on PDA 10 days after inocula-
tion at 25 ± 2 °C (Fig.  2 ). In the microscopic examination, hyaline, septate and branched 
hyphae having abundance microconidia with large setae were observed (Fig.  3 ).

a b c

  Fig. 1    Sugarcane leaves showing typical symptoms of mechanical binding ( a ,  b ), symptoms on 
standing crop ( c )       

  Fig. 2    Cottony growth and 
pink discoloration of 
culture       
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    The associated pathogen was confi rmed as  F. moniliforme  in all the three col-
lected symptomatic samples in all three test sugarcane varieties (CoS 07250, CoS 
98259, CoSe 01434). One such culture was submitted at Type Culture Collection 
facility at ARI, Pune, India with the accession no NFCCI 3093. 

 In PCR analysis ~0.6 kbp amplicon was observed in all three symptomatic leaf 
samples (culture maintained in laboratory). All the three amplicons were directly 
sequenced and were found 99 % identical to each other. One of the sequence from 
variety CoS 07250 was submitted in the GenBank with the accession number 
KM382420. BLASTn analysis of the sequence showed highest 97–98 % identity 
with several isolates of  Fusarium  sp. (JQ388287, JN254793, HQ631057, HQ630965, 
JQ885453),  F. proliferatum  (EU821492, EU821467, EU821478, EU272509, 
FN868470, EU821469),  F. fujikuroi  (KJ000437, KJ000444, KJ000433), 

  Fig. 3    Microscopic view 
of the isolated culture       
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 F.  oxysporum  (FJ867936, FJ466709), and  F. temperatum  (KC179827, KC179826). 
These, biological, microscopic and molecular detection strongly confi rmed the 
association of  F. moniliforme  with the leaf binding disease of three susceptible vari-
eties of sugarcane plants in India. Literature surveys revealed that there have been 
three published records on the occurrence of  Myriogenospora  leaf binding disease 
of sugarcane from Brazil (Vizioli  1926 ; Freise  1930 ) and Louisiana (Abbott and 
Tippett  1941 ). Affected plants were characterized by extreme stunting and the 
adherence of tips of the unfolding leaf to adjacent older leaves. The fascination 
might be appeared due to mechanical binding by fungus tissues of the adjacent 
leaves and clumps during the growth of the shoots. In affected plants, growing 
points of few shoots were killed resulting in the death of the entire shoots. Diehl 
( 1934 ) suggested that leaf binding disease of sugarcane is probably a stage of 
Pokkah boeng disease which is caused by different fungus and similar type of dis-
ease was abundantly noticed by him in  Andropogan scopairus  plants from Louisiana 
but the disease was found unable to infect sugarcane plants. 

 About management practices, twice foliar spray of Bavistin during the grand 
growth period (July–September) at fortnightly interval (@0.1 % w/v suspension) 
was found to be most effective (100 %) in controlling the disease followed by 
Copper Oxychloride (84 %) and Mancozeb (80 %) fungicide.     

  Acknowledgments   First author thanks to Department of Science & Technology, New Delhi, 
India for fi nancial assistance.  

   References 

    Abbott EV (1964)  Myriogenospora  leaf binding. In: Hughes CG, Abbott EV, Wismer CA (eds) 
Sugar-cane disease of the world, vol 2. Elsevier Publishing Company, Amsterdam, pp 40–42  

    Abbott EV, Tippett RL (1941)  Myriogenospora  on sugar cane in Louisina. Phytopathology 
31:564–566  

    Diehl WW (1934) The  Myriogenospora  disease of grasses. Phytopathology 24:677–681  
    Freise FW (1930) Cane disease and plagues in Brazil. Facts About Sugar 25:613–614  
   Saghai-Maroof MA, Soliman KM, Jorensen AR, Allard RW (1984) Ribosomal DNA spacer length 

polymorphism: In: Barley: mendelian inheritance, chromosomal location and population 
dynamics. Proc Nat Acad Sci USA 81(4):8014–8018  

    Teher Khani K, Alizadeh A, Farokhi Nejad R, Sharifi  Tehrani A (2013) Pathogenicity of  fusarium 
proliferatum , a new causal agent of pokkah boeng in Sugarcane. Proc Int Soc Sugar Cane 
Technol 28:1–6  

    Tiwari AK, Bharti YP, Mishra N, Tripathi S, Lal M, Sharma PK, Rao GP, Sharma ML (2010) 
Biotechnological approaches for improving sugarcane crop with special reference to disease 
resistance. Acta Phytopathol Hun 45:235–249  

     Vishwanathan R, Rao GP (2011) Disease scenario and management of major sugarcane diseases 
in India. Sugar Tech 13:336–353  

    Vizioli R (1926) Estudio preliminary sorbe un novo pyrenomyceto parasite de canna. Bol Agr Sao 
Paulo 27:60–69    

Fusarium moniliforme Associated with Sugarcane Leaf Binding Disease in India



193© Springer International Publishing Switzerland 2016 
P. Kumar et al. (eds.), Current Trends in Plant Disease Diagnostics 
and Management Practices, Fungal Biology, DOI 10.1007/978-3-319-27312-9_8

       Macrophomina phaseolina:  The Most 
Destructive Soybean Fungal Pathogen 
of Global Concern                     

         Vibha    

       Charcoal rot caused by the fungus,  Macrophomina phaseolina,  have emerged as 
serious concern for cultivation of soybean under climate change scenario worldwide. 
 Macrophomina phaseolina  causes huge annual losses to the crop and can survives in 
the soil mainly as microsclerotia for 2 years or longer and; germinate repeatedly dur-
ing the crop-growing season. The pathogen generally attacks the young plants when 
their growth is retarded due to unfavourable conditions. Moreover, charcoal rot is 
usually most severe in older plants which have been subjected to stressful environ-
mental conditions such as high temperature, drought, or poor fertility. The disease 
severity is directly related to the humidity, temperature, tillage practices and soil 
nutrient conditions. This review deals with the details of pathogen and its manage-
ment approaches. The management of disease through stress management is the 
most viable solution to overcome the menace of it. Although, the fungicide is the 
means of disease prevention but cultural practices, irrigation management during 
drought and resistant cultivars are the most practical means of control as the patho-
gen have more than 500 plant species to inhabit. The possibilities in substantial yield 
reduction under present changing climate underscore the need for further research. 

    Introduction 

 Charcoal rot, caused by the fungus  Macrophomina phaseolina  (Tassi) Goidanich, 
is a cosmopolitan soil saprophyte and is well known as a facultative, opportunistic 
plant pathogen that infects plants exposed to certain stress conditions (Tesso et al. 
 2005 ). It is ranked among the fi ve top most important soybean diseases, causing 
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huge annual losses (Wrather et al.  1997 ,  2001 ).  M. phaseolina  (Tassi) Goidanich, 
is one of the most important soil borne pathogens, infecting over 500 plant species 
in more than 100 plant families around the world (Smith and Wyllie  1999 ). It can 
survive as microsclerotia (masses of fungal tissue) for 2 or more years in dry soil, 
but not more than 7–8 weeks in wet soils and mycelium not more than 7 days 
(Sinclair  1982 ). Being seed-borne (Kunwar et al.  1986 ) in nature, it is found both 
on the seed coat and cotyledons (Reuveni et al.  1983 ) and causes charcoal rot by 
infecting the roots due to the adherence of microsclerotia to the seed coat during 
germination and emergence (De Mooy and Burke  1990 ). Positive correlations 
have been reported between the inoculum level of  M. phaseolina  in the seedbed 
and disease severity (Khan  2007 ). Temperatures near 30 °C and dry conditions 
make this pathogen prevalent in regions with arid subtropical and tropical cli-
mates such as in Pakistan (Khan  2007 ), China (Xiaojian et al.  1988 ) and India 
(Suriandraselvan et al.  2006 ) where yield losses caused by this fungus can reach 
even 90 % of yield. 

 Owing to higher variability among the isolates of this pathogen, no commercial 
resistant soybean variety is yet available for effective management of this disease. 
Therefore, reducing drought stress during the reproductive stages of growth of 
soybean plants can help in minimizing the risk from charcoal rot. This can be done 
by following production systems like no-till that conserve soil moisture, maintaining 
proper plant populations, growing drought tolerant varieties and maintaining soil 
fertility. Fields with a history of severe charcoal rot should be rotated for 1–2 years 
with non-host crops (cereals). Fungal propagules exposed to energy stress, lose 
endogenous C by respiration and exudation resulting in energy (nutrient) stress, 
with demand for nutrients during germination, viability loss and decreased 
pathogenic aggressiveness (Mondal and Hyakumachi  1998 ). In addition, the 
benefi cial bacterial live in rhizosphere (i.e., the region around the root) which is rich 
in nutrients due to the exudation of plant nutrients from the roots can infl uence the 
plant bi-directionally. One direct infl uence may be stimulation of plant growth and 
other plant health promotion (i.e. indirect infl uence). Hence, biological control of 
plant pathogens and deleterious microbes occurs through the production of 
antibiotics, lytic enzymes, hydrogen cyanide and siderophore or through 
mycoparasitism, competition for nutrients and space by bioagents that results in 
plant health promotion signifi cantly. Soil application of biocontrol agents’ viz ., 
Trichoderma viride, T. harzianum, Pseudomonas fl uorescens  and  Bacillus subtilis  
effectively reduced root rot caused by soil borne pathogens in several crops 
(Thilgavathi et al.  2007 ; Loganathan et al.  2010 ).  

    Pathogen 

 The binomial nomenclature of  M. phaseolina  is applied to both the microsclerotial 
and pycnidial anamorphs, however the microsclerotial phase is the one predominantly 
observed worldwide (Dhingra and Sinclair  1978 ). Different synonyms have been 
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ascribed to the fungus  M. phaseolina  (Tassi) that includes  M. phaseoli  (Maubl.) 
Ashby,  Macrophoma conchoci  Swada,  Sclerotium bataticola  Taub. and  Rhizoctonia 
bataticola  (Taub.) (Mihail  1992 ). The lack of a known teleomorph has stalled its 
taxonomy over the years (Kulkarni and Patil  1966 ; Crous et al .   2006 ); however, a 
thorough phylogenetic study of 113 members of the family Botryosphaeriaceae 
using ribosomal DNA sequences was able to separate the genera  Macrophomina  
and  Tiarosporella  (Crous et al.  2006 ). Although, only one species is recognized 
within the genus (Mihail and Taylor  1995 ), great variability in morphology and 
pathogenicity was recognized among isolates from different host species and 
between isolates from different parts of the same plant (Fernandez et al.  2006 ). 
Efforts were also been made to characterize the fungus population in different parts 
of the world based on its pathogenic variability (Karunanithi et al .   1999 ), 
morphological characteristics (Fernandez et al.  2006 ), as well as the molecular 
characteristics (Almeida et al.  2003 ; Jana et al.  2003 ; Purkayastha et al.  2006 ). The 
unstable B chromosome may be one of the mechanisms for generating variation in 
fungi (Miao et al.  1991 ). In addition, the mature hyaline and pigmented hyphal cells 
of  Macrophomina  are uninucleate, but young, growing hyphal cells and hyphal tip 
cells are usually multinucleate (Knox- Davies  1967 ). Hyphal fusion heterokaryosis 
after mitotic segregation and recombination may explain the occurrence of cultural 
types or physiological races (Punithalingam  1983 ). Double-stranded RNA (dsRNA) 
has also been reported in  M. phaseolina  with sizes ranging from 0.4 to 10 kbp and 
the number of dsRNA ranging from 1 to 10 (Pecina et al.  2000 ). Variations exist in 
pathogenicity among  M. phaseolina  from different geographical regions (Dhingra 
and Sinclair  1973 ). The phytotoxin produced in cultures of  M. phaseolina  is 
Botryodiplodin. Phaseolinone was not detected, which suggested that botryodiplo-
din may be the phytotoxin that facilitates infection (Ramezani et al.  2007 ). Moreover, 
the host species-specifi c conservation of a family of repeated DNA sequences in the 
genome of a fungal plant pathogen is a possible mechanism (Hamer et al.  1989 ) for 
isolates distinctness in this pathogen. Jana and coworkers ( 2005 ) reported the use of 
microsatellites markers as potential diagnostic markers for the study of the variabil-
ity within closely related isolates of  M. phaseolina  population specifi c to soybean 
and cotton.  

    Symptoms 

 Charcoal rot can infect soybeans at any growth stage; however, the worst infection 
is typically seen during the reproductive phase.  M. phaseolina  overwinters as 
sclerotia in the soil and infected plant debris and can remain viable for several years 
(at least 2 years). Under favorable conditions (e.g., higher soil temperatures and low 
water potential), the sclerotia germinate and colonize the plants (Olaya et al.  1996 ). 
 M. phaseolina  can grow rapidly in infected plants and produce large amount of 
sclerotia that clog the vascular tissue, resulting in disease symptoms ranging from 
leaf yellowing, wilting to plant death (Wyllie  1989 ). Charcoal rot symptoms usually 
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appear under high temperature conditions (28–35 °C) and low soil moisture, or 
when unfavourable environmental circumstances stress the plant (Wyllie  1988 ; 
Sinclair and Backman  1989 ). Although initial infection occurs at the seedling stage, 
it usually remains latent until the soybean plant approaches maturity (growth stages 
R5–R7) (Short et al.  1978 ). Diseased plants may wilt and prematurely die with 
senesced leaves remaining attached to petioles. Seed yield is frequently reduced 
under these conditions. The diagnostic symptoms of charcoal rot on prematurely 
dying or dead plants are the sloughing of cortical tissues from the lower stem and 
tap root and the speckled grey appearance of these infected tissues due to abundant 
formation of microsclerotia in vascular, cortical, and pith tissues (Smith and Carvil 
 1997 ). Other soybean diseases such as Sudden Death Syndrome (SDS), Brown 
Stem Rot (BSR) or stem canker may cause these symptoms as well. The 
distinguishing characteristic of charcoal rot is black speckling within the lower stem 
from microsclerotia. These black specks look like charcoal briquettes, thus the 
name charcoal rot. Additionally, reddish-brown to black streaks form in the vascular 
tissue as well. Charcoal rot is a root and stem disease that commonly occurs in hot, 
dry weather conditions. Therefore, symptoms of charcoal rot are also referred as 
dry-weather wilt or summer wilt, because it often occurs when plants are under heat 
and drought stresses (Smith and Wyllie  1999 ). These stresses can also occur in 
irrigated soybeans causing losses from 6 % to 33 % in experimental plots (Mengistu 
et al.  2011 ) and the combination of stress and the presence of  M. phaseolina  cause 
higher yield loss on soybeans than drought alone. This disease is most severe when 
plants are stressed from lack of moisture or nutrients, at excessive plant populations 
or where soil compaction, other diseases or nematodes or improperly applied 
pesticides impair root development. Charcoal rot symptoms typically appear when 
soybeans approach maturity. The earliest symptoms are smaller than normal sized 
leaves, which become chlorotic, then turn brown, but remain attached to the petiole 
giving the entire plant a dull greenish-yellow appearance. In many cases, these 
plants wilt and die. The pathogen attacks the plant throughout the season, often 
causing progressive debilitation of the host. After fl owering, a light gray or silvery 
discoloration of the epidermal and sub-epidermal tissues develops in the taproot and 
the lower part of the stem. The best diagnostic symptom is found when the epidermis 
is peeled away from the stem exposing numerous small, black bodies of 
microsclerotia that are frequently produced in the xylem and pith of the stem and 
may block water fl ow.  

    Infection Process 

 The fi rst reports of Mp ( M. phaseolina ) infection process in soybean were made by 
Ammon et al .  ( 1974 ,  1975 ), which were based on scanning electron microscopy 
analyses. They suggested that penetration through soybean cell walls occurred as a 
result of mechanical pressure and/or chemical softening. Ilyas and Sinclair ( 1974 ) 
described the formation of intra- xylem sclerotia in wound-inoculated soybean 
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plants, lacking the characterization of the initial penetration stages. Inside host 
tissues, Mp develops thin hyaline walls, which are presumed to be more permeable 
with increased potential for resource exchange with the host (Barrow and Aaltonen 
 2001 ; Barrow  2003 ). The development of Mp structures with swelled and pigmented 
walls, produced either inter- and intracellularly. These structures, similar to 
appressoria, were previously described as hyphopodia by Howard ( 1997 ). He 
described appressoria as structures that develop from swellings at the tips of conidial 
germ tubes and hyphopodia as structures that arise from mature vegetative hyphae. 
Hyphopodia have been defi ned as structures that allow the spreading of the fungus 
after infection of the plant, and they might enhance penetration or survival (Howard 
 1997 ; Solomon et al.  2006 ). Hyphopodia generally are melanized and deposition of 
melanin, for instance, in the fungal cell wall of appressoria is associated with the 
generation of intracellular turgor pressure that provides the necessary force for plant 
penetration (Money et al.  1998 ). The fungus has been shown to infect cotyledons, 
roots or stems either pre-emergence or post-emergence stages and microsclerotia 
form appressoria over host epidermal cells. The developing hyphae enter and grow 
between the epidermal cells inter- and intracellularly, and attack cells by mechanical 
or enzymatic action. However, the intracellular colonization occurs after lamella 
and cell wall disintegration (Ammon et al.  1974 ). Following epidermal and cortex 
invasion,  M. phaseolina  colonizes the vascular system developing microsclerotia on 
xylem vessels which may lead to their blocking causes wilt symptoms in soybean 
and other hosts (Ilyas and Sinclair  1974 ).  

    Epidemiology 

 The mycelium in the soil is not considered to be a primary source of inoculum 
(Meyer et al.  1974 ), however, the sclerotia serve as the prime sources of inocula 
(Papavizas and Klag  1975 ) for disease initiation. The occurrence of sclerotia in 
plant debris allows the fungus to live in soil, even in the absence of a host for 2 or 
more years, depending on soil conditions (Wantanabe et al.  1970 ). Seed, soil and 
plant remains are the sources of primary inoculum (Reuveni et al.  1983 ) and the 
severity of the disease is directly related to the number of live sclerotia in the soil. 
Under dry soil conditions, the fungus can remain viable as sclerotia for more than 
10 months. Pathogenicity is optimal between 28 and 35 °C (Dhingra and Sinclair 
 1978 ) and host water stress is another principal factor favouring development of the 
disease (Pearson et al.  1984 ; Mayek-Perez et al.  2002 ). In addition, charcoal rot 
incidence is much higher when plants are exposed to prolonged drought and high 
temperature stress during grain development (Tesso et al.  2005 ). Mechanical injury, 
high plant density and insect attacks are considered to be predisposing factors for 
transmission of the disease (Ahmad et al.  1991 ). The severity of infection depends 
on relative humidity, temperature, the nature of the isolate, climatic region and host 
cultivar. In some agricultural systems in which soil is generally low in easily 
available nutrients and consequently poor in microbial biomass, activity and 
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diversity, such as those systems under conventional tillage, the suppression of soil 
borne plant pathogens is more diffi cult to attain (Vargas Gil et al.  2008 ). Almeida 
and co-workers ( 2003 ) reported higher densities of microesclerotia in soybean 
roots, in plots under conventional tillage, and stated that tillage has also been 
considered an important factor in the spread of fungal propagules in soil. Moreover, 
according to those authors, high temperature has also been mentioned as a factor 
that predisposes plants to infection by  M. phaseolina , low soil moisture being the 
most important factor for infection. It is well known that no-till systems are cooler 
than conventional ones, mainly due to the crop residue layer on the soil surface. 
Direct seeded systems do not provide suitable soil conditions for the spread of the 
pathogen and reduce the stress conditions of the plants. Accordingly, a signifi cant 
negative correlation between charcoal rot and water holding capacity but a positive 
correlation between the disease and sand content, which is reasonably considered 
that sandy soils usually retains less water than silty or clayey ones (Perez-Brandán 
et al .   2012 ). Charcoal rot undergoes rapid development under strong water content 
depletion (Pedgaonkar and Mayee  1990 ), therefore, cultivars that show reduced 
water depletion rates and a stable cellular turgor are resistant to charcoal rot (Mayek- 
Perez et al.  2002 ). Besides, the pathogen specialization to the host also seems to be 
related to stem nitrogen composition, and is promoted at low water availability 
(Pearson et al.  1987 ). Infection by nematodes can provide a favourable substrate for 
the development of the fungus by disrupting and damaging the vascular tissues and 
bringing physiological changes, and therefore increasing the severity of charcoal 
rot. Ross ( 1965 ) documented the interaction of  Heterodera glycines  Inchinohe 
(soybean cyst nematode) and  M. phaseolina  separately in disease complexes and 
explained that disruption of vascular tissues resulting from infection by  H. glycines  
increased the susceptibility of the host to water stress. Stress-related nitrogenous 
compounds such as asparagines and prolines are utilized effi ciently by  M. phaseolina  
and this could explain the positive correlation between  H. glycines  and population 
of fungus (Pearson et al.  1987 ) and as a result of interaction with fungi, the 
populations of sedentary nematodes are suppressed (Powell  1971 ). Two season 
soybeans crop or late planting may add greater severity to charcoal rot.  

    Management 

 Plant diseases are considered as an important biotic constraint, where an interaction 
between host, pathogen and the environment occur and leads to signifi cant crop 
losses worldwide. Most plants are immune or completely resistant to almost all 
pathogens. However, owing to co-evolution of host and pathogen, pathogens 
overcome the natural resistance of particular hosts through mechanism of 
specialization under favourable environmental conditions. Therefore, the success of 
any disease management strategy should focus on the host, the pathogen and/or the 
environment. Integrated disease management (IDM), which combines crop 
improvement, biological, cultural, physical and chemical control strategies in a 
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holistic way rather than using a single component strategy proved to be more 
effective and sustainable. Hence, an ‘Integrated Disease Management’ approach 
can be helpful in selection and application of a harmonious range of control 
strategies that would minimize losses and maximize returns. Fields with a history of 
severe charcoal rot should be rotated for 1–2 years with non-host cereal crops. 

 Efforts to manage charcoal rot in soybean through adjusting planting dates, crop 
rotation, planting densities, and irrigation have all been suggested as means of 
control (Mengistu et al.  2007 ) as no commercial resistant soybean variety is yet 
available for effective management of this disease. Managing the population of 
microsclerotia in the soil is the primary management strategy. Avoiding excessive 
seed rates and maintaining adequate soil fertility reduces loss from the diseases by 
maintaining healthy and vigorous plants ecosystem. The best way to avoid issues 
with charcoal rot is to limit drought stress during the reproductive stages of growth 
by managing production systems like no-till that conserve soil moisture may also 
reduce losses by charcoal rot. Planting corn for 3 or more years can decrease disease 
pressure followed by a yearly rotation to keep populations low. Charcoal rot 
exhibited a negative and signifi cant relationship with soil organic matter, total N, K 
and Ca that suggests the soil systems with high levels of biological diversity and 
activity, and with high internal nutrient cycling, such as no-tillage systems, allow 
the development of plants with healthier root systems and can avoid the infection by 
a soil borne pathogen, because this system becomes more resilient to disturbance 
than conventional tillage systems (Perez-Brandán  2012 ). 

 Deshpande and Murumkar ( 2008 ) found a reduction in microbial growth and 
abundance, and at the same time an increase of the pathogen  M. phaseolina , which 
resulted in an increase of root rot in sorghum. High microbial diversity agricultural 
soils have been associated with suppression of soil-borne plant diseases, and this 
kind of suppression may be due to general competition or antagonism, which may 
be non-specifi c and active against a wide range of soil-borne pathogens (van 
Bruggen et al.  2006 ). Patil and Kamble ( 2011 ) examined the effect of UV light on 
the hostile/antagonistic action of  Trichoderma koningii  against  M. phaseolina , 
using fi ve  T. koningii  mutants, and found that  T. koningii 2  showed maximum 
antagonistic activity against the charcoal rot pathogen when tested by dual culture 
method. Seed treatment with  P. fl ourescens  along with soil amendment like mustard 
cake, vermicompost and FYM provided a better protection against  Macrophomina  
root rot of chickpea (Khan and Gangopadhyay  2008 ). Similarly, soil application of 
ZnSO 4  followed by combined application of  T. viride  + ZnSO 4  signifi cantly reduced 
root rot incidence (Sundaravadana  2002 ). Almeida and co-workers ( 2003 ) stress 
that alternative control practices of charcoal rot could be the modifi cation of the soil 
environment, which would favour antagonists interfering with the biology or 
survival of the pathogen. The analysis of the fungal and bacterial sequences detected 
in DS (Direct seeded) treatment showed that the most frequently found fungi are 
effective biological control agents of plant pathogens (Perez-Brandán et al.  2012 ). 
 Plectosphaerella cucumerina  and  Paecilomyces marquandii  are nematophagous 
fungi (Atkins et al.  2003 ), and  Bionectria ochroleuca  is a mycoparasite (Chaverri 
et al.  2011 ) were recorded under no-till soil. In addition, the most frequent bacterial 
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clone detected is also related to plant protection, such as  Bradyrhizobium  sp., 
inducing effective systemic resistance and protecting the host plant against pathogen 
attacks (Cartieaux et al.  2008 ). Studies in various pathosystems indicate that auxin 
signalling is required for host resistance against some necrotrophs, whereas for 
pathogenic bacteria and biotrophic and hemibitrophic fungi, auxin signalling 
promotes susceptibility (Karzan and Manners  2009 ). Auxin is a plant hormone that 
is involved in many aspects of plant development, and the cross talk between auxin 
with other plant hormones such as JA and SA is important for balancing plant 
growth versus defense (Wang et al.  2007 ; Bari and Jones  2009 ). These hormones 
trigger the activation of induced systemic resistance and systemic acquired resistance 
(SAR) to necrotrophic pathogens (Fey and Parker  2000 ; Glazebrooki  2005 ). The 
SAR is an effective defense mechanism against a broad range of pathogens and 
insects incurred by host. Genes involved in SA response such as hydroxyl-2-methyl- 
2(E) butenyl 4-diphosphate. HopW1-1- Interacting protein 1 (WIN1) were identifi ed 
(Lee et al.  2008 ). The SA pathway, which is considered one of the major pathways 
involved in defense against necrotrophic pathogens, regulates the expression of 
defense defector genes and systemic acquired resistance through the repression of 
the auxin signaling pathway (Gill et al.  2005 ). Another hormone that seems to play 
a role in the resistance of stem rot is abscissa acid (ABA). While ABA was described 
as a susceptibility factor, other studies (Wiese et al.  2004 ) showed that it activates 
plant defense by priming for callose deposition or by restricting the progression of 
the fungus  Cochliobolus miyabeanus  in the mesophyll of rice (De Vleesschauwer 
et al .   2010 ). Other signaling genes involved in SAR that induce numerous defense 
genes included apoplectic lipid transfer protein, basic chitinase etc. (Zander et al .  
 2010 ). The third category of genes with stem rot tissues includes genes involved in 
early response as part of the HR. Among these are transcripts encoding proteins 
such as ATPase transporter, kinases, carbonic anhydrase, AMMECR1, MIPS1, 
voltage-dependent anion channel, 2-deoxy-D-arabinoheptulosonate 7-phosonate 
(DAHP) synthase and glutathione peroxidase that were reported previously to be 
involved in the hypersensitivity resistance (HR) and cell death in plants under 
pathogenic attack (La Camera et al .   2009 ). Reactive oxygen species (ROS) seems to 
be induced following  M. phaseolina  infection as several genes involved in oxidative 
stress (alpha-dioxygenase, fumarase, cytosolic GADPH (C subunit), cytosolic 
ascorbate peroxidase APX1) had more abundant transcripts. Furthermore, several 
pathogenesis related (PR) genes such as elicitor activated gene 3-1 (EL13), aromatic 
alcohol: NADP+ oxidoreductase, thaumain, pathogenesis-related and antifungal 
chitin binding protein had differentially abundant transcripts in diseased versus 
healthy tissues (Biswas et al .   2014 ). PR proteins, of which some have antimicrobial 
functions (Sels et al.  2008 ) are mainly induced in localized pathogen attack around 
HR lesion. 

 Sinclair ( 1989 ) examined the effect of thermotherapy on the growth of seed- 
borne fungi in soybean by immersing infected seeds in heated palm, sunfl ower and 
soybean oil as a means of eliminating seed-borne fungi. Glyphosate 
(N-[phosphonomethyl]glycine) application on glyphosate-resistant crops has been 
shown to enhance and in a few cases reduce severity (Johal and Huber  2009 ) of 

Vibha



201

selected soybean diseases. Shahda et al .  ( 1991 ) studied the in-vitro effect of certain 
fungicides such as Benlate T, 2-(4-thiazolyl)-1H-benzimidazole (Thiabendazole), N 
trichtoromethylthio–cyclohexene-1,2-dicarboximide (Captan 75), 5,6-dihydro-2- 
methyl-N-phenyl-1, 4-oxathiin-3-carboxamide and tetramethylthiuram disulfi de 
(Vitavax 200), 5,6-dihydro-2 methyl-Nphenyl-1,4-oxathiin-3-carboxamide and 
N-trichtoromethylthio– cyclohexene-1,2-dicarboximide (Vitavax 300), on mycelial 
growth of seed-borne fungi of sunfl ower and 5,6-dihydro-2-methyl-N-phenyl- 
1,4-oxathiin-3-carboxamide and tetramethylthiuram disulfi de (Vitavax 200) was 
found to be most effective for  M. phaseolina.  Moreover, Brooker et al .  ( 2007 ) 
screened six derivatives of coumarin, for their antifungal activity against  M. 
phaseolina  and  Pythium  species and observed that these derivatives have higher 
antifungal activities and stability as compared with either the original coumarin or 
sesamol compounds alone.  

    Conclusion 

 During the last fi ve decades, extensive progress has been made by researchers in 
areas of etiology, epidemiology, biology and biocontrol of the ascomycete fungus 
 M. phaseolina . Charcoal rot epidemics are common under stress conditions such as 
water scarcity and other biotic and abiotic stresses. The basic knowledge of the 
biology of  M. phaseolina  has provided the foundation for developing sustainable 
strategies to control the disease. Efforts are needed to develop a biocontrol 
technology for practical use in the management of charcoal rot diseases. In addition, 
it has become increasingly clear that among integrating several effective control 
methods, breeding and biological control methods, could be the best strategy for 
managing this important disease. Compared with major technological, 
environmental, and socioeconomic changes affecting agricultural production during 
next century, climate change may be more important; it will however, add another 
layer of complexity and uncertainty onto a system that is already exceeding diffi culty 
to manage on a sustainable basis. Research on climate change and its interaction 
with pathogenically different isolates from different geographical regions of  M. 
phaseolina  could result in improved understanding and management of pathogen in 
face of current and future climate extremes.     
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       Colletotrichum gloeosporioides : 
Pathogen of Anthracnose Disease in Mango 
( Mangifera indica  L.)                     

       Madhu     Kamle      and     Pradeep     Kumar   

          Introduction 

 The mango ( Mangifera indica  L.) world-wide well known for its excellent exotic 
fl avor and commonly referred as the “King of fruits.” Mango is a dicotyledonous 
fruit tree belongs to order sapindales in the family  Anacardiaceae.  It grows 
throughout the tropical and subtropical countries and regarded as one of the world’s 
most important edible fruit crops. Mango fruit is popular in the international market 
for its strong aroma, intense peel coloration, delicious taste, excellent fl avor, 
attractive fragrance, beautiful colour and high nutritional values (Tharanathan et al. 
 2006 ). The consumption of mangoes can provide signifi cant amount of bioactive 
compounds with antioxidant activity. The top fi ve prominent mango producing 
countries include India, China, Thailand, Pakistan and Mexico. India is the leading 
country in Mango production. Unfortunately, production of mango rigorously 
experience inconsistent fruit maturity, ripening variability and causes huge pre and 
post-harvest economic losses. Anthracnose disease caused by  Colletotrichum 
gloeosporioides  is the most serious biological constraint to mango production. It 
delivers generous losses to young shoots, fl owers and fruits under favorable 
conditions with high humidity, frequent rains and temperature ranges from 24 to 
32 °C. Anthracnose causes about 30–60 % damage and sometimes increased up to 
100 % in fruit produced under wet or very humid conditions. It contributes 
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signifi cantly to pre-harvest and post-harvest losses in mango and other fruit crops 
such as cashew, pomegranate, guava, acid lime and papaya. It is also revealed 
commonly as Bird’s eye disease (leaf spot), blossom blight or fruit rot (Prakash 
et al.  1996 ).  

     Colletotrichum gloeosporioides  Penz.: The Pathogen 

 The ubiquitous fi lamentous fungus  Colletotrichum gloeosporioides  Penz. belongs 
to order melanoconiales. The pathogen is widely distributed and the anamorph stage 
(asexual stage of the pathogenic fungus) causes anthracnose disease in mango 
(Prakash et al.  1996 ; Fitzell and Peak  1984 ; Jefferies et al.  1990 ) and other major 
tropical and sub-tropical fruit crops (Prusky  1996 ).  Colletotrichum  exists in two 
stages, mostly observed in the vegetative (asexual) stage and the perfect (sexual) 
stage  Glomerulla cingulata  rarely identifi ed for most species (Alahakoon et al. 
 1994 ). In general, the sexual stage is liable for the presence and absence of genetic 
variability and asexual anamorph stage is for fungal spore dispersal. Sexual 
reproduction is complex phenomenon in  Glomerella  than other fi lamentous 
ascomycete fungi.  

    Morphology 

 The morphology of the  Colletotrichum  described by (Palo  1932 ; Vaillancourt et al. 
 2000 ) the spore of  C. gloeosporioides  to be 8.3–27.4 μm in length and 2.0–6.6 μm 
in width (mean 14.2 × 4.4 μm). The acervuli is highly variable in size and upon 
maturation exude pink masses of conidia under moist conditions (Palo  1932 ). The 
acervuli measure 115–467 × 95–22 μm (Bose et al.  1973 ), 80–250 μm. The conidia 
are borne on distinct, well-developed hyaline conidiophores. The conidia are 
straight, cylindrical or oval, 8–20 × 5–7 μm hyaline and size varies from 11 to 
16 × 4–6 μm (Sattar and Malik  1939 ). Bose et al.  1973  reported conidia 11.9–
17.0 × 3.6–5.8 μm. (mean 13.8 × 4.8 μm) broad, oblong with rounded ends, 11.1–
17.7 × 3.1–5.0 μm. (mean 14.0 × 3.7 μm) for  C. gloeosporioides . The hyphae of the 
 C. gloeosporioides  are hyaline, septate, full of oil globules and both inter and intra 
cellular (Fig.  1 ).

       Symptomatology 

 The anthracnose disease symptoms visible on ripe-fruits, young leaves, twigs, peti-
oles and infl orescence (panicles). The main source of infection are dead leaves entan-
gled in the tree canopy, defoliated branch terminals, mummifi ed panicles, fruits and 
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bracts. In mango orchards, conidia spread by means of irrigation and light rain, heavy 
dew, rainy season being conducive to conidia production, dispersal and infection 
(Simmonds  1965 ). The blossom as well as peduncle blight is the most destructive 
phase of this disease, as it affects fruit set and ultimately the yield. Ripe fruits affect 
most signifi cant and develop sunken, prominent, dark brown to black decay spots 
post-harvest. Fruits may drop from trees prematurely. The fruit spots typically do 
coalesce and ultimately penetrate deep into the fruit, resulting in extensive fruit rot-
ting. Most green fruit infections remain dormant and largely invisible until ripening. 
The fi rst symptoms on panicles are small black or dark- brown spots, which then 
enlarge, coalesce and destroy the fl owers before fruit-set and results signifi cant yield 
loss. Stems petioles and twigs are also susceptible to anthracnose and develop the 
typical black, expanding lesions found on leaves, fl owers and fruits (Fig.  2 ).

   Second symptoms type on fruits consists of a “tear stain” symptom that shows 
linear necrotic regions on the fruit that may or may not be associated with superfi cial 
cracking of the epidermal layer and gives an “alligator-skin” effect. These cracks 
sometimes develops into deep cracks extend towards pulp. Lessons on stems, fruits 
may produce conspicuous, pinkish-orange spore masses under wet, humid condi-
tions and warm weather conditions favor post-harvest anthracnose development. On 
leaves, lesions start as small, angular, brown-black spots that can expand to form 
widespread dead areas. Necrosis manifests across or between leaf veins on leaf mar-
gins and at tips mainly and lesions may drop out of leaves during dry weather.  

     Colletotrichum gloeosporioides  Biology of Infection 

  C. gloeosporioides  causing anthracnose disease and grounds huge economic losses 
of mango fruits all over the world. The interaction between pathogen  Colletotrichum  
and host mango fruit is a complex phenomenon. The pathogen is present at the 

a b

  Fig. 1    ( a )  Colletotrichum gloeosporioides  culture in medium ( b ) spore       
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surface in quiescent stage and with the onset of favorable climatic conditions the 
pathogen causes infection. The infection starts when the conidia that resides on the 
surface of mango fruit adheres and germinates to produce a germ-tube that forms 
terminal appresorium. Then, an infection peg develops which penetrate inside the 
outer layer and cuticle of the skin of fruit. During this stage of quiescence, due to 
presence of some antifungal compounds in the exocarp of unripe fruits called as 
dienes, the pathogen is unable to progress colonization (Prusky and Lichter  2007 ) 
In actual, this is the hemibiotrophic stage where the pathogen remains in quiescence 
stage and changes into necrotrophic (tissue disintegration) stage with the onset of 
fruit ripening. Fruit ripening, results into the loss of dienes with the resumption of 

a b

c d

  Fig. 2    Symptoms of anthracnose disease caused by  Colletotrichum gloeosporioides  in mango 
( a ) Panicles ( b ) twig ( c ) leaves showing Bird’s eye spots and ( d ) sunken  dark brown-black  spots 
on mango ripe fruit       
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pathogen growth and disease progression. Infection peg penetrates through the 
epidermal cell wall of the lumen of the cells that results in maceration and cell 
death. Production of cell wall degrading enzymes pectate lyase coupled with the 
transition of  Colletotrichum  from hemibiotrophic stage to necrotrophic attack 
(Prusky and Keen  1993 ) and causes anthracnose disease.  

    Epidemiology 

 The optimum temperature for conidial germination and infection is around 25–30 °C 
when free moisture is available. There is considerable variation in optimum 
temperature for germination and appressoria formation among the isolates of  C. 
gloeosporioides  from different locations. The injury caused by the anthracnose 
pathogen is dependent on humidity, rain, misty condition or heavy dews at the time 
of blossoming. Continuous wet weather during fl owering causes serious blossom 
blight. Relative humidity above 95 % for 12 h. is essential for infection and 
development of C.  gloeosporioides  on mango fruit. Infection progresses faster in 
wounded tissues, ripe fruits and spread by rain splashing and irrigation.  

    Life Cycle of  Colletotrichum gloeosporioides  in Mango 

  Colletotrichum gloeosporioides  display a range of nutritional strategies and 
lifestyles, including plant associations that occupy a continuum from necrotrophy to 
hemibiotrophy and endophytism. During the anamorph (asexual) stage the pathogen 
is typically haploid and becomes diploid during transition towards teleomorph 
(sexual) stage. 

    The Life Cycle of  Colletotrichum  on Mango Fruits 
Divide into Three Distinct Phases 

  Phase I: Dissemination : The  Colletotrichum gloeosporioides  spores in the form of 
conidia are colonizes to dead twigs and injured plant tissues. Conidia can disperse 
over relatively short distances passively by rain splashing and irrigation. 
  Phase II: Pathogen Inoculation : The ascospore are airborne and travel up to long 
distances and lands on infection sites like panicles, infl orescence, twigs, terminal 
branches, leaves and fruits. 
  Phase III: Pathogen Infection and reproduction : On the young unripe fruits, 
leaves and panicles, the conidia starts germinate to produce appressoria and pene-
trate through the cuticle and epidermis to ramify through the tissues cause quiescent 
infection. The quiescent infection lead to tissue necrosis and tissue is subsequently 
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colonized, acervuli are formed and thus pathogen completes its life cycle. The dis-
ease cycle of pathogen becomes polycyclic when conidia continues to multiply on 
many organs during the entire season and the pathogen survived on the dead leaves 
and defoliated branch terminals. 

  Disease occurrence : Fruits with quiescent infection remains asymptomatic 
before harvesting. Once the climacteric period of the fruit starts, lesions began to 
develop. The black-brown sunken spots that gradually darkens and enlarges to form 
a concentric ring pattern on the affected area. There is generally no fruit to fruit 
infection, hence the post-harvest anthracnose is monocyclic. However, in case of 
pre-harvest mango anthracnose disease, the developing fruits are infected in the 
fi eld with some virulent and pathogenic isolates that causes pre-harvest losses 
(Coates et al.  1993 ) (Fig.  3 ).
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  Fig. 3    Anthracnose disease cycle in mango ( Mangifera indica  L.) (Source: Arauz ( 2000 ))       
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        Integrated Disease Management (IDM) 

 The management of tree fruit diseases depends on the level of disease itself, envi-
ronmental conditions, effective cultural manipulations and knowledge of pathogens, 
sensitivity to fungicides and proper selection and timing of fungicidal sprays. The 
accurate identifi cation and early detection of plant pathogens are the cornerstones of 
successful disease management. Control and effective management of mango 
anthracnose disease consists fi ve major approaches:

    1.     Resistant varieties : Resistance is defi ned as an incompatible interaction between 
host and pathogen. The resistant has not been consistently used as a means of con-
trol of mango anthracnose. Because of variability in the presence and occurrence of 
virulent isolates and cultivars to the disease from one to another location. Although 
mostly all cultivars are susceptible to mango anthracnose but, some less susceptible 
and resistant cultivars include Tommy Atkins, Van Dyke, Alphonso, Baramasi, 
Carabao, Carrie early gold, Kent, Kishan Bhog, Rad and Saigon are resistant to 
infection caused by  Colletotrichum gloeosporioides  (Gantotti and Davis  1993 ).   

   2.     Cultural Practices in the fi eld 

    (a)     Pruning : Pruning of trees on yearly basis and always remove dead and 
fallen leaves, debris and burnt from the ground area near mango tree. Plant 
vigour plays an important role in keeping the plants free from twig and 
fl ower infection. Therefore, proper irrigation and fertilizer application are 
essential to maintain the tree vigour.   

   (b)     Intercropping : Inter-planting mango trees with other plants that are non- 
hosts of mango anthracnose will lead to avoid chances of epidemics.    

      3.     Fungicide Spray : Fungicides spray involves chemical method and was not rec-
ommended in rainy season. Fungicides spray applied at the interval of 14–28 days 
in the orchards effective control measure. Spraying twice with Carbendazirn 
(Bavistin 0.1 %) at 15 days interval during fl owering controls blossom infection. 
In general, copper fungicides are used to control pre-harvest anthracnose. 
Spraying of copper fungicides (0.3 %) is recommended for the control of foliar 
infection. Mancozeb, a dithiocarbamate fungicide is highly effective for the con-
trol of anthracnose (Dinh et al.  2003 ). Mancozeb is a contact fungicide and thus 
required to be applied at shorter intervals to achieve same results as systemic 
fungicides. Plocloraz can be used effectively when weather condition is favor-
able to  C. gloeosporioides .   

   4.     Post-Harvest treatments : The major strategy for effective management of 
post- harvest mango anthracnose disease is regular planned fungicide sprays and 
hot water treatment after harvest may reduce anthracnose. Anthracnose could 
be controlled by dip treatment of fruits in (0.1 %) Carbendazim in hot water at 
52 °C for 15 min have been recommended for export quality mangoes. Cultivars 
also vary in their tolerance to the hot water and temperature treatments should 
never exceed 55 °C for 5 min. Hot water treatment (HWT) as a decay control 
treatment is applied commercially in few countries due to its effi cacy. Bagging 
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of mango fruit before harvest and post-harvest treatment for 10 min in HWT 
(52–55 °C) was reported to reduce anthracnose infection successfully by 83 %. 
The temperature and duration of the treatment depend on the size or weight of 
the fruit, stage of maturity, cultivar type growing conditions and intensity of 
disease severity. It is recommended that fruit subjected to HWT within 24 h 
after harvest (Arauz  2000 ). HWT technology is widely acceptable due to 
increased profi t and lower damage cause and high market value of fruit. This 
technology is consumer friendly, easy accessible and adopted frequently by 
farmers also due to its environment friendly approach (Arauz  2000 ).   

   5.     Irradiation and fruit quality : Irradiation is recommended as quarantine or phy-
tosanitary treatments. The purpose of irradiation is to kill or to sterilize microbes 
or insects by damaging their DNA. According to FDA the approved dosage for 
irradiation treatments on fresh produce is 1 KGy (100 krad). However, 1 KGy may 
not effective to kill the microbes and such high doses may affect negatively the 
fruit quality. Generally, gamma rays (from Co 60 ) are used for food irradiation 
because they can penetrate deeply into the pallet loads of the fruit. The effective-
ness of irradiation on mango fruit quality depends upon the irradiation dose, culti-
var and fruit maturity stage (Aveno and Orden  2004 ). Although incidence of 
anthracnose during storage was reduced with irradiation doses up to 600 Gy 
(Johnson et al.  1990 ). One kilogray failed to provide a complete control of anthrac-
nose in mangoes. However, integrated treatments using a dose of 750 Gy with 
HWT at 40 °C for 20 min or 50 °C for 5 min’ was effective in controlling anthrac-
nose (Mitcham and Yahia  2009 ).   

   6.     Disease Predictive Model:  Two predictive models based on temperature and 
moisture requirement for infection on mango by  C. gloeosporioides  have been 
developed. These models are the basis of two forecasting systems for mango 
anthracnose that is employed in the fi eld during fungicides application. In 
Australia, Fitzell (Prakash et al.  1996 ) studied the requirements of temperature 
and wetness duration for production of dark appressoria form conidia applied to 
detached young mango leaves under laboratory conditions. Similar system 
developed in Philippines based on the studies by Dodd and his coworkers (Fitzell 
 1979 ). It differs from the Australian system and tested under fi eld conditions for 
the control of post-harvest anthracnose in the Philippines. Benomyl, Prochloraz 
(both at the rate of 0.47 mg/ml), or triforinge (0.375 mg/ml) was applied follow-
ing a predicted infection period with a threshold of 40 % of conidia forming dark 
appressoria. One time application of benomyl or Prochloraz was as effective as 
six calendar based sprays of either fungicide (Dodd et al.  1991 ).      

    Molecular Identifi cation and Characterizations 

 The morphological identifi cation of  Colletotrichum  is often diffi cult and time- consuming 
and requires expertise. Molecular approaches based detection techniques are more effi -
cient and accurate. ITS region considered as the primary fungal barcode marker for 
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various reasons, including pragmatism – the number of existing fungal ITS sequences is 
far greater than that for any other gene and consider as Gold- standard for fungal identi-
fi cation and characterization. Many other genes/gene fragments have been used for 
diagnostic purposes in the Fungi, especially beta- tubulin (TUB2) and calmodulin for 
e.g.  Aspergillus  and  Penicillium  (Estrada et al.  1996 ; Samson et al.  2007 ; Peterson 
 1986 ), TEF1 for  Fusarium  (Houbraken et al.  2011 ; Geiser et al.  2004 ) and COX1 
 Penicillium  (O’Donnell et al.  2009 ). Most of them currently used for phylogenetic anal-
ysis in  Colletotrichum  causing mango anthracnose disease. Mango anthracnose in India 
was reported to be caused by “ C. gloeosporioides ”, based on either morphology or ITS 
gene-sequence data (Seifert et al.  2007 ; Kumar et al.  2007 ; Sangeetha and Rawal  2009 ; 
Gupta et al.  2010 ; Laxmi et al.  2011 ; Kamle et al.  2013a ) and recently using multi-locus 
sequence-data (ITS and tub2) (Kamle et al.  2013b ). Multigene-based molecular charac-
terization and sequence phylogenetic studies may confi rm the  Colletotrichum  species 
associated with mango anthracnose disease. However, until now the dominant causal 
agent responsible for anthracnose or leaf spot disease in India is  C. gloeosporioides.  The 
 C. gloeosporioides  species complex involved morphological similar species but, totally 
different on genetically as referred by Cai (Freeman et al.  1998 ; Cai et al.  2009 ).  

     Colletotrichum  MAT Genes 

 Fungal species that reproduce sexually can often be classifi ed as either self-fertile 
(homothallic), or self-sterile (heterothallic). Based on extensive studies on genetics 
of mating system in  Glomerella cingulata  concluded that heterothallism obtained 
from homothallism through mutations in genes controlling steps in the morphoge-
netic pathway necessary for self-fertility (Johnson et al.  1990 ). Sexual reproduction 
is rarely documented from genus  Colletotrichum . The genetics underlying the mat-
ing system in  Colletotrichum  are perplexing, fungi in this genus do not employ the 
canonical bipolar mating system characteristic of other ascomycete fungi (Wheeler 
 1954 ; Vaillancourt and Hanau  1992 ). In general, the bipolar model described to regu-
late sexual compatibility, that mating occurs when both idiomorph of mating type 
gene Mat 1 (Mat 1-1 and Mat 1-2) are present. However, till now only Mat 1-2 idio-
morph with characteristic conserved high mobility group (HMG) binding domain is 
found in  Colletotrichum  (Vaillancourt et al.  2000 ).  Colletotrichum  species are also 
extensively studied as model organisms for research into genetics. This work has a 
long history; the fi rst investigation into mating types in  Glomerella  was published a 
century ago (Martínez-Culebras et al.  2003 ; Edgerton  1912 ) and genetic mechanisms 
in  G. cingulata  were extensively studied in the 1940s and 1950s (Johnson et al.  1990 ; 
Edgerton  1914 ; Andes  1941 ; Lucas et al.  1944 ). Later, the phylogenetic diversity of 
the  C. gloeosporioides  species complex associated with  mangifera indica  from India 
based on the six-gene markers (Olive  1951 ). However, few research groups claimed 
 ApMat  marker provides better resolution as compared to the gene-markers to resolve 
the species identifi cation issues in the  C. gloeosporioides  species complex (Weir 
et al.  2012 ; Silva et al.  2012 ; Doyle et al.  2013 ).  
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     Colletotrichum  Genomics and Transcriptomics 

  C. gloeosporioides  is a notorious and destructive plant pathogen that exists as 
endophytes with mango and during favorable conditions cause anthracnose dis-
ease symptoms. With the availability of whole genome sequences of 
 Colletotrichum  in other hosts that enabled an idea of comparative transcriptome 
analysis at different stages of hemibiotrophic infection. The whole genome 
sequencing of mango anthracnose pathogen were used to investigate the gene 
–expression during the three growth stages of  C. gloeosporioides.  The deep 
sequencing at the three stages of development in anthracnose disease in mango 
are likely to be performed at (1) prepenetration (appressoria), (2) biotrophic 
hyphae and (3) necrotrophic stage (tissue damage) (Sharma et al.  2013 ). By 
exploring the transcriptomics approach we can demonstrate the factors affecting 
and set of genes responsible for the transition lifestyle of  C. gloeosporioides  
stage from biotrophic to necrotrophic and then again to biotrophic. The tran-
scriptomic analysis demonstrate the massive set of gene- expression underlying 
the developmental transition that occur in planta, from spore germination to 
necrotrophic (O’Connell et al.  2012 ). Thus, the lifestyle switch to necrotrophic 
stage is characterized by a considerable shift in fungal gene expression, with 
activation of large number of genes encoding enzymes and membrane trans-
porter. To understand the signals transduction mechanism involved in activation 
of transition of lifestyle from biotrophic to necrotrophic mode during the fruit 
ripening which are yet an enigma.  

    Future Perspectives 

 Mango anthracnose disease caused by  Colletotrichum gloeosporioides  is one the 
most severe post-harvest disease caused in mango. The disease does not refl ect 
any prior symptoms as the pathogen exist in the quiescent stage and with the onset 
of fruit ripening the disease progresses and caused serious losses especially dur-
ing storage. The successful disease management practices with implementation of 
advanced integrated disease management practices proved effective. With the 
advances in genomics and transcriptomics sequence analysis in future there would 
be more new vistas in exploring molecular mechanism of disease occurrence. 
How certain signal molecules activated and leads to change of lifestyle from bio-
trophic to necrotrophic stage during ripening. To elucidate the signaling pathways 
involved in mango –  Colletotrichum  interaction. To unravel the molecules involved 
in disease incidence and then implication of certain genes towards genetic engi-
neering to make future mango fruit resistant to anthracnose. By bringing geneti-
cally, improved anthracnose resistant mango will explore the markets in tropical 
and subtropical countries where the disease prevalence is extreme.     
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          Introduction 

 Mango is regarded as the king of fruits in India; it has been cultivated for at least 
4,000 years and has a great cultural and religious signifi cance (Popenoe  1932 ; 
Purseglove  1972 ). Mango is an important commercial crop (Purseglove  1972 ) that 
currently ranks fi fth among the major fruits cultivated worldwide (FAOSTAT  2013 ). 
Mango is cultivated commercially throughout the tropics and in many subtropical 
regions (Mukerjee and Litz  2009 ). India’s contribution to the world’s mango 
production is highest i.e., 18,431,300 mt from 2,516,000 ha and about 41280.01 mt 
of mango is exported of approx. value of 50.26 million USD with the productivity 
7.3 mt/ha (National Horticulture Database 2014). Several factors affecting the 
mango production in India in which mango malformation is one of the major 
constrain. Flowering responses of mango differ signifi cantly in tropical as opposed 
to subtropical environments. In the tropics, fl owering can be induced chemically, 
while in the subtropics stimulation is ineffective and is primarily governed by 
chilling temperatures (Iyer and Schnell  2009 ). Mango malformation disease is one 
of the most important and destructive diseases of this crop (Kumar et al.  2011a ; Litz 
 2009 ; Ploetz  2001 ). It affects vegetative and fl oral part of the plant. Although trees 
are not killed, the vegetative phase of the disease impedes canopy development and 
the fl oral phase reduces fruit yield dramatically; substantial economic losses can 
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occur since malformed infl orescences do not bear fruit. Mango malformation fi rst 
reported in India in 1981 from Darbhanga district of Bihar state. Later it has been 
also observed in Australia, Brazil, China, Egypt, El Salvador, India, Israel, Malaysia, 
Mexico, Myanmar, Nicaragua, Oman, Pakistan, Senegal, South Africa, Spain, Sri 
Lanka, Sudan, Swaziland, Uganda, and the United States (Anonymous  2013 ; 
Bastawros  1996 ; Crookes and Rijkenberg  1985 ; Freeman et al.  1999 ; Goldman 
et al.  1976 ; Kumar and Beniwal  1991 ; Kvas et al.  2008 ; Lim and Khoo  1985 ; Lima 
et al.  2008 ; Marasas et al.  2006 ; Nor et al.  2013 ; Otero-Colina et al.  2010 ; Rodríguez- 
Alvarado et al.  2013 ; Senghor et al.  2012 ; Sinniah et al.  2013 ; Zhan et al.  2012 ). In 
India, this problem is more acute in north-west regions including Jammu than the 
north-eastern and southern India (Chib et al.  1984 ; Varma et al.  1974a ). The incident 
of disease also reported from different states of India mainly in Maharastra, Gujrat, 
Uttar Pradesh, Punjab, Jammu and Kashmir, Delhi, Bihar, Madhya Pradesh, 
Himachal Pradesh, Haryana and Andhra Pradesh (Kumar et al.  2011b ). Thus, 
mango malformation has now become a national problem affecting production in 
almost all of the mango growing areas of the country. Malformation causes heavy 
damage to the trees as the infl orescence fails to produce fruits. The extent of damage 
varies from 50 to 60 % in some cases and in severe cases the loss may be up to 
100 % (Misra and Singh  2002 ).  

    Symptom of Malformation 

 Broadly three distinct types of symptoms were described by various workers. These 
are bunchy top of seedlings, vegetative malformation and fl oral malformation. 
Later, these were grouped under two broad categories i.e. vegetative and fl oral mal-
formation (Varma  1983 ) (Fig.  1 ). This affects vegetative and fl oral meristematic 
tissues (Chakrabarti  2011 ; Ploetz  2001 ). Vegetative malformation is most serious on 
seedlings and young trees in nurseries, especially where seedlings are grown 
beneath the canopies of affected trees (Ploetz et al.  2002 ; Youssef et al.  2007 ), but it 
also occurs on mature trees. The seedlings produce small shootlets bearing small 
scaly leaves with a bunch like appearance on the shoot apex. The multi-branching 
of shoot apex with scaly leaves is known as “Bunchy Top”, also referred to as 
‘Witche’s Broom” (Bhatnagar and Beniwal  1977 ). Seedling affected in early stages 
are remain stunted and die while, those infected in later stage resume normal growth 
above the malformed area (Kumar and Beniwal  1992 ).

   Floral malformation is most important economically since affected infl ores-
cences usually do not set fruit (Kumar et al. 1991; Youssef et al.  2007 ; Ploetz and 
Freeman  2009 ). The primary, secondary and tertiary rachises become short, thick-
ened and hypertrophied. Such panicles are greener and heavier with increased 
crowded branching. Malformed panicles produce up to three times the normal num-
ber of fl owers, which range from one-half to two times the normal size, and have an 
increased proportion of male to perfect fl owers that are either sterile or eventually 
abort (Haggag et al.  2011 ). Malformed panicles may also produce dwarfed and 
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distorted leaves (phyllody). Both healthy and malformed fl owers appear on the 
same panicle or on the same shoot. The severity of malformation may vary on the 
same shoot from light to medium or heavy malformation of panicles (Varma et al. 
 1969 ). The heavily malformed panicles are compact and overcrowded due to larger 
fl owers. They continue to grow and remain as black masses of dry tissue during 
summer but some of them continue to grow till the next season. 

 On the basis of compactness of panicles, malformed panicles are classifi ed into 
different groups viz., heavy, medium and light (Varma et al.  1969 ; Majumder and 
Sinha  1972a ); compact malformed panicle, elongated malformed panicle and slight 
malformed panicle (Rajan  1986 ) and small compact type and loose type (Kumar 
et al.  1993 ). Sometimes, a shoot tip may bear both types of panicles i.e. healthy as 
well as malformed. Less frequently, a healthy panicle may contain one or more 
malformed branches of a few malformed fl owers or vice-versa. These partially 
infected panicles may bear fruits up to maturity (Kumar et al.  1993 ).  

a b

c d

  Fig. 1    Schematic representation of mango malformation disease symptom and pathogen 
( a ) Healthy Infl orescence ( b ) malformed affected infl orescence ( c ) Healthy vegetative tissue 
( d ) malformed affected vegetative tissue       
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    Susceptibility of Cultivars for Malformation 

 The susceptibility to malformation in mango varieties is variable and is governed by 
the different factors viz. temperature, age of the tree, time, etc. Wide ranges in 
susceptibility have been reported for different mango cultivars (Kumar and Beniwal 
 1991 ). However, cv. Amrapalli was found highly susceptible to mango malformation 
particularly in Delhi regions and north India (Yadava and Singh  1995 ). In general, 
late blooming varieties are less susceptible to malformation than the early blooming 
ones (Khurana and Gupta  1973 ). The level of polyphenol oxidase (PPO) in the early 
years of plant growth or in the fl ush of vegetative growth may provide an estimate 
of synthesis of phenolic compounds in the plants, which may be correlated to 
susceptibility or resistance to fl oral malformation (Sharma et al.  1994 ). The disease 
is serious in the north-west region where temperature lie from 10 to 150 C during 
December–January (winter) before fl owering. Age of the fl owering shoot also 
infl uences the incidence of fl oral malformation, as reported by Varma ( 1983 ). Misra 
et al. ( 2000 ) reported cv. Ellaichi as free from malformation and is now been used 
in breeding programme. Ewais’, a popular cultivar in Egypt, was reported to be 
moderately susceptible to malformation (Bastawros  1996 ), but of low and high 
susceptibility in two other references (Chakrabarti  2011 ; Ploetz and Freeman  2009 ). 
Bastawros ( 1996 ) reported 0 % disease to ‘Kent’ and ‘Keitt’, however Freeman 
et al. ( 1999 ) reported that both are prone to natural and artifi cial inoculation 
malformation According to Bastawros ( 1996 ), two newly introduced cultivars in 
Egypt, ‘Kent’ and ‘Keitt’, were immune (0 % disease), even though they are 
susceptible to natural and artifi cial inoculation in other places. Cultivars listed as 
“resistant” may have been established from pathogen-free nursery stock or may 
have escaped infection once planted in the fi eld (Ploetz  2001 ).  

    Etiology and  Epideniology 

 The etiology of fl oral malformation in mango has always been controversial. 
However, the evidence of association of fungal pathogen(s), virus and mite has been 
suggested by various workers. 

    Role of Mites in Malformation 

 In India, Narasimhan ( 1954 ) for the fi rst time claimed eriophyid mite to be the dis-
ease causing organism and found it inter and intracellularly in the meristem and 
tender regions (Narasimhan  1959 ). Mites were found to induce the disease in test 
plants when transfered from diseased (Singh et al.  1961 ) or even from healthy 
plants. Nariani and Seth ( 1962 ) successfully induced the disease on young seedlings 
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by introduction of eriophyid mites but it was not certain whether these mites were 
vectors of some pathogen or is a direct cause. Sternlicht and Goldenberg ( 1976 ) 
advocated that Aceria mangiferae has no direct effect on infl orescence malformation, 
but it’s interaction with another biotic factor (a fungus) is not ruled out. In Egypt, 
Wabha et al. ( 1986 ) suggested that A. mangiferae does not cause the malady directly 
but may play a role in the overall malformation process. Labuschang et al. ( 1993 ) 
could not correlate that presence of mites and increase in the incidence of 
malformation. However, role of mite as a carrier of fungus ( Fusarium  monilifome 
var. sublgutinans) was advocated by Summanwar ( 1967 ), Summanwar and 
Raychoudhury ( 1968 ) and Pinkas and Gazit ( 1992 ). The pathogen was previously 
recovered from the mite on culture media (Crookes and Rijkenberg  1985 ), and was 
recently shown to adhere to its body (Gamliel-Atinsky et al.  2010 ). Gamliel-Atinsky 
et al. ( 2009 ) reported that the mite could not ingest the pathogen, due to its small 
mouth, but experimentally dispersed conidia of F. mangiferae to infection courts 
within mango buds, probably as a body adherent. Wounds caused by the mites’ 
feeding could facilitate infection of buds by the pathogen (Crookes and Rijkenberg 
 1985 ; Gamliel-Atinsky et al.  2010 ). In Israel, A. mangiferae did not appear to play 
a signifi cant role in disseminating the pathogen among trees. Mites were not found 
in traps that were designed to monitor their movement in malformed affected 
orchard, although high numbers of F. mangiferae conidia were trapped (Gamliel- 
Atinsky et al.  2007 ). Whether, and under what circumstances, the mite plays a role 
in spreading malformation among trees and orchards in other mango-production 
areas should be determined due to the potential impact these factors would have on 
malformation management strategies. Other arthropods that frequent infected 
panicles may serve as dispersal agents even though no conidia were detected on 
wind borne mango bud mites originating from infected panicles (Gamliel-Atinsky 
et al.  2009 ,  2010 ).  

    Fungus as Causal Agent of Mango Malformation 

 Summanwar et al. ( 1966 ) reported for the fi rst time, a fungus  Fusarium moniliforme  
Sheld, associated with malformation (fl oral and vegetative) and proved its 
pathogenicity and it has been isolated from the various part of malformed affected 
plants (Varma et al.  1974b ). Growth of fungus was inhibited at higher temperature 
in summer or even at room temperature (Varma et al.  1971 ). Vegetative malformation 
(Prasad et al .   1972 ) and fl oral malformation (Varma et al.  1974a ,  b ) can be initiated 
in the healthy test plants by artifi cial inoculation of aerial branches with the fungus 
as it is mostly intercellular and occasionally forms intercellular agglomerates in the 
cortex and phloem regions and the fungus form globose bodies similar to 
chlamydospores, particularly in the cortex when inoculated with spore suspension 
(Varma et al .   1972 ,  1974b ). Typical bunchy top symptoms can be produced in 
seedling by inoculating the fungus through soil. The fungus is systemically present 
in parenchymatous cells of the pith region of malformed tissues (Bhatnagar and 
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Beniwal  1977 ). There are several classifi cation and synonyms updated in the litera-
ture, including F. Subglutinans (Wollenweb and Reinking) Nelson, Toussoun and 
Marasas and it was redescribed as new species, F. mangiferae Britz, Winfi eld and 
Marasas, in 2002 with isolates from Egypt, Florida, Israel, Malaysia and south 
Africa (Steenkamp et al.  2000 ; Britz et al.  2002 ; Marasas et al.  2006 ).  Fusarium  
mangiferae was also identifi ed in India (O’Donnell et al.  1998 ; Zheng and Ploetz 
 2002 ), Oman (Kvas et al.  2008 ), Spain (Crespo et al.  2012 ), Sri Lanka (Sinniah 
et al.  2013 ), and China (Zhan et al.  2012 ), and appear to most common causal agent 
of mango malformation worldwide (Fig.  2 ).  F. sterilihyphosum  Britz, Winfi eld and 
Marasas is the second malformation causal agent in South Africa isolated from 
limited place (Britz et al.  2002 ) and it also isolated from Brazil (Lima et al.  2009 ) 
where it was shown to cause malformation after artifi cial inoculations (Lima et al. 
 2008 ).  F. mexicanum  sp. nov., was describe from Mexico as another pathogen for 
malformation and its multilocus sequencing shown to differ signifi cantly from taxa 
in the  G. fujikuroi  species complex (Otero-Colina et al.  2010 ; Rodríguez-Alvarado 
et al.  2007 ). A fourth recently described species , F. tupiense  sp. nov., and its cause 
malformation in Brazil (Lima et al.  2012 ) and Senegal (Senghor et al.  2012 ). 
 F. proliferatum  (Matsushima) Nirenberg (Zhan et al.  2010 ; Lv et al.  2013 ) and 
 F. pseudocircinatum  (Freeman et al.  2014a ) have been also reported as a causal 
agent of mango malformation. Inoculation of a  Fusarium  spp. in mango seedlings 
showed that the disease is neither systemic, nor completely localized but behaved 
erratically. Internal spread is always acropetal and is supposed to be facilitated 

  Fig. 2    Distribution of the different Fusarium species pathogens causing mango malformation 
disease worldwide (Freeman et al.  2014b )       
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through active cell divisions of terminal growth under environmental conditions 
favorable to both host and pathogen. Effect of  F. moniliforme  var.  subglutinans  
infection on mangiferin production in the twigs of  Mangifera indica  was studied by 
Chakrabarti and Ghosal ( 1985 ). Infected twigs contain less mangiferin than twigs of 
healthy plants. In both cases, mangiferin concentration was high during cooler 
months and low during hotter months. Mass isolation and recovery of  F. monili-
forme  var.  subglutinans  above 82 % colonies from affected sample (Misra and 
Singh  1998 ,  2002 ; Kumar et al.,  2011b ). They also isolated pathogen from normal 
apical shoot and healthy panicles and advocated its systemic nature. Freeman et al. 
( 1999 ) prove that the apical buds were the primary sites for the infection by artifi cial 
inoculation of F. mangiferae that were transformed with GUS reporter gene 
(B-glucorunidase) Youssef et al. ( 2007 ) reported that conidium survival rapidly 
declined in soil during summer and only 50 % population recovered after 10 day 
from the original and it survive longer in infected plant tissues under soil. Freeman 
et al. ( 2014a ) reported that on the basis of available evidence that F. mangiferae is 
generally restricted to apical and meristematic tissue of the host and localized but 
not systemic infection of these bud take place.

        Molecular Diversity and Detection of Mango Malformation 

 In recent years, DNA polymorphisms have increasingly been used to complement 
traditional markers for the analysis of genetic identity, variability and relatedness in 
fungi (Jamil et al .   2000 ). Molecular markers reveal information concerning the 
genetic structure of pathogen populations. DNA fi ngerprinting has evolved as a 
major tool in fungal characterization. Attempts to characterize fungal isolates 
through Random Amplifi ed Polymorphic DNA (RAPD) have been reported 
(Williams et al.  1990 ; Grajal Martin et al .   1993 ). The development of RAPD has 
allowed the rapid generation of reliable, reproducible DNA fragments or fi nger-
prints in wide variety of species, including several fungi (Crowhurst et al .   1991 ; 
Kush et al .   1992 ). It has proved successful in generating amplifi cation patterns spe-
cifi c to  F. mangiferae  (Ploetz et al .   2002 ) causing mango malformation. Zheng and 
Ploetz ( 2002 ) examined genetic diversity among 74  F. subglutinans  isolates col-
lected from Brazil, Egypt, USA, India, Israel and South Africa. A pair of 20-mer 
primers developed from a RAPD fragment amplifi ed a specifi c 608 bp fragment for 
51 out of 54 mango isolates. Ploetz et al. ( 2002 ) amplifi ed genomic DNA of  F. man-
giferae  isolates with 33 arbitrary decamer primers. Most of the primers produced 
reproducible polymorphic banding patterns. Unique Major bands were generated 
with primers OPZ-5 and OPJ-l. RAPD analysis divided the isolates into two 
genetically distinct clusters. Saleem ( 2004 ) identifi ed 20 isolates of  F. mangiferae  
from malformed tissues of mango obtained from different areas of Pakistan. No site 
specifi c correlation was found. The potential of RAPD to identify DNA markers 
related to intraspecifi c diversifi cation of the pathogens led to study the genetic 
diversity within  F. mangiferae  population. These investigations found an application 
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in distinguishing isolates of  Fusarium  spp. within the section Liseola. Jana et al. 
( 2003 ) studied genetic variation in 22 isolates of  Fusarium  species collected from 
geographically distinct regions over a range of hosts, using RAPD markers. UPGMA 
analysis classifi ed these isolates into fi ve major groups using primer OPA-l3. 
Isolates of pathogenic and non-pathogenic  Fusarium  species of different formae- 
speciales and races were distinguished among each other. A robust and repeatable 
PCR-assay was developed for the detection and differentiation of  F. sporotrichiodes  
from other  Fusarium  species based on sequence determined from differentially 
amplifi ed RAPD-PCR products. These assays were able to detect both species in 
samples of grain taken from the fi eld. Freeman and Maymon ( 2000 ) and Sabir 
( 2006 ) fi nding showed that low level variability among  Fusarium  isolates collected 
from different geographical locations. Iqbal et al .  ( 2006 ) has reported a low level of 
genetic variation in  Fusarium  isolates collected from malformed tissues of different 
geographical locations in Pakistan based on UPGMA clustering. Arif et al. ( 2011 ) 
also reported variability among the  F. moniliforme  var.  subglutinans  isolates of 
mango malformation by using RAPD but this study was limited to assessment of 
genetic diversity of  Fusarium moniliforme  isolates of Pantnagar, India. Kumar et al. 
( 2014 ) also isolated and identify the  F. moniliforme  var.  subglutinans  collected from 
either the same or different regions and studies the variability among the all isolates 
showed high similarity values indicating that there existed narrow molecular varia-
tion and almost all the isolates are genetically related. There are different reports 
suggesting the existence of genotypic diversity among the isolates of  Fusarium  
(Saharan et al .   2006 ). Moreover, because of this low level variability there was no 
possibility of different races among the isolates even though they are from different 
agro-climatic regions. Haggag et al. ( 2011 ) use different primers of RAPD and used 
them as for discriminating between  Fusarium  isolates and degree of relationship 
between  F. sterilihyphosum  and  F. proliferatum ; between  F. moniliforme  and  F. sub-
glutinans ; between  F. oxysporum  and  F. chlamydospore;  the degree of relationship 
among  F. subglutinans ,  F. proliferatum  and  F. sterilihyphosum  and degree of rela-
tionship among  F. moniliforme ,  .sterilihyphosum ,  F. proliferatum  and  F. subglutinans . 
Zhan et al. ( 2010 ) amplify the 500 bp band with primers pITS1 and pITS4 in F. pro-
liferatum isolated from the mango malformation tissue from the South china. By 
using the BLAST sequence alignment algorithms from the NCBI website and 
sequence phylogeny of ITS-rDNA confi rmed similarity with fungal species in 
 Fusarium  section Liseola, isolates of F. proliferatum.  

    Management Strategies’ for Mango Malformation 

 There are several control measures have been reported to management of mango 
malformation but the measure problem is either they are not reproducible nor prove 
100 % cure malformation. There are various approaches tried to control the 
malformation few of them describe below. 
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    Disease Management Through Nutrients 

 Nutrient application has improved of nutritional status thus improving yield in some 
cases. A direct inhibitory effect of chemicals against pathogen is inferred together 
with secondary control through improved nutritional status of trees. The combined 
effect of potassium sulphate as soil application and monocrotophos as trunk injec-
tion cured the malady. Result of a 10 year trial of NPK fertilization on panicle mal-
formation in mango cv. Dashehari indicated that increasing nitrogen doses reduced 
panicle malformation whereas the effect of phosphorus and potassium was just the 
reverse (Minessy et al .   1971 ). Partial control of the disease has been achieved in 
India by spraying the malformed parts with mangiferin-Zn 2+  and mangiferin-Cu 2+  
chilates (Chakrabarti and Ghosal  1989 ).  

    Disease Management Through Deblossoming 
and Prunning 

 Deblossoming at the bud burst stage alone or in combination with spraying of 
200 ppm NAA was reported to be very effective in controlling malformation. 
Deblossoming at bud burst stage gives substantial reduction in malformation 
(Singh et al .   1974 ; Singh and Dhillon  1986 ,  1988b ). Deblossoming between 
January and February regenerated new panicles in the same season. Regenerated 
panicles bore fruits similar to healthy once. Deblossoming after February failed 
to regenerate panicles (Tripathi and Ram  1998 ). 

 Since, the process of deblossoming is cumbersome it is advisable to develop a 
chemical for deblossoming. Application of 200 and 500 ppm etherel completely 
control malformation (Chadha et al .   1979 ). 250 ppm of cycloheximide was also 
very effective in deblossoming the panicles (Pal and Chadha  1982 ). 750–
6,000 ppm dikegulac and 500 ppm etherel at bud burst stage were ineffective 
(Singh and Dhillon  1986 ). Pruning reduced malformation (Narasimhan  1959 ; 
Desai et al.  1962 ; Singh et al. 1983). Pruning however had no effect on malforma-
tion (Bindra and Bakhetia  1971 ). Pruning followed by spraying with the mixture 
of fungicide (Captan 0.1 %), miticide (Akar 338–0.1 %) and Sticker (Tenae) 
helped considerably in controlling at least the spread of the disease (Summanwar 
 1967 ). Pruning of diseased parts and spraying with diazinon were reported to 
control the malady (Rai and Singh  1967 ; Yadav  1972 ). Regardless of the extent to 
which sanitation is imposed, it reduces MMD, pre- sumably by reducing inocu-
lum in an orchard. Although it is diffi cult to impose this treatment on large trees 
with panicles that are diffi cult to access, growers may be unwilling to devote the 
effort that is required to ensure that this approach succeeds. Nonetheless, we 
regard sanitation as an important component of any integrated strategy to manage 
this disease.  

Current Scenario of Mango Malformation and Its Management Strategies: An Overview



230

    Insecticides and Fungicides 

 Pruning followed by a spray of insecticides viz., follidol and/or metasystox as a 
control measure was recommended (Giani  1965 ).  Aceria mangiferae  was effec-
tively controlled by a spray of 0.15 % phosphon or Formothion (Wafa and Osman 
 1972 ). Signifi cant reduction in the malady was reported by applying various insec-
ticides (Giani  1965 ; Diekmann et al.  1982 ). 

 Fungal theory necessitated the use of systemic fungicides (Varma et al .   1971 ). It 
was concluded that copper fungicides were superior to organic fungicides due to 
excellent tenacity under monsoon conditions. The inhibitory effect of different 
fungicides viz., Fytolan, hexaferb and captan on mango plants artifi cially inoculated 
with  F. moniliforme  var.  subglutinans  was studied (Chattopadhyay and Nandi  1977 ). 
Fytolan was maximally effective at all concentration. In view of experimental evi-
dences and economy of fytolan, it may be recommended for controlling malforma-
tion of mango in areas where the disease is a serious problem (Chattopadhyay and 
Nandi  1977 ). Benomyl failed to control the problem in South Africa (Diekmann 
et al.  1982 ) and in India but some success in reducing disease severity by spray 
application of benomyl has been reported in India (Siddiqui et al .   1987 ) and in Israel 
(Pinkas and Gazit  1992 ). Carbendazim through trunk injection or soil application, 
either alone or in combination with cultural practices such as root pruning showed 
no improvement (Kumar and Beniwal  1992 ). 

 In in vitro evaluation Carbendazim was found to check the growth of 
 F. subglutinans  completely at 0.1 % .  Hence, a trial was laid out for the control of 
malformation with spray of Carbendazim (Bavistin 50 W.P.) 0.1 % at 10, 15 and 
30 days interval starting from October to February (consisting of 13, 9 and 5 sprays 
respectively) during the fl ower bud differentiation stage. It was revealed from the 
data, that malformation incidence was least in 10 and 15 days interval spray interval 
schedule and between the two spray schedules, there was no difference. Control of 
the malformation was up to 76.93 % in 10 and 15 days spray schedule, while it was 
65.39 % in 30 days spray schedule over check. Thus, 15 days interval spray schedule 
is recommended for the control of the disease Misra et al. (2002).  

    Biopesticides 

 Usha et al. ( 2009 ) clearly showed strong antifungal activity of a concoction brewed 
from  Datura stramonium, Calotropis gigantea, Azadirachta indica (neem)  and cow 
manure (T 1 ) followed by methanol-water (70/30 v/v) extracts of  Datura stramonium , 
 Calotropis gigantea  and  Azadirachta indica  (T 2 ) against  Fusarium  mangiferae. It was 
proved that the concoction-brewed compost (T1) is effective, inexpensive, easy to 
prepare and constitutes a sustainable and eco-friendly approach to control fl oral mal-
formation in mango when it is sprayed at bud break stage and again at fruit set stage. 
Kumar et al .   2009  further evaluated leaf extract of 23 plants for their antifungal activ-
ity against  F. moniliforme  var.  subglutinans.  Although, all the leaf extracts checked 
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the radial growth of test fungus, extracts of  Azadirachta indica  A. Juss . ,  Achyrenthes 
roseus  and  Calotropis gigantea  were found more effective against  F. subglutinans 
under in vitro conditions.  However, the leaf extract from  Aegle marmelos  (L.) Corr., 
 Ricinus communis  L. and  Ficus racemosa  L. were found less effective. 

 Three different species of  Trichoderma (T.viride, T. virens  and  T. harzianum)  
were tested against the malformation pathogen  in vitro.  All the three bioagents were 
effective against all evaluated isolates of  Fusarium  and inhibit the growth. However, 
out of the three bioagents best result was obtained with  T. harzianum  followed by 
 T. virens  and  T. viride.  Results clearly showed that the per cent inhibition of 
 Fusarium  isolates by  T. harzianum  was signifi cantly superior to  T. viride  for all the 
isolates (Kumar et al .   2012 ).   

    Conclusion 

  Fusarium  complex is the dominant pathogen of mango malformation disease. Based 
on the background knowledge it is further utilize in genomics and transcriptome 
approaches towards the understanding of Fusarium-mango (host-pathogen) 
relationship. Identifi cation of key pathogenicity responsive genes, pathways of 
signal transduction and what were the possible solutions that can be employed for 
eradication of mango malformation disease at genetic level and help orchardists for 
disease free saplings and effective quarantine measures.     
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      Paradigm Shift in Plant Disease Diagnostics: 
A Journey from Conventional Diagnostics 
to Nano-diagnostics                     

       Prachi     Sharma      and     Susheel     Sharma   

          Introduction 

 Disease diagnosis can be defi ned as either the identifi cation of a disease or the 
identifi cation of the agent that causes the disease. The early and rapid identifi cation 
of a plant pathogen is the key for appropriate management practices to be applied 
prior for avoiding further spread of the disease or its introduction due to transboundary 
movement of plant material. The demand for rapid, accurate, sensitive, standard, 
high throughput and simultaneous detection assays of plant pathogens has risen in 
the last few decades due to intensive monocropping. Conventional methods relied 
on study of symptoms and morphological studies. However, it is well known fact 
that symptoms are not always unique and can be confused with other diseases. 
Conventional methods are often time-consuming, laborious, and require expert 
taxonomist. The limitations posed by conventional diagnostics have led to the 
development of techniques with improved accuracy and reliability. Present era 
demands fast and sensitive methods for detection and identifi cation of specifi c 
fungal pathogens. Accordingly, Plant disease diagnosticians have an array of 
methodologies that allow much faster, more specifi c, more sensitive, more accurate 
and multiple detection of plant fungal pathogens, leaving the need of skilled 
taxonomist. The present chapter highlights several techniques developed that have 
revolutionized the fi eld of plant diagnostics.  
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    Conventional Diagnostics 

 The conventional way of identifi cation of plant pathogenic fungi involves 
interpreting visual symptoms of disease or signs like presence of structures: mycelia, 
sporophore, spores and fructifi cations of the pathogen (Nezhad  2014 ). It may be 
followed by pathogen confi rmation using microscopic and cultural techniques. 
Most of the traditional fungi were identifi ed by taxonomists based on spore 
morphology and conidiogenesis (Kendrick  1971 ; Barnett and Hunter  1972 ; Agrios 
 2005 ). The methods related to fungal morphology require extensive knowledge of 
classical taxonomy. Other limitations include the diffi culty of some species to be 
cultured in vitro, and the inability to accurately quantify the pathogen (Goud and 
Termorshuizen  2003 ). Based on symptomatology, cultivar susceptibility and 
epidemiology  Fusarium oxysporum  f. sp.  radicis - cucumerinum  (FORC) was 
identifi ed as a different  forma specialis  and was distinguished from  F. oxysporum  
f.sp.  cucumerinum  (FOC) (Vakalounakis  1996 ). The other conventional methods 
namely: direct inspection of dry seeds, washing test, soaking test, incubation tests, 
blotter tests, embryo count test and; fi lter and centrifuge extraction technique were 
often used for detection of seed borne fungal pathogens (Castro et al.  1994 ). Visual 
inspection is relatively easy when symptoms clearly are characteristic of a specifi c 
disease. The direct inspection method has been used for detection of seed borne 
pathogens e.g. Presence of sclerotia of  Sclerotinia sclerotiorum  and  Claviceps 
purpurea . Incubation methods such as blotter and agar plate were most popular and 
frequently used for the detection of a great number of seed-transmitted pathogens 
(De Tempe and Binnerts  1979 ; Majumder et al.  2013 ). Culturing is another 
traditional method requiring a few days or weeks to detect the presence of a pathogen 
in a plant. Direct agar plating technique (DAPT) in which acidifi ed potato dextrose 
agar (APDA having pH=3.5 amended with 25 % strength lactic acid per litre of 
medium) has been used to detect latent infections in asymptomatic nuts and fruits 
(Michailides et al.  2005 ). These methods are cheap and simple but are time 
consuming, laborious and require skilled labour and cannot diagnose pathogens 
before the symptoms are observable.  

    Physical Diagnostics 

    Electron Microscopy (EM) 

 EM is one of the most important tool since its fi rst use in Germany in 1939. In 
electron microscope, a beam of short wave electrons are used instead of visible light 
passing through conventional light microscopes. It works under high vacuum and 
focusing is done by electromagnetic/electrostatic lenses (Bos  1983 ). The specimen 
to be studied is mounted on a copper grid containing apertures covered with a thin 
fi lm of plastic (formvar) (Noordam  1973 ). 
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    Scanning Electron Microscopy (SEM) 

 Introduction of scanning electron microscopy (SEM) has revolutionized the study 
of the microscopic world owing to high quality three dimensional images, large 
magnitude of increase from 10 to 1,000,000 times, rapid processes of image 
digitalization and acquisition, easiness to prepare and operate samples, as well as 
affordable costs (Bozzola and Russell  1999 ). SEM has been potentially used for 
identifi cation and detection of seed-borne fungi e.g.  Colletotrichum lindemuthianum  
in seeds of common bean ( Phaseolus vulgaris  L.),  Colletotrichum truncatum  in 
maize ( Zea mays  L.) and  Colletotrichum gossypii  var.  cephalosporioides  in cotton 
( Gossypium hirsutum  L.) (De Carvalho Alves and Pozza  2012 ). SEM was also 
employed effectively for the detection of destructive pathogen  Sphaeropsis sapinea  
(anamorph- Diplodia pinea ) infecting conifers. The pathogen differes in conidial 
morphology which cannot be recognized by light microscope. However, SEM was 
able to group 30 isolates of  S. sapinea  into Type-A having smooth conidial surface 
and Type-B having pits distributed over the conidial surface (Wang et al.  1985 ).  

    Cryo-Scanning Electron Microscopy (Cryo -SEM) 

 Cryo-SEM is used for imaging of samples containing moisture without causing 
drying artifacts such as extraction, solubilization and shrinkage. This is a rapid 
method which enables three-dimensional in situ visualization of fungal invasion 
within roots and is broadly applicable for identifi cation of plant diseases caused by 
necrotrophic fungi. This method was effectively used to visualize internal infection 
of wheat ( Triticum aestivum ) roots by the pathogenic fungus  Rhizoctonia solani  
AG-8. Cryo-SEM helped in retaining fungal hyphae and root cells in situ in 
disinteged root tissues, avoiding the distortions that are usually introduced during 
conventional preparation by chemical fi xation, dehydration and embedding 
(Refshauge et al.  2006 ). Cryo-SEM has also been used to show that hyphae of 
 Bipolaris sorokiniana  remain adhered to the wax surfaces of barley leaves by means 
of an extensive extracellular matrix (Jansson and Akesson  2003 ).    

    Serological Diagnostics 

 Serology is the use of specifi c antibodies to detect their respective antigens in test 
samples. Antibodies are composed of immunoglobulin (Ig) proteins produced in the 
body of the vertebrate in response to the antigens which are usually foreign proteins, 
complex carbohydrates, polynucleotides or lipopolysaccharides. Each antibody is 
specifi c to a particular antigen and binds to it. Antibodies are produced by B 
lymphocytes and include fi ve classes- IgG, IgM, IgA, IgE and IgD (Hull  2002 ). The 
major soluble antibody IgG (Gamma immunoglobulins) is the most commonly used 
and is Y shaped molecule with two antigen binding sites (Dickinson  2005 ). Serum 
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containing antibodies is known as antiserum which is of two types: polyclonal, 
containing antibodies to all the available epitopes on the antigen, and monoclonal, 
containing antibodies to single epitope (Hull  2002 ) Polyclonal antisera was fi rst 
produced in rabbits as they are most convenient animal, easy to keep, easy to inject 
with antigens and relatively a straight-forward process to extract blood containing 
antibodies by slight cut to the ear vein. Later, other animals such as cows, rats, mice 
and chickens were also used (Singh  2005 ). Monoclonal antiserum is raised in mice 
(Harlow and Lane  1988 ) and is highly specifi c against a single type of antigen. Both 
polyclonal and monoclonal antibodies are now available commercially against a 
wide range of fungal pathogens from companies such as Adgen®, Neogen® 
Agdia®, Loewe® and Bioreba®. Numerous serological techniques have been 
developed and are being used for specifi c detection and identifi cation of plant fungal 
pathogens as: 

    Immuno-sorbent Electron Microscopy (ISEM) 

 This technique was introduced by Derrick ( 1973 ) as serologically specifi c electron 
microscopy (SSEM) and has been widely used in plant virology (Milne  1972 ; Milne 
and Luisoni  1977 ). Because of its similarity with solid phase immunoassays, the 
method was known as immunosorbent electron microscopy by Roberts and Harrison 
( 1979 ). ISEM has been extensively used for detection and in situ characterization of 
phytoplasma (Musetti and Favali  2004 ). ISEM combines the specifi city of serologi-
cal assays with the visualization capabilities of the EM. It is an ideal confi rmatory 
test requiring small amount of samples, if the EM facility and specifi c antisera are 
available. ISEM method involves the production of antibodies against the fungal 
pathogen/antigen and linkage to the antibodies to protein A-gold complexes to 
locate the antigen (Narayanasamy  2011 ) e.g. Monoclonal antibodies have been 
raised against the species-specifi c eipitopes on the surface of zoospores and cysts  of 
Phytophthora cinnamomi  to detect six isolates of  P. cinnamomi  and six species of 
 Pythium  using immunofl orescence (Hardham et al.  1986 ).  

    Enzyme Linked Immuno-sorbent Assay (ELISA) 

 ELISA, a solid phase heterogeneous immunoassay has been proved to be a valuable 
serological tool in detection of plant fungal pathogens (Casper and Mendgen  1979 ; 
Johnson et al.  1982 ). ELISA is based on the specifi c recognition capabilities of 
antibodies. These antibodies are usually derived from the immunization of animals 
(usually rabbits, mice, chicken or goat) with certain immunogens such as culture 
fi ltrates or mycelial compounds. After repeated injections of the immunogen, blood 
samples are taken and the serum is used either as a whole or it is applied after certain 
clean-up steps for the ELISA tests. Polyclonal antibodies are mostly used, but often 
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lead to problem of high background due to reactions with host proteins. However, 
monoclonal antibodies increasingly available from commercial companies have 
overcome the problem of background reactions with host proteins. Different 
monoclonal antibodies are being used to detect specifi c strains of a pathogen or to 
detect a group of strains or species. Many variations of ELISA have been developed 
and include: direct and indirect ELISA procedures. They differ in the way the 
antigen–antibody complex is detected, but the underlying theory and the fi nal results 
are the same. Mostly, double antibody sandwich form of ELISA (DAS-ELISA), 
which is a direct form of ELISA, as described by Clark and Adams ( 1977 ) is used 
for the detection of plant pathogens. In direct ELISA procedures, the antibodies 
(usually as an IgG fraction of the antiserum) bound to the well surface of the 
microtitre plate (polystyrene infl exible rigid plates or polyvinyl chloride, fl exible 
plates) capture the fungus. The captured fungus sample is detected by incubation 
with an antibody-enzyme conjugate followed by addition of color development 
reagents (substrate or substrate/dye combination). The capturing and detecting 
antibodies can be from the same or different sources. Since the pathogen is 
sandwiched between two antibody molecules, this method is called the double 
antibody sandwich (DAS-ELISA). DAS-ELISA procedure is known to be highly 
specifi c and often detects closely related strains (Koenig  1978 ). There are also 
several alternative indirect forms of ELISA available for fungus detection. One 
among them includes: direct antigen coating procedure (DAC-ELISA), the method 
developed by Mowat ( 1985 ) with minor modifi cations (Hobbs et al.  1987 ). In this 
method, plant extracts prepared in a carbonate buffer are applied directly to the 
wells and antibodies raised in two different animal species are used. This method is 
by far the simplest of all the forms of ELISA test (Reddy et al.  1988 ). There are 
number of examples in which ELISA has been employed for specifi c detection of 
plant pathogenic fungi. E.g. ELISA method was used as a tool to detect fungal 
pathogens  Rhizoctonia solani ,  Pythium  spp. and  Sclerotinia homoeocarpa  in 
turfgrass (Fidanza and Dernoeden  1995 ; Shane  1991 ) and for early detection of 
karnal bunt pathogen in wheat when the infection levels are very low (Varshney 
 1999 ). DAC-ELISA was standardized and used for detection of  Collectotrichum 
falcatum  causing red rot of sugarcane (Hiremath and Naik  2003 ). Polyclonal 
antibodies (IgG K91) were raised to detect a quarantine pathogen of strawberry – 
 Colletotrichum acutatum  using ELISA (Kratka et al.  2002 ) and against  Aspergillus 
oryzae , the common plant pathogenic fungi found associated with wheat, sorghum 
and other crops (Kamraj et al.  2012 ) for use in ELISA.  

    Dot Immuno-binding Assay (DIBA) 

 DIBA technique is similar to ELISA in principle except that the plant extracts are 
spotted on to a nitrocellulose or nylon membrane rather than using a polystyrene 
plate as the solid support matrix. Unlike in ELISA, where a soluble substrate is used 
for color development, a precipitating (chromogenic) substrate is used for probing 
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pathogen. Hydrolysis of chromogenic substrates results in a visible coloured 
precipitate at the reaction site on the membrane. DIBA procedure was applied for 
the detection of the resting spores of  Plasmodiophora brassicae , causing club root 
disease of crucifers (Orihara and Yamamoto  1998 ).  

    Tissue Immuno Blot Assay (TIBA) 

 TIBA is a variation of DIBA in which a freshly-cut edge of a leaf blade, stem, leaf, 
tuber, root or an insect is blotted on the membrane, followed by detection with 
labelled antibodies. This method is simple, does not require elaborate sample 
preparation or extraction, and even can provide information on the distribution of 
fungal pathogen in plant tissues. The disadvantages of DIBA and TIBA are possible 
interference of sap components with the subsequent diagnostic reactions. However, 
their sensitivity, the relatively short time required to assay large numbers of samples, 
the need for minimum laboratory facilities for the assay, the ability to store blotted 
membranes for extended periods, and low costs favor TIBA and DIBA as useful 
diagnostic techniques. The other advantage is that the samples can be blotted onto 
the membranes right in the fi eld and such membranes can be carried or shipped by 
mail for further processing at a central location either within the country or in a 
different country. A direct tissue immuno blot assay (DTIBA) procedure has been 
developed to detect  Fusarium  spp. in the transverse sections from stems and crown 
of tomato and cucumber plants by employing a combination of the MAb (AP19-2) 
and Fluorescein 5-isothiocyanate (FITC)-conjugated antimouse IgM-sheep IgG 
(Arie et al.  1995 ).  

    Lateral Flow Assay (LFA) 

 LFA is a one step, fast, simple, versatile based on the serological specifi city of 
polyclonal or monoclonal antibodies. Lateral fl ow assay also referred to as Dipstick 
method is equivalent to medical detection systems such as pregnancy kits (Dickinson  
 2005 ). The advantages of these devices are that they are simple to use and results are 
quick, usually in less than 10 min. Lateral Flow Devices (LFDs) typically consist of 
a porous nitrocellulose membrane bound to a narrow plastic strip on which pathogen- 
specifi c antibodies are immobilized in a band partway up the strip. Species-specifi c 
antibodies bound to microparticles of latex, colloidal gold, or silica are placed 
between the band of immobilized antibodies and a sample application pad. The 
lateral-fl ow assay kit usually has an inlet for receiving the pathogen infected sap. 
After the sample fl uid is placed in the sample inlet, the sample fl ows from the 
sample pad through embedded reagents, in which specifi c chemical reactions occur 
by capillary forces. The reaction product continues to fl ow through the membrane 
arriving at the capture reagents. The capture reagents are immobilized on the 
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membrane as a band shape. The captured reaction product generates visually 
distinguishable color on the bands. Typically two bands are formed on the membrane, 
one of which is a test band for detecting the sample by its concentration, and the 
other is the control band for confi rming the success of the assay. Sample fl uids may 
continue to fl ow and can be collected in an absorbent pad. The test kit does not 
require a permanent dedicated space, high-priced instruments and skillful operators. 
An LFA test was developed using an IgM monoclonal antibody to detect  Rhizoctonia 
solani  (sensitivity 3 ng ml −1  of antigen) (Thornton et al.  2004 ).   

    Polymerase Chain Reaction (PCR) Based Diagnostics 

 PCR is a popular molecular biology in vitro technique developed in 1983 by Kary 
Mullis for enzymatically replicating DNA. The technique allows a small amount of 
DNA molecule to be amplifi ed many times, in an exponential manner by repeated 
cycles of denaturation, polymerisation and elongation at different temperatures 
using specifi c oligonucleotides (primers), deoxyribonucleotide triphosphates 
(dNTPs) and a thermostable  Taq  DNA polymerase in the adequate buffer (Mullis 
and Faloona  1987 ). Oligonucleotides, fl anking part of the genome of the pathogen, 
are extended by a thermostable DNA polymerase to increase the copies of target 
DNA (Webster et al.  2004 ). PCR technique is extremely sensitive, fairly inexpensive 
and requires minimal skill to perform. The presence of a specifi c DNA band of the 
expected size indicates the presence of the target pathogen in the sample. In 1993, 
Mullis was awarded the Nobel prize in Chemistry for his work on PCR (Bartlett and 
Stirling  2003 ). PCR is commonly carried out in small reaction tubes (0.2–0.5 ml 
volumes) in a machine called as thermal cycler. The thermal cycler alternatively 
heats and cools the reaction tubes to achieve the temperatures required at each step 
of the reaction. Many modern thermal cyclers make use of the Peltier’s effect, which 
permits both heating and cooling of the block holding the PCR tubes simply by 
reversing the electric current (Rahman et al.  2013 ). PCR allows the amplifi cation of 
millions of copies of specifi c DNA sequences. The amplifi ed DNA fragments are 
visualized by electrophoresis in agarose gel stained with ethidium bromide (Capote 
et al.  2012 ). Several attempts have been made to develop species-specifi c PCR 
primers for fungal plant pathogens (Henson and French  1993 ). Fungal mitochondrial 
DNA has been widely used as a source of molecular markers for evolution (Bruns 
et al.  1991 ), taxonomy (Martin and Kistler  1990 ) and genetic diversity studies 
(Forster and Coffey  1993 ). DNA region mostly targeted for PCR based diagnostic 
include ribosomal DNA (rDNAs) as it is present in all organisms at high copy 
number, inter transcribed spacers (ITS) region for developing DNA barcodes to 
identify the fungal species and β-tubulin genes used extensively for phylogenetics 
(Sanchez-Ballesteros et al.  2000 ; Hirsch et al.  2000 ; Fraaije et al.  2001 ; White et al. 
 1990 ; El-Sheikha and Ray  2014 ). The intergenic spacer sequence (IGS) primers 
based PCR have been used to detect and identify  Verticillium dahliae  and 
 V. alboatrum  (Schena et al.  2004 ) and to distinguish pathogenic and non-pathogenic 
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 Fusarium oxysporum  in tomato (Validov et al.  2011 ). The ITS region has also been 
widely used in fungal taxonomy and is known to show variation between species 
e.g., between  Pythium ultimum  and  P. helicoides  (Kageyama et al.  2007 ); 
 Peronospora arborescens  and  P. cristata  (Landa et al.  2007 );  Colletotrichum 
gloeosporioides  and  C. acutatum  (Kim et al.  2008 ). PCR technology has many 
applications in plant pathology and several variants of PCR are being used for 
detection (El-Sheikha and Ray  2014 ): 

    Nested PCR 

 Nested PCR is a modifi cation of standard PCR involving two consecutive PCR runs, 
in which the fi rst round PCR products are subjected to a second round PCR amplifi ca-
tion with more specifi c primers. Initial primer pair is used to generate PCR products, 
which may contain products amplifi ed from non-target areas. The products from the 
fi rst PCR are used as template in a second PCR, using one (hemi-nesting) or two dif-
ferent primers whose binding sites are located (nested) within the fi rst set, thus 
increasing specifi city. In nested PCR mode, two primer pairs are used; one for the 
outer fragment and other for the inner fragment. These include outer forward primer, 
outer reverse primer, forward inner primer and reverse inner primer. Usually, the prod-
ucts of the fi rst amplifi cation are transferred to another tube before the nested PCR is 
carried out using one or two internal primers. Nested PCR requires more detailed 
knowledge of the sequence of the target and aims to reduce the product contamination 
due to the amplifi cation of unintended primer binding sites (mispriming). The nested-
PCR is an ultrasensitive technique for detection of several plant pathogenic bacteria, 
fungi and phytoplasma. E.g. Nested PCR primers based on microsatellite regions 
were designed for  Monilinia fructicola , the causal agent of brown rot of stone fruits, 
and  Botryosphaeria dothidea , the causal agent of panicle and shoot blight of pistachio 
(Ma et al.  2003 ). Intra and inter specifi c variations in  Ustilainoidea virens , the causal 
agent of false smut/green smut of rice were utilized for its detection using nested PCR 
(Young-Li  2004 ). Similarly, nested PCR primers have been designed for detection of 
 Gremmeniella abietina , the causal agent of stem canker and shoot dieback of conifers 
namely Abies, Picea, Pinus, Larix, Pseudotsuga, and Tsuga based on 18S rDNA 
sequence variation pattern in (Zeng et al.  2005 ) and for detection of  Colletotrichum 
gloeosporioides , the causal agent of anthracnose in  Camellia oleifera  based on ITS 
region (Liu et al.  2009 ). A rapid nested PCR based diagnostic was developed for 
detection of  Ramularia collo - cygni , the causal agent of leaf spot of  Hordeum vulgare  
based on species specifi c primers developed from entire nuclear ribosomal internal 
transcribed spacer and 5.8S rRNA gene (Havis et al.  2006 ). Nested PCR was success-
fully developed for detection of  Verticillium dahliae , the causal agent of verticillium 
wilt of strawberry (Kuchta et al.  2008 ). Single nucleotide polymorphism (SNP) in the 
FOW1 gene in  Fusarium oxysporum  f. sp.  chrysanthemi , an economically important 
pathogen of ornamentals namely  Gerbera jamesonii ,  Osteospermum sp ., and 
 Argyranthemum frutescens  was exploited for nested PCR (Li et al.  2010 ).  
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    Multiplex PCR 

 Multiplex PCR allows the simultaneous and sensitive detection of different DNA 
targets in a single reaction reducing time and cost (Webster et al.  2004 ; Lopez et al. 
 2009 ). Multiplex PCR is useful in plant pathology because different fungi frequently 
infect a single host and consequently sensitive detection is needed and helps in 
reducing the number of tests required (James et al.  2006 ). Different fragments 
specifi c to the target fungi are simultaneously amplifi ed and identifi ed based on 
molecular sizes on agarose gels but care is needed to optimize the conditions so that 
respective amplicons can be generated effi ciently. E.g. To detect and quantify four 
foliar fungal pathogens in wheat namely  Septoria tritici  (leaf blotch) and  S. nodorum  
(leaf and glume blotch), the β-tubulin gene was used as the target region (Fraaije 
et al.  2001 ). Multiplex PCR has been effectively utilized for detecting  Phytophthora 
lateralis  in cedar trees (Winton and Hansen  2001 ), for determining the mating type 
of the pathogens  Tapesia yallundae  and  T. acuformis  (Dyer et al.  2001 ), to differen-
tiate two pathotypes of  Verticilliun albo - atrum  infecting hop (Radisek et al.  2006 ) 
and for distinguishing 11 taxons of wood decay fungi infecting hardwood trees 
(Guglielmo et al.  2007 ). Multiplex PCR technique was also used for the simultane-
ous detection and differentiation of powdery mildew fungi:  Podosphaera xanthii  
and  Golovinomyces cichoracearum  infecting sunfl ower (Chen et al.  2008 ).  

    Cooperational PCR (Co-PCR) 

 Co-PCR is a highly sensitive method of amplifi cation, originally developed for 
detection of plant viruses. This technique involves the use of four primers and 
reaction process consists of the simultaneous reverse transcription of two different 
fragments from the same target, one containing the other. Four amplicons are pro-
duced by the combination of the two pair of primers, one pair external to other and 
largest fragment is produced due to the co-operational action of amplicons (Olmos 
et al.  2002 ) it can be coupled with dot blot hybridization, making it possible to 
characterize the nucleotide sequence (Bertolini et al.  2007 ). E.g. Co-operational 
PCR coupled with dot blot hybridization was developed for the detection of 
 Phaeomoniella chlamydospora , causing petri disease of grapevine. Co-PCR was 
able to amplify the partial region of the fungal rDNA including the internal 
 transcribed spacer (ITS) region for detection of  P. chlamydospora  and 17 addi-
tional grapevine-associated fungi belonging to the genera  Botryosphaeria , 
 Cryptovalsa ,  Cylindrocarpon ,  Dematophora ,  Diplodia ,  Dothiorella ,  Eutypa , 
 Fomitiporia ,  Lasiodiplodia ,  Neofusicoccum ,  Phaeoacremonium ,  Phomopsis  and 
 Stereum , based on the use of primer pairs NSA3⁄NLC2 (external pair) and 
NSI1⁄NLB4 (inner pair). A specifi c probe (Pch2D) targeting the ITS2 region in the 
rDNA was further developed for carrying out dot blot for specifi c detection of 
 P. chlamydospora  (Martos et al.  2011 ).  
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    Real-Time PCR 

 Real-time PCR, also called quantitative PCR (qPCR) is a laboratory technique 
based on the PCR, used to amplify and quantify a targeted DNA molecule 
(Paplomatas  2006 ). Real-Time PCR is based on the principle of PCR except that the 
progress of the reaction can be monitored on-line by a camera or detector while they 
accumulate at each reaction cycle, without the need of post-reaction processing such 
as gel electrophoresis. Target DNA is quantifi ed using a calibration curve that relates 
threshold cycles to a specifi c amount of template DNA. Amplicons are detected 
using several chemistries based on the emission of fl uorescence signal produced 
proportionally during the amplifi cation (Heid et al.  1996 ; Mackay et al.  2002 ; 
Makkouk and Kumari  2006 ). Four main chemistries are currently used in real time 
PCR: SYBR Green I (amplicon sequence non-specifi c) and; TaqMan, Molecular 
beacons, and Scorpion-PCR method (sequence specifi c) (Mackay et al.  2002 ; 
Thelwell et al.  2000 ; Schaad and Frederick  2002 ; Schaad et al.  2003 ). Amplicon 
sequence nonspecifi c methods are based on the use of a dye that emits fl uorescent 
light when intercalated into double stranded DNA while amplicon sequence specifi c 
methods are based on the use of oligonucleotide probes labeled with a donor fl uoro-
phore and an acceptor dye (quencher) (Schena et al.  2004 ). All of these methods are 
based upon the hybridization of fl uorescently labelled oligonucleotide probe 
sequences to a specifi c region within the target amplicon that is amplifi ed using 
traditional forward and reverse PCR primers. TaqMan® probes, developed by 
Applied Biosystems (Foster City, California, USA), consist of single- stranded oli-
gonucleotides that are complementary to one of the target strands (Lopez et al. 
 2003 ). Molecular beacons are the simplest hairpin probes and have complementar-
ity nucleotide sequences that are complementary to the target amplicon (Alemu 
 2014 ). Scorpion probes covalently couple the stem-loop structure to a PCR primer 
due to intramolecular hybridization of probe sequence with PCR amplicon (Lopez 
et al.  2003 ). A number of plant pathogenic fungi such as  Helminthosporium solani  
were detected in soil and in tubers using TaqMan probe based real time PCR (Cullen 
et al.  2001 ). Real time PCR was also used for detection of  Rhizoctonia solani  in soil 
samples (Lees et al.  2002 ) and to quantify different species of  Fusarium  in wheat 
kernels using TaqMan chemistry (Waalwijk et al.  2004 ). Even oomycete plant 
pathogen and  Phytophthora ramorum , the cause of sudden oak death disease were 
detected by Cepheid SmartCycler real time PCR (Nezhad  2014 ).   

    Isothermal Nucleic Acid Amplifi cation Based Diagnostics 

 Isothermal nucleic acid amplifi cation facilitates rapid target amplifi cation through 
single-temperature incubation, reducing system complexity compared to PCR- 
based methods. The method differs in terms of complexity (multiple enzymes or 
primers), sensitivity, and specifi city. Isothermal DNA amplifi cation produces longer 

P. Sharma and S. Sharma



247

DNA fragments with higher yields than the conventional PCR technique and has 
greater amplifi cation effi ciency owing to undisrupted and sustained enzyme activity. 
Isothermal nucleic acid amplifi cation includes several methods as: 

    Nucleic Acid Sequence-Based Amplifi cation (NASBA) 

 NASBA is a novel transcription based isothermal amplifi cation method developed 
by Compton ( 1991 ). NASBA also known as self sustained sequence replication 
(3SR) and Transcription Mediated Amplifi cation (TMA) is a sensitive transcription- 
based amplifi cation system (TAS) for the specifi c replication of nucleic acids 
in vitro (Guatelli et al.  1990 ; Gill and Ghaemi  2008 ). The assay targets rRNA, 
which is more stable than mRNA (Zhang  2013 ). The reaction involves two-stage 
protocol: the initial phase of denaturation and primer annealing at 65 °C, and the 
cycle phase for target amplifi cation at the predefi ned temperature of 41 °C (Chang 
et al.  2012 ). NASBA requires three enzymes namely  Avian myeloblastosis virus 
reverse transcriptase  (AMV-RT),  RNase  H and T7  DNA dependent RNA polymerase  
(DdRp) and two primers. The fi rst primer (P1) carrying the binding/promotor 
sequence is used to initiate the RNA reverse-transcription (RT) reaction, catalyzed 
by a reverse-transcriptase after which RNA–cDNA hybrid molecules are degraded 
by  RNase H. The remaining cDNA is accessible to the second primer (P2) which 
initiates the synthesis of the complementary strand. A third enzyme, T7 RNA 
Polymerase, docks the double strand DNA on the sequence at the 5′ end of P1, 
transcribing many RNA copies of the gene. This process, i.e. the cycle of fi rst strand 
synthesis, RNA hydrolysis, second strand synthesis and RNA transcription, is 
repeated indeterminately starting from the newly transcribed RNA. RNA and double 
stranded cDNA accumulates exponentially and can be detected by EtBr/agarose gel 
electrophoresis (Fakruddin et al.  2012 ). This technology was initially applied for 
detection of a number of plant viruses such as  Apple stem pitting virus  (Klerks et al. 
 2001 ),  Plum pox virus  (Olmos et al.  2007 ),  Potato virus Y ,  Arabis mosaic virus  
(ArMV) and the bacteria  Clavibacter michiganensis  subsp.  Sepedonicus  and 
 R. solanacearum  (Szemes and Schoen  2003 ). Recently, NASBA combined with 
real time has also been used for detection of fungi such as  Candida  sp. and 
 Aspergillus  sp. (Zhao and Perlin  2013 ).  

    Loop-Mediated Isothermal Amplifi cation (LAMP) 

 LAMP assay fi rst described by Notomi et al. ( 2000 ) is a novel DNA amplifi cation 
technique that amplifi es DNA with high specifi city, effi ciency and rapidity under 
isothermal conditions. LAMP is based on the principle of autocycling strand 
displacement DNA synthesis performed by the  Bst  polymerase derived from 
 Bacillus stearothermophilus  (isolated from hot springs having temperature 70 °C, 
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with polymerization and 5′–3′ exonuclease activity) for the detection of a specifi c 
DNA sequence (Chang et al.  2012 ). The technique makes use of four specially 
designed primers, a pair of outer primers and a pair of inner primers, which together 
recognize six distinct sites fl anking the amplifi ed DNA sequence. As inner primers 
possess hybrid design, amplifi ed DNA structures take on a loop confi guration at one 
or both ends of the elongated strands, which in turn serve as stem-loop structured 
templates for further displacement DNA synthesis. The fi nal amplifi ed product 
consists of a mixture of stem loop DNA strands with various stem lengths and 
structures with multiple loops (De Boer and Lopez  2012 ). Amplifi cation can be 
carried out in a simple and inexpensive device like a water bath at temperatures 
between 60 and 65 °C (Rigano et al.  2014 ). LAMP products can be directly observed 
by the naked eye or using a UV transilluminator in the reaction tube by addition of 
SYBR Green I stain to the reaction tube separately (Tsui et al.  2011 ). LAMP assay 
has been employed for the specifi c detection of  Fusarium graminearum , the major 
causative agent of  Fusarium  head blight of small cereals based on the  gaoA  gene 
(galactose oxidase) of the fungus (Niessen and Vogel  2010 ) and for detection of 
 Ganoderma lucidum  associated with the basal stem rot disease of coconut based on 
primers targeting small subunit ribosomal RNA gene (Sharadraj et al.  2015 ).   

    Molecular Inversion Probe (MIP) Assay Based Diagnostics 

 MIPs were initially used for high-throughput analysis of single nucleotide 
polymorphisms, DNA methylation, detection of genomic copy number changes and 
other genotyping applications (Diep et al.  2012 ; Hardenbol et al.  2003 ). Now, the 
methodology is being utilized for the detection of plant pathogens and can detect as 
little as 2.5 ng of pathogen DNA due to high specifi city (Lau et al.  2014 ). MIPs 
originally called as Padlock probes (PLPs), are single-stranded DNA molecules 
containing two regions complementary to the target DNA that fl ank SNP in question. 
Each probe contains universal primers’ sequences separated by endoribonuclease 
recognition site and a 20-nt tag sequence. During the assay the probes undergo a 
unimolecular rearrangement as: circularization due to fi lling of gaps with nucleotides 
corresponding to the SNP in four separate allele-specifi c polymerization (A, C, G 
and T) and ligation reactions followed by linearization due to mode of enzymatic 
reaction. As a result they become inverted followed by PCR amplifi cation step. 
Further processing of the probes depends on specifi c assay (Absalan and Ronaghi 
 2007 ). MIPs have high accuracy due to fi delity of both polymerase and ligase in the 
gap-fi ll step, high specifi city due to hybridization, polymerization and ligation 
(Thiyagarajan et al.  2006 ). A specifi c assay has been developed based on padlock 
probes along with microarray having detection limit of 5 pg of pathogen DNA for 
the detection of economically important plant pathogens including oomycetes 
( Phytophthora  spp. and  Pythium  spp.), fungi ( Rhizoctonia  spp.,  Fusarium  spp. and 
 Verticillium  spp.) and a nematode ( Meloidogyne  spp.) (Szemes et al.  2005 ). Two 
padlock probes have been designed to target species-specifi c single nucleotide 
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polymorphisms (SNPs) located at the inter-generic spacer two region and large 
subunit of the rRNA respectively, to discriminate the two fungal species,  Grosmannia 
clavigera  and  Leptographium longiclavatum , intimately associated with the 
mountain pine beetles ( Dendroctonus ponderosae ) in western Canada (Tsui et al. 
 2010 ). MIP technology was used as a diagnostic tool to screen the plant pathogens, 
 Fusarium oxysporum  f.sp.  conglutinans ,  Fusarium oxysporum  f.sp.  lycopersici  and 
 Botrytis cinerea  (Lau et al.  2014 ).  

    Hybridization Based Diagnostics 

    Fluorescent In Situ Hybridization (FISH) 

 FISH is a powerful method for in situ detection of pathogens which combines 
microscopic observation of pathogen along with the specifi city of hybridization and 
is dependent on the hybridization of DNA probes to species-specifi c regions 
(Wullings et al.  1998 ; Volkhard et al.  2000 ). FISH probes often target sequences of 
ribosomal RNA or mitochondrial genes as they are abundant in sequence databases 
and exist in multiple copies in each cell (Tsui et al.  2011 ). The major step of FISH 
involves the preparation of biological samples and labeling (incorporation of a 
fl uorescent label/marker e.g. carboindocyanine dye) of a nucleic acid sequence to 
form a probe. The probe is hybridized to the DNA or RNA in biological materials 
to form a double-stranded molecule under controlled experimental conditions 
followed by detection of hybridization (Amann et al.  1995 ). The fi rst FISH probe 
targeting a living fungus was designed and used for detection of  Aureobasidium 
pullulans  on the phylloplane of apple seedlings (Li et al.  1996 ).   

    Array Based Diagnostics 

 Arrays both, microarrays and macroarrays, hold promise for quick and accurate detec-
tion and identifi cation of plant pathogens due to multiplex capabilities of the system 
(Saikia and Kadoo  2010 ). Array refers to reverse dot blot assays in which assorted 
DNA probes are bound to a fi xed matrix (e.g. nylon membrane or microscope slides for 
microarrays) in a highly regular pattern (De Boer and Lopez  2012 ). Macro arrays are 
generally membrane-based with spot sizes greater than 300 μm while microarrays are 
high-density arrays with spot sizes smaller than 150 μm. The macroarray technology is 
now commercially available in four European countries under the name DNA Multiscan 
(  http://www.dnamultiscan.com    ) for the test of plant pathogens (Tsui et al.  2011 ). 

 A typical microarray slide can contain up to 30,000 spots (Webster et al.  2004 ). 
ssDNA probes are irreversibly fi xed as an array of discrete spots to a surface of 
glass, membrane or polymer. Each probe is complementary to a specifi c DNA 
sequence (genes, ITS, ribosomal DNA) and hybridization with the labeled 
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complementary sequence provides a signal that can be detected and analyzed. 
Arrays printed with probes corresponding to a large number of fungal pathogens 
can be utilized to simultaneously detect all the pathogens within the tissue of an 
infected host. The steps include extraction of nucleic acid, RT-PCR and labeling 
with a fl uorescent probe such as fl uorescin, Cy3 or Cy5. The labeled target molecule 
is denatured and allowed to hybridize with the arrayed probes. Specifi c patterns of 
fl uorescence in the form of spots are detected by a microarray reader which allows 
the identifi cation of specifi c gene sequences found only in the pathogen of interest 
(Schmitt and Henderson  2005 ). DNA array technology was developed for rapid and 
effi cient detection of tomato vascular wilt pathogens  Fusarium oxysporum  f.sp. 
 lycopersici ,  Verticillium albo - atrum , and  V. dahliae . The array successfully detected 
the tomato wilt pathogens from complex substrates like soil, plant tissues, and 
irrigation water as well as samples collected from tomato growers (Lievens et al. 
 2003 ). Tambong et al. ( 2006 ) developed macroarray for simultaneous detection of 
most of the known  Pythium  species. Recently,  Magnaporthe grisea  array was 
developed and is commercially available from Agilent Technologies having 
genome-wide coverage of  Magnaporthe grisea  and inclusion of relevant rice genes 
in a single microarray with 60-mer oligo probe length (  http://www.agilent.com/    ).  

    Sequencing Based Diagnostics 

 Routine sequencing is likely to play an increasingly important role in species 
identifi cation. PCR amplicons can often be sequenced relatively inexpensively and 
rapidly. Genetic databases available on the internet such as GenBank allow rapid 
comparison of one’s sample sequence to extensive and growing libraries of 
sequences (Vincelli and Tisserat  2008 ). With the advancement in the fi eld of 
sequencing, full genome sequencing of plant pathogens is possible at lower rate and 
offers a means for pathogen detection. 

    Next-Generation Sequencing (NGS) 

 NGS techniques also referred to as second-generation sequencing (SGS) emerged 
in 2005 using commercial Solexa sequencing technology. In this technique, 
sequencing reaction is detected on amplifi ed clonal DNA templates by emulsion or 
solid phase PCR methods (Nezhad  2014 ). It involves isolation of total DNA or RNA 
from diseased plant, elimination of host nucleic acid, enrichment of pathogen DNA, 
and exploitation of different NGS technologies (Adams et al.  2009 ; Studholme et al. 
 2011 ). Three platforms: Roche/454 FLX, the Illumina/Solexa genome analyzer and 
the applied biosystems SOLID ™  system were widely used and recently, two more 
parallel platforms came into existence: Helicos Heliscope ™  and Pacifi c Biosciences 
SMRT instruments (Mardis  2008 ). Nunes et al. ( 2011 ) applied 454 sequencing 

P. Sharma and S. Sharma

http://www.agilent.com/


251

technology to elucidate and characterize the small RNA transcriptome (15–40 nt) of 
mycelia and appressoria of  Magnaporthe oryzae . A number of both known and 
unknown plant pathogenic fungi have been detected using NGS e.g.  Pyrenophora 
teres  f. sp.  teres  and  Phytophthora infestans  in sweet potato (Zhou and Holliday 
 2012 ; Neves et al.  2013 ). The draft genome of the soil borne  Pyrenochaeta lycoper-
sici  causing corky root rot (CRR) disease in tomato and affecting other solanaceous 
species including pepper, eggplant and tobacco, as well as other cultivated crops 
such as melon, cucumber, spinach and saffl ower was characterized based on paired-
end Illumina reads is highly effective in reconstructing contigs containing almost 
full length genes (Aragona et al.  2014 ).  

    Third Generation Sequencing (TGS) 

 More recent single molecule sequencing technologies are known as third-genera-
tion sequencing (TGS). TGS also referred as single molecule sequencing (SMS) 
uses single DNA molecules for sequence reactions without the need for DNA 
template amplifi cation. TGS has been used in plant genomics and pathogen detec-
tion (Pan et al.  2008 ; Rounsle et al.  2009 ). TGS is superior to SGS as it simplifi es 
the sample preparation, increases the detection accuracy by eliminating PCR-
caused errors, and generates longer sequence reads by better throughput  platforms. 
Oxford Nanopore technology and recently IBM’s plan of silicon-based nanopores 
are the recent devices developed for third generation DNA sequencing (Kircher 
and Kelso  2010 ).   

    Biosensor Based Diagnostics 

 Immunosensors are those biosensors in which the recognition element is antibody 
and offers direct label free pathogen detection. It is a device comprising of an 
antigen or antibody species coupled to a single transducer which detects the binding 
of the complementary species (Priyanka et al.  2013 ). Different types such as surface 
plasmon resonance (SPR), quartz crystal microbalance (QCM) and cantilever-based 
sensors are currently the most promising (Skottrup et al.  2008 ). 

    Quartz Crystal Microbalance (QCM) Immune-Sensors 

 In this novel technique of plant pathogen detection, a quartz crystal disk is coated 
with pathogen-specifi c antibodies. Voltage is applied across the disk, making the 
disk warp slightly via a piezoelectric effect (Webster et al.  2004 ). Adsorption of 
pathogen to the crystal surface changes its resonance oscillation frequency in a 
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concentration dependent manner. It is both qualitative and quantitative method. The 
QCM term broadly includes bulk acoustic wave (BAW), quartz crystal resonance 
sensors (QCRS) and thickness shear mode (TSM). The difference between BAW, 
QCRS and TSM acoustic sensors, is their mode of wave propagation (Cooper and 
Singleton  2007 ).  

    Surface Plasmon Resonance (SPR) Sensors 

 SPR uses surface plasmons, which are electromagnetic waves that can be excited by 
light at gold sensor interfaces. As incoming light interacts with the gold interface at 
angles larger than the critical angle, the refl ected light displays a characteristic 
decrease, the so-called SPR minimum, due to resonant energy transfer from the 
incoming photons to surface plasmons. SPR sensors have been shown to be rapid, 
label-free, and selective tools for the detection (Skottrup et al.  2008 ). Surface 
plasmon resonance (SPR) was fi rst used for detection of fungal spores 
(urediniospores) of  Puccinia striiformis  f.sp.  tritici  (Pst). The approach involved the 
use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free 
detection of spores (Skottrup et al.  2007 ). SPR sensor based on DNA hybridization 
was also used for the detection of  Fusarium culmorum , a fungal pathogen of wheat 
(Zezza et al.  2006 ; Pascale et al.  2013 ).  

    Cantilever-Based Sensors 

 The use of a cantilever as a sensor dates back to 1943 when Norton proposed a 
hydrogen gas sensor based on a cantilever and was initially used in atomic force 
microscopy (AFM) for surface characterization (Datar et al.  2009 ). An AFM 
measures the forces between the tip of a cantilever and the sample surface using the 
tip defl ection (contact mode AFM) or changes in the resonance frequency of a 
vibrating cantilever (dynamic mode AFM). Cantilever technology has been used for 
biosensing applications using antibodies (Waggoner and Craighead  2007 ). 
Cantilevers can be operated in either (a) static mode, which measures cantilever 
bending upon analyte binding or (b) dynamic mode, which measures resonance 
frequency changes when analytes binds the surface (similarly to QCM sensors). 
Cantilever sensors have been applied to the detection of relatively small analytes 
such as nucleic acids and disease proteins (Waggoner and Craighead  2007 ). 
Cantilever sensors use have been demonstrated for detection of fungus  Aspergillus 
niger  at 10 3  cfu/ml using resonance changes (Nugaeva et al.  2007 ). A specifi c 
micromechanical cantilever array system has been used for detection of 
 Saccharomyces cerevisiae  (Banik and Sharma  2011 ).   
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    Spectroscopic and Imaging Technique Based Diagnostics 

 A number of spectroscopic and imaging techniques are being used for forecasting 
the occurrence of disease and detection of pathogen such as fl uorescence 
spectroscopy where the fl uorescence from the object of interest is measured after 
excitation with a beam of light (usually ultraviolet spectra), visible and infrared 
spectroscopy whereby visible and infrared rays are used for a rapid, non-destructive, 
and cost-effective method for the detection of plant diseases (Sankaran et al.  2010 ). 
Hyperspectral imaging has also found application in precision agriculture whereby 
the spectral refl ectance is acquired for a range of wavelengths in the electromagnetic 
spectra profi ling (Okamoto et al.  2009 ). However, these techniques require trained 
person having the knowledge of softwares related to image data analysis and 
requirement of high effi ciency computers. Imaging spectroscopy has been used to 
scan wheat kernels for head blight disease through machine vision techniques 
(Delwiche and Kim  2000 ) while spectral and fl uorescence data has been employed 
to monitor winter wheat yellow rust (Moshou et al.  2005 ).  

    Volatile Organic Compounds (VOCs) Based Diagnostics 

 Plants emit many low molecular weight biomolecules in gaseous phase called as 
volatile organic compounds (VOCs) from their surfaces into their immediate 
surroundings that serve essential functions (Baldwin et al.  2006 ). VOC profi ling is 
an emerging innovative avenue and has potential applications in disease diagnosis. 
The emitted VOC profi les of healthy plants are signifi cantly different than those 
infected ones (Martinelli et al.  2014 ). The electronic nose (e-nose) is a platform for 
VOCs profi ling. 

    Electronic Nose 

 In recent years, the development of innovative devices such as electronic nose 
(e-nose) based on different electronic aroma detection (EAD) principles and 
mechanisms has been investigated and implemented for diverse disciplines within 
the plant sciences by many researchers (Wilson et al.  2004 ). The electronic nose is 
often referred to as an intelligent device, able to mimic the human olfaction functions 
and may be used for detection, recognition and classifi cation of volatile compounds 
and odours. This type of electronic olfactory system was introduced in 1982 by 
Dodd and Persaud from the Warwick Olfaction Research Group, UK (Troy Nagle 
et al.  1998 ). A complete electronic-nose system typically consists of several 
integrated and/or interfaced components including a multisensor array (composed 
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of several gas sensors with broad sensitivity and cross-reactivity or partially- 
overlapping selectivity), a data-processing and analysis unit such as an artifi cial 
neural network (ANN), software having digital pattern-recognition algorithms, and 
often aroma reference-library databases containing stored fi les with digital fi nger-
prints of specifi c aroma reference (signature) patterns (Wilson  2013 ). An electronic 
nose incorporating artifi cial intelligence to detect basal stem rot (BSR) disease 
caused by  Ganoderma boninense  fungus affecting oil palm plantations in South 
East Asia was developed based on three types of odour samples for both healthy and 
infected oil palm trees, namely odour of the air surrounding the tree, odour of bored 
tree trunk and odour of soil surrounding the base of the tree trunks (Markom et al. 
 2009 ). A Cyranose® 320 was developed to detect postharvest fungal diseases 
namely gray mold caused by  Botrytis cinerea , anthracnose caused by  Colletotrichum 
gloeosporioides  and fruit rot caused by  Alternaria  spp. in blueberries (Li et al. 
 2009 ). Electronic Noses (ENs) have also been used to analyse the Volatile Organic 
Compounds (VOCs) of both healthy and infected powdery mildew infected tomato 
( Solanum lycopersicum ) crops (Ghaffari et al.  2010 ). In order to detect contamina-
tion of wheat by  Fusarium  species, an electronic nose based on an array of metal-
loporphyrin coated quartz microbalances was developed for detection of  Fusarium  
species,  F. cerealis ,  F. graminearum ,  F. culmorum  and  F. redolens  based on release 
of toxic metabolites, especially the mycotoxin deoxynivalenol (DON, Vomitoxin) 
and zearalenone (ZEA) (Eifl er et al.  2011 ).   

    Nano-diagnostics 

 Nano diagnostics is the use of nano-biotechnology to diagnose plant diseases. 

    Quantum Dots (QDs) 

 QDs are nanometer scale semiconductor nanoparticles that fl uoresce when stimu-
lated by an excitation light source and are defi ned as particles with physical dimen-
sions smaller than the exciton Bohr radius (Jamieson et al.  2007 ). QDs are 
ultrasensitive nanosensor based on fl uorescence resonance energy transfer (FRET) 
can detect very low concentration of DNA and do not require separation of unhy-
bridized DNA (Khiyami et al.  2014 ). QDs are linked to specifi c DNA probes to 
capture target DNA. The target DNA strand binds to a fl uorescent-dye (fl uorophore) 
labeled reporter strand and thus forming FRET donor-acceptor assembly. Unbound 
DNA strand produce no fl uorescence but on binding of even small amount of target 
DNA (50 copies) may produce very strong FRET signal (Chun-Yang Zhang et al. 
 2005 ). QD specifi c antibody sensor was developed for rapid detection of  Polymyxa 
betae , an obligate parasite of sugarbeet roots and vector of  Beet necrotic yellow vein 
virus  (BNYVV), the causal agent of rhizomania (Safarpour et al.  2012 ).  
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    Nanoprobes 

 Fluorescent silica nanoprobes have potential for rapid diagnosis of plant diseases. 
Fluorescent rubpy doped silica nanoparticles (FSNP) at 50 ± 4.2 nm conjugated with 
the secondary antibody of goat anti-rabbit IgG (using microemulsion method) has 
been used for successful detection of a bacterial plant pathogen  Xanthomonas 
axonopodis  pv.  vesicatoria , the causal agent of bacterial spot disease in solanaceous 
plants (Yao et al.  2009 ). In future, nanoprobes can be utilized for detection of other 
plant pathogens also.   

    Portable Devices and Kits 

 On site diagnosis of plant pathogens require portable devices and such a portable 
system in the form of PCR termed as Palm PCR was developed by Ahram 
Biosystems Company in Korea in which DNA can be amplifi ed in less than 
25 min. The portable system presents a highly functional and user-friendly way to 
perform different types of PCR tests for both beginners and experienced 
researchers. 

    Lab on a Chip 

 A Lab on a chip is a new micro technique which possess several advantages 
such as portability, low reagent consumption, short reaction times and on site 
diagnosis. A large number of samples can be processed directly in the field 
itself (Figeys and Pinto  2000 ; Kricka  2001 ). The first lab-on-a-chip system in 
the field of plant pathology was developed for rapid diagnosis of  Phytophthora  
species (Julich et al.  2011 ). A portable real-time microchip PCR system was 
developed for detection of  Fusarium oxysporum  f. sp.  lycopersici  (Fol) strains. 
The system included fluorescence detector and a battery-powered microcon-
troller unit for PCR. The entire system was 2,561,668 cm 3  in size and weighs 
under 850 g (Koo et al.  2013 ).  

    Lab in a Box 

 Lab in a box also termed as nanodiagnostic kits refers to a briefcase sized kit that 
can be carried to the fi eld to search for pathogens. Nanodiagnostic kit equipment 
can easily and quickly detect potential serious plant pathogens, allowing experts to 
help farmers in prevention of disease epidemics from breaking out.  
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     Phytophthora  Test Kits 

 The Alert test kit for  Phytophthora  has been used to detect all common  Phytophthora  
species. Pathogen detection can be accomplished when as little as 0.5 % of a plant’s 
roots are infected (  http://danrcs.ucdavis.edu    .)   

    Conclusion 

 Plant pathogenic fungi are becoming more widespread globally due to modern high 
input monocropping based agriculture and easy transboundary movement. In order 
to manage plant pathogens and restrict their movement as well as secondary spread 
in new geographical areas, early and timely detection is pre-requisite. Thus, plant 
disease diagnosis and detection of plant pathogen are critical and integral part of 
successful disease management and serve as the fi rst and crucial line of defense. 
Once the pathogen is identifi ed, appropriate control measures can be employed. In 
the past, detection of fungal pathogens involved time consuming biological indexing 
for days/weeks at a certain temperature on the appropriate medium or grow out tests 
for seed borne fungi. These processes are extremely cumbersome and cannot be 
adopted for routine diagnosis of large number of samples. The constraints posed by 
these traditional biological indexing methods led to profound advancement in the 
development of affordable and simple new improved methods which served as 
powerful tools for detection and identifi cation of phytopathogenic fungi. New 
innovative detection technologies have been formulated and demonstrated that are 
accurate, cost effective, portable, rapid, robust, sensitive, and high throughput for 
routine plant disease diagnosis. Several techniques have been developed which have 
an edge over the traditional methods of plant pathogen diagnosis; these include 
physical diagnostic tools (EM; SEM etc.), serological techniques (DIBA; ELISA 
etc.), molecular techniques (PCR), lateral fl ow assays, hybridization based assays, 
nano-based kits, electronic nose etc. are gaining momentum and have potential 
applications. The era of Next/Third Generation Sequencing, in which the entire 
DNA or RNA sequences of organisms can be traced, has provided an ocean full of 
diagnostic techniques involving the complementation of bioinformatics approaches 
for authentic identifi cation  vis - a - vis  characterization of plant pathogenic fungi. On 
site molecular diagnostics is in its infancy but is surely evolving faster and will 
become a boon due to user friendliness. Despite availability of array of frontier tools 
and techniques for plant pathogen detection in the era of biotechnology, conventional 
methods can’t be completely ignored in some instances. The best approach for both 
disease diagnosis and detection of plant pathogenic fungi demands blend of diverse 
range of conventional and advanced unconventional methods. With this continuous 
evolving spectrum of advanced techniques, the major challenge in the future for 
phytopathologists will be to choose a particular modus operandi among array of 
these techniques for specifi c detection of pathogen.     
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          Introduction 

 Plant disease is the result of a complex interaction between the host plant, pathogen 
and the environmental conditions which not only cause yield loss but also affect the 
social and cultural structure of human being. It is illustrated by the Irish famine of 
potato 1846–1850 which took as many as one million lives from hunger and disease. 
The combined forces of famine, disease and emigration caused drop in Ireland’s 
population from eight million to fi ve million and changed the social and cultural 
structure of Ireland in profound ways. Plant diseases are caused by fungi, bacteria, 
viruses, nematodes and parasite plants. But most of plant diseases (around 85 %) are 
caused by pathogenic fungi. Out of 100,000 known fungal species, more than 10,000 
species can cause diseases in plants whereas, approximately 50 species causes 
 diseases in human beings as well as animals. The enormous diversity of pathogenic 
interaction between plant and fungus was refl ected by the establishment of parasitic 
interaction in lower Devonian i.e. approximately 400 million years ago (Taylor et al. 
 1992 ). Within a phytopathogenic fungal species, different formae specialis are 
found. For example in case of  Fusarium oxysporum , 120 different formae specialis 
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have been reported (Agrios  2005 ). The different forms of strains and the formae 
specialis of a fungal pathogen make their detection and identifi cation more compli-
cated and require specifi c methods or techniques. Rapid and accurate detection of 
phytopathogenic fungal pathogen up to species level is essential for executing 
proper disease management strategies. 

 The conventional methods available for detection and identifi cation of phyto-
pathogenic fungi are time consuming and not always very specifi c. An advanced 
plant disease diagnostics can provide rapid, accurate, and reliable detection of 
plant diseases in early stages for avoiding economic yield losses and healthy crop 
production. Early detection and identifi cation of these pathogens is crucial for 
their timely management. The conventional methods of detection and identifi ca-
tion of phytopathogenic fungi mostly relied on symptoms, isolation and culturing 
followed by morphological observations and biochemical tests (Pearson et al. 
 1987 ; Tan et al.  2008 ). The study of fungal biology and their interaction with host 
plant has experienced great advances in recent years because of the development 
of modern holistic and high throughput techniques. Some of the important 
advanced techniques of fungal disease detection and diagnosis available are poly-
merase chain reaction (PCR), real time-PCR, nested PCR, magnetic capture-
hybridisation (MCH)-PCR, reverse transcriptase PCR etc. High levels of 
sensitivity, specifi city and simplicity, have made the PCR-based assay as the tech-
nique of choice for routine and large scale application in pathogen detection. As 
plants are generally infected by more than one pathogens, so multiplexing by mul-
tiplex PCR and DNA array will reduce the time and cost of detection. Although the 
identifi cation procedures that involve molecular tools, are shortened by avoiding 
culture cultivation, yet the whole process of molecular analysis of target genes 
remains time consuming and costly. The latest technologies that hold the key for 
fungal disease detection and development of sensor are based on spectroscopy and 
imaging, mass metabolite and volatile profi ling. This chapter emphasizes the 
importance of rapid, sensitive, specifi c and reliable techniques for detection, dif-
ferentiation and quantifi cation of phytopathogenic fungal pathogen in early stages 
of infection.  

    Molecular Techniques for Detection of Phytopathogenic Fungi 

 Now a days, molecular techniques are the most commonly used advanced techniques 
for detection of fungi like conventional PCR, real-time PCR, nested PCR, reverse 
transcriptase and LAMP. Other molecular techniques include MCH PCR, PCR-
RFLP, in situ PCR, PCR DGGE, co-operational PCR, multiplex PCR, DNA arrays 
etc.. The molecular techniques are highly sensitive, specifi c and rapid for the detec-
tion of fungal pathogen as PCR can detect the concentration that is as low as 10 pg of 
DNA of fungus Lin et al. ( 2009 ). The commonly used molecular techniques for fun-
gal detection are conventional PCR, real-time PCR, nested PCR, reverse transcriptase 
and LAMP. Other molecular techniques include MCH PCR, PCR-RFLP, in situ PCR, 
PCR DGGE, co-operational PCR, multiplex PCR, DNA arrays etc. 
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    Polymerase Chain Reaction 

 Polymerase chain reaction (PCR) is a simple technique capable of amplifying spe-
cifi c DNA sequences exponentially by in vitro DNA synthesis. PCR was discovered 
by Karry Mullis in 1980s which is being applied widely in fi eld of biological sci-
ences including plant pathology. The usefulness of PCR depends upon its ability to 
amplify a specifi c DNA in vitro from trace amounts of complex templates. High 
levels of sensitivity, specifi city and simplicity have made the PCR- based assays as 
the techniques of choice for routine and large scale application in detection of phy-
topathogenic fungal pathogen. 

 Designing suitable primers is a critical step in PCR based detection assay. The prim-
ers, which are unique for the target sequence to be amplifi ed, should fulfi l certain crite-
ria such as primer length, GC content, annealing and melting temperature, 5′ end 
stability, 3′ end specifi city, etc. (Dieffenbach et al.  1993 ). Specifi c primers are derived 
from sequences of either amplifi ed or cloned DNA or RNA from target pathogen spe-
cies (Table  1 ). Ribosomal genes and the spacers between them provide targets of choice 
for molecular detection, since they are present in high copy numbers, contain con-
served as well as variable sequences and can be amplifi ed and sequenced with universal 
primers based on their conserved sequences (Stackebrandt et al.  1992 ). Similarly, 
greater sequence differences have been noted in the non- transcribed spacer (NTS) 
regions between the rDNA repeat units and also in the intergenic spacer (IGS) region.

   Internal transcribed spacer (ITS) primers are the most commonly used primers 
for detection of phytopathogenic fungi. Depending on the primer pair, either ITS1or 
ITS2, or both ITS1 and ITS2 regions can be amplifi ed. But ITS primers have to be 
selected very carefully because some primers, e.g. ITS1-F, ITS1 and ITS5 are biased 
towards amplifi cation of basidiomycetes whereas others, e.g. ITS2, ITS3 and ITS4 
are biased towards ascomycetes. Further, ascomycetes are more easily amplifi ed 
than basidiomycetes using these regions as targets due to systematic length differ-
ences in the ITS2 region as well as the entire ITS. Larena et al. ( 1999 ) developed 
ITS 4A (A is for ascomycetes) primer which can amplify only ascomycetes with 
ITS1F as forward primer. Similarly ITS 4B (B is for basidiomycete) amplifi es only 
basidiomycetes (Gardes and Bruns  1993 ). Some of the ITS primers, such as ITS1-F, 
were hampered with a high proportion of mismatches relative to the target sequences, 
and most of them appeared to introduce taxonomic biases during PCR (Bellemain 
et al.  2010 ). So, different primer combinations or different parts of the ITS region 
should be analyzed in parallel or alternative ITS primers should be used. 

 Although the ITS region is the main target, other housekeeping genes with higher 
variability like LSU, SSU, and RPB1 are being more extensively used to develop 
diagnostics for fungi. Six DNA regions including the above four markers along with 
two protein markers (translation elongation factor 1-α and β-tubulin) were evaluated 
as potential DNA barcodes for fungi using newly generated sequences from 742 
strains or specimens to analyze a smaller subset of about 200 fungi by a multina-
tional and multilaboratory consortium. ITS will be formally proposed as the pri-
mary fungal barcode marker to the Consortium for the Barcode of Life, with the 
possibility that supplementary barcodes may be developed for particular narrowly 
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circumscribed taxonomic groups. The most commonly used animal barcode i.e. 
mitochondrial cox I gene is not included in fungal barcode because it is diffi cult to 
amplify in fungi, often includes large introns, and can be insuffi ciently variable 
(Schoch et al.  2012 ). 

 Pathogen specifi c primers have been developed for many fungal pathogens from 
 conserved sequences (Table  2 ). To design species-specifi c PCR primers, sequences 
of target fungal rDNA can be obtained from some databases (e.g. NCBI), or by 
amplifying the target rDNA fragment with conserved primers (White et al.  1990 ). 
After comparing the sequences of the target rDNA with those of related fungal spe-

   Table 1    List of ITS primers with sequence used in detection and identifi cation of phytopathogenic 
fungi   

 Primer name  Primer sequence (5′–3′)  Reference 

 ITS1  TCCGTAGGTGAACCTGCGG  White et al. ( 1990 ) 
 ITS2  GCTGCGTTCTTCATCGATGC  White et al. ( 1990 ) 
 ITS3  GCATCGATGAAGAACGCAGC  White et al. ( 1990 ) 
 ITS4  TCCTCCGCTTATTGATATGC  White et al. ( 1990 ) 
 ITS5  GGAAGTAAAAGTCGTAACAAGG  White et al. ( 1990 ) 
 NS7  GAGGCAATAACAGGTCTGTGATGC  White et al. ( 1990 ) 
 LR3  CCGTGTTTCAAGACGGG  Vilgalys and Gonzalez ( 1990 ) 
 ITS-F  CTTGGTCATTTAGAGGAAGTAA  Gardes and Bruns ( 1993 ) 
 ITS-B  CAGGAGACTTGTACACGGTCCAG  Gardes and Bruns ( 1993 ) 
 ITS8mun  CTTCACTCGCCGTTACTA  Egger ( 1995 ) 
 ITS9mun  TGTACACACCGCCCGTCG  Egger ( 1995 ) 
 ITS10mun  GCTGCGTTCTTCATCGAT  Egger ( 1995 ) 
 NL6Amun  CAAGTGCTTCCCTTTCAACA  Egger ( 1995 ) 
 NL6Bmun  CAAGCGTTTCCCTTTCAACA  Egger ( 1995 ) 
 ITS-4A  CGCCGTTACTGGGGCAATCCCTG  Larena et al. ( 1999 ) 
 NSA3  AAACTCTGTCGTGCTGGGGATA  Martin and Rygiewicz ( 2005 ) 
 NSI1  GATTGAATGGCTTAGTGAGG  Martin and Rygiewicz ( 2005 ) 
 58A1F  GCATCGATGAAGAACGC  Martin and Rygiewicz ( 2005 ) 
 58A2F  ATCGATGAAGAACGCAG  Martin and Rygiewicz ( 2005 ) 
 58A2R  CTGCGTTCTTCATCGAT  Martin and Rygiewicz ( 2005 ) 
 NLB3  GGATTCTCACCCTCTATGA  Martin and Rygiewicz ( 2005 ) 
 NLB4  GGATTCTCACCCTCTATGAC  Martin and Rygiewicz ( 2005 ) 
 NLC2  GAGCTGCATTCCCAAACAACTC  Martin and Rygiewicz ( 2005 ) 
 ITS1-F_KYO1  CTHGGTCATTTAGAGGAASTAA  Toju et al. ( 2012 ) 
 ITS1-F_KYO2  TAGAGGAAGTAAAAGTCGTAA  Toju et al. ( 2012 ) 
 ITS2_KYO1  CTRYGTTCTTCATCGDT  Toju et al. ( 2012 ) 
 ITS2_KYO2  TTYRCTRCGTTCTTCATC  Toju et al. ( 2012 ) 
 ITS3_KYO1  AHCGATGAAGAACRYAG  Toju et al. ( 2012 ) 
 ITS3_KYO2  GATGAAGAACGYAGYRAA  Toju et al. ( 2012 ) 
 ITS4_KYO1  TCCTCCGCTTWTTGWTWTGC  Toju et al. ( 2012 ) 
 ITS4_KYO2  RBTTTCTTTTCCTCCGCT  Toju et al. ( 2012 ) 
 ITS4_KYO3  CTBTTVCCKCTTCACTCG  Toju et al. ( 2012 ) 
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cies by alignment with a computer program, species-specifi c PCR primers can be 
developed using different computer software programmes (e.g. Primer3, 
PrimerQuest etc.).

   Some anonymous unique DNA regions are also used for designing species 
 specifi c PCR primers. Randomly amplifi ed polymorphic DNA (RAPD) markers are 
used for comparing target pathogen with those of non-target organisms, unique 
bands specifi c to the target pathogen could be observed and cloned. Once unique 
bands have been detected, they are used as probes to check the presence of similar 
DNA sequences in related species. If the DNA fragment does not match, it can be 
sequenced, and species specifi c SCAR (Species-specifi c sequence characterized 
amplifi ed region) marker can be developed (Ma and Michialides  2005 ). PCR prim-
ers designed based on conserved sequences have been used to detect more than 205 
phytopathogenic fungal species of 101 genera (  http://www.sppadbase.ipp.cnr.it/    ).  

    Real Time PCR 

 The development of real-time PCR in the early 1990s has revolutionized basic and 
applied research in all biological fi elds, including the detection of phytopathogenic 
fungi. Real time PCR enables the detection of amplicons through a specifi c fl uores-
cent signal, thus eliminating the post-amplifi cation processing steps needed in con-
ventional PCR. This signifi cantly reduces the time and cost of analyses and 
eliminates the use of harmful substances like ethidium bromide, which is still uti-
lized to stain DNA in electrophoretic gels. Also, real time PCR is a versatile tech-
nique for the accurate, sensitive, and high throughput quantifi cation of target DNA. 

 Real time PCR methods for the detection of phytopathogenic fungi can be 
grouped into sequence non-specifi c and specifi c methods based on chemistry used 
in the PCR (Schena et al.  2004 ). The sequence non-specifi c method is based on dyes 
that emit fl uorescent light when interposed into double-stranded DNA (dsDNA). 
SYBR Green I is the most commonly used dye but several valid alternatives are also 
available (Gudnason et al.  2007 ). Since dyes do not discriminate between the differ-
ent dsDNA molecules, the formation of non-specifi c amplicons, as well as primer 
dimmers, could lead to false positive results. As a consequence, amplifi cation reac-
tions need to be accurately optimized and examined at the end of the reaction by 
melting curve analysis. Sequence-specifi c methods primarily used are TaqMan 
probe, molecular beacons and scorpion probe. These methods are based on the use 
of oligonucleotide probes labeled with a fl uorophore and quencher. The advantage 
of fl uorogenic probes over DNA binding dyes is that specifi c hybridization between 
probe and target DNA sequence is required to generate a fl uorescent signal. As a 
consequence, these methods guarantee higher specifi city that enables the discrimi-
nation of single base pair mismatches. 

 A crucial step in real time PCR assay is the identifi cation of appropriate target 
DNA regions for primers. A good target gene should be suffi ciently variable to 
enable the differentiation of closely related species but, at the same time, should not 
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contain intraspecifi c variation that would decrease sensitivity of the detection. A 
good target gene should readily be amplifi ed and sequenced and, multicopied for 
sensitive detection. However, the use of multicopy genes is not always preferable 
since the variable number of copies can potentially complicate the development of 
quantitative assays (Schena et al.  2013 ). 

 The ITS regions provide attractive targets for primers because they are usually 
conserved within a species but variable enough to differentiate related taxa, easily 
amplifi ed and sequenced using universal primers and occur in multiple copies (White 
et al.  1990 ). Different universal primers are available to amplify ITS regions and the 
selection should be made according to the taxonomic group (Cooke et al.  2007 ; 
Bellemain et al.  2010 ). The huge number of fungal ITS sequences currently depos-
ited in the international nucleotide sequence databases provides a wide range of 
reference material for the identifi cation of taxa and for the development of specifi c 
detection methods. IGS (Intergenic spacer) region can be a valid alternative to the 
ITS region when closely related taxa or even different species need to be differenti-
ated or detected since it evolves faster than the ITS region and, as such, more 
sequence polymorphisms are present (Diguta et al.  2010 ; Bilodeau et al.  2012 ). 
Similar to ITS, the IGS region is also a multicopy but its length in fungi (approxi-
mately 2–4 kbp) provides considerable scope for primer and probe development. 
The wide utilization of the IGS region as target for developing specifi c molecular 
markers is primarily limited by diffi culties in amplifying long fragments and the lack 
of effective universal primers. Apart from ITS and IGS region, many other nuclear 
and mitochondrial regions like  β - tubulin , ras related proteins ( Ypt 1) genes and  mito-
chondrial small subunit  ( mtSSU )  rRNA  genes have been used as targets in qRT PCR 
methods for fungal detection. For instance, the  β - tubulin  gene is one of the most 
frequently utilized targets for fungi and the use of this target is favoured by the avail-
ability of universal primers designed in conserved coding regions and amplifi ed 
fragments also contain variable regions (mainly introns) that proved to effectively 
differentiate closely related taxa (Aroca et al.  2008 ). The detection limits of real time 
PCR reported in literature is mainly between 10 pg/mL and 10 fg/mL of target 
DNA. Real time PCR is more sensitive as compared to conventional PCR as, real 
time PCR commonly amplify very short DNA fragments (70–100 bp) which favour 
a higher level of PCR effi ciency and sensitivity compared to conventional PCR. The 
production of very short amplicons is best avoided in conventional PCR due to their 
confusion with primer dimers and diffi culty in visualization in agarose gels. Some 
examples of real time based detection of phytopathogenic fungi are detailed in 
Table  3 .

       Magnetic Capture-Hybridisation (MCH)-PCR 

 PCR sensitivity is limited by inhibitors like humic acids, phenolic compounds etc. In 
order to reduce the effects of inhibitors and non-target DNA on PCR amplifi cation, 
a novel magnetic capture-hybridization (MCH)-PCR technology was introduced by 
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Jacobsen in 1995. MCH combines an initial DNA extraction and purifi cation step, 
including hybridization with a single-stranded DNA probe on magnetic beads, and a 
subsequent PCR amplifi cation step of the extracted gene. In this novel process, para-
magnetic streptavidin-coated beads conjugated with biotin labeled oligonucleotide 
probe are used to capture single-stranded target DNA from crude DNA preparations 
(Jacobsen  1995 ). After the magnetic capture-hybridisation, PCR amplifi cation was 
carried out using species-specifi c primers. This increased the effi ciency of isolation 
of target DNA. MCH-PCR has the advantages over direct PCR in that the MCH 
process purifi es and concentrates the DNA of interest while removing non-target 
DNA and other substances that can inhibit the amplifi cation reaction of PCR. Langrell 
and Barbara ( 2001 ) used this method to detect  Nectria galligena  in apple and pear 
trees.   Walcott     et al. ( 2004 ) detected  Botrytis aclada  fungus causing Botrytis neck rot 
disease by using this technique in onion seed. MCH-PCR reduces the time required 
to test onion seeds from 10 to 14 days to less than 24 h. Additionally, MCH-PCR 
detected fungal DNA from aqueous solutions containing 100 fg DNA/mL.  

    PCR-ELISA 

 PCR-ELISA combines both PCR and ELISA into a single analytical technique and 
its application is very much similar to ELISA except that this method allows the 
detection of nucleic acid instead of protein (Shamloul and Hadidi  1999 ). 

   Table 3    Real-time PCR based assay for detection of phytopathogenic fungi in crop plants   

 Fungal pathogen 
 Real time 
chemistry  Host plant  Reference 

  Cladosporium fulvum   SYBR Green  Tomato  Yan et al. ( 2008 ) 
  Fusarium avenaceum   SYBR Green  Wheat  Moradi et al. ( 2010 ) 
  Fusarium avenaceum   TaqMan MGB  Cereals  Kulik et al. ( 2011 ) 
  Fusarium oxysporum   SYBR Green  Chickpea  Dubey et al. ( 2014 ) 
  Fusarium equiseti   Molecular 

Beacons 
 Barley  Macía-Vicente et al. ( 2009 ) 

  Mycosphaerella graminicola   TaqMan MGB  Wheat  Bearchell et al. ( 2005 ) 
  Macrophomina phaseolina   TaqMan MGB  Chickpea, 

soybean, 
pigeonpea 

 Babu et al. ( 2011 ) 

  Phialophora gregata   TaqMan  Soybean  Malvick and Impullitti ( 2007 ) 
  Phoma sclerotioides   SYBR Green  Wheat  Larsen et al. ( 2007 ) 
  Phytophthora erythroseptica   TaqMan  Potato  Nanayakkara et al. ( 2009 ) 
  Puccinia graminis  and  P. 
striiformis  sensu stricto 

 TaqMan  Wheat  Liu et al. ( 2015 ) 

  Pythium irregular   SYBR Green  Wheat, barley  Schroeder et al. ( 2006 ) 
  Rhizoctonia oryzae   SYBR Green  Cereals  Okubara et al. ( 2008 ) 
  Sclerotinia sclerotiorum   SYBR Green  Oilseed rape  Yin et al. ( 2009 ) 
  Verticillium dahliae   SYBR Green  Potato  Attallah et al. ( 2007 ) 
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PCR- ELISA is an immunological method to quantify the PCR product directly after 
immobilization of biotinylated DNA on a microplate. PCR-ELISA method uses 
forward primer coated with biotin and reverse primer coated with an antigenic 
group (e.g. fl uorescein) at their 5′ end (Landgraf et al.  1991 ). PCR amplifi ed DNA 
can be immobilized on avidin or streptavidin-coated microtiter plates via the biotin 
moiety of the forward primer and then can be quantifi ed by an ELISA specifi c for 
the antigenic group of the reverse primer. The majority of steps occur in 96-well 
microtiter plates for mass screening of PCR products making them very suitable for 
routine diagnostic purposes. Also, PCR-ELISA does not require electrophoretic 
separation and dot hybridisation, and can be easily automated. This procedure has 
been used for detection of several species of  Phytophthora  and  Pythium  (Bonants 
et al.  1997 ; Bailey et al.  2002 ).  

    In Situ PCR 

 In situ PCR combines two techniques of molecular biology, PCR and in situ hybrid-
isation (ISH) for amplifi cation of specifi c gene sequences within intact cells or tis-
sues (Long  1998 ). The in situ PCR technique links PCR amplifi cation to the light 
microscope image. The amplifi ed tissue is stained, thus confi rming which morpho-
type has been amplifi ed. The improved sensitivity of this technique allows the local-
ization of one target copy per cell (Haase et al.  1990 ) but background signal is very 
high. It is a time-consuming due to hybridisation step and technically demanding 
such as light microscopy. Bindslev et al. ( 2002 ) used in situ PCR technique to iden-
tify  Blumeria graminis  spores and mycelia causing the powdery mildew disease on 
barley leaves.  

    Polymerase Chain Reaction- Denaturing Gradient Gel 
Electrophoresis (PCR-DGGE) 

 In PCR-DGGE target DNA from fungal pathogen are fi rstly amplifi ed by PCR 
and then subjected to denaturing electrophoresis. DGGE use chemical gradient 
such as urea to denature and separate DNA samples when they are moving across 
an acrylamide gel. Sequence variants of particular fragments migrate at different 
rate in the denaturing gradient gel, allowing a very sensitive detection. In addi-
tion, PCR- DGGE primers contain a GC rich tail at their 5′ end to improve the 
detection of small variations (Myers et al.  1985 ). This method is however time-
consuming, poorly reproducible and fragments with different sequences but simi-
lar melting behaviour are not always correctly separated. This technique is most 
commonly used for diversity study but it is also used for detection of pathogenic 
fungi. Elsas et al. ( 2000 ) detected  Trichoderma harzianum  spores and  Arthrobotrys 
oligospora  hyphal fungus from soil using PCR-DGGE for about 14 days and 
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2 months, respectively. Recently, PCR-DGGE is also applied to detect multiple 
species of  Phytophthora  from plant material and environmental samples 
(Rytkönen et al.  2011 ).  

    Nested PCR 

 Nested PCR approach is used when an improvement of the sensitivity and 
 specifi city of detection is necessary. This method consists of two consecutive 
rounds of amplifi cation in which two external primers amplify a large amplicon 
that is then used as a target for a second round of amplifi cation using two internal 
primers (Porter-Jordan et al.  1990 ). The two reactions can be performed in single 
tubes supporting high throughput. The annealing temperature of inner primers 
should be more than outer primers so that inner primers should not bind at initial 
stage of amplifi cation. Nested PCR is reported to successfully detect  Phytophthora 
fragariae  in naturally infected strawberry tissues and the sensitivity is 
 1,000–10,000 times more as compared to conventional PCR (Bonants et al. 
 2004 ). Zeng et al. ( 2005 ) developed two nested PCR systems. The fi rst system 
employed universal fungal primers to enrich the fungal DNA targets in the fi rst 
round, followed by a second round selective amplifi cation of the pathogen while 
the other system employed  G. abietina -specifi c primers in both PCR steps. Both 
approaches can detect the presence of  G. abietina  in composite samples with 
high sensitivity, as little as 7.5 fg  G. abietina  DNA in the host genomic 
background.  

    Co-operational PCR 

 Co-operational PCR (Co-PCR) is developed based on the simultaneous action of 
four primers and uses ten times fewer reagents than conventional PCR. The reaction 
process consists of the simultaneous reverse transcription of two different fragments 
from the same target, one containing the other. The production of four amplicons by 
the combination of the two pair of primers, one pair external to other and producing 
maximum possible largest fragment by co-operational action of amplicons (Olmos 
et al.  2002 ). Co-operational PCR is also used to increase sensitivity and specifi city 
of PCR like nested PCR but fragment produced in Co-PCR is larger than nested 
PCR. In both Co-PCR and nested PCR methods, the use of external primers can be 
used for generic amplifi cation and the internal primers for specifi c amplifi cation of 
product. The technique was fi rst developed and used successfully for the detection 
of plant RNA viruses, such as citrus tristeza virus (CTV), cucumber mosaic virus 
(CMV), cherry leaf roll virus (CLRV) and strawberry latent ring spot virus (SLRSV) 
(Olmos et al.  2002 ). Co-PCR is usually coupled with dot blot hybridisation by using 
a specifi c probe to enhance the specifi city of the detection and provide a sensitivity 
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level similar to nested PCR method. Martos et al. ( 2011 ) used this method for sensi-
tive and specifi c detection of  Phaeomoniella chalmydospora  from infected grape-
vine wood.  

    Reverse Transcription (RT)-PCR 

 Reverse transcription (RT)-PCR is a diagnostic technique which detects target 
mRNA. An important limitation of DNA based PCR is the inability to distinguish 
living or dead fungi. So, results from detection and identifi cation of fungal plant 
pathogens generally validated by pathogenicity tests. RT–PCR based detection is 
considered an accurate indicator of cell viability because mRNA is degraded rapidly 
in dead cells (Sheridan et al.  1998 ). In RT-PCR, the RNA is reverse transcribed 
using the enzyme reverse transcriptase to produce stable cDNA. The resulting 
cDNA is then amplifi ed using conventional or any other PCR-based method. 
Although, the most frequent application of this technique in phytopathology is the 
analysis of fungal gene expression during disease development (Yang et al.  2010 ) 
but RT-PCR is also used to detect viable populations of fungal pathogen like 
 Mycosphaerella graminicola  in wheat (Guo et al.  2005 ) and  Oidium neolycopersici  
in tomato (Matsuda et al.  2005 ).  

    Polymerase Chain Reaction- Restriction Fragment Length 
Polymorphism (PCR-RFLP) 

 PCR-RFLP combines the amplifi cation of a target region with the further restriction 
enzyme digestion of the PCR products. This is followed by separation of the 
fragments by electrophoresis in agarose or polyacrilamide gels to detect differences 
in the size of DNA fragments. PCR primers specifi c to the genus  Phytophthota  were 
used to amplify and further digest the resulting amplicons yielding a specifi c 
restriction pattern of 27 different  Phytophthora  species (Drenth et al. 2006). It also 
allowed the differentiation of pathogenic and non-pathogenic strains of  Pythium 
myriotolum  (Gómez-Alpizar et al.  2011 ).  

    Fingerprinting Based Detection 

 Fingerprinting analyses are generally used to study the phylogenetic structure of 
fungal populations. However, these techniques also allow the screening of random 
regions of the fungal genome for identifying species-specifi c sequences when 
conserved genes have not enough variation to successfully identify species 
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(McCartney et al.  2003 ). Any band that appears to be unique to particular fungal 
species may be labelled and tested for use as specifi c probes for fungal detection. 
There are various markers like RFLP, RAPD, AFLP and microsatellites which 
generally used for phylogentic study are also used for diagonsis of fungal pathogens. 
RAPD analysis can provide markers to identify and differentiate fungal pathogens. 
Specifi c DNA bands were selected as probes from the RAPD profi les of 13  formae 
speciales  of  Fusarium oxysporum . The  formae specialis -specifi c probe OPC18300c 
and OPC18520f were used to identify  Fusarium oxysporum  f.sp.  cucumerinum  
(FOC) and  F. oxysporum  f.sp.  luffae  (FOL) infecting cucumber and  Luffa cylindrica  
respectively by RAPD-PCR followed by dot blot hybridization (Wang et al.  2001 ). 
 Pyrenophora teres , causing net blotch disease in barley leaves was identifi ed by 
AFLP fi ngerprinting technique. Specifi c primers were designed based on the 
sequences of AFLP fragments. The primers amplifi ed the DNA from  P. teres  f.  teres  
(net form), but not from the closely related  P. teres  f.  maculata  (spot form), indicating 
the specifi city of detection for distinguishing closely related fungal pathogen 
species/strains (Leisova et al.  2005 ). Microsatellite markers specifi c for  Phytophthora 
ramorum  were employed to distinguish between A1 and A2 mating types isolates of 
this pathogen from two different geographic origins (Prospero et al.  2004 ). Sequence 
tagged microsatellites (STMs) technique was developed to reduce the cost of 
developing microsatellites. STMs is amplifi ed by PCR using a single primer specifi c 
to the conserved DNA sequence fl anking the microsatellite repeat in combination 
with a universal primer that anchors to the 5′-ends of the microsatellites (Hayden 
et al.  2002 ). STMs have been developed for the detection of  Pyrenophora teres  
causing barley net blotch disease (Keiper et al.  2007 ).  

    Multiplex PCR 

 Most of the molecular diagnostic assays used in fungal pathology target one specifi c 
pathogen. However, because crops can be infected by numerous fungal pathogens 
which are often present in plants as complexes. So, it is desirable to develop assays 
that can detect multiple pathogens simultaneously. Multiplex PCR method combines 
multiple species-specifi c primers in a single PCR tube and then amplifi ed product is 
resolved by gel electrophoresis. It helps in reducing the number of tests required 
(James et al.  2006 ), but care is needed to optimize the conditions so that all amplicons 
can be generated effi ciently. Primer designing and selection of primer is very critical 
in multiplex PCR. As we are using multiple primers, so there is chance of formation 
of primer dimmers. Also, it is very important that all primer should have nearly 
same annealing temperature and amplifi ed product should be of different size. 

 Fraaije et al. ( 2001 ) developed a multiplex PCR assay to detect and quantify four 
foliar fungal pathogens;  Septoria tritici ,  Stagonospora nodorum ,  Puccinia striiformis  
and  P. reconditain  of wheat. Luo and Mitchell ( 2002 ) developed multiplex PCR to 
identify simultenously multiple fungal pathogen in a single reaction. Five sets of spe-
cies specifi c primers were desined from internal transcribed regions, ITS1 and ITS2, of 
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the rRNA gene to identify  Candida albicans ,  C. glabrata ,  C. parapsilosis ,  C. tropicalis , 
and  Aspergillus fumigatus . Another set of previously published ITS primers, CN4 and 
CN5 were used to identify  Cryptococcus neoformans . Six different species of patho-
genic fungi were identifi ed by using two multiplex PCR.    Puccinia graminis      f. sp.  tritici , 
 Puccinia triticina , and  Blumeria graminis  f. sp.  tritici , are three of the most economi-
cally damaging fungal diseases causing wheat stem rust, wheat leaf rust, and wheat 
powdery mildew, respectively. Single-step multiplex PCR was also developed by Chen 
et al. ( 2014 ) for the simultaneous detection of the three pathogens in a single reaction.  

    DNA Arrays 

 DNA arrays offer a far greater capacity for multiplexing than multiplex PCR. In 
conventional PCR multiplexing is limited by the detection of different size product 
in an agarose gel while in real time PCR limited by the availability of dyes emitting 
fl uorescence at different wavelengths on one hand, and the monochromatic character 
of the energizing light source in real-time PCR instruments on the other hand (Varga 
and James 2006). As a result, detection of more than a few pathogens per assay is 
currently not possible using conventional and real time PCR. 

 DNA arrays, originally designed to study gene expression or to generate SNP 
profi les, can be used to detect large no. of different organisms in parallel (Lievens 
et al.  2005 ). A pathogen detection array typically consists of many discretely located 
pathogen-specifi c detector sequences that are immobilized on a solid support, such 
as a nylon fi lter or a glass slide, to create a macroarray or a microarray, respectively. 
For signal amplifi cation, in general the target DNA to be tested is amplifi ed using 
consensus primers that target a genomic region containing the pathogen-specifi c 
sequences, and is labelled simultaneously or subsequently. Hence, it is possible to 
differentiate a large number of organisms using a single PCR, provided that 
suffi cient discriminatory potential exists within the region that is used. 

 There are only a few reports for DNA array study in phytopathogenic fungi as 
this technology is in developmental stage. The high cost associated with microarray 
production and result reading limits its application. Lievens et al. ( 2003 ) developed 
DNA array technology for rapid and effi cient detection of these vascular wilt 
pathogens i.e.  Fusarium oxysporum  f. sp.  lycopersici , and  Verticillium albo - atrum 
or Verticillium dahlia ). They show the utility of this array for the sensitive detection 
of these pathogens from complex substrates like soil, plant tissues and irrigation 
water, and samples that are collected by tomato growers in their greenhouses 
conditions. Zhang et al. ( 2008 ) used a membrane-based macroarray technology to 
detect 25 pathogens of solanaceous crops. Based on the internal transcribed spacer 
sequences of the rRNA genes, 105 oligonucleotides (17–27 bases long) specifi c for 
25 pathogens of solanaceous crops were designed and spotted on a nylon membrane. 
Their results indicate that the DNA-based macroarray detection system is a reliable 
and effective method for pathogen detection and diagnosis even when multiple 
pathogens are present in a fi eld samples.  
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    Loop-Mediated Isothermal Amplifi cation (LAMP) 

 Loop-mediated isothermal amplifi cation is a simple, rapid, specifi c and cost 
effective nucleic acid amplifi cation method that amplifi es a few copies of target 
DNA under isothermal conditions, using a set of four specially designed primers 
and a  Bst  DNA polymerase from  Geobacillus stearothermophilus  with strand 
displacement activity (Notomi et al.  2000 ; Tomita et al.  2008 ). The cycling reactions 
can result in the accumulation of 10 9  to 10 10 -folds copies of target in less than an 
hour. LAMP is an alternative amplifi cation technology and tenfolds more sensitive 
than conventional PCR (Duan et al.  2014a ) 

 Four primers are used in LAMP that recognizes six distinct regions in the target 
DNA, instead of two primers in conventional PCR. Annealing of the four primers to 
the target DNA is a very crucial step for the effi ciency of LAMP. The design of these 
four primers is therefore critical for a successful LAMP assay. PrimerExplorer is most 
commonly used programme for primer designing for LAMP assay. Two inner and 
two outer primers are required for LAMP. In the initial steps of the LAMP reaction, 
all four primers are employed, but in the later cycling steps only the inner primers are 
used for strand displacement DNA synthesis. The outer primers are referred to as F3 
and B3, while the inner primers are forward inner primer (FIB) and backward inner 
primer (BIP). FIP contains F1C and F2 distinct sequences while BIP contains B1C 
and B2 distinct sequences corresponding to the sense and antisense sequences of the 
target DNA, one for priming in the fi rst stage and the other for self-priming in later 
stages (Notomi et al.  2000 ). The Tm values of the outer primers F3 and B3 have to be 
lower than those of F2 and B2 to assure that the inner primers start synthesis earlier 
than the outer primers. Additionally, the concentrations of the inner primers are higher 
than the concentrations of the outer primers (Notomi et al.  2000 ; Tomita et al.  2008 ). 

 LAMP amplicons can be visualized directly and seen with the naked eye or 
under ultraviolet trans-illumination. The simplest way of detecting LAMP products 
is to inspect the white turbidity that results from magnesium pyrophosphate 
accumulation, as a by-product of the reaction, by naked eye (Mori et al.  2001 ). 
Some dyes like SYBR Green I, hydroxynaphthol blue (HNB), ethidium bromide are 
also used for detecting LAMP product (Table  4 ). SYBR Green I dye will be expected 
to show bright green fl uorescence positive reactions, while a negative reaction 
would remain light orange. As LAMP is conducted at one temperature and no 
electrophoresis is required so, LAMP has the potential to implement early detection 
of fungal pathogens at fi eld level, instead of well equipped laboratory.

        Biochemical Techniques for Detection 
of Phytopathogenic Fungi  

 Recent technological developments in agricultural sector have lead to a demand for 
a new era of automated, sensitive and non-destructive methods of plant disease 
detection. It is desirable that the plant disease detection tool should be rapid, specifi c 
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and sensitive to a particular disease for detection at the early stage of the symptoms. 
Current focus is on the development of such technologies that can create a practical 
tool for a large-scale real-time disease monitoring under fi eld conditions. The com-
monly used biochemical techniques for disease detection are spectroscopic tech-
niques, imaging techniques, metabolite as a marker. Other advanced biochemical 
techniques include electronic nose, PLEX-ID system etc. 

    Spectroscopic Techniques 

 Spectroscopy and imaging techniques provide a platform along with other tech-
niques which can be used for the development of non-destructive methods. 
Spectroscopy is the study of the interaction between matter and electromagnetic 
radiation (Crouch et al.  2007 ; Herrmann and Onkelinx  1986 ). At the end of the 
nineteenth century, spectroscopy was limited to the absorption, emission, and scat-
tering of visible, ultraviolet and infrared electromagnetic radiations. During the 
twentieth century, the defi nition of spectroscopy has been extended to include 
other forms of electromagnetic radiations, including X-rays, microwaves and radio 
waves as well as energetic particles, such as electrons and ions (Harvey  2000 ). In 
case of plant disease detection tools, it is desirable that these should be rapid, spe-
cifi c to a particular disease, and sensitive for detection at the early stage of the 
symptoms developed (Lopez et al.  2003 ). Non-destructive methods fulfi l these 
criteria with rapid analysis as minimal or no sample preparation is required. 
Current agricultural engineering research activities are working on the develop-
ment of such technologies to create a practical tool for a large-scale real-time 
disease monitoring under fi eld and laboratory conditions. There are many different 
types of spectroscopy techniques which provide unique tools for fungal pathogen 
detection (Table  5 ).

      Visible, Infrared and Near Infrared Spectroscopy 

 Non-destructive methods based on visible, infrared and near infrared spectroscopy 
are becoming more popular as a tool for pathogen detection as these are rapid and 
cost-effective. In general, visible spectroscopy is used for disease detection in plants 
in combination with infrared/near infrared spectroscopy (Bravo et al.  2003 ; Larsolle 
and Muhammed  2007 ). Dowell et al. ( 1999 ) predicted scab, vomitoxin and ergos-
terol in single wheat kernels using NIR spectroscopy. Pettersson and Aberg ( 2003 ) 
described the application of NIR spectroscopy for measuring mycotoxins in cereals. 
Erukhimovitch et al. ( 2005 ) examined the potential of FTIR microscopy for an easy 
and rapid discrimination and identifi cation of various fungi, which are responsible 
for a serious damage to agriculture. The results provided a unique and consistent 
spectral markers for each of the examined fungi. They showed that the spectral area 
ranged between 1,000 and 1,800 cm −1  can be considered as an important area for an 
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easy and reliable discrimination between the various examined fungi. Huang and 
Apan ( 2006 ) collected the hyperspectral data under fi eld conditions using portable 
spectrometer to detect Sclerotinia rot disease in celery and the refl ectance in the 
visible and infrared range from 400 to 1,300 nm was found suffi cient in acquiring 
similar results as that of entire spectra (400–2,500 nm). Apart from compositional 
analysis, more complex applications of NIR are now being investigated, including 
analysis in breeding development and genetics, detection of adulteration and pres-
ence of weeds and insects in wheat and fl our (Woodcock et al.  2008 ). In case of 
disease detection in greenhouse plants, Summy and Little ( 2008 ) analysed spectro-
radiometric measurements and color infrared (CIR) images of control, honeydew-
coated, and sooty mold ( Capnodium  spp.) infested saplings and individual leaves 
from trifoliate orange (Poncirus  trifoliata), sour orange ( Citrus aurantium ), Valencia 
orange ( C. sinensis ), and Bo tree ( Ficus religiosa ); grapefruit saplings and individ-
ual leaves infected with  Mycosphaerella citri  (greasy spot); and muskmelon foliage 
showing infection of powdery mildew ( Sphaerotheca fuliginea ) disease. All fungal 
biotic stressors generally resulted in variable spectral refl ectance data in individual 
leaves, especially in the blue (450 nm) and green (550 nm) wavelengths. The values 
in the red (650 nm) tended to increase and values in the near-IR (850 nm) tended to 
decrease with stress. Near-IR/red image ratios were signifi cantly reduced in stressed 
whole plant foliage and individual leaves relative to healthy controls. Wu et al. 
( 2008 ) used NIR techniques to detect  Botrytis cinerea - affected eggplant leaves prior 
to the visibility of symptoms under laboratory conditions. Salman et al. ( 2012 ) suc-
cessfully used FTIR-ATR spectroscopy to differentiate among ten isolates of 
 Fusarium oxysporum .  

    Fluorescence Spectroscopy 

 Fluorescence spectroscopy is a type of electromagnetic spectroscopy which ana-
lyzes fl uorescence from the sample of interest. The sample is excited by using a 
beam of light which results in emission of light of a lower energy resulting in an 
emission spectrum which is used to interpret results (Ramanujam et al.  1994 ). Two 
types of fl uorescence namely blue-green fl uorescence (about 400–600 nm range) 
and chlorophyll fl uorescence (about 650–800 nm range) are produced by green 
leaves. Fluorescence spectroscopy seems to be promising diagnostic technique with 
high sensitivity and specifi city rate which makes it an ideal diagnostic tool. The 
fl uorescence spectroscopy can be utilized to monitor nutrient defi ciencies; environ-
mental conditions based stress levels, and diseases in plants (Cerovic et al.  1999 ; 
Belasque et al.  2008 ). Leufen et al. ( 2014 ) investigated the potential of three optical 
devices namely fl uorescence lifetime, image-resolved multispectral fl uorescence 
and selected indices of a portable multiparametric fl uorescence device for the proxi-
mal sensing of plant-pathogen interactions in four genotypes of spring barley in 
healthy leaves as well as leaves inoculated with powdery mildew ( Blumeria grami-
nis ) or leaf rust ( Puccinia hordei ). They observed signifi cant differences between 
healthy and diseased leaves.  
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    Nuclear Magnetic Resonance (NMR) Spectroscopy 

 Greater sensitivity and spectral resolution have come with the advent of higher 
magnetic fi eld. Advancements in technology have made it possible to combine 
different NMR techniques enabling metabolic, anatomical, and physiological infor-
mation. The potential to spectroscopically differentiate host from fungal metabo-
lites  in vivo  or in crude extracts without the need for separation or chemical 
derivatization is another useful aspect of NMR measurements in studying the 
biochemistry of mycorrhizas (fungi). Intact tissues analysis became possible 
through the implementation of high resolution solid state magic angle spinning 
nuclear magnetic resonance (HR-MAS NMR). Pfeffer et al. ( 2001 ) reviewed the 
Nuclear Magnetic Resonance (NMR) applied to the two main types of mycorrhiza 
(ectomycorrhizas and arbuscular mycorrhizas) to address the physiological question 
that these two mutualistic symbioses are suffi ciently different. They reported that 
isotopic labelling NMR is able to examine the transfer of substrates between the 
symbionts both  in vivo  and  in vitro , as well as the production of secondary metabo-
lites in response to colonization and is also capable of determining the locations of 
the biosynthesis and translocations of storage compounds, such as polyphosphates, 
lipids and carbohydrates, in mycorrhizal fungi both in the free- living and in the 
symbiotic stages of their life cycle.   

    Imaging Techniques 

 On the other hand, imaging is the representation or reproduction of an object’s 
form; especially a visual representation. The imaging techniques are an improvement 
over spectroscopic techniques as these methods acquire spectral information over a 
larger area and provide three-dimensional spectral information in the form of 
images. As improved form of spectroscopy, imaging techniques also provide unique 
tools for fungal pathogen detection are discussed in this chapter. 

    Fluorescence Imaging 

 Fluorescence imaging is an advancement of fl uorescence spectroscopy, where 
fl uorescence images (rather than single spectra) are obtained using a camera. A 
xenon or halogen lamp is used as a UV light source for fl uorescence excitation and 
the fl uorescence at specifi c wavelengths is recorded using the charge coupled device 
(CCD)-based camera system (Bravo et al.  2004 ; Chaerle et al.  2007 ). The regions of 
electromagnetic spectra that are commonly used for fl uorescence imaging are blue 
(440 nm), green (520–550 nm), red (690 nm), far red (740 nm), and near infrared 
(800 nm) (Lenk and Buschmann  2006 ; Chaerle et al.  2007 ). Lenk et al. ( 2007 ) 
described the multispectral fl uorescence and its possible application in monitoring 
disease symptoms in plants along with other traits. Bravo et al. ( 2004 ) used 
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fl uorescence imaging for detection of yellow rust in winter wheat and found that the 
difference between the fl uorescence at 550 and 690 nm were higher in the diseased 
portion of the leaves, while it was very low for healthy regions. Hyperspectral 
refl ectance imaging in combination with multispectral fl uorescence imaging through 
sensor fusion was used to detect yellow rust ( Puccinia striiformis ) disease of winter 
wheat by Moshou et al. ( 2005 ). Summy and Little ( 2008 ) analysed muskmelon 
foliage showing low and high levels of powdery mildew ( Sphaerotheca fuliginea ) 
disease severity. When individual leaves were examined, all fungal biotic stressors 
generally resulted in variable spectral refl ectance data, especially in the blue 
(450 nm) and green (550 nm) wavelengths; however, values in the red (650 nm) 
tended to increase and values in the near-IR (850 nm) tended to decrease with stress. 
Signifi cantly reduced Near-IR/red image ratios were found in stressed whole plant 
foliage and individual leaves relative to healthy controls. Image acquisition and 
enhancement techniques may prove useful in large-scale production greenhouses 
where existing infrastructure and high plant populations require high throughput 
data analysis and identifi cation of biotic stressors.  

    Hyperspectral Imaging 

 Hyperspectral imaging has gained considerable importance for its application in 
 precision agriculture (Okamoto et al. 2009). In the hyperspectral imaging, the spec-
tral refl ectance of each pixel is acquired for a range of wavelengths in the electro-
magnetic spectra. The wavelengths may include the visible and infrared regions of 
the electromagnetic spectra. It is similar to multispectral imaging, with the differ-
ence that a broader range of wavelengths being scanned for each pixel. The result-
ing information in the form of an image is a set of pixel values in the form of 
intensity of the refl ectance at each wavelength of the spectra. The major challenges 
in hyperspectral imaging-based plant disease detection are the selection of disease-
specifi c spectral bands and selection of statistical classifi cation algorithm for a 
particular application. Delwiche and Kim ( 2000 ) described the application of 
hyperspectral imaging for detecting Fusarium head blight in wheat using sensor 
with a wavelength range of 425–860 nm. To detect yellow rust disease ( Puccinia 
striiformis ) in wheat, the application of visible-NIR hyperspectral imaging was 
investigated by Bravo et al. ( 2003 ) wheras Moshou et al. (2004) used a spectro-
graph to acquire spectral images from 460 to 900 nm. Spectral imaging sensors 
combine image analysis with spectroscopic techniques. Based on refl ection mea-
surements of normal and head blight damaged kernels of three different varieties, 
wavelength bands were selected to differentiate the normal and damaged kernels 
(Sankaran et al.  2010 ). Blasco et al. ( 2007 ) applied multi-spectral computer vision 
using non- visible (ultraviolet, infrared and fl uorescence) and visible multiple spec-
tra for citrus sorting. The anthracnose was classifi ed better with NIR images 
(86 %), whereas green mold was more accurately classifi ed with fl uorescence 
imaging (94 %). The stem-end injury was classifi ed up to 100 % using the ultravio-
let spectra in the same study. This study showed the utilization of hyperspectral 
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bands for detecting different aspects of a single problem. Similarly, the hyperspec-
tral imaging could be used for detecting different features within a plant to identify 
diseases. Shafri and Hamdan (2009) used air-borne hyperspectral imaging for the 
detection of ganoderma basal stem rot disease in oil palm plantations. Mahlein 
( 2010 ) examined the potential of hyperspectral imaging and non-imaging sensor 
systems for the detection, differentiation, and quantifi cation of plant diseases. They 
repeatedly recorded the refl ectance spectra of sugar beet leaves infected with the 
fungal pathogens  Cercospora beticola ,  Erysiphe betae , and  Uromyces betae  caus-
ing cercospora leaf spot, powdery mildew, and sugar beet rust, respectively, during 
pathogenesis. Spectral refl ectance of sugar beet was affected by each disease in a 
characteristic way, resulting in disease specifi c signatures. Hyperspectral imaging 
sensor provided extra information related to spatial resolution. Detection, identifi -
cation and quantifi cation of diseases was possible with high accuracy by spectral 
vegetation indices (SVIs) and spectral angle mapper classifi cation, calculated from 
hyperspectral images which facilitated early detection and monitoring of 
Cercospora leaf spot and powdery mildew. Bauriegel et al. ( 2011 ) used hyper-
spectral imaging analysis for early detection of  Fusarium  head blight pathogen. 
Occurrence of head blight can be detected by spectral analysis (400–1,000 nm) 
before harvest. With this information, farmers could recognize  Fusarium  contami-
nations. Wheat plants were analyzed using a hyper-spectral imaging system under 
laboratory conditions (Table  6 ). Principal component analysis (PCA) was applied 
to differentiate spectra of diseased and healthy ear tissues in the wavelength ranges 
of 500–533 nm, 560–675 nm, 682–733 nm and 927–931 nm, respectively. They 
concluded that head blight could be successfully recognized during the develop-
ment stages and derived disease index, which uses spectral differences in the ranges 
of 665–675 nm and 550–560 nm, can be a suitable outdoor classifi cation method 
for the recognition of head blight. Bauriegel et al. ( 2014 ) compared the two meth-
ods viz. chlorophyll fl uorescence and hyperspectral imaging in view of their usabil-
ity for the detection of  Fusarium  on wheat, both in the fi eld and in the laboratory. 
They highlighted that the modifi cation of spectral signatures due to fungal infec-
tion allowed its detection by hyperspectral imaging, the decreased physiological 
activity of tissues resulting from  Fusarium  impacts provided the base for CFI 
analyses.

   Table 6    Detection of phytopathogenic fungi of wheat using imaging techniques   

 Technique  Crop  Fungal disease 
 Optimum spectral 
range  Reference 

 Flourescence 
imaging 

 Wheat  Leaf rust  –  Buerling et al. ( 2010 ) 
 Leaf rust and 
powdery 
mildew 

 –  Kuckenberg et al. ( 2007 ) 

 Hyperspectral 
imaging 

 Wheat  Fusarium head 
blight 

 568, 715 nm 
(550, 605, 623, 660, 
697 and 733 nm) 

 Delwiche and Kim ( 2000 ) 

 Wheat  Yellow rust  680, 725 and 750 nm  Moshou et al. ( 2005 ,  2006 ) 
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        Metabolites as Biomarkers 

 The unique changes at metabolite levels can be used as biomarkers to detect fungal 
pathogens at an early stage of disease progression and to manage diseases in storage 
as well as outbreak of seed borne disease (Table  7 ). De Lacy Costello et al. ( 2001 ) 
identifi ed many disease-specifi c compounds in potatoes infected with  Phytophthora 
infestans  namely, butanal, 3-methyl butanal, undecane and verbenone, while those 
infected with  Fusarium coeruleum  produced 2-pentyl furan and capaene. Prithiviraj 
et al. ( 2004 ) assessed the variability in the volatiles profi le released from onion 
bulbs infected with bacterial ( Erwinia carotovora ) causing soft rot and fungal spe-
cies ( Fusarium oxysporum  and  Botrytis allii ) causing basal and neck rots, respec-
tively and found that 25 volatile compounds among the 59 consistently detected 

   Table 7    Detection of phytopathogenic fungi using mass spectroscopic techniques   

 Crop  Disease  Equipment  Profi ling  Reference 

 Apple   Botrytis cinerea  
  Mucor piriformis  
  Penicillium expansum  
  Monilinia  sp. 

 GC-MS  methyl acetate; 
 4-methyl-1-Hexane; 
 2-methyltetrazole 
and butyl butanoate, 
and 
 3,4-dimethyl-1- 
hexene and 
fl uorethene 

 Vikram et al. 
( 2004 ) 

 Mango   Lasiodiplodia 
theobromae  and 
 Colletotrichum 
gloeosporioides  

 GC-MS  Volatile organic 
compounds (35) 

 Moalemiyan 
et al. ( 2007 ) 

 Potato   Phytophthora 
infestans  
  Fusarium coeruleum  

 GC-MS  Butanal, 3-methyl 
butanal, undecane 
and verbenone 
 2-pentyl furan and 
capaene 

 De Lacy Costello 
et al. ( 2001 ) 

 Tomato   A. niger  yielded 11;  A. 
fl avus  yielded 15 
different volatile 
metabolites while that 
inoculated with  F. 
oxysporum  

 GC-MS  11, 15, 8  Ibrahim et al. 
( 2011 ) 

 Onion bulbs   Fusarium oxysporum  
and  Botrytis cinerea  

 GC-MS  Volatile organic 
compounds (25) 

 Prithiviraj et al. 
( 2004 ) 

 Vegetable, 
oil yielding 
and seed 
spice crops 

  Alternaria  species 
such as  A. solani ,  A. 
porri ,  A. brassicicola , 
 A. brassicae ,  A. 
sesame ,  A. alternata , 
 A. macrospora ,  A. 
ricini ,  A. carthami  and 
 A. brunsii  

 HPLC- 
MALDI- 
TOF-MS 

 Species-specifi c 
markers 

 Lakshmi et al. 
( 2014 ) 
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compounds can be used to identify the disease. In apples, methyl acetate was found 
to be unique to fruits inoculated with  Botrytis cinerea , 4-methyl-1- hexene to fruits 
inoculated with  Mucor piriformis , 2-methyltetrazole and butyl butanoate to fruits 
inoculated with  Penicillium expansum , and 3,4-dimethyl-1- hexene and fl uorethene 
to fruits inoculated with  Monilinia  sp. (Vikram et al.  2004 ). Moalemiyan et al. 
( 2006 ,  2007 ) employed volatile organic compound (VOC) profi ling to detect fungal 
diseases namely  Lasiodiplodia theobromae  causing stemend rot and  Colletotrichum 
gloeosporioides  causing anthracnose in mangoes. Ibrahim et al. ( 2011 ) studied vol-
atile metabolites of tomato fruits inoculated with three toxigenic fungi isolated from 
spoilt tomatoes using GC-MS and observed differences in the number and amount 
of volatile metabolites. They obtained a total of 52 different volatile metabolites. 
Healthy ripe tomato fruits yielded 28 metabolites viz. oleic acid amide (10.89 %), 
9-octadecenoic acid (9.83 %), methyl cis-9-octadecenoate (7.73 %), and 2, 
3-Heptanedione (0.32 %). Tomato fruits inoculated with  A. niger  yielded 11 %;  A. 
fl avus  yielded 15 different volatile metabolites while that inoculated with 
 F. Oxysporum  yielded eight volatile metabolites. Among them only fi ve volatile 
metabolite occurred relatively consistent in fruits inoculated with  A. niger  and  A. 
fl avus  while adogen 73 and 9-Octadecenoic acid (Z) occurred relatively consistently 
in fruits inoculated with the three fungi. Hexadecanoic acid and 6-Methyl-2,4-di – 
tert – butyl – phenol was common in fruits inoculated with  F. oxysporum  and  A. 
niger  with that of  A. niger  having the highest value (9.67 %) for hexadecanoic acid 
while fruits inoculated with  F. oxysporum  had the highest (2.66 %) for 6-Methyl-
2,4-di – tert – butyl – phenol. Ten metabolites were unique to  A. fl avus  while  A. 
niger  and  F. oxysporum  had four metabolites unique to each of them. Lakshmi et al. 
( 2014 ) examined the secondary metabolite profi ling of 50 fungal isolates belonging 
to 10 plant pathogenic  Alternaria  species such as  A. solani ,  A. porri ,  A. brassicic-
ola ,  A. brassicae ,  A. sesame ,  A. alternata ,  A. macrospora ,  A. ricini ,  A. carthami  and 
 A. brunsii  isolated from vegetable, oil yielding and seed spice crops for classifi ca-
tion and identifi cation purposes and obtained characteristic ‘species-specifi c metab-
olite fi ngerprints’ that could be adopted as chemotaxonomic markers in species 
identifi cation. Further, application of MALDI-MS offers relatively high tolerance 
against sample impurities (salts and detergents), as well as fast and accurate molec-
ular mass determination and the possibility of automation, which makes it a power-
ful alternative to classical biological methods. Chalupova et al. ( 2013 ) reviewed the 
identifi cation of fungal microorganisms by matris assisted laser desorption/ioniza-
tion- time of fl ight (MALDI-TOF) mass spectrometry.

       Electronic Nose 

 Fungi synthesize a very large range of organic (carbon-based) compounds that are 
categorized into many different chemical classes. These diverse organic chemicals 
are produced as a result of biochemical or metabolic processes that take place within 
specialized cells of fungi. Some chemical monomeric compounds are linked 

Advance Detection Techniques of Phytopathogenic Fungi



288

together to form various types of structural or functional biopolymers such as 
carbohydrates, lipids, proteins, and nucleic acids. These polymeric compounds 
generally have low volatility as a result of their high molecular weight. Other 
smaller intermediates of biochemical processes are modifi ed to form a variety of 
primary and secondary metabolites performing many cellular or biochemical 
functions (Wilson  2013 ). Small molecular weight organic compounds, generally 
<350 Da (Cagni and Ghizzoni  2000 ), may contain various polar and nonpolar 
functional groups that contribute to volatility. Compounds having high vapour 
pressure (low boiling point), called volatile organic compounds (VOCs), are 
particularly conducive to e-nose detection because they are easily vaporized (made 
airborne as gases), greatly increasing their accessibility for detection within sampled 
air. The electronic nose instrumentation was developed in the early 1980s (Persaud 
and Dodd 1982) to mimic mammalian olfactory systems. Electronic noses are 
comprised of sensor arrays that are capable of detecting a selection of compounds 
(e.g. ketones, aldehydes, aromatic and aliphatic compounds) produced during the 
growth stages of fungi on a certain substrate. The fi rst developed sensor array was a 
metal oxide semiconductor, which detected 20 odours (Persaud and Dodd 1982). 
The electronic nose system comprises a set of active materials that detects the odour 
and transduces the chemical vapours into electrical signals. These are capable of 
detecting, identifying, and discriminating many types and sources of a wide diversity 
of chemical species and mixtures of compounds, including VOCs most commonly 
produced and released from such organic sources as living microbes and multi- 
cellular organisms. The odour profi le obtained can then be analysed using various 
statistical methods like principal components analysis, cluster analysis, neural 
network algorithms etc. Electronic noses offer great potential for the detection of 
different microbial species (Table  8 ). Some chemical products are specifi c to fungal 
and bacterial species and are commonly used as a useful diagnosis tool. Electronic 
noses originally were not designed for the purpose of identifying individual chemical 
species within the sample mixture, but were engineered to recognize the sample as 
a whole, or as a collective simple or complex air mixture released by any source that 
is identifi able by its unique electronic signature. Technological advances made it 
possible to create sensor arrays (from 6 up to 32 sensors) with different materials, 
processing thousands of smells.

   Recent advances in electronic nose technologies based on many different elec-
tronic aroma detection principles and mechanisms have made possible the develop-
ment of a wide variety of electronic nose (Zhu et al.  2006 ). The various applications 
that have proven useful in a range of diverse fi eld including the agricultural, food 
industries, cosmetics industries, environmental, pharmaceutical, and in many fi elds 
of applied sciences (Ge et al.  2007 ; Wilson and Baietto  2009 ). Advances in the use 
of electronic-nose instruments in biomedical applications are no exceptions and 
now also used in agriculture. 

 Electronic noses have a number of advantages over traditional analytical 
instruments. Electronic nose sensors do not require chemical reagents, have good 
sensitivity and specifi city, provide rapid repeatable (precise) results, and allow non- 
destructive sampling of gas odorants or analytes (García-González and Aparicio 
 2002 ). Furthermore, e-noses generally are far less expensive than analytical  systems, 
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easier and cheaper to operate, and have greater potential for portability and fi eld use 
compared with complex analytical laboratory instruments (Wilson 2011). However, 
some disadvantages of e-nose sensing include problems with reproducibility, recov-
ery, negative effects of humidity and temperature on sensor responses, and inability 
to identify individual chemical species within gas samples. 

 Thus, electronic noses probably will never completely replace complex analyti-
cal instruments, but offer quick real-time detection and discrimination solutions for 
applications requiring accurate, rapid and repeated determinations. Nevertheless, 
much more research is needed to develop and take full advantage of electronic nose 
instruments to bring them to the full potential of capabilities for fungal pathogen 
detection applications. Once these diffi culties and logistics are resolved, electronic- 
nose devices should be capable of solving many fungal pathogen diagnostic 
problems.   

    PLEX-ID System 

 Recently, a novel technology, the PLEX-ID system has been developed which used 
broad-range PCR amplifi cation coupled with electrospray ionization-mass spec-
trometry (ESI-MS) for the direct detection of pathogens without the need to wait for 
growth in culture. This system measures the mass-to-charge ratio of PCR amplicons 

   Table 8    Detection of phytopathogenic fungi using electronic nose techniques   

 Fungal pathogen  Host 
 Electronic 
nose  Sensor/type 

 Data 
processing 
method  References 

  Aspergillus 
carbonarius  

 Tomato 
(processed) 

 EOS835  MOS  PCA  Concina 
et al. ( 2009 ) 

  Fusarium cerealis , 
 F. graminearum ,  F. 
culmorum and F. 
redolens  

 Wheat grains  Enose  QMB  PLS-DA  Eifl er et al. 
( 2011 ) 

  Botrytis cinerea , 
 Colletotrichum 
gloeosporioides , 
 Alternaria spp  

 Blueberries 
fruit 

 Cyranose® 
320 

 CP  PCA  Li et al. 
( 2009 ) 

  Botrytis sp ., 
 Penicillium sp ., 
 Rhizopus sp . 

 Strawberry 
fruit 

 PEN3  MOS  PCA  Pan et al. 
(2014) 

  Penicillium 
chrysogenum  and 
 Fusarium 
verticillioides  

 Wheat grain  Libra nose  QMB  PLS-DA, 
PCA 

 Paolesse 
et al. ( 2006 ) 

  Fusarium 
verticillioides  

 Maize grain  EOS835  MOS  PCA  Falasconi 
et al. ( 2005 ) 

   CP  Conducting polymer,  MOS  Metal oxide semiconductor,  QMB  Quartz crystal microbalance, 
 PLS-DA  partial least squares discriminant analysis,  PCA  Principal Components Analysis  
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generated from several different target loci, focusing on both conserved and 
species-specifi c regions, to identify base compositions that can then be compared to 
a database of fungal signatures. By using base composition as a unique molecular 
signature, the PLEX-ID system is able to identify single or multiple organisms at 
trace levels in a variety of specimen sources. It has been used to identify fungal 
culture isolated directly in clinical biochemistry (Simner et al.  2013 ). It can also be 
used in agriculture for rapid identifi cation of fungal infections.  

    Conclusion 

 Several detection technologies for fungal pathogen are now available, but regardless 
of the approach, important questions need to be answered prior to their inclusion in 
experiments. These include sensitivity, specifi city, robustness, user friendly and 
cost-effective. Despite many novel technologies being available, challenges remain 
same to identify unculturable fungi. There is always a need to detect and identify 
fungi quickly and accurately. The latest technologies including molecular methods, 
spectroscopic and imaging, and mass metabolite profi ling volatile profi ling-based 
fungal disease detection methods holds the key for development of sensors. Further, 
PLEX-ID technique which used broad-range PCR amplifi cation coupled with 
electrospray ionization-mass spectrometry (ESI-MS) for the direct detection of 
pathogens and has been used in clinical biochemistry for identifi cation of fungal 
strains can also holds potential for agriculture sector.     
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      Molecular Diagnostics and Application 
of DNA Markers in the Management of Major 
Diseases of Sugarcane                     

       Sangeeta     Srivastava    

          Introduction 

 Sugarcane ( Saccharum  spp. hybrid) is a major industrial crop grown in ~91 countries 
in tropical and subtropical regions across the globe. India is the second largest 
producer of sugarcane in the world and sugarcane occupies a powerful position as 
an agro-industrial crop of country, covering around 5.01 million hectare area with 
production 3,521.42 million tonne. Sugarcane is susceptible to a myriad of bacte-
rial, fungal, viral and phytoplasmal diseases. There are about 160 fungal and 8 bac-
terial pathogens reported along with at least 7 recognized sugarcane diseases of 
unknown aetiology world-wide (Rott et al.  2000 ). In India, more than 50 diseases of 
sugarcane caused by bacteria, viruses, fungi, phytoplasmas and nematodes are 
known to occur that affect cane and foliar parts of the plant causing substantial 
losses in cane yield and quality (Rott et al.  2000 ; Viswanathan and Rao  2011 ). 
Major fungal diseases  viz . red rot, smut and wilt pose a real challenge to successful 
cultivation of sugarcane. Besides fungal diseases, bacterial and viral diseases cause 
considerable damage to the crop. Ratoon stunting and leaf scald are two important 
bacterial diseases of sugarcane in India. The two viral diseases of sugarcane  viz . 
mosaic and yellow leaf syndrome occur throughout the crop cycle in almost all parts 
of the country and are accountable for the progressive deterioration of crop 
performance leading to reduced life-span of many promising sugarcane varieties. 
Lack of precise diagnostic techniques and clear symptoms besides non-availability 
of information on genome of disease causing virus are the main reasons for delay in 
management of different viral diseases in sugarcane. Off late, sugarcane grassy 
shoot disease and leaf yellows caused by phytoplasma and leaf fl eck have emerged 

        S.   Srivastava       
  Division of Crop Improvement ,  ICAR-Indian Institute of Sugarcane Research , 
  Lucknow   226 002 ,  India   
 e-mail: sangeeta_iisr@yahoo.co.in  

mailto:sangeeta_iisr@yahoo.co.in


300

as major constraints for sugarcane growers. It is very diffi cult to introduce resis-
tance against all pathogens through conventional breeding approaches. Sometimes 
an elite cultivar may be susceptible to more than one pathogen. Generally an inte-
grated approach involving disease free seed material, resistant varieties, appropriate 
disease control measures and strict quarantine procedures is used to manage 
sugarcane diseases in most sugarcane growing countries.  

    Diagnosis and Detection of Pathogen 

 Early detection, proper identifi cation and accurate diagnosis of the causal organism 
and reasons for the prevalence of a disease are prerequisites for appropriate and 
well-timed control and management of any plant disease. Conventional methods to 
identify pathogen have often relied on disease symptoms, isolation, culturing and 
morphology of pathogen and biochemical tests. Using healthy planting materials is 
a key management strategy for containing diseases in any crop. Because of vegeta-
tive propagation mode, sugarcane is amenable to transmission of pathogens through 
planting materials in fi eld thus facilitating the entry of pathogen in fi elds. Slow 
accumulation of different viral/phytoplasmal pathogens in sugarcane causes deteri-
oration in varietal performance. It is crucial to examine the planting material for 
presence of any probable pathogen before the planting of the crop. Proper diagnosis 
of the pathogen is also essential for epidemiological studies. It is relatively simple 
to detect pathogens in symptomatic plants if one has extensive experience with dis-
ease diagnosis and isolation of plant pathogens. Detection of disease causing organ-
ism in seeds or asymptomatic vegetative propagative materials, such as in sugarcane 
setts, can be extremely diffi cult if the titer of pathogen is very low. This necessitates 
sensitive techniques capable of detection of very low numbers of pathogen propa-
gules (Srivastava and Sinha  2009 ). Traditional methods of disease diagnosis and 
pathogen identifi cation are relatively slow and often require trained and experienced 
persons for reliably taxonomic classifi cation of the pathogens at genus or species 
level. Delays are damaging when quick diagnosis is needed because timely detec-
tion allows one to judge the problem, identify the need of the hour and choose right 
commercial variety as well as appropriate disease control measures that may be 
taken to prevent the risk of its culmination into a potential epidemic (Ward et al. 
 2004 ), especially when high value cash crops such as sugarcane are at stake.  

    Progress in Development of Molecular Diagnostic Tools 
for Sugarcane Diseases 

 Rapid advancements in biotechnology have strengthened efforts in recent years to 
develop innovative methods for detection, diagnosis and identifi cation of disease 
causing agents. New and improved molecular assays based on the DNA, RNA or 
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proteins of the causal agents have increasingly improved the effi ciency, precision, 
and speediness of detection, identifi cation and characterization of the pathogens 
worldwide (Ward et al.  2004 ). These molecular diagnostic tools are highly sensitive 
and fairly easy to use compared with the old-style detection methods and can detect 
the pathogens even in asymptomatic plants with an extremely low titer of pathogen. 
Molecular approaches such as PCR based amplifi cation of rDNA sequence espe-
cially the ITS (internal transcribed spacer) region have been widely used for detec-
tion of several pathogens (Henson and French  1993 ; Schaad and Frederick  2002 ). 
Diagnostic tools based on nucleic-acid (DNA/RNA) and protein have been devel-
oped against target pathogens in sugarcane (viruses, fungi, bacteria, phytoplasma, 
insect pests etc.) e.g. ratoon stunting disease (Fegan et al.  1998 ; Pan et al.  1998 ), 
grassy shoot disease (Srivastava et al.  2006 ), Fiji disease and mosaic (Smith and Van 
De Velde  1994 ), striate mosaic (Thompson et al.  1998 ), yellow leaf syndrome (Irey 
et al.  1997 ; Chatenet et al.  2001 ; Viswanathan et al.  2009 ), smut (Albert and Schenck 
 1996 ), and SCBV (sugarcane bacilliform viruses) (Braithwaite et al.  1995 ). 
Detection and identifi cation of pathogen has been very useful and signifi cantly 
improved with techniques of Dot-blot immunoassay (DBIA) to detect  Liefsonia. 
xyli  subsp.  xyli  (Schenck et al.  1997 ), PCR, RT-PCR, DAS-ELISA and tissue-blot 
immunoassay (TBIA) for SCYP and SCYLV (Lehrer et al.  2001 ), SCMV (Comstock 
et al.  2000 ) and  Xanthomonas albilineans  (Schenck et al.  1997 ), immunocapture-
RT-PCR based assay to detect the presence of  Sugarcane streak mosaic virus  
(SCSMV) and RT-PCR (reverse transcription-polymerase chain reaction) for 
SCYLV (Moonan et al.  1999 ). 

 In Columbia, research activities have been concentrated on development of 
molecular diagnostics for sugarcane mosaic virus, sugarcane yellows, Fiji disease, 
sugarcane streak mosaic, leaf scald and ratoon stunting disease. Work on molecular 
diagnostics for yellow leaf and smut as well as characterisation of strains of 
 Xanthomonas albilineans  causing leaf scald disease has been done in France. 
Several genetic transformation projects for resistance to sugarcane yellow leaf virus 
and ratoon stunting disease have been carried out at Texas A & M University, 
USA. Immunoassays and molecular diagnosis confi rmed the presence of leaf fl eck, 
leaf scald, RSD and yellow leaf diseases in commercial fi elds of sugarcane in 
Ecuador and in some imported varieties in quarantine (Garces et al.  2005 ). In order 
to identify the white grub species attacking sugarcane, the base pair sequence of the 
mitochondrial cytochrome c oxidase sub unit I (cox 1) gene of scarabaeid larvae 
collected from sugarcane fi elds was compared with scarabaeid adults of known 
species in KwaZulu-Natal, South Africa. NGS (next generation sequencing) 
techniques and specifi c real-time PCR assays have been used to identify and confi rm 
the presence of a combination of sap transmissible viruses  viz . Maize chlorotic 
mottle virus and Sugarcane mosaic virus, from six different maize fi elds in two 
different regions of Kenya (Adams et al.  2013 ). Recently, Wongkaew and Poosittisak 
( 2015 ) used immobilized ssDNA probe as a specifi c sensor for DNA based 
voltammetric electrochemical verifi cation of sugarcane white leaf infection within 
plants collected from fi eld having infections up to the limit of an epidemic. These 
tools have proved immensely useful to several crop improvement and crop protection 
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programmes such as evaluation of germplasm to fi nd resistant genotypes, breeding 
for disease and pest resistance, quarantine, disease monitoring and surveillance 
programmes. Identifi cation of unique markers known as “DNA barcodes” have 
been extremely useful as genetic markers for differential identifi cation of pathogens 
and insect pests especially for rapid detection of new and emerging diseases/
pathogens.  

    Molecular Diagnostics and Pathogen Identifi cation for Major 
Fungal Diseases of Sugarcane 

 Diseases such as red rot, smut, wilt and sett rot or pineapple disease are some impor-
tant fungal diseases of sugarcane causing substantial yield loss in different states of 
India. Besides, Pokkah boeng, rust, stalk rot and seedling rot are some other major 
fungal diseases affecting sugarcane in different parts of world. 

    Red Rot of Sugarcane 

 Red rot disease of sugarcane is one of the major limitations in its cultivation in 
many states of India. Usually considered as stalk and seed-piece transmissible dis-
ease, it equally affects the cane growers and millers by impeding the cane growth 
and yield as well as deteriorating the quantity and quality of juice. Several promis-
ing varieties became susceptible to red rot and could not be cultivated anymore. The 
disease is caused by the fungus  Colletotrichum falcatum  Went (imperfect state); 
perfect/ascigerous state =  Glomerella tucumanensis  (Speg.) von Arx and Muller, 
which remains dormant in cane tissues unless its expression and makes it diffi cult 
to diagnose under fi eld conditions. Moreover, incipient infection in stalks most 
often does not lead to symptom expression and the pathogen is transmitted through 
such canes which cannot be distinguished from healthy stalks. ELISA techniques 
and polyclonal antisera against  C. falcatum  have been used to identify the pathogen 
in cane tissues. PCR method of detecting incipient infection is a highly sensitive 
and specifi c diagnostic tool that can detect infection in the nodal tissue of seed cane 
even before its planting. A PCR based detection kit for red rot of sugarcane has 
been developed at IISR, Lucknow for the fi rst time in the world which is highly 
specifi c to  C. falcatum  and can amplify even 1.0 ng of DNA of the pathogen 
(Srivastava and Sinha  2009 ).  C. falcatum  specifi c primer sets based on conserved 
gene sequences have been used to detect  C. falcatum  at SBI, Coimbatore (Malathi 
and Viswanathan  2012 ). PCR results confi rmed that the primers were able to detect 
 C. falcatum  in sugarcane in mixed state of infection which may help to detect the 
fungal infections more accurately (Malathi et al.  2012 ).  
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    Sugarcane Smut Disease 

 The disease affects both plant crop and ratoon but impact is more in ratoon. Nearly 
60 % loss in cane weight has been reported in 22 varieties in India. Yield losses of 
48 % in plant cane and up to 90 % in fi rst ratoon of NCo 376 have been reported in 
South Africa. The smut affected plants showed reduction in cane quality parameters 
 viz . Brix, sucrose, purity and juice extraction. The pathogen  Sporisorium 
scitamineum  (Syn  Ustilago scitaminea ), produces abundant tiny brownish black 
wind-borne teliospores which are spread in the standing cane fi elds and can infect 
newly planted setts in the soil. Trypan blue staining technique was used to detect the 
pathogen in bud or apical meristematic tissues of suspected canes well before 
symptom expression. PCR assays have been developed at IISR, Lucknow and South 
Africa to detect inactive infection of  Sporisorium scitamineum  in nodal bud scales 
and apical meristem of sugarcane. An extremely sensitive and specifi c PCR based 
detection kit for smut disease of sugarcane using rDNA has been developed at IISR, 
Lucknow to detect the presence of the pathogen in the nodal bud of seed cane before 
its planting even if the inoculum concentration is quite low. An amplicon of 459 bp 
of  bE  mating type gene was used at SBI, Coimbatore for rapid and early detection 
of latent infection of smut pathogen (Ramesh et al.  2012 ).  

    Other Fungal Diseases of Sugarcane 

 Wilt is a serious disease of sugarcane in 34 countries including India, where it was 
fi rst reported from North India in 1913. Currently, it occurs in all the sugarcane 
growing states of India but its severity is high in tropical states of Gujarat, eastern 
coastal Andhra Pradesh, Tamil Nadu and Orissa, and subtropical states of Bihar, 
Haryana, Punjab and Uttar Pradesh. Many wilt susceptible elite cultivars have been 
eliminated from cultivation. The disease causing pathogen has not been clearly 
established. RAPD, ISSR and rDNA markers have been used at IISR, Lucknow and 
SBI, Coimbatore to identify and characterize the wilt pathogen. Studies have 
indicated that the pathogen belongs to  F. sacchari  (Duttamajumder and Srivastava 
 2007 ; Viswanathan et al.  2011 ). Pokkah boeng (PB) is another foliar fungal diseases 
caused by  Fusarium verticillioides  ( F. moniliforme  Sheldon) which infects young 
leaves and the sugarcane tops become twisted due to malformation. First reported in 
1886 by Walker and Went in Java, the disease now occurs in almost all the sugarcane 
growing regions in the world including India. The pathogen is primarily air-borne 
and secondary transmission takes place through diseased setts, irrigation or rain 
water and soil. Wilt disease has also been reported as an after effect of pokkah 
boeng. Sett rot or pineapple disease caused by  Ceratocystis paradoxa  (de Seynes) 
Moreau is a minor fungal disease which is both sett and soil borne, affecting the sett 
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germination at the early stages of planting. Sugarcane rust is another fungal disease 
caused by  Puccinia melanocephela , an obligate parasitic fungus. The disease has 
caused considerable damage in USA. The search for molecular markers for rust 
( Puccinia melanocephala ) and yellow spot ( Mycovellosiella koepkei ) is in progress 
at Mauritius.   

    Molecular and Biochemical Detection and Identifi cation 
of Sugarcane Viruses 

 Mosaic disease, streak mosaic, leaf fl eck disease and sugarcane yellow leaf syn-
drome are the major virus diseases of economic concern in India and other countries 
(Bhargava  1975 ; Rao et al.  2002 ; Viswanathan et al.  2007 ), and several diagnostic 
tools have been developed for detection of disease causing virus. 

    Sugarcane Mosaic Disease 

 Mosaic disease prevalent in almost all sugarcane cultivating regions of India was the 
only reported virus disease of sugarcane for several decades that affected yield and 
quality in sugarcane resulting in signifi cant yield losses (Viswanathan et al.  2007 ; 
Jain et al.  1998 ). It is a seed piece transmissible disease that develops symptoms as 
interveinal chlorotic specks, streaks or stripes in young, rapidly growing leaves 
resulting in contrasting shades of green patterns on leaf blades, particularly near the 
basal portion of the leaf, but the older leaves tend to recover and appear as healthy. 
However, the symptoms may vary in intensity depending upon the host, cane 
growing conditions, temperature and strain of the virus. With more virulent strains, 
stunting, yellowing and chlorosis, and sometimes necrosis are also noticed. Strains 
of several  Sugarcane mosaic virus  (SCMV) and  Sorghum mosaic virus  (SrMV) in 
combination or separately have been reported as causal agents (Viswanathan et al. 
 2007 ). A new virus  Sugarcane streak mosaic virus  (SCSMV) was reported (Hema 
et al.  2001 ) which was characterized as a new genus “Susmovirus” in the family 
 Potyviridae  based on its distinct coat protein genome (Gaur et al.  2003 ) and based 
on host range of the species in the genus, was renamed as  Poacevirus  by ICTV 
(International Committee on Taxonomy of Viruses). Occurrence of nine strains of 
SCMV in India has also been established (Viswanathan et al.  2009 ). Molecular 
characterization of several SCMV and SCSMV isolates has established the variation 
in coat protein genome of the respective viruses for the fi rst time in India. 

 Diagnosis of SCMV and SCSMV is well established by serological techniques 
like, DIBA, ELISA, ISEM (Immunosorbent electron microscopy) and western 
blots) and molecular techniques of RT-PCR, NASH and Southern hybridization 
(Viswanathan et al.  2007 ,  2008  Hema et al.  2001 ; Gaur et al.  2003 ). Recently, 
complete nucleotide sequence of an isolate of  Sugarcane streak virus  from India 
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(SCSMV-IND) was determined which revealed a 9,786 nucleotides long single 
stranded positive sense RNA genome of SCSMV- IND (excluding the poly (A) tail) 
comprising of a large open reading frame encoding polyprotein of 3,131 amino acid 
residues (Rao  2014 ). At South African Sugarcane Research Institute (SASRI), a 
rapid and cost-effective diagnostic tool  viz . quantitative reverse transcriptase 
polymerase chain reaction (qRT-PCR) has been optimised for detection of SCMV- 
infected sugarcane leaves in the quarantine facility.  

    Sugarcane Yellow Leaf Disease 

 Yellow leaf disease (YLD) of sugarcane was fi rst reported from East Africa by Rogers 
in 1969, but later reports came from Cuba (Peralta et al.  1999 ), Hawaii 
(Schenck  1990 ), South Africa (Cronjé et al.  1998 ) and India (Rao et al.  2014 ). 
In India, it is prevalent in most of the sugarcane growing area and its intensity has 
been recorded up to hundred per cent in certain susceptible sugarcane varieties (Rao 
et al.  2014 ). Referred to as yellow leaf syndrome (YLS), the disease is caused by 
 Sugarcane  yellow leaf virus  (SCYLV) and sugarcane yellow leaf phytoplasmas 
(SCYLP) and is characterized by yellowish midrib on the lower surface and yellow 
discolouration in adjoining laminar region parallel to midrib. In severe cases, necrosis 
of discoloured laminar region and subsequent drying of entire leaf is also noticed 
(Viswanathan  2012 ). Association of the virus with this disease was established after 
sequencing the virus genome. Molecular diagnostic assays using diagnostic primers 
 viz ., SCYLV-615F and SCYLV-615R were developed and their effi ciency for detec-
tion has been validated (Viswanathan et al.  2009 ). The RT-PCR assays established 
that the diagnostic primers effi ciently detected all the SCYLV population even in 
asymptomatic plants. Phylogenetic analyses later established that all the isolates 
belong to genotype SCYLV-IND which shared a very close relationship with CHNI, 
the genotype reported from China, and they showed a separate lineage, probably of 
Asian genotypes.  

    Sugarcane Leaf Fleck Disease 

  Badnavirus  infecting sugarcane are collectively referred to as sugarcane bacilliform 
viruses (SCBV) and cause the leaf fl eck disease of sugarcane which was reported fi rst 
in Cuba (Rodriguez-Lema et al.  1985 ) but later in many sugarcane growing countries 
of the world including India (Comstock and Lockhart  1990 ; Viswanathan et al.  1996 ). 
The disease affects species level sugarcane germplasm and commercial  Saccharum  
sp. hybrids. Two types of symptoms are observed after SCBV infection, (1) chlorotic 
specks that change to stripes after sometime and (2) mild mottling. More severe infec-
tion leads to stunted growth, reduced number of tillers, shorter internodes with deep 
cracks and bunchy top (Rishi  2009 ). The insect vectors  viz . sugarcane mealy bug 

Molecular Diagnostics for Major Diseases of Sugarcane



306

( Saccharicoccus sacchari ) and the grey sugarcane mealy bug ( Dysmicoccus boninsis ) 
(Lockhart and Autrey  1991 ) are responsible for the transmission of SCBV. The ICTV 
earlier recognized two species of SCBV;  Sugarcane bacilliform IM virus  (SCBIMV) 
and  Sugarcane bacilliform MO virus  (SCBMOV) and later added two more species 
 viz. Sugarcane bacilliform Guadeloupe A virus  (SCBGAV) and  Sugarcane bacilli-
form Guadeloupe D virus  (SCBGAV) from Guadeloupe (Muller et al.  2011 ). Recently 
fi ve more complete genomes of SCBV comprising of three newly proposed species 
(SCBV-BB, SCBV-BO and SCBV-BR) have been reported from India (Karuppaiah 
et al.  2013 ). Various techniques have been tried to detect this disease and immunosor-
bent electron microscopy (ISEM) has been found to be the most reliable method of 
detecting SCBV. Though PCR techniques have proved to be quite suitable for detec-
tion of pathogen in general, it has been found to be not so suitable in this case because 
of the presence of much variability in the pathogen even if isolated from the same 
clone of sugarcane. Besides, the problem of virus integration into the host genome is 
also feared (Rishi  2009 ).   

    Molecular Detection and Discrimination of Phytoplasma 
Diseases in Sugarcane 

 Phytoplasmas are wall-less plant pathogenic prokaryotes of 530–1,350 kb genome 
size of the class Mollicutes (Marcone  2002 ) and were earlier known as mycoplasma- 
like organisms (MLOs). They are associated with grassy shoot disease (SCGS), 
white leaf disease (SCWL), yellow leaf syndrome/leaf yellows (YLS) and Ramu 
Stunt diseases in sugarcane. They are mostly transmitted by insect vectors (leafhop-
pers, planthoppers, and psyllids) and several disease transmitting insect vectors have 
been identifi ed. The grassy shoot and white leaf diseases in Southeast Asia (Rao 
 2014 ; Wongkaew et al.  1997 ) are transmitted by the leafhopper  Matsumuratettix 
hiroglyphicus  (Sdoodee  2000 ), grassy shoot disease (SCGS) in India is transmitted 
by  Deltocephalus vulgaris  (Srivastava et al.  2006 ), Ramu stunt disease in Papua 
New Guinea (Suma and Jones  2000 ) by the delphacid  Eumetopina fl avipes  (Kuniata 
et al.  1994 ) and yellow leaf phytoplasma in western and central Cuba by the del-
phacid planthopper  Saccharosydne saccharivora  (Arocha et al.  2005 ). 

    Sugarcane Grassy Shoot Disease 

 Sugarcane grassy shoot (SCGS) disease caused by phytoplasma has been reported 
from several countries, including Bangladesh, Malaysia, Nepal, Pakistan, Sri Lanka 
and India (Rishi and Chen  1989 ; Singh et al.  2002 ; Srivastava et al.  2003 ). It has 
become a very important disease in India, next only to the fungal diseases like red 
rot, wilt, and smut (Rao  2014 ; Rao and Dhumal  2002 ) as it has resulted in hundred 
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percent loss of susceptible varieties in India in the states of U.P., Bihar, Chhattisgarh, 
Haryana, Maharashtra, Karnataka, Kerala, Andhra Pradesh and Tamil Nadu causing 
great concern to the farmers as well as mill owners. The disease is characterized by 
bunch of thin, slender, adventitious tillers bearing thin, narrow pale yellow or 
chlorotic leaves which give the plant the look of a perennial grass. It affects both, 
the plant as well as ratoon crop and fails to produce any millable canes. Vegetative 
mode of propagation and phloem feeding leafhopper vectors facilitate transmission 
of SCGS phytoplasma in the fi eld (Srivastava et al.  2006 ). The meristem culture 
technique may be quite successful for elimination of SCYLV in infected seed 
nurseries of sugarcane (Mishra et al.  2010 ). 

 Many diagnostic measures such as ELISA, immunofl uorescent techniques and 
PCR assays have been developed to detect SCGS-phytoplasma. ELISA was not 
successful due to lack of sensitivity of the technique and problems of purifi cation 
and specifi city of phytoplasma. Substantial cross-reactions of polyclonal antisera 
produced with partially purifi ed SCWL and SCGS phytoplasma with antigens from 
healthy plants was observed (Viswanathan  2002 ). Due to variability in SCGS 
phytoplasma, the expression pattern of SCGS disease in fi elds is variable which 
causes mistaken disease diagnosis. PCR techniques have been more successful in 
disease detection as they are sensitive and rapid. At present PCR amplifi cation using 
oligonucleotide primers based on rRNA genes (rDNAs), especially the 16S and 23S 
rRNA genes, and 16S-23S rRNA intergenic spacer region sequences derived from 
the phytoplasma (Bertaccini et al.  1997 ; Gundersen et al.  1996 ) provides one of the 
most reliable and acceptable method to detect and identify SCGS phytoplasma in 
infected plants. The sensitivity of detection has been increased by nesting of primers; 
using two universal phytoplasma-specifi c primer pairs P1 and P7 in fi rst round and 
P4 and P7 primers in the second round for nested PCR assays of SCGS phytoplasma 
in host as well as disease transmitting insect-vector ( Deltocephalus vulgaris ) for the 
fi rst time in the world at IISR, Lucknow (Srivastava et al.  2006 ). This molecular 
technique can be successfully employed for diagnosis of SCGS, which is usually 
confused with white leaf disease and mineral defi ciency symptoms in sugarcane and 
hence is useful for diagnosis, forecast and prevention of sugarcane grassy shoot 
disease. 

 The sequences of SCGS-causing phytoplasma in India were found to be more 
than 99 % identical, and their homology with SCWL (Sugarcane white leaf) and 
BGWL (Bermuda grass white leaf) is between 98 % and 99 % (Nasare et al.  2007 ). 
Moreover, the sequence similarity between SCGS and SCWL phytoplasmas was 
97.5–98.8 % indicating that these two belonged to the same group, whereas, the 
most closely related phytoplasma outside the genus  Saccharum  were BGWL 
(‘ Candidatus  Phytoplasma cynodontis’) and  Brachiaria  grass white leaf (BraWL) 
sharing more than 97 % sequence similarity (Rao et al.  2008 ). Such high level of 
sequence similarity suggests that the phytoplasma causing white leaf diseases in 
sugarcane, bermuda grass and brachiaria grass (SCWL, BGWL and BraWL), and 
sugarcane grassy shoot disease (SCGS) may belong to the same species or are taxo-
nomically akin (Ariyarathna et al.  2007 ).  
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    Sugarcane White Leaf Disease 

 Sugarcane white leaf (SCWL) disease caused by phytoplasma is highly destruc-
tive disease of sugarcane and is predominant in Thailand, Taiwan and Sri Lanka 
(Chen and Kusalwong  2000 ; Matsumoto et al.  1968 ; Nakashima et al.  1994 , 
 1996 ). The symptoms of this disease occur as single cream or light green or 
white coloured stripes developing parallel to the midrib which later turn into 
several straight stripes extending along the entire leaf length, but rarely onto the 
upper portion of the leaf sheath and coalesce with each other resulting in mottled 
appearance and severe chlorosis of entire leaf and the plant vigour is reduced 
drastically. The disease causing phytoplasma is transmitted to the plant by the 
leafhopper ( Matsumuratettix hiroglyphicus  Matsumura) and it has been detected 
in eggs, nymphs and adults of vector in the fi rst and second generations and the 
host. The genomes of the SCGS and SCWL phytoplasmas are phylogenetically 
close to each other (99 %) as well as to other phytoplasmas associated with white 
leaf diseases in gramineous weeds (Wongkaew et al.  1997 ) and generally induce 
similar symptoms in infected sugarcane plants thus the two diseases are often 
not distinguishable (Marcone  2002 ), but PCR technique has been found to be 
most suitable for diagnosis of SCWL disease. Rapid detection of the phytoplas-
mas from the symptomatic tissues using PCR is well established by nested-PCR 
assay of 16S-23S intergenic spacer region specifi c to SCWL phytoplasma using 
P1/P7 and R16F2n/R16R2 followed by sequencing (Hoat et al.  2012 ; Wongwarat 
et al.  2011 ).  

    Sugarcane Leaf Yellows Phytoplasma 

 Sugarcane leaf yellows (YLS) is another widely distributed disease in most sug-
arcane-growing countries including Australia, Egypt, Cuba, Hawaii, Brazil, 
South Africa, USA, India and Mauritius (Lehrer et al.  2001 ; Cronjé et al.  1998 ; 
Arocha et al.  2005 ,  1999 ; Aljanabi et al.  2001 ; Matsuoka and Meneghin  2000 ; 
Scagliusi and Lockhart  2000 ; Vega et al.  1997 ) caused by phytoplasma. The dis-
ease is characterized by yellowing of midrib portion of leaf and adjoining lamina 
along with development of irregular yellow patches while rest of the lamina still 
remains green. The presence of phytoplasma in this disease has been confi rmed 
through PCR amplifi cation of rDNA region from DNA extracted from symptom-
atic yellow leaves or leaf lamina with yellow patches from leaf yellows diseased 
plants using phytoplasma specifi c primer pairs P1 and P6 followed by nesting 
with primers R16F2n and R16R2. The presence of phytoplasma in association 
with sugarcane yellow leaf was established in Egypt also through nested PCR 
assay of 16S rRNA gene using phytoplasma-specifi c primer pairs P1/P7, and 
R16F2n/R16R2.   
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    Biochemical and Molecular Diagnostics for Bacterial Diseases 
in Sugarcane 

 The bacterial diseases of sugar cane which are known to occur world-wide are leaf 
scald, ratoon stunting, gumming disease, red-stripe and mottled-stripe 
(Duttamajumder  2004 ). A new bacterial disease called spindle rot has been added of 
late. Leaf scald disease in sugarcane is caused by  Xanthomonas albilineans  (Ashby) 
Dowson which is a systemic bacterial disease occurring in many sugarcane produc-
ing countries of the world (Rott and Davis  2000a ; Rott et al.  1997 ; Wang et al. 
 1999 ). The symptoms are chronic and acute phenotypes differing in severity from 
single affected leaf to death of entire plant resulting in heavy losses in cane yield and 
reduced juice quality (Ricaud and Ryan  1989 ). Visual diagnosis of disease is chal-
lenging at times due to latent infections. Conventional methods, ELISA based assay, 
DIBA, polyclonal antiserum against the bacterium and PCR protocols etc. have 
been used for the diagnosis of sugarcane leaf scald (Wang et al.  1999 ; Viswanathan 
et al.  1998 ) of which, PCR was found to be the best and time saving as compared to 
the rest. A fast and reliable PCR protocol was developed using the primers designed 
from the ITS (intergenic transcribed spacer) region between the 16S and 23S rRNA 
genes for detection and identifi cation of leaf scald pathogen (Pan et al.  1997 ). 
Another PCR protocol using the conserved sequences of two adjacent tRNA genes 
along with variable spacer region between them was found to be very sensitive. The 
specifi city of this PCR-based detection system was further enhanced by  X. albilin-
eans -specifi c amplifi cation of the region between the 16S rRNA-tRNA aIa -tRNA iIe -
23S rRNA gene by a nested PCR reaction (Honeycutt et al.  1995 ). 

 Ratoon stunting disease (RSD) in sugarcane caused by xylem-limited coryne-
form bacteria  Leifsonia xyli  subsp.  xyli  (other name  Clavibacter xyli  subsp.  xyli ) is 
considered as the most important disease affecting sugarcane ratoon crop worldwide 
as it can cause yield losses of 5–15 % which may go up to 50 % under stress condi-
tions (Davis and Bailey  2000 ). The disease has no easily recognized external or 
internal symptoms except stunting of growth that may not always be visible in the 
fi eld. The detection of  Leifsonia xyli  subsp.  xyli  ( Lxx ) is normally done by immuno-
fl uorescence microscopy, serology (evaporative-binding enzyme-linked immunoas-
say or EB-EIA) or PCR. DAC-ELISA, Dot-blot and tissue blot immunoassay 
techniques were used for detection of RSD in infected sugarcane samples in India 
(Viswanathan  2012 ). A quick and reliable PCR protocol employing primers designed 
from the ITS (intergenic transcribed spacer) region between the 16S-23S rRNA 
genes was developed for detection and identifi cation of RSD pathogen (Pan et al. 
 1998 ). The consensus sequence derived from the ITS region between the 16S and 
23S rRNA genes of  Clavibacter xyli  subsp.  xyli  and  C. xyli  subsp.  cynodontis  (caus-
ing RSD of sugarcane and Bermudagrass stunting disease) was used to design the 
primers Cxx1 and Cxx2 which were further used to amplify DNA of  C. xyli  subsp. 
 xyli  either directly from cultured cells or from vascular sap of RSD infected cane 
with no need of genomic DNA extraction (Pan et al.  1998 ). Another PCR-based 
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assay developed for detection of  Clavibacter xyli  subsp.  xyli . was highly specifi c 
and did not produce any amplifi cation product with the template of either the closely 
related species  C. xyli  subsp.  cynodontis , or of any other bacterial species. Further, 
a multiplex PCR was also developed to identify and detect  C. xyli  subsp.  xyli  and  
C. xyli  subsp.  cynodontis  in one PCR reaction (Fegan et al.  1998 ). Recently, Loop-
mediated isothermal amplifi cation (LAMP) techniques has been used for detection 
of RSD (Ghai et al.  2013 ; Liu et al.  2013 ) and has proved to be as sensitive as ELISA 
but much rapid and specifi c, and can be judged visually by colour without sophisti-
cated laboratories thus decreasing the cost and time taken in diagnosis. (Ghai et al.  
 2014 ) used transposase gene to design six specifi c primer sets for eight genomic 
sequences of pathogen and used xylem sap as template instead of genomic DNA, 
thus bypassing the requirement of genomic DNA isolation. 

 Red stripe (top rot) of sugarcane caused by  Pseudomonas avenae  Manns =  
P. ubrilineans  Stapp and mottled stripe caused by  Herbaspirillum rubrisubalbicans  
syn  Pseudomonas rubrisubalbicans  (Christopher and Edgerton) Krassilnikov are 
two other bacterial diseases of sugarcane of not much signifi cance (Rott and Davis 
 2000b ; Saumtally  2000 ). Another bacterial disease of sugarcane is spindle rot caused 
by  Acidovorax avenae  subsp.  spindulifoliens , (syn.  Pseudomonas rubrilineans  pv. 
 spindulifoliens  pv. Nov) which is confi ned mainly to the leaf spindle and affects 
both, the plant crop and ratoon and has been reported from tropical and subtropical 
states of India (Patil  2004 ). The pathogen is transmitted aerially and infection takes 
place through stomata, causing a mild rotting. A synergistic association of spindle 
rot disease with pokkah boeng was also observed. Gumming disease of sugarcane 
caused by the bacterium  Xanthomonas campestris  pv  vasculorum  (Cobb) Dye was 
a major epidemic of sugarcane when noble canes were grown in Australia, Mauritius 
and Reunion causing great losses in yield and sugar recovery but the disease was 
swiped away with the introduction of inter-specifi c hybrids in the 1930s (Ricaud and 
Autrey  1989 ). For detection and variability study of its pathogen, monoclonal anti-
bodies and nucleic acid technologies have been applied. 

 It can be said conclusively that PCR technology for pathogen detection is highly 
specifi c, sensitive and rapid. Progress in the development of molecular diagnostic 
tools for various diseases of sugarcane has been praiseworthy so far. Since 
elimination of diseased seed cane is a critical step in controlling the diseases, there 
is further need for development and application of highly sensitive, specifi c and cost 
effective molecular diagnostic protocols for key pathogens, which can be used for 
large scale sugarcane seed certifi cation, germplasm quarantine programmes and 
diagnostic laboratories in order to detect these pathogens in seed cane.     
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Paradigm                     
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          Introduction 

 Diseases are the most important biotic causes for low crop yields. The disruption in 
normal physiology of plant, usually with some kind of negative effect on survival or 
fi tness by some causal agent is known as plant disease. These infectious causal agents 
include bacteria, fungi, oomycetes, virus, nematodes, phytoplasmas or parasitic 
higher plants. These pathogens cause disease either by secreting enzymes, which 
catalyze the breakdown of host tissues or often benefi t by producing toxins, which 
kill the tissue in advance of enzymatic degradation. Viruses are able to force the plant 
to produce pathogen gene products from pathogen genetic material and disrupt their 
function. The interference of these agents with one or more of a plant’s essential 
physiological or biochemical systems elicits characteristic pathological symptoms, 
and cause diseases. Though plants carry some inherent disease resistance, but there 
are numerous examples of devastating plant disease impacts, as well as recurrent 
severe plant diseases, which severely affects yield. Plant diseases often substantially 
reduce quality and quantity of agricultural commodities and post- harvest infestation 
can affect the health of humans and livestock, especially if the contaminating organ-
ism produces toxic residues on consumable products (Cheeke  1995 ). 
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 It is well accepted that agricultural production must be increased considerably in 
the future to meet the food and feed demands of a rising population. The control of 
these plant pathogens or diseases is thus crucial to the reliable production of food. 
Loss of crops from plant diseases may result in hunger and starvation, especially in 
less developed countries where access to disease-control methods is limited 
(Sewariya et al.  2012 ). Prevention and early diagnosis are critical to limiting dam-
age by plant pathogens. Thus, plant diseases need to be controlled to maintain the 
quality and abundance of food, feed, and fi ber produced by growers around the 
world. Crop losses due to these harmful organisms/diseases can be prevented, or 
reduced, by crop protection measures. 

 Crop protection plays a key role in safeguarding crop productivity against com-
petition from weeds, animal pests, pathogens and viruses (Oerke and Dehne  2004 ). 
Though there are many chemical products that are available for the crop protection, 
but they are considered as a major pollutant in the environment, and responsible for 
disturbing the ecological harmony of the planet. Soil fumigation is one of the effec-
tive measures in eradicating the resident inoculum but is expensive and poses envi-
ronmental and safety concerns. Another effective way of crop protection is the use 
of biological control or biocontrol agents (BCA). They are perceived to have spe-
cifi c advantages over synthetic fungicides/pesticides due to their increased level of 
safety, reduced probability of resistance development and minimal environmental 
impacts. This is a method in which natural enemies of pests or pathogens are used 
to eradicate or control target population. The induction of plant resistance using 
non-pathogenic or incompatible micro-organisms is also a form of biological 
control.  

    Biological Control 

 The terms “biological control” has been used in different fi elds of biology, most 
notably entomology and plant pathology. In entomology, it has been used to 
describe the use of live predatory insects, entomopathogenic nematodes, or micro-
bial pathogens to suppress populations of different pest insects. In plant pathol-
ogy, the term applies to the use of microbial antagonists to suppress diseases as 
well as the use of host specifi c pathogens to control weed populations. In both 
fi elds, the organism that suppresses the pest or pathogen is referred to as the bio-
logical control agent (BCA) (Pal and McSpadden Gardener  2006 ). More broadly, 
biocontrol is the use of specifi c microorganisms that interfere with plant patho-
gens and pests, and sustain organisms useful to human. The success of biocontrol 
depends on the nature of antagonistic properties and the mechanism of action 
acquired by the organisms used. There are a number of bacterial and fungal iso-
lates that have been reported as biocontrol agents although the fungus  Trichoderma  
clearly dominates.  
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     Trichoderma  as Biological Control Agent 

  Trichoderma  species, belonging to division Ascomycota and class Sordariomycetes, 
are benefi cial plant symbionts that act as natural biocontrol agents and antagonist of 
several important phytopathogenic organisms. These benefi cial fungi are called 
antagonists, because they infect, attack or compete against (antagonize) the patho-
gens that cause plant diseases. Faster metabolic rates, anti-microbial metabolites, 
and physiological conformation are key factors which chiefl y contribute to antago-
nism of these fungi (Verma et al.  2007 ). They are free-living that are worldwide in 
occurrence and are characterized by green conidia and possess repetitively branched 
conidiophore structure. These fungi colonize woody and herbaceous plant materials, 
in which the sexual teleomorph (genus Hypocrea) has most often been found. The 
benefi cial activities of  Trichoderma  as a biocontrol agent (BCA) have been known 
since 1930 and since then there have been extensive efforts to use them for plant 
disease control. Weindling in 1932, for the fi rst time implicated the role of 
 Trichoderma lignorum  in the biological control of citrus seedling disease caused by 
 Rhizoctonia solani . Since this pioneering work, several reports on successful biocon-
trol by  Trichoderma  spp. have accumulated. Among several species,  T. harzianum , 
 T. viride and T. virens  are the most widely used for biological control. 

  Trichoderma  species are soil borne fungi and show signifi cant activity against a 
wide range of plant pathogenic fungi (Elad et al.  1982 ). Although they have been 
considered soil inhabitants, based on in situ diversity studies using a taxon specifi c 
metagenomic approach, Friedl and Druzhinina ( 2012 ) suggested that only a relatively 
small number are adapted to soil as a habitat. Their presence in the root zone creates 
a symbiotic relationship with the host plant, and can cause the plant to generate an 
immune response. Properly selected strains interact with the plant by colonizing 
roots, establishing chemical communication and systemically altering the expression 
of numerous plant genes. They establish long-lasting colonizations of root surfaces of 
plant and penetrate into the epidermis and a few cells below. They are reported 
 effective in controlling root rots/wilt complexes and foliar diseases in several crops 
(Singh et al.  2004 ,  2006 ; Zaidi and Singh  2004a ,  b ). They have been most commonly 
used for biocontrol agent against plant pathogen that contain chitin and glucans in 
their cell wall. In addition, the non-biocontrol agent  Trichoderma reesei  is a biotech-
nological factory for the production of secreted cellulases, and a model for basic stud-
ies on protein secretion (Peterson and Nevalainen  2012 ; Saloheimo and Pakula  2012 ).  

    Mechanisms Involved in Biocontrol Activities 

 It is well known that one particular strain of  Trichoderma  may be differentially 
effective against different plant pathogens. Since a variety of mechanisms of action 
may be brought into play within the interaction of  Trichoderma  with different fungi 
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and with the plant (Harman  2000 ; Howell  2003 ), it is conceivable that differences in 
the effi cacy of one particular strain against different plant pathogens might be due 
to its potential to express high levels of one or another mechanism of action. The 
mechanism of biocontrol by  Trichoderma  includes direct competition with the 
target organism, antibiosis, parasitism of the target organism and induced resistance 
of the host plant. 

    Mycoparasitism 

 It is a complex process that fi nally results in dissolution of the target cell wall by 
lytic enzymes released by  Trichoderma . A typical mycoparasitic interaction involves 
different steps, such as sensing of the host/prey fungus, attraction, attachment, 
coiling around and lysis brought about by hydrolytic enzymes, in many cases, in 
conjunction with secondary metabolites. Therefore, the main component of 
antagonism of  T. harzianum  is the extracellular secretion of chitinases, β-1,3- 
glucanases and proteases (Geremia et al.  1993 ). Chitin and β -1, 3 glucan are the 
main structural components of the fungal cell wall and thus, chitinases, and β -1, 3 
glucanases have been proposed as the key enzymes in the degradation of cell wall 
during mycoparasitism against phytopathogenic fungi. The proteolytic activity of  T. 
harzianum  is a prerequisite for the lysis of the protein matrix of the pathogen cell 
wall, and for inactivation of the hydrolytic enzymes secreted by the pathogen, which 
decreases its pathogenicity. Trypsin and chymotrypsin, β -1,4-N-acetyl- 
glucosaminidase (NAGase) are also secreted by  Trichoderma . 

  Trichoderma  species with a high potential for the secretion of hydrolytic enzymes 
can be obtained through the transformation by insertion of genes which encode lytic 
enzymes. However, this can affect the production of antibiotics and other enzymes 
involved in the mycoparasitism, as well as the growth rate and colonization 
properties of the BCA (Flores et al.  1997 ). But best alternative to transformation is 
the use of  Trichoderma  isolates obtained naturally from different sources.  

    Competition for Nutrient and Space 

 This process is considered to be an indirect interaction whereby pathogens are 
excluded by depletion of a food base or by physical occupation of site (Lorito et al. 
 1994 ). Competition for infection site has been believed to have an important role in 
disease suppression. The competition for nutrient also plays a role in biological 
control of plant diseases. Generally,  Trichoderma  species are considered to be 
aggressive competitors, grow very fast and rapidly colonize substrates to exclude 
pathogens. It may grow faster or use its food source more effi ciently than the 
pathogen, thereby crowding out the pathogen and taking over.  Trichoderma  also has 
a superior capacity to mobilize and take up soil nutrients compared to other 
organisms. The effi cient use of available nutrients is based on the ability of 
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 Trichoderma  to obtain ATP from the metabolism of different sugars, such as those 
derived from polymers wide-spread in fungal environments: cellulose, glucan and 
chitin and others, all of them rendering glucose (Chet et al.  1997 ). The effi ciency of 
glucose transport system may be crucial in competition, as supported by the isolation 
of a high affi nity glucose transporter, Gtt1, in  Trichoderma harzianum  CECT 2413. 
This strain is present in environments very poor in nutrients, and it relies on 
extracellular hydrolases for survival. Gtt1 is only expressed at very low glucose 
concentrations, i.e. when sugar transport is expected to be limiting in nutrient 
competition. This suggests the role of Gtt1, allowing the fungus to transport sugar 
rapidly into the cells (Delgado-Jarana et al.  2003 ).  

    Antibiosis 

 During antibiosis, Trichoderma releases products that slow down or kill the 
pathogens in the vicinity. Studies revealed that antimicrobial metabolites produced 
by  Trichoderma  are effective against a wide range of fungal phytopathogens e.g., 
 Fusarium oxysporum ,  Rhizoctonia solani ,  Curvularia lunata ,  Bipolaris sorokiniana , 
 Colletotrichum lagenarium ,  Colletotrichum acutatum  and  Colletotrichum 
gloeosporioides  (Svetlana et al.  2010 ). 

  Trichoderma  species are known to produce a number of such antibiotics, as trich-
odermin, viridian and harzianolide (Simon and Sivasithamparam  1988 ; Schirmbock 
et al.  1994 ). Claydon et al. ( 1987 ) reported antifungal properties of volatile metabo-
lites (alkyl pyrones) produced by  T. harzianum . Pandey and Upadhyay ( 1997 ) have 
also reported the effectiveness of diffusible volatile metabolites of  T. harzianum  and 
 T. viride  in vitro. Dal Bello et al. ( 1997 ) studied the volatile compounds produced 
by  Trichoderma hamatum  against various phytopathogenic fungi and suggested the 
inhibitory volatiles of  Trichoderma hamatum  as one of the possible mechanism of 
biological control. It is also found that there is large variety of volatile secondary 
metabolites produced by  Trichoderma  such as ethylene, hydrogen cyanide, alde-
hydes and ketones which play an important role in controlling the plant pathogens 
(Vey et al.  2001 ). Antibiosis occurs during interactions with other microorganisms 
involving low molecular weight diffusible volatile and nonvolatile toxic metabolite 
compounds or antibiotics like harzianic acid, alamethicins, tricholin, peptaibols, 
antibiotics, 6-penthyl-pyrone, massoilactone, viridin, gliovirin, glisoprenins, hep-
telidic acid and others (Sharma et al.  2012a ) that inhibit the growth of other 
microorganisms.  

    Induced Systemic Resistance in Plants 

 The term induced resistance is a generic term for the induced state of resistance in 
plants triggered by biological or chemical inducers, which protects nonexposed 
plant parts against future attack by pathogenic microbes and herbivorous insects 
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(Kuc  1982 ). Specifi c strains of  Trichoderma  colonize and penetrate plant root tis-
sues and initiate a series of morphological and biochemical changes in the plant, 
considered to be part of the plant defense response, which subsequently leads to 
induced systemic resistance (Bailey and Lumsden  1998 ). Yedidia et al. ( 1999 ) pro-
vided evidence that  T. harzianum  may induce systemic resistance mechanisms in 
cucumber plants.  Trichoderma  releases a variety of compounds that induce local-
ised and systemic resistance in plants and protect host plant. Several studies have 
shown that root colonization by  Trichoderma harzianum  results in increased level 
of plant enzymes, including various peroxidases, chitinases, β -1, 3-glucanases, 
lipoxygenase- pathway hydro peroxide lyase and compounds like phytoalexins and 
phenols to provide durable resistance against stress (Gachomo and Kotchoni  2008 ). 
Induction of immunity in host plants is the consequence of interactions between 
different elicitors released by microorganism and plant receptors, leading to the 
activation of signalling pathways, triggering physiological and biochemical 
changes in plants (Contreras-Cornejo et al.  2011 ; Mastouri et al.  2010 ). Hormones 
also play a major regulatory role in these interconnected signaling pathways 
(Pieterse et al.  2012 ).   

    Management of Soil Born Diseases 

 Soils contain diverse communities of microscopic organisms that are capable of 
damaging plants and create major economical losses in many important crops. 
These soil organisms include fungi, bacteria, viruses, nematodes and protozoa. 
Some pathogens of the above ground parts of plants (leaves, stems) survive in the 
soil at various stages in their life cycles. Therefore, a soil phase of a plant patho-
gen may be important, even if the organism does not infect roots. In particular, 
soil- borne pathogens cause important losses, fungi being the most aggressive. 
 Trichoderma spp . are reported to inhibit a number of soil borne bacteria like 
 Escherichia coli ,  Klebsiella ,  Staphylococcus aureus ,  Pseudomonas aeruginosa , 
 Micrococcus luteus  and fungi like  Rhizoctonia ,  Alternaria ,  Pythium , 
 Phytophthora ,  Sclerotinia ,  Sclerotium ,  Fusarium spp .,  Macrophomina  etc. and 
root knot nematode like  Meloidogyne  spp., and signifi cantly decreased infection 
and disease (Claydon et al.  1987 ). Kumar et al. ( 2015 ) evaluated eight species of 
 Trichoderma  viz.  T. viride ,  T. harzianum ,  T. atroviride ,  T. longibrachiatum , 
 T. koningii ,  T. asperllum and T. virens  in vitro against the most widely occurring 
soil inhabiting plant pathogens viz.,  Fusarium oxysporum  f. sp.  ciceri ,  Alternaria 
solani ,  Phytopathora infestans ,  Pythium aphanidermatum ,  Sclerotium rolfsii , 
 Bipolaris sorokiyana  and  Rhizoctonia solani , and concluded that all the 
 Trichoderma  spp. restricted the growth of all seven phytopathogen in its own 
way. But  T. Reesei ,  T. harzianum and T. viride  showed highest antagonistic 
potential. 
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    Management of Fungal Diseases 

 Most of the studies on  Trichoderma  species have been conducted with respect to 
their activity as biocontrol agents against fungal pathogens. They are known to 
control numerous fungal diseases, such as those caused by  Pythium ultimum  
(Naseby et al.  2000 ),  Sclerotinia sclerotiorum  (Inbar et al.  1996 ), and  Fusarium 
oxysporum  (Sivan and Chet  1993 ) etc. and considered as an important commercial 
source of several enzymes and as biofungicides. As an antagonist,  Trichoderma  spp. 
produce antibiotics and antifungal toxic metabolites and also inhibit fungal 
pathogens by secreting enzymes like glucanase, cellulase, chitinase, protease etc., 
which disintegrate the cell wall of pathogen and they also act as a competitor for 
mineral nutrients. 

    Biocontrol Against  Fusarium  

 Diseases caused by  Fusarium  are one of the major yield limiting factors of agricul-
tural crops.  Fusarium  spp. are known to cause seed rot, damping off, wilting and 
root rot diseases resulting in severe losses to a variety of crop plants (Miller  1994 ). 
In several crops  Fusarium  diseases are generally controlled by fumigation with 
methyl bromide (Awuah and Lorbeer  1991 ). But due to environmental issue, there 
emerge need for some environmental friendly and effi cient alternative. 

 Fakhrunnisa et al. ( 2006 ) suggested that  Trichoderma hamatum  could be effi -
ciently used in the biological control of the diseases caused by  Fusarium  spp. Many 
species including  T. viride  has been observed to be a good BCA with an effi cient and 
effective control on diseases caused by  Fusarium  (John et al.  2010 ; Basak and Basak 
 2011 ). Other  Trichoderma spp.  viz.  T. atroviride ,  T. harzianum ,  T. longibrachiatum , 
 and T. virens  were also found to reduce disease incidence and inhibited mycelial 
growth of various  Fusarium sp.  viz  F. oxysporum  (Muriungi et al.  2013 ; 
Sundaramoorthy and Balabaskar  2013 ),  F. solani  (Morsy et al.  2009 ),  F. culmorum 
and F. graminearum  (Matarese et al.  2012 ). Sharma ( 2011 ) categorized the sequence 
of events during the interaction between  Trichoderma  and  Fusarium  as pre-contact 
antagonistic interaction, chemo-attractive intermediate phase and, fi nally, parasitic 
interaction.  Trichoderma  species either formed hook or bunch like structures around 
the hyphae of FOL ( Fusarium oxysporum  f. sp.  lentis ) before penetration, or some-
times entered them directly. Microscopically, the hyphal interaction indicated that 
antagonistic hyphae of  Trichoderma  coiled around the hyphae of pathogen, dena-
tured the mycelia and fi nally killed them (Dolatabadi et al.  2012 ). 

 During an in vitro biocontrol test,  Trichoderma  showed mycoparasitism and 
destructive control against fungal pathogens  Fusarium oxysporum  f. sp.  adzuki , 
infecting soybean and simultaneously increased the growth and yield of  Fusarium  
infected plants treated with  Trichoderma  and proved as avirulent opportunistic sym-
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biont in rhizosphere of soybean plant (John et al.  2010 ). Kataoka et al.  2010  showed 
that application of  T. viride  to the soil in the greenhouse resulted in consistent and 
effective control of yellow disease of  Brassica campestris  caused by  Fusarium oxy-
sporum . Rajeswari and Kannabiran ( 2011 ) observed that culture fi ltrate of 
 T. viride  and  T. harzianum  inhibited conidial germination and mycelial growth of 
 Fusarium oxysporum  infecting  Arachis hypogaea  and concluded that inhibition is 
due to the volatile and non volatile metabolites and cell wall degrading enzymes 
produced by  Trichoderma  spp. Inhibition of growth of  F. solani  sp.  dalbergiae  by the 
antagonist fungi,  T. viride  and  T. harzianum  was observed by Basak and Basak 
( 2011 ). They concluded that the pathogenic fungus was successfully destroyed by  T. 
viride  and  T. harzianum . Antagonist  Trichoderma  sp. penetrated and coiled the wilt 
fungus and these were direct antagonistic actions of T.  viride  and  T. harzianum. T. 
viride  produced viridin which is antifungal and gliotoxin, an antibiotic which is anti-
bacterial and antifungal. Ru and Di ( 2012 ) examined 146 isolates of  Trichoderma  
spp. by means of dual culture method for antagonism against  Fusarium sambucinum , 
which causes potato dry rot. Via screening, ten isolates showed the best antagonism 
against  F. sambucinum  and they were identifi ed as  T. hazianum ,  T. longibrachiatum , 
 T. atroviride ,  and T. virens . Among these isolates,  D - 3 - 1  ( T. longibrachiatum ) showed 
the strongest inhibition of the growth of  Fusarium sambucinum . 

 Meraj-ul-Haque and Nandkar ( 2012 ) examined seven isolates  of Trichoderma 
spp . viz.  T. harzianum Rifai ,  T. hamatum Rifai ,  T. longibrachiatum Rifai ,  T. atro-
viride Karsten ,  T. viride Pers ,  T. ressei  Simmons and  T. virens  Miller, for antagonism 
against  Fusarium oxysporum  f.sp.  lycopersici , which causes tomato damping-off. 
Among these isolates,  T. virens  showed the strongest inhibition of the growth  of 
Fusarium  oxysporum f.sp. lycopersici.  T. viride  also exerted a signifi cant effect on 
the growth of  Fusarium circinatum  causing pitch canker disease, in the in vitro assay, 
reducing the length of the pathogen colony by half (Martínez-Álvarez et al.  2012 ). 

 Antagonistic variability of various isolates of  T. atroviride  revealed signifi cant 
suppression in the radial growth of three legume pathogens  Fusarium oxysporum  
f.sp.  ciceri ,  F. oxysporum  f.sp.  lentis and Fusarium udum  was observed by Singh 
et al. ( 2013 ). They found that the effi cacy of these strains against various pathogen 
species is different and concluded that antagonistic and molecular variability exist 
among eight isolates of  T. atroviride . Bhagat et al. ( 2013 ) evaluated 12 isolates of 
three species viz.  T. harzianum ,  T. viride and T. hamatum ,  against Fusarium 
oxysporum  f. sp.  lycopersici  for their biocontrol potential under in vitro and fi eld 
conditions. They revealed that all isolates of  Trichoderma  spp. have signifi cantly 
inhibited mycelial growth of F.o. f. sp. lycopersici as compared to control but the 
isolate Th-CARI-50, TvCARI-85, Th-CARI-61, Tv-CARI-100, Tv-CARI-73 were 
most effi cient in per cent inhibition of test pathogen. The seed and soil application 
of  Trichoderma  spp. was found to be most effective in the reduction of disease 
incidence of fusarial wilt of tomato under both greenhouse and fi eld conditions than 
that of either seed or soil application alone. 

 Bernal-Vicente et al. ( 2009 ) developed different formulations of  Trichoderma 
harzianum  T-78 on different carriers: liquids (spore suspension, guar gum and 
carboxymethylcellulose) and solids (bentonite, vermiculite and wheat bran) against 
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 Fusarium  wilt on melon plants and concluded that most effective treatments were 
the solid treatments bentonite and superfi cial vermiculite, each gave the lowest 
percentage of infected plants and the greatest  T. harzianum  population. 

 Thus, most of the  Trichoderma  isolates showed considerably good antibiosis and 
parasitism against  Fusarium . The isolate of  Trichoderma  which can overcome the 
inhibition posed by the pathogen and parasitize it in a short span of time can be 
considered as the most effi cient biocontrol agent.  Trichoderma  isolate T1 
( T. atroviride ) showed quicker action as compared to the others. After reaching the 
verge of inhibition zone posed by  Fusarium  in dual culture plates, this agent took 
only about 2 days to parasitize the pathogen (Sharma 2011). Thus, it is necessary to 
fi nd most aggressive strains of  Trichoderma  which can parasitize the fungus effi -
ciently and quickly so as to completely control the disease. 

 Various  Trichoderma  isolates produce different compounds for antibiosis against 
same or different pathogen. Volatile metabolites produced by  Trichoderma  are 
considered more effective against  Fusarium  as compared to non-volatile compounds. 
Role of diffusible volatile compounds produced by  T. viride  and  T. harzianum  in the 
inhibition of germination and mycelial growth of  Fusarium oxysporum  in vitro was 
reported by Pandey and Upadhyay ( 1997 ). Volatile metabolites produced by 
 T. harzianum  caused maximum radial growth inhibition of  Fusarium oxysporum f. 
sp. lentis  (FOL), followed by  T. viride  in dual culture plate.  Trichoderma  species 
differentially limited the colonical growth of the pathogen, overgrew the pathogen 
colony and parasitized it (Dolatabadi et al.  2012 ). 

 Some members of the  F. oxysporum  species complex are known to synthesize a 
number of biologically active compounds like enniatin (EN), beauvericin (BEA) 
and fusaric acid (FA) (Bacon et al.  2006 ; El-Hasan et al.  2008 ; Meca et al.  2010 ; 
Wang and Xu  2012 ). An inhibitory effect of EN against  Trichoderma harzianum  
Rifai has been reported by Meca et al. ( 2010 ). As a result, the effi cacy of biocontrol 
of  F. oxysporum  by  Trichoderma  decreases. Various strategies can be used to 
improve the effi cacy of biological control agents. One of these is the genetic 
manipulation of wild-type strains. For instance, strains of  Trichoderma  transformed 
to overexpress hydrolytic enzymes have been shown to be better biocontrol agents 
than their corresponding parental strains (Herrera-Estrella and Chet  2003 ). Marzano 
et al. ( 2013 ) showed that FA, phytotoxin involved in pathogenesis of  Fusarium  
wilts, has a strong inhibitory effect to  T. harzianum  strain ITEM 908 growth. They 
improved the tolerance to FA of ITEM 908 and its biocontrol performance  against 
F. oxysporum  f. sp.  lycopersici  through UV mutation.  

    Control of  Botrytis  

  B. cinerea  is a ubiquitous pathogen that causes severe losses in many fruits, vegeta-
bles and ornamental crops, and which can damage and even kill plants and affect the 
quality of the product. It is a major pathogen of grapes and greenhouse crops, on 
which it causes grey mould. The fi rst biocontrol agent to be commercialized, regis-
tered and used for effectively controlling  Botrytis  diseases in greenhouse crops and 
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in vineyards was T39 isolate of  T. harzianum  (TRICHODEX 20P) (Elad  1994 ; Elad 
et al.  1994 ). It was found to be effective in controlling  Botrytis cinerea  in tomato 
plants (Fiume and Fiume.  2006 ). An isolate of  T. reesei  studied by El-Naggar et al. 
( 2008 ) showed a 30 % reduction in the growth of  B. cinerea , 40.2 % in the growth of 
 B. fabae  and only 4 % in the growth of  B. allii  after 5 days of incubation. The antago-
nistic ability of  T. harzianum ,  T. viride and T. longibrachiatum  against  Botrytis fabae 
and B. cinerea , disease-causing agents of ‘chocolate spot’ in bean, through inhibit-
ing its sporulation and mycelial growth, was confi rmed by Bendahmane et al. ( 2012 ). 

 Fiume and Fiume ( 2006 ) suggested that the antagonistic effect of  T. harzianum  
isolates against  Botrytis  is based on the competition for niche and nutrients and not 
on a chemical aggressiveness or classic antibiosis. This antagonistic effect can also 
be explained by the ability of  Trichoderma  to produce volatile substances that are 
able to limit and even stop the development and sporulation of this pathogen 
(Bendahmane et al.  2012 ). Cheng et al. ( 2012 ) hypothesized that the mycoparasitic 
process of  Trichoderma spp . against  B. cinerea  involves two steps; an initial hyphal 
coiling stage and a subsequent hyphal coiling stage, with different coiling rates. 
They identifi ed an l-amino acid oxidase (Th-l-AAO) from  T. harzianum  ETS 323, 
which effectively inhibited  B. cinerea  hyphal growth, caused cytosolic vacuoliza-
tion in the hyphae, and led to hyphal lysis during in vitro assay. Th-l-AAO also 
showed disease control against the development of  B. cinerea  on postharvest apple 
fruit and tobacco leaves and is capable of inducing apoptosis-like response, includ-
ing the generation of reactive oxygen species in  B. Cinerea , suggesting that Th-l-
AAO triggers programmed cell death in  B. cinerea . Bogumił et al. ( 2013 ) revealed 
that the ability of  T. atroviride  to supress  Botrytis  is due to the fact that  T. atroviride  
produce siderophores, indole-3-acetic acid and chitinases. These enzymes are con-
nected with mycoparasitism that is initiated against phytopathogenic fungi. Recently, 
Soliman et al. ( 2015 ) suggested that  T. harzianum  and  T. viride  were better in inhib-
iting disease incidence and improving plant defense against  Botrytis  in cucumber 
and concluded that application of these antagonistic fungi might be an easily applied, 
safe and cost effective alternative control method to control grey mold.  

    Control of  Colletotrichum  

 Anthracnose caused by  Colletotrichum acutatum  is one of the major fungal diseases 
occurring worldwide. Various isolates of  Trichoderma , including  T. harzianum  
isolate T-39 from the commercial biological control product TRICHODEX, T-118, 
T-165 and T-166 were effective in controlling anthracnose in strawberry (Freeman 
et al.  2001 ).  Trichoderma  strains, namely  T. harzianum  (T-39),  T. atroviride  (T-161) 
and  T. longibrachiatum  (T-166), were evaluated in large-scale experiments using 
different timing application and dosage rates for reduction of strawberry anthracnose. 
They were effective in reduction of anthracnose disease, while the concentration of 
0.8 % was superior (Freeman et al.  2004 ). In dual plate culture, the isolate T3 of  
T. harzinum  showed the highest 89.44 % inhibition of radial growth of C.  dematium  
causing anthracnose of soybean (Shovan et al.  2008 ). 
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  Trichoderma  species have also been applied to control  Colletotrichum  species in 
citrus (Moretto et al.  2001 ), with concomitant disease reduction. Deshmukh et al. 
( 2010 ) evaluated  T. viride ,  T. harzianum ,  T. longibrachyatum ,  Gliocladium virens  
(synonym,  T. virens ), by dual culture method to monitor antagonistic effect against 
 C. gloeosporioides  Penz. and Sacc in vitro and revealed that out of various bioagents 
used,  T. viride  and  T. harzianum  were able to inhibit the growth of the pathogen 
mycelia signifi cantly. Ghosh and Chakraborty ( 2012 ) screened various isolates of 
 Trichoderma viride  and observed that T1, T10, T12 isolates have best hyperpara-
sitic activity. Rahman et al. ( 2013 ) evaluated different  Trichoderma  strains against 
 C. capsici  under laboratory conditions and found  T. harzianum  as potential antago-
nist for inhibition of the mycelial growth, conidial germination, germ tube elonga-
tion and disease severity of  C. capsici . 

 Kushwaha and Verma ( 2014 ) showed that  T. harzianum ,  T. viride ,  T. hamantum  
all exibit strong antagonistic activity against  Colletotrichum spp.  causing red rot of 
sugarcane. In another study, in vitro antagonism test carried out between  T. viride  
and  C. alienum  showed a radial growth inhibition of the pathogen by 75 % and 
greenhouse studies also confi rmed that  T. viride  signifi cantly controlled the pathogen 
at par with fungicide treatment (Liju et al.  2014 ). Incidence and severity level of 
bean anthracnose was found to be lower in seeds treated with  T. harzianum  and 
 T. viride  than from untreated seed, with some positive infl uence in treated bean seed 
yield (Amin et al.  2014 ). 

 The non volatile antibiotic extract of  T. viride  has the capacity to reduce the bio-
mass and synthesis of DNA, RNA and protein of  C. capsici  (Rajathilagam and 
Kannabiran  2001 ). Ajith and Lakshmidevi ( 2010 ) investigated volatile and nonvola-
tile (culture fi ltrate) compounds from four  Trichoderma  species namely  T. saturnis-
porum ,  T.harzianum ,  T. viride ,  T. reesei  against  C. capsici  causing anthracnose 
disease in bell peppers and showed that the volatile compounds produced form all 
the selected  Trichoderma  species showed 30–67 % inhibition, while non-volatile 
compounds or culture fi ltrate from  Trichoderma viride  at 3–4 % concentration 
showed complete mycelial inhibition of the test fungi. Thus, suggesting the non-
volatile secondary metabolites from  Trichoderma  species to be more effective in 
suppressing the mycelial growth of  C.capsici  as compared to volatile compounds. 
On the contrary, Tapwal et al. ( 2015 ) reported the infl uence of volatile and non-
volatile antibiotics of  T. viride  and  T. harzianum  against  C. gloeosporioides  in dual 
culture technique and described the major advantage of toxic volatile metabolites as 
they may diffuse through air fi lled pores in soil and help in checking the root rot 
pathogen without establishing actual physical contact with pathogen.  

    Control of  Pythium  

 Pythium damping off is a very common problem in fi elds and greenhouses, where 
the organism kills newly emerged seedlings and also cause root rot. Several studies 
address the application of  Trichoderma  spp. with particular emphasis on biological 
control of  Pythium . Treatment with various  Trichoderma  strains increased the 
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emergence, wet and dry shoot and root weights (g), number of lateral roots and 
signifi cantly reduced the number of lesions of pea plants affected with  Pythium 
ultimum . Among all strains, N47 had the greatest benefi cial characteristics, as it 
consistently improved the growth measurements in the absence of plant pathogens 
and reduced the damage in presence of pathogen (Naseby et al.  2000 ). Aerts et al. 
( 2002 ) showed that application of  Trichoderma  spp.  T. asperellum  (Biofungus), 
 T. harzianum  (Tri 003) and  Trichoderma  sp. (KHK) in the presence of  Pythium  spp. 
increased the germination percentage of tomato seeds sown in soilless growing 
media.  T. asperellum  strains are also antagonistic and aggressive mycoparasites of 
 P. myriotylum  and could reduce infection by 50 % (Mbarga et al.  2012 ). 

 John et al. ( 2010 ) assessed the effi ciency of  Trichoderma viride  as biocontrol 
agent against  Pythium arrhenomanes  in vivo and in vitro. During in vitro test, 
 Trichoderma  showed mycoparasitism and destructive control against it. During pot 
assay, along with biocontrol activity,  Trichoderma  enhanced plant height and yield 
of  Pythium  infected soyabean plants. In greenhouse experiment,  Trichoderma  
isolate T-105 signifi cantly reduced the pre- and post-emergence damping-off disease 
incidence under artifi cial infection with  P. aphanidermatum . The volatile compounds 
produced by  Trichoderma  were found to be important in suppressing the mycelial 
growth of this pathogen (Kamala and Indira  2011 ). Studies revealed that application 
of diffusible and volatile metabolites of  Trichoderma  in vitro reduces the growth of 
 Pythium . Among these metabolites, volatile metabolites showed broad-spectrum 
inhibition of  Pythium  as compared to diffusible metabolites (Patil et al.  2012 ). In 
assay for volatile metabolites,  Trichoderma harzianum  revealed signifi cantly higher 
inhibition on  P. aphanidermatum , but in assay for nonvolatile metabolites 
 Trichoderma viride  showed higher inhibition. Interestingly, growth of both 
 Trichoderma  spp. was induced by nonvolatile metabolites of  P. aphanidermatum  
(Jeyaseelan et al.  2012 ). Antagonism against  P. aphanidermatum  was also supported 
by Muthukumar et al. ( 2011 ) and Singh et al. ( 2014 ) in Chilli.  T. harzianum  (Th 
Azad) was found to be signifi cantly superior and effective against pathogen and in 
increasing per cent germination, root length, shoot length, seedling length, dry 
weight and vigour index (Singh et al.  2014 ). Recently, Kumar et al.  2014  observed 
that  T. viride and T. harzianum  completely colonized and restricted the mycellial 
growth of  Pythium aphanidermatum  in plates. They concluded that this might be 
due to the secretion of some secondary metabolites which diffused in the culture 
medium and inhibited the growth of pathogen. 

 Mycoparasitism is another explanation for how  Trichoderma  controls plant 
diseases caused by  Pythium . Mycoparasitism of  Pythium  by  Trichoderma  involves 
fungus-fungus interaction and hostpathogen cross-talk with participation of G 
proteins (Rocha-Ramirez et al.  2002 ; Mukherjee et al.  2004 ; Reithner et al.  2005 ; 
Zeilinger et al.  2005 ), protein kinases (Reithner et al.  2007 ) and signaling molecules 
such as cyclic AMP (Omero et al.  1999 ). The involvement of signal transduction 
pathway components such as G proteins in control of Cell Wall Degrading Enzyme 
(CWDE) expression and coiling processes has been suggested (Reithner et al.  2005 ; 
Zeilinger et al.  2005 ; do Nascimento et al.  2009 ). Monteiro et al. ( 2015 ) suggested 
that the production of some CWDEs during mycoparasitism by T.  reesei  against 
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 P. ultimum  can be mediated by GNA1 (a G-alpha protein that belongs to αi group in 
CWDEs) activity or cAMP levels. cAMP can stimulate coiling/recognition in 
 Trichoderma , so the cAMP pathway seems to have antagonistic roles in 
mycoparasitism-relevant coiling response.  

    Control of  Penicillium  

 The genus  Penicillium  includes many ubiquitous species which are considered 
antagonist of plant pathogen. However, some species cause major postharvest losses 
of fruits. For example,  P. italicum  and  P. digitatum , causing blue mold or green 
mold, are the most common postharvest pathogens of citrus fruits. Postharvest 
fungal diseases of apple are mainly caused by  P. expansum. Trichoderma  was 
suggested as potential biological agent to prevent the losses caused by this 
postharvest pathogen (Díaz and Vila  1990 ; Zamani et al.  2006 ; Sharma et al.  2012b ). 

 Navelina oranges protected with aqueous suspension of  T. viride , showed an 
increase in resistance toward  P. digitatum . These oranges, inoculated with 
 P. digitatum , did not produce lesions after 5 days when  T. viride  was applied 48 h or 
72 h before inoculation (Díaz and Vila.  1990 ). Batta ( 2004 ) used the invert emulsion 
formulation (water-in-oil type) of  T. harzianum  and showed that it signifi cantly 
reduced the decay-lesion diameter caused by  P. expansum . In vitro,  T. viride  
inhibited the radial growth  Penicillium  sp. (54 %) in dual culture (Rajendiran et al. 
 2010 ). Recently,  T. harziaum  and  T. viride  were found to inhibit the growth of 
 P. notatum  (Patale and Mukadam  2011 ; Agarwal et al.  2011 ) and  P. chrysogenum  
(Jat and Agalave.  2013 ).  

    Control of  Sclerotium  

  Sclerotium  is a destructive soil-borne and postharvest plant pathogen. Use of the 
antagonistic fungus  Trichoderma  to control this pathogen has been reported by 
many studies. Weindling ( 1934 ) reported the parasitism of  Trichoderma lignorum  
(Tode) Harz on  Sclerotium rolfsii  Sacc. Coley-Smith et al. ( 1974 ) by means of 
microtome sections have shown that medulla of infected sclerotia of  S. delphinii  
were completely replaced by hyphae and chlamydospores of  T. hamatum  on agar 
plates. Backman and Rodriguez- Kabana ( 1975 ) controlled  S. rolfsii  in peanuts by 
using molasses enriched clay granules as a food base for  T. harzianum . Under 
greenhouse conditions, incorporation of the wheat-bran inoculum preparation of 
 T. harzianum  in pathogen-infested soil signifi cantly reduced bean diseases caused 
by  S. rolfsii  (Elad et al.  1980 ). Henis et al. ( 1982 ) reported mycoparasitism of 
 Trichoderma  spp. against  S. rolfsii , where chlamydospores were abundantly 
produced in contrast to conidia within the infected fungal sclerotia. 

 Mukherjee and Raghu ( 1997 ) demonstrated that  Trichoderma  is not very effective 
in suppressing  S. rolfsii  at temperatures above 30 °C. In dual culture,  Trichoderma  
overgrew  S. rolfsii  at 25 °C and 30 °C, but at 35 °C and 37 °C,  S. rolfsii  overgrew 
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the colony of  Trichoderma . Poosapati et al. ( 2014 ) identifi ed two potential 
thermotolerant and saline tolerant isolates of  Trichoderma  viz.,  T. asperellum , 
TaDOR673 and  T. asperellum , TaDOR7316, which controlled the collar rot disease 
in groundnut by 79.7 % when screened in vitro and in vivo. Kumar et al. ( 2014 ) 
evaluated the in vitro antagonistic potential and effective strains of  Trichoderma  
against  S. rolfsii , by dual culture plate techniques and found that  T. viride  (01PP) 
and  T. harzianum  (Th. azad) completely colonized the pathogen and completely 
restricted its mycellial growth.  

    Control of  Rhizoctonia  

  Rhizoctonia  is one of the phytopathogens causing damping-off, root and crown rot 
of tomato.  Trichoderma  was found to be an effective biological control agent for 
preventing damage induced by  R. solani  under both greenhouse and fi eld conditions 
(Elad et al.  1980 ), and can be used as an alternative to chemical fungicides. 
 T. harzianum  and  T. koningii  were found to be capable of parasitizing and destroy-
ing  R. solani  mycelium (Melo and Faull  2000 ). Barakat et al. ( 2007 ) showed that 
 T. harzianum  (Jn14) and  T. hamatum  (T36) were the most effective isolates at 25 °C 
and inhibited  R. solani  mycelial growth by 42 % and 78 %, respectively, due to 
fungitoxic metabolites production and increased height, fresh and dry weights of 
bean seedling. The variation between these isolates was due to genetic variation, 
mycelium-coiling rate, sporulation rate, fungitoxic metabolites, induced growth 
response and temperature effect Application of  T. harzianum  to inoculated tomato 
seedlings resulted in disease suppression and signifi cantly higher yield, associated 
with the accumulation of high phosphorus levels in tissues of tomato plants (Amer 
MA and Abou-El-Seoud  2008 ). Biocontrol of  R. solani  in tomatoes cultivated under 
greenhouse and fi eld conditions was observed using the  T. harzianum  mutants 
Th650-NG7, Th11A80.1, Th12A40.1, Th12C40.1, Th12A10.1 and ThF2-1, which 
prevented the mortality and increased development of fresh and dry weights of 
tomato plants (Montealegre et al.  2010 ). In another study,  Trichoderma  treatment 
increased plant growth in rice and decreased the percentage of rate of infection 
(Anitha and Das  2011 ). 

 Demirci et al. ( 2011 ) tested  T. harzianum  against  R. solani  on potato and found 
that it was able to produce an inhibition zone in front of the  R. solani  and overgrow 
the mycelium. In the dual culture assay, the percentage inhibition of growth by 
 T. viride ,  T. harzianum , on  R. solani  were 70 %, 67 %, respectively. This inhibitory 
effect was caused by the hyphal interaction between the biocontrol agent and the 
pathogen causing lysis of pathogen hyphae and reduction of the mycelial growth of 
the  R. Solani  (Seema and Devaki  2012 ). Reduction of disease incidence (31.2 %) 
and disease severity (18.8 %) of bean root rot under green house conditions by 
 T. harzianum  was observed by Matloob and Juber ( 2013 ). The biocontrol abilities 
of water-soluble and volatile metabolites of three different isolates of  Trichoderma  
( T. asperellum ,  T. harzianum and Trichoderma  spp.) against  R. solani  were investi-
gated both in vitro and in vivo by Asad et al. ( 2014 ). They showed for the fi rst time 
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that mycelial growth inhibition of the pathogen was 74.4–67.8 % with water-soluble 
metabolites as compared to 15.3–10.6 % with volatile metabolites in vitro. They 
concluded that  T. asperellum  was more effective and consistent, lowering disease 
incidence up to 19.3 % in laboratory and 30.5 % in green house conditions.   

    Management of Bacterial Diseases 

 In contrast to fungi,  Trichoderma  spp. have been reported to have limited applications 
in biocontrol of pathogenic bacteria. An immediate explanation would be that 
bacteria generally have a faster metabolic rate than fungi. Thus, antagonism via 
physical interaction such as, mycoparasitism would be too slow to be effective from 
BCA point of view, where faster action is a must. However, if the formulated 
metabolites from  Trichoderma  spp. were considered, the BCA potential of antagonist 
fungi would be considerably higher (Verma et al.  2007 ). Altogether, antibacterial 
action of  Trichoderma  spp. is based only on the action of antibiotic compounds 
produced and there is no physical interaction between antagonist and pathogen. 

  T. asperellum  SKT-1, a microbial pesticide was found to be highly effective 
against various bacterial diseases of rice: bacterial seedling blight caused by 
 Burkholderia plantarii , bacterial grain rot caused by  Burkholderia glumae , and 
bacterial brown stripe caused by  Acidovorax  spp. (Kumakura et al.  2003 ). The 
antibacterial activity of  Trichoderma  was observed against various gram positive 
and gram negative species:  Pseudomonas aeruginosa  ATCC 27853,  Staphylococcus 
aureus  ATCC 29213,  Staphylococcus epidermidis  NCIMB 8853,  Escherichia coli  
ATCC 5218 and  Micrococcus luteus  NCIMB 8166 by using disc diffusion and 
liquid dilution methods (Khethr et al.  2008 ). Recently, the antibacterial activity of 
 T. harzianum  was confi rmed against  Staphylococcus aureus ,  E. coli  and  Klebsiella  
and the minimum inhibitory concentration of  T. harzianum  on these bacterial 
isolates range from 50 to 100 μl/ml of media (Leelavathi et al.  2014 ). 

 Bacterium-degrading ability is highly variable among  Trichoderma  strains. 
Trichoviridin was the fi rst antibiotic compound isolated from a strain of  Trichoderma 
koningii . It was active against  E. coli  and  Trichophyton usteroides  (Yamano et al. 
 1970 ). The secretion of NAGase (EC 3.2.1.52), trypsin-like (EC 3.4.21.4) and chy-
motrypsin-like (EC 3.4.21.1) protease and muramidase (EC 3.2.1.17) enzymes by 
 Trichoderma , play an important role in the degradation of bacteria. Manczinger 
et al. ( 2002 ) fractionated inductive ferment broths of  T. harzianum  T19 strain, hav-
ing suspensions of  B. subtilis  cells, and it was found to produce trypsin-like prote-
ases (approx. 19, 13 and 5 kDa in size), chymotrypsin-like proteases in the molecular 
weight range between 12 and 43 kDa, and NAGases, along with Muramidase-like 
activities. They provided evidence that along with other compounds, muramidases 
also have great importance in the degradation of bacterial cells. 

 The butanolic extract of  Trichoderma  has strong antimicrobial activities and is 
effective against many bacterial species. Chemical composition of the butanolic 
extract of  Trichoderma  sp. contained essentially a terpenoid compound identifi ed as 
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limonene (92.6 %) along with weak proportions of alcohols, ketones, hydrocarbons 
and fatty acid esters families (Khethr et al.  2008 ). Recently, silver nanoparticles 
have been successfully synthesized from  Trichoderma harzianum , which were 
found to signifi cantly reduce the bacterial growth of  Staphylococcus aureus  and 
 Klebsiella aeruginosa  in a dose dependent manner (Ahluwalia et al.  2014 ).  

    Management of Viral Diseases 

 A very few studies reveal the effi cacy of  Trichoderma  against viral pathogens. 
Potato mop-top disease, which is caused by the virus potato mop-top virus (PMTV) 
is vectored by the pathogen  Spongospora subterranea  f. sp.  subterranea  that causes 
powdery scab disease in potatoes. Nielsen and Larsen ( 2004 ) indicated a potential 
use of seed dressing by  T. harzianum  to control spread of  S. subterranea  and potato 
mop-top virus from seed potatoes.  Trichoderma  has been considered to have the 
potential to reduce powdery scab, presumably via reducing resting spore viability or 
zoospore activity and infectivity. 

  Arabidopsis  plants treated with culture fi ltrate (CF) of  Trichoderma asperellum  
SKT-1, a microbial pesticide, showed reduced  Cucumber mosaic virus  (CMV) titre 
and disease severity as compared with control plants. The barley grain inoculum 
treatment of SKT-1 induced systemic resistance against CMV through SA signaling 
cascade in  Arabidopsis  plants. Treatment with CF of SKT-1 mediated the expression 
of a majority of the various pathogen related genes, which led to the increased 
defense mechanism against CMV infection (Elsharkawy et al.  2013 ). 

 However, the biochemical mechanism of their antiviral activity remains largely 
unknown. Recently, trichokonins, antimicrobial peptaibols isolated from 
 T. pseudokoningii  SMF2, was found to induce defence responses and systemic 
resistance (Song et al.  2006 ) in tobacco against tobacco mosaic virus (TMV) 
infection by signifi cantly increasing activities of pathogenesis-related enzymes PAL 
and POD, and expression of several plant defence genes (Luo et al.  2010 ).  

    Management of Nematodes 

 The root knot nematodes ( Meloidogyne  spp.) are sedentary endoparasites and 
are among the most damaging agricultural pests attacking a wide range of 
crops. Several attempts have been made to use  Trichoderma  spp. to control 
plant parasitic nematodes. Windham et al. ( 1989 ) reported reduced egg produc-
tion in the root-knot nematode  Meloidogyne arenaria  following soil treatments 
with  T. harzianum  and  T. koningii  preparation. Rao et al. ( 1998 ) evaluated 
aqueous extracts of neem ( Azadirachta indica ), caster ( Ricinus communis ) and 
pingamia ( Pingamia harzianum ) as substrates for the mass production of  
T. harzianum  which was used in the management of  M. incognita  in eggplant 
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under field conditions. They reported that caster cake extracts showed the best 
biocontrol activity.  T. harzianum  Rifai has been reported to be an effective bio-
agent for the management of the citrus nematode (Rao et al.  1998 ; Seifullah and 
Thomas  1996 ; Sharon et al.  2001 ). 

 Extracellular enzymes such as chitinase and protease which display antifun-
gal activities appear to participate in the  Meloidogyne javanica  ×  Trichoderma  
spp. interaction (Sharon et al.  2001 ). Two mechanisms of action are thought to 
be responsible for the reduction in nematode infection following root treat-
ment with  Trichoderma  spp. (1) direct parasitism of eggs and larva through the 
increase in chitinase and protease activities, which would be indicators of eggs 
infection capability (Sharon et al.  2001 ; Suarez et al.  2004 ); and (2) inducing 
plant defence mechanisms leading to systemic resistance (Sahebani ,  and 
Hadavi  2008 ). 

 Most studies on nematodes concurred that the  Trichoderma  spp. had multiple 
modes of action. For example,  T. virens  invaded, ramifi ed, grooved and vacuolated 
the root-knot nematode eggs (Eapen et al.  2005 ). In vitro studies demonstrated that 
 T. harzianum  and  T. viride  were effective in causing second-stage juvenile mortality 
and reduced the incidence and pathogenicity of the root-knot nematode  Meloidogyne 
incognita  on tomato (Dababat and Sikora  2007 ). The antagonistic action of 
 Trichoderma  spp. is chiefl y attributed to chitinolytic activity of the fungi on cellular 
structure of nematodes, which is rich in chitin. Additionally, unlike bacteria, 
nematodes are mainly antagonized by parasitism and antibiosis akin to fungal 
pathogens (Verma et al.  2007 ). 

 Naserinasab et al. ( 2011 ) found that inhibition of the hatching of  M. javanica  
eggs was positively correlated with increasing concentrations (standard, 1:1, 1:10, 
and 1:100) of culture fi ltrates of  T. harzianum  BI. They concluded that in addition 
to direct antagonism, induction of defense-related enzymes involved in peroxidase 
pathway contributed to enhance resistance against invasion of  M. javanica  in 
tomato.  T. harzianum  strain ESALQ-1306 was confi rmed for its potential biological 
control against  M. incognita  under in vitro and greenhouse conditions (Mascarin 
et al.  2012 ).  Trichoderma  spp. also controls other plant-parasitic nematode, 
 C. elegans . Five  Trichoderma  species ( T. atroviridae ,  T. harzianum ,  T. rossicum , 
 T.tomentosum ,  T. virens ) were tested using i n vitro  monoculture growth rate tests, 
dual confrontation assays and comparison of strain specifi c egg-parasitic index and 
the results revealed that  T. harzianum  strains possess the strongest egg-parasitic 
ability against  C. elegans  (Szabó et al.  2012 ).   

    Molecular Signalling Involved During Biocontrol 

  Trichoderma  biocontrol relevant processes such as the formation of infection 
structure like appresoria during mycoparasitism, production of hydrolytic enzymes, 
antimicrobial metabolites, and triggering systemic resistance in plants, rely on 
various signalling pathways, which are activated by binding of host-derived ligands 
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to receptors. Recently, it was shown that heterotrimeric G-proteins and mitogen- 
activated protein (MAP) kinases, cAMP are important factors involved in these 
processes (Zeilinger and Omann  2007 ). 

    Role of Heterotrimeric G Proteins 

 During mycoparasitism, an interaction is normally mediated through cross-talk 
between biomolecules secreted from one fungal species that acts as messenger and 
perceived by receptors present on the other interacting fungal species. A signal is 
generated at the perception site and further downstream actions follow through a 
signal transduction mechanism using various receptors (Sarma et al.  2014 ). 
Heterotrimeric G proteins act as signal transducers that couple cell-surface receptors 
to cytoplasmic effector proteins. The signaling via heterotrimeric G protein needs 
basically three components such as a G protein-coupled receptor (GPCR), a 
heterotrimeric G protein (α,β,ϒ, subunits), and an effector (Neer  1995 ). GCPR 
proteins have seven common transmembrane domains where the N-terminus reside 
outside and the C-terminus inside the cytoplasm. When ligands bind to these 
receptors a conformational change occurs and they release the G- α subunit from the 
G protein for exchanging GDP with GTP. Subsequently, the GTP bound G- α 
subunit dissociates from their G- β and ϒ- subunits and these two signaling units 
then regulate the downstream activities of the effectors (Sarma et al.  2014 ). 

 Fungal G subunits can be divided into three major subgroups according to a 
phylogenetic tree generated by multiple alignments of fungal G-protein sequences: 
subgroup I, subgroup II¸ and subgroup III (Omann and Zeilinger  2010 ). Biochemical 
and genetic studies with  T. troviride  provided evidence for the importance of a 
G-protein α subunit,  tga1 , in the parasitism of  R. solani  hyphae (Omero et al.  1999 ; 
Rocha-Ramírez et al.  2002 ). When accumulation of  T. atroviride  Gαi homolog, 
 tga1 , was blocked by antisense expression, hyphal extension growth was inhibited 
and the mutant colonies underwent conidiation profusely. Whereas, over expression 
had the opposite effect, and promoted vegetative proliferation and increased 
mycoparasitism associated coiling (Rocha-Ramírez et al.  2002 ). A more profound 
functional characterization of Tga1 was performed by Reithner et al. ( 2005 ) who 
extended the involvement of this G-protein subunit to the production of antifungal 
metabolites and the formation of extracellular chitinases. tga1 mutant was unable to 
overgrow and lyse host fungi and reduced extracellular chitinase activities and a 
decreased transcription of the chitinase-encoding genes nag1 (N-acetyl- 
glucosaminidase-encoding) and ech42 (endochitinase 42-encoding) was observed. 
However, formation of infection structure was not affected (Reithner et al.  2005 ). 
Contrary to  T. atroviride  Tga1, its homologue TgaA in  T. virens  does not infl uence 
growth or conidiation. Mukherjee et al. ( 2004 ) observed that mutant of two G-protein 
α subunit genes,  tgaA  and  tgaB , from the biocontrol fungus  T. virens , parasitized the 
mycelia of  R. solani , but  tgaA  mutants had reduced ability to colonize  S. rolfsii  
colonies. Thus indicating that  tgaA  is involved in antagonism against  S. rolfsii , but 

V. Pandey et al.



335

neither G protein subunit is involved in antagonism against  R. Solani . Further 
characterization of mutants of  T. atroviride  bearing a gpr1-silencing construct of a 
GPCR revealed that Gpr1 is important for growth, conidial production and 
germination (Brunner et al.  2008 ).  

    Role of cAMP 

 cAMP, involved in growth, germination, mycoparasitism and secondary metabolism 
in  Trichoderma , is produced from ATP by adenylate cyclise. The cAMP signaling 
cascades seem to be conserved among fungi (D’Souza and Heitman  2001 ). In these 
organisms, cAMP activates a cAMP-dependent protein kinase (PKA) that 
phosphorylates enzymes involved in intermediary metabolism (particularly 
carbohydrate metabolism) and transcription factors which are key regulators of 
stress-responsive gene expression (Firmino et al.  2002 ). Antisense-mediated 
silencing of the G α  protein Tga1 resulted in reduced cAMP level in  Trichoderma 
atroviride  IMI 206040 (Rocha-Ramírez et al.  2002 ). While deletion of Tga1 in 
 T. atroviride  ATCC 78058 resulted in elevated internal cAMP levels (Reithner et al. 
 2005 ). The deletion of another G α  protein, Tga3, resulted in reduced intracellular 
cAMP levels (Zeilinger et al.  2005 ). Deletion of tac1, an adenylate-cyclase-encoding 
gene, brought intracellular cAMP levels below the detection limit and the mutants 
did not overgrow the test plant pathogens  Pythium  sp.,  R. solani  and  S. rolfsii  and 
showed reduced secondary metabolite production. This suggested the role of cAMP 
signalling in a Trichoderma biocontrol (Mukherjee et al.  2007 ). 

 Many of the known fungal G proteins infl uence the intracellular level of cAMP 
by either stimulating or inhibiting adenylyl cyclase (Bölker  1998 ). An elevated 
internal steady-state cAMP level in the tga1 mutants compared to the parental strain 
confi rmed that Tga1 represents a member of the adenylyl cylcase inhibiting 
subgroup I of fungal G subunits (Reithner et al.  2005 ). The stimulatory role of the 
subgroup III G proteins Tga3 and Gna3 on the activity of adenylyl cyclase was 
confi rmed by its ability to increase intracellular cAMP levels (Schmoll et al.  2009 ). 
Comparative genome analyses of three  Trichoderma  species viz.  T. atroviride  and 
 T. virens  and  T. reesei  revealed a great diversity of putative GPCRs with genus- and 
species- specifi c differences (Gruber et al.  2013 ).  

    Role of MAP Kinases 

 MAP kinases are dual phosphorylated protein kinases, which control adaptation to 
environmental stress in pathogenic fungi. In  T. virens  in addition to heterotrimeric 
G proteins, a MAP kinase was found to affect mycoparasitism-related processes 
(Mendoza-Mendoza et al.  2003 ; Mukherjee et al.  2003 ) as well as plant systemic 
resistance. MAP kinase cascade is highly conserved and comprises three kinases 
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that function by sequential phosphorylation. Upon receiving a stimulatory signal, 
the MAP kinase kinase kinase (MAPKKK) is phosphorylated and it triggers the 
phosphorylation of the MAP kinase kinase (MAPKK), which in turn phosphorylates 
the MAP kinase (MAPK). MAPKs are simultaneously phosphorylated and the 
signal is fi nally transferred to downstream effectors, normally a transcription factor 
or other molecules, which either activate or relieve the repression of the corresponding 
target genes. The expression of these target genes is essential in the adaptive 
response of the cell to an activating stimulus (Roman et al.  2007 ). 

 MAPK signaling plays important role during  Trichoderma -plant interaction and 
induces plant systemic resistance. Role of a mitogen-activated protein kinase 
(MAPK) TmkA in inducing systemic resistance in cucumber against the bacterial 
pathogen  Pseudomonas syringae  pv. lacrymans  was confi rmed by Viterbo et al. 
( 2005 ). In silico reconstruction of signal transduction pathways of  T. reesei  
suggested the presence of three MAPKs: Tmk1 that is homologues to yeast Fus3, 
Tmk2 that is homologues to yeast Slt2 and Tmk3 that is homologous to yeast Hog1 
(Schmoll  2008 ). Recently, Wang et al. ( 2014 ) suggested that Tmk2 is involved in 
cell wall integrity and sporulation. Tmk3 participates in high osmolarity resistance 
and in promoting cellulase production while Tmk2 is involved in repressing 
cellulase formation. 

 However, some contrasting reports are also available regarding the role of MAP 
Kinases in parasitism by  Trichoderma  species (Sarma et al.  2014 ). A mitogen- 
activated protein kinase encoding gene,  tvk1 , from  Trichoderma virens  was 
suggested to acts as a negative modulator during host sensing and sporulation.  tvk1  
null mutants showed a clear increase in the level of the expression of mycoparasitism- 
related genes under simulated mycoparasitism and during direct confrontation with 
the plant pathogen  Rhizoctonia solani  (Mendoza-Mendoza et al.  2003 ). MAPKs 
homologous to  T. atroviride  Tmk1 were previously shown to be involved in the 
regulation of appressorium formation and invasive growth (Xu and Hamer  1996 ). 
Recently, Reithner et al. ( 2007 ) suggested the negative regulatory role of Tmk1 on 
 Trichoderma -triggered plant resistance. They found that mycoparasitism-related 
processes like infection structure formation, coiling as well as chitinase and 
antifungal metabolite production were unaltered or even enhanced upon  tmk1  gene 
deletion. In greenhouse experiments also, the examined Δ tmk1 -12 mutant was able 
to protect bean plants against  R. solani  infection. Thus, indicating that the deletion 
of a MAPK gene can generate a more aggressive parasite and, consequently, a better 
biocontrol agent.   

    Physiological Signalling Involved During Biocontrol 

  Trichoderma  colonization triggers a wide array of plant responses, which may result 
in an enhanced defensive capacity of the plant (Morán-Diez et al.  2012 ). This effect 
of  Trichoderma  on the plant defense system is not only restricted to the root, but 
they also manifest in aboveground plant tissues (Mathys et al.  2012 ), suggesting the 
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involvement of systemic resistance, which is likely the result of modulation of the 
plant defense network that may translate  Trichoderma -induced early signaling 
events into a more effi cient activation of defense responses (Martínez-Medina et al. 
 2013 ). Various plant hormones like jasmonic acid (JA), ethylene (ET), abscisic acid 
(ABA) and salicylic acid (SA) act as signal transduction molecules during 
 Trichoderma  mediated induced systemic resistance (TISR). 

 Generally, pathogen-induced systemic acquired resistance (SAR), is dependent 
on the SA-regulated signaling pathway (Durrant and Dong  2004 ) and leads via the 
actions of NPR1 (Cao et al.  1994 ) and WRKY TFs (Jaskiewicz et al.  2011 ) to the 
activation of pathogenesis-related proteins (PRs), while ISR by benefi cial 
microorganisms like  Trichoderma  usually relies on JA signaling (Van der Ent et al. 
 2009 ). Korolev et al. ( 2008 ) using multiple  Arabidopsis  mutant lines showed that 
the induction of resistance by  T. harzianum  Rifai T39 against  Botrytis cinerea  
requires JA, ET, and ABA signaling, while SA was not required. Expression studies 
on marker genes linked to the main defence signaling pathways suggested that TISR 
might involve the direct activation of both SA- and JA-related pathways (Mathys 
et al.  2012 ). During ISR-priming, SA was synthesized from chorismate rather than 
via the phenylalanine pathway, suggesting chorismate way as an important alterna-
tive route for the production of SA required for defense responses. This 
 T. hamatum  T382-induced ISR-prime in  A. thaliana  was also characterized by 
upregulation of phenylpropanoid pathway leading to the production of anthocyanins 
and showed that this pathway is clearly involved in ISR (Mathys et al.  2012 ). The 
phenotypic analysis of disease development in the JA and SA impaired mutants 
demonstrated that  T. harzianum -induced systemic resistance against  B. cinerea  
requires not only the JA but also the SA signaling pathways, as these mutant lines 
developed similar level of disease than non-induced control plants. It is also found 
that  T. harzianum -mediated systemic resistance against  B. cinerea  does not rely on 
systemin, a plant peptide hormone, signalling (Martínez-Medina et al.  2013 ). 

 These plant growth regulators were suggested to act as signal component as well 
as to affect enzyme production (endo-1,4-β-glucanase, cellulase) by  Trichoderma , 
which might promote biocontrol activities of this benefi cial fungus (Gemishev et al. 
 2005 ). Along with inducing host plant to produce various hormones,  Trichoderma  
themselves synthesize various plants hormones or growth-factors like gibberellic 
acid (GA3), indol -3- acetic acid (IAA) and abscisic acid (ABA). This can be 
considered as the direct mechanism to limit pathogens and increase plant growth 
response induced by  Trichoderma  (Hassanein  2012 ).  

    Conclusion 

 Plant pathogens like bacteria, fungi, oomycetes, virus, nematodes etc. affect survival 
and fi tness of plant and cause severe diseases. Though there are many methods that 
are available for crop protection from these pathogens, but they are either considered 
as a major pollutant in the environment or they are less effi cacious and expensive. 
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Another effective way is the use of biocontrol agent  Trichoderma  which assures 
increased level of safety and minimal environmental impacts.  Trichoderma  species 
show signifi cant biocontrol activity against a wide range of plant pathogenic organ-
isms through mechanism like mycoparasitism, competition for nutrients and space, 
producing cell wall degrading enzymes (CWDE) and other antimicrobial com-
pounds. They also induce systemic resistance in host plant for better disease control, 
through alteration in gene expression of plant, responsible for synthesis of defence 
related proteins.  Trichoderma  triggered signalling cascade include various receptors, 
components like phytohormone and various secondary messenger. Heterotrimeric 
G-proteins, mitogen-activated protein (MAP) kinases and cAMP are another impor-
tant factors involved in biocontrol signalling. Due to the effective control of plant 
pathogens/diseases and improvement of plant growth, several  Trichoderma  species 
can be considered as a promising measure in disease management.     
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          Introduction 

 The most signifi cant fungus characteristics used for identifi cation are spores and 
spore-bearing structure (sporophores) and, to some extent, the characteristics of the 
fungus body (mycelium). These items are examined under a compound microscope 
directly after removal from the specimen. The specimen is often kept moist for a few 
days to promote spore development. Alternatively, the fungus may be isolated and 
grown on artifi cial media and identifi cation on the basis of spores produced on the 
media. For some fungi, special nutrient media have been developed that allow selec-
tive growth only of the particular fungus, allowing quick identifi cation of the fungus. 

 In many fungi, hyphae in a colony or in adjacent colonies fuse (hyphal anasto-
mosis). If the hyphae that fuse carry genetically different nuclei, the colony that is 
produced is a heterocaryon. Many fungi, however, have genetic systems that prevent 
mating between genetically identical cells. If the hyphae that come in contact belong 
to different strains of the same species but are of the same mating type, their encoun-
ter may result in vegetative incompatibility. Thus, the resulting vegetative 
 incompatibility between colonies of various strains belonging to the same species is 
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used to type the atrains as belonging to different incompatibility groups constituting 
different biological species. 

 In recent years, immunoassay techniques, often involving monoclonal antibodies 
against specifi c protein of a fungus conjugated with a fl uorescent compound, which 
is used for the identifi cation and detection of certain fungi. 

 The advent of molecular techniques, particularly of PCR (polymerase chain 
reaction), of quick and inexpensive sequencing of DNA, and the accumulation of a 
relatively large databank of ribosomal DNA sequences have revolutionized both the 
lower limits of detection of pathogens and the accuracy and rapidity of their identi-
fi cation. These developments have made possible the detection of pathogens within 
plant tissues in the early stages of infection while there is still a minimal presence 
of the pathogen and early intervention may prevent an epidemic. They have also 
made possible a defi nitive identifi cation of the pathogen by using DNA probes of 
known pathogens and, furthermore, they have made possible the quantifi cation of 
the pathogen within, or in a mixture with, plant tissue, such as seed. Most DNA 
primers are for internal transcribed sequences of ribosomal DNA. The methodol-
ogy, however, improves constantly and quickly. Much more sensitive and specifi c 
sets of primers have been designed which is based on families of highly repeated 
DNA that were ten times more sensitive than primers directed at internal transcribed 
spacer sequences for ribosomal DNA.  

    Plant-Pathogen Interaction 

 The pathogens themselves are of two basic types: fi rst is necrotrophs, which kill the 
host and feed on it, by which toxic substance are produced; and second is biotrophs, 
which complete their life cycle on the living host. Fungi may be of either type, whereas 
viruses are obligate biotrophs. In between these two extremes are hemibiotrophs; 
these are initially biotrohic but then switch to being necrotrophic. It is also clear that 
some organisms are pathogenic to some plants but not other. Why this is the case is 
beginning to be understood at the molecular level. There are two extremes of diseases 
resistance exhibited by plants: non host resistant to a specifi c parasite or pathogen. 
The resistance mechanism that brings this about is conserved across the species and 
is complex- involving many inheritable markers – but is consequently robust in nature. 
This durable resistance is perhaps the ultimate goal of the biotechnologist, contrasting 
favorably with host resistance. Host resistance is exhibited by single plant cultivars to 
a specifi c pathogen. Other members of the species may be susceptible to the infection. 
This type of resistance is due to interaction between a single plant protein a single 
protein from the pathogen (gene- gene interaction). Normally it leads to a hypersensi-
tive response that blocks the spread of the pathogen. It is not as robust as non host 
resistance but at present it is achievable although possible only for a short term ben-
efi t. As with the pathogen, between the two extremes of resistance there is a race non 
specifi c resistance or a general response. This is also  polygenic response but individu-
ally the genes would probably not provide a successful defense.  
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    Fungi as a Pathogen 

 Fungi are the most important plant pathogens. The large number of cellular patho-
gens of plants are found among the fungi, the losses of food caused by fungal dis-
ease have had profound effects on humanity. This is in a number of ways. They can 
damage plants in the fi eld and after harvest (rooting etc.) and they can contaminate 
foodstuffs with extreme toxins such as afl otoxins. There are over 100,000 known 
species of fungi. Most are examples of saprophytes, but the fungi alos include sym-
bionts, such as the mycorrhiza, and perhaps more than 8,000 species that cause 
plant diseases. Modes of entry include wound sites and natural opening, like sto-
mata, to take entry in to the plants by degrading the macromolecules of cell wall. 
There are too many fungal pathogens to go into any detail of the diseases they cause 
or their modes of action, but some specifi c examples are given in Table  1 . Included 
is  phytophthora infestans  (which is a classic example of an Oomycetes- group 
pathogen), the organism responsible for the potato blight that caused the great Irish 
famine of 1846. Until recently, Oomycetes were classifi ed as fungi; however, bio-
chemical and molecular studies indicate that these water moulds should now be 
classifi ed separately. The cell wall of these organisms is composed of cellulosic 
compounds and glycan, not chitin, and the nuclei within the hypha are diploid, not 
haploid, as in fungi.

       Natural Fungal Resistant Pathway 

 Plant defence systems are complex but effective. It would be wrong to give the 
impression that plants have no resistance against pathogen attack, for it is clear that 
they do. Plant cannot produce specifi c cell against microbes attack because plants 
do not have an immune system, But Plants have adopted general defence system 
because they have many similarities with innate immunity of mammals. There is 
also a lot of overlap between the plant’s response to pathogens and plant pests. The 

   Table 1    Name of fungal disease and its causing agent   

 Class  Disease name  Disease causing agent 

  Oomycetes   Late blight of potato   Phytophthora infestans  
  Oomycetes   Downy mildew of grape   Plasmopara viticola  
  Chytridiomycetes   Black wart of potato   Synchytrium endobioticum  
  Ascomycetes   Peach leaf curl diseases   Taphrina deformans  
  Ascomycetes   Powdery mildew of pea   Erysiphe polygony  
  Deuteromycetes   Ergot of bajra   Claviceps purphrea  
  Deuteromycetes   Apple scab   Venturia inagnalis  
  Deuteromycetes   Wilt disease of potato   Fusarium oxysporum sub sp. Solani  
  Deuteromycetes   Red rot of sugarcane   Calletotrichum falcatum  
  Basidiomycetes   Loose smut of wheat   Ustilago tritici  
  Basidiomycetes   Rust of wheat   Puccinia graminis tritici  
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general cellular damage caused by both can act as a signal to trigger general defence 
systems. There are advantages to the plant having such general systems because 
pests often act as vectors for pathogen. So we can say, plant also have systems that 
respond to specifi c signals. Four different levels of defence against fungi present in 
plants. 

    Anatomical Defence 

 Many fungi attack on plants though wounds. This is because plants developed 
structural system that stop fungi access to living cells (the fi rst line of defence). 
These can be thick layers of protective material, such as cuticle and bark. Once this 
defence is breached then cascades of defence systems come into play.  

    Pre-existing Protein and Chemical Protection 

 The second line of defence is produced by the plants during development, growth 
and defense like protein which is made up of antimicrobial proteins. The defense 
proteins are similar to those found in insects and mammals where they play an 
important role in defence against infectious agents. Their structure has a conserved 
three dimensional folding pattern, which suggests that they represent a super family 
of peptides that pre dates the divergence of plants and animals. Some defense cause 
increased branching in fungi, while others simply slow growth. They are frequently 
associated with seeds at the time of germination, when they may be released into the 
environment and create a microenvironment around the seed suppresses fungal 
growth. Many of the large number of small chemicals made as secondary products 
may also have antimicrobial properties. These protein and chemical may simply 
deter pest or pathogen growth, or they may actually be toxic to them.  

    Inducible Systems 

    Elicitor Response 

 The third level of defence is a synthesis of protein de novo by which plants pro-
tects from pathogen. It would be costly for the plant to have its defence system 
permanently switched on, so there are mechanisms by which detect the infection 
and then turn on the defence system. These mechanisms will be discussed in 
Fig.  1 

   When pathogen arrives and gain entry to a plant cell, it may affect resistance to 
infection. The elicitors are of several types, and the response is complex and 
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overlapping in nature. First, there may be a local response that involves interactions 
with substance which is released by the pathogen or the host itself, in response to 
pathogen attack (endogenous elicitors), with receptor molecules on the host. These 
interactions may stimulate general defence systems in both host and non host plants, 
or they may be race specifi c interactions, inducing defence responses only in specifi c 
cultivars. Both these interactions may lead to a cascade of reactions that may include 
the hypersensitive response (HR). These interactions are diagrammatically show in 
Fig.  1  and Table  2  show a range of elicitors and their effects.

       General Response 

 In the fi rst stages of an infection, there is normally damage to the plant cell wall. 
Fungi release proteolytic enzyme that cause the release of wall fragments such as 
pectic oligomers. These often act as a general signals endogenous elicitors which 
bind to specifi c receptors, setting off a cascade of reaction that lead to the induction 
of specifi c defence gene. Many structural components of the cell wall are thick by 
these defence genes which code for enzymes, enzymes of secondary metabolism, 

  Fig. 1    Representation of host defence systems are induced by endogenous and exogenous elicitors 
and by the interaction between plant resistance genes ( R ) and the pathogen avirulence gene (Avr)       
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lectins and many so called pathogenesis related protein (PR). PR proteins include 
chitinases and β-1,3-glucanase, protease inhibitors, non specifi c lipid-transfer pro-
teins, ribosomal inhibitor proteins and various antimicrobial proteins. These anti-
microbial proteins include defensins such as SN1, which is active against fungal 
pathogen in potato. One important point of relevance to the use of the gene in 
transgenic experiments is that a number of the Pathogen related gene has been 
identifi ed as latex allergens. These are the proteins, which are presents in most of 
the fruit species and latex products which show allergenic response in many 
people. 

 The effect of synthesizing the defence proteins depends, in part, on the pathogen. 
For instance, if fungal hyphae breach the cells defence, then the chitinases and 
glucanases may cause some degradation of the pathogen’s cell wall. This will lead 
to the production of chitin and β-1,3-glucan oligomers. These compounds may act 
as signal molecules (exogenous elicitors), which bid to membrane receptors and re 
enforce the induction of the defence systems. The cells may also produce 
phytoalexins (phenolic protein) that kill any pathogens al well as the cell in the 
vincinity of the infection, therefore limiting the spread.  

    Race Specifi c Response 

 The pathogen carries the avirulence gene (Avr), which codes for a protein that is 
identifi ed by a specifi c receptor protein in the plant cell, encoded by the resistance 
gene (R). The interaction induce the HR, which is manifested as a local necrosis 
that develops through a NADPH (reduced nicotinamide adenine dinucleotide phos-
phate) dependent oxidative burst and the release of phenolics and nitric oxide. Most 
of the pathogenesis related protein active by the activation of signaling pathway. 
The important feature of this system is that if protein is absent, then the pathogen 
will cause disease Fig.  2 .

   Table 2    Examples of elicitors   

 S. No.  Elicitor  Type  Biological response 

 1.  β- Glucans  Pathogen associated 
molecular pattern 

 Induction of defence response in rice, 
tobacco 

 2.  Chitin  Pathogen associated 
molecular pattern 

 Induction of defence response in 
tomato, Arabidopsis, rice, wheat and 
barley 

 3.  Avirulence protein  Race specifi c  Hypersensitive response in a range of 
plants 

 4.  Peptide toxins  Race specifi c  Programmed cell death in oat 
 5.  Endoxylanase  Race specifi c  Hyper sensitive response and defence 

genes in tobacco 
 6.  Pectolytic enzymes  General  Protein inhibitors and defence genes in 

Arabidopsis and tomato 
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   The gene system is one of the best ways by which plants have switch on resis-
tance system, and interaction between plants and fungi have been shown. It is 
becoming clear that the many of the avirulence proteins fall into a class protein 
transported into the plant cell by the type III protein secretion system (TTSS). It is 
postulated that they might functions as virulence factors, subverting cellular func-
tion through interaction with plant encoded pathogenicity target. 

 When fungal hyphae break through the cell wall into a cell, they produce a 
complex cellular structure, the haustoria, that drains the required nutrients from the 
cell. Interestingly, the haustoria does not actually penetrate the host cell’s membrane, 
yet the fungus is able to highjack the cell’s content. Recent work with fungi and 
oomycete pathogens indicates that these organisms inject small proteins into the 
host plant cells that are designed to alter the host’s metabolism, to the benefi t of the 
pathogen, and to disrupt any defence pathways. It is these proteins that can stimulate 
the HR response.  

a b c d

  Fig. 2    Host resistant interaction. In ( a ) the plant cell contains the resistance gene (R) and the 
pathogen produces the avirulence gene product (Avr), defence system are activated and the plant 
shows resistant to infection. ( b ) Pathogen is not producing Avr protein, HR reaction is not induced 
and the interaction result in disease. ( c ) Host cell is not producing R protein so disease results. ( d ) 
Neither the R protein nor the Avr protein is produced so disease caused       
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    Elicitor Receptors 

 Many examples of the R proteins have now been identifi ed: the annotation of the 
Arabidopsis genome sequence has indicated there are about 100 R loci distributed 
throughout the genome. PAMP receptors (Pathogen associated molecular Pattern) 
and TTSS proteins (Type III protein secretion system) show many similarities in 
structure to mammalian and insect receptor proteins required for the onset of the 
innate immune response and involved in the sensing of pathogen derived factors. 

 Xa21 is an R protein from rice that is an LRR receptor kinase. It confers cultivars- 
specifi c resistance to  xanthomonas oryzae  pv. Oryzae strains that express ArvXa21 
avirulence protein. It resembles PAMP receptor in structure: both human Toll like 
receptor and the fl agellin receptor FLS2 from  Arabidopsis . Comparisons like these 
indicate that plants use receptors of similar structure for the sensing off different types 
of elicitor and that these have evolved from a limited number of ancient receptors. It is 
intriguing to consider that such a small number of R proteins can give the diversity 
required to deal with the large number of plant pathogens, and how they evolve to deal 
with evolutionary changes in the elicitor protein. One factors in the biology of the 
pathogen, and as such they do not evolve at high rates. There is also evidence indicat-
ing that to meet with the changes that do occurs, some variability in the plant R pro-
teins comes from the fact that the LRR doain does nutate, within a highly variable 
regions, and that mutations encoding new amino acids are selected for. The R gene loci 
are very polymorphic in wild populations, so with each R gene allele being present at 
a low frequency there is limited selection for virulence in the pathogen population.   

    Systemic Response 

 The indication of local defence pathways may lead to the induction of intercellular 
signals that produce a systemic response, termed systemic acquired resistance 
(SAR). Both avirulent and virulent pathogen may result in the induction of SAR, 
although it is usually a slower process in the case of virulent pathogen. SAR has two 
phases: fi rst is the initiation phase and second is the maintenance phase. In the 
initiation phase, cells at the foci of the infection release signal molecules, typically 
salicylic acid, into the phloem. These are transported to target cells in other parts of 
the plant where SAR gene are expressed, thus giving the plant some level of 
resistance against infection. In the longer term, a maintenance phase is reached that 
may last for weeks or even the full life of the plant, in which there is quasi steady 
state resistance against virulent pathogens.   

    Biotechnological Approach to Fungal Resistance 

 Biotechnology has rapid emerged as an area of activity having a marked realized 
as well as potential impact on virtually all domains of human welfare and protect-
ing the environment. In biotechnology various molecular diagnostic tools have 

A. Kumar et al.



355

been used for the improvement of accuracy, effi cacy and identifi cation of disease 
causing agents, which are also used for the characterization of the diversity of 
fungal pathogen. In the Biotechnology various technique are involve for the dis-
ease diagnosis and management but in the biotechnology various molecular tech-
nique involve especially molecular marker for the identifi cation, detection, 
quantifi cation and characterization of fungal pathogens that incites diseases in 
plants. 

 The molecular marker are no longer looked upon as simple DNA fi ngerprinting 
markers in variability studies or as mere forensic tools, but, they are constantly 
being modifi ed to enhance their utility and to bring about automation in the process 
of genome analysis (Joshi et al.  2011 ). From the last decade Molecular marker play 
important role for the detection of phyto-pathogen and also has been used for the 
identifi cation of unknown species from their nucleotide sequence. Non radioactive 
probes have been used for the detection of fungal pathogen (Singh  2009 ). Molecular 
data of fungi combined with classical characterization provide new thing about the 
fungal interactions in terrestrial communities (Bahnweg et al.  1998 ). The application 
of molecular marker in the plant pathology has improved the ability to detect plant 
pathogens. 

 Most of the molecular markers like RFLPs (Botstein et al.  1980 ), AFLPs (Vos 
et al.  1995 ), STS (Powell et al.  1996 ), RAPD (Williams et al.  1991 ) are used for the 
molecular mapping and characterization of disease resistant gene of plant pathogen. 
Molecular markers are also used for mapping and cloning of various R-proteins. 
These cloned R- protein have been transferred for the improvement of susceptible 
cultivars for high yield. The present status of molecular markers is that these are 
used for disease diagnosis, molecular characterization and molecular mapping of 
disease resistance gene. 

    Molecular Approach for Detection of Pathogenic Fungi 

    Polymerase Chain Reaction (PCR) 

 There are two important reasons of amplifying DNA. First it provides a limitless 
supply of the material for analysis. Second the specifi c amplifi cation of a region of 
a genome provides a relatively easy way to purify that segment from the bulk. Either 
these purposes can be solved by performing in vitro amplifi cation of DNA or 
Polymerase chain reaction. PCR allows the amplifi cation of specifi c DNA sequences 
by repeated cycles of denaturation, polymerization and elongation at different 
temperature using specifi c primers, DNA polymerases which were isolated from 
thermostable organisms  Thermus aquaticus  enzyme and deoxyribonucleotide 
triphosphates (dNTPs) (Mullis and Faloona  1987 ). The amplifi ed DNA fragment 
can be visualized by electrophoresis or fl uorometric assays (Fraaije et al.  1999 ). The 
specifi c size of the DNA band indicates the presence of target pathogen in the 
sample. Main advantages of PCR technique are to provide high specifi city, sensitivity 
and reliability.  
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    DNA Extraction from the Sample 

 Most of the protocols are available for the isolation of DNA from fungi or 
infected plants (Niu et al.  2008 ; Chi et al.  2009 ; Zhang et al.  2009 ; Feng et al. 
 2010 ; González Mendoza et al.  2010 ; Zelaya Molina et al.  2011 ) but there are 
no universally validated protocols for the fungi and infected plant. Isolation of 
nucleic acid is a time consuming and costly and time consuming method. Many 
step have been used to isolate the nucleic acid from the fungus. In the Isolation 
of nucleic acid few microliters of extract loaded and immobilized on FTA cards. 
Many scientists used FTA cards for the detection of nucleic acid. Nucleic acids 
of  Aspergillus oryzae  could be detected through FTA card reported (Suzuki 
et al.  2006 ). Grund et al. ( 2010 ) used FTA card for the identifi cation of plant 
pathogen including  oomycetes  such as  phytopthora  and some fi lamentous fungi 
such as  fusarium .  

    Design of Primers and Probes 

 A primer is a synthetic oligonucleotide which is used in PCR and DNA sequencing. 
These primers are specifi c sequence which is the reverse complement of a target 
DNA. In some real time PCR methods additional specifi c oligonucleotides are 
used, named probes, that hybridize with the target DNA between to the two prim-
ers. The design of primers and probes is crucial for PCR to be specifi c and effi cient. 
Primer specifi city relies on some points like; primer length of PCR should be 
18–22 bp. Primer length affects the PCR effi ciency. The primer length also infl u-
ences the rate at which primer molecules pair with template DNA; this rate decreases 
as the primer length increases. Therefore, if the primer length are too long, com-
plete pairing of the primer molecules may not occur during the time allowed for 
annealing. As, a result, PCR effi ciency declines with primer length. Primer longer 
than 30 bases are rarely used for PCR. The annealing temperature is very important 
since the success and specifi city of PCR depend on it. DNA amplifi ed fragments 
size must be shorts enough to ensure effi ciency of the reaction and high sensitivity 
(Singh and Singh  1997 ). 

 The fi rst step for design probes and primers consist in the alignment of the 
sequence by the BLASTn program (  http://blast.ncbi.nlm.nih.gov.Blast.cgi    ) 
(Altschul et al.  1997 ) using sequences from the GeneBank, EMBL and DDBJ 
databases. Partial or complete nucleotide sequences of many fungal genes are 
present at the NCBI (National Center of Biotechnology Information)    http://
www.ncbi.nlm.nih.gov/Genebank/    ). On the other hand, variable sequences are 
useful for the differentiation of pathogens at lower taxonomic levels and for the 
analysis of the molecular variability of fungal population in phylogenetic 
studies.   
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    PCR Based Method for Detection of Plant Fungi 

    Conventional PCR 

 Conventional PCR is the basic method for the detection of fungal pathogen at 
different taxonomic levels. In this method primers are highly specifi c for genus and 
species (Jeeva et al.  2010 ). Identifi ed  Sclerotium rolfsii  by conventional PCR method 
and (Torres-Calzada et al.  2011 ) developed  Colletotrichum capsici , based in specifi c 
sequence of internal transcribed spacer (ITS) region.  

    Nested PCR 

 Nested PCR is a variation of the polymerase chain reaction, in that two pairs (instead 
of one pair) of PCR primers are used to amplify a fragment. The fi rst pair of PCR 
primer amplify a fragment similar to a standard PCR. However, a second pair of 
primers called nested primers bind inside the fi rst PCR product fragment to allow 
amplifi cation of a second PCR product which is shorter that the fi rst one. This 
method has been used for the identifi cation and characterization of numerous fungi 
(Langrell et al.  2008 ; Hong et al.  2010 ; Meng and Wang  2010 ; Qin et al.  2011 ; Wu 
et al.  2011 ).  

    Multiplex PCR 

 Multiplex PCR approach is used when more than two primer involve in the same 
reaction. This PCR is highly sensitive for the detection of different DNA targets. 
This approach is highly useful for the identifi cation of plant pathology since plants 
are usually infected by more than one pathogen. This PCR has been used for 
identifi cation and differentiation of  Golovinomyces cichoracearum  and  Podosphaera 
xanthii  in sunfl ower (Chen et al.  2008 ), for detecting  Phytophthora lateralis  in 
cedar trees and water samples, including detection of an internal control in the same 
reaction (Dyer et al.  2001 ).  

    Reverse Transcription-PCR 

 This approach can be sued to amplify RNA sequence in DNA duplex. In this 
technique cDNA copy of the RNA is produced using the enzyme reverse 
transcriptase, this cDNA is then used for amplifi cation. m-RNA is highly sensitive 
in the cell so it is degraded rapidly, the identifi cation of m-RNA by RT-PCR is an 
accurate method for check cell viability (Sheridan et al.  1998 ). RT-PCR has been 
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used to detect viable population of  Mycosphaerella graminicola  in wheat 
(Guo et al.  2005 ). So this approach highly valuable in phytopathology for the analy-
sis of fungal gene expression during disease development (Yang et al.  2010 ).  

    Real Time PCR 

 This approach is highly useful method for the detection of plant pathogens. The 
real time PCR was developed to quantitate differences is m-RNA production, 
particularly in such cases where only small amounts of cells/tissue are available. 
The various methods of mRNA quantitation include northern hybridization, 
ribonuclease protection assays, situ hybridization, and RT-PCR. RT-PCR is the 
highly specifi c method and can discriminate between closely related m-RNAs. 
But conventional PCR does not yield truly and accurate quantitative result 
because ethidium bromide does not give a bright fl uorescence, and when a band 
is detectable the logarithmic phase of amplifi cation is already over. Real time 
PCR has been used to detect more than two pathogens in the same reaction 
(Moradi et al.  2010 ; Brandfass and Karlovsky  2006 ; Schroeder et al.  2006 ; 
Okubara et al.  2008 ).   

    Role of Molecular Marker in Phytopathology 

 Molecular marker may be defi ned as a DNA sequence used for chromosome 
mapping as it can be located at a specifi c site in a chromosome. This technique have 
been also useful for identifying specifi c sequences fused for the detection of fungi 
at very low taxonomic level, and even for differentiate strains of the same species 
with different host range. Some important marker are used for the identifi cation and 
characterization of plant fungi. 

    Restriction Fragment Length Polymorphism (RFLP) 

 RFLP is generated by the presence and absence of a recognition site for the same 
restriction endonuclease in the same region of a chromosome from the different 
individuals of a species. As a result, the concerned restriction enzyme produces 
fragments of different lengths representing the same combined with hybridization 
with a labeled probe specifi c for that chromosomal region. Thus RFLP markers 
result from a combination of a specifi c restriction endonuclease and a specifi c DNA 
sequence used as probe. Largely, RFLPs markers have been used for the genetic 
diversity of microrrhizal and soil fungal communities (Thies  2007 ; Kim et al.  2010 ; 
Martínez García et al.  2011 ). This approach is also used for the differentiation of 
pathogenic fungi (Hyakumachi et al.  2005 ).  
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    Random Amplifi ed Polymorphic DNAs (RAPD) 

 RAPD is to use a single ten nucleoptide long randomly designed primer that binds 
to homologous regions in the genome. When two primers are bound in two strands 
of a double helix template in opposite orientation within an amplifi able distance, the 
region is amplifi ed an appears as a band in electrophoretic gel. For allowing high 
primers template binding the usual annealing temperature in PCR reaction cycle is 
lowered from 55 °C making the reaction conditions less stringent. Mutation in 
primer binding site and insertions or deletions in the target fragment leads to 
polymorphism. However, due to possibility of generation of same fragment from 
different loci resulting in variation in band intensity and low reproducibility due to 
effect of PCR conditions under low stringency are the major bottleneck of RAPD 
analysis. This RAPD primer have been used for the specifi cally identify  Fusarium 
subglutinans  (Zaccaro et al.  2007 ) and  Guignardia citricarpa  (Stringari et al.  2009 ).  

    Amplifi ed Fragment Length Polymorphism (AFLP) 

 AFLP is currently one of the most desired techniques for DNA fi ngerprinting from 
any origin and complexity. Being a combination of restriction digestion as well as 
PCR amplifi cation, it bears the advantages of both RFLP and RAPD, providing 
higher reproducibility, entire genome coverage, high reproducibility and very high 
polymorphism. As RFLP, fi rst step of AFLP is digestion of genomic DNA by 
restriction enzymes, but unlike RFLP, a combination of to restriction enzyme, ore 
rare cutter and one frequent cutter are used, so that three types of fragments are 
generated. Some of these will have restriction sites of frequent cutter are generated. 
Some of these will have restriction sites of frequent cutter at both end, some with 
rate cutting sites at both end and rest will be fragments having restriction site of 
frequent cutter at one end and that of rare cutter at the other end. This third group is 
the target DNA of PCR amplifi cation. AFLP is used to screen a large number of 
anonymous markers which is distributed throughout the genome. This primer is 
highly reproducible and sensitive. As a result, AFLP has been used to differentiate 
fungal isolates at several taxonomic levels e.g. to distinguish  C.gossypii  var. 
 cephalosporioides  (Schmidt et al.  2004 ; Stewart et al.  2006 ) studied that AFLP 
markers have been used to separate non pathogenic strains of  Fusarium oxysporum  
from those of  F. Commune . AFLP markers have also been used to construct genetic 
linkage maps e.g. of Phytophthora infestans (VanderLee et al.  1997 ).  

    Microsatellites 

 Microsatellite based marker systems are principally based on either amplifi cation of 
microsatellite regions by designing primers for the conserved fl anking regions of 
microsatellites and observe the variation in repeat length and number or by 
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amplifying internal regions of two microsatellites by using microsatellite specifi c 
primers. Microsatellite markers have high applicability in almost all the fi elds of 
molecular marker analysis because they are single locus, codominant and universal 
in nature as well as provide wide genome coverage. In addition to these, they are 
non-coding DNA sequence, so more useful in population genetic analysis where 
neutrality of marker system is an important requirement. Designing of microsatellite 
primers are time consuming, but provides more accuracy than any other marker 
system. In addition, once a set of microsatellite markers are developed for a species, 
it can be used for the study of genetic diversity of plant pathogenic fungi within 
species e.g.  Macrophomina phaseolina  (Jana et al.  2005 ),  Puccinia grainis  and 
 Puccinia triticina  (Barnes and Szabo  2007 ),  Sclrotinia subarctica  and  S. sclerotio-
rum  (Winton et al.  2007 ).   

    Molecular Detection of Plant Pathogens 

 Population of India is increasing continuously so high yield crops are need. People 
continued to suffer from hunger and malnutrition due to partially at least to disease 
destroyed their crops. Identifi cation and diagnosis of Plant pathogen is a requisite 
for disease management and high yield potential of crops. In the nineteenth century 
visual identifi cation was very important and rapid method for the plant disease 
diagnosis, which is present on the aerial part of the plant. Although from the last few 
year molecular detection and identifi cation of pathogen using nucleic acids based 
methods have been used. These molecular methods were superior from microscopical 
detection of plant pathogen. Most probably DNA markers are more reliable than 
morphological markers because phenotypic selection is based quantifi cation of 
metric characters which is not stable, reliable and are subjected to environmental 
variation and detection of developmental stage of plant pathogen. Most precise 
detection of plant pathogen can be performed by the specifi c DNA probes in infected 
tissues. There are different methods are used for the designing of DNA probes 
(Sharma et al.  2002 ). Various non radioactive probes are used for the detection of 
plant pathogens by dot blot hybridization, which could be developed by polymerase 
chain reaction (Sharma et al.  2002 ). Such DNA probes have been used for the 
detection of plant pathogen including pythium ultimum (Levesue et al.  1994 ). 

 In Molecular biology PCR is important tool for the identifi cation and 
characterization of plant pathogens, which cannot be identify morphologically. 
Plant pathogen can be detected by PCR, which is mainly dependent on primer. 
Specifi c, non-specifi c and arbitrary primer could be used for the Polymerase chain 
reaction. DNA sequence of plants is amplifi ed with the primers, which show the 
specifi c result. Pathogen specifi c primers are use for the detection of target sequence 
in infected tissues. It can be used to develop PCR based diagnostic for  Xanthomonas 
campestris pv. Phaseoli  and  Xanthomonas compestris  pv.  Phaseoli  verity  fuscans  
(Audy et al.  1994 ),  campestris  pv.  Citris  (Hartung et al.  1996 ). Gene is a segment of 
DNA which control the particular character of pathogen, which have also been used 
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as target sequences for the particular detection of plant pathogen. PCR amplifi cation 
of ethylene forming enzyme ( efe ) have been used for the detection of  P. syringae 
pvs. Cannabina and sesame  (Sato et al.  1997 ).  

    Molecular Mapping of Disease Resistance Gene 

 Molecular mapping play important role for the disease diagnosis. Different types of 
DNA sequence provide a large number of valuable markers that can be used to map 
their locations in the chromosome of the various species. Several types of DNA 
sequences provide a large number of valuable markers that can be used to map heir 
locations in the chromosomes of various species. A linear map of different 
chromosomes of a species depicting the locations of various molecular markers is 
known as molecular map. Molecular mapping is the process of locating gene 
through linkage is called gene tagging. Molecular marker involved the tagging of 
disease resistance gene for the evaluation of disease resistance phenotype. The basic 
need of tagging is the molecular marker which is linked to a resistance gene for the 
development of mapping population. Many study have been done on molecular 
mapping of R gene in several host pathogen interactions (Mohan et al.  1997 ; Sharma 
et al.  1999 ). A list of R-gene tagged with DNA marker is given in Table  3 .

        Conclusion 

 Biotechnology is truly multidisciplinary in nature and it encompasses several 
disciplines of basic sciences and engineering. In Biotechnology polymerase chain 
reaction is important tool for the identifi cation, characterization, and diagnosis of 
fungal pathogen. Real time PCR is differs from Basic PCR because of the 

   Table 3    List of plant diseases with pathogen and resistance gene tagged with marker   

 Disease  Pathogen 
 R-gene 
tagged  Marker  Reference 

 Loose smut of 
wheat 

  Ustllago segatium 
tritici  

 T10  SCAR  Mullis and Faloona ( 1987 ); 
Procunier et al. ( 1997 ) 

 Powdery mildew of 
tomato 

  Leveillula taurica   Lv  RAPD  Chunwongse et al. ( 1997 ) 

 Leaf rust of barley   Puccinia hordei   Rph7  RFLP  Graner et al. ( 2000 ) 
 Powdery mildew of 
wheat 

  Erysiphe graminis 
tritici  

 Pm24  RFLP  Huang et al. ( 2000 ) 

 Leaf rust of wheat   Puccinia graminis 
tritici  

 Lr 47  RAPD  Helguera and Dubcovsky 
( 2000 ) 

   RAPD  Random amplifi ed polymorphic DNA,  RFLP  Restriction Fragment Length polymorphism, 
 SCAR  Sequence characterized amplifi ed regions  
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measurement of the amplifi ed PCR product at each cycle throughout the reaction. It 
is highly sensitivity and specifi city method in Biotechnology. It will proliferate in 
the forthcoming year. This chapter has introduced the different types of plant 
pathogens and their effects. It is clear that they cause major fi nancial losses to the 
agriculture productivity, despite the plant having defence mechanisms against them. 
Initial attempts at enhancing resistance involved the introduction of antifungal 
genes that were either PR Protein or protein identifi ed as having anti fungal 
properties. 

 On the other hand Molecular markers play important role in the Biotechnology 
because these markers are used to study the phylogenetic structure of fungal 
populations. It is very commonly used to characterize genetic diversity within or 
between populations or groups of individuals because they typically detect high 
levels of polymorphism. This approach has been shown to give some benefi t to the 
plant, but it may be at a cost. It has been also useful for identifying specifi c sequences 
which is used for the detection of fungi at very low taxonomic level.     
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          Introduction 

    Diversity of Endophytic Fungi 

 Increasing emergence of drug resistant organisms such as bacteria, virus and 
fungi has alarmed the necessity of investigating new molecules with better bio-
activity (Bhagat et al.  2012 ). Exploring secondary metabolites from microorgan-
isms isolated from specialized ecological niches or unusual habitats enhances the 
chances of fi nding bioactive compounds (Wagenaar et al.  2000 ; Rodriguez et al. 
 2008 ; Wang et al.  2008 ). Endosphere of plants harbors microbial population in a 
symbiotic relationship without causing any apparent disease symptoms are 
reported as endophytic microbial population (Stone et al.  2000 ). There are esti-
mated about 300,000 reported plant species on earth and almost all have endo-
phytic microbial population, which resides in internal tissues and helps plants in 
their survival. Interestingly, some rare bioactive compounds produced by plants 
can also produced by their endophytes (Aly et al.  2010 ). They reside within tis-
sues of almost all terrestrial plants (Hyde and Soytong  2008 ; Lin et al.  2010 ) and 
are the important components of plant-microbe ecosystem. Endophytes resides 
in all tissues of plants and showed multifarious relationships with the host, rang-
ing from symbiosis to balanced antagonism (Bacon and White  2000 ; Rodriguez 
et al.  2008 ). 

 Endophytic fungi are believed to have evolved from weak pathogenic fungi which 
on due course of time lost virulence and started living as symbiont inside the tissues or 

        V.  K.   Mishra    •    A.  K.   Passari    •    B.  P.   Singh      (*) 
  Molecular Microbiology and Systematics Laboratory, Department of Biotechnology , 
 Mizoram University ,   Aizawl ,  Mizoram   796004 ,  India   
 e-mail: bhimpratap@gmail.com  

mailto:bhimpratap@gmail.com


368

developed as latent pathogen (Saikkonen et al.  1998 ). Endophytic fungi can colonize 
any tissue whereas; mycorrhizal fungi can only colonize only the roots of plants (Carroll 
 1988 ; Stone et al.  2004 ; Verma et al.  2007 ). Fungal endophytes are mutualistic partners 
of their host and thus protect the host plant from both biotic and abiotic stresses 
(Rodriguez et al.  2008 ; Porras-Alfaro and Bayman  2011 ; Nagabhyru et al.  2013 ; Qadri 
et al.  2014 ). Additionally, plant-endophyte symbiosis infl uence host nutrition and 
growth and survival (Reinhold-Hurek and Hurek  2011 ; Singh et al.  2011 ; Iqbal et al. 
 2013 ). The host range and geographical distribution of these endophytic symbiont are 
not yet clear, as some are endophytes of specifi c host whereas some colonize multiple 
host species (Doty et al.  2009 ; Porras-Alfaro and Bayman  2011 ; Ek-Ramos et al.  2013 ).  

    Antimicrobial Secondary Metabolites Produced 
by Endophytic Fungi  

 Phytopathogens and pests cause great damage to crop by reducing yield by 30–50 % 
globally by producing certain mycotoxins (Pimentel  2009 ).  Fusarium moniliforme  
which is pathogenic to maize and rice is known to produce fumonisin B1 which is 
related with esophageal cancer (Gelderblom et al.  1991 ).  Aspergillus fl avus  causes 
kernel rot in maize and produce afl atoxin on pre-harvest and in storage (Payne and 
Widstrom  1992 ). Similarly,  Fusarium graminearum  is a producer of toxic 
trichothecenes including deoxynivalenol (Sutton  1982 ). Pesticides including 
fungicides used in pest and fungal phytopathogen management are having harmful 
effect on environment (Mousa and Raizada  2013 ). An effi cient alternative shown by 
Wang et al. ( 2008 ) had isolated six compounds from endophytic  Penicillium  sp. 
associated with  Hopea hainanensis  having strong antifungal and cytotoxic activity. 
Fungal biocontrol agents such as  Trichoderma viridi , has been used to control 
 Rhizoctonia  stem canker and black scurf of potato (Beagle-Ristaino and Papavizas 
 1985 ). Several bioactive compounds have been isolated from endophytic fungi 
which can be used directly or indirectly as therapeutic agents against various 
diseases (Strobel et al.  2004 ; Kusari and Spiteller  2012 ; Kusari et al.  2012a ). 
Endophytes have produced host specifi c secondary metabolites with promise for 
therapeutic potential on a number of occasions such as paclitaxel or taxol (Stierle 
et al.  1993 ), podophyllotoxin (Eyberger et al.  2006 ; Puri et al.  2006 ), camptothecin 
and its structural analogs (Puri et al.  2005 ; Shweta et al.  2010 ; Kusari et al.  2009 , 
 2011 ) and azadirachtin (Kusari et al.  2012b ). Many antimicrobial compounds such 
as Trichodermin ,  Phomenone, Dihydroxycadalene, Cryptocin, Altenusin, Heptelidic 
acid, Paclitaxel, Periconicins A and B, Peramine, ergot alkaloids, loline alkaloid, 
Colletotric acids, Phomopsichalasin, Pestalachloride A, 6-O-methylalaternin and 
nodulosporins from endophytic fungi have been isolated and reported to protect 
against fungal pathogens (Mousa and Raizada  2013 ). Paclitaxel isolated from 
 Taxomyces andreanae  an endophyte of  Taxus brevifolia,  Trichodermin isolated 
from  Trichoderma harzianum  endophyte of  Ilex cornuta , phomenone isolated from 
 xylaria  sp. an endophyte of  Piper aduncum  and nodulisporin isolated from 
 Nodulisporium sp.  an endophyte of  Juniperus cedrus  have shown strong antifungal 
activity against fungal plant pathogens (Mousa and Raizada  2013 ).  
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     Schima wallichii  

  Schima wallichii  D.C. Korth. (Theaceae) is an evergreen, medium-sized to large 
tree and has been used in traditional practices for the treatment of various ail-
ments including snake bite and insect bite. Its bark is rubefacient, antigonorrhoeic 
as well as antihelminthic activity whereas the leaf is known to be carminative 
(Rai and Lalramnghinglova  2010 ). It has been reported to have antimicrobial 
(Dewanjee et al.  2008 ), anticancer (Diantini et al.  2012 ), anti-plasmodial activity 
(Barliana et al.  2014 ) and anti-proliferative activity (Dewanjee et al.  2011 ). 
Diantini et al. ( 2012 ) has reported cytotoxicity of Kaempferol-3-O-rhamnoside 
isolated from the leaves of  S. wallichii  Korth. against breast cancer cell line 
MCF-7 which also promotes apoptosis through activation of caspase cascade 
pathway. By looking into these studies we targeted  S. wallichii  Korth. for fungal 
endophytic exploration.  

    Polyketide Synthase 

 Polyketides are structurally diverse group of compounds produced by microor-
ganisms and plants and have profound use in health and agriculture sector 
(Amnuaykanjanasin et al.  2005 ; Rojas et al.  2012 ) but reports of polyketides 
from endophytic fungi are in scanty till date. They have varied range of bioac-
tivity and therapeutic applications including antibacterial activity (erythromy-
cin, tetracycline, griseofulvin), immunosuppresent activity (rapamycin), 
antiparasitic activity (avermictin), anti- tumor activity (enediyne, daunorubicin, 
doxorubicin) and anti-cholesteremic activity (lovastatin) (Amnuaykanjanasin 
et al.  2005 ; Rojas et al.  2012 ). Fungal polyketide synthases are iterative and 
consists of three essential catalytic domains: β-ketosynthase (KS), 
Acyltransferase (AT) and Acyl-carrier protein (ACP) which can also be supple-
mented by C-methyltransferase (CMT) domain (Rojas et al.  2012 ). Fungal itera-
tive PKS I, catalyzes repeatedly the condensation of subunits into polyketide 
backbone, and thus can be divided into three categories: Non- reducing (NR) or 
WA-type, with no reduction in structure, partial reducing (PR) and highly reduc-
ing (HR) (Bingle et al.  1999 ; Nicholson et al.  2001 ; Schumann and Hertweck 
 2006 ; Rojas et al.  2012 ). PCR primers have been designed to detect fungal PKS 
I gene based on conserved regions and extent of reduction of polyketide struc-
ture. LC1/2c primers have been designed to detect NR type PKS, LC3/5c has 
been designed to amplify PR type whereas, primers KS3/4c has been designed 
to detect HR – type PKSs (Bingle et al.  1999 ; Nicholson et al.  2001 ; Lin et al. 
 2010 ; Rojas et al.  2012 ). 

 In this study, an attempt was made to investigate the biodiversity of the fungal 
endophytes associated within endosphere of  S. wallichii  and also to explore their 
antimycotic potential against fungal plant pathogens with the biosynthetic potential 
of endophytic fungi was evaluated according to detection of ketosynthase domain of 
polyketide synthase (PKS) gene.   
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    Materials 

     1.    Host Plant:  Schima wallichii  was collected from Dampa Tiger Reserve   
   2.    Global Positioning System: Garmin GPS 60   
   3.    Microscope: Olympus BX51   
   4.    Laboratory plastic wares, i.e., micropipette tips (Tarsons, India), microcentrifuge 

tubes (Tarsons, India), 90 mm petri dishes (Hi Media, India) and fl at cap PCR 
tubes (Tarsons, India).   

   5.    Chemicals: Unless mentioned otherwise, all chemicals and reagents were 
purchased from Hi Media (India).   

   6.    All fungal plant pathogens were purchased from NBAIMCC (National Bureau 
of Agriculturally Important Microorganisms Culture Collection) and MTCC 
(Microbial Type Culture Collection, Chandigarh, India).   

   7.    Rotary Evaporator (BUCHI, Switzerland).   
   8.    Megafuge 16R (Thermo Scientifi c), cooling centrifuge   
   9.    Taq PCR Buffer, Taq polymerase, dNTP mix 100 mM and Mgcl 2  were purchased 

from Bangalore Genei Pvt. Ltd.   
   10.    Primers of ITS and PKS gene were synthesized by Imperial Life Science.   
   11.    PCR Thermal Cycler: Veriti (Applied Biosystem)   
   12.    Bio-Rad Gel Doc XR+ gel documentation system, California, USA      

    Methods 

    Collection of Samples 

 Leaves, small cutting of the stem (twigs) and bark of three symptomless plants of 
 Schima wallichii  were collected from Dampa Tiger Reserve forest (23°.44′ N 
92°.39′ E) in western Mizoram which occupies an area of 500 km 2  along the border 
between India and Bangladesh. The samples were kept in sterile polythene bags and 
were transported to the laboratory in ice box. All the samples were stored at 4 °C 
and processed for surface sterilization within 36 h.  

    Isolation of Endophytic Fungi 

 The plant materials were washed thoroughly with running tap water for 10 min to 
remove dust particles and were cut into small pieces (2–3 cm). Fungal endophytes 
were isolated by surface sterilization methods as described by Cannon and Simmons 
( 2002 ) with little modifi cation. Briefl y, the plant segments were surface sterilized 
with 75 % ethanol for 1 min. followed by immersion in 3 % sodium hypochlorite for 
3 min and 75 % ethanol for 30 s. before rinsing with sterile distilled water to remove 
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traces of sodium hypochlorite. The outer surface was removed with a sterile scalpel 
and leaves were cut into 5 × 5 mm pieces whereas stem and bark were cut into 
1 × 1 cm fragments. To ensure the effectiveness of surface sterilization method the 
water obtained from the last wash was spreaded on PDA medium and fi ngerprints 
of the tissues were also taken on the media plates as a control to check for any 
epiphytic fungal growth. One hundred and ninety fi ve (195) tissues were evenly 
plated on 90 mm petri dishes containing PDA (Potato Dextrose Agar), MYA (Malt 
Yeast Extract Agar) and Czapex Dox Agar (CDA) medium supplemented with 
streptomycin (50 mg/L) to suppress bacterial growth. The plates were incubated on 
27 °C for 3–5 days under 12 h white light: 12 h dark cycles (Bills and Polishook 
 1991 ). Petri plates were observed for 2–3 weeks for any hyphae emerging from the 
tissues. The hyphal tips coming out from the sterile tissues were transferred to fresh 
plates free from antibiotics. Fifteen days after incubation fungal cultures were 
preserved in 30 % glycerol at −80 °C. Each fungal endophyte was identifi ed 
morphologically by preparing slides stained with lactophenol cotton blue and 
observing under light microscope (Olympus BX 51). Sporulating fungi were 
identifi ed by morphology based taxonomy (Barnett and Hunter  1998 ).  

    Fermentation and Preparation of Fungal Extract 

 The isolated endophytic fungi were cultured in Potato Dextrose Broth (PDB) 
medium by inoculating 3 mm mycelial plug of pure culture and incubated for 
21 days at 27 °C. The culture was fi ltered through sterile cheese cloth to remove 
mycelium and the fermented broth was extracted thrice by equal volume of ethyl 
acetate in a separating funnel by vigorous shaking for 15 min. Ethyl acetate 
evaporated to dryness in a rotary evaporator (BUCHI, Switzerland) leaving solid 
crude extract. The crude ethyl acetate extract was dissolved in DMSO for antimycotic 
assay.  

    Evaluation of Antimycotic Activity 

 Antimycotic activity of the ethyl acetate extract from endophytic fungi was evaluated 
against several plant pathogenic fungi by agar cup diffusion method with some modi-
fi cations (Tayung and Jha  2010 ). The test organisms include  Macrophomina phaseo-
lina  (NAIMCC-F-01261),  Aspergillus fl avus  (MTCC 9064) and seven phytopathogens 
of the genus  Fusarium :  Fusarium oxysporum  (NAIMCC-F-00809),  Fusarium gra-
minearum  (MTCC 1893)  Fusarium culmorum  (MTCC 2090),  Fusarium tumidum  
(MTCC 2462),  Fusarium oxysporum f. sp. pisi  (MTCC 2480),  Fusarium prolifratum  
(MTCC 286) and  Fusarium udum  (MTCC 2755). PDA plates were spreaded by inoc-
ulating 1.0 × 10 9  spores of each fungal pathogens respectively. Cork borer (7 mm in 
diameter) was used to prepare agar cups and each cup was loaded with 100 μl of the 
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crude fungal ethyl acetate extracts dissolved in DMSO. The control cup was fi lled 
with DMSO only. The plates were incubated at 27 °C for 4–5 days for evaluating 
antifungal activity of the endophytes. The experiment was performed in triplicate. 
The diameter of zones of inhibition were measured and compared with control.  

    Genomic DNA Extraction and Amplifi cation of ITS 
(ITS1-5.8S- ITS2) Region 

 The fungal isolates having signifi cant antimycotic activity were subjected to DNA 
extraction, amplifi cation and sequencing of the ITS region. Isolation of genomic DNA 
was performed by procedure previously reported by Cenis ( 1992 ). The ITS region 
was amplifi ed using universal primers ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′) 
and ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) (White et al.  1990 ). The 25 μl reac-
tion contained 1X PCR assay buffer, 1.5 mM Mgcl 2 , 200 μm of each dNTPs, 10 pmols 
of each primer, 50 ng of template DNA and 1 unit of Taq DNA polymerase. The PCR 
conditions used were as follows: an initial denaturation step at 95 °C for 5 min, fol-
lowed by 35 cycles of 1 min denaturation at 95 °C, annealing at 55 °C for 1 min, 
extension at 72 °C for 1 min 20 s, followed by fi nal extension at 72 °C for 10 min. The 
amplifi cation was performed in Veriti thermal cycler (Applied Biosystems, Singapore). 
A negative control without template DNA was included in each batch of PCR. The 
PCR products were separated on 1 % (w/v) agarose in 1X TBE buffer stained with 
ethidium bromide1 % (10 mg/ml) and analyzed under a gel documentation system 
(Bio-Rad Gel Doc XR+ gel documentation system, California, USA).  

    Sequencing of ITS Region and Phylogenetic Analysis 

 ITS region (ITS1-5.8S-ITS2) was sequenced and was analyzed using Finch TV 
v1.40v (  http://www.geospiza.com/fi nchtv    ). The identifi cations of all the sequences 
were made by sequence similarity searches by aligning with the sequences available 
in NCBI GenBank using BLASTN program so as to fi nd the homology with the 
closest related organisms. Sequences from closely related organisms were aligned 
with sequences from this study using Clustal W packaged in MEGA 5.05 (Tamura 
et al.  2011 ). A model test was performed using MEGA 5.05 to choose the most 
appropriate model based on Bayesian Information Criterion and Akaike Information 
Criterion. The evolutionary history was inferred by using the Maximum Likelihood 
method based on the Kimura 2-parameter model (Kimura  1980 ). A discrete Gamma 
distribution was used to model evolutionary rate differences among sites (fi ve 
categories (+G, parameter = 0.5322)). The rate variation model permitted for some 
sites to be evolutionarily invariable ([+I], 12.9649 % sites). Bootstrap analysis was 
used to test the robustness of the phylogenetic tree. The tree was drawn to scale, 

V.K. Mishra et al.

http://www.geospiza.com/finchtv


373

with branch lengths measured in the number of substitutions per site. Sequences 
were deposited in GenBank and accession numbers were obtained.  

    Data Analysis 

 Colonization frequency (%CF) of fungal isolates was calculated as % CF = N col /N 
where, N t  = Total number of segments and N col  = number of segments colonized by 
a specifi c fungus (Hata and Futai  1995 ; Verma et al.  2014 ). Simpson’s diversity 
indices, Shanon-Weiner diversity indices and evenness were calculated by PAST 
software. Simpson’s diversity index was calculated using the formula: 1 − ∑(pi) 2 , 
where pi is the proportion of the frequency of the ith species in a sample. Species 
evenness (E) was calculated as following: H/log(S), where H = Shanon Weiner 
diversity and S = Species richness.  

    Amplifi cation of Ketosynthase Domain Sequence 
from PKS Gene 

 Genomic DNA of all the identifi ed strains showing signifi cant bioactivity were 
amplifi ed by three sets of degenerate primers, LC1 and LC2c, LC3 and LC5c 
(Bingle et al.  1999 ), KS3 and KS4c (Nicholson et al.  2001 ) which are specifi c 
primers for the ketosynthase domain of the PKS gene. 25 ul of PCR reaction con-
tained 1X PCR buffer, 8 mM Mgcl 2 , 0.2 mM dNTPs, 10 pmole of each primer, 2 U 
of Taq polymerase and 50–100 ng of template DNA. PCR reaction was performed 
in verity thermal cycler (Applied Biosystems). Conditions for thermal cycler was: 
Initial denaturation at 94 °C for 5 min and 35 cycles of denaturation at 94 °C for 
1 min., annealing of primers from 1 min 20 s at 55 °C for LC1/2 and LC3/5 primers, 
1 min 20 s at 50.5 °C for KS3/4 primers and extension for 3 min at 72 °C followed 
by fi nal extension for 10 min at 72 °C.   

    Results and Discussion 

    Diversity and Distribution of Endophytic Fungi 

 Endophytic fungi were isolated from healthy leaves, stems and bark of traditional 
medicinal plant  Schima wallichii.  126 endophytic fungal isolates belonging to 15 
genera were recovered from 195 tissue segments using three different mycological 
media. Maximum endophytes were recovered by using PDA media (n = 52, 
41.26 %), followed by MYA (n = 41, 32.53 %) and CDA (n = 33, 26.19 %) 
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respectively. The colonization frequency was higher in stem (75.38 %) followed by 
leaf (61.53 %) and bark (56.92 %) (Table  1 ). All fungal isolates belonged to differ-
ent classes of phylum Ascomycota. Sordariomycetes (50.79 %) was the most domi-
nant class represented by genera  Phomopsis ,  Colletotrichum ,  Chaetomium , 
 Nodulisporium ,  Diaporthe, Fusarium ,  Hypoxylon  and  Xylaria  followed by 
Dothideomycetes (42.06 %). Similar results are reported by Arnold et al. ( 2007 ) 
from foliar endophytic fungi of  Pinus taeda.  The abundant endophytes observed of 
class Dothideomycetes were  Alternaria ,  Phoma ,  Corynespora  and  Leptosphaeria . 
Eurotiomycetes (7.14 %) were the least dominant class represented by genera 
 Penicillium ,  Talaromyces and Aspergillus.  Colonizing frequency of  Phomopsis  was 
found to be highest (11.79 %), followed by  Alternaria  (10.76 %),  Phoma  (9.74 %), 
 Colletotrichum  (6.15 %),  Chaetomium  (4.61 % ), Penicillium  (3.58 %) and 
 Leptosphaeria  (3.58 %) (Table  2 ). The endophytes isolated from all three tissue 

   Table 1    Colonization frequency (%CF) of three tissues of  Schima wallichii    

 Stem  Leaf  Bark  Total 

 No. of samples  65  65  65  195 
 No. of isolates  49  40  37  126 
 Colonization frequency (CF %)  75.38  61.53  56.92   64.61  

   Table 2    Colonization frequency and % dominance of endophytic fungal isolates of  Schima 
wallichii    

 Endophytic fungi 
 No. of 
endophytes 

 Colonization 
frequency 
(CF)% 

 Dominance 
(%)  Class 

  Nodulisporium  sp.  06  3.07  4.76   Sordariomycetes  
  Phomopsis  sp.  23  11.79  18.25 
  Xylaria sp.   01  0.51  0.79 
  Hypoxylon  sp.  02  1.02  1.58 
  Diaporthe  sp.  06  3.07  4.76 
  Chaetomium  sp.  09  4.61  7.14 
  Fusarium  sp.  05  2.56  3.96 
  Colletotrichum  sp.  12  6.15  9.52 
  Penicillium  sp.  07  3.58  5.55   Eurotiomycetes  
  Talaromyces  sp.  01  0.51  0.79 
  Aspergillus  sp.  01  0.51  0.79 
  Alternaria  sp.  21  10.76  16.66   Dothidiomycetes  
  Phoma  sp.  19  9.74  15.07 
  Corynespora  sp.  06  3.07  4.76 
  Leptosphaeria  sp.  07  3.58  5.55 
  Total no. of 
isolates  

  126  

  Total no. of plant segments plated = 195  
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types were analyzed using diversity indices (Shanon-Weiner index, Simpson’s 
diversity index, evenness and dominance). Shanon-Weiner index was greater in 
Leaf (2.339) followed by stem (2.226) and bark (2.149) whereas, Simpson’s diver-
sity index was also higher in leaf (0.8862), but it was found to be more in case of 
bark (0.8678) than stem (0.8563) (Table  3 ). Similar results were obtained by Gond 
et al. ( 2012 ), where Simpson’s dominance was higher in stem tissues than leaf tis-
sues of  Nyctanthes arbor-tristis , but Shanon-Weiner index and Simpson’s diversity 
index were higher in leaf tissues than stem tissues. However there was little differ-
ence with respect to evenness in tissues. Kayini and Pandey ( 2010 ) have also 
reported endophytic fungi from  Schima wallichii  but the bioactive potential of the 
fungal isolates were not evaluated.

         Antimycotic Potential, Phylogenetic Analysis and Polyketide 
Synthase (PKS) Gene 

 Endophytic fungi are known as source of various bioactive compounds which may 
be used as potential therapeutic agents (Kusari et al.  2012a ). Fungal ethyl acetate 
extracts were tested against 9 fungal phytopathogens of which 12 endophytes dis-
played bioactivity against at least two pathogens (Fig.  1 , Table  4 ). Isolates EF18 and 
EF49 displayed signifi cant antimycotic activity against seven out of nine tested 
plant pathogens and may be used as potential biocontrol. Similar activity was 
reported by Qadri et al. ( 2014 ) using dual plate method in which endophytic fungal 
isolates associated with  Pinus wallichiana  inhibited seven fungal pathogens of dif-
ferent genus. Highest inhibition zone diameter (18 mm) was observed against 
 Fusarium proliferatum.  The most susceptible pathogens were  Fusarium prolifera-
tum  and  Fusarium oxysporum  f. sp.  pisi , each being inhibited by nine isolates 
whereas,  Aspergillus fl avus  was inhibited only by EF 18.

    All the 12 isolates having antimycotic potential were sequenced by amplifying 
ITS1-5.8S-ITS2 region and identifi ed by fi nding best match using BLASTN 
program. Sequences of some closely related organisms were retrieved from NCBI 
GenBank for phylogenetic analysis. The maximum likelihood tree with the highest 
log likelihood (−2051.4907) is shown in Fig.  2  which depicts phylogenetic 

   Table 3    Diversity indices of endophytic fungal isolates recovered from different tissues   

 Stem  Leaf  Bark 

 Taxa S  14  13  10 
 Individuals  49  40  37 
 Dominance_D  0.1437  0.1138  0.1322 
 Shannon-Wiener index_H  2.226  2.339  2.149 
 Simpson index (1-D)  0.8563  0.8862  0.8678 
 Evenness ˆ H/S  0.6617  0.7981  0.8576 
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placement of endophytic fungal isolates of  Schima wallichii  having bioactive poten-
tial. The percentage of trees in which the associated taxa clustered together is shown 
next to the branches. The sequences were deposited in NCBI GenBank with acces-
sion numbers KJ826506-KJ826515 and KJ826516. Endophytic fungal isolates EF 
18 and EF 49 which displayed antimycotic activity against seven plant pathogens 
were identifi ed as  Penicillium simplicissimum  (KJ826510) and  Talaromyces ver-
ruculosus  (KJ826513). There are some reports which are in accordance to our 
result. Komai et al. ( 2006 ) had isolated six penicillide derivatives from  Penicillium 
simplicissimum  having signifi cant antifungal activity against,  Aspergillus fumiga-
tus ,  Aspergillus niger ,  Candida albicans  and  Cryptococcus neoformans , whereas, 
Miao et al. ( 2012 ) had isolated two compounds from  Talaromyces verruculosus  
which showed antifungal activity against  Alternaria solani ,  Valsa mali ,  Curvularia 
lunata  and  Botryosphaeria berengeriana. 

   The potential isolates were screened for detecting iterative type I PKS using 
LC1–LC2c, LC3–LC5c and KS3–KS4c primers for non-reduced, partially reduced 
and highly reduced KS domain. Polyketides have found widespread use in both 
pharmaceuticals and agriculture industries (Rojas et al.  2012 ). Nine isolates have 
shown to contain at least two KS domain amplifi ed by LC1–LC2c and KS3–KS4c 
primers and most number of isolates were amplifi ed by LC1–LC2c primers which 
are specifi c for non-reducing KS domains. Similar results were found by Lin et al. 
( 2010 ). As per our knowledge, there is no report describing detection of polyketide 
synthase gene from either from  Schima wallichii  or by its endophytes. This study 
concludes that Endophytic fungi of  Schima wallichii  have signifi cant antimycotic 
activity and genetic repertoire for producing polyketides.      

a b

  Fig. 1    Antimycotic activity of endophytic fungi extracts against ( a )  Fusarium proliferatum  and 
( b )  Fusarium tumidum. C  control (DMSO only)       
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      The Biological Control Possibilities 
of Seed- Borne Fungi                     

       Nuray     Özer      and     Arzu     Coşkuntuna   

          Introduction 

 Fungi constitute the largest group among seed-borne pathogens. Many fungal patho-
gens infect the developing and maturing seeds and reduce yield of seeds both quan-
titatively and qualitatively. They cause different types of disease and disorders such 
as seed abortion, shrunken seed, reduced seed size, seed rot, seed necrosis, seed 
discoloration, reduction or elimination of germination capacity, and physiological 
alterations in seed as a result of metabolic products produced by pathogens. 
Furthermore, seed-borne fungi can transmit from seed to plants and infect seedlings 
or plants even in the absence of symptoms on seeds if they are present in the seed. 
Some of them are also soil-borne and have the ability to survive in soil for many 
years, and be transmitted from infested seeds to the soil (Neergaard  1977 ). 

 Treatments for managing seed-borne fungal diseases include the use of cultural 
practices, development of resistant cultivars, application of biological agents, hot 
water and chemical fungicides. Among them, chemical control is still common and 
farmers have been fi nding themselves more confi dent in the use of seeds treated 
with fungicides. However, because of demand from society for foods with fewer 
chemical residues and consciousness for preservation of the environment, extensive 
research studies to develop non-chemical treatments for seeds, such as biological 
control, have been ongoing for nearly 30 years, and were even proposed half a 
century ago. Unfortunately few commercial biopesticides recommended for seed- 
borne diseases are available in the global market (Table  1 ), although several 
biopesticides have been registered for plant diseases and pests (Mishra et al.  2015 ).
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   This chapter reviews the disease symptoms caused by seed-borne fungi and pro-
vides an overview of 30 years of research activities related to treatment with biocon-
trol agents and formulations for seeds infested with seed-borne fungi. The chapter 
includes the results of biological control pot and fi eld experiments using seeds natu-
rally or artifi cially infested with seed-borne pathogens; it does not cover  in vitro  
antagonist screening programs and experiments based on soil inoculations of 
pathogens.  

    Seed Borne Fungi in Field Crops Subjected to Biological 
Control Studies 

 Antagonist bacteria and fungi were screened to determine the possibility of biologi-
cal control for seed-borne fungi such as  Bipolaris sorokiniana ,  Drechslera  spp, 
 Fusarium  spp,  Stagonospora nodorum ,  Ustilago  spp,  Tilletia  spp.,  Bipolaris oryzae , 
 Fusarium fujikuroi ,  Gerlachia oryzae ,  Colletotrichum graminicola ,  C. truncatum , 
 C. lindemuthianum ,  Ascochyta pisi ,  Botrytis cinerea  on cereals and legumes. 

  B. sorokiniana  (Sacc.) Shoemaker (= Helminthosporium sativum  Pammel, 
C.M. King & Bakke, teleomorph  Cochliobolus sativus  (S. Ito & Kurib.) Drechsler ex 
Dastur) causes diseases such as common root rot, spot blotch, seedling blight and 
crown rot on wheat and barley (Sivanesan and Holliday  1981 ). Short brown stripes 
with purple edges appear on the emerging leaves of oat as a result of infection by seed-
borne  Drechslera avenae  (Eidam) Scharif (= H. avenae  Eidam, telemorph  Pyrenophora 
chaetomioides  Speg.).  D. teres  (Sacc.) Shomaker (= H. teres  Sacc, teleomorph  P. teres  
Drechsler), is the agent of net blotch disease on barley. It is present as mycelium within 
the seed coat or as conidia on the seed surface (Arnst  1978 ).  D. graminea  (Rabenh. ex 

   Table 1    Commercially available biopesticides for seed-borne fungal diseases in the global market 
(Anonym  2013 ; Mishra et al.  2015 )   

 Biopesticides as fungicides 
 Common name 
or trade name  Target 

  Bacillus subtilis MBI 600   Integral   Fusarium  sp.,  Aspergillus  sp. 
  Gliocladium catenulatum  J1446  Prestop  Seed rot, Seed-borne diseases 

 Prestop mix 
  Pseudomonas chlororaphis  63-28  AtEze ™   Seed-borne fungi 
  P. chlororaphis  MA342  Cedomon   Dreschslera  spp.,  Bipolaris  sp., 

 Fusarium  spp.,  Ustilago  spp. 
 Cerall   Tilletia caries ,  Stagonospora  ( Septoria ) 

 nodorum ,  Fusarium  spp./ Microdochium 
nivale  

  Streptomyces griseoviridis  K61  Mycostop Mix  Seed-rot, seed damping off 
  Trichoderma harzianum  Rifai T-22  PlantShield  Seed rot 
  T. harzianum  KRL-AG2  RootShield 

 T-22 Planter box 
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Schltdl.) (= H. gramineum  Rabenh. ex Schltdl., teleomorph  P. graminea  S. Ito & Kurib.) 
is another seed-borne fungus in barley and causes long stripes with pale green colour 
at fi rst. As the infection progresses, the colour of the stripes becomes yellow and then 
dark brown. The disease severity increases when seeds infected with this pathogen are 
used and the seeds are not treated with fungicides (Zad et al.  2002 ). Seed-borne 
 Fusarium culmorum  (W.G. Smith) Sacc.,  F. graminearum  Schwabe (teleomorph 
 Gibberella zeae  (Schwein.) Petch) and  Microdochium nivale  (Fr.) Samuels (formerly 
 F. nivale  and  M. nivale  var  nivale ) cause seedling blight on wheat and barley. 
Signifi cant yield losses occur as a result of poor germination if the seeds are signifi -
cantly infected with these pathogens (Humpreys et al.  1995 ; Hare et al.  1999 ; Haigh 
et al.  2009 ; Sherm et al.  2013 ).  Stagonospora nodorum  [= Septoria nodorum  (Berk.) 
Castell. and Germano, teleomorph  Phaeosphaeria  (= Leptosphaeria )  nodorum  (Müll.) 
Hedjar.] is an important pathogen of wheat and related cereals, and causes a necrotic 
leaf blotch as well as discoloration of the head in the symptom known as glume blotch 
(Solomon et al.  2006 ).  Ustilago spp . is the cause of loose smut disease on wheat and 
barley. The pathogen is present within seed embryos as dormant mycelium until the 
infected seeds are sown and germinate.  Tilletia leavis  Kühn in Rabenh [= T. foetida  
(Wallr.) Liro] and  T. tritici  (Bjerk.) G. Wint. in Rabenh [=  T. caries  (DC.) Tul.&C.Tul] 
cause common bunt disease on winter wheat.  T. tritici  is common worldwide where 
wheat is grown.  T. leavis  is prevalent throughout the European mainland and central 
and eastern North America. Seeds fi lled with masses of teliospores are the character-
istic symptoms of this disease (Wiese  1977 ).  B. oryzae  (Breda de Haan) Shoemaker 
[= D. oryzae  (Breda de Haan) Subramanian and Jain, = H. oryzae , teleomorph 
 Cochliobolus miyabeanus  (Ito and Kuribayashi) Drechsler ex Dastur] causes brown 
spot on the leaves of rice. This pathogen develops on seedlings; however, it is most 
noticeable when leaves and heads of older plants become infected.  F. fujikuroi  
Nirenberg (= F. moniliforme  J. Sheld., teleomorph  Gibberella fujikuroi  (Sawada) 
Wollenw =  G. fujikuroi  Swada mating population C [MP-C]) is the agent of Bakanae 
disease in rice. Typical symptoms of the disease include yellowing, stunting, stem 
elongation, and root and crown rot (Webster and Gunnell  1992 ).  Gerlachia oryzae  
(Hashioka and Yokogi) W. Gans is the agent of leaf scald. This disease causes a 
decrease in seed germination as well as leaf symptoms (Webster and Gunnell  1992 ). 
 Colletotrichum truncatum  Schw. (Andrus Moore) is the agent of brown blotch disease 
in cowpea. It causes reduction in germination of seeds and purple brown discoloura-
tion on pods extending to petioles, leaf veins and peduncles. The maldevelopment and 
distortion of pods may occur in the case of pod infection (Allen et al.  1998 ; Adegbite 
and Amusa  2008 ). This pathogen also causes anthracnose disease on soybean (Wrather 
et al.  1997 ).  C. graminicola  (Ces) Wils (syn.  C. sublineolum  P. Henn. in Kabat and 
Bubák),  C. lindemuthianum  (Sacc. & Magnus) Lams.-Scrib., and  Ascochyta pisi  Lib. 
are the agents of anthracnose disease in sorghum, bean and pea, respectively.  C. linde-
muthianum  infects seedlings through the seed coat and cotyledons.  A. pisi  penetrates 
into the inner parts of seeds (Tivoli and Banniza  2007 ),  B. cinerea  Pers. ex Fr. gener-
ally causes foliar infection in chickpea. However the pathogen is also seed-borne in 
chickpea and is responsible for poor germination and soft rot of the lower stem (Brefag 
and Mebalds  1987 ). 
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 Some researchers have examined the ability of biological control agents to con-
trol multiple pathogens such as  B. sorokiniana ,  Drechslera  spp.,  Fusarium  spp., and 
 Ustilago  spp., in the same study. Some of them have worked with individual patho-
gens such as  Tilletia  spp.,  B. oryzae ,  F. fujikuroi ,  G. oryzae ,  C. graminicola ,  C. 
truncatum ,  C. lindemuthianum ,  A. pisi ,  B. cinerea , and these studies will be pre-
sented as separate sections based on pathogen throughout the chapter. 

    Studies on Biological Control of Multiple Pathogens Causing 
Seed-Borne Fungal Diseases in Field Crops 

 Knudsen et al. ( 1995 ) applied antagonist fungi with different origins to barley and 
wheat seeds naturally infested with  B. sorokiniana  and  F. culmorum , respectively, 
and cultivated these seeds in pots with sand and fi eld soil, and also under fi eld 
conditions. The antagonist fungus  Idriella bolleyi  454 gave the highest control of 
diseases caused by  B. sorokiniana  (57 %) and  F. culmorum  (76 %) in pots with sand. 
 Gliocladium roseum  726 was found to be the most effective antagonist against  
B. sorokiniana  in pots containing fi eld soil, showing an effectiveness of 60 %. In 
fi eld experiments, wheat and barley seeds, naturally and artifi cially infected, respec-
tively, with  F. culmorum , and barley seeds naturally infested with  B. sorokiniana  
were used.  I. bolleyi ,  G. roseum  and a Finnish isolate (J76) reduced the disease by 
both pathogens under fi eld conditions. But only reductions in disease caused by 
 F. culmorum  on wheat and barley were signifi cant. The dry weight of plants, num-
ber of tillers per row, yield and 1,000 grain weight were higher in  G. roseum -treated 
plots than in the untreated control. 

 Etheridge ( 1997 ) investigated the possibilities of biological control of seedling 
blight in winter wheat caused by  F. culmorum  and  M. nivale  by artifi cial inoculation 
of seeds with these pathogens, then utilizing several antagonist fungi and a commer-
cial product, Mycostop (a.i.:  Streptomyces griseoviridis  K61), which is registered for 
the diseases of damping-off, stem, and crown rots. A Finnish isolate (J76) and  G. 
roseum  (IMI 040222) were the most effective in reducing pre- emergence death 
caused by  F. culmorum . All biological seed treatments reduced disease by  M. nivale  
with an effectiveness of approximately 40 %. However, none of the seed treatments 
controlled foot rot assessed at harvest, although they increased yield. 

 Hökeberg et al. ( 1997 ) screened bacterial strains isolated from roots of wild and 
cultivated plants, collected at various places in Sweden, for effectiveness against 
seed-borne diseases caused by  D. teres  and  M. nivale  under greenhouse conditions. 
For screening against  D. teres , naturally and heavily infected barley seeds were used; 
against  M. nivale , artifi cially infected wheat seeds were used. Bacterial strains 
(scraped from the agar surface of Triptic Soy Agar-TSA and mixed with SNB nutri-
ent broth and 2 % sodium-carboxymethyl cellulose) were used to treat the naturally 
or artifi cially infected seeds. Two  Pseudomonas  strains, MA342 and MA250, were 
found to signifi cantly suppress the diseases in screening tests. The antagonist strain 
MA342 was tested against two pathogens; MA250 was tested against  M. nivale  
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under fi eld conditions using a bacterial culture prepared from Tryptic Soy Broth 
50 % (TSB50). MA342 controlled disease caused by  D. teres  and  M. nivale  with an 
effectiveness of 99 % and 67 %, respectively. The authors recommended the use of 
TSB culture for antagonist bacteria which can be stored for up to 1 month or deep 
frozen for even longer without decreasing the biocontrol effect. 

 The following year, the strain MA342 ( Pseduomonas chlororaphis ), grown on 
TSB 50, was used to treat barley seeds naturally infected with  B. sorokiniana , 
 Drechslera  spp. and  Ustilago nuda , seeds of barley, wheat and rye infected with  M. 
nivale  and oat seeds infected with  D. avenae . Seeds were treated by mixing them 
vigorously 4–5 min with MA 342 at a dosage of 200–300 ml/kg seed (Johnsson et al. 
 1998 ). This culture was also applied to oat and barley seeds artifi cially infected with 
 Ustilago avenae  and  U. hordei , respectively. The experiments were conducted under 
fi eld conditions in different locations of Sweden and different years. This strain had 
a consistent suppressive effect on disease caused by  D. graminea ,  D. teres ,  D. avenae , 
 U. avena ,  and U. hordei , not only over time, but also under different climatic condi-
tions. Application of this bacterial strain to wheat seeds naturally infected with  S. 
nodorum  also had good effect in greenhouse experiments. However, these authors 
reported that the bacterization of seeds did not control the disease caused by  U. nuda  
and gave less than full effects against diseases caused by  B. sorokiniana  and  M . 
( Fusarium )  nivale  under fi eld conditions. The commercial products of MA 342 are 
presently named Cedemon and Cerall in the European market. 

 Teperi et al. ( 1998 ) described a screening system for identifying fungal antago-
nists from soils of Finland that have the ability to control seed-borne  F. culmorum  
on wheat. This screening system consisted of three separate pot tests with sand, peat 
and fi eld soil carried out under controlled conditions in a greenhouse, and fi eld 
experiments run in 1991–1995. Wheat seeds heavily infected with pathogen were 
used in the experiments. Antagonist isolates were applied by drenching their spore 
suspensions onto seeds in pots with sand, or by shaking seeds in a conidia suspen-
sion for pot tests with peat and fi eld soil and also in fi eld experiments. These authors 
suggested that some of the isolates belonging to  Gliocladium  spp. were superior to 
other fungal isolates in both greenhouse and fi eld tests. 

 Mycoparasitic  Pythium  species were investigated for biological control of 
 F. culmorum  in barley (Davanlou et al.  1999 ). The pathogen was inoculated by 
pipetting its spore suspension over the seeds, and then the spore suspension of 
potential antagonists was added to seeds in the pots under controlled conditions. An 
isolate of  P. acanthophoron  IMI 330381 and  P. mycoparasiticum  IMI341972 from 
JW Deacon,  P. periplocum  1048 from Indonesian soils, and two isolates (1004 and 
MM9) of  P. oligandrum  from Denmark signifi cantly suppressed disease severity on 
barley seedlings. 

 Jensen et al. ( 2000 ) applied the conidia of  Clonostachys rosea  (IK 726) (formerly 
 G. roseum ), which were freshly harvested, dried and stored, to the seeds of barley 
and wheat artifi cially inoculated with  F. culmorum  in pots fi lled with sand and under 
fi eld conditions in Denmark. In this study, freshly harvested conidia were obtained 
from liquid culture containing Potato Dextrose Broth (PDB). A stored formulation 
of IK 726 was prepared from growth on a mixture of sphagnum peat, wheat bran 
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and water. After incubation of the antagonist on this medium for 14 days, the 
inoculum was air-dried for 2 days, milled in a blender and stored in glass petri 
dishes at 4 °C for 8 weeks (8 × 10 8  cfu/g) and 32 weeks (6 × 10 8 ) in fi eld experiments 
with barley, and for 30 weeks (6 × 10 8  cfu/g) in fi eld experiments with wheat. Seed 
treatment with dried and stored conidia of  C. rosea  reduced the disease as effectively 
as freshly harvested conidia, with reduction in disease index varying from 47 % to 
54 %, from 37 % to 68 % and from 70 % to 94 % in barley fi eld, wheat fi eld, and 
sand experiments, respectively. Sowing dates did not infl uence the effectiveness of 
this biocontrol agent against  F. culmorum  in barley. Dosage of the antagonist with a 
density of >5 × 10 3  conidia/seed for both types of conidia was recommended to 
control the disease. Mamarabadi et al. ( 2009 ) suggested that this antagonist secreted 
chitin-hydrolysing agent in order to target the cell wall of  F. culmorum . 

 In Italy, the treatment of durum wheat seeds with  C. rosea  (CR 47) along with 
 Trichoderma atroviride ,  T. harzianum ,  T. longibranchiatum  and  Penicillium 
frequentans  increased emergence and yield, and reduced disease incidence and 
severity in plants developed from seeds naturally infested with  F. culmorum  under 
fi eld conditions during 1994–1996 (Roberti et al.  2000 ). The isolate  C. rosea  CR 47 
was also found to be the least sensitive to fungicides with active ingredients such as 
carboxin, thiram, triticonazole and guazatine used as seed treatment to control foot 
rot disease, and it was also compatible with herbicides such as fl ufenacet, 
chlorotoluron, chlorosulfuron and pendimethalin used at pre-emergence stage in 
Italian wheat cultivation (Roberti et al.  2006 ). The same authors reported that 
several chitinase isoforms were induced by CR47 treatment of wheat seeds both in 
coleoptiles and roots (Roberti et al.  2008 ). 

 The seeds of eight wheat cultivars inoculated with  F. graminearum , were treated 
with a solution of bacterial or fungal antagonists prepared with sodium 
carboxymethylcellulose (CMC), and sown in pots fi lled with non-sterilized 
cultivation soil by Dal Bello et al. ( 2002 ). Three weeks after sowing, seedling stand, 
disease percentage on emerging seedlings, plant height and dry weight of seedlings 
were evaluated. Among the antagonists,  Stenotrophomonas maltophilia  had good 
performance for criteria tested in all cultivars, although it caused a non-signifi cant 
decrease in the percentage of diseased plants. Three strains of  Bacillus cereus  and 
one isolate of  T. harzianum  controlled the disease in some cultivars with an 
effectiveness of <50 %. The authors recommended these isolates be tested for their 
effects on seedling blight by  F. graminearum  under fi eld conditions. 

 Several bacterial strains were applied to wheat seeds naturally or artifi cially 
infested with  F. culmorum  and  M. nivale , and were tested for their effects on seedling 
blight, number of surviving plants, seedling emergence and yield (Johansson et al. 
 2003 ). The authors inoculated wheat seeds with  F. culmorum  and  M. nivale  by 
soaking them in mung bean liquid medium containing spores and mycelia of the 
pathogens for 0.5 h. Bacterial strains were suspended in an isotonic water after 
being washed from the surface of cultures grown on TSA; the bacterial suspensions 
were separately poured over artifi cially or naturally infested seeds. Bacterial strains 
were fi rst screened under greenhouse and fi eld conditions, and four strains (three of 
them fl uorescent pseudomonas MF30, MF416 and MF588; one a species of  Pantoea  
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sp, MF 626) were selected for other studies in different years and locations in 
Sweden. This study showed that the selected strains suppressed infection by both 
pathogens during 5 years of experimentation and that seed treatment with  Pantoea  
sp. increased yield at different locations. 

 Koch et al. ( 2006 ) examined the numerous products for controlling  D. graminea  
and  D. teres  on barley, and  F. culmorum  and  Fusarium  spp. on wheat under 
controlled conditions. They used seeds naturally infected with these pathogens. The 
strains FZB 53 and W 490 ( Streptomyces  spp.) were found to be effective for 
reducing infection by  D. graminea  at rates of 51.9–75.9 % and 44.1–57.6 %, respec-
tively, in experiments conducted in four trays. Strains or preparations of 
 B. subtilis ,  Streptomyces  spp. or  Trichoderma  were not effective on net blotch 
caused by  D. teres . The strain FZB53 increased the number of healthy plants raised 
from seeds naturally infested with  F. culmorum  as compared with fungicides. 

 Sjöberg et al. ( 2007 ) multiplied arbuscular mycorrhizal (AM) fungi collected 
from fourteen Swedish arable soils, in which different crops were cultivated, in trap 
cultures using a mixture of plant species such as Alexandrian clover ( Trifolium 
alexandrium ), corn ( Zea mays ), leek ( Allium porrum ), marigold ( Tagetes erecta ), 
pea ( Pisum sativum ), sunfl ower ( Helianthus annuus ), tomato ( Lycopersicum 
esculentum ), wheat ( Triticum aestivum ) and white clover ( Trifolium repens ). These 
were added to pot soil in which barley seeds naturally infected with  B. sorokiniana  
were sown. The commercial mycorrhizal preparations,  Glomus intraradices  
(BCCM ™ /MUCL, Belgium, culture no. 43194) and Vaminoc (R)  (Becker Under- 
wood, Littlehampton, UK) were also used in the experiments. Mycorrhiza soil 
inocula from six trap cultures reduced the transmission of this pathogen from seeds 
to the stem base. Among them, two soil inocula of AM from semi-natural grassland 
and barley cultivated soils signifi cantly inhibited leaf lesions, the proportion of 
infected barley plant nodes and stem bases. Vominoc was only effective on the node 
infection. Additionally, the roots of barley seedlings raised from seeds infected with 
 B. sorokiniana  were treated with AM fungal spores and spores of  G. intraradices . 
In this experiment, AM spore inocula obtained from soil in which barley was 
cultivated suppressed disease symptoms on the base and upper half of leaves as well 
as did  G. intraradices . 

 Hasan et al. ( 2012 ) inoculated wheat seeds with a spore suspension of 
 B. sorokiniana ,  F. graminearum ,  Aspergillus  spp. and  Penicillium  spp. separately; 
after drying, the seeds were treated with  T. harzianum  RUT 103. The treated seeds 
were sown in a fi eld in Bangladesh. Three foliar sprays of  T. harzianum  spore 
suspension were used at tillering, heading and grain fi lling stages in addition to the 
seed treatment. Treatment with  T. harzianum  completely controlled seedling infec-
tion by the pathogens tested, except for  F. graminearum  and  B. sorokiniana , and 
was also effective on leaf blight severity. At harvest, number of tillers per plant, 
plant height, ear length, grain number in an ear, number of healthy grains in an ear, 
1,000-seed weight and grain yield increased in plants treated with  T. harzianum . 
Hasan ( 2013 ) tested the same antagonist isolate against  B. sorokiniana , 
 F. graminearum  and  Aspergillus fl avus  by using different wheat cultivars under fi eld 
conditions in Bangladesh. In this test, the author inoculated seeds by soaking them 
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in spore suspensions prepared as combinations of  T. harzianum  with each of the 
pathogens, separately. Foliar sprays were applied as described in Hasan et al. ( 2012 ). 
Few seedlings infected with the pathogens were recorded in plots using these 
treatments. Seed treatment along with foliar spray of  T. harzianum  increased the 
number of tillers per plant, plant height, ear length, grain number in an ear, healthy 
grain number in an ear, 1,000-seed weight and grain yield compared with control 
plots for this experiment. 

 Several researches have investigated the potential of biocontrol agents when 
 Fusarium graminearum  or  F. culmorum  were inoculated to the ear at anthesis stage 
and antagonists were applied to the ear at the same stage to evaluate their effectiveness 
on head blight. Results of using different antagonists for anthesis inoculation are 
listed in Table  2 .

       Studies on the Biological Control of  Tilletia  spp. on Wheat 

 In all studies on biological control of  Tilletia  spp. given below, seeds were artifi cially 
inoculated with the pathogen before antagonist treatment. 

 Wheat seeds artifi cially inoculated with  T. leavis  were coated with a suspension 
of  Pseudomonas  strain 2–79 (Pf2–79r) obtained from a nutrient broth yeast extract 
(NBYA) culture containing methyl cellulose (200 ml/kg seeds), air-dried overnight 
and used for fi eld experiments conducted in 2 years. Seedlings were also sprayed 
with this stain at 14 days after planting. The strain reduced common bunt incidence 
caused by  T. leavis  at the rate of 65 % and 50 % during consecutive seasons when 
the antagonist was applied to wheat seeds and 2-week-old seedlings (McManus 
et al.  1993 ). 

 Hökeberg et al. ( 1997 ) used the bacterial strain MA 342 ( P. chlororaphis ) for 
control of  T. caries , applying the strain to wheat seeds after inoculation of the 
pathogen as described above for  D. teres  and  M. nivale . The bacterial strain 
completely controlled the disease under fi eld conditions. The same strain (MA342), 
prepared and applied to seeds as above for  B. sorokiniana ,  Drechslera  spp. and 
 U. nuda , effectively controlled seed-borne  T. caries  under different climatic condi-
tions and in different years (Johnsson et al.  1998 ). 

 Borgen and Davanlou ( 2001 ) examined the effect of biological control on 
 T. tritici  using different doses of two biocontrol agents ( P. chlororaphis  MA 342;  
C. rosea  IK 726) and several commercial products (Mycostop, EM1, Effective 
microorganism, a.i.: 80 species of benefi cial microorganism, the major part being 
yeast and lactic acid bacteria; Symbioplex, a.i.:  Lactobacillus acidophilus , 
 Bifi dobacterium bifi dus  and  Streptococcus thermophillus ; Supresivit, a.i.: 
 T. harzianum ) under fi eld conditions in Denmark. The authors applied these biocon-
trol agents to seeds with and without milk powder. This research showed that treat-
ment of winter wheat seeds (Cv. Pepital) with a combination of MA 342 (40 × 10 9  
bacteria/kg seed) and  C. rosea  (2.5 × 10 9  cfu/kg seed) with 2 % milk powder con-
trolled bunt disease by  T. tritici  at the rates of 97.2 % and 86.6 %, respectively. 
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 Koch et al. ( 2004 ) selected microbial antagonists effective against  T. caries  by 
evaluating chlorotic fl ecking on leaf sheaths and blades at an early stage of wheat 
growth in pots under controlled conditions. The authors re-tested the selected 
strains under the same conditions and obtained consistent control of the pathogen 
with  Trichoderma  isolates and some actinomycetes. The following year, fi ve acti-
nomycete and four  Trichoderma  isolates were applied to seed and were tested 
under controlled and fi eld conditions (Koch et al.  2006 ). Effi cacy of the treatments 
was calculated based on plants with leaf symptoms under controlled conditions 
and on plants with infected heads in the fi eld experiments.  Streptomyces  strain FZB 
53 treatment had the greatest effects on bunt disease under both controlled and 
fi eld conditions. The commercial product Polyversum (a.i.:  Pythium oligandrum ), 
which was previously found to have 60 % effect on common bunt in fi eld trials by 
Beneda and Pospisil ( 1999 ), showed some control in the fi eld experiments. FZB 53 
and Polyversum were tested in second fi eld trials with fi ve different wheat variet-
ies. FZB 53 was more effective than Polyversum in this experiment although its 
effectiveness varied between 11 % on a sensitive variety and 77 % on a resistant 
variety. Another experiment by these authors included a comparison of pot experi-
ments with fi eld experiments to test for effi cacy of  Streptomyces  spp.,  Trichoderma  
sp.,  B. subtilis  and Polyversum on the disease by applying antagonists to the seeds. 
Among these treatments,  Streptomycess  strains FZB53 and W490 provided control 
of the disease with low effi cacy (40 %) under fi eld conditions, but were highly 
effective (90 %) under pot conditions. 

 Culture fi ltrates of  Cylindrocarpon olidum  var.  olidum , isolated from the rhizo-
sphere of  Liqidambar orientalis  Mill. (Oriental sweet gum, Syn. levant storax) 
grown in Turkey, was supplemented with methylcellulase to enhance stickiness and 
was used for control of common bunt disease ( T. leavis ) on wheat by Yolageldi and 
Turhan ( 2005 ). Wheat seeds were wetted with this fi ltrate and sown in the fi eld. 
These authors recorded that this treatment controlled the disease with an effective-
ness of 51.3 % and 48.4 % in two growing seasons. 

  Muscador albus  isolate C2620, which originated as an endophyte from a cin-
namon tree ( Cinnamomum zeylanicum ), was applied in two ways: by mixing the 
seeds with powder obtained from rye grain culture of  M. albus  (125 mg/g seed) 
and by placing particles from the rye grain formulation of the antagonist in fur-
rows at the rate of 4 g/m of row, along with wheat seeds infested with  T. tritici . 
These applications were made during planting for two growing seasons and two 
planting dates in Aberdeen, Idaho (Goates and Mercier  2011 ). In this study, seed 
and in-furrow treatments had 11.8 % and 8.5 % bunted spikes, respectively, for 
the early planting date (April 6) when the percentage of bunted spike was at its 
highest rate (43.8 %) in the untreated control. Both treatments were also effec-
tive for later planting dates and years although the disease was in low incidence 
in controls. The authors suggested that  M. albus  may have potential for common 
bunt control in organic wheat production where options for managing the disease 
are very limited.  
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    Studies on Biological Control of  B. oryzae  and  G. oryzae  
on Rice 

 Khalili et al. ( 2012 ) applied  Trichoderma  isolates to rice seeds artifi cially infested 
with  B. oryzae  by soaking them in spore suspensions of  Trichoderma  isolates for 
2 h. The treated seeds were sown in pot soil and evaluated under greenhouse condi-
tions. Among the  Trichoderma  spp.,  T. harzianum  1 and  T. harzianum  20 gave high 
control of disease on seedlings with an effi cacy of 61.2 % and 58.1 %, 
respectively. 

 Moura et al. ( 2014 ) applied the antagonist strains  Pseudomonas synxantha  (DFs 
185),  P. fl uorescens  (DFs 223),  Bacillus  sp. (DFs 418) and an unidentifi ed strain 
(DFs 306) to seeds naturally infested with  B. oryzae  and  G. oryz ae, by immersing 
the seeds in a suspension of each bacterium for 24 h. After a stirring period of 
30 min. at 10 °C, the treated seeds were sown in pots containing sterilized 
vermiculite. These authors evaluated transmission of the pathogens to seedlings 
under controlled conditions, and measured intensity of symptoms. They reported 
that DFs185 and DFs 306 reduced transmission of both pathogens to the seedlings 
and that DFs306 signifi cantly increased growth of the plants.  

    Studies on the Biological Control of  F. fujikuroi  on Rice 

 Kumakura et al. ( 2003 ) applied  Trichoderma  sp. (SKT1) to rice seeds naturally 
infested with  F. fujikuroi . This treatment gave high control of Bakanae disease in pot 
experiments. The antagonist isolate SKT1 was identifi ed as  Trichoderma asperellum  
by Watanabe et al. ( 2005 ). 

  B. subtilis ,  T. harzianum  and  T. virens , isolated from paddy soil samples at 
different locations in Guilan province, controlled the disease when rice seeds were 
treated with antagonists prior to inoculation of the pathogen; however, the effect of 
antagonists was lower than that of fungicide treatment (Dehkaei et al.  2004 ). 

 An isolate of  Talaromyces  sp. (KNB422), discovered from stem tissue of an 
apparently healthy rice plant in a nursery box with Bakanae diseased plants, was 
effective as a seed treatment against Bakanae disease caused by  F. fujikuroi  (Tateishi 
et al.  2006 ). This isolate was registered as a biopesticide in 2010 as Momi-Keeper 
(Central Glass, Co., Ltd.). Kato et al. ( 2012 ) reported that the mode of action of this 
antagonist was mycoparasitic, causing collapsed cell walls in hyphal cells and 
deterioration of the cytoplasm of  F. fujikuroi  after contact with  Talaromyces  sp. 

 Rice seeds infested with  F. fujikuroi , collected from plants in the fi eld after 
artifi cial inoculation with this pathogen at fl owering stage, were sown in soil to 
which biopesticide KNB422 was added at doses of 1 × 10 3–6  cfu/g, 260 g to examine 
the effect of this biopesticide on Bakanae disease at seedling stage (Miyake et al. 
 2012 ). Hot water (10 min. at 60 °C) treated seeds were also tested in the same 
application of biopesticide. Treatment of soil with the biopesticide at doses of 
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1 × 10 6  cfu/g, 1 × 10 5  cfu/g and 1 × 10 4  cfu/g controlled the disease at percentages of 
96.6 %, 96.9 % and 88.4 %, respectively. However a combination of KNB422-soil 
treatment and hot-water submersion of infested rice seeds with the pathogen 
completely suppressed the disease. 

 Matic et al. ( 2014 ) investigated the effect of seed treatments with epiphytic 
yeasts isolated from rice seeds, and the combination of antagonists with 
thermotherapy (dipping seeds in hot water) on Bakanae disease, measuring disease 
index at 28 days after sowing under controlled conditions. Seeds naturally infected 
with  F. fujikuroi  were used in this study. Among the yeast isolates,  Pichia 
guilliermondii  (R9) and  Metschnikowia pulcherrima  (R23) signifi cantly controlled 
the disease. The disease index was lowest (5 %), when a combination of these 
antagonist yeasts and thermotherapy at 60 °C for 10 min was applied to the seeds. 
Biofungicides tested in this study, such as Serenade, Mycostop mix and 
microorganism mixture, had low effect for controlling the disease.  

    Studies on the Biological Control of  Colletotrichum spp . 

 Bankole and Adebanjo ( 1996 ) tested the effi cacy of a  T. viride  isolate (TH31) 
obtained from cowpea phylloplane against  C. truncatum  in cowpea using seeds 
naturally infested with the pathogen and different treatment methods with an antag-
onist conidia suspension (10 8  conidia/ml) under greenhouse conditions. Percentages 
of seed germination and disease incidence were recorded in this experiment. Highest 
seed germination rates were obtained by dipping seed in the antagonist spore sus-
pension. Percentages of infected seedling (disease incidence) were reduced to 
27.6 % and 45.2 % by seed dipping in spore suspension and soil drenching with 
spore suspension of this antagonist, respectively, as compared with 85.5 % in 
infected control. 

 Tinivella et al. ( 2009 ) applied several commercially formulated microorganisms 
and non-formulated selected strains of different microorganisms (fungi, bacteria 
and yeasts) to the seeds of bean and pea naturally infested with  C. lindemuthianum  
and  Ascochyta  spp., respectively. Percentages for emergence, diseased and healthy 
plants were recorded under greenhouse conditions. Among the treatments, applica-
tion of  C. rosea  (IK726-F) to seeds by dipping them in a suspension (40 ml/10 g 
seed) of the antagonist in a clay preparation (10 8  cfu/g) with sterile distilled water 
gave good control only of  Ascochyta  spp. on pea for the criteria evaluated.  Bacillus 
subtilis -based formulations, FZB24 and Serenade, some strains of  P. putida  (E183; 
G12; G53), applied by dipping seeds in a bacterial cell suspension in nutrient yeast 
dextrose broth medium for 15 min., and a disease-suppressive saprophytic isolate of 
 F. oxysporum  (MSA35), applied by dipping seeds in a conidia suspension prepared 
from Potato Dextrose Agar (PDA) for 15 min., were successful for controlling 
anthracnose disease in bean, although plant-based products were more effective 
than antagonists. 
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 Soybean seeds were treated with spore suspensions of  Pseudomonas aeruginosa , 
 T. harzianum ,  T. virens  and a mixture of  T. harzianum  and  T. virens  after inoculation 
with  C. truncatum  (Begum et al.  2010 ). Percentage of pre- and post-emergence damp-
ing-off, seed germination, and fi nal seedling stand were recorded in seedlings raised 
from treated seeds that were sown in two fi elds at different months (February and 
August) in Malaysia. Treatment of seeds with  P. aeruginosa  was the most effective 
treatment. It reduced the pre-emergence damping-off rates by 48.6 % and 51.9 % for 
February and August experiments, respectively, post-emergence damping-off 65.0 % 
and 97.2 %, respectively. However, increases in seed germination and healthy seed-
ling stands were higher in the February experiment than in the August experiment. 
 T. virens  was the least effective of the bio-primed treatments. 

  T. viride ,  T. harzianum ,  T. hamatum ,  G. virens , isolated from the rhizosphere of 
anthracnose-infected bean seedlings, were multiplied on wheat bran and applied to 
bean seeds naturally infected with  C. lindemuthianum  by smearing the seeds with 
antagonists for 15 min. and adding antagonists to the pot soil where the same seeds 
were used (Padder and Sharma  2011 ). These experiments, conducted under con-
trolled conditions for 30 days, showed that applications of  T. viride  and 
 T. harzianum  to seeds had maximum potentiality to suppress seed-borne infection 
of  C. lindemuthianum , with effi cacies of 86.4 % and 83.6 %, respectively. 

 Three fungal isolates,  Chaetomium globosum  57,  T. harzianum  184 and  F. oxy-
sporum  NSF9 from the rhizosphere and rhizoplane of  Cynodon dactylon , 
 Heteropogon contortus , and  Alloteraropsis cimicina  were tested for control of 
 Colletotrichum graminicola  in sorghum under pot and fi eld conditions in India 
(Vasanthakumari and Shivanna  2014 ). Inocula of antagonists grown on sorghum 
grain for 6 months were added to the soil in both experiments at different rates 
(1 %, 1.5 % and 2.0 %, w/w).  C. graminicola  spore coated seeds were sown in the 
soil treated with antagonists. Various parameters (pre- and post-emergence seed-
ling mortalities, disease incidence, disease severity, growth promotion, number of 
seedlings with intact roots for pot and fi eld experiments, additional seed infection 
percentage, and yield for fi eld experiments) were evaluated. All antagonists, 
tested at the application rate of 2 %, reduced post emergence seedling mortality, 
disease incidence and severity in pots. Post-emergence mortalities in the fi eld 
were 53.84 %, 61.53 % and 69.23 % as a result of 2 % applications with  F. oxys-
porum ,  C. globosum  and  T. harzianum , respectively. Disease incidence and sever-
ity were also signifi cantly reduced at 120 days after sowing with the same 
application rate of antagonists.  

    Studies on the Biological Control of  B. cinerea  on Chickpea 

 Khan et al. ( 2011 ) obtained benefi cial microorganisms from commercial prepara-
tions such as Biowilt-X, PBAT1 Trichodex (a.i.:  T. harzianum ), AU Derma, Sanjeevni 
(a.i.:  T. virens ), Biocomp-X and PBAP-2 (a.i.:  P. fl uorescens ) as mycelial mats and 
bacterial pellets by dilution methods from Potato Dextrose Broth (PDB) and nutri-
ent broth (NB) for fungi and bacteria, respectively. Chickpea seeds were coated 
with mycelium (4 g mycelium/kg seed) of  B. cinerea  grown on PDB. The mycelial 
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mats/bacterial pellets of benefi cial organisms were applied to seeds (4 g/kg seed) 
and soil (4 g for each pot containing 2.5 kg sterilized soil mixture). Experiments 
were conducted under controlled conditions. All antagonists signifi cantly reduced 
disease severity by  B. cinerea  when chickpea seeds were simultaneously treated 
with mycelia/pellets of biocontrol agents, commercial  Rhizobium  (4 g/kg seed) and 
 B. cinerea . Additionally, seed treatment with PBAT-1 signifi cantly increased both 
dry weight of plant and yield; however, Biowilt-X treatment enhanced yield only. 
Other biocontrol agents did not result in any signifi cant effect on growth.   

    Seed Borne Fungi in Vegetable Crops Subjected to Biological 
Control Studies 

 Studies on biological control of diseases affecting cabbage, carrot, onion and 
muskmelon caused by seed borne fungi  Alternaria brassicicola ,  Alternaria  spp., 
 Aspergillus niger  and  Phoma cucurbitacearum , respectively, are summarized below. 

  Alternaria dauci  (Kühn) Graves&Skolko and  A. radicina  Meier, Drechsler&Eddy 
are the agents of leaf blight and black rot, respectively, in carrot.  A. radicina  also causes 
foliar blight on parsley and stalk/root rot on celery (Chen and Wu  1995 ). It is the primary 
agent of root and crown rot disease of carrot (Farrar et al.  2004 ).  Alternaria brassicicola  
(Schwein.) Wiltshire causes dark leaf spot in crucifers. Symptoms of the disease are 
small dark brown spots surrounded by a halo of chlorotic tissues on the leaves. A mat of 
spores the colour of dark olive brown appears on the older lesions. The pathogen is pres-
ent as spores and mycelium on the surface of seed coats, and as internal mycelium 
within the testa and occasionally in the embryo tissue (Humpherson-Jones  1988 ). 
 Aspergillus niger  Van Tieghem is the causal agent of black mould disease in onion. It is 
present in all seed parts, but mostly on the seed coat. No visual symptoms are observed 
on set bulbs developing from the contaminated seeds. Symptoms can be seen on mature 
bulbs as small black spore masses under the outer dry scales of the bulbs, then spreading 
as strips from the base to the neck (Özer and Köycü  2004 ).  Phoma cucurbitacearum  (Fr.
Fr) Sacc) (teleomorph  Didymella bryoniae  Auersw) on cucurbits is located on and in the 
seed coat and transmits from seeds to seedling in cucumber and pumpkin (Lee et al. 
 1984 ; Sitterly and Kenath  1996 ). Gummy stem blight by the pathogen causes defolia-
tion in late production stages (Wehner and Amand  1993 ). 

    Studies on the Biological Control of  Alternaria  spp. on Carrot 
and Cabbage 

  B. subtilis  T99 increased carrot seed germination and survival of seedlings when it 
was applied to seeds naturally contaminated with  A. radicina  (Hentschel  1991 ). 

  Pseudomonas  strain W24 had no positive effect on emergence of seedlings from 
seeds naturally infested with  Alternaria  spp. (Jahn and Puls  1998 ). Applications of 
Mycostop and T22 (a.i.:  T. harzianum  KRL-AG2) to seeds naturally infested with 
 A. dauci  were also unsuccessful in promoting fi eld emergence (Hermansen et al.  1999 ). 
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 Carrot seeds artifi cially infested with  A. radicina  were treated with suspensions 
of several bacterial antagonists grown on King's B medium and tested in vermiculite 
and greenhouse for effects on seedling emergence in a study by Chen and Wu 
( 1999 ). Among the antagonist strains,  Psedomonas cepaica  229 promoted 
emergence and length of seedling in both experiments. 

 Jensen et al. ( 2004 ) used fungal antagonists isolated from different carrot and 
cereal habitats and also several biocontrol products to control seed-borne  Alternaria  
spp. in carrot. Seed lots with  A. radicina  of 4 and 29 %, and  A. dauci  of 7 and 11 % 
were treated with conidia suspensions of antagonist fungi and biocontrol products, 
and evaluated in pots with sand under controlled conditions. Biopriming of seeds 
with isolates of  C. rosea  controlled pre- and post-emergence infection and provided 
healthy seedling stands. The authors reported that biopriming of  Alternaria  spp.- 
infected seeds with  C. rosea  IK 726 had no adverse effect on seedling establishment. 

 Szopinśka et al. ( 2010 ) applied isolates of  C. rosea  IK1871 and  C. solani  IK1889, 
isolated from carrot seeds, and  C. rosea  IK726 from barley roots to carrot seeds 
after inoculation of  A. radicina  at 10 4  or 10 5  conidia/ml. Seedling emergence in sand 
and soil was evaluated under controlled conditions.  Clonostachys  spp. increased 
percentage of emergence and healthy plants in the sand test at low inoculum 
concentrations of pathogen. However, seed treatment with antagonists did not affect 
emergence, although they increased percentage of healthy plants in the soil test. 

 Using carrot seeds naturally infested with  A. dauci  and  A. radicina  at different 
degrees (high and medium), several formulated or non-formulated microorganisms, 
resistant inducers, plant derived products, chemicals and physical methods alone 
and in several combinations were tested to evaluate the effects of seed treatments on 
emergence and incidence of healthy plants under controlled and fi eld conditions 
(Koch et al.  2010 ). Seed treatment with  Pseudomonas  sp. M416,  P. fl uorescens  L 18 
and  C. rosea  IK726 (seed dipped in microbial culture or spore suspension for 
15 min) resulted in a high number of healthy carrot seedlings under controlled 
conditions. These antagonists and the biopesticide Mycostop Mix were tested again 
under controlled and fi eld conditions, and the percentages of healthy plants and 
emergence were measured. Among them, MF416 had the best performance for 
these criteria. The authors reorganized another experiment under controlled and 
fi eld conditions using two seed lots treated with combinations such as hot water 
(seed dressing at 53 °C for 10 min) + IK726 or hot water + MF416 in addition to 
single applications of antagonists. Seed treatment with a combination of hot water 
plus antagonist was more effective than hot water treatment or antagonist treatment 
alone under controlled conditions, but the hot water + MF416 combination was the 
least effective in the fi eld. In subsequent fi eld experiments, conducted in different 
countries, the combination of hot water with IK726 (clay formulation, 100 mg/10 g 
seed) was as effective as hot water and electron seed treatment for an average plant 
stand, and provided a denser plant stand than application of physical methods alone. 

 Cabbage seeds naturally infested with  A. brassicicola  were treated with dry pow-
der formulations of commercial microbial products such as FZB24 (a.i.:  Bacillus 
subtilis ), MBI600 (a.i.:  B. subtilis  MBI600), Serenade (a.i.:  B. subtilis  Q ST 713), 
Mycostop and F251/2 (a.i.: non-pathogenic  F. oxysporum  251/2), with a liquid 
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 formulation of BA2552 (a.i.:  Pseudomonas chlororapsis  strain MA342) and also 
with microbial cultures or spore suspensions of various microorganisms (Amein 
et al.  2011 ). The disease suppression effect of each treatment was evaluated under 
controlled and fi eld conditions. Among the commercial products, BA2552 and 
Mycostop Mix increased the percentage of healthy plants. Two strains of  P. fl uores-
cens  L18 and  T. viride  TV6903 from 15 non-commercialized microorganisms tested 
were effective, increasing the number of healthy plants at the rate of 29 %.  

    Studies on the Biological Control of  A. niger  and  D. bryoniae  

 Antagonist fungi isolated from onion growing soils fungistatic toward  A. niger  were 
tested under pot conditions for their effect on disease incidence by this pathogen 
under controlled conditions (Özer  2011 ). Onion seeds were treated with spore 
suspensions of the antagonists combined with pathogen (simultaneous inoculation). 
Four months after sowing, sets raised from seeds inoculated with the pathogen and 
treated with antagonists were examined for presence of pathogen as well as defence 
reactions. Effects of the antagonists on shoot length and bulb diameter were also 
determined. Seed treatment with three antagonists, non-afl otoxigenic  Aspergillus 
fl avus  AS3,  T. harzianum  TRIC7 and TRIC8, protected onion sets against the 
pathogen and also had the ability to stimulate accumulation of antifungal compounds 
in sets. These antagonists had no negative effects on shoot length although they did 
not enhance bulb diameter. 

 Muskmelon seeds naturally infected with various levels of four cultivars of 
 D. bryoniae  were treated with a slurry form of  P. fl uorescens  and  T. harzianum  at rates 
of 8 and 10 g/kg seed, respectively, and with pure cultures (1 × 10 8 cfu/ml) by mixing 
400 g of seeds with 5 ml cell/conidial suspension of antagonist; effi cacy of the treat-
ments was evaluated under fi eld conditions in India (Sudisha et al.  2006 ). Both types of 
application signifi cantly reduced disease incidence, but pure culture application to seeds 
was more effective than mixed cultures in all cultivars. However, both treatments of the 
antagonists signifi cantly increased fruit weight as compared with untreated control.      
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          Introduction 

 Worldwide estimated post-harvest losses of agricultural food commodities is about 
30–50 % of whole produce which not only threats the global food security but this 
translates to waste 1.47–1.96 Gha of arable land, 0.75–1.25 trillion m 3  of water and 
1–1.5 % of global energy (Fox and Fimeche  2013 ). The postharvest losses in food 
commodities may occur due to the fungi, bacteria, insects, physical injuries due to 
insects, mechanical force, chemical force, heat or freezing, non-disease disorders 
resulting from storage conditions that upset normal metabolism. In tropical hot and 
humid climates fungal bio-deterioration of stored food commodities is a chronic 
problem in storage system. Harvested food commodities are invaded by various 
species of  Alternaria ,  Aspergillus ,  Cladosporium ,  Fusarium ,  Mucor ,  Penicillium , 
 Rhizopus , etc. under such conditions leading to deterioration and can produce 
poisonous substances called Mycotoxins. The major toxin-producing fungi are 
 Aspergillus  spp. ( A. carbonarius ,  A. fl avus ,  A. ochraceus ,  A. oryzae ,  A. parasiticus , 
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 A. versicolor ),  Penicillium  spp. ( P. nordicum ,  P. expansum ,  P. viridicatum ,  
P. verrucosum ),  Fusarium  spp. ( F. culmorum ,  F. graminearum ,  F. oxysporum ,  
F. proliferatum ,  F. verticillioides ),  Alternaria  spp. ( A. alternata ,  A. brassicae ,  
A. solani ,  A. tenuissima ) and mycotoxins produced by them are afl atoxins, ochra-
toxin A, sterigmatocystin, patulin, fumonisins, zearalenone, deoxynivalenol, alter-
nariol, alternariol monomethyl ether, tenuazonic acid. Mycotoxins are known to be 
hazardous infl uence in human and livestock health, affect the marketability of food 
commodities, and hence are of great commercial status. More than fi ve billion peo-
ple in developing countries are constantly bared to mycotoxins by unknowingly 
means and are consuming contaminated foods. Alimentary intake of mycotoxins by 
livestock and human being causes of intoxication – mycotoxicosis (Tanaka et al. 
 2007 ). Mycotoxicosis exhibited acute and chronic toxicity these include cytotoxic-
ity, hepatotoxicity, neurotoxicity, teratogenicity, mutagenicity, and cancerogenity. 
Mycotoxins, at cellular level interact with nucleic acids and inhibit the DNA and 
RNA synthesis (Bhatt et al.  1978 ). Some important mycotoxins and their toxic 
effects and chemical structure are summarised in Table  1  and Fig.  1 .

        Major Classes of Mycotoxins in Agricultural Commodities 
and Their Biosynthesis 

    Afl atoxin 

 Afl atoxin is extremely toxic and worldwide produced by  Aspeigillus fl avus  and  A. 
parasiticus  (Abbas et al.  2008 ) and is of four major types such as AfB1, AfB2, AfG1, 
and AfG2.  A. fl avus  is found to produce B toxin among which B1 is the most common 
in food having genotoxic and carcinogenic activity (Payne and Brown  1998 ). Afl atoxin 
produced by the  A. fl avus  is more prevalent in corn and cotton seeds (Hell et al.  2000 ); 
however, afl atoxin produced by  A. parasiticus  is more prevalent in groundnut than 
other crops (Kaaya et al.  2006 ). The chemical biosynthesis pathway of afl atoxin in 
 Aspergillus  species consist of 23 steps of enzymatic reactions and 15 intermediate 
reactions and determined by 25 recognised genes assembled within a 70-kb DNA 
region on chromosome III (Bhatnagar et al.  2006 ; Smith et al.  2007 ). The primary 
substrate acetate is used to create polyketides with the fi rst stable pathway intermediate 
being the anthraquinone norsolorinic acid (NOR) (Bennett et al.  1997 ). This is fol-
lowed by anthraquinones, xanthones, and fi nally afl atoxins synthesis (Yu et al.  2004 ).  

    Zearalenone 

 Zearalenone (ZEA) is also called as F-2 mycotoxin or RAL. Several  Fusarium  
species produce deoxynivalenol, T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) 
and zearalenone which are toxic substances of considerable concern to livestock 
and poultry producers (Kuiper-Goodman et al.  1987 ). This toxin is heat stable and 
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several cereal crops (Table  1 ) are found to exhibit this toxin. It is also cause of sev-
eral diseases like infertility, abortion or other breeding problems, especially in 
swine. Zearalenone is synthesised by the combined action of two PKSs and an iso-
amyl alcohol oxidase (Lysoe et al.  2006 ). The gene involved in the biosynthesis is 
encoded by 39 kb of large gene cluster consisting of four genes FgPKS13, FgPKS4, 
ZEB1 and ZEB2. The ZEB1 protein contains a basic-region leucine zipper (bZIP) 
domain and functions as a cluster specifi c transcription factor that controls the 
expression of the cluster (Kim et al.  2005 ).  

     Table 1    List of important mycotoxins, their principal toxic effects and prone food commodities   

 Mycotoxin and its producing fungi  Food products  Symptoms/toxicology 

  Afl atoxins : 
  Aspergillus  spp.,  A. parasiticus , 
 A. fl avus ,  A. nomius  

 Grain, strawberries, 
raspberries, cherries, 
groundnut, corn, peanuts, 
cotton, maize, pearl millet, 
chillies, sorghum, 
pistachios, cassava, spices, 
oil seeds, dried fruits etc. 

 Liver necrosis, liver tumours, 
reduced growth, depressed 
immune response, carcinogen 

  Cyclopiazonic acid : 
  Aspergillus  and  Penicillium  spp.,  
A. fl avus ,  A. versicolor ,  A. oryzae , 
 A. tamarii ,  P. verrucosum ,  
P. patulum ,  P. cyclopium ,  
P. camembertii ,  P. puberulum , 
 Penicillium griseofulvum  

 Peanuts, corn, cheese etc.  Neurotoxin 

  Deoxynivalenol (DON) 
(Vomitoxin) ,  Zearalenone:  
 Fusarium  spp.,  F. graminearum ,  
F. subglutinans  

 Wheat, corn, maize, 
oats, rice, barley, 
sorghum etc. 

 Feed refusal, reduced weight 
gain, diarrhoea, vomiting, 
infertility abilities 

  Fumonisin B1 & Fumonisin B2 : 
  Fusarium  spp.,  Fusarium 
verticillioides ,  F. moniliforme  

 Corn, wheat etc.  Equine leuko- 
encephalomalacia, porcine 
pulmonary edema 

  Trichothecenes : 
  F. graminearum ,  F. culmorum , 
 F. poae ,    Trichoderma     , 
   Trichothecium     ,    Cephalosporium      

 Wheat, maize and 
oats etc. 

 Alimentary toxic aleukia, 
necrosis, hemorrhages, oral 
lesion in broiler chickens 

  Ochratoxin : 
  Aspergillus  spp.,  Penicillium  spp., 
 P. verrucosum ,  A. ochraceus ,  
A. carbonarius  

 Wheat, grapes, spices, 
coffee etc. 

 Porcine nephropathy; various 
symptoms in poultry 

  Patulin, Citrinin : 
  Penicillium  spp.,  P. expansum  

 Apple and apple 
products etc. 

 Kidney damage 

  Sterigmatocystin : 
  Aspergillus  and  Penicillium  spp.,  
A. versicolor ,  A. parasiticus , 
 A. fl avus ,  A. rugulosus ,  A. nidulans , 
 A. chevalieri ,  A. rubber , 
 A. amsyelodami ,  P. camembertii , 
 P. communer ,  P. griseofulvum  

 Corn, rice, wheat, 
hay etc. 

 Carcinogen, mutagen 

  Source: Calvo ( 2005 )  
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    Trichothecenes 

 This toxin belongs to sesquiterpene compounds and is a very large family of chem-
ically related mycotoxin formed by several mycofl oral organisms as described in 
the Table  1 . The biological activity of trichothecene is mainly due to the presence 
of 12, 13-epoxyring, hydroxyl or acetyl groups at appropriate positions (Etzel 
 2002 ). This mycotoxin is potent inhibitors of protein synthesis (Dohnal et al. 
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 2008 ). The biochemical and genetic analysis of trichothecenes, (T-2 toxin (T-2), 
nivalenol (NIV), and deoxynivalenol (DON begins with the cyclization of farnesyl 
pyrophosphate (FPP) to form trichodiene, which then undergoes a series of oxy-
genation, isomerization, cyclization, and esterifi cation reactions to form T-2 toxin, 
nivalenol, or deoxynivalenol. It is found that most of the gene from  Fusarium  spe-
cies directly take part in the toxins synthesis is positioned at a locus designated the 
core trichothecene biosynthetic gene (TRI) assembly (Alexander et al.  2009 ).  

    Fumonisin 

 Fumonisin is a mycotoxin derived from  Fusarium  and consists of fumonisin B1 and 
fumonisin B2. Fumonisin B1 is the most prevalent member of a family of toxins, known 
as fumonisins, produced by several species of  Fusarium  moulds, such as  F. verticillioides  
(Marasas and Paul  1987 ), which occur mainly in maize (corn), wheat and other cereal 
crops.  F. verticillioides  and  F. moniliforme  are also found to produce fumonisin B2 which 
is the structural analog of fumonisin B1. It is found that B2 fumonisin is more cytotoxic 
than fumonisin B1 and inhibits sphingosine acyltransferase. It contaminates the maize 
and other commodities. At least 15 different fumonisins have so far been reported, 
although most of them have not been shown to occur naturally (Jackson et al.  1996 ). 
Fumonisin biosynthetic enzymes recognised to date are all determined at one locus i.e. 
the 17-gene FUM cluster. The FUM cluster is found to also encode a protein that controls 
the expression of the group of genes and taking part in transport of fumonisins across the 
cell membranes (Brown et al.  2004 ). Biochemical and genetic evidence regarding bio-
synthesis pathway of fumonisin is revealed that during this process inactivation of FUM 
gene occur and initially a linear, 20-carbon polyketide is formed (Alexander et al.  2009 ). 
Subsequently, an amino group, up to four hydroxyl functions, and two tricarboxylic acid 
moieties are added to various positions along the polyketide backbone.  

    Ochratoxin 

 Ochratoxin is of three types i.e. Ochratoxin A, B and C. Ochratoxin A (OTA) is one 
of the most-abundant mycotoxins in food commodities produced by  A. ochraceus , 
 A. carbonarius  and  Penicillium verrucosum  (Al-Anati and Petzinger  2006 ). Human 
acquaintance can occur through intake of contaminated food commodities, 
particularly grains and pork products, coffee as well as grapes and grape products 
(Richard et al.  1999 ). OTA is composed of a dihydro-isocoumarin ring joint to 
phenylalanine, and its biological synthetic pathway has not been fully studied. 
However, in  Penicillium  species the genetic and enzymatic aspects of OTA synthesis 
has been explained and it has been found that only PKS gene is involved in 
biosynthesis pathway of  Aspergillus  species. Concerning the biosynthesis process 
inactivation of a gene encoding a non-ribosomal peptide synthetase in 
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OTA- producing  A. carbonarius  ITEM 5010 species has been reported to eliminate 
the ability of this fungus to produce OTA (Gallo et al.  2012 ). The pathway involved 
in synthesis of the isocoumarin group by the catalytic property of polyketide syn-
thase (PKS) which ligated with amino acid phenylalanine through the carboxyl 
group and fi nally chlorination step. In addition to this, several school of thoughts 
have been proposed from different investigations. Synthesis of polyketide for mel-
lein, which carboxylated to OTβ and then transformed through a chloroperoxidase 
reaction to OTα (Huff and Hamilton  1979 ). According to this hypothesis, in the 
subsequent step, OTα would be phosphorylated and joined to the ethyl ester of phe-
nylalanine to form OTC, followed by de-esterifi cation reaction which leads to the 
formation of OTA in fi nal product form. In  P. nordicum , a putative OTA synthetic 
path has been recognized which exhibiting biosynthetic genes encoding a non-ribo-
somal peptide synthetase (NRPS) (otanpsPN), a PKS (otapksPN) – which is respon-
sible for the formation of peptide bond among the polyketide, the phenylalanine and 
gene otachlPN are supposed to be involved in the chlorination reaction, and gene 
otatraPN is involved in OTA export (Geisen et al.  2006 ).  

    Patulin 

 It is a toxin produced by  Aspergillus ,  Byssochlamys  and  Penicillium  commonly found 
in rotting apples. Patulin has shown antimicrobial properties against some microor-
ganisms. Studies of the health risks due to consumption of patulin by humans have led 
many countries to regulate its quantity in food. Several countries have instituted patu-
lin restrictions in apple products (Puel et al.  2010 ). (E)-ascladiol include a mycotoxin, 
is found to be a direct precursor of patulin in cell-free formation of  P. urticae  patulin-
minus mutants i.e. J1 and S11, but not S15. The isomerization of (Z)-ascladiol to a 
side product, is non-enzymatically catalysed by sulfhydryl compounds (Sekiguchi 
et al.  1983 ). Although, chemical structure of patulin has studied, however, molecular 
biosynthetic pathway of patulin is incomplete, unlike other regulated mycotoxins 
such as afl atoxins, trichothecenes and fumonisins. The biosynthetic pathway is 
assumed to be approximately ten steps. Recent studies showed that it includes assem-
bly of 15 genes taking part in patulin biosynthesis and exhibiting several characteris-
tics enzymes, transporter gene and regulation factor (Artigot et al.  2009 ).   

    Incidence of Mycotoxins in Commercially Important 
Agricultural Food Commodities 

 Agricultural commodities constitute important food and feed sources which are 
contaminated by various mycotoxigenic fungi. Food products like cereals, pulses, 
fruits and vegetables are directly contaminated by mycotoxins which are provoked 
to some extent due to rapidly changing agricultural technology. It seems to create 

A.K. Pandey et al.



411

signifi cant problem in the tropics than in the temperate regions, however, no zone of 
the world can be regarded as mycotoxin-free. This may be due to the transport of 
various food commodities from one part to the other part of the country. Some of the 
important food commodities which have been found to be naturally contaminated 
by the mycotoxins are summarise below: 

    Rice ( Oryza sativa  L.) 

 Rice is one of the important food crops worldwide along with wheat and corn, and 
has been major food in several countries. Climate and storage conditions play a 
signifi cant role in the occurrence of mycotoxins.  Aspergillus ,  Fusarium  and 
 Penicillium  species are reported to be the major mycotoxigenic fungi in rice. The 
harmful effects of these fungal infections are glume/grain discoloration, loss in 
viability, quality and toxin contamination. Different mycotoxins such as afl atoxins, 
ochratoxin A, cyclopiazonic acid, fumonisins, trichothecenes, zearalenone, 
deoxynivalenol (DON), citrinin, gliotoxin and sterigmatocystin production in rice 
have been recorded from time to time (Tanaka et al.  2007 ; Reddy et al.  2008 ; 
Gummert et al.  2009 ). Rice bran and parboiled rice bran samples exhibited the 
presence of AFB1 up to 35 % (Jayaraman and Kalyansundaram  1990 ). In a study, 
afl atoxin quantity is higher in rice samples as compared to wheat and maize (Pande 
et al.  1990 ). The levels of afl atoxins in rice can range from 184 to 2,830 μg/kg. From 
China, Liu et al. ( 2006 ) have reported the occurrence of AFB1, AFB2, AFG1, and 
AFG2 in 36 de-husked brown rice samples which ranged from 0.99 to 3.87 μg/kg. 
In India rice and paddy samples have been found to be afl atoxin AFB1-positive in 
67.8 % of the samples in which the amount ranges of from 0.5 to 38.5 μg/kg (Reddy 
et al.  2008 ). Moreover, the majority of stored rice varieties like PAU 201 samples 
collected from six districts of Punjab were also found to be afl atoxin B1 positive@ 
<15 μg/kg (Siruguri et al.  2012 ). Similarly, out of 196 samples collected from 
Nigeria, the occurrence of afl atoxin (24–1,164 μg/kg) was reported in 97 samples, 
ochratoxin (20–1,642 μg/kg) in 56 samples and zearalenone (24 and 1,169 μg/kg) in 
93 samples (Hussaini et al.  2009a ).  

    Maize ( Zea mays  L.) 

 Maize is one of the most important food grains and commonly colonized by several 
spoilage fungi in pre- and post-harvest conditions, where the relative abundance of 
those species depends on several abiotic and biotic factors leads to the mycotoxins 
production. The most common mycotoxins that contaminate maize in Mediterranean 
countries are  Fusarium  toxins trichothecenes, zearalenone (ZEA) and fumonisins 
(FB) (Jestoi  2008 ) while in tropical and subtropical countries occurrence of afl atoxin 
is reported to be major once (Muriuki and Siboe  1995 ). The occurrence of different 
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types of mycotoxins has been reported in maize samples collected from 
Mediterranean basin (Marin et al.  2012 ). During fi ve consecutive years (1995–1999) 
observation in Italy, two samples of maize exhibited incidence of afl atoxin with up 
to 109 or 158 μg AFB1/kg with the mean values in the range of 0.3–4.10 μg AFB1/
kg seeds (Pietri et al.  2004 ). High level (120.3–133 μg/kg) of afl atoxins (AFs) has 
been also observed in Turkey’s samples (Nizamlýoðlu and Oguzz  2003 ; Giray et al. 
 2009 ). The toxin (AFs) level reported from Syria between 2003 and 2005 are higher 
than 20 μg/kg (Majid  2007 ). Similarly, the sample from Egypt exhibited mycotoxin 
level 30 μg/kg (Abdelhamid  1990 ), from Southern Guinea 77 μg/g (Hell et al.  2003 ), 
and from Croatia 224 and 614 μg/kg level during 1996 and 1997, respectively 
(Jurjevic et al.  2002 ). Nevertheless, the percentage of positive samples has been 
very high (25 %) in Croatia with the highest OTA amount 31.7 μg/kg (Segvic et al. 
 2009 ). Despite of these two mycotoxins,  Fusarium  mycotoxins (FBs) are the most 
frequent contaminants, with contamination incidence very often near 100 %. One 
hundred percent samples of maize grown in Turkey showed contamination with 
FBs, with mean level of toxin production was 88,240 μg/kg (Oruc et al.  2006 ). Fifty 
four samples of french maize imported in between 2004 and 2007 into the UK, are 
found to have FB1 + FB2 contamination above 10 μg/kg (Scudamore and Patel 
 2009 ). During 1996, the percentage of samples exhibiting ZEA above 200 μg/kg 
increased to 53.8 % (91 % of samples with detectable amounts of ZEA), with a 
mean contamination of 453 μg/kg and one sample containing 2,531 μg/kg ZEA 
(Pietri et al.  2004 ). High afl atoxin contamination levels are also measured in maize 
sold to the public of West Africa, and range are from 0.4 to 490 μg/g in Ghana, 
0.7–110 μg/g in Togo, and 0.2–120 μg/g in Benin (James et al.  2007 ). In the same 
study, 40 % of the samples from the Southern Guinea Savanna exceeded the level 
20 μg/g internationally recommended safety limit. In India out of 190 analysed 
samples of maize for mycotoxin contamination, 69 (34.8 %) samples exhibited the 
contamination by mycotoxin (Janardhana et al.  1999 ). Maize samples of the  Kharif  
crop reported to have a greater incidence of afl atoxins (47 %) than  rabi  crop sam-
ples (17 %) in Bihar, India (Sinha  1990 ). Stored maize grains also had a high inci-
dence of afl atoxins (43 %) and most of the contaminated samples contained 
afl atoxins at levels above 20 μg/kg.  Fusarium  has been found to be dominant myco-
fl ora in 12 maize samples collected from affected households and found to produces 
the fumonisin B1 at the level of 0.25–64.7 mg/kg (Bhatt et al.  1997 ). Again 25 rain- 
affected maize showed the contamination with fumonisin B1 (00.04–65 mg/kg) and 
89 % of normal maize samples also contained afl atoxin B1 (0.38–109 μg/kg).  

    Wheat ( Triticum aesticum  L.) 

 Wheat is also a worldwide important crop and is provoked by variety of fungi dur-
ing transit and storage. A new  Fusarium  mycotoxin i.e. glucoside, fusarenon 
X-glucoside (FUXGlc), is reported for the fi rst time in wheat grain that is artifi cially 
infected with  Fusarium  fungi (Nakagawa et al.  2011 ). OTA and DON 
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(deoxinivalenol) are detected in wheat at the levels of 12 and 53 μg/kg respectively. 
In wheat fl ours, presence of OTA leads to the suspicion of contamination by the T-2 
and AFB1 toxins also (Badiale-Furlong et al.  2003 ). In other investigation FB1 
levels varied in between 0.5 and 3.9 μg/kg for wheat and in between 0.6 and 2.3 μg/
kg for the fl ours (Birck et al.  2003 ). However, the contamination by DON in wheat 
(297 samples) from the southern region has been of 74 (24.91 %) with a mean and 
maximum levels of 603.2–8,504 μg/kg (Mallmann et al.  2003 ). Analysis of 39 
mycotoxins in wheat samples showed the limits of detection range from 0.03 to 
220 μg/kg (Sulyok et al.  2006 ). The occurrence of mycotoxin producing  Fusarium  
species and other fungi on wheat kernels in fi ve growing districts of Kenya has been 
reported and it is found that most isolates of  F. graminearum  are produce zearale-
none and deoxynivalenol (Muthomi and Mutitu  2003 ). The incidence of  Fusarium  
mycotoxin in wheat and its fl our samples procured from local markets in Egypt has 
been recorded (Aziz et al.  1997 ). The deoxynivalenol (DON) is detected in fi ve 
wheat samples at levels ranging from 103 to 287 μg/kg and one sample each of fl our 
and bread at 188 and 170 μg/kg. Zearalenone (ZEN) is detected in ten wheat sam-
ples at levels from 28 to 42 μg/kg and four samples each of fl our and bread at 95 and 
34 μg/kg respectively. T-2 toxin is detected only in one wheat sample, fl our and 
bread @ 2.9, 2.2 and 2.3 μg/kg respectively. Some  Fusarium  species such as 
 F. graminearum ,  F. avenaceum  and  F. culmorum  are predominantly found to be 
associated with  Fusarium  head blight (FHB) in wheat and responsible for the myco-
toxin production (Bottalico and Perrone  2002 ). The level of afl atoxins like AFB1, 
AFB2, AFG1, AFG2 produced by two aspergilla such  A. fl avus  and  A. parasiticus , 
is found to be ranging from 10.4 to 643.5 μg/kg in 41 wheat samples used for culti-
vation and consumed in few regions of Turkey. Fifty nine percent of the samples are 
found to be positive for total AFs i.e. AFB1, AFB2, AFG1, and AFG2 with a per-
cent of 42, 12, 37, and 12 % respectively (Giray et al.  2007 ).  

    Groundnut ( Arachis hypogaea  L.) 

 Groundnut, also called peanut, is considered as second most vital legume after 
beans grown throughout the country widely. However, lack of storage technolo-
gies leads to the contamination of mycotoxins especially afl atoxin (Kaaya et al. 
 2006 ). Production of afl atoxin types B and G and cyclopiazonic acid (CPA) from 
a new growing peanut region in Argentina (Formosa province) by  A. fl avus  has 
been recorded (Pildain et al.  2004 ). The level of afl atoxin in peanut cake samples 
is found to be 10–346 μg/kg and ochratoxin A is @ <LOQ–2 μg/kg (Ediage et al. 
 2011 ). Twenty one percent of groundnut samples exhibited afl atoxin in the range 
of 4–100 μg/kg body wt/day (Vasanthi and Bhat  1998 ). Occurrence of ochratoxin 
A and ochratoxin A- containing black species of  Aspergillus  are reported in 
stored peanut seeds from Córdoba, Argentina. OTA is found in 32 % of the seeds 
ranging from 0.5 to 170 μg/g. Out of 47 samples studied, 43 isolates (27 %) of 
 Aspergillus  section Nigri, are OTA producing strains.  A. carbonarius  exhibited 
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highest percentage of ochratoxigenic strains (57 %) (Magnoli et al.  2006 ). 
Presence of ochratoxin A and  Aspergillus  section  Nigri  in groundnut seeds at 
different months of storage in Córdoba, Argentina has also been reported. One 
hundred four (32 %) of 322 isolates of  Aspergillus  section Nigri, are OTA pro-
ducers and the levels of toxin produced is 2–24 μg/ml (Magnoli et al.  2007 ). 
From India several peanut samples showed the occurrence of afl atoxin content 
>30 mg/kg (Kishore et al.  2002 ). A disquieting afl atoxin amount of 851.9 mg/kg 
and zearalenone of 98.1–847.3 mg/g are found in samples from Anantapur dis-
trict of Andhra Pradesh, India. Brazilian groundnut seeds from sowing to harvest 
also exhibited the presence of mycotoxins. The screening of mycotoxins indi-
cated that afl atoxins and cyclopiazonic acid both are present the highest inci-
dence, being detected in 32 % of the samples from 4.20 to 198.84 μg/kg and from 
260 to 600 μg/kg respectively (Gonçalez et al.  2008 ). Metabolites produced by 
 Aspergillus  species are the most prevalent toxins. As considers mycotoxins 
addressed by regulations, afl atoxins exceeded the USDA maximum limit of 
20 μg/kg in about 90 % samples (Ezekiel et al.  2012 ), and from Ethiopia it varied 
in between 15 and 11,900 μg/kg (Chala et al.  2013 ).  

    Sorghum ( Sorghum vulgare  L.), Barley ( Hordeum vulgare  L.), 
Millets ( Pennisetum glaucum  L.), Oats ( Avena sativa  L.) etc. 

 Like wheat, these small grains are also contaminated by several mycotoxins produc-
ing fungi during transit and storage as well as in fi eld conditions. These grains are 
found to be suitable substrates for the occurrence of afl atoxin. Eighty four (72 %) of 
116 oat and barley samples in eastern Canada were found to be contaminated with 
deoxynivalenol (DON) up to 8–9 mg/kg during the year 1991–1998 (Campbell 
et al.  2000 ). Of 73 oat samples, 34 % oat samples (47 %) contained DON and 34 % 
of the barley samples (18/53) and 15 % of the oat samples (4/26) contained nivale-
nol. Previously, Stratton et al. ( 1993 ) reported that 58 % (37/64) and 53 % (49/92) 
of the barley samples in Nova Scotia and Prince Edward Island, respectively, are 
found to be contaminated with DON; but none exceeded the concentration of 1 mg/
kg. In this study, of 12 barley samples, 6 from Atlantic Canada are contaminated 
with DON and 1 sample exceeded the concentration of 1 mg/kg (1.73 mg/kg). 
Barley samples contaminated with DON, exhibited the maximum level up to 
15.79 mg/kg (Abramson et al.  1998 ). Sorghum contained fumonisin B1 in 0.14–
7.8 mg/kg range (Bhatt et al.  1997 ). Indian sorghum exhibited natural occurrence of 
fumonisin B1 (0.07–8 mg/kg) and its co-occurrence with afl atoxin B1 (5–125 μg/
kg) (Shetty and Bhat  1997 ). Zearalenone is also found in the grains which are hav-
ing moisture content 20–22 % (Jurjevic et al.  2007 ). From Nigeria occurrence of 
afl atoxin B – AFB, ochratoxin A-OTA and one zearalenone-ZEN are spotted in 
several collected samples of sorghum (Hussaini et al.  2009b ). 92.1 μg/kg occur-
rence of moniliformin level and 414.6 μg/kg beauvericin levels in pearl millet from 
Africa and Asia are recorded (Wilson et al.  2006 ).  
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    Pulses and Oil Seeds 

 Pulses are important source of dietary protein and other essential nutrients. During 
the survey under FAO ( 1981 ) sponsored Food Contamination Monitoring Project 
in Western Uttar Pradesh it has been found that few samples of pulses such as 
green gram, black gram and lentil and few samples of cotton seed are contami-
nated with afl atoxin B1. The ranges of toxin in the oilseeds are 35–200 ppb and in 
pulses are 4–80 ppb. Afl atoxin B1 (333–10,416 μg/kg) is produced by  Aspergillus  
spp. in rice, pulses and oilseeds (Begum and Samajpati  2000 ). Tseng and Tu 
( 1997 ) studied mycofl ora and mycotoxins in adzuki and mung beans produced in 
Ontario, Canada. FB1 is detected by TLC in discoloured adzuki bean ( Vigna 
angularis ) and green gram ( Vigna mungo ) samples but not in the healthy samples. 
The quantifi cation of FB1 by HPLC revealed that discoloured adzuki and mung 
bean samples contained 261 and 230 mg/g of FB1, respectively. This investigation 
highlights the need for more research on mycotoxin contamination in various food 
commodities including legumes. Out of 66 isolates of  A. fl avus , isolated from 
mustard seeds during storage, 24 are produced afl atoxins (0.5–22 IJ g/ml), 8 iso-
lates are high toxin producers whereas the remaining 16 isolates are low toxin 
producers. Thirteen (out of 34) isolates of  F. moniliforme  and 4 (out of 12) isolates 
 P. citrinum  produced zearalenone (1.2–4.0 IJ g/ml) and citrinin (1.0–3.0 IJ g/ml) 
(Ahmad and Sinha  2002 ). Cowpea cultivars from South Africa showed the pres-
ence of fumonisin B1 (0.12 and 0.61 μg/g), whereas cultivars from Benin showed 
no fumonisins. Other scholars investigated 0.8 and 25.30 μg/g total fumonisin in 
pulses, and the highest level of FB1 detected is 16.86 μg/g (Kritzinger et al.  2003 ). 
Embaby et al. ( 2013 ) demonstrated that two fungi such as  A. parasiticus  (No .59) 
isolated from beans seeds and  F. moniliforme  (No. 8) isolated from soybean had 
the ability to produce mycotoxins in signifi cant concentrations i.e. 196.58 μg/kg 
afl atoxin and 198 mg/kg fumonisin.  

    Fruits 

 Mycotoxins may also occur in raw agricultural and horticulture products during 
pre- and post-harvest. Though, cereals are amongst the most studied crops for toxin 
contamination, but fruits and their processed products may also represent a potential 
source of risk. Worldwide, the species causing toxins production in fruits include 
 Aspergillus  and  Penicillium  and are recognised as the main concern. Dried vine 
fruits (e.g., sultanas, raisins) exhibited very high levels of OTA worldwide (Palumbo 
et al.  2011 ). The potential production of afl atoxins (0.3 %), OTA (6.0 %), patulin 
(0.5 %) and trichothecenes (1.2 %) in grapes has been reported (Serra et al.  2005 ). 
Sixty samples of retail dried vine fruits from the United Kingdom exhibited the 
occurrence of Ochratoxin A (53.67 μg/kg) and afl atoxins (MacDonald et al.  1999 ). 
Most of the reports showed the highest percentage of contaminated samples with an 
average OTA level over 2 μg/kg, with maximum values up to 100 μg/kg (Magnoli 
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et al.  2004 ; Aksoy et al.  2007 ). OTA levels in grape juice which is consumed by 
children, are found to be higher than allowed (Chulze et al.  2006 ). Avery high 
incidence (100 %) of PAT (patulin), even though at low levels (5–75 μg/ml), is 
found in 44 samples of Turkish apple juice (Karadenizm and Eksi  1997 ). Formation 
of PAT in pear inoculated with  P. expansum  is found and its diffusion in the 
apparently sound fl esh, in concentration surpassing the accepted maximum 
European limits (50 mg/kg) (Laidou et al.  2001 ). Three hundred fi fty one samples 
of seven different varieties of apples with small rotten areas, collected throughout 
Portugal, the occurrence of PAT (up to 80.5 mg/kg) is recorded in 89 % samples, 
and OTA and trichothecene production in grapes by  A. carbonarius  and  T. roseum , 
respectively, prior to harvest time (Martins et al.  2002 ). Mogensen et al. ( 2010 ) 
studied on 10 selected fumonisin producing  A. niger  strains and reported that they 
are able to produce fumonisin B2 and fumonisin B4 on grapes in the range 171–
7,841 μg fumonisin B2/kg and 14–1,157 μg fumonisin B4/kg. 

 PAT is detected in 79, 86 and 43 % in the different tested samples of apples 
(Tangni et al.  2003 ). However, no contaminated sample exceeded the safe level of 
50 μg PAT/l. Data of Beretta et al. ( 2000 ) reported that patulin intake with apple 
derivatives is usually below the tolerable level of 0.4 μg/kg bw/day. Occurrence of 
trichothecenes (nivalenol, deoxynivalenol, 3- and 15-acetyldeoxynivalenol, 
neosolaniol, diacetoxyscirpenol, T-2 tetraol, T-2 and HT-2 toxins), zearalenone and 
zearalenols, and fumonisin B1 from bananas have been reported (Jimenez and 
Mateo  1997 ). Ochratoxin A is found to present in all the samples of apricot (50–
110 μg/kg), fi g (60–120 μg/kg) and plum (210–280 μg/kg) collected from Egypt 
(Zohri and Abdel-Gawad  1993 ).   

    Essential Oils in the Management of Naturally Occurring 
Mycotoxins in Stored Food Commodities 

 Several synthetic fungicides have been used for the management of mycofl ora 
incursion of commercially importance agricultural food commodities. However, 
reduction and detoxifi cation of mycotoxins in food by physical and chemical 
methods have not yet proven to be an effective or desirable practice. This is due to 
their residual toxicities and adverse effects on the food chain (Gurney et al.  2014 ). 
Therefore, essential oil based botanical detoxifi cation offers promising alternative 
for eliminating mycotoxins and safe guarding the quality of the food and feed. The 
existing dispute on the negative effects of synthetic preservatives has also 
transformed the interest of users towards natural food protectant for improving the 
quality and shelf life of food commodities and protecting them from biodeteriora-
tion by toxic microbes (Pandey et al.  2013a ,  b ,  2014 ). Since these compounds are 
eco-friendly and harmless to humans, there is increasing attention, both in industry 
and academic research, to herbal, medicinal and aromatic plants for their antifungal 
activities against food spoilage and mycotoxigenic fungi. Essential oils isolated 
from higher plants are made from a very complex mixture of volatile molecules and 
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are produced by the secondary metabolism of aromatic and medicinal plants. These 
essential oils can be obtained by different methods including hydrodistillation and 
low or high pressure distillation methods. In essential oils terpene and terpenoid 
constituted the main group followed by aromatic and aliphatic components. The 
major group of plant natural products is terpenes which are characterized by an 
extensive variety of structural types and are divided into monoterpenes (C 10 ), ses-
quiterpenes (C 15 ), diterpenes (C 20 ), hemiterpenes (C 5 ), triterpenes (C 30 ) and tetrater-
penes (C 40 ). The structural formulas of some important toxic compounds are given 
in Figure  2 .
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  Fig. 2    Chemical confi guration of some constituents of essential oil       
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      EOs Against Afl atoxin 

 The application of essential oils (EOs) extracted from herbal, medicinal and aro-
matic plants against the fungal growth and afl atoxin production of  A. fl avus  and  A. 
parasiticus  have been suggested by many researchers (Maraqa et al.  2007 ; 
El-Nagerabi et al.  2012 ). EOs and fl avonoids have inhibitory effect on afl atoxin 
activity of several food borne fungi (Alpsoy  2010 ). Cinnamon and clove oils are 
inhibitory for afl atoxin production at 200–250 ppm, cinnamic aldehyde at 150 ppm 
and eugenol at 125 ppm (Bullerman et al.  1977 ). In maize, EOs from  Azadirachta 
indica  seeds extract are found to be completely inhibited the afl atoxin production 
at 500 and 1,000 ppm concentration while  Morinda lucida  showed complete inhi-
bition at 1,000 ppm (Bankole  1997 ). Essential oils of Iranian medicinal plants are 
also proved as novel afl atoxin (AF) inhibitors in food system.  Satureja hortensis  
and its active components are reported as an ideal inhibitor of afl atoxins B 1 (AFB 
1) and G1 (AFG 1) production by  A. parasiticus  NRRL 2999. The IC 50  values for 
the inhibition of microbial growth are found as 0.79 and 0.86 mM for the essential 
oil components carvacrol and thymol respectively. For AFB1 and AFG1, IC 50  val-
ues are 0.50 and 0.06 mM for carvacrol and 0.69 and 0.55 mM for thymol respec-
tively. After their observation it is found that carvacrol and thymol are the effective 
constituents of  S. hortensis  and they may be useful to manage the afl atoxin con-
tamination in crops (Razzaghi-Abyaneh et al.  2008 ). Different concentrations of 
baobab ( Adansonia  sp.) seeds’ EOs (0.5, 1, 3 and 5 % v/v) had led the highest 
inhibition levels of total afl atoxin and afl atoxin B1 secretion by  A. fl avus  (47.2–
95.7 %; 28.1–89.7 %) and  A. parasiticus  (42.7–93.3 %; 25.9–80.2 %) (El-Nagerabi 
et al.  2013 ). At concentrations of 1–3 %,  Nigella sativa  oil caused 47.9–58.3 % 
reduction in afl atoxin B1 for  A. fl avus  and 32–48 % for  A. parasiticus  strains 
(El-Nagerabi et al.  2012 ). The results of antiafl atoxinogenic assay of Adjou et al. 
( 2012 ) showed that EO of  Ageratum conyzoides  has important afl atoxin inhibition 
potential on toxigenic strains  A. parasiticus  (Ab2242) at 2.0 μl/ml and  A. fl avus  
(La3228) at 1.5 μl/ml. Afl atoxin B1 production by NKD-208 isolates of  A. fl avus  
is strongly inhibited by EO of  Callistemon lanceolatus  (Shukla et al.  2012 ) and the 
EO of  Zataria multifl ora  at 150 ppm inhibited the afl atoxin production up to 
99.4 % (Gandomi et al.  2009 ). The growth of  A. parasiticus  is signifi cantly 
decreased (P < 0,001) by marjoram and clary sage EOs (Gömöri et al.  2013 ). 
Similarly, inhibition of afl atoxin production has been reported by  Thymus erioca-
lyx  and  T. X - porlock  EOs (250 ppm) (Rasooli and Owlia  2005 ),  Rosmarinus offi ci-
nalis  (450 ppm) and  Trachyspermum copticum  (450 ppm) EOs (Rasooli et al. 
 2008 ),  Ocimum gratissimum  EO (Prakash et al.  2011 ) and for Turmeric leaf oil 
(95.3 % and 100 % inhibition of toxin production) (Sindhu et al.  2011 ). Fungal 
growth and afl atoxin B1 production are inhibited by EOs at 50, 30, 15, and 10 μl 
dosage, but the  Ageratum conyzoides  oil is more effective in soybeans than that of 
 Origanum vulgare  (Esper et al.  2014 ). Recently, EOs of  Cymbopogon martinii , 
 Foeniculum vulgare , and  Trachyspermum ammi  are found to be totally inhibiting 
the mycotoxin production by  A. niger  and  A. fl avus  at 0.5 and 0.75  m   L/mL, 
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respectively (Gemeda et al.  2014 ). Correspondingly, EOs from  Cymbopogon citra-
tus  (Sonker et al.  2014 ) and  Artemisia nilagirica  (Sonker et al.  2015 ) are found to 
be inhibited the afl atoxin production in grapes at 0.8 and 1.6 μl/ml respectively.  

    EOs Against Zearalenone 

 Perusal of the literature showed that little work has been carried our regarding the 
activity of EOs against zearalenone production. Essential oils of cinnamon, palma-
rosa, oregano, clove and lemongrass are inhibited the production of two mycotoxins 
i.e. deoxynivalenol (DON) and zearalenone (ZEA) in non-sterilized naturally con-
taminated maize grain produced by  Fusarium graminearum  at 0.995 and 0.950 aw 
and at 20 °C and 30 °C is evaluated at a 500 mg/kg level (Marin et al.  2004 ). 
Effi cacy of EOs is found to be less effective and among all clove EO is proved as 
better protectant for maize grains. Palmarose and clove EOs are signifi cantly inhib-
ited zearalenone and deoxynivalenol production as well as the growth rate, by  F. 
graminearum  under different environmental conditions in maize grain. At 0.995 aw 
all the EOs tested had inhibitory effect on the growth rate of  Fusarium  (Velluti et al. 
 2004 ).  

    EOs Against Fumonisin 

 The essential oils from plants deal a faith in the prevention and detoxifi cation of 
several mycotoxins. In maize grains fumonisin B1 production by  F. proliferatum  is 
signifi cantly inhibited by the lemongrass, cinnamon, clove, palmarose and oregano 
EOs (Velluti et al.  2003 ) at 0.995 aw at both temperatures, while at 0.950 aw only 
cinnamon, clove and oregano oils are effective in inhibiting growth of  F. proliferatum  
at 20 °C and none of them at 30 °C. Out of four EOs of aromatic plants  Origanum 
vulgare ,  Aloysia triphylla ,  A. polystachya  and  Mentha piperita , EO of  O. vulgare  
reduced the production level of FB1 (P < 0.01) by  F. verticillioides  while  A. triphylla  
EO increased it (P < 0.001). Comparatively,  A. triphylla  and  O. vulgare  EOs at 250 
and 500 epsilonl/l have the better inhibitory effects on the  F. verticillioides  mycelia 
development (López et al.  2004 ). The microbial growth of  F. culmorum  and  F. gra-
minearum  are signifi cantly inhibited by 500 μg/g cinnamon oil at 0.955 aw/25 °C yet 
toxin production is enhanced (Hope et al.  2005 ). Dambolena et al. ( 2008 ) found that 
out of four monoterpenes (limonene, menthol, menthone and thymol) at 75 ppm, 
thymol is the most active inhibitor on FB1 biosynthesis by  F. verticillioides . The EO 
of  Zingiber offi cinale  has the inhibitory effect on fumonisin B1 (FB1) and fumonisin 
B2 (FB2) production at 4,000 and 2,000 μg/ml, respectively (Yamamoto- Ribeiro 
et al.  2013 ). In recent investigation  Litsea cubeba , clove, cinnamon, citral, spearmint, 
eucalyptus, anise and camphor EOs showed their degrading nature on the production 
level of FB1 by  F. proliferatum  (Xing et al.  2014 ). The order of effi cacy of EOs were 
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cinnamon > citral> eugenol > eucalyptus > anise > camphor oils. Cinnamon oil 
reduced FB1 from 15.03 to 0.89 μg/ml (94.06 %) at 120 h time and the 280 μg/ml 
concentration. Thus, these oils could be ideal agents for the detoxifi cation and man-
agement of FB1 in the crops.  

    EOs Against Ochratoxin A (OTA) 

 From time to time studies are conducted in order to control the ochratoxin in food 
commodities by plant essential oils. A 1,000 ppm dose of oregano ( Origanum 
vulgare ) and mint ( Mentha arvensis ) EOs completely inhibited the mycotic growth 
and OTA production by  A. ochraceus  NRRL 3174 up to 21 days, while basil is only 
effective up to 7 days (Basílico and Basílico  1999 ). Other scholars have also reported 
the reduction of ochratoxin A production by the microrganisms through the use of 
EOs of spices (Soliman and Badeaa  2002 ). The reduction effi ciency of both the 
essential oil and the aqueous extracts are found to fallen in between 66.7 % and 
95.7 %. Clove leaf, cinnamon and bay leaf EOs at 50 ppm cause stimulation of OTA 
production regardless of aw or temperature. However, at 500 ppm signifi cant control 
of OTA production by  A. ochraceus  is observed with the best essential oil treat-
ments. Indian borage oil ( Plectranthus amboinicus ) is reported to completely inhibit 
the ochratoxin (OTA) production by the toxigenic strain  A. ochraceus  at 500 ppm 
(Cairns and Magan  2003 ). Also, the application of oil at 100 mg/g in food samples 
inhibits the growth of  A. ochraceus  in food systems such as groundnut, maize and 
poultry feed even at a high moisture level of 30 %, after 7 days (Murthy et al.  2009 ). 
Similarly, ochratoxigenic activity of  Aframomum danielli  EO at from 500 to 
2,000 ppm has been reported to decrease OTA contents of cocoa bean (Aroyeun 
et al.  2009 ). Additionally, 0.10 % of basil EO reduces the production level of och-
ratoxin A (OTA) from 135 to 98 μg/ml (Mohamed et al.  2012 ). Recently, EOs from 
 Cymbopogon citratus  (Sonker et al.  2014 ) and  Artemisia nilagirica  (Sonker et al. 
 2015 ) completely inhibited the OTA production in table grapes at 0.8 and 1.6 μl/ml 
respectively.   

    Conclusion 

 Over population has necessitated the need to store large amount of food commodities 
for use in near future. But storage of such food commodities accompanies problems 
of storage pests and pest based toxins like mycotoxins. The knowledge of the past 
decade indicates that the agricultural food commodities are contaminated by differ-
ent types of mycotoxins. Combating these fungal pathogens/contaminants by xeno-
biotics and synthetic chemicals, pose a severe and complex symptom at anthropogenic 
and ecological level. The studied publications have dealt with the inhibition of 
mycotoxigenic species by varied natural plant products especially essential oils. 
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Most of them showed a high effi cacy in the management of mycotoxins as an anti-
afl atoxic, antiochratoxic, anti-fumonotoxic agent. Ecofriendly mycotoxin manage-
ment using essential oil based botanicals are safer to the user and the environment. 
Botanicals are cost effective, sustainable sources which have a plethora of activities 
against storage pests including mycotoxin producing organisms. They are also very 
close chemically to those plants from which they are isolated, so they are easily 
biodegradable and are renewable in nature. Because of greater consumer awareness 
and harmful side effects towards synthetic fungicides, protection of commercially 
importance agricultural food commodities using botanical fungicides is becoming 
more popular. There is an extensive scope for plant-based pesticides usage in the 
integrated management of different agricultural pests. Use of such technologies can 
be one of the aims of sustainable agriculture and a cost effective management tool 
in poor economies but which is rich in plant biodiversity. However, fi nally, before 
application safety issues should be fully addressed prior to the widespread applica-
tion of such plant products.     
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          Introduction 

 Any country in the world is not self-suffi cient in plant genetic resources (PGR) for 
developing new varieties of crops to overcome various types of threats viz., 
insurgence of new/more virulent pests, weather calamities, extreme temperatures, 
as well as to enhance the national productivity, etc. Therefore, international 
exchange of PGR is the backbone of any crop improvement programme for 
developing new varieties. However, exchange of the seeds and other planting 
materials always carries an inherent risk of introducing new exotic pathogens or 
their more virulent races into new areas. It is evident from several examples that 
seeds are the most effi cient means of long distance dissemination or transboundary 
movement of pathogens in the history (Khetarpal et al.  2006 ). There are about 1500 
species of seed-borne fungi (~331 not reported from India), ~302 species of bacteria 
(~270 not reported from India) worldwide that affect 534 crops of 109 plant families 
(Richardson  1990 ). Here, the quotation given by (Kandan et al.  2015 ) (Stakman and 
Harrar  1957 ) “the responsibilities of the plant pathologists do not end with the 
harvest of satisfactory yields of plant products and that harvesting marks the 
termination of one phase of plant protection and the beginning of another” 
emphasizes that seeds and other plant propagating material is important in second 
phase of crop protection. So, supply of pathogen/disease free PGR is the primary 
means to restrict the introduction of exotic pathogens into the country. Therefore, 
quarantine testing for associated seed-borne/transmitted organisms is essentially 
required. In India, ICAR-National Bureau of Plant Genetic Resources (ICAR- 
NBPGR) has been empowered by Department of Agriculture and Co-operation 
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(DAC), Government of India through Destructive Insects and Pests Act, 1914 (DIP 
Act, 1914) which has been revised from time to time and presently known as the 
“Plant Quarantine Order 2003 (Regulation of Import into India)” to undertake the 
quarantine processing of all PGR including transgenic planting material under 
exchange for research purposes, both for public and private sectors. NBPGR has a 
mandate for acquisition, management of indigenous and exotic PGR for pest-free 
conservation towards food security and sustainability. 

 In order to enrich PGR diversity, ICAR-NBPGR, New Delhi, India, imports 
every year ~70,000 samples of germplasm and trial material for research use both 
by public and private sectors. About 8000–10,000 accessions are also being added 
each year from indigenously collected/multiplied PGR to the base collection in the 
National Gene Bank. Therefore, the Division of Plant Quarantine at ICAR-NBPGR 
has developed procedures for systematic and stepwise processing for interception/
detection of associated plant pathogens and making exotic as well as indigenous 
PGR pest-free for quarantine clearance as well as conservation in National Gene 
Bank (Fig.  1 ) such as visual and stereo-binocular examination to detect presence of 
smut and bunt balls, ergot sclerotia, rust pustules, spores on the seed; washing test 

PGR

Visual and stereoscopic
examination

Incubation test/
NaOH soaking/

ELISA/ PCR

Harvest from
disease-free plants

Released to
indenters

Salvaging
(imported PGR)

Observation

Stereo-cum-compound microscopy Released for
conservation

Pest free material
(indigenous PGR)

Infested/ infected material

Rejected and incinerated

Soaking/ washing
(nematode
extraction)

PEQ growing/
grow out test (for

imported PGR)

  Fig. 1    Flowchart of seed health testing for making PGR disease-free       
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for presence of rusts and downy mildews; seed soaking/washing for nematode 
extraction; blotter method, immunological and molecular tests to detect seed-borne 
pathogens including fungi, bacteria and nematodes. Under soaking/washing test of 
samples for nematode detection, seeds as well as vegetative propagules are soaked 
in water for 24 h to extract nematodes, rooted materials washed with tap water to 
detach nematode adhering to root surface.

   Seed health testing of PGR under quarantine processing and pest-free 
conservation in Gene Bank resulted in interception/detection of a variety of seed- 
borne/seed transmitted fungi, bacteria and nematodes of quarantine potential from 
different sources/countries during past three and half decade. Some of which are not 
yet reported/reported once in the country; those have wide host range and causing 
great economic losses; have more virulent/large number of physiological races, etc. 
Seed-borne/seed transmitted pathogen(s) may result in poor quality seed, loss in 
germination, development of epiphytotics and distribution of new strains or 
physiological races along with the seeds or other planting materials to new 
geographical areas. 

    Examination of Dry Seeds and Washing Test 

 Preliminary examination with naked eye or with the help of a magnifi er to detect 
abnormalities such as discoloration, deformation shriveling, pigmentation, mal-
formation of seeds with fungal growth like mycelial mats or fructifi cations like 
chlamydospores, acervuli, pycnidia, perithecia and other impurities associated 
with a seed lot such as sclerotia, bunts/smut balls, or spore masses, soil clods, 
plant debris, etc. and washing test for the presence of rusts and downy mildew 
spores are being followed. Dry examination of seeds/washing test results in the 
detection/interception of important pathogens such as  Claviceps purpurea  (ergot 
of cereals),  Peronospora manshurica  (downy mildew of soybean) and  Uromyces 
betae  (rust of sugarbeet), are not yet reported from India, and  Puccinia carthami  
(rust of saffl ower) and  P. helianthii  (rust of sunfl ower) with restricted report in 
India. Some of those pathogens intercepted from different sources/countries are 
listed (Table  1 ).

       Seed Soaking Method/NaOH Test 

 Seed soaking method can be used for detection of bunt ( Tilletia barclayna ) from 
rice seeds and Karnal bunt ( Tilletia indica ) from wheat seeds. For detection of  T. 
barclayna  (bunt) in rice, seeds are soaked in 0.2 % sodium hydroxide to soften the 
tissues. When soaked seeds are examined under stereo-binocular microscope, 
infected seeds show shiny jet black discolouration. The infected seeds when rup-
tured in a drop of water, release a stream of bunt spores.  
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   Table 1    Selected pathogenic fungi bacteria and nematode intercepted in introduced germplasm   

 Fungi/bacteria/nematodes  Major host  Country/Source 

  Alternaria brassicae  (Berk.) Sacc. 2    Brassica  spp.  Many countries 
  A. brassicicola  (Schwein.) 
Wiltshire 2  

  Brassica  spp.  Many countries 

  A. padwickii  (Ganguly) Ellis 2    Oryza sativa   Many countries 
  Bipolaris oryzae  (van Breda de 
Haan) Subram. & Jain 2  

  O. sativa   Many countries 

  B. maydis  (Nisikado & Miyabe) 
Subram. & Jain 2  

  Zea mays   Many countries 

  B. sorokiniana  (Sacc.) Subram. & 
Jain 2  

 Several hosts  Many countries 

  Botrytis cinerea  Pers.: Fr. 2   Several hosts  Many countries 
  Colletotrichum dematium  (Pers. ex 
Fr) Grove 2  

 Many hosts  Many countries 

  C. gloeosporioides  Penz. (Sacc.) 2   Several hosts  Many countries 
  Dendryphion penicillatum  (Corda) 
Fr. #,2  

  Papaver  spp.  Germany and UK 

  Fusarium verticillioides  (Sacc.) 
Nirenberg 2  

 Many hosts  Many countries 

  F. solani  (Martius) Sacc. 2   Many hosts  Many countries 
  F. nivale  Ces. ex Sacc. Ø,1    Triticum aestivum  and 

 Hordeum vulgare  
 GDR, Hungary, Italy, 
Mexico, Sweden, Turkey, 
UK and USA 

  Macrophomina phaseolina  (Tassi) 
Goid 2  

 Several hosts  Many countries 

  Peronospora manshurica  (Naumov) 
Syd. Ex Gaum. Ø,0,1  

  Glycine max   Many countries 

  Puccinia carthami  Corda 0,1    Carthamus  spp.  Many countries 
  Puccinia helianthi  Schwein. 1    Helianthus annuus   Many countries 
  Rhizoctonia solani  Kuhn 2   Several hosts  Many countries 
  Uromyces beticola  (Bellynck) 
Boerema et al. Ø,0,1  

  Beta vugaris   Many countries 

  Ustilago nuda  f.sp.  tritici  Schaffnit 3    Triticum  spp.  Many countries 
  U. nuda  f.sp.  hordei  Schaffnit 3    H. vulgare   Many countries 
  U. hordei  (Pers.) Lagerh. 3  
  Xanthomonas campestris  pv. 
 campestris  (Pammel) Dowson 2  

  Brassica  spp.  Many countries 

  X. vesicatoria  (Doidge) Dowson 4    Solanum lycopersicum   Thailand 
  Aphelenchoides besseyi  5    O. sativa   Many countries 
  Helicotylenchus dihystera  5    Annona squamosa   Taiwan 
  Pratylenchus penetrans  5    Malus domestica   The Netherlands 
  Rotylenchus minutus  5,Ø    Hypoxis hemerocallidea   Swaziland 

  SHT methods used:  0 visual examination;  1 washing test;  2 incubation test;  3 grow-out test;  4 ELISA; 
 5 seed soaking;  Ø not yet reported from India;  # only one report of occurrence in the country  

J. Akhtar et al.



433

    Incubation Test 

 Incubation is a simple method commonly used for detection of mycofl ora 
accompanied as mycelium, spores, or fruiting structures capable of growing on the 
seed during incubation of seed on wet blotter. Surface sterilization of the seeds 
using a 4 % sodium hypochlorite (NaOCl) solution is carried out before incubation 
to eliminate fast growing saprophytes if the seeds are heavily contaminated. Blotter 
test, generally referred as the standard blotter test, is the most effi cient means of 
detecting a large number of seed-borne fungal pathogens. The examination under 
stereo-binocular microscope enables the observation of pathogens as developed on 
their hosts in situ, undisturbed and in a condition of natural growth. The fungi are 
identifi ed on the basis of the growth and colour of fungal colonies. The identifi cation 
is confi rmed up to species level by making slides for examining the structure, size 
and colour of fruiting bodies/conidiophores/conidia under compound microscope. 
A critical stereoscopic and microscopic examinations of seeds on 8th day after 
incubation resulted in detection of seed-borne pathogens including fungi and 
bacteria viz.  Bipolaris maydis ,  Diplodia maydis ,  Fusarium oxysporum ,  Verticillium 
albo - atrum ; (with limited distribution);  Dendryphion penicillatum  (reported only 
once in the country);  B. sorokiniana ,  Botrytis cinerea ,  Colletotrichum capsici , 
 C. graminicola ,  Macrophomina phaseolina ,  Phoma glomerata ,  P. herbarum , 
 Rhizoctonia solani  (having wide host range);  Alternaria brassicae ,  A. brassicicola , 
 A. helianthi ,  D. oryzae ,  F. verticillioides  ( F. moniliforme ),  F. solani ,  Sclerotinia 
sclerotiorum  (causing signifi cant economic losses) and  Xanthomonas campestris  
pv.  campestris ,  X. vesicatoria  (having physiological races), etc. Infected samples 
were either incinerated or salvaged prior to release depending on the category of 
pathogen(s) detected (Agarwal et al.  1998 ).  

    Grow-Out Test 

 The plants are observed for disease symptoms caused by various seed-borne 
pathogens including fungi, beyond seedling stage. This is generally undertaken by 
sowing seeds in post-entry quarantine (PEQ) greenhouses/PEQ nursery in isolation/
containment facility. Plants are observed for disease symptoms for certain stipulated 
period. Most of the systemic infections of fungi can be detected by this method. 
Growing on procedure is of great importance in quarantine where imported plants 
are grown in confi nement for a specifi ed period of time or till the seed production in 
a glass house, screen house, poly house, or isolated fi eld or an off-shore island that 
is established in accordance with guidelines/standards and are duly approved and 
certifi ed by an inspection authority notifi ed under Plant Quarantine (Regulation of 
Import into India) Order, 2003. Loose smut of wheat ( U. segetum  var.  tritici ), loose 
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smut of barley ( Ustilago segetum  var.  nuda ) and covered smut of barley ( U. hordei ) 
can be detected in the pesticide treated exotic germplasm and international trial 
material grown in post-entry quarantine nursery during quarantine processing 
(Agarwal et al.  1989 ; Dev et al.  2003 ).  

    Immunological Techniques 

 For serological diagnosis of plant pathogens including fungi and bacteria, enzyme- 
linked immuno-sorbent assay (ELISA), a relatively simple, rapid and sensitive 
technique is used. ELISA has been shown to detect  Penicillium islandicum  in 
discolored rice grains (Dewey et al.  1990 ) and  Phomopsis longicolla  in soybean 
seeds (Gleason et al.  1987 ). Banks et al. (Wang and Yu  1998 ) have developed two 
monoclonal antibodies that could react with the antigens of several fi eld and storage 
fungi. Indirect ELISA and polyclonal antibodies has been successfully used to 
detect  P. aurantiogriseum  var.  melanoconidium  in barley seeds.  Aspergillus 
parasiticus ,  Penicillium citrinum  and  Fusarium oxysporum  in rice and corn have 
been detected by DAS-ELISA (Kumar et al.  1998 ). Immuno-sorbent assays have 
also been demonstrated to be useful in detecting mycotoxin produced by seed-borne 
fungi such as  Aspergillus  spp.,  Claviceps  spp., and  Fusarium  spp. In addition, seed 
immunoblot assay (SIBA) is able to detect viable  P. longicolla  propagules and is 
also effective in detecting  Tilletia indica  causing Karnal bunt disease in wheat seeds 
(Banks et al.  1992 ). 

 Bacterial pathogens are more amenable for detection by immunoassay. Both 
polyclonal and monoclonal antibodies specifi c to bacterial species/pathovars have 
been used for the detection of seed-borne bacterial pathogens. In comparison to 
polyclonal antibodies, monoclonal antibodies provide greater sensitivity and 
specifi city for the immunological techniques that are particularly useful in detecting 
infection. Using polyclonal antiserum,  X. vesicatoria , the causal agent of bacterial 
spot, stem and leaf blight in tomato and pepper, has been detected in  Lycopersicon 
esculentum  imported from Thailand (Dev et al.  2012 ). Agglutination tests have been 
adopted for the detection of  Pseudomonas syringae  pv.  phaseolicola  (Van Vuurde 
and Van den Bovenkamp  1981 ),  Xanthomonas campestris  pv.  phaseoli  (Trujillo and 
Saettler  1979 ) in bean seeds and  P. syringae  pv.  phaseoli  in peas (Ball and Reeves 
 1992 ).  P. syringae  pv.  phaseolicola  and  P. syringae  pv.  pisi  could be detected in 
bean and peas respectively (Lyons and Taylor  1990 ). The presence of  Erwinia 
stewartii  in maize seeds could be detected by applying ELISA (Lamka et al.  1991 ). 
Detection and identifi cation of seed-borne  Ralstonia solanacearum  in tomato by 
using specifi c monoclonal antibodies (Rajeshwari et al.  1998 ) and  X. oryzae  pv. 
 oryzae  in rice seed (Gnanamanickam et al.  1994 ) could be done reliably. 

 The orthodox seed is the most prevalent form of exchanged or traded agricultural 
commodity which also play key role in spreading the seed-transmitted pests from 
one place to another. Exotic consignments of seeds, soil as contaminant of seeds and 
packing material may be contaminated with nematodes. Nematological techniques 
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like visual examination, soaking and teasing of seeds and foliage, examination of a 
small quantity of accompanying soil clods and packing materials are being used in 
quarantine laboratories for detection of nematodes associated with the germplasm 
of agricultural crops (Lal and Lal  2006 ). During last two decades, the examination 
of samples revealed the presence of plant nematodes of quarantine importance, viz., 
 Anguina tritici ,  Aphelenchoides besseyi ,  A. arachidis ,  Ditylenchus angustus , 
 D. destructor ,  D. dipsaci ,  Heterodera schachtii ,  Pratylenchus crenatus ,  P. pene-
trans ,  Rhadinaphelenchus cocophilus  and  Rotylenchus minutes  (Lal and Lal  2005 , 
 2006 ; Khan et al.  2012 ). All of these species except  A. tritici ,  A. besseyi  and  P. 
penetrans , are not reported to occur in India. Some of the nematodes intercepted are 
new host records and some are new geographical records. The results emphasize the 
importance of plant quarantine and necessitate processing all agricultural 
commodities (seeds, plants, planting material etc.) under exchange for detection of 
pests/pathogens including nematodes.  

    Molecular Technique 

 Detection and identifi cation of the plant pathogen is of paramount importance. 
Development of molecular diagnostics were started after the introduction of 
polymerase chain reaction (PCR) in the mid 1980s and the fi rst PCR-based detection 
of a pathogen in diseased plants was published in the beginning of 1990s (Rasmussen 
and Wulff  1991 ). PCR and Real-time PCR now facilitate high-throughput 
identifi cation for many plant pathogens including fungi, bacteria and nematodes. 

 Many gene sequences of fungi, viz., Internal Transcribed Spacer (ITS) regions, 
IGS, tef-1α, β-tubulin and calmodulin can be used for the detection of fungi at 
species level and have been successfully applied in the characterization of several 
fungal species (Pileggi et al.  2009 ; Wang et al.  2010 ; Dubey et al.  2010 ,  2014 ; Durai 
et al.  2012 ; Ganeshamoorthi and Dubey  2013 ; Priyanka et al.  2014 ; Upadhyay et al. 
 2015 ). In contrast to conventional methods, samples can be tested directly for the 
presence of any pathogens and pathogens do not require isolation and culturing. 
These techniques are rapid, highly specifi c and can be used to detect minute 
quantities of DNA from PGR samples. PCR technology can also provide very 
accurate quantitative data with the necessary additional information required on 
PGR samples for quarantine processing or seed health testing for conservation. 

 Dot-blot hybridization has used for the detection of  Peronosclerospora sorghi  
causing downy mildew of sorghum (Yao et al.  1990 ).  Plasmopara halstedii , causing 
sunfl ower downy mildew in sunfl ower seeds (Says-Lesage et al.  2001 ), could be 
detected by PCR assay.  Tilletia indica , causing Karnal bunt disease in wheat seeds 
(Frederick et al.  2000 ),  Rhynchosporium secalis , causing scald disease in barley 
seeds,  Alternaria alternata ,  A. radicina , and  A. dauci  in carrot seeds (Konstantinova 
et al.  2002 ),  A. brassicae ,  A. brassicola , and  A. japonica , causal agents of black spot 
in crucifers (Iacomi-Vasilescu et al.  2002 ) could be effectively detected by PCR 
assays. Furthermore, a number of  Fusarium  species, such as  F. culmorum ,  
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F. graminearum ,  F. poae ,  F. crookwellense ,  F. sporotrichoides ,  F. sambucinum ,  F. 
avenaceum ,  F. trinctum  and  F. nivale , causing fusarium head blight/scab disease in 
cereals have been differentiated by PCR assay using trichodiene synthase gene 
(Tri5) (Edwards et al.  2001 ). 

 Real-time PCR assay developed by Bluhm et al .  ( 2004 ) could be used for the 
group specifi c detection of trichothecene and fumonisin-producing  Fusarium  spp. 
and for the identifi cation of  F. graminearum  and  F. verticillioides  in barley and corn 
seeds.  A. brassicola  and  A. japonica  in radish,  A. alternata  in radish and cabbage, 
 Stemphylium botryosum ,  Penicillium  sp. and  Aspergillus  sp. in cabbage, and 
 Verticillium  sp. in tomato seeds have been detected by the quantitative real-time 
PCR. The nested-PCR assay is proved to be sensitive and specifi c for the detection 
of  Ustilaginoidea virens  using primers designed from rDNA ITS and the 5.8S rRNA 
gene (Zhou et al.  2003 ). DNA Detection Test StripsTM has been developed for 
detection of  F. graminearum  (Knoll et al.  2002 ). Similarly, rep-PCR (repetitive- 
sequence based polymerase characterization) assay was demonstrated to 
differentiation of  Tilletia  spp. and has shown the potential for application as a diag-
nostic tool (McDonald et al.  2000 ). 

 Restriction fragment length polymorphism (RFLP) analysis of PCR amplifi cation 
products could be used to differentiate  Phomopsis longicolla  and  Diaporthe 
phaseolorum , both causing seed decay of soybean (Zhang et al.  1997 ). Amplifi ed 
fragment length polymorphism (AFLP) could also be employed to detect  Claviceps 
africana , causing sorghum ergot (Tooley and Englander  2002 ). Genetic diversity 
analysis of different seed-borne pathogens namely  Alternaria alternata  (Kandan 
et al.  2014 ),  Bipolaris oryzae  (Kandan et al.  2015 ) using different molecular markers 
viz. universal rice primers (URPs), inter-simple sequence repeats (ISSR) and 
RAPD-PCR was able to group the pathogenic isolates based on their geographical 
origin. 

 Specifi c DNA probes made it possible to detect, identity, differentiate, and quan-
tify the seed-borne bacterial pathogens very rapidly and reliably. DNA hybridiza-
tion technique has been adopted for the detection of  Pseudomonas syringae  pv. 
 phaseolicola ,  Xanthomonas campestris  pv.  phaseoli  in beans,  X. oryzae  pv.  oryzae , 
 X. oryzae  pv.  oryzicola  and  P. glumae  in rice seed (Schaad et al.  1995 ; Gilbertson 
et al.  1990 ; Cottyn et al.  1994 ). A rapid and sensitive PCR-based protocol was also 
developed for detection of  X. campestris  pv.  phaseoli  (Xcp) causing bean common 
blight disease and  P. syringae  pv.  phaseolicola  causing halo blight disease in bean 
(Audy et al.  1996 ). PCR along with primer pairs developed from sequences of 
cloned random amplifi ed polymorphic DNA (RAPD) fragments could be able to 
detect  X. campestris  pv.  carotae  (Xcc), causing bacterial leaf blight disease in carrot 
seeds, leaves, and stem tissues (Meng et al.  2004 ). 

 Several Real-time PCR protocols have also been developed to detect and identify 
several phytopathogenic bacteria from seeds including  Xanthomonas  spp., 
 Clavibacter michiganensis  subsp.  sepedonicus ,  Ralstonia solanacearum  and 
 Agrobacterium  spp. (Weller et al.  2007 ). Using restriction fragments length 
polymorphism (RFLP) analysis, strains of  X. oryzae  pv.  oryzae  ( Xoo ) from rice 
were determined (Leach and White  1991 ; Yashitola et al.  1997 ). Polymerase chain 
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reaction (PCR) alone or in combination with other molecular diagnostic methods 
has been very useful for the detection of seed-borne pathogens which may also be 
adopted for detection of pathogens in other planting materials. The BIO-PCR 
technique developed by Schaad et al. is capable of detecting DNA sequences of 
target bacteria such as  P. syringae  pv.  phaseolicola  (Mosqueda-Cano and Herrera- 
Estrella  1997 ). 

 For identifi cation of nematodes, morphological characters supplemented with 
molecular diagnostics can be the best option, which can be used in decision making 
regarding quarantine clearance of germplasm. Molecular method becomes useful for 
identifi cation especially when less number or immature stages of nematodes are inter-
cepted, which otherwise are diffi cult to identify by morphological characters. The 
molecular methods based on DNA are gaining importance in recent time. The meth-
ods like restriction fragment length polymorphisms (RFLPs), satellite DNA probes, 
PCR and real-time PCR (RT-PCR) are being used for identifi cation of nematodes 
(Blok and Powers  2009 ). The Internal Transcribed Spacer (ITS) region I and II of 
ribosomal DNA genes is used as a taxonomic marker for identifi cation of nematodes 
(Powers et al.  1997 ). The PCR-RFLP profi le of the region has been used for compari-
son of different species of nematode. The molecular identifi cation methods for few 
species of nematodes are available for their identifi cation. e.g.  Globodera pallida  and 
 Bursaphelenchus xylophilus  (Skantar et al.  2007 ; Ye and Giblin-Davis  2013 ).   

    Conclusion 

 Conventional methods for detection and identifi cation of seed-borne plant pathogens 
often rely on symptoms, morphology, cultural, physiological and biochemical 
characteristics, etc. Among these, the most useful and widely used procedure are 
based on symptoms and morphological characters. These methods, although the 
cornerstone of pathogen diagnostics, may lead to improper identifi cation due to 
contamination resulting incorrect diagnosis leading to ineffective disease 
management. Thus, the accurate identifi cation and early detection of plant pathogens 
are the cornerstones of successful disease management. The morphological 
identifi cation of plant pathogens is often diffi cult and time-consuming and requires 
extensive knowledge of taxonomy and experience in recognizing detailed fungal 
features. Compared to conventional diagnostic methods, molecular methods offer 
the possibility of faster, more reliable and effi cient techniques. PCR based technique 
offers several advantages, because organisms do not need to be cultured prior to 
detection; moreover it is highly sensitive, relatively simple and faster to perform. 
There has been a shift towards DNA-based protocols developed for diagnostic 
purpose which will be helpful in decision making with respect to phytosanitary 
requirements for import/ export of seed and other planting material. Further, 
comparative studies of morpho-anatomical characters/features supplemented by 
molecular techniques in a range of closely related species should be made to evalu-
ate their importance in taxonomic studies.     
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      Afl atoxigenic Fungi in Food Grains: 
Detection, Its Impact on Handlers 
and Management Strategies                     

       Sana     Ali    

          Introduction 

 Fungal deterioration of stored seeds and grains is a common problem especially 
in tropical hot and humid climate. Harvested grains are infested by various spe-
cies of  Aspergillus , leading to their damage and mycotoxin production (Reddy 
et al.  2008 ). 

 There are hundreds of mycotoxins known, but only few have been extensively 
studied and even fewer have good methods of analysis. They can be produced in the 
fi eld, during handling, and in storage. Mycotoxicoses are diseases caused by 
exposure to foods or feeds contaminated with mycotoxins (Nelson et al.  1993 ). 

 Afl atoxins are naturally occurring mycotoxins that are produced primarily by 
some strains of  Aspergillus fl avus  and by most strains of  A. parasiticus , and some 
other species like  A. nomius ,  A. bombycis ,  A. ochraceoroseus ,  A. pseudotamari  are 
also afl atoxin producing species but they are less common (Goto et al.  1996 ; Klich 
et al.  2000 ; Peterson et al.  2001 ). Economically the most important afl atoxin pro-
ducer is  A. fl avus  (Baranyi et al.  2013 ). 

 Afl atoxins are difuranocoumarin derivatives produced by a polyketide pathway. 
B 1 , B 2 , G 1 , and G 2  are major afl atoxins named on the basis of their fl uorescence 
under UV light (blue or green) and relative chromatographic mobility during thin- 
layer chromatography. However, various other afl atoxins (e.g., M1, M2 P 1 . Q 1 , B 2a , 
and G 2a ) are known (Bbosa et al.  2013 ). 

 Afl atoxin B 1  is the most potent natural carcinogen known (Squire  1981 ) and is 
one of the most toxic mycotoxins (Passone et al.  2010 ; Sardiñas et al.  2011 ). 
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    Toxigenic Potential/Factors Affecting Toxin Production 

 There are differences in the toxigenic abilities even between different strains of each 
afl atoxigenic species. Only about half of  Aspergillus fl avus  strains produce afl atoxins 
(Klich and Pitt  1988 ), while those that do may produce more than 10 6  μg/kg (Cotty 
et al.  1994 ). 

 Fungal growth as well as mycotoxin production are related to weather extremes 
(leading to plant stress or excess hydration of stored feed grains), improper storage 
and poor food grain quality. Adverse environmental conditions leading to plant 
stress predisposes plants in the fi eld to mycotoxin contamination. Temperature, 
moisture content, and insect activity are the major post harvest factors affecting 
mycotoxin contamination of feed grains and foods (Coulumbe  1993 ). Humans are 
exposed directly to afl atoxin and other mycotoxins through consumption of 
contaminated foods. Handling such contaminated feed causes exposure of 
mycotoxins through the skin and by inhalation (Schiefer  1990 ). Indirect exposure to 
afl atoxins occurs through foods mainly milk, liver, and eggs derived from animals 
that consume contaminated feedstuffs (Hayes  1980 ). 

  Aspergillus  species usually grow when water content is less and temperature is 
high as compared to Fusarium species. Hot and humid weather encourages afl atoxin 
formation (Atanda et al.  2011 ). The optimal temperature for afl atoxin production by 
 A. fl avus  is 24–30 °C and afl atoxin production decreases as temperatures increase 
above these levels (Klich  2007 ). Hence,  A. fl avus  and afl atoxin production are 
usually seen in corn grown in the heat and drought stress. Whereas  Penicillium  
species grow at relatively low water activities and low temperatures. Since both 
 Aspergillus  and  Penicillium  can grow at low water activities, they are included in 
storage fungi (Christensen et al.  1977 ). In storage, usually the most important 
variables are the moisture content of the substrate and the relative humidity of the 
surroundings (Detroy et al.  1971 ; Wilson and Payne  1994 ). 

 Before the 1970s, afl atoxin contamination of corn was believed to originate after 
harvest. Improperly stored corn can become contaminated with afl atoxin (Lillehoj 
and Fennell  1975 ). However, after afl atoxin was identifi ed in corn before harvest, it 
is now known that most of the afl atoxin problem in corn originates in the fi eld. 
Growth of  A. fl avus  can occur at 86–87 % equilibrium relative humidity (RH) (Davis 
and Diener  1983 ). Field infection of corn with  A. fl avus  (Wicklow  1983 ) occurs 
when temperatures are high and there is drought stress.  

    Afl atoxin Contamination 

 Many substrates support growth and afl atoxin production by afl atoxigenic molds. 
Afl atoxin contamination of corn, peanuts, tree nuts, cottonseed, and other 
commodities is a continuing worldwide problem. 

 Natural contamination of cereals, fi gs, nuts, tobacco, and various other com-
modities is a common occurrence (Diener et al.  1987 ). Crops may be contaminated 
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with afl atoxin in the fi eld even before harvest, especially due to drought stress 
(Diener et al.  1987 ); however the fate of crops stored under conditions that favor 
mold growth is more troublesome. 

  A. fl avus  also produces sclerotia, or resting bodies in some circumstances which 
contain indole alkaloids like afl atrem (Wicklow  1983 ). Cyclopiazonic acid (CPA), a 
toxic indole tetramic acid, is also produced by  A. fl avus  (CAST Council for 
Agricultural Science and Technology  1989 ). However, their role in afl atoxicoses is 
not well known.  A. fl avus  is the predominant fungus in afl atoxin-contaminated corn 
and cottonseed while  A. parasiticus  is probably more common in peanuts compared 
to corn (Davis and Deiner  1983 ). 

 Corn is susceptible to  A. fl avus  infection via the silks (Marsh and Payne  1984 ) 
and these stress conditions during anthesis (pollination) results in preharvest 
contamination of corn with afl atoxin. Early harvest of crop and a decrease in late- 
season irrigation can decrease contamination.   

    Detection 

 Consumption of afl atoxins even at low concentration level creates serious health 
related problems. Hence, it is imminent to develop new methodologies to detect and 
quantify the afl atoxins in order to meet the restrictions and legislations assigned for 
controlling these carcinogenic compounds. Frequent analytical surveillance 
programs by food controlling agencies necessitate controlling afl atoxin 
contamination of food grains and ensuring food safety in order to protect health of 
exposed people. 

 Several analytical techniques are available for detection and quantifi cation of 
afl atoxins. These methods can be broadly classifi ed as chromatographic, 
spectroscopic, electrochemical and immunochemical techniques. All these 
techniques have their own benefi ts and limitations. 

 In fact, these methods need well equipped laboratories, trained personnel, 
harmful solvents and are time consuming. Therefore, novel methods like biosensors, 
electrokinetics, electrochemical transduction, amperometric detection, and 
adsorptive stripping voltammetry have been developed recently (Ali  2014 ). 

    Afl atoxins Extraction from Food Samples 

 Solid phase extraction is one of the signifi cant purifi cation steps. Test extracts are 
cleaned up before analysis (by thin layer or column liquid chromatography) to 
remove coextracted materials that are supposed to interfere during the determination 
of target analytes. The selection of proper solvent for extraction is important as it 
enhances the specifi city of the procedure and isolate the analyte of interest from 
interfering species. 
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 Afl atoxins are usually soluble in protic polar solvents like methanol, acetone, 
acetonitrile etc. Hence, such organic solvents are used for afl atoxin extraction 
(Bertuzzi et al.  2012 ). The extraction of afl atoxins is usually followed by a cleanup 
step like immunoaffi nity column (IAC) chromatography (Ma et al.  2013 ). The crude 
sample extract is applied to the immunoaffi nity column containing antibodies 
specifi c to afl atoxin immobilized on a solid support (e.g. agarose or silica). When 
the crude sample moves down the column, the afl atoxin binds to the antibody and is 
retained onto the column. This is followed by washing to remove impurities and 
unbound particles. The afl atoxin is ultimately recovered by using an appropriate 
solvent which can break the bond between the antibody and the afl atoxin. For this 
purpose acetonitrile has been found most suitable solvent.  

    Chromatography 

 The term “chromatography” fi rst introduced by Russian Botanist M. Tswett in 1903 
has been one of the most popular methods for selective selection of afl atoxins. The 
most popular techniques are high performance liquid chromatography (HPLC), gas 
chromatography (GC), liquid chromatography (LC), and thin layer chromatography 
(TLC). Fluorescence detection methods coupled with these chromatographic 
techniques have been found highly sensitive for analysis of afl atoxins (Cavaliere 
et al.  2006 ). However, chromatographic techniques often require skilled manpower, 
extensive sample pretreatment and expensive equipments (Sapsford et al.  2006 ). 

    Thin-Layer Chromatography 

 Thin layer chromatography (TLC), also called as fl at bed chromatography or planar 
chromatography is one of the most widely used separation techniques in the fi eld of 
biochemical analysis including afl atoxins. This technique has experienced a 
dramatic surge since its inception in 1938 by Izmailov and Schraiber who separated 
components present in medicinal plants using thin layer of aluminium oxide 
(Izmailov et al.  1938 ). 

 It has been the method of choice for detection and quantifi cation of afl atoxins at 
levels of even 1 ng/g (Stroka and Anklarn  2000 ). TLC is based on the separation of 
compounds by how far they migrate through selected stationary phase with a specifi c 
solvent. The distance that a compound will travel is a unique identifi er for specifi c com-
pounds, and a retention factor (R F ) has been determined for most mycotoxins (Ali  2014 ). 

 Advantage of TLC lies in the fact that more than one mycotoxin can be detected 
for each test sample. However, a positive control containing purifi ed mycotoxins 
needs to be run in parallel to ensure accuracy, since different chemicals can have a 
similar R F  values. TLC is the fast, inexpensive and versatile separation technique 
with many practical considerations that contribute to its effectiveness.  
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    Column Liquid Chromatography 

 Column liquid chromatography (LC) differs from TLC, as in TLC stationary phase 
is in planar form. However, both methods are complementary to each other. For an 
analyst, use of TLC for preliminary work in order to optimize LC separation 
conditions is not unusual. Liquid chromatography methods for the determination of 
afl atoxins in foods include normal-phase LC (NPLC), reversed-phase LC (RPLC) 
with pre- or before-column derivatization (BCD), RPLC followed by postcolumn 
derivatization (PCD), and RPLC with electrochemical detection.   

    Immunochemical Methods 

 Planar and column LC methods for determining afl atoxins in food are laborious and 
time consuming. Often, these techniques require knowledge and experience of 
chromatographic techniques to solve separation and interference problems. Through 
advances in biotechnology, highly specifi c antibody-based tests are now 
commercially available. These tests are based on the affi nities of the monoclonal or 
polyclonal antibodies for afl atoxins. 

 Small molecules, such as mycotoxins, are non-immunogenic and are known as 
haptens or molecules that will not stimulate antibody production by themselves. 
However, antibodies can be produced for a specifi c mycotoxin by conjugating it to 
a protein carrier, which causes the mycotoxin to become immunogenic. The various 
known forms of antibodies include polyclonal and monoclonal types. Polyclonal 
antibodies react with multiple antigens or haptens on a foreign compound. 
Conversely, monoclonal antibodies react only with specifi c antigens or haptens. 
Currently, both polyclonal and monoclonal antibodies have been developed that are 
available for identifying several types of mycotoxins in test samples by utilizing the 
ELISA and immuno-affi nity chromatography (IAC). The three types of 
immunochemical methods are: 

    Radioimmunoassay (RIA) 

 It is a highly sensitive  in-vitro  assay technique used to measure concentrations of 
antigens with the aid of antibodies. Though, RIA technique, requiring specialized 
equipment is extremely sensitive and specifi c but it requires special precautions and 
licensing, since radioactive substances are used. The interesting feature of RIA 
technique is its capability to analyse multiple analytes simultaneously. However, the 
need of high purity antigen and use of radioactive isotopes has limited its frequent 
use in the analysis of afl atoxins. Today it has been supplanted by the ELISA method, 
where the antigen-antibody reaction is measured using colorimetric signals instead 
of a radioactive signal.  
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    Enzyme-Linked Immunosorbent Assay (ELISA) 

 ELISA can be performed to evaluate either the presence of antigen or the presence 
of antibody in a sample. ELISAs are performed in 96-well plates. A general ELISA 
procedure involves the following fi ve-steps: (1) Coating of the microtiter plate wells 
with antigen; (2) blocking of all unbound sites to prevent false positive results; (3) 
adding of primary antibody to the wells; (4) putting of secondary antibody 
conjugated to an enzyme and (5) the reaction of a substrate with the enzyme to 
produce a colored product, thus indicating a positive reaction. 

 ELISA methods for mycotoxin assay have been available for more than a decade. 
The technology is based on the ability of a specifi c antibody to distinguish the three- 
dimensional structure of a specifi c mycotoxin. The direct competitive ELISA is 
commonly used in mycotoxin analysis. Though, it requires multiple washing steps 
but safe to use as there is no inherent health hazards associated with enzyme levels.  

    Immunoaffi nity Column Assay (ICA) 

 The IAC contains anti-mycotoxin antibody that is immobilized onto a solid support such 
as agarose gel in phosphate buffer. The sample extract is applied to an IAC. The myco-
toxin binds to the antibody and water is passed through the column to remove impuri-
ties. By passing a polar solvent such as methanol through the column, the captured 
mycotoxin is removed from the antibody and eluted from the column. The mycotoxin in 
eluent is then detected by addition of a chemical substance to either enhance the fl uores-
cence or render the mycotoxin fl uorescent before measuring in a fl uorometer.   

    Other Methods 

    Fluorescence Spectrometry 

 Fluorescence spectrometry is an important analytical technique for the detection of 
substances that emit energy at specifi c wavelengths. All the afl atoxins have a 
maximum absorption around 360 nm (Akbas and Ozdemir  2006 ). Letters ‘B’ and 
‘G’ of the afl atoxins refer to its blue (425 nm) and green–blue (450 nm) fl uorescence 
colours produced by these compounds under Ultra Violet (UV) light. The 
fl uorescence emission of the G toxin is more than 10 times greater than that for the 
B toxin (Alcaide-Molin et al.  2009 ). In general, afl atoxins in the range of 5–5000 ppb 
can be detected by using this technique.  

    Ultra-violet Absorption 

 It has been reported that all the afl atoxins have a maximum absorption around 360 nm 
with a molar absorptivity of about 20,000 cm 2 /mol (Akbas and Ozdemir  2006 ). 
Though, afl atoxins could be detected by UV absorption methods but the sensitivity 
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of such systems is not suffi cient to detect these compounds at the parts per billion 
(ppb) levels that are required for food analyses (Alcaide-Molin et al.  2009 ). The 
detection limit of UV sensors reaches micromolar ranges (Couderc et al.  1998 ). This 
is why fl uorescence (FL) techniques have become more popular for AFs detection. 

 To improve the sensitivity, UV absorption technique is usually combined with 
HPLC systems. However, HPLC-UV systems are not as sensitive as HPLC-FL 
systems, especially for detection of AFs at very low levels (Herzallah  2009 ). 
HPLC-UV systems have been considered to be accurate, precise, and reliable for 
rapid determination of afl atoxins in food samples.  

    Ion-Mobility Spectrometry 

 The ion-mobility spectrometry is a fascinating technique that is used for the 
characterization of chemicals on the basis of speed acquired by the gas-phase ions 
in an electric fi eld. To detect afl atoxins, the sample, is evaporated and mixed with a 
carrier gas before feeding into the ion mobility spectrometer (IMS) where the 
mixture is ionized and passed through an electric fi eld gradient, where ions of 
different substances will travel at different speeds. Using this technique, Sheibani 
et al. ( 2008 ) have quantifi ed afl atoxins at nanogram level (0.25 ng).  

    Confi rmation of Identities of the Afl atoxins 

 Although analytical methods might consist of different extraction, clean-up, and 
quantitation steps, the results of the analyses by such methods should be similar 
when the methods are applied properly. Since the reliability of the quantitative data 
is not in question, the problem still to be solved is the confi rmation of identity of the 
afl atoxins. The confi rmation techniques used involve either chemical derivatization 
or mass spectrometry (MS).    

    Monitoring Techniques for Assessing Exposure to Afl atoxins 
in Humans 

 New techniques have been devised to monitor individual exposures to afl atoxins 
accurately especially the analysis of afl atoxin DNA adducts and albumin adducts as 
surrogates for genotoxicity in humans. The major reactive metabolite is the exo- 
AFB1 8,9-epoxide, which if not detoxifi ed, can bind to double-stranded DNA to 
form the promutagenic AFB1-N7-guanine adduct or, following hydrolysis to the 
AFB1- dihydrodiol, with proteins such as albumin (Baertschi et al.  1988 ; Johnson 
et al.  1996 ). Both urinary AFB1-N7-guanine and serum AF-albumin levels are cor-
related with dietary intake of afl atoxins (Wild et al.  1990 ). Since, the half-life of 
human albumin is about 20 days, Afl atoxin-albumin may theoretically accumulate 
following chronic exposure to reach levels 30-fold higher than that found after a 
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single dose (Wild et al.  1996 ). In contrast, urinary AFB1-N7-guanine excretion will 
be proportionate to intake over the previous few days. Hence, the Afl atoxin-albumin 
adduct has been widely used to assess exposure in epidemiologic studies, including 
intervention studies (Turner et al.  2005 ). The only AFB1 adduct structurally identi-
fi ed in enzymatically digested plasma albumin is AFB1-lysine (Guengerich et al. 
 2002 ). This adduct has been measured by ELISA, high-performance liquid chroma-
tography (HPLC) with fl uorescence detection and more recently by isotope dilution 
mass spectrometry (IDMS) (Wang et al.  1996 ). Among these ELISA has been the 
method of choice. The sensitivities of the ELISA and HPLC fl uorescence assays are 
comparable, whereas the IDMS method is approximately 10-times more sensitive. 
HPLC fl uorescence, and IDMS methods only detect AF-lysine, the ELISA will prob-
ably measure a broader range of AF adducts. AF-albumin adduct levels measured by 
ELISA and AFlysine adducts measured by HPLC fl uorescence in the same human 
serum samples showed an excellent correlation, but the ELISA indicated ~11-fold 
higher adduct burdens (Wild et al.  1992 ). 

 Wild et al. ( 1986 ) used highly sensitive immunoassays for afl atoxins quantifi ca-
tion in human body fl uids. An enzyme linked immunosorbent assay (ELISA) was 
used to quantitate afl atoxin B1 over the range of 0.01–10 ng/ml, and was validated 
in human urine samples. This method showed a positive correlation of afl atoxin-
DNA adduct excretion into urine with dietary intake, and the major afl atoxin 
B1-DNA adduct excreted in urine was found to be an appropriate tool for monitor-
ing afl atoxin dietary exposure.  

    Effect of Afl atoxin Exposure 

 Mycotoxicology, the study of mycotoxins, began in early 1960s with the outbreak 
of Turkey-X disease in the United Kingdom during which approximately 100,000 
turkey poults died (Blout  1961 ). This mysterious turkey X disease was linked to a 
peanut meal (contaminated with secondary metabolites from  Aspergillus fl avus  i.e., 
afl atoxins) imported from Brazil (Sargeant et al.  1961 ). 

 The discovery of afl atoxin and elucidation of its effects paved the way for research 
on other livestock health and production problems linked with mold contaminated 
feed and led to the discovery of other mycotoxins produced by other fungi. 

 Not only afl atoxins affect plant growth, it is also associated with toxicity and 
carcinogenicity in humans as well as animals. Diseases caused by afl atoxin 
consumption are called afl atoxicoses which could be acute or chronic. Acute 
afl atoxicosis can be deadly; chronic afl atoxicosis can cause cancer, immune 
suppression, and various other pathological conditions. The liver is the primary 
target organ. Afl atoxin decreases host resistance and interferes with vaccine-induced 
immunity in animals (Diekman and Green  1992 ). 

 The International Agency for Research on Cancer has classifi ed afl atoxin B1 into 
a group I carcinogen (IARC  1982 ). 

 There is also signifi cant evidence of association of afl atoxin with malignancies 
in extrahepatic tissues, particularly the lungs. Various evidence of air-borne afl atoxin 
exposure leading to cancer has been reported. 
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 Naturally contaminated feeds are more toxic than those feeds having the same 
amount of a pure mycotoxin supplemented into the diet. it could be because of 
presence of more than one mycotoxin present in a naturally moldy feedstuff. In a 
study by Applebaum et al. ( 1982 ), afl atoxin produced from culture was found to be 
more toxic to dairy cattle than pure afl atoxin added to their diets. 

 There is substantial problem associated with afl atoxin contamination in maize 
production because corn is grown in climatic areas that give the mold the greatest 
opportunity for growth and dispersal, and moreover the population that grow corn 
consume it as a main part of the diets of both animals as well as humans. 

 In India, an epidemic due to afl atoxin was reported in 1975 among the Bhils (one 
of the largest tribal group in India), due to consumption of corn that was heavily 
contaminated with  A. fl avus . The epidemic was characterized by jaundice, rapidly 
developing ascites, and portal hypertension. Approximately 400 persons were 
affected by the epidemic (Krishnamachari et al.  1975 ). In a study conducted by 
Hernandez-Vargas et al. ( 2015 ) in The Gambia found that even exposure to afl atoxin 
B1 in utero is associated with methylation in white blood cells DNA of infants. 

 Because of such contamination of foodstuff food security is threatened especially 
in resource-poor countries during disease epidemics in staple crops. Also, crop 
damage contribute directly to malnutrition and indirectly to the spread of infectious 
diseases among human populations. Moreover, environmental damage occur as a 
result of shifting of the rural poor population from farming areas that are no more 
productive to urban areas, forests, or marginal lands (Anderson et al.  2004 ).  

    Study to Determine Afl atoxin Contamination of Food Grains 

 To fi nd the prevalence of  Aspergillus  contamination of stored food grains in and 
around a region in north India, maize and wheat samples from godowns and home 
storage were collected. Microbiological culture of samples was done on fungal 
culture media to study the growth of mold, if any. 37.5 % of the sample grains 
revealed growth of  Aspergillus  species of which maximum isolates were of  A. fl avus  
(31.25 %). Of all the samples cultured, 50 % of maize samples and 25 % of wheat 
samples showed the growth of  Aspergillus  species.  A. niger  was found in 12.5 % of 
maize and none of the wheat samples.  

    Study on Effect of Occupational Exposure 

 To study the effect of afl atoxin contamination of grains on humans we collected bron-
choalveolar lavage (BAL) and serum samples from 46 food-grain workers and 44 non-
foodgrain workers from the same region. Food grain workers were occupationally 
exposed to food grains in one form or the other for more than 6 months like farmers, 
those involved in loading grains in godowns etc. Culture of BAL samples were done to 
fi nd growth of  Aspergillus  species and afl atoxin was detected in BAL and serum sam-
ples using enzyme linked immunosorbent assay (ELISA). 
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 Afl atoxins were detected in 32.6 % of the food-grain workers and 9.1 % of non 
food grain workers. This association was statistically signifi cant (P < 0.01). A 
signifi cant difference was also observed in BAL culture for  Aspergillus  spp. 
(P < 0.01) between these two groups. Food-grain workers also had higher incidence 
of chronic respiratory symptoms (47.8 %) when compared to non-food-grain work-
ers (11.4 %) (Malik et al.  2014 ).  

    Management Strategies 

    Prevention 

 The strategies for preventing afl atoxin contamination can be broadly classifi ed into 
pre–and post-harvest controls. 

 Pre-harvest control: Pre-harvest control strategies not only reduce afl atoxin 
contamination but also enhance agricultural production. These are

   Adequate fi eld management using agronomic practices (crop rotation, proper 
irrigation, soil cultivation, weed control etc.),  

  Improving host resistance (resistant hybrids)  
  Biological (using antagonistic fungi or bacteria) and  
  Chemical control (fungicides, pesticides, insecticides).    

 Tillage, use of fertilizer, weed control, late season rainfall, irrigation, wind and 
pest infestation affect the level of fungal inoculum, maintaining a disease cycle in 
crops like maize (Hell and Mutegi  2011 ). 

 Among the various methods available, breeding for mycotoxin-resistant 
hybrids has been only partially successful and fungicides have shown little effi -
cacy in controlling pre-harvest afl atoxin contamination in corn plants (Duncan 
et al.  1994 ). 

 Post-harvest approaches: These include mycotoxin analysis of foodstuffs and 
diversion of contaminated feed; ammoniation of corn and cottonseed to damage 
afl atoxin; dilution with clean feeds; and improved storage technology (Trail et al. 
 1995 ). Mycotoxin-contaminated grains may be used in ethanol production 
(Desjardins et al.  1993 ). The FDA does not permit dilution of afl atoxin-contami-
nated feeds, as it is considered adulteration. Hence, the best strategy for postharvest 
control of mycotoxins is proper storage and handling of feed grains. 

 Lime application, use of farm yard manure and cereal crop residues for soil 
improvement have been found to be effective in reducing  A. fl avus  contamination 
and hence afl atoxin levels in feedstuff. Calcium (a part of lime), thickens the cell 
wall and accelerates pod fi lling, while manure promotes the growth of microorganisms 
that suppress soil infections (Diener et al.  1987 ).  
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    Advanced Techniques 

 Apart from the aforementioned traditional methods of afl atoxin control, numerous 
advanced techniques and methods have emerged in recent years that promises better 
and safer yield in future. 

    Microbiological Methods 

 Bacterial and fungal role ( Corynebacterium rubrum ,  Aspergillus niger ,  Trichoderma 
viride  and  Mucor ambiguous ) in the modifi cation of the afl atoxin structure has been 
studied. Best known decontamination method is the fermentation process, mainly 
used in bread production from wheat kernels contaminated with deoxynivalenol. 

 After fermentation, a reduction in toxins levels is seen, and this results from 
fermentation and because of the thermal process to which the product is subjected. 
Decontamination occurs because yeast adsorb toxins (Mallman et al.  2007 ). Studies 
have shown promising results in preventing afl atoxin production using 
microorganisms like Bacillus spp. (98 %),  A. fl avus  (90 %),  A. parasiticus  (90 %) 
and  Trichoderma  spp. (75 %) (Mallman et al.  2007 ).  

    Biological Control 

 Biocompetition uses non toxigenic  Aspergillus  species to competitively exclude 
toxigenic fungi (Accinelli et al.  2009 ). In this method the introduced atoxigenic 
strains competes with and exclude toxigenic strains from colonizing grains thereby 
reducing afl atoxin production in contaminated grains. 

 However, the mechanism by which a non-afl atoxigenic strain interferes with 
afl atoxin accumulation of toxigenic strains has not been completely elucidated 
(Huang et al.  2011 ; Chang et al.  2012 ). 

 Another method is the use of terrestrial bacteria which are a group of antagonistic 
microorganisms that can inhibit growth of toxigenic fungus and afl atoxin production. 
These include bacteria belonging to genera  Bacillus ,  Pseudomonas ,  Agrobacterium  
and  Streptomyces  which have worldwide distribution (Ongena and Jacques  2007 ; 
Razzaghi-Abyaneh et al.  2011 ). Their metabolites are potent inhibitors of afl atoxin 
biosynthesis in laboratory conditions, crop model systems as well as in the fi elds 
(Razzaghi-Abyaneh et al.  2011 ). Research in the fi eld of developing such novel 
strains of antifungals is being done worldwide (Ranjbarian et al.  2011 ). 

 In 2010, a strain  Bacillus megaterium  was evaluated for reducing postharvest 
decay of peanut kernels caused by  A. fl avus  (Blunt et al.  2008 ). In 2011, study was 
conducted by Degola et al. ( 2011 ) regarding the potential of the different toxin pro-
ducing  A. fl avus  strains, colonizing the corn fi elds, in reducing afl atoxins accumula-
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tion when grown in mixed cultures with non toxigenic strains. Farzaneh et al. ( 2012 ), 
conducted a study in which  Bacillus subtilis  strain (UTBSP1) was isolated from 
pistachio nuts and evaluated for the degradation of afl atoxin B1 (AFB1). It was found 
that  B. subtilis  can effectively remediate AFB1 from nutrient broth culture and pista-
chio nut by 85.66 % and 95 %, respectively. Cell free supernatant fl uid caused 
78.39 % reduction in the amount of AFB. They also found that destructive AFB1 
differed from standard AFB1 chemically, and lost its fl uorescence.  

    Genetic Engineering 

 Several studies have found some seed varieties with differences related to 
contamination by  Aspergillus fl avus  and its subsequent afl atoxin production. These 
differences may be because of various factors, and the plant genome can infl uence 
the expression of biosynthesis of mycotoxins (Passone et al.  2012 ). 

 One of the approaches in the fi eld of AF research with regard to proteomics is to 
study the afl atoxin resistance proteins in host plants such as corn. The investigation 
on proteins associated with host resistance can be used for controlling afl atoxin 
contamination of plants (Razzazi-Fazeli et al.  2011 ). The use of proteomic tools has 
made possible to fi nd different categories of resistance associated proteins which 
can be stress-responsive proteins, storage proteins or antifungal proteins that shows 
the stress-responsive and storage proteins may play a signifi cant role to enhance 
stress-tolerance of plant (Razzazi-Fazeli et al.  2011 ).   

    Legislation 

 In developed nations, due to strict regulations for afl atoxin monitoring and ample 
amount of food help to reduce intake of contaminated food by humans. Unfortunately, 
in many other countries due to food scarcity or where regulations are either not 
enforced or does not existent, ingestion of afl atoxin may be a common problem 
(Cotty et al.  1994 ). 

 Early and accurate diagnosis and pathogen surveillance on local, regional, and 
international levels are required to predict outbreaks and allow time for development 
and application of strategies to combat them in time (Miller et al.  2009 ). 

 In order to minimize the levels of AF and mycotoxins in general, the National 
Institute of Agricultural Technology of Argentina (INTA), recommends to make 
early plantings, to grow plant resistant breeds, follow good farming practices, to 
avoid stress conditions, to minimize insect damage, to avoid damaged kernels and 
to storage at less of 13 % moisture in a clean, fresh and airy place which is insect 
free (Iglesias et al.  2011 ) 

 In foodstuffs acceptable range of the total afl atoxin is 1–20 ppb worldwide and 
in the feed the permissible limit is 0–50 ppb (Ashiq et al.  2014 ). The limits for the 
afl atoxin M1 in the milk for human consumption are 0.05–0.5 ppb (FAO  2003 ).   
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    Conclusion 

 Afl atoxin exposure is a serious health hazard especially in the agricultural setting. 
Due to its toxicity, afl atoxin is responsible for losses associated with contamination 
of stored foods and feeds. The aim of the present chapter is to provide an overview 
of the problem of afl atoxin contamination of feedstuff, its harmful effect on exposed 
workers and consumers, analytical techniques used in the analysis of afl atoxins in 
food samples as well as methods to manage this issue. The methods based on 
chromatographic, spectroscopic and immunochemical characteristics of afl atoxins 
have been mainly used for afl atoxins determination in food. Though many sensitive 
methods are available for analysis of afl atoxins, the search for simple and label-free 
rapid procedures based on immune-biosensors format appears to be felt in near 
future. 

 Chronic exposure to afl atoxins as in agricultural sector is a slow and continuous 
process and usually it is not noticed unless associated health problems emerge. 
Hence, effective methods to monitor the exposure not only in environment but also 
in humans is a prerequisite for healthier population. 

 Advanced agricultural strategies are needed to reduce and prevent afl atoxin expo-
sure especially in developing countries where the problem is grave due to scarcity of 
food. While numerous studies have been conducted on afl atoxins, much is not known 
about afl atoxin exposure and the resulting health effects in developing countries.     
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