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2 IRISA, Université de Rennes, Rennes, France

3 Department of Computing, Hong Kong Polytechnic University,
Hung Hom, Hong Kong

raynal@irisa.fr

“Definierbar ist nur das, was keine Geschichte hat.”
“N’est définissable que ce qui n’a pas d’Histoire.”
“Only that which has no History can be defined.”

—Friedrich Nietzsche (1844–1900).

“Every sentence I utter must be understood not as an affirmation,
but as a question.”

—Niels Bohr (1885–1962).

Abstract. This short position paper discusses the fact that, from a
teaching point of view, parallelism and distributed computing are often
confused, while, when looking at their deep nature, they address distinct
fundamental issues. Hence, appropriate curricula should be separately
designed for each of them. The “everything is in everything (and recip-
rocally)” attitude does not seem to be a relevant approach to teach stu-
dents the important concepts which characterize parallelism on the one
side, and distributed computing on the other side.

1 A (Very) Quick Look at Parallel Computing

The main aim of parallelism is to produce efficient software. To that end, a lot of
research on parallel systems lies at the frontier between programming languages,
software engineering, scheduling algorithms, and technology. Moreover, advances
in technology cannot be ignored. As noticed by M. Herlihy and V. Luchangco
in [16], “Changes in technology can have far-reaching effects on theory. [...] After
decades of being respected but not taken seriously, research on multiprocessor
algorithms and data structures is going mainstream”.

The class of problems which can be parallelized are basically sequential
computing problems for which a static decomposition into a task graph, and
appropriate scheduling strategies used at run-time, allow us to obtain efficient
executions on specific target machines.1 In a few words, parallelism aims at
1 As explained later, designing a parallel algorithm to solve a given problem does

not want to say that there is no sequential algorithm able to solve it (maybe very
inefficiently).
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producing (time-)efficient programs, and its fundamental issue consists in mas-
tering efficiency [3,28]2.

2 What Is Distributed Computing

In a few words, distributed computing is about mastering uncertainty. Distributed
computing arises when one has to solve a problem in terms of distributed entities
(usually called processors, nodes, processes, actors, agents, sensors, peers, etc.)
such that each entity has only a partial knowledge of the many parameters
involved in the problem that has to be solved [32]. Hence, in one way or another,
in any distributed computing problem, there are several computing entities, and
each of them has to locally take a decision, whose scope is global. The uncertainty
is not under the control of the programmer, it is created by the geographical
scattering of the computing entities, the asynchrony of their communication,
their mobility, the fact that each entity knows only a subset of the whole set of
inputs (namely, its own local inputs), etc.

Although distributed algorithms are often made up of a few lines, their behav-
ior can be difficult to understand and their properties hard to state, prove, and
implement. Hence, distributed computing is not only a fundamental topic of
Informatics3, but also a challenging topic where simplicity, elegance, and beauty
are first-class citizens [11,32].

The Notion of a (Distributed) Task. The basic unit of distributed computing is
the notion of a task, which was formalized in several papers (e.g., see [18,19]).
A task is made up of n processes p1, ..., pn (computing entities), such that each
process has its own input (let ini denote the input of pi) and must compute
its own output (let outi denote the output of pi). Let I = [in1, · · · , inn] be an
input vector (let us notice that a process knows only its local input, it does not
know the whole input vector). Let O = [out1, · · · , outn] be an output vector
(similarly, even if a process is required to cooperate with the other processes,
it will compute only its local output outi, and not the whole output vector). A
task T is defined by a set I of input vectors, a set O of output vectors, and a
mapping T from I to O, such that, given any input vector I ∈ I, the output
vector O (cooperatively computed by processes) is such that O ∈ T (I). The case
n = 1 corresponds to sequential computing (see Fig. 1). In this case a task boils
down to a function.
2 In a different domain, real-time computing is on mastering on-time computing [24].
3 As nicely stated by E.W. Dijkstra (1920–2002): “Computer science is no more about

computers than astronomy is about telescopes”. Hence, to prevent ambiguities, I use
the word informatics in place of computer science. On a pleasant side, there is no
more “computer science” than “washing machine science”.
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in out = f(in)f ()

A function f() (sequential computing) A task T () (distributed computing)

piini outi

Input I Output O ∈ T (I)

T ()

Fig. 1. Function vs. task

3 A Fundamental Difference Between Parallel Computing
and Distributed Computing

This difference lies in the fact that a task is distributed by its very definition.
This means that the processes, each with its own inputs, are geographically dis-
tributed and, due to this imposed distribution, need to communicate to compute
their outputs. The geographical distribution of the computing entities is a not a
design choice, it is an input of the problem which gives its name to distributed
computing.

Differently, in parallel computing, the inputs are, by essence, centralized.
When considering the left part of Fig. 1, a function f(), and an input parameter
x, parallel computing addresses concepts, methods, and strategies which allow to
benefit from parallelism when one has to implement f(x). The input x is given,
and (if any) its initial scattering on distinct processors is not a priori imposed,
but is a design choice aiming at obtaining efficient implementations of f().

Hence, the essence of distributed computing is not on looking for efficiency
but on coordination in the presence of “adversaries” such as asynchrony, failures,
locality, mobility, heterogeneity, limited bandwidth, etc. From the local point of
view of each computing entity, these adversaries create uncertainty generating
non-determinism, which (when possible) has to be solved by an appropriate
algorithm.

4 On the Computational Side: The Hardness
of Distributed Computing

From a computability point of view, if the system is reliable, a distributed prob-
lem, abstracted as a task T , can be solved in a centralized way. Each process pi
sends its input ini to a given predetermined process, which computes T (I), and
sends back to each process pj its output outj .
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This is no longer possible if the presence of failures. Let us consider one of
the less severe types of failures, namely process crash failures in an asynchronous
system. One of the most fundamental impossibility result of distributed comput-
ing is the celebrated FLP result due to Fischer, Lynch, and Paterson [12]. This
result states that it is impossible to design a deterministic algorithm solving
the basic consensus problem in an asynchronous distributed system in which
even a single process may crash, be the underlying communication medium a
message-passing network of a read/write shared memory4.

Hence, it appears that, in distributed computing, “there are many problems
which are not computable, but these limits to computability reflect the difficulty
of making decisions in the face of ambiguity, and have little to do with the
inherent computational power of individual participants” [18]. As we can see,
the essence of distributed computing is far from the efficiency issues motivating
parallelism (See also [33]).

5 Parallel vs. Distributed Computing: A Schematic View

Inputs
– Parallel Computing: Inputs are “always” initially centralized. They can be

“disseminated” as a design choice to benefit from parallelism. A problem is
broken into distinct parts that can be solved concurrently. Parallelism was
born from machines to overcome (some) inefficiency of sequential computing.

– Distributed Computing: Inputs are always distributed.

Main concepts
– Parallel Computing is looking for efficiency:

Array processing, automatic parallelization, load balancing, machine archi-
tecture, scheduling [5,6], task graph [34], vector or systolic programming [10],
pattern decomposition [27], etc.

– Distributed Computing is about mastering uncertainty:
Local computation, non-determinism created by the environment, symmetry
breaking, agreement, etc.

Outputs
– Parallel Computing: The outputs are a function of the inputs.
– Distributed Computing: The outputs are a function of both the inputs and

(possibly) the environment5.
4 In the consensus problem each process is assumed to propose a value. The problem

is defined by the three following properties. If a process do not crash, it has to decide
a value (termination). No two processes decide differently (agreement). A decided
value is a value that was proposed by a process (validity). As cooperating processes
have to agree in one way or another (otherwise the problem is only a control flow
problem), a lot of distributed computing problems rely on a solution to the consensus
problem, or a variant of it.

5 A simple example where the output depends on both the inputs and the environment
is the Non-Blocking Atomic Commit problem (which is defined in Appendix A).
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A few paradigmatic problems
– Parallel Computing: simulation, matrix computation, differential equations,

etc.
– Distributed Computing: anonymous/oblivious agents (processes), local com-

puting, rendezvous in arbitrary graphs, agreement problems, fault-tolerant
cooperation, facing Byzantine failures.

We do not also have to forget that, in both cases (parallel computing or
distributed computing), the underlying synchronization is a fundamental issue.

6 An Approach to Teach Distributed Computing

A proven and trusted way to teach the basics of sequential computing consists
in teaching its basic components, i.e., sequential algorithms. As the algorithms
are at the core of informatics, their knowledge, and the concepts and techniques
they rely on, allow students to understand and master the fundamental concepts
of sequential computing.

In a very similar way, I think that teaching basic distributed algorithms con-
stitutes the best way for students to learn the basic elements that allow them to
capture, understand, and master the specificity and main features of distributed
computing, and discover that distributed computing cannot be reduced to a set
processors enriched with a communication medium.

Books have been written on distributed algorithms and distributed comput-
ing, e.g., [2,9,20,22,26,35–37]. Differently from a collection of papers, each of
these books presents its view of the domain, and its way to give a concrete
expression to it. Hence, in the same spirit, I present in the following my personal
view of teaching and introducing students to distributed computing, through
distributed algorithms. This view is exposed more deeply in four books I wrote
of the topic, each addressing a specific part of it. Of course, being personal, this
view may be judged as both partial and questionable.

7 Distributed Algorithms at the Undergraduate Level

At the undergraduate level, I teach distributed algorithms in failure-free systems.
The corresponding material is a subset of my book “Distributed algorithms for
message-passing systems” [32], which is made up of seventeen chapters, struc-
tured in six parts:

– Distributed graph algorithms,
– Logical time and global state in distributed systems,
– Mutual exclusion and resource allocation,
– High level communication abstractions,
– Detection of properties of distributed computation,
– Distributed shared memory.
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Distributed Graphs Algorithms. A simple way to introduce distributed algo-
rithms to student consists in considering graph problems (such as vertex col-
oring, or maximal independent set). A processor is associated with each node
and processors communicate by sending and receiving messages along channels
defined by the edges of the graph. As each node (processor) has only a local view
of the whole graph, these distributed graph algorithms lead students to think in
distributed way, i.e., a processor can only act locally to solve a global problem
involving all the nodes.

A Quick Look at Distributed Computability. As in sequential computing, stu-
dents must be taught the limits of distributed computing from the very begin-
ning. While the FLP result seems too much complicated for undergraduate stu-
dents, I present in my introductory lectures the impossibility to elect a leader in
an anonymous ring network [1]. For students, this is “similar” to the impossibil-
ity to design a sequential comparison-based algorithm that sorts an array of n
elements in less than O(n log n) comparisons of elements.

The Nature of Distributed Computing. Then, I address the second part of the
book and focus on the nature of distributed executions. This consists in two
main presentations. The first one is on the fact that a distributed execution is a
partial order on a set of events, and on Chandy-Lamport distributed snapshot
algorithm. The second one is the introduction of logical time (mainly Lamport
scalar time and vector time) and its use to solve distributed problems. Chandy-
Lamport algorithm is particularly important as it allows students to grasp the
deep nature of distributed computing: it determines a consistent global state of
a distributed computation, but it is impossible to claim that the computation
passed through this global state or not. This algorithm exhibits the relativistic
nature of distributed computing (let us remind that distributed computing is on
mastering uncertainty).

Other Topics Addressed in My Lectures. According to time, I then address
mainly distributed mutual exclusion, construction of communication abstrac-
tions of higher level than send/receive communication (e.g., rendezvous, causal
message delivery, total order message delivery), detection of properties of dis-
tributed computations, (such as deadlock detection and termination detection),
and the construction of a distributed shared memory on top of a distributed
asynchronous message-passing system.

I think that, due to their paradigmatic features, distributed algorithms solv-
ing the mutual exclusion are important to teach because they are based on dis-
tributed principles and techniques that can be used to solve many other problems
(examples are given in [32]).

Differently from mutual exclusion, which is not a problem specific to a dis-
tributed setting, termination detection is. This problem consists in designing a
distributed observation algorithm able to detect if an upper lying distributed
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application has or not terminated. This is a non-trivial problem6. Hence, termi-
nation detection introduces students to specific features imposed by distributed
settings.

Finally, I use the construction of a distributed read/write shared memory
on top of a message-passing system to introduce students to data consistency
criteria in a distributed context.

8 Distributed Algorithms at the Graduate Level

At the graduate level (Master 2 and lectures for PhD students) I address dis-
tributed computing in the presence of failures. This makes problems much more
difficult (or, sometimes, even impossible) to solve. To this end, I wrote three
books, one devoted to the case where communication is through a shared mem-
ory, and two when it is through an underlying message-passing network (one
considers asynchronous systems, while the other one considers synchronous sys-
tems). I examine below their contents and my associated lectures.

9 When Communication Is Through a Shared Memory

This book titled “Concurrent programming: algorithm, principles, and founda-
tions” [31] is both on synchronization and distributed algorithms where processes
communicate through a shared memory. It is composed of seventeen chapters,
structured in six parts:

– Lock-based synchronization,
– On the foundations side: the atomicity concept,
– Mutex-free synchronization, and associated progress conditions (the most

important being obstruction-freedom [17], lock-freedom –also called “non-
blocking”– [21], and wait-freedom [15]),

– The transactional memory approach,
– On the foundations side: from safe bits to atomic registers,
– On the foundations side: the computability power of concurrent objects.

In my lectures, I mainly introduce and develop mutex-free synchronization,
and the more theoretical part devoted to the computability power of concurrent
objects.

Mutex-Free Synchronization. The design of concurrent objects is a fundamental
issue, as those are the objects that allows processes to cooperate in the presence
of concurrency. While lock-based algorithms are well-known to implement con-
current objects, they cannot cope with process failures (which can occur in a
distributed setting such as a multicore). This is because, if a processor crashes

6 Let us notice that, even if we could observe all processors simultaneously passive,
we could not claim that the application terminated. This is because, messages can
still be in transit, which will re-activate processors when they will arrive at their
destination.
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while holding a lock on an object, this object becomes and remains forever
inaccessible. Let us remind that in an asynchronous system, it is impossible to
distinguish a slow process from a crashed process (the distinction can be done
in a synchronous system [30]). Hence, “modern” synchronization [15] (i.e., syn-
chronization in asynchronous systems prone to process crash failures) cannot
be solved by a simple patching of traditional synchronization mechanisms as
described in [7,8].

Interestingly, (not all but) many concurrent objects have mutex-free imple-
mentations. Those are such that the algorithms implementing the object oper-
ations always terminate if the invoking process does not crash, where “always”
means “despite the behavior of the other processes” (which can be slow or even
crashed). These implementations are not trivial. This come from the fact that
it is not possible to prevent several process from accessing simultaneously the
internal representation of the concurrent object.

Hence, the aim of this part of the lectures is to make students aware of
“modern” synchronization techniques (mainly wait-free computing), so that they
are able to cope with the net effect of asynchrony and failures.

The Power of Concurrent Objects. Suppose you have to choose one of the
following multicore machines. Both have the same number of processors but,
in addition to atomic read/write registers, the hardware of machine A pro-
vides a Test&Set() operation, while the hardware of machine B provides a
Compare&Swap() operation. Which machine do you choose?

In a failure-free context, and from a computability point of view, there is no
difference. Actually in such a context, read/write atomic registers are sufficient
to allow processes to cooperate. Differently, if processors may crash, machine B is
much more powerful than machine A. This is related to the computability power
of the operations Test&Set() and Compare&Swap(), which is measured with
the consensus number notion, introduced by Herlihy [15]. The consensus number
of Test&Set() is 2, while the one of Compare&Swap() is +∞. More precisely,
this establishes a strict hierarchy on the synchronization power of concurrent
objects. (For the interested reader, the consensus number notion is developed in
Appendix B.)

The notions of a mutex-free implementation of concurrent objects, and con-
sensus numbers, are fundamental concepts of modern synchronization (where,
as aid previously, “modern” means “when we want to cope with the net effect
of concurrency and any number of process failures”). They constitute the core
of my lectures in systems where communication is through shared memory.

10 When Communication Is by Message-Passing

I addressed distributed computing in the presence of failures in two complemen-
tary books, which constitute the base of my teaching concerning failure-prone
message-passing distributed systems. The first one is titled “Communication and
agreement abstractions for fault-tolerant asynchronous distributed systems” [29],
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and second one is titled “Fault-tolerant agreement in synchronous distributed
systems” [30].

The first one considers process crash failures in asynchronous systems. It
composed of seven chapters, structured in three parts:

– The register abstraction,
– The uniform reliable broadcast abstraction,
– Agreement abstraction.

The second one considers synchronous systems, where processes may fail
by crashing, committing omission failures, or behaving arbitrarily (Byzantine
processes).

High Level Communication Abstraction. The first lectures are devoted to the
construction of a reliable read/write shared memory on top of an asynchronous
system prone to process failures. It is shown that this is impossible when half
or more processes may crash. I then describe algorithms solving the problem
when a majority of processes never crash. This allows students to understand
the inherent cost of a shared memory built on top of a crash-prone asynchronous
system, and consequently the cost of a strong cooperation object.

Synchrony vs. Asynchrony. A main point of the corresponding lectures is to
obtain a deeper understanding of the net effect of asynchrony and failures. As
an example, in the part of the lectures devoted to the consensus problem, I
show that, while the problem can be solved in a synchronous system where
any number of processes may crash, it is impossible to solve if the system is
asynchronous, even if a single process may crash, and this is independent of
the total number of processes (FLP impossibility). Hence, when considering the
synchrony/asynchrony axis, a fundamental question for students is: which is
the weakest synchrony assumptions that allows consensus to be solved. This is
explored in details during several lectures.

11 Conclusion

While in the Middle Ages, philosophy, scholastic, and logic were considered as a
single study domain, they are now considered as distinct domains. It is similar
in mathematics, where (as a simple example and since a long time), algebra and
calculus are considered as separate domains, each with its own objects, concepts,
and tools. As another example, while solving an application may require knowl-
edge in both probability, graph algorithms, and differential equations, those are
considered as distinct mathematical areas.

It is the same in informatics, where some applications may involve at the
same time parallelism and distributed computing. Life is diverse, and so are
applications. But, from a teaching point of view, parallelism and distributed
computing are distinct scientific areas, and their main concepts should conse-
quently be taught separately to students. Teaching is not an accumulation of
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facts [23]. It is the exposure of concepts, principles, methodologies, and tools,
that (among other targets) non only have to ensure that students will find a job
when they finish their studies, but also (and maybe more importantly) ensure
that, thanks to their methodological and conceptual background, students will
still have a job in twenty-five years!

To conclude, let us remind that this is a position paper, where have been
presented a few personal views. As nicely expressed by Niels Bohr:

“Prediction is very difficult, especially when it is about the future.”

A The Non-blocking Atomic Commit Problem

In some applications, each process executes some local computation, at the end
of which, it votes yes or no, according to its local computation. Then, accord-
ing to their votes, the processes have to collectively commit or abort their local
computation. Named non-blocking atomic commit (NBAC), this problem is for-
malized as follows [4,13,14,29].

Let us consider n asynchronous processes prone to crash failures. Each process
proposes a value yes or no, and has to decide the value commit or the value
abort. NBAC is defined by the following set of properties7.
– Validity. A decided value is commit or abort. Moreover,

• Justification. If a process decides commit, all the processes voted yes.
• Obligation. If all processes voted yes and there is no crash, no process

decides abort.
– Integrity. A process decides at most once.
– Agreement. No two processes decide different values.
– Termination. Each non-faulty process decides.

This problem has the same agreement, integrity and termination properties
as the consensus problem. It differs from it in the validity property, namely, a
decided value is not a proposed value but a value that depends on both the
proposed values and the failure pattern. Differently, the properties defining the
consensus problem do not refer directly to the failure pattern.

B Remark on the Notion of a Consensus Number of an
Object

As previously indicated this notion was introduced by Herlihy [15]. It concerns
the computability power of concurrent objects in shared memory systems where
any number of processes may experience crash failures (e.g., multicore).

In such a context, a fundamental problem consists in building concurrent
objects able to cope with any number of process failures. This is called the
wait-free model. It is shown that the consensus object is universal in the sense
7 This means that any algorithm solving the NBAC problem must satisfy all these

properties.
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that, given read/write registers and consensus objects, it is possible to design
algorithms implementing (in the wait-free model) any concurrent object defined
by a sequential specification. Such algorithms are called universal constructions.

Hence, the key for reliability in the wait-free model is the consensus object.
This object can be informally defined as follows. Assuming each process pro-
poses a value, the processes that do not crash have to decide the same value,
and this value must be one of the proposed values. This apparently very simple
object is impossible to implement in the basic wait-free model where processes
communicate by accessing read/write registers only. This is the bad news
[12,15,25]8.

But multiprocessor machines are usually endowed with specialized operations
to address synchronization issues. Examples of such operations (or objects) are
Test&Set(), Swap(), Fetch&add(), Compare&Swap(), LL/SC, etc. Hence, the
question: “Is the “bad news” still true in a multiprocessor enriched with such
an operation?” Herlihy showed in [15] that it is possible to associate an integer
with each of these synchronization operations, called consensus number, which
characterizes its computability power in the wait-free model. More precisely, the
consensus number of a synchronization operation is x if it allows to implement
a consensus object in a system of x (or less) processes but not in a system of
(x+ 1) processes. It follows that consensus numbers provide us with a hierarchy
measuring the computability power of hardware synchronization operations. The
consensus number of read/write is 1. The consensus number of Test&Set() or
Swap() is 2; etc. until operations such as Compare&Swap() or LL/SC, whose
consensus number is +∞.

More developments on consensus objects, universal constructions, and
Herlihy’s hierarchy can be found in [15,31,33,36].
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