FerBJMmon Tools - Visualizing Thread
Access on Java Objects using Lightweight
Runtime Monitoring

Marvin Ferber(®)
Institute of Computer Science, Technical University Bergakademie Freiberg,
Freiberg, Germany
marvin.ferber@informatik.tu-freiberg.de

Abstract. Learning and teaching parallel programming in Java can
sometimes be tedious, because the correct behavior of a parallel pro-
gram can hardly be debugged. A runtime monitoring can help to gather
information on the behavior of a parallel program. As Java Bytecode
is executed inside a JVM, a runtime monitoring can be applied with
almost no changes to the source code. In this paper, FERBJMON tools
for monitoring Java objects at runtime are proposed. FERBJMON tools
also include a tool for call graph creation and a tool for visualizing
chronological accesses of threads on Java objects in a timeline diagram.
A lightweight monitoring is necessary to minimize the influence of the
monitoring on the program behavior itself. FERBJMON tools address this
issue by selecting only one class for the monitoring at the same time
and by a fast logging implementation. A producer/consumer program
and a program for cooperative task execution are used to demonstrate
the applicability and the performance of the logging. FERBJMON tools
can be used to understand and optimize thread synchronization in Java
programs.

Keywords: Java + Runtime monitoring - Parallel computing - Distrib-
uted computing - Education

1 Introduction

The programming language Java is already used in a variety of educational
activities such as lectures or practical sessions [7]. Reasons for its popularity
include the consistent object-orientation in Java source code, the platform inde-
pendence, and its large system library, which includes many classes, e. g., for par-
allel processing. Java has already built-in threading and synchronization mecha-
nisms such as mutual exclusion and signals. Even higher level parallel constructs
such as thread pools and complex thread-safe data structures like hash tables
are built-in. This makes parallelism easy to use in Java programs.

However, the proper usage of mechanisms for thread synchronization can be
difficult when starting to learn parallel programming [4,9]. The chronological

© Springer International Publishing Switzerland 2015
S. Hunold et al. (Eds.): Euro-Par 2015 Workshops, LNCS 9523, pp. 147-159, 2015.
DOI: 10.1007/978-3-319-27308-2_13

148 M. Ferber

order of activities in multiple threads of execution is hard to debug. As a conse-
quence, race conditions may occur or threads may block due to missing signals.
A source code analysis may not always detect the causes for such unintended
behavior. Runtime monitoring can be used to investigate the behavior of pro-
gram in action. As Java Bytecode is executed in a Java Virtual Machine (JVM),
a monitoring can be applied to a JVM at runtime with only minor changes to
the source code. This makes it easy to apply for, e. g., multi-threaded programs.
Runtime monitoring requires the execution of additional code. It needs to be
applied carefully to minimize the influence on the actual program behavior.

In this paper, FERBJMON tools for runtime monitoring of Java programs are
proposed. FERBJMON tools can be used to capture runtime information of Java
programs in order to create call graphs and timeline diagrams that visualize the
chronological accesses of threads on Java objects. FERBJMON tools use Bytecode
instrumentation and focus on class instances to monitor access on them. Only
parts of the program code are monitored, which allows a lightweight monitoring.

FERBJMON tools can easily be applied in teaching, because only few argu-
ments of the invocation of the Java interpreter and almost no changes to the
source code of the program under monitoring are necessary to automatically
monitor and visualize the program behavior. Furthermore, the created timeline
diagrams provide a different view on execution traces than the widely used UML
sequence diagrams, which is better suited to handle fine-grained parallelism in
Java. FERBJMON tools are available for Windows and Linux!.

The article is structured as follows. First, related work on the analysis of
multi-threaded programs is discussed. In Sect.3 the FERBJMON tools, their
implementation, and their usage are presented. Example programs and the appli-
cation of FERBJMON tools in teaching parallel programming are discussed in
Sect. 4. Benchmarks investigating the monitoring performance are presented in
Sect. 5. Section 6 concludes the paper.

2 Related Work

First steps for successful parallel programming in Java include the usage of
programming patterns for parallelism in general [10] and the proper usage of
mechanisms and data structures for parallel programming in Java [6]. However,
the necessity for tool support for parallel program validation and verification
has already been discussed in current literature on parallel programming educa-
tion [4]. Questions are raised such as “How can I introduce parallelism into my
algorithm?” or “How can I measure the benefits of parallelism?” [11]. Different
ways exist to capture and analyze the behavior of parallel programs.

A static source code analysis can be applied to detect possible deadlock sit-
uations prior to execution. A tool that detects deadlocks in Java libraries using
a lock-order graph is proposed in [12]. However, a static analysis may not detect
all dependencies in a Java code because of reflection. Such dependencies appear

! https://github.com/marvinferber /ferbjmon.

https://github.com/marvinferber/ferbjmon

FERBJMON Tools - Visualizing Thread Access on Java Objects 149

at runtime. A runtime analysis can additionally detect the number of concurring
threads and the occupancy of data structures. Therefore, tools have been devel-
oped to monitor the behavior of concurrent Java programs using program traces.
Many early attempts to generate program traces such as JACOT [8] were based
on the Java Virtual Machine Debug Interface (JVMDI), which was removed in
Java 6. Current attempts such as Javashot [1] and JThreadSpy [9] are therefore
based on Bytecode instrumentation to gather runtime information.

Javashot is a tool that generates call graphs from runtime traces of Java
programs. JThreadSpy can generate augmented UML sequence diagrams from
runtime traces highlighting thread interactions and concurrent access to criti-
cal sections in concurrent Java programs. Because UML sequence diagrams are
not well prepared for parallel programs, actions of different threads are marked
in different color for visualization. JThreadSpy provides a custom visualization
software for this purpose. Performance benchmarks on the overhead for logging
are not given. FERBJMON tools create a different visualization based on timeline
diagrams that visualize the accesses of different threads on each object instance
separately, which is better suited for fine-grained access monitoring.

Other tools for runtime monitoring of CPU usage or memory occupation such
as the Java Monitoring and Management Console (JConsole) and VisualVM [3]
are already shipped with an installation of the Java Development Kit (JDK).
All tools named provide different information that can be combined in order to
get a comprehensive knowledge on a parallel Java program.

3 Java Runtime Monitoring Using FErBJMON Tools

FERBJMON tools generate traces from program executions using a Bytecode
transformation that is executed at runtime in order to inject monitoring code
into user-defined classes. FERBJMON tools are applied in three steps:

1. Preparation — mark class of interest and transform Bytecode,
2. Monitoring — run program with transformed Bytecode and generate logs,
3. Visualization — process logs and generate diagrams.

All steps are performed automatically, except the annotation of the class of
interest. Only instances of one specific class are monitored at the same time in
order to only execute a minimal set of additional code. The class under moni-
toring must not have public fields because only method invocations can be mon-
itored. Access to public fields is not captured. Getter and setter methods need
to be implemented in order to realize a complete monitoring. The monitoring
is applied to a class by annotating it using the FERBJMON-specific @onitored
annotation, see Fig. 3 for an illustration. FERBJMON tools require the monitored
parts to be encapsulated into one Java class. This sometimes requires to adapt
the program code in order to enable the monitoring for the intended behavior.
Many data structures such as thread pools or work queues are well encapsulated
and can be monitored easily. In contrast, a matrix multiplication may be difficult

150 M. Ferber

to monitor unless each matrix update can be encapsulated into a corresponding
method.

After a class has been annotated, the monitoring can easily be applied to
any Java program by substituting the java command-line tool by a FERBJMON-
specific wrapper script.

— java_threadorder monitors the chronological access of threads on a Java
object with the intention to create a timeline diagram.

— java_callgraph captures runtime dependencies with the intention to create
a call graph.

Both wrapper scripts take exactly the same command-line parameters like the
java command-line tool. The wrapper scripts additionally apply the Bytecode
transformations necessary for monitoring, implement the generation of trace logs
while the program is executed, and perform the generation of a default visualiza-
tion after the execution has finished. Furthermore, the trace logs are also saved to
generate user-specific visualizations. FERBJMON tools take optional parameters
to influence the logging behavior, which are specified as environmental variables
of a Java program. The tools are described in detail in the following subsections.

3.1 Bytecode Instrumentation

Bytecode instrumentation is a mechanism to modify Java Bytecode at runtime.
It is applied while a specific Java class is loaded by the classloader. The instru-
mentation is transparent to the actual program code and can be used to inject
additional output messages into the Bytecode. It is helpful to use a Bytecode
manipulation library for Bytecode processing. FERBJMON tools use the Javassist
Bytecode manipulation library [2]. A filter transformation is used to modify the
relevant parts inside a class. Thereby, the syntax tree of the class is traversed
and transformations are implemented as callback functions on relevant nodes
such as method calls. FERBJMON tools use this technique to inject additional
code each time a method is invoked and each time a method returns.

Java has the ability to execute Bytecode instrumentation through a
Java agent. The Java agent code is executed before the actual user pro-
gram starts. Therefore, the method premain() needs to be implemented.
The agents library can be passed as command-line argument to the java
command-line tool (e.g., java -javaagent:PATH/agent.jar -cp CLASSPATH
MAINCLASS). Figure 1 shows the point of execution in a Java program run. The
Java agent is executed after the JVM has been initialized and before the main ()
method of the actual program is invoked. Its main purpose is to substitute the
default classloader by a custom classloader (modifying loader) that performs
the Bytecode modification. Furthermore, the Java agent also registers a global
shutdown hook, which is necessary for log file creation after the program has
finished.

At runtime, Bytecode instrumentation can only be performed for user classes.
System classes are locked and prevented from being substituted once they are
loaded. However, it is possible to instrument system classes offline and to load

FERBJMON Tools - Visualizing Thread Access on Java Objects 151

Execution steps in a JVM

custom
Thread.class

can

delegate inject

modifying
loader
apply filter
transform
to annotated
class

AN

Key: .D Java program behavior without monitoring . FerbJMon specific extensions

Fig. 1. Overview of the implementation of the runtime monitoring using a JVM. User
classes are instrumented based on annotation. Logging is performed by each thread
itself using a custom implementation of java.lang.Thread. A shutdown hook pulls all
log data and writes a common log file (Color figure online).

them during JVM startup. System class loading is performed by the bootstrap
classloader even before loading the Java agent. A specific library can be passed
to the java command-line tool in order to be loaded by the bootstrap class-
loader, see Fig.1 for an illustration. So, it is possible to even substitute system
classes like java.lang.Thread. An exemplary command line would be java
-Xbootclasspath/p:PATH/sys.jar —-cp CLASSPATH MAINCLASS.

FERBJMON tools wuse a modified version of the system class
java.lang.Thread, because a custom logging is directly integrated into each
thread. So, lock free logging is performed by each thread. This ensures an equally
distributed influence of the logging among all threads that access Java objects
under monitoring. There are no additional dependencies between threads or
threads and common data structures. At the end of a program run, a shutdown
hook is executed that actively pulls the logs from each thread and merges them
into a single log file.

3.2 FEeErBJMON Call Graph

A call graph that is captured at runtime can visualize dependencies between
those classes that were instantiated in a specific program run. This set of instan-
tiated classes and method invocations is often smaller than the set of all classes
of the program, because not all classes may be used in a specific program run. A
runtime call graph can be less complex than a call graph captured from a static
code analysis. Prior to the actual thread monitoring a call graph analysis can be
useful to identify classes and threads that access the object under monitoring.

152 M. Ferber

de.edu.ferbjmon.MyStruct_2025190714
Thread-1 main

MyStruct

\

main()depends
|

perform

internal

N
MyStruct() jperform())depends perform

perform()
internal

C de.edu.ferbjmon.MyStruct >
— TSRS

Fig. 2. Left: Call graph visualization showing dependencies captured by the runtime
monitoring. The monitored class MyStruct is marked red. Right: Timeline diagram
showing the chronological order of accesses from different threads (Thread-1 and main)
on a Java object instance of the class MyStruct.

The tool java_callgraph directly creates a text file as output that contains
all captured dependencies in the Graphviz dot language [5]. Graph layout is
done by the dot command-line tools. A exemplary graph is shown in Fig.2
(left). Classes are shown as ellipses containing their fully qualified class name.
Call dependencies are visualized as solid directed lines that show the direction of
method invocation. Dependencies that arise from non-method invocations, e. g.,
through parameters in method calls, are visualized as dashed directed lines. The
class under monitoring and all ingoing call dependencies of method invocations
are marked red. Each thread start (including the main thread) is also visualized
by ellipses containing the word _START_. Additionally, there is a dependency from
this start ellipse to the corresponding thread class via its startup method. This
can be seen in Fig. 2 (left) at the methods main() and run().

The call graph visualization does not contain invocations of methods within
a class itself. This would lead to looping dependencies that have the same origin
and target. These are not relevant for inter-class dependencies. Invocations on
system classes are not visualized, because they can hardly be monitored. Fur-
thermore, the monitoring of system classes can lead to large dependency graphs,
because even small programs can involve many system classes in the background.

3.3 FERBJMON Timeline Diagram of Thread Accesses

The chronological order of accesses to a Java class instance can be relevant to
validate or optimize the proper usage and implementation of synchronization
mechanisms in a parallel Java program. The monitoring is performed by each
thread itself, because each thread is extended by a logger implementation for
this purpose. The log messages are generated by the instrumented Bytecode of
the class under monitoring. Each log entry contains the current system time by

FERBJMON Tools - Visualizing Thread Access on Java Objects 153

means of System.nanoTime(), the hash value of the current class object, the
method that is considered, the thread that performed an action, and the action
itself (enter method or exit method). Using this information, a timeline diagram
of thread accesses can be created for each object instance.

As a requirement, logging should not influence the program behavior signifi-
cantly. If many log entries appear in a short period of time, writing these entries
to a file directly can lead to delays in thread execution. This can influence the pro-
gram behavior. Logging into main memory is limited by the capacity of the RAM
but normally much faster. Java provides the class java.lang.StringBuilder to
collect an unknown amount of strings in main memory. However, writing strings
to a preallocated array of characters may provide the best performance. As a
drawback, preallocation further limits the available log space, because the size
of the array needs to be specified in advance. To suit different logging demands
the FERBJMON tool java_threadorder implements the following logger:

— File Logger a java.io.BufferedWriter that writes log entries directly into
a file (this is the default logger),

— StringBuilder Logger uses java.lang.StringBuilder to capture all logs
in main memory, and

— MemArray Logger creates a fixed size array of characters in main memory and
captures all logs in this array.

Data from memory loggers is written to disk during the shutdown hook execu-
tion. The selected FERBJMON logger must be specified as global parameter to
the JVM invocation (-Dmyjavamon.logger=<Logger>). The MemArray Logger
needs an additional parameter (-Dmyjavamon.logger.size=<size>) that speci-
fies the size of the array. Benchmarks on the performance of the different logging
implementations in an example application are given in Sect. 5.

A timeline diagram is the default visualization of the log data captured during
runtime. It is also created by java_threadorder, see Fig.2 for an illustration.
One diagram is created for each object instance that is identified by the fully
qualified class name followed by the hash value of the object, see top of Fig.2
(right). The timeline for each thread and the corresponding thread names are
drawn below. Figure2 (right) shows the main thread and Thread-1. First, the
main thread instantiates an object of the class de.edu.ferbjmon.MyStruct and
calls the constructor. Afterwards, both threads invoke the method perform()
on this object instance. A nested method call to the public function internal ()
can also be seen. Method calls to private functions are not shown here.

4 Examples

Examples of common problems in parallel programming and their visualization
using FERBJMON tools are given in the following.

4.1 Producer and Consumer

The problem of producer and consumer is a common problem in a variety of
multi-threaded scenarios. A set of producers offers tasks to a set of threads

154 M. Ferber

that execute the work. An application of this problem can be found, e.g., in
a Web server. A fixed set of dispatch threads (producer) accept client requests
and enqueue them into a queue data structure. A fixed set of worker threads
then executes these request in their order of appearance and the results of the
requests (a Web document) are returned to the dispatcher thread. This example
demonstrates how FERBJMON tools can be used to visualize the usage of a queue.

Java offers different implementations of the interface java.util. con-
current. BlockingQueue. This interface requires the methods put(...) and
take() that block the executing thread if the queue is empty or if
no space is available (queue full). This data structure can be used
to synchronize a producer and consumer scenario. As an example, the
data structure MyQueue is implemented as a wrapper class for an
java.util.concurrent.ArrayBlockingQueue. MyQueue sets the queue size and
realizes the methods enqueue(. ..) and gather () to insert and remove elements
from this queue. The Producer and Consumer thread are derived from the class
java.lang.Thread.

— The Producer starts to enqueue three objects immediately with a delay of
5 ms between each.

— The Consumer starts to gather three objects with a delay of 2ms after an
initial delay of 2 ms.

The source code of the classes MyQueue and the timeline diagram of a monitored
program run are shown in Fig. 3. First, MyQueue is instantiated by the main
thread. The Producer thread enqueues the first item without delay. The second
enqueue () action is slightly delayed due to synchronization mechanisms that
need to be initialized in this step because a concurring gather() is already
waiting for an element to be inserted. The third gather() is largely delayed
until the last element is inserted by the Producer thread. A large delay at
consumer site may be intended, whereas a large delay on producer site may be
caused by an overload. FERBJMON tools can be used to optimize the queue size
or the number of Consumer threads.

4.2 Cooperative Task Execution

Some applications require a special communication pattern between threads. As
an example, the cooperative incrementation of an integer value using two threads
is presented. The integer is encapsulated in the class MyInteger. Two types of
threads manipulate the object. The EvenThread is only permitted to increment
the value if it is even, the 0ddThread if it is odd. As a result, a mutual incremen-
tation by both types of threads is realized in the manner of a ping-pong game.
The access pattern described is implemented using a synchronized access to
the object by both types of threads. Additionally, the object methods wait ()
and notify() are used to implement the signals that hand over control between
the thread instances. The source code of the classes 0ddThread and the timeline
diagram of a monitored program run are shown in Fig.3. The program ends

FERBJMON Tools - Visualizing Thread Access on Java Objects 155

de.edu.ferbjmon.Myinteger_2025190714 || | de.edu.ferbjmon.MyQueue_188204557
OddThread_0 EvenThread_Omain Consumer_0 Producer_ 0 main
Mylnteger MyQueue
package de.edu.ferbjmon;
setValue import java.util.concurrent.ArrayBlockingQueue;
import de.ubt.ferbjmon.annotation.Monitored;
@Monitored
public class MyQueue {
ArrayBlockingQueue<Object> abg;
~Lenqueue public MyQueue() {
[:Igetvalue abg = new ArrayBlockingQueue<Object>(3);
}
public void enqueue(Object object)
getvalue throws InterruptedException {
gsetValue abq.put(object);
getValue public Object gather()
EsetValue throws InterruptedException {
~Lgather return abg.take();
getValue } ¥
setValue
import de.edu.ferbjmon.Mylinteger;
getValue
Ssetvalue public dass OddThread extends Thread {
gather private Myinteger myinteger;
getValue private int threshold;
setValue enqueue // constructor hidden here
[] public OddThread(MyInteger my, int threshold, inti) {.}
public void run() {
getValue while (true) {
etValue // computation here
synchronized (myinteger) {
getValue int value = myinteger.getValue();
EgsetValue if (value%2==1) {
/] EvenThread (value % 2 == 0) instead
gather myinteger.setValue(value + 1);
getvalue if (value + 1) > threshold) break;
etValue }
myinteger.notify();
getValue try {myinteger.wait(); }
setValue catch (InterruptedException) {}
}
getValue ¥ B
gsetValue synchronized (myinteger) {
myinteger.notifyAll();
1
—Lenqueue
e

Fig. 3. Timeline diagrams for the monitored Java classes MyInteger (Cooperative Task
Execution) and MyQueue (Producer and Consumer). The Java codes of the classes
MyQueue and 0ddThread are also given.

after 10 increments. The timeline shows the proper handover between the two
threads. By chance, the 0ddThread starts execution first, but it only determines
the value and hands over control to the EvenThread, which is allowed to incre-
ment the value “0”. This scenario of cooperative task execution can naively also
be solved without an explicit handover between the threads. But using only a
synchronized access to the object can lead to many unsuccessful incrementation
attempts by both threads, which increases the execution time significantly.

5 Performance of FERBJMON Runtime Monitoring

As FERBJMON tools aim at lightweight runtime monitoring, this section presents
benchmarks to better understand the capabilities of FERBJMON tools. The run-
time monitoring for the construction of the call graph has no influence on
the timely relevant behavior of the program, because only dependencies are

156 M. Ferber

visualized. Also, the post-processing step of creating the timeline diagram
is not relevant for the monitoring. Thus, the runtime monitoring using
java_threadorder is benchmarked only. For testing, two different machines are
used.

— DELL 6530 Laptop Intel Core i7-3720QM (2.60 GHz), 8 GB RAM, SSHD
Seagate ST500LX003 (500 GB), Windows 7 and Linux Mint 13 (Kernel 3.2).

— Megware Workstation Intel Xeon E5-1680v3 (3.20 GHz), 64 GB RAM, SSD
Sandisk SD6SBIM2 (256 GB), Linux Mint 17 (Kernel 3.13).

For all tests, the Oracle Java JDK Version 7 was used. The experiments were
conducted using the example program of cooperative task execution, which was
presented in Sect. 4.2. Durations of program executions that are presented in the
following reflect the average value of 30 test runs with the same configuration.
FERBJMON tools provide different logging mechanisms which are benchmarked
in this section. Because the tests were performed on Windows and Linux, time
measurement was integrated into the example program itself to obtain compara-
ble results. Therefore, a timestamp at the beginning and at the end of the main ()
function were obtained using the Java method System.currentTimeMillis().

In a first test, the example program for cooperative task execution was exe-
cuted using a threshold of 10 (t = 10) for the incrementation. The execution time
measured without monitoring was below 1ms in most cases. Including the moni-
toring, the execution times were still below 3 ms. The overall program execution
time including Bytecode instrumentation and output creation was measured to
approximately 150 ms using the command line tool time in Linux (50 ms for the
unmodified program). Such low values can hardly be used for comparison. There-
fore, the threshold for cooperative task execution was increased to 100000, which
resulted in more meaningful time measurements of approximately 1s. Although
it may not be meaningful to monitor this modified program in real life, it was
used to generate comparable results for benchmarking.

The different logging mechanisms were investigated in a second experiment.
The results are summarized in Table1. It can be recognized that the results
for Linux and Windows differ significantly especially if the CPU frequency scal-
ing is enabled (SpeedStep, Turbo, and extended C-States enabled). To better
understand this effect and to get comparable results, all experiments have also
been conducted with CPU frequency scaling disabled (SpeedStep, Turbo, and
extended C-States disabled). In this test, 800022 log entries have been captured
(about 76 MB log file). The experiment only covers benchmarks of the monitor-
ing and logging. Creating a visualization from this amount of data may take a
long time. However, a visualization of the example shown in Fig.3 (t=10) was
created in approximately 500 ms.

The benchmarks revealed that the execution times under monitoring are
approximately 3 times higher than in an unmonitored program run. The
MemArray Logger showed the best logging performance in 5 of 6 cases. In the
experiment using Linux and a fixed CPU frequency on the Dell 6530 the File
Logger showed a slightly better performance. In all other tests the File Logger
showed the worst performance. This observation may be caused by a side effect

FERBJMON Tools - Visualizing Thread Access on Java Objects 157

Table 1. Benchmarks of logging implementations and logging overhead (in ms)

Dell 6530 Laptop
CPU Freq. variable

‘ Megware Workst.

CPU Freq.
variable

Windows ‘ Linux Linux
Benchmarks of different logging implementations
No Monitor. 349 997 462 509 706 460
File Logger | 1578 3089 1792 1551 1769 1252
StringBuilder ‘ 1246 2884 1601 1711 1548 1202
MemArray | 1204 2767 1527 1640 1339 1162
Benchmarks of different ratios between synchronization and computation
No Monitor. 1070 1129 1048 1059 1091 1076
MemArray’ 1264(18,1%|149132,1%|1220(16,4%1240|17,1%|1273| 16,7%(1189|10,5%
No Monitor.? 1038 1070 1008 1016 1048 1033
MemArray? 10844,43%|1218/13,8%|1070(6,15%1087|6,99%|1130| 7,82% (1076 | 4,16%

1: t=10000 d=0.1ms 2: t=1000 d=1ms (¢ and d are explained in Section 5)

due to the Linux file system cache. However, such effects can thwart repro-
ducibility and stability of the observation and can lead to a distorted monitoring
result. The MemArray Logger should be preferred, because it provides a good
performance and steady behavior. It has also been investigated that the largely
extended threshold log files may fit into main memory of current computers eas-
ily. The StringBuilder Logger is slightly slower than the MemArray Logger.
If the program behavior is completely unknown the File Logger may be used
as first try.

In the test program used (t=100000) most of the code is involved in syn-
chronization. To better investigate the real performance of FERBJMON tools the
ratio between computation and synchronization was increased using synthetic
computations in each incrementation step, see comment in 0ddThread in Fig. 3.
Also, the threshold was reduced. Table1 shows the execution times using this
adapted program for cooperative task execution. The delay d that is introduced
by the computation in each iteration is limited to 0.1 ms and 1 ms using a time
measurement. Only the MemArray Logger was used. Table1 also includes the
relative overhead of the execution time compared to the unmonitored program
run. The overhead decreases significantly when the computation time per itera-
tion increases. Using 1 ms of computation in each iteration the overhead is only
4-14% in this experiment. In this test, the overall execution times were less
influenced by the operating system and CPU frequency scaling behavior chosen.
This can be caused by the increased amount of computations, which may cause
all operating system to adjust the CPU frequency to the maximum value.

158 M. Ferber

6 Conclusion

FERBJMON tools can generate call graphs and timeline diagrams of thread
accesses on Java objects from runtime traces. The runtime traces are captured
using a lightweight monitoring based on Java Bytecode instrumentation. FERB-
JMON tools are helpful to understand the chronological order of synchronizations
between threads. Examples of a producer/consumer and a cooperative task exe-
cution were presented. Benchmarks of the logging mechanisms revealed that the
execution time is not increased too much in the examples.

FERBJMON tools have already been used successfully in a course on par-
allel programming for undergraduate students at the University of Bayreuth,
Germany. Students tasks were the detection of race conditions in a multi-
threaded program for scalar product computation and the analysis of the lock
order on different implementations of read/write locks. Students found it much
easier to generate visualizations from their implementations than using print
statements within the code. Thanks go to Prof. Thomas Rauber for making this
possible.

Acknowledgments. The development of FERBJMON tools was improved by many
contributors, in particular Sascha Hunold, Thomas Reichel, Bjorn Krellner, Matthias
Korch, and Thomas Rauber are named. Thanks for the discussions and notes.

References

1. Javashot Java Dynamic Call Graph. https://code.google.com/p/javashot/.
Accessed 31 May 2015

2. Javassist Java Bytecode Engineering Toolkit. http://jboss-javassist.github.io/
javassist/. Accessed 31 May 2015

3. VisualVM. https://visualvm.java.net/. Accessed 31 May 2015

4. Brown, R., Shoop, E., Adams, J., Clifton, C., Gardner, M., Haupt, M., Hinsbeeck,
P.: Strategies for preparing computer science students for the multicore world. In:
Proceedings of the 2010 ITiCSE Working Group Reports, pp. 97-115. ACM (2010)

5. Ellson, J., Gansner, E.R., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz -
open source graph drawing tools. In: Mutzel, P., Jiinger, M., Leipert, S. (eds.) GD
2001. LNCS, vol. 2265, p. 483. Springer, Heidelberg (2002)

6. Goetz, B., Peierls, T., Bloch, J., Bowbeer, J., Holmes, D., Lea, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Reading (2006)

7. Grossman, D., Anderson, R.E.: introducing parallelism and concurrency in the
data structures course. In: Proceedings of the Technical Symposium on Computer
Science Education, pp. 505-510. ACM (2012)

8. Leroux, H., Réquilé-Romanczuk, A., Mingins, C.: JACOT: A Tool to dynamically
visualise the execution of concurrent Java programs. In: Proceedings of the Interna-
tional Conference on Principles and Practice of Programming in Java, pp. 201-206.
Computer Science Press, Inc. (2003)

9. Malnati, G., Cuva, C.M., Barberis, C.: JThreadSpy: teaching multithreading pro-
gramming by analyzing execution traces. In: Proceedings of the Workshop on Par-
allel and Distributed Systems: Testing and Debugging, pp. 3-13. ACM (2007)

https://code.google.com/p/javashot/
http://jboss-javassist.github.io/javassist/
http://jboss-javassist.github.io/javassist/
https://visualvm.java.net/

10.

11.

12.

FERBJMON Tools - Visualizing Thread Access on Java Objects 159

Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for Parallel Programming.
Addison Wesley, Reading (2004)

Torbert, S., Vishkin, U., Tzur, R., Ellison, D.J.: Is Teaching parallel algorithmic
thinking to high school students possible?: one teacher’s experience. In: Proceedings
of the Technical Symposium on Computer Science Education, pp. 290-294. ACM
(2010)

Williams, A., Thies, W., Awasthi, P.: Static deadlock detection for Java libraries.
In: Gao, X.-X. (ed.) ECOOP 2005. LNCS, vol. 3586, pp. 602-629. Springer,
Heidelberg (2005)

	FERBJMON Tools - Visualizing Thread Access on Java Objects using Lightweight Runtime Monitoring
	1 Introduction
	2 Related Work
	3 Java Runtime Monitoring Using FERBJMON Tools
	3.1 Bytecode Instrumentation
	3.2 FerbJmon Call Graph
	3.3 FERBJMON Timeline Diagram of Thread Accesses

	4 Examples
	4.1 Producer and Consumer
	4.2 Cooperative Task Execution

	5 Performance of FerbJmon Runtime Monitoring
	6 Conclusion
	References

