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Abstract. The transition from a curriculum without parallelism topics
to a re-designed curriculum that incorporates such issues can be a daunt-
ing and time-consuming process. Therefore, it is beneficial to complement
this process by gradually integrating elements from parallel computing
into existing courses that were previously designed without parallelism in
mind. As an example, we propose the multiplication of a sparse matrix by
a dense vector on parallel computers with distributed memory. A novel
educational module is introduced that illustrates the intimate connection
between distributing the data of the sparse matrix-vector multiplication
to parallel processes and partitioning a suitably defined graph. This web-
based module aims at better involving undergraduate students in the
learning process by a high level of interactivity. It can be integrated into
any course on data structures with minimal effort by the instructor.

1 Introduction

With the current and noticeable trend toward computer architectures in which
multiple processing elements are solving the same problem simultaneously, the
need for training future generations of scientists and engineers in parallel com-
puting has become a critical issue. The ubiquity of parallelism is now a fact and
is beyond dispute among the experts. However, it is currently not sufficiently
recognized in the general academic world. In fact, today, the vast majority of
undergraduate curricula in science and engineering, including computer science,
does not involve parallelism at all.

For the time being, the absence of parallelism in undergraduate curricula can
be accepted for general science and engineering. However, the situation is differ-
ent for computer science, computer engineering, and computational science. In
these disciplines, the importance and relevance of parallelism in all types of com-
putational environments is so high that corresponding undergraduate programs
should—if not have to—include topics from parallel and distributed computing.
Despite the importance and omnipresence of parallelism in today’s computing
landscape, its integration into existing degree programs is typically difficult. One
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of the authors of the present paper was involved in trying to embed a mandatory
parallel computing course into the undergraduate programs in computer science
at two German universities, RWTH Aachen University in the early 2000 s and
Friedrich Schiller University Jena in 2013. Probably the most important lesson
learned from these two unsuccessful attempts is that, while it is easy to find argu-
ments to integrate parallel computing, it is extremely difficult to find a common
consensus on those contents that will have to be replaced when transforming an
existing into a new curriculum. According to the author’s experiences at these
two German universities, the situation is quite different when degree programs
are being developed from scratch. This is witnessed by the successful integration
of parallel computing courses into the following new degree programs: compu-
tational engineering science (bachelor and master) as well as simulation science
(master) both at RWTH Aachen University and computational and data science
(master) at Friedrich Schiller University Jena.

The focus of this paper is on the integration of elements from parallel com-
puting into existing undergraduate programs whose mandatory courses do not
involve parallelism. One option is to integrate parallel computing into elective
courses. This strategy was successfully applied in the undergraduate program in
computer science at RWTH Aachen University [2,4–6] but has the disadvantage
that it reaches only a small subset of all enrolled students because the overall
teaching load of the department is somehow balanced among competing elec-
tive courses in various areas including computer security, database systems, and
human computer interaction, to name a few.

Another approach that we advocate in this paper is to integrate a narrow
topic from parallel computing into an existing mandatory course. Here, we choose
a course in data structures because it is among the core courses in any computing
curriculum. We consider the multiplication of a sparse matrix by a dense vector
on a parallel computer with distributed memory. We first sketch, in Sect. 2,
a simple data structure for a sparse matrix and quote a serial algorithm for
the matrix-vector multiplication. In Sect. 3 we briefly summarize the standard
issues concerned with finding a suitable data distribution for that operation on
a parallel computer and point out the relation to graph partitioning in Sect. 4.
The new contribution of this paper is given in Sect. 5 where we introduce an
interactive educational module illustrating the connection between finding a data
distribution and partitioning a graph. Finally, we point the reader to related work
in Sect. 6.

2 A Simple Sparse Matrix Data Structure

Undergraduate students typically think of a matrix as a simple aggregating
mechanism that stores some entries in the form of a two-dimensional array. That
is, they associate with this term a general dense matrix without any structure.
However, in practice, matrices arising from a wide range of different application
areas are typically “sparse.” According to Wilkinson, a matrix is loosely defined
to be sparse whenever it is possible to take advantage of the number and loca-
tion of its nonzero entries. In a course on data structures, sparse matrices offer
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the opportunity to show students that the range of data structures and opera-
tions defined on matrices is much broader than the elementary two-dimensional
aggregating mechanism.

Since the focus of this article is not on data structures for sparse matrices, we
give only a simple example. Let A denote a sparse N × N matrix and consider
the matrix-vector multiplication

y ← Ax (1)

where the N -dimensional vector y is the result of applying A to some given
N -dimensional vector x. Then, the ith entry of y is given by

yi =
∑

j with aij �=0

aij · xj , i = 1, 2, . . . , N, (2)

where an algorithm that exploits the sparsity of A does not run over all elements
of the ith row of A, but only over all elements that are nonzero.

In the compressed row storage (CRS) data structure, the nonzeros of a sparse
matrix are stored in three one-dimensional arrays as follows:

CRS_matrix = record
value : array[1 .. nnz] of REAL
col_ind: array[1 .. nnz] of INTEGER
row_ptr: array[1 .. N+1] of INTEGER

end_record

Here, the number of nonzero elements of A is denoted by nnz. A nonzero ele-
ment aij is stored in value(k) if and only if its column index j is stored in
col ind(k) and its row index i satisfies row ptr(i) ≤ k < row ptr(i + 1). Then,
assuming row ptr(N + 1) := nnz + 1, it is well known that the matrix-vector
multiplication (1) is computed by the pseudocode

for (i = 1; i <= N; ++i)
y[i] = 0;
for (j = row_ptr[i]; j < row_ptr[i + 1]; ++j)

y[i] += value[j] * x[col_ind[j]];

The key observation for students is that there is some matrix data structure
that stores and operates on the nonzeros only. Further storage schemes for and
operations on sparse matrices are described in various books [13,15,19–21].

3 Sparse Matrix-Vector Multiplication Goes Parallel

The sparse matrix-vector multiplication is also an illustrating example to intro-
duce parallelism. By inspecting (2) it is obvious that all entries yi can be com-
puted independently from each other. That is, the matrix-vector multiplication
is easily decomposed into tasks that can execute simultaneously. However, it is
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not obvious to undergraduates how to decompose data required by these tasks.
The need for the decomposition of data to parallel processes is lucidly described
by introducing a parallel computer as a network that connects multiple serial
computers, each with a local memory. This way, an undergraduate course can
easily introduce, in a combined way, data structures for sparse matrices that
are more advanced than simple two-dimensional arrays as well as parallelism in
the form of multiple processes that operate on data accessible via distributed
memory.

The following questions then naturally arise: If data representing A, x and y
are distributed to multiple processes, to what extent does this data distribution
have an effect on the computation y ← Ax? What are the advantages and dis-
advantages of a given data distribution? What are the criteria for evaluating the
quality of a data distribution? How should data be distributed to the processes
ideally?

To discuss such questions with undergraduates who are new to parallel com-
puting we suggest to consider the following simple data distribution. The nonzero
elements of A are distributed to processes by rows. More precisely, all nonzeros
of a row are distributed to the same process. The vectors x and y are distributed
consistently. That is, if a process stores the nonzeros of row i of A then it also
stores the vector entries xi and yi. Given a fixed number of processes p, a data
distribution may be formally expressed by a mapping called partition

P : I → {1, 2, . . . , p}
that decomposes the set of indices I := {1, 2, . . . , N} into p subsets I1, I2, . . . ,
Ip such that

I = I1 ∪ I2 ∪ · · · ∪ Ip

with Ii ∩ Ij = ∅ for i �= j. That is, if P (i) = k then the nonzeros of row i as well
as xi and yi are stored on process k.

Since the nonzero aij is stored on process P (i) and the vector entry xj is
stored on process P (j), one can sort the terms in the sum (2) according to those
terms where both operands of the product aij ·xj are stored on the same process
and those where these operands are stored on different processes:

yi =
∑

j with aij �=0
P (i)=P (j)

aij · xj +
∑

j with aij �=0
P (i) �=P (j)

aij · xj , i = 1, 2, . . . , N. (3)

For the sake of simplicity, we assume that the product aij ·xj is computed by the
process P (i) that stores the result yi to which this product contributes. By (3),
the data distribution P has an effect on the amount of data that needs to be
communicated between processes. It also determines which processes commu-
nicate with each other. Since, on today’s computing systems, communication
needs significantly more time than computation, it is important to find a data
distribution using a goal-oriented approach. A data distribution is desirable that
balances the computational load evenly among the processes while, at the same
time, minimizes the communication among the processes.
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4 An Undirected Graph Model for Data Partitioning

The problem of finding a data distribution is also interesting from another per-
spective of undergraduate teaching. It offers the opportunity to demonstrate that
a theoretical model can serve as a successful abstraction of a practical problem.
More precisely, a formal approach using concepts from graph theory is capable
of tackling the data distribution problem systematically.

To this end, we now assume that the nonzero pattern of the nonsymmetric
matrix A is symmetric. Then, the matrix can be represented by an undirected
graph G = (V,E). The set of nodes V = {1, 2, . . . , N} is used to associate a
node to every row (or corresponding column) of A. The set of edges

E = {(i, j) | i, j ∈ V and aij �= 0 for i > j}

describes the nonzero entries. Here, the condition i > j indicates that the
edge (i, j) is identical to the edge (j, i) and that there is no self-loop in G.
The data distribution to p processes is then represented by the partition

P : V → {1, 2, . . . , p}
that decomposes the set of nodes V of the graph into p subsets V1, V2, . . . , Vp

such that
V = V1 ∪ V2 ∪ · · · ∪ Vp

with Vi ∩ Vj = ∅ for i �= j.
Then, (2) is reformulated in terms of graph terminology by

yi = aii · xi +
∑

(i,j)∈E
P (i)=P (j)

aij · xj +
∑

(i,j)∈E
P (i) �=P (j)

aij · xj .

Here, the first two terms of the right-hand side can be computed on process P (i)
without communication to any other process. The condition P (i) �= P (j) in the
last term shows that the computation of aij ·xj requires communication between
process P (i) which stores aij and process P (j) which stores xj . Minimizing
interprocess communication then roughly corresponds to minimizing the number
of edges connecting nodes in different subsets Vi of the partition P . This number
of edges is called the cut size and is formally defined by

cutsize(P ) =
∣∣{(i, j) ∈ E | P (i) �= P (j)}∣∣. (4)

In this graph model, the cut size does not exactly correspond to the number of
words communicated between all processes in the computation of y ← Ax for a
given partition P . However, it gives a reasonable approximation to this amount
of communicated data called the communication volume; see the corresponding
discussion in [17]. The communication volume is exactly described by the cut size
if the underlying model is changed from an undirected graph to a hypergraph
[11,12,22].



140 M.A. Rostami and H.M. Bücker

Assuming that the number of nonzeros is roughly the same for each row of A,
the computation is evenly balanced among the p processes if the partition P is
ε-balanced defined as

max
1≤i≤p

|Vi| ≤ (1 + ε)
|V |
p

, (5)

for some given ε > 0. The graph partitioning problem consists of minimizing the
cut size of an ε-balanced partition. It is a hard combinatorial problem [14].

5 An Educational Module Illustrating the Connection

To illustrate the connection between computing a sparse matrix-vector multi-
plication in parallel and partitioning an undirected graph, we propose a novel
educational module. This module is part of a growing set of educational mod-
ules called EXPLoring Algorithms INteractively (EXPLAIN). This collection of
web-based modules is designed to assist in the effectiveness of teachers in the
classroom and we plan to make it publicly available in the near future. Figure 1
shows the overall layout of this interactive module for sparse matrix-vector mul-
tiplication. The top of this figure visualizes—side by side—the representation of
the problem in terms of the graph G as well as in terms of the matrix A and
the vector x. Below on the left, there is a panel of colors representing differ-
ent processes and another panel displaying the order of selecting vertices of the
graph. Next, on the right, there is a score diagram recording values character-
izing communication and load balancing. At the bottom part, there are input
controls used to select a matrix from a predefined set of matrices, to upload a
small matrix, and to choose the layout of the graph vertices.

The first figure gives an overall impression of the status of the module after
a data distribution is completed. Here, p = 4 processes represented by the colors
blue, green, red, and yellow get data by interactive actions taken by the student.
Figure 2 now shows the status of the module in a phase that is more related to
the beginning of that interactive procedure. For a given matrix, the student can
distribute the data to the processes by first clicking on a color and then clicking
on an arbitrary number of vertices. That is, the distribution of vertices to a single
process is determined by first clicking on a color j and then clicking on a certain
number of vertices, say i1, i2, . . . , is such that P (i1) = P (i2) = · · · = P (is) = j.
Then, by clicking on the next color, this procedure can be repeated until all
vertices are interactively colored and, thus, the data distribution P is finally
determined.

Figure 2 illustrates the situation after the student distributed vertices 1, 2
and 3 to the blue process and the vertices 7, 8 and 10 to the green process. By
interactively assigning a vertex to a process, not only the vertex is colored by
the color representing this process, but also the row in the matrix as well as
the corresponding vector entry of x are simultaneously colored with the same
color. This way, the data distribution is visualized in the graph and in the matrix



An Educational Module Illustrating How Sparse Matrix-Vector 141

Fig. 1. Overall structure of the sparse matrix-vector multiplication module (Color
figure online).

simultaneously which emphasizes the connection between the matrix represen-
tation and the graph representation of that problem. The panel labeled “Order
of selection” records the order of the vertices that are interactively chosen. By
inspection from that panel in Fig. 1, we find out that the status depicted in Fig. 2
is an intermediate step of the interactive session that led to the data distribution
in Fig. 1. Any box labeled with the number of the chosen vertex in that panel is
also clickable allowing the student to return to any intermediate state and start
a rearrangement of the data distribution form that state.

In EXPLAIN, the term “round” refers to the process of solving a single
instance of a given problem. In this module, the problem consists of distrib-
uting all data needed to compute the matrix-vector product to the processes.
Equivalently, the distribution of all vertices of the corresponding graph to the
processes is a round. Suppose that round 2 is completed in Fig. 1. Then, the
student can explore the data distribution in more detail by clicking on a color in
the panel labeled “Color of processes.” Suppose that the student chooses the red
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Fig. 2. The intermediate state after the student selected six vertices.

process, then this action will modify the appearance of the vector x in the matrix
representation to the state given in Fig. 3. Here, all vector entries that need to
be communicated to the red process are now also colored red. The background
color still represents the process that stores that vector entry. This illustrates,
for instance, that the vector entry x1 is communicated from the blue process to
the red process when computing Ax using this particular data distribution. The
matrix representation visualizes the reason for this communication. There is at
least one row that is colored red and that has a nonzero element in column 1.
In this example row 4 and row 5 satisfy this condition. Thus, x1 is needed to
compute y4 and y5. Again, EXPLAIN visually illustrates the connection between
the linear algebra representation and the graph representation. In the graph rep-
resentation, all vector entries that need to be communicated to the red process
correspond to those non-red vertices that are connected to a red vertex. In this
example, this condition is satisfied for vertices 1, 3, 6, 7, 8, 10 which correspond

Fig. 3. All vector entries xi to be communicated to the red process are drawn in red
(Color figure online).
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Fig. 4. The communication volume and the deviation bound versus various rounds
(Color figure online).

to the vector entries x1, x3, x6, x7, x8, x10 in the matrix representation that are
drawn in red.

When a round is completed it is also instructive to focus on the quality of the
data distribution P . Recall that the graph partitioning problem aims at mini-
mizing the cut size of P while balancing the computational load evenly among
the processes. To asses these two quantities, the module introduces the score dia-
gram. An example of a score diagram is depicted in Fig. 4. For each round, this
diagram shows the cut size defined by (4) using the label “communication vol-
ume.” As mentioned in the previous section, the cut size in this undirected graph
model is not an exact representation of the communication volume. However, it
often captures the nature of the communication volume quite well. Therefore,
this graph model uses the cut size as a measure of the communication volume.
In that score diagram, the student can check his or her attempt to minimize the
communication volume over a number of rounds.

The parameter ε introduced in (5) is used to quantify the degree of imbalance
allowed in a data distribution. If ε = 0 all processes are assigned exactly |V |/p
rows of A, meaning that no imbalance is allowed at all. When increasing ε the
load balancing condition (5) is relaxed. The larger ε is chosen, the larger is the
allowed imbalance. Thus, in some way, ε quantifies the deviation from a perfect
load balance. An equivalent form of (5) is given by

p

|V | max
1≤i≤p

|Vi| − 1 ≤ ε, (6)

which can be interpreted as follows. Suppose that you are not looking for an
ε-balanced partition P for a given ε, but rather turn this procedure around and
ask: “Given a partition P , how large need ε at least be so that this partition is
ε-balanced?” Then the left-hand side of the inequality (6) which we call devia-
tion bound gives an answer to that question. The extreme cases for the deviation
bound are given by 0 if the distribution is perfectly balanced and p − 1 if there
is one process that gets all the data. The score diagram shows the value of the
deviation bound for each round. A low deviation bound indicates a partition
that balances the computational load evenly, whereas a large deviation bound
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represents a large imbalance of the load. The score diagram helps the student to
evaluate the quality of a single data distribution and to compare it with distrib-
utions obtained in previous rounds. This feedback to the student is designed in
the spirit of computer games, where a score has only a low immediate relevance
to the current game. However, the idea is to achieve a “high score” and try to
motivate the player to beat that score in subsequent rounds, thus offering an
extra challenge. For this educational module, a “high score” would consist of a
low communication value together with a low deviation bound.

Finally, we mention that EXPLAIN is designed to be extended for problems
arising in the general area of combinatorial scientific computing, including but
not limited to parallel computing. Previous modules are available on Cholesky
factorization [18], nested dissection [7], column compression [9], and bidirectional
compression [8].

6 Related Work

The idea to incrementally integrate topics from parallel computing into existing
courses is not new. Brown and Schoop [3] introduce a set of flexible teaching
modules designed to be used in many potential courses. Our approach is similar
in that the syllabus of an existing course requires only minimal changes and that
we try to reduce the effort needed by an instructor to deploy the module in a
course. A collection of their modules is available at http://csinparallel.org. These
modules cover various areas, but have a focus on programming. Like our mod-
ule, one of the modules of this collection is related to data structures. Another
approach is described in [10]. It integrates modules on parallel programming into
undergraduate courses in programming languages at the two liberal arts colleges
Knox College and Lewis & Clark College. Here, the functional language Haskel
is chosen to introduce parallel programming via two class periods of about one
hour each. Adams [1] employs the shared-memory parallel programming para-
digm OpenMP to introduce parallel design patterns in a data structure course.
Also in an existing course on data structures, Grossman and Anderson [16] take
a comprehensive approach using fork/join parallelism.

7 Concluding Remarks

The overall idea behind this paper is to integrate elements of parallelism into
existing courses that were previously designed with a serial computing paradigm
in mind. A natural approach to implement this strategy is to focus on parallel
programming. We strongly believe that parallel programming is an important
element of any program in computer science, computer engineering, and com-
putational science. However, we also advocate with this article that, in parallel
computing, there is more than programming. To this end, we introduce an inter-
active educational module that can easily be integrated into an existing course
on data structures. Though this web-based module can be augmented with par-
allel programming exercises, its focus is on a higher level of abstraction. It shows

http://csinparallel.org
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to undergraduate students that, when going from serial to parallel computing, it
is necessary to consider additional topics of fundamental quality. More precisely,
the data distribution needed to balance computational work while minimizing
communication is connected to graph partitioning. Thus, a problem like sparse
matrix-vector multiplication which is simple on a serial computer leads to a hard
combinatorial problem when computed in parallel.
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12. Çatalyürek, Ü.V., Uçar, B., Aykanat, C.: Hypergraph partitioning. In: Padua, D.
(ed.) Encyclopedia of Parallel Computing, pp. 871–881. Springer, New York (2011)

13. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Claren-
don Press, Oxford (1986)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco (1979)

15. George, A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall, Englewood Cliffs (1981)

16. Grossman, D., Anderson, R.E.: Introducing parallelism and concurrency in the
data structures course. In: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education, SIGCSE 2012, pp. 505–510. ACM, New York (2012).
http://doi.acm.org/10.1145/2157136.2157285

17. Hendrickson, B., Kolda, T.G.: Graph partitioning models for parallel computing.
Parallel Comput. 26(2), 1519–1534 (2000)
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