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Abstract. In this paper, we focus on predicting nodes’ future impor-
tance under three important metrics, namely betweenness, and closeness
centrality, using real mobility traces in Opportunistic Mobile Social Net-
works (OMSNs). Through real trace-driven simulations, we find that
nodes’ importance is highly predictable due to natural social behaviour
of human. Then, based on the observations in the simulation, we design
several reasonable prediction methods to predict nodes’ future temporal
centrality. Finally, extensive real trace-driven simulations are conducted
to evaluate the performance of our proposed methods. The results show
that the Recent Uniform Average method performs best when predicting
the future Betweenness centrality, and the Periodical Average Method
performs best when predicting the future Closeness centrality in the MIT
Reality trace. Moreover, the Recent Uniform Average method performs
best in the Infocom 06 trace.

1 Introduction

Recently, with the rapid proliferation of wireless portable devices (e.g., smart-
phones, ipad, PDAs) with bluetooth or wi-fi, Opportunistic Mobile Social Net-
works (OMSNs) begin to emerge [1–3]. Opportunistic Mobile Social Networks
combine opportunistic networks and social networks together. Previous stud-
ies have shown that the performance of such networks depends highly on the
user’s social behavior as opportunistic networks and social networks share many
common characteristics. Their common features motivate an increasing research
interests in OMSNs, especially using the social network analysis technology to
help the design of routing protocols [4].

Previous studies in OMSNs have proposed diverse metrics to measure the
relative importance of a node in networks such as betweenness centrality, and
closeness centrality [5]. However, when calculating such centrality metrics, the
current studies focused on analyzing static networks that do not change over time
or using aggregated contact information over a period of time. Actually, nodes
in OMSNs are inherently dynamic, which is driven by natural social behaviour
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of human. Therefore, it is not prudent to assume stationary human behavior in
the design of practical applications. In particular, many researchers have also
observed that nodes in OMSNs have a regular pattern [6,9]. For example, a
student will go to school with his neighbours at morning every day, and have
classes with his classmates in the classroom, which brings a regular pattern
of physical contacts, etc., which in turn provides the periodicity seen in the
underlying communication processes. Here, we make a simple assumption: since
a node’s schedule is regular, if it is an important node in the network at current
time, then it is highly possible that its importance in the future will be correlated
with the importance at current time.

In this paper, we therefore focus on predicting nodes’ future importance
under two important metrics, namely betweenness, and closeness centrality,
using different real mobility traces in OMSNs. Actually, some studies have attem-
pted to capture the dynamic behaviour of human. Tang et al. [7] proposed
temporal centrality metrics based on temporal paths in order to measure the
importance of a node in a dynamic network. Kim et al. [8] proposed several
methods to predict nodes’ importance in the future. Our work is similar to the
work in [8], but we ignore the lagged time, and only predict the centrality value
of a single time window in the network model, which makes the problem more
clear and the prediction results more reasonable. Our contributions in this paper
are three-folds:

1. Through real trace-driven simulations, we show that nodes’ centrality values
are highly correlated with their past recent centrality values, and also have
periodical behavior at 24 h difference.

2. Based on the observations, we design several intuitive prediction methods, to
predict nodes’ future temporal centrality.

3. We evaluate the performance of the proposed prediction methods using differ-
ent real mobility traces, and show that the best-performing prediction func-
tions are more accurate on average than just using the last centrality value.

The remainder of this paper is organized as follows. We present the prelim-
inaries network model in Sect. 2. Section 3 analyzes the correlation between the
past and future centrality value, and proposes several methods to predict the
future temporal centrality in OMSNs. Extensive simulations are conducted to
evaluate the performance of the proposed methods in Sect. 4. At last, we con-
clude the paper in Sect. 5.

2 Preliminaries

In this section, we first introduce the network model related to this paper, and
then define the notation and terminology for centrality metrics. Finally, we intro-
duce the generalized network centrality prediction problem which will be used
in the rest of the paper.
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2.1 Network Model

We assume that the time during which a network is observed is finite, from tstart
until tend; without loss of generality, we set tstart = 0 and tend = T . A dynamic
network contact graph G0,T = (V,E0,T ) on a time interval [0, T ] consists of a set
of vertices V and a set of temporal edges E0,T , where stochastic contact process
between a node pair u, v ∈ V on a time interval [ts, te] (0 ≤ ts ≤ te ≤ T ) is
modeled as an temporal edge euvts,te ∈ E0,T .

We divide the time interval [0, T ] into fixed discrete time windows {1, 2, ..., n}.
We use w = T

n to denote the size of each time window, expressed in some
time unites (e.g., minutes or hours). In other words, a dynamic network can
be represented as a series of static graphs at each time, G1, G2, . . . , Gn. The
notation Gt (1 ≤ t ≤ n) represents the aggregate graph which consists of a set
of vertices V and a set of edges Et where an edge euvts,te ∈ Et exists only if a
temporal edge euvts,te ∈ E0,T exists between vertices u and v on a time interval
such that te ≤ wt and ts > w(t − 1).

2.2 Network Centrality Measures

Centrality refers to a group of metrics that aim to quantify the “importance” or
“influence” of a particular node (or group) within a network. There are several
common methods to measure “centrality”. In this paper, we only introduce two
of them: betweenness, and closeness centrality. Formally, we use the standard
definition of the betweenness, and closeness centrality, and the centrality value
of a node i can be expressed as follows [5]:

Betweenness Centrality. Betweenness centrality measures the extent to which
a node lies on the shortest paths linking other nodes in the network, which is
calculated as the proportional number of shortest paths between all node pairs
in the network, that pass through a certain node. Betweenness centrality of a
certain node i can be expressed as:

Betweenness(i) =
r∑

u�=i,v �=i,i∈V

δu,v(i)
δu,v

(1)

where δu,v is the total number of shortest paths starting from the source node u
and the destination node v, and δu,v(i) are the number of shortest paths starting
from the source node u and the destination node v which actually pass through
node i.

Closeness Centrality. Closeness centrality measures the distance a certain
node to all other reachable nodes in the network, which is calculated as the
average shortest path length between a certain node and all other reachable
nodes. Closeness centrality can be regarded as a measure of how long it will take
message to spread from a given node to other nodes in the network. Closeness
centrality of a certain node i can be expressed as:
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Closeness(i) =
1

| V | −1

r∑

j �=i,j∈V

Δi,j(i) (2)

where Δi,j is the number of hops in the shortest path from node i to node j and
V is the set of nodes in the network.

2.3 Centrality Prediction Problem

As shown in Fig. 1, we generalize the problem for centrality prediction in this
paper as follows: Given a dynamic network G1,r observed during r past time
intervals, we want to predict the average network centrality values of the nodes
in the network in the r + 1 time intervals. Therefore, the purpose of this paper
is to propose several prediction methods to minimize the prediction error, and
evaluate the impact of different parameters on the performance of the proposed
prediction methods. In order to evaluate the effectiveness of the prediction meth-
ods, we use Error(Gt) to denote the average error between the guessed centrality
values and the true centrality values, which can be expressed as:

Error(Gt) =
∑

i∈V | Ct(i) − Ĉt(i) |
| V | (3)

where Cr(i) is node i’s centrality value such as Betweenness(i), or Closeness(i),
and Ĉt(i) to denote the node i’s predicted centrality value in Gt.

3 Centrality Prediction

In this section, we first use two real mobility traces, Infocom 06 [10] and MIT
Reality [11] to test whether the centrality can be predicted. Then, based on the
findings, we introduce several methods to predict the future temporal centrality.

3.1 Analysis of Correlation Between Past and Future Centrality

Note that human in reality always have regularity. Therefore, we hypothesize
that the past centrality has high correlation with the future centrality. To test
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Fig. 1. Illustration of the past and future time windows.
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this hypothesis, we use two real mobility traces, Infocom 06 and MIT Real-
ity collected from real environments. Users in these two traces are all carry-
ing Bluetooth-enabled portable devices, which record contacts by periodically
detecting their peers nearby. The traces cover various types of corporate environ-
ments and have various experiment periods. For simplicity, we only analyze the
correlation of Betweenness Centrality between the past and future time intervals.
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Fig. 2. Scatter plots depicting correlation between a fixed window (y-axis) and an
increasingly distant window from the past (x-axis) every 4 h in the MIT trace

Figure 2 plots each nodes’ Betweenness centrality value compared to its value
in a past window, in the MIT reality trace. It can be found that there is high
correlation (0.4733) between a node’s temporal centrality value with its value
4 h ago; second, increasing the time difference decreases the correlation (e.g.,
0.3407 at -8 h difference); and third, at 24 h difference the correlation rises again
(0.432), which indicates possible periodic behaviour.

Figure 3 shows each nodes’ Betweenness centrality value compared to its value
in a past window, in the infocom 06 trace. It can be found that similar to the
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Fig. 3. Scatter plots depicting correlation between a fixed window (y-axis) and an
increasingly distant window from the past (x-axis) every 4 h in the Infocom 06 trace

results in the MIT Realty trace, recent past temporal centrality values are highly
correlated compared with more distant values(e.g., 0.5804 at -4 h difference).
However, different from the results in MIT Realty trace, the pattern of repeated
peaks with -24 h time difference seems rather weak in Infocom 06 trace. The
main reason is that people attending the IEEE Infocom 2006 conference are
more likely to seek out new colleagues to talk to at the breaks between sessions,
rather than socialising with the same people, but students in the MIT campus
are more likely to meet the same people when they are taking classes or walking
in the campus.

Based on the results reported above, we have two key observations:

1. Recent past centrality values are highly correlated compared with more dis-
tant values in one day.

2. A node’s temporal centrality value with its value at 24 h difference are highly
correlated, which indicates possible periodic behaviour.
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In the next part, we will present several prediction methods based on these
observations.

3.2 Prediction Methods

Based on the analysis above, in this part, we introduce several methods to predict
the future temporal centrality.

Last Method. As the first candidate, we just use the node’s temporal centrality
value in the last temporal network (Gr) at time window r. In other words,
for i ∈ V , we use the temporal centrality Cr(i) in Gr as the future temporal
centrality Cfu(i) in Gr+1.

Recent Uniform Average Method. In order to improve the accuracy of the
prediction, we can use the node’s m previous centrality values instead of one last
previous centrality value. A reasonable idea is to use the node’s uniform average
centrality value between Gr−m+1, . . . , Gr−1, Gr where 0 < m ≤ r as the node’s
future temporal centrality value. Formally, the future temporal centrality Cfu(i)
can be expressed as:

Cfu(i) =
1
m

r∑

k=r−m+1

Ck(i) (4)

We want to find the best m given the cost of computation and the accuracy
of prediction, and will suggest values based on different real traces.

Periodical Average Method. According to the analysis above, we find that
human activities are repeated periodically. Hence, an intuitive method is to use
these periodical patterns to improve the accuracy of the prediction. For human
contact network, reasonable periods are a day or week. Given the period p of a
day or a week, we consider using the node’s periodical average centrality value
between Gr−m+1, . . . , Gr−1, Gr where 0 < m ≤ r as the node’s future temporal
centrality value. Hence, we first have to find periodical time windows of the
(r + 1)-th time window. We define a = minr

k=r−m+1(r + 1 − k)w mod p as the
time window which is the closest to the periodical time window of the (r +1)-th
time window. Then, we define f(k) as:

f(k) =

{
1, kw mod p ≡ a,

0, kw mod p �= a.
(5)

Then, the future temporal centrality Cfu(i) in Gr+1 can be expressed as:

Cfu(i) =
∑r

k=r−m+1 f(k)Ck(i)∑r
k=r−m+1 f(k)

(6)
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4 Performance Evaluation of Prediction Functions

In this section, we aim to evaluate the performance of the proposed methods
above in the Infocom 06 and MIT Reality traces, and find the proper parameter
values (e.g., m) of each prediction method at the same time. For each predic-
tion method, as introduced above, we use Error(Gt) to evaluate the prediction
accuracy of the proposed methods.
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Fig. 4. The temporal centrality prediction results by varying m in the MIT Reality
traces when w is 1 h

Figure 4 shows the temporal centrality prediction results of different predic-
tion methods in the MIT Reality trace. It can be found that the Recent Uniform
Average Method achieves the best results in Betweenness, and the Periodical
Average Method achieves the best results in Closeness. Therefore, we recom-
mend to use Recent Uniform Average method to predict the future Betweenness
centrality, and use the Periodical Average Method to predict the future Close-
ness centrality in the MIT Reality trace. It is worth noticing that with the
increasing of m, the Recent Uniform Average method achieves the minimum
Error(Gt) (0.01254) when m is around 45 h in Betweenness, and Periodical
Average Method achieves the minimum Error(Gt) (0.00569) when m is 49 h
in Closeness. We would not recommend using Last method because its relative
accuracy is not enough, although its computation cost is relatively cheap.

Figure 5 shows the temporal centrality prediction results of different predic-
tion methods in the Infocom 06 trace. By contrast, it can be found that with the
increasing of m, the Periodical Average method is not as good as that in the MIT
Reality trace. Actually, we have already observed that there is no noticeable peri-
odic patterns while the recent past centrality values are highly correlated in the
Infocom 06 trace - Fig. 3 illustrates this. Therefore, we recommend to use Recent
Uniform Average method to predict the future temporal centrality value in the
Infocom 06 trace. Furthermore, the Recent Uniform Average method achieves
the minimum Error(Gt) (0.1095 in Betweenness, and 0.1415 in Closeness) when
m is 3 h, and then the Error(Gt) values will increase after this time interval.



76 H. Zhou et al.

0 10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

m (hour)

E
rr

or

Last

Recent Uniform Average

Periodical Average

(a) Betweenness

0 10 20 30 40 50 60 70 80
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

m (hour)

E
rr

or

Last

Recent Uniform Average

Periodical Average

(b) Closeness

Fig. 5. The temporal centrality prediction results by varying m in the Infocom 06
traces when w is 1 h

This imply that the centrality value at a specific time in the Infocom 06 trace is
highly related to the recent past centrality values in 3 h.

In summary, we recommend to use the Recent Uniform Average method
performs best to predict the future Betweenness centrality, and the Periodical
Average Method to predict the future Closeness centrality in the MIT Reality
trace, while we recommend to use the Recent Uniform Average method to predict
the future temporal centrality in the Infocom 06 trace.

5 Conclusions

In this paper, we have predicted nodes’ future importance under two impor-
tant metrics, namely betweenness, and closeness centrality, using real mobility
traces in OMSNs. Through real trace-driven simulations, we find that nodes’
centrality value are highly correlated with their past recent centrality values,
and have periodical behavior at 24 h difference. Then, based on the observations
in the simulation, we design several reasonable prediction methods to predict
nodes’ future temporal centrality. Extensive real trace-driven simulation results
show that the Recent Uniform Average method performs best when predicting
the future Betweenness centrality, and the Periodical Average Method performs
best when predicting the future Closeness centrality in the MIT Reality trace.
Moreover, the Recent Uniform Average method performs best in the Infocom 06
trace.
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