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Abstract Trade duration and daily range data often exhibit asymmetric shape with
long right tail. In analysing the dynamics of these positively valued time series under
autoregressive conditional duration (ACD) models, the choice of the conditional dis-
tribution for innovations has posed challenges. A suitably chosen distribution, which
is capable of capturing unique characteristics inherent in these data, particularly the
heavy tailedness, is proved to be very useful. This paper introduces a new extension to
the class of Weibull distributions, which is shown to perform better than the existing
Weibull distribution in ACD and CARR modelling. By incorporating an additional
shape parameter, the Weibull distribution is extended to the extended Weibull (EW)
distribution to enhance its flexibility in the tails. An MCMC based sampling scheme
under a Bayesian framework is employed for statistical inference and its performance
is demonstrated in a simulation experiment. Empirical application is based on trade
duration and daily range data from the Australian Securities Exchange (ASX). The
performance of EW distribution, in terms of model fit, is assessed in comparison to
two other frequently used error distributions, the exponential and Weibull distribu-
tions.
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1 Introduction

With the recent advancements in computational technology, data capturing and stor-
age capabilities, the use of high frequency data (HFD) has gathered considerable
momentum in recent years. Consequently, there has been a surge in the interest of
research in many business related areas such as economics and finance. This was
propelled by the enhanced availability and easy access to HFD linked with financial
market transactions. As an important economic variable, the irregularly spaced trade
durations convey useful information about market dynamics. The literature on mar-
ket micro structure bears evidence to the economic significance of this variable [1].
Most often this is modelled by autoregressive conditional duration (ACD) models
introduced by [2].

Empirical evidence suggests that duration data generally has a unimodal distrib-
ution with high density around zero as the majority of transactions have durations
close to zero. The data display an asymmetric shape with a long right tail [3, 4]. Such
conditional distribution for the data has proven to be challenging to model paramet-
rically, in spite of there being significant methodological developments in analysing
the dynamics of ACD models. Frequently, the conditional distribution has been
modelled by the exponential and Weibull distributions while the log-normal, gener-
alised gamma and Burr have also been considered. However, most of these distribu-
tions have shown limitations in the specification of conditional duration distribution
[5–7]. They are unable to capture some of the characteristics of duration distributions
precisely, especially the long right tail. This may have a negative impact on fore-
casting and hence trading strategy formulation. Consequently, the choice of standard
parametric error distributions in the application to a dynamic duration model is still
of much interest in the literature.

The increased prevalence of rich data sources, particularly in financial markets
across the globe motivates the development of flexible financial time series models
to capture the subtle movements and intricacies of HFD distributions. In this context,
we propose a variation of the Weibull distribution with an extra parameter to add
flexibility in the tail behaviour. This will be referred to as the extendedWeibull (EW)
distribution. The proposed distribution will prove useful to develop financial risk
management strategies and evaluating properties such as the Value-at-risk (VaR) and
Time-at-risk (TaR) for optimum capital allocation.

The modelling structure for an ACD model is not confined to modelling duration
data alone, but has been extended to other positive valued time series. One example
is the daily range of an asset price, which is defined as the difference between the
highest and lowest log asset price within a trading day. The daily range could be used
as an efficient measure of the local volatility of an asset price [8]. The conditional
autoregressive range (CARR) model [9] analyses the daily range data and showed
improved performance in out-of-sample volatility forecasts over other frequently
used volatility models. The CARR model shares the same model structure as the
ACD model and both models belong to the family of multiplicative error models
[10]. In this paper, we assess the performance of the ACD and CARR models with
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the EW distribution by simulation and demonstrate their applicability through two
real data sets from the Australian Securities Exchange (ASX), one of trade durations
for a stock and the other of daily range data for a market index.

In summary, the main objective of this paper is to introduce the EW distribution
to model the conditional distribution of positively valued time series in an ACD
or CARR framework. Secondly, we derive the salient features and moments that
characterise this distribution. Thirdly we assess the effectiveness of the estimation
procedure based on Bayesian methodology through an extensive simulation study.
The fourth objective is to produce empirical applications involving two different data
sets to ascertain the applicability and comparative performance of EW distribution.

The remainder of this paper is organised as follows. Section2 introduces the EW
distribution with illustrations on the shapes of its probability density function (pdf)
and someproperties. Section3 discusses themodel formulation under theACDmodel
framework. Then the estimation of parameters based on the Bayesian approach is
described in Sect. 4. A simulation experiment is performed in Sect. 5 while Sect. 6
reports the outcomes of the empirical application for two stock market data on trade
durations and daily range. Further, this section compares the proposed model with
twomodels using exponential andWeibull distributions, respectively. Section7 sum-
marises the results and concludes the paper.

2 Extended Weibull Distribution

Compared to the Weibull distribution, the EW distribution has an extra shape para-
meter, which allows for more flexibility in skewness and kurtosis. Suppose that X
is a random variable following the EW distribution, denoted by EW(λ, k, γ ), with
scale parameter λ > 0, shape parameter k > 0 and the additional shape parameter
γ > 0. Then X has the following pdf

f (x) =
(
1 + 1

γ k

)
k

λk
xk−1e−( x

λ )
k
[
1 − e−( γ x

λ )
k
]
, x > 0. (1)

From (1), it is clear that EWdistribution providesmore flexibility than theWeibull
distribution. When γ → ∞, it becomes the Weibull (λ, k) distribution. Figure1
illustrates the varying shapes of the EW pdf for selected parameter values. Further,
it is evident that for the shape parameter k < 1, the distribution is more skewed and
the asymmetry is accentuated by the additional γ parameter as well. However, the
impact of γ is low when both k < 1 and λ < 1.
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Fig. 1 Pdf of the EW distribution for selected sets of parameters

2.1 Properties of EW Distribution

The general expression for the rth moment of X is given by

E(Xr) =
∫ ∞

0

(
1 + 1

γ k

)
k

λk
xr + k − 1e−( x

λ )
k
[
1 − e−( γ x

λ )
k
]

dx

=
(
1 + 1

γ k

)
λr Γ

(
1 + r

k

)[
1 − 1

(1 + γ k)
1+ r

k

]
.

The mean (μ), variance (σ 2), skewness (ρ) and kurtosis (ζ ), which describes the
characteristics of the EW distribution can be obtained accordingly from E(Xr). See
Appendix for derivations. The cumulative distribution function (cdf) F(x), survivor
function S(x) and hazard function h(x) of the EW distribution are given by
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F(x) = 1 + 1

γ k
e
−
( x

λ

)k ⎡
⎣e

−
(γ x

λ

)k

− 1 − γ k

⎤
⎦ , (2)

S(x) =
⎡
⎣γ k + 1 − e

−
(γ x

λ

)k⎤
⎦ 1

γ k
e
−
( x

λ

)k

, (3)

h(x) =

(
γ k + 1

)
kxk−1

⎛
⎝1 − e

−
(
γ x
λ

)k
⎞
⎠

⎡
⎣γ k + 1 − e

−
(γ x

λ

)k⎤
⎦ λk

, (4)

respectively. For the derivations, see Appendix.
The intensity of transaction arrivals has important implications in analysing dura-

tions. Figure2 displays the various shapes of hazard function with different sets
of parameter values as in Fig. 1 for comparison. For k >1, the hazard function is
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monotonically increasing at different rates. However, for 0 < k < 1, it is unimodal,
implying non-monotonocity. Further, this characteristic is more prominent for larger
values of γ . In the special case of k = 1, the hazard function converges to a constant
rate given by 1/λ, as x increases. Grammig and Maurer [3] assert that a distribution
with non-monotonic hazard function can better capture the behaviour of durations.
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The relative impact of γ on the skewness and kurtosis of the distribution, across
various values of k, is presented in Fig. 3. For smaller k (i.e. k < 2), both the skewness
and kurtosis tend to increase with γ . However, for larger k, there exists a non-
monotonic relationship between these characteristics and γ . For a given value of γ ,
skewness is inversely related to k, although there is no such a distinct relationship in
the case of kurtosis, particularly when k > 2.
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In comparison to the Weibull distribution, the EW distribution tends to capture
more of the right tail indicating more flexibility, irrespective of the value of γ .
Figure4a compares the two distributions for similar values of k and λwith varying γ .
The same phenomenon is observed in the case of the exponential distribution where
the EW density is plotted for k = 1 in Fig. 4b.

3 ACD Model with EW Distribution

In modelling positively valued time series under an ACD model framework, the
exponential distribution is too restrictive and the Weibull distribution is superior to
the exponential distribution as it has a shape parameter that increases its modelling
flexibility considerably. Then our proposed EW distribution is motivated by an addi-
tional shape parameter γ , which entails better capturing of the heavier tail than the
Weibull distribution. Hence, this distribution can provide a better fit.

Under the ACD model, the unit mean restriction for the innovations has to be
imposed. One option is to consider a standardised distribution, incorporating the
mean as a standardised parameter. The alternative is to directly restrict the mean to
be unity so that one parameter (usually the scale parameter) can be expressed as a
function of others, under the unit mean condition. In either case there will be one
less (free) parameter, reducing the number of parameters for the EW distribution to
two instead of three.

ACDmodel is generally applied to irregularly spaced financial market transaction
data. The most primary economic time series analysed under this framework is the
time interval between two consecutive trades of a given stock, popularly known
as trade durations. In such a scenario, let {t0, t1, . . . , ti, . . .} be a sequence of time
points the stock under consideration is traded in the stock exchange, such that t0 ≤
t1 ≤ · · · ≤ ti ≤ · · · . Here t0 denotes the starting time point and tT is the last time
point of the observed sequence, where T is the length of the series. Modelling a
financial point process in a duration framework, as waiting times characterises the
point process as a discrete time series. In a generic sense, xi = ti − ti−1 denotes the ith
duration between two transactions that occur at times ti and ti−1. Therefore, ignoring
simultaneous transactions, which is the preferred practice as evidenced in literature,
the sequence {x1, x2, . . . , xT } will generate a time series of positive measurements.
ACD models are concerned with modelling such positive valued time series. On the
other hand, positively valued time series also arise in the study of price volatility
using price range such as the intraday high low prices. CARR models analyse range
data applying an identical model structure and hence the following description is
equally valid for CARR models.

Let xi, i = 1, . . . , T be a time series of trade durations under the ACD modelling
framework,

xi = ψiεi (5)
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in a multiplicative error structure, where the deterministic component, ψi = E(Xi)

is the conditional expectation of the ith duration, given the past information, that is,

ψi = E(xi|xi−1, . . . , x1).

The main assumption here is that the standardized durations

εi = xi

ψi

are independent and identically distributed (i.i.d), having a positive support and a
unit mean, and ψi is formulated under the ACD(p, q) model as

ψi = α0 +
p∑

j=1

αjxi−j +
q∑

l=1

βlψi−l,

where p and q are non-negative integers. The following restrictions

α0 > 0, αj ≥ 0, βl ≥ 0,
p∑

j=1

αj +
q∑

l=1

βl < 1 (6)

ensure positivity and stationarity of durations, respectively.
For most practical purposes, a basic version of ACD model suffices and hence

an ACD (1, 1) model is considered in this paper. The conditional expectation ψi is
estimated via the following recursive formula

ψi = α0 + α1xi−1 + βψi−1 (7)

The long term mean is
α0

1 − α1 − β
. The random disturbance εi is assumed to follow

the EW(λ, k, γ ) distribution; imposing the unit mean restriction using (11) yields

λ = kγ k
(
1 + γ k

)1/k

Γ (1/k)
[(
1 + γ k

)1+1/k − 1
] (8)

Then the distributional form of duration Xi is as follows:

Xi ∼ EW(λψi, k, γ )

Substituting for λ in (8), the parameters to be estimated are θ = (α0, α1, β, k, γ ).
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Under this framework, the conditional likelihood has the following expression

L(x|θ) =
T∏

i=1

1

ψi

k

λk

(
1 + 1

γ k

)(
xi

ψi

)k−1

e
−
(

xi
λψi

)k [
1 − e

−
(
γ

xi
λψi

)k]
(9)

The ACD model incorporating EW errors is denoted as an EW-ACD model. The
exponential and Weibull distributions are also considered for comparison and their
ACD models are denoted as EACD and WACD models respectively.

4 Bayesian Estimation Methodology

The statistical inference is carried out using the Bayesian simulation approach, which
allows simultaneous finite sample inference. The main advantage of using Bayesian
techniques is the ability to incorporate prior knowledge into the estimation process.
Further, positivity and stationarity constraints given in (6) can be directly incor-
porated into the prior distribution. For fast convergence of the Markov chain, the
parameter generation is executed in blocks [11].

Without prior knowledge, most non-informative priors we adopted are flat over
the feasible region, with the likelihood function dominating the inference. Mostly
a uniform prior is adopted for α = (α0, α1, β), over the constraint region in (6),
ensuring the enforcement of these restrictions. We also choose the uniform prior
for the shape parameter of k, while ensuring k > 0. On the other hand an inverse
prior is assumed for γ , with positivity constraint, f (γ ) ∝ 1

γ
. Under the assumption

of independence of the individual blocks of parameters, the prior distribution can be
specified as follows

f (θ) = fα(α)fk(k)fγ (γ )

The joint posterior pdf of θ is proportional to the product of the prior density f (θ)

and the likelihood function of (9). If θ J , J = 1, 2, 3 represents a parameter block,α, k
or γ at a given simulation step, then θ−J represents the vector of paramters excluding
θ J . For each updating step, the posterior distributions for the chosen element θ J

conditional on the data and other parameters, in the MCMC setup is

f (θ J |x, θ−J) ∝ L(x|θ)f (θ J) (10)

where L(x|θ) is given in (9). The posterior distributions for each choice of θ J do
not have a standard distributional form due to lack of conjugacy between the likeli-
hood function and the prior distributions. Therefore, the Metropolis-Hastings (MH)
algorithm is used to generate samples for each block of parameters from (10). This
method was introduced by [12] involving a symmetric transition density, which was
later generalised by [13].
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We adopted a two stage MH method to draw parameters in an adaptive MCMC
sampling scheme, similar to [14]. In the first stage, random walk (RW) Metropolis
algorithm is employed, to sample parameters from the posterior distribution. The
algorithm uses a multivariate normal (MVN) proposal density q(.|.) with its mean
at the current value θ

(k−1)
J at iteration k and the covariance matrix being a multiple

of that of a certain matrix, that is, aΣθJ , where ΣθJ is set to be an identity matrix
for convenience. The RW metropolis proposal density has proven to be quite useful
in Bayesian inference, where the acceptance rate of the draws could be tuned by
adjusting the scalar a attached to the covariance matrix to ensure optimal accep-
tance probability, around 0.44 for one dimension and could be as low as 0.23 as the
dimensionality increases [15]. The sample mean θ̄ J and sample covariance SθJ are
formed using M iterates of θ J after burn-in, from the first stage. In the second stage,
an independent kernel MH algorithm is applied for parameter sampling, using the
Gaussian proposal distribution with mean θ̄ J and covariance SθJ .

In the simulation and empirical analyses, the burn-in sample is 15,000 iterates from
the MCMC to ensure proper convergence and 10,000 iterates are sampled thereafter
for estimation purposes, during the first stage. The burn-in value is chosen based
on the trace plots of the iterates. In the second stage, we use an independent MVN
density q(.), with the mean and the covariance being estimated using the 10,000
values generated from the first stage, after the burn-in. In this stage, a sample of
10,000 iterates is generated from the thus formulated independent proposal after a
burn-in of 5000 and the sample average form the parameter estimates.

5 Simulation Study

In order to assess the performance of the estimation methodology, a simulation study
is performed prior to its empirical applications.

5.1 Random Variates Generation

Simulation of the innovation εi of the ACD model from f (ε) is not straight forward
as the cdf is not invertible. Therefore, the rejection sampling method is used to draw
εi from the EW distribution. Weibull (λ, k) is used as the envelope distribution g(ε),
as the EW pdf encompasses the Weibull pdf.

The algorithm for generating a sample from f (ε) as developed by [16] is given as
follows:

1. Sample ε from g(ε).
2. Generate a uniform (0,1) random number u.
3. Compute q = f (ε)/Mg(ε). where M is a quantity such that M ≥ supε f (ε)/g(ε).
4. If u < q, accept ε as a realisation of f (ε).
5. Otherwise reject the value and repeat from step 1 onwards.
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The supremum of f (·)/g(·) happens to be (1 + 1/γ k); Therefore M could be fixed

at this value as it is > 1. Accordingly q = 1 − e−( γ ε

λ )
k

.

5.2 Simulation

This simulation study validates the effectiveness of the proposed estimation method-
ology and is conducted under four sets of values for (k, γ ), where the series length
is T = 10,000 and the number of replications is R = 200. As the empirical evidence
suggested relatively large values for γ , the simulated examples were generated by
fixing relatively high values for γ , except for one case. The parameters of the mean
equation are kept fixed as its estimation is fairly straight forward but the estimation
of shape parameters (k, γ ) are more problematic.

The simulation results presented in Table1 display the true values, average of
posterior mean estimates, standard errors and 95% credible intervals of the 200
replications, for the model parameters. Coverage percentages indicate the number

Table 1 Simulation study of 200 replications from ACD (1, 1) with EW innovations and T =
10,000 for four sets of (k, γ )

Parameter True value Estimate Std. Error 95% CI Coverage (%)

α0 0.05 0.0535 0.0065 (0.0417, 0.0671) 91.4

α1 0.10 0.1031 0.0078 (0.0886, 0.1191) 95.9

β 0.85 0.8436 0.0118 (0.8193, 0.8654) 93.4

k 0.50 0.4994 0.0088 (0.4846, 0.5188) 89.8

γ 0.5 0.6539 0.5694 (0.1126, 1.2137) 85.8

α0 0.05 0.0574 0.0067 (0.0456, 0.0716) 80.6

α1 0.10 0.1069 0.0063 (0.0951, 0.1196) 82.1

β 0.85 0.8360 0.0109 (0.8133, 0.8559) 75.0

k 1.40 1.3789 0.0299 (1.3177, 1.4343) 89.3

γ 5.0 4.7003 0.5707 (3.6176, 5.8500) 92.4

α0 0.05 0.0514 0.0064 (0.0398, 0.0648) 96.0

α1 0.10 0.1008 0.0072 (0.0872, 0.1155) 96.0

β 0.85 0.8479 0.0113 (0.8245, 0.8691) 97.0

k 0.70 0.6930 0.0180 (0.6583, 0.7264) 89.0

γ 10.0 9.6000 2.7240 (5.0399, 15.4392) 90.0

α0 0.05 0.0514 0.0065 (0.0395, 0.0651) 94.5

α1 0.10 0.1015 0.0076 (0.0873, 0.1170) 92.5

β 0.85 0.8474 0.0117 (0.8229, 0.8690) 94.0

k 0.70 0.6991 0.0092 (0.6802, 0.7168) 94.5

γ 100.0 104.78 20.898 (69.738, 153.04) 90.0
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of times the credible interval contains the true parameter value, as a percentage
of R. True values of all parameters are contained within the average 95% credible
intervals of the posterior samples and the estimates are very close to their true values.
The precision of estimates is fairly good except for γ , particularly when it is less
than one. Coverage percentages are quite satisfactory, except for β of the second
panel. Overall, the estimation of model parameters appears to perform well under
the proposed methodology.

6 Empirical Analysis

This section demonstrates the application of the ACD (1, 1) model with the EW
distribution fitted to two real life financial time series of trade duration and daily
range respectively.

6.1 Trade Duration Data

Adjusted duration data of Telstra (TLS) stock traded in the Australian Securities
Exchange (ASX) during the one week period from 1 to 7 October, 2014 is consid-
ered in the analysis. The relevant tick by tick trade data can be obtained from the
Securities Industry Research Centre of Asia-Pacific (SIRCA) in Australia. The orig-
inal durations were based on trades occurred during normal trading hours, ignoring
overnight intervals and zero durations. Thereafter, data was adjusted for its daily sea-
sonality. The observed trade durations are generally subjected to intraday seasonality
or ‘diurnal’ effect. Engle and Russell [2] and several other authors have recognised
this to be a deterministic component. This factor should be accounted for, prior to
carrying out any empirical analysis on the stochastic properties of duration processes.
The estimation of the deterministic diurnal factor, was done via a cubic spline with
knots at each half hour interval [17]. Thus adjusted duration, xi, which is referred to
as duration hereafter, is modelled under this framework.

The total length of the series is 19473. The time series plot of Fig. 5a reveals the
clustering effect generally observed in trade durations. On the other hand, Fig. 5b
shows the excessive amount of values close to zero and the long right tail which are
common characteristics of such data.

The summary statistics reported in Table2 indicate overdispersion, generally
prevalent in trade durations. Moreover, the series is positively skewed with a heavy
tail according to the values of skewness and kurtosis. Sample autocorrelation function
(ACF) of the adjusted durations is given in Fig. 6. The ACF clearly shows longterm
serial dependence in the data, although the values appear to be small in magnitude.

Three competing models EACD (1, 1), WACD (1, 1) and EW-ACD (1, 1) are
fitted to TLS trade durations. The parameter estimates are given in Table3 together
with the standard errors in parentheses. All the parameter estimates are significant at
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Fig. 5 a Time series plot and b histogram of adjusted trade durations of TLS stock during the
period 1 to 7 October, 2014

Table 2 Summary statistics of TLS trade durations during the period 1 to 7 October, 2014

Obs. Min Max Mean Median Std Skewness Kurtosis

19473 0.0013 25.7623 1.0000 0.2236 1.7809 3.4867 20.7528
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Fig. 6 Sample ACF for adjusted durations of TLS stock during the period 1 to 7 October, 2014

Table 3 Parameter estimates from ACD (1, 1) with errors from exponential, Weibull and EW
distributions fitted to TLS duration data

Parameter EACD WACD EW-ACD

α0 0.0503 (0.0025) 0.0472 (0.0040) 0.0531 (0.0044)

α1 0.1759 (0.0056) 0.2726 (0.0120) 0.2714 (0.0119)

β 0.7868 (0.0062) 0.7257 (0.0119) 0.7268 (0.0119)

k 0.4988 (0.0026) 0.4734 (0.0031)

γ 2088.44 (213.62)

BIC 33547.54 12195.25 11662.60

DIC 33523.86 12161.14 11641.02

the 5% level. The EW-ACD model seems to be the best performing model, in terms
of model fit based on both BIC and DIC. For WACD as well as EW-ACD models,
the estimated shape parameter, k is less than one. This indicates a monotonously
decreasing hazard function for adjusted TLS trade durations. It is reasonable for
the high liquid asset. Although the extra shape parameter γ of EW distribution is
considerably large, showing heavy skewness and approaching Weibull distribution
it still possesses a heavier tail than Weibull distribution and hence a better model fit.
That is the main reason for its superior performance.

The fitted conditional expected mean of trade durations ψ̂i from the EW-ACD
model is plotted against durations of TLS in Fig. 7a. The model seems to adequately
capture the mean durations. On the other hand, the P-P plot of the residuals from
the same model confirms adequate fit of the distribution as depicted in Fig. 7b. In
regions of high probability mass for near zero durations, the difference between
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Fig. 7 a Fitted conditional mean of adjusted trade durations and b P-P plot of residuals from the
EW-ACD model fitted to TLS duration data during the period 1 to 7 October, 2014

theoretical and empirical cdfs is more apparent and negative than those in the low
density regions for higher level durations, where the difference is less and positive.
The pattern of the plot is consistent with heavier tail than observed and represent a
uni-modal distribution. For further details on P-P plots, refer [18].
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6.2 Daily Range Data

Asmentioned earlier, the ACDmodel can be fitted to a time series with non-negative
observations, such as the daily range and trade duration. Hence, the second real life
example is on stock volatility modelling based on the daily range.We consider a time
series of daily range of the log of All Ordinaries index (AOI) of ASX for the period
from 1 May 2009 to 26 April 2013, consisting of 1008 observations. The data can
be downloaded from Yahoo Finance. The daily percentage log-range Ri is given by

Ri = 100 × [ln(max
z

Piz) − ln(min
z

Piz)],

where Piz is the AOI measured at discrete time z in day i and max (min) is the
maximum (minimum) of Piz over all time z in day i.

Time series plot, histogram and sample ACF are given in Figs. 8a, b and 9, respec-
tively. Volatility clustering, heavy tailedness and long term serial dependence appear
to be common features of theAOI daily range series. On the other hand, the histogram
shows that it has a uni-modal distribution having the mode shifted away from zero
and has a relatively lower skewness and kurtosis, in comparison to the duration data,
as indicated by the descriptive statistics in Table4. Hence, the two series considered
differ in their distributional shapes.

Again, three models EACD (1, 1), WACD (1, 1) and EW-ACD (1, 1) are fitted
to the range data. The parameter estimates are reported in Table5 together with the
standard errors in parentheses. All the estimates are significant, at the usual 5% level,
except α0 of the EACD model. The best performing model is again the EW-ACD
model, while the worst performer is the EACD model, in terms of both BIC and
DIC. The estimated shape parameters, k for both WACD and EW-ACD models are
greater than one, contrary to those of duration data. This indicates a monotonously
increasing hazard function for the range data series of AOI. This is consistent with
the phenomenon of volatility clustering where large volatility tends to be followed
by large volatility and vice versa. Furthermore, the extra shape parameter γ of the
EW distribution has a small value, which is less than 2, catering to the relatively low
skewness prevalent in range data.

The fitted conditional expected mean of daily range from the EW-ACD model
is plotted against the observed daily range of AOI in Fig. 10a. The model seems to
adequately capture the average volatility. On the other hand, the pdf plot fitted to
residuals from the same model displayed in Fig. 10b indicates a good fit of the EW
distribution and hence a suitable distribution for the residuals. The mean, standard
deviation, skewness and kurtosis of the standardised residuals are 1.000, 0.4364,
0.7248 and 3.6147 respectively, indicating positive skewness and higher kurtosis
than normal. Obviously, the skewness and kurtosis are lower than the original data
after modelling the mean structure. The hazard and the cdf are plotted in Fig. 11a
and b respectively, to get an idea about their behaviour.
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Fig. 8 a Time series plot and b histogram of daily range of AOI during the period 1 May 2009 to
26 April 2013

7 Conclusion

A new distribution named as Extended Weibull (EW) is developed to allow a more
flexible error distribution in ACD models. An additional shape parameter included
in the variant form of the existingWeibull distribution provides this added flexibility.
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Fig. 9 Sample ACF of daily range of AOI for the period from 1 May 2009 to 26 April 2013

Table 4 Summary statistics of AOI daily range during the period 1 May, 2009 to 26 April, 2013

Obs. Min Max Mean Median Std Skewness Kurtosis

1008 0.2021 6.9083 1.0291 0.9199 0.5393 2.2998 17.9846

Table 5 Parameter estimates of the ACD (1, 1) model with errors from the exponential, Weibull
and EW distributions fitted to AOI range data

Parameter EACD WACD EW-ACD

α0 0.0975 (0.0603) 0.1988 (0.0142) 0.1142 (0.0157)

α1 0.2659 (0.0655) 0.3215 (0.0136) 0.2788 (0.0213)

β 0.6418 (0.1047) 0.4861 (0.0107) 0.6112 (0.0269)

k 2.3493 (0.0400) 1.8521 (0.0661)

γ 1.6577 (0.2496)

BIC 2033.56 1153.86 1056.98

DIC 2015.98 1042.03 984.08

This parameter tends to capture heavier tails better than the Weibull distribution,
which is a commonly used error distribution, due to its simplicity. In the presence of
high skewness and kurtosis, this parameter tends to be large, in general, especially
for small values of k.

The main attributes of the EW distribution are investigated, including the deriva-
tion of first four moments, cdf, survivor and hazard functions. The flexibility of the
distribution is envisaged not only in terms of different shapes of the density func-
tion but also the hazard function. Interestingly, unlike the exponential or the Weibull
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Fig. 10 aFitted conditionalmean ofAOI daily range andbfitted pdf of residuals from the EW-ACD
model fitted to AOI daily range during the period 1 May, 2009 to 26 April, 2013
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Fig. 11 a Empirical hazard and b cumulative distribution function for the EW-ACD residuals of
AOI daily range
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distributions, the hazard function could be non-monotonic when 0.5 < k < 1, which
is more prominent when γ > 0.5. This is a useful feature, particularly in modelling
duration data.

The empirical performance of the EW distribution is investigated based on two
real life data sets from the ASX, which share some common features but yet different
in nature. One is the trade durations of TLS, characterising the mean duration and the
other is daily range data of AOI, characterising average volatility. Its performance
was compared with two other widely considered distributions, the exponential and
Weibull distributions. In terms of both data sets, the EW distribution outperformed
the other two distributions, irrespective of themagnitude of γ . Although theoretically
the EW distribution converges to theWeibull distribution, when γ tends to infinity, it
showed an improvement inmodel fit. This highlights theEWdistribution’s usefulness
as a potential contender for the error distribution of ACD models.

Appendix

Calculation of Moments and Main Characteristics
for EW Distribution

Let X be a random variable following the EW distribution with parameters λ, k and
γ . The distribution of X will be denoted as EW(λ,k,γ ) with the following pdf

f (x) =
(
1 + 1

γ k

)
k

λk
xk−1e−( x

λ )
k
[
1 − e−( γ x

λ )
k
]
.

1. Derivation of mean, E(X)

E(X) = μ =
∫ ∞

0
xf (x)dx

= k

λk

(
1 + 1

γ k

)[∫ ∞

0
xke−( x

λ )
k

dx −
∫ ∞

0
xke

−
(

1+γ k

λk

)
(X)k

dx

]

= λ

(
1 + 1

γ k

)
Γ

(
1 + 1

k

)[
1 − 1

(1 + γ k)
1+ 1

k

]

= λ

kγ k
Γ

(
1

k

)⎡⎣
(
1 + γ k

)1+ 1
k − 1

(1 + γ k)
1
k

⎤
⎦ (11)
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2. Derivation of variance, V ar(X)

V ar(X) = σ 2 = E(X2) − [E(X)]2

E(X2) = k

λk

(
1 + 1

γ k

)[∫ ∞

0
xk+1e−( x

λ )
α

dx −
∫ ∞

0
xk+1e

−
(

1+γ k

λk

)
(x)k

dx

]

= λ2

(
1 + 1

γ k

)
Γ

(
1 + 2

k

)[
1 − 1

(1 + γ k)
1+ 2

k

]

σ 2 = λ2

(
1 + 1

γ k

){
Γ

(
1 + 2

k

)[
1 − 1

(1 + γ k)
1+ 2

k

]

−
(
1 + 1

γ k

)[
Γ

(
1 + 1

k

)]2 [
1 − 1

(1 + γ k)
1+ 1

k

]2⎫⎬
⎭ (12)

3. Derivation of skewness, Skew(X)

Skew(X) = ρ = E [X − E(X)]3

σ 3
= S1

S2
(13)

where E [X − E(X)]3 = k

λk

(
1 + 1

γ k

)(∫ ∞
0

(x − μ)3 xk−1e−( x
λ
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dx
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0
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)
xk

dx

⎤
⎦ ,

S1 = Γ

(
1 + 3

k

)⎡⎣1 − 1
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k

⎤
⎦

− 3μ

λ
Γ

(
1 + 2

k

)⎡
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k

⎤
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Γ

(
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k
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(
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4. Derivation of kurtosis, Kurt(X)

Kurt(X) = ζ = E [X − E(X)]4

σ 4
= K1

K2
(14)

where E [X − E(X)]4 = k

λk

(
1 + 1

γ k

)[∫ ∞

0
(x − μ)4 xk−1e−( x

λ )
k

dx

−
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dx

]
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5. Derivation of the cumulative distribution function, cdf, F(x)

F(x) =
∫ x

0
f (y)dy

= k

λk

(
1 + 1

γ k

)[∫ x

0
yk−1e−( y
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(15)
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