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Abstract
Several different chemical properties/activities must be contemporaneously taken
into account to prioritize compounds for their hazardous behavior. Examples of
application of chemoinformatic methods, such as principal component analysis
for obtaining ranking indexes and hierarchical cluster analysis for grouping
chemicals with similar properties, are summarized for various classes of com-
pounds of environmental concern. These cumulative endpoints are then modeled
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by validated quantitative structure–activity relationships, based on theoretical
molecular descriptors, to predict the potential hazard of new chemicals.

Introduction

The chemical universe is huge and is rapidly enlarging every day: the number
of chemicals registered in the Chemical Abstract Service (CAS) registry (www.
cas.org) gets nowadays over 100 million of chemicals, the majority of them are
commercially available, and almost 345,000 are regulated and listed in various
inventories (for instance, EU-EINECS, US-EPA TSCA, Canada-DSL). While many
new chemicals are being developed continuously (many thousands each year),
with increasing possibility to interact with humans and wildlife, information on
physicochemical properties, reactivity, and biological activities are more slowly
produced. The problem of lack of data and slow assessment procedures is highly
significant: in fact, so far, we have extensive information about only a few chemicals,
but the majority of compounds (>95 %), even high production volume (HPV)
compounds, have been not sufficiently well characterized for their environmental
behavior and potential to cause human or ecologic toxicity (Judson et al. 2009;
Arnot et al. 2012). The filling of this data gap, in order to assess and control the
chemicals effectively, is one of the main aims of several legislations worldwide,
in particular of the recent European legislation REACH (Registration Evaluation
Authorization and restriction of Chemicals) (EC Regulation 2006).

However, it is clearly impossible to measure all chemicals in all media to
which humans and ecological receptors are exposed, as well as to test a plethora
of endpoints. In order to reduce costs, time, and sacrificed animals, there is an
urgent need to prioritize the use of testing resources toward those chemicals
and endpoints that present the greatest potential of risk to human health and
environment. Therefore, it is highly evident that the prioritization of chemicals is
nowadays a big challenge, mainly for the identification of new emerging pollutants.

Chemoinformatic analysis has a clear and fundamental role in dealing with
this issue. By chemoinformatic methods, it is possible to analyze and model the
experimental information, which is already available for tested chemicals, and
to exploit this information applying the developed tools to chemicals without
experimental data or even before their synthesis. The main aim is to better use
the existing knowledge for preventing, as soon as possible, potential dangerous
properties of not yet tested compounds and also for planning a priori the synthesis
of safe chemicals.

In recent years, many scientists have faced this important problem, studying
various endpoints by different chemoinformatic approaches, but with the same
common aim: to highlight the most hazardous chemicals by screening data sets of
several compounds (here some representative of more recent examples: Gramatica
and Di Guardo 2002; Salvito et al. 2002; Sanderson et al. 2003, 2004; Schmieder
et al. 2003; Tong et al. 2003; Gramatica et al. 2004a, b, 2015, 2016a, b; Knekta et al.
2004; Öberg 2004, 2005, 2006; Muir and Howard 2006; Klasmeier et al. 2006;
Hansson and Rudén 2006; Liu et al. 2006, 2007; Dix et al. 2007; Gramatica and
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Papa 2007; Brown and Wania 2008; Papa and Gramatica 2008, 2010; Wegmann
et al. 2009; Judson et al. 2009; Stenberg et al. 2009; Kavlock and Dix 2010; Li and
Gramatica 2010a, b; Bhhatarai and Gramatica 2010, 2011a; Howard and Muir 2010;
Kovarich et al. 2011, 2012; Öberg and Iqbal 2012; Strempel et al. 2012; Roos et al.
2012; Sanderson 2012; Zarfl et al. 2012; Scheringer et al. 2012; Arnot et al. 2012;
Guillen et al. 2012; Singh et al. 2014; Cassani and Gramatica 2015; Wedebye et al.
2015; Sangion and Gramatica 2016a, b).

In this chapter, the crucial topic of screening chemicals of heterogeneous
molecular structure is faced, studying some specific endpoints and focusing on
compounds of environmental concern. These screening studies have two different
aims: (1) to rank, highlight, and prioritize the most hazardous compounds among
the already used chemicals, also those without experimental data, and (2) to predict
the potential dangerous behavior of not yet synthesized compounds, in an a priori
approach of the “benign by design” strategy of green chemistry. The focus here
will be on the potential hazard intrinsically related to the chemical structure, thus
on the utility of QSAR (quantitative structure–activity relationship) modeling, in
particular based on a preliminary chemoinformatic analysis. A chemometric method
of explorative analysis, such as principal component analysis (PCA), is applied for
defining trends and ranking indices, as well as for the a priori data set splitting
for external validation of QSAR models. Hierarchical cluster analysis (HCA) is
used for grouping chemicals, according to some properties, and for defining the
a priori classes for a subsequent classification by various classification methods.
Particular emphasis is here devoted to multivariate linear regression (MLR) models,
in particular ordinary least squares (OLS) models, based on genetic algorithm (GA)
for variable selection and developed by the software QSARINS (QSAR-INSubria)
for QSAR model development and validation (Gramatica et al. 2013). Some of the
QSAR models of cumulative ranking endpoints here presented, applied to several
classes of chemicals of emerging concern (CEC), are implemented in the module
QSARINS-Chem (Gramatica et al. 2014) for easy applicability. Moreover, results
of prioritization of endocrine disruptors (EDs), performed by various classification
models, are also here commented.

A previous review of these chemoinformatic approaches, presenting the basis of
externally validated QSAR modeling, illustrated according to the OECD principles
for QSAR in regulation (OECD 2004) was published in Chapter 12 of the book
Recent Advances in QSAR Studies (Gramatica 2009), edited by the same editors of
the present book. Therefore, this chapter is mostly an updating of the previous one
on the approaches widely applied in the Insubria QSAR research group, with special
emphasis on the QSAR modeling of ranking indices obtained by PCA.

QSAR Modeling for Prioritization

QSAR (quantitative structure–activity relationship) modeling is based on the
assumption that the molecular structure of a chemical (i.e., its geometric, steric, and
electronic properties) contains the features responsible for its physical, chemical,
and biological properties. Such modeling techniques are the best chemoinformatic
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approaches for finding and exploiting the information inherent in the molecular
structure related to the intrinsic hazard of any chemical. In fact, by QSAR models,
based on theoretical molecular descriptors and validated chemometric methods,
both of regression and classification, the biological activity (or property, reactivity,
etc.) of new or untested chemicals can be inferred from the molecular structure
of compounds whose activities (properties, reactivities, etc.) have already been
assessed.

There is no need, in this chapter, to enter into details on QSAR modeling,
commented elsewhere in this book; this has been also the topic of my chapter of
the above-cited book (Gramatica 2009) and of all my papers in these last 20 years,
some cited also here.

However, it is important to stress the point that, particularly for prioritization
aim in screening big data sets, it is not sufficient to be able to reproduce well the
available data and it should not be of primary importance to understand underlying
mechanisms. To know the real predictivity of QSAR models and to which chemicals
the model could be more reliably applied is of crucial and fundamental relevance.
For this reason, all my QSAR works, which are mainly devoted to screening and
prioritization, are focused on external validation on chemicals never used for model
development and on model applicability domain (AD) check (Gramatica 2007,
2014; Gramatica et al. 2012). The proposal of concordance correlation coefficient
(CCC) as validation parameter for QSAR models and its comparison with other
used statistical parameters (Chirico and Gramatica 2011, 2012), highlighting some
drawbacks and proposing intercomparable thresholds for real predictivity, were also
done for this purpose. Recently, all these compared external validation parameters,
and the Insubria graph for checking the applicability domain of QSAR models
to chemicals without experimental data, have been implemented in our software
QSARINS, freely available on request (www.qsar.it) for academia and research
centers.

Ranking Indexes: PC Scores as New Cumulative Endpoints for
QSAR Models

The behavior of chemicals in the environment and their impact on humans
and wildlife are dependent on many different variables such as physicochemical
properties, chemical reactivity, biological activity, etc. of the compounds. Since
many parameters could be of contemporary importance, it is crucial to understand,
rationalize, and interpret the covariance, which is inherent in this environmental
complexity. Explorative methods of multivariate analysis, applied to various topics
of environmental concern, give a combined view that generates ranking of the
studied chemicals and highlight variable relationships. Then, based on these
chemoinformatic tools, a more focused investigation can be made into chemicals
of higher concern, guiding experimental tests on the prioritized compounds.

A multivariate explorative technique, such as principal component analysis
(PCA), is used by several researchers (e.g., Knekta et al. 2004; Öberg and Iqbal

www.qsar.it
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2012) to visualize the distribution of chemicals, represented by structural descriptors
or environmental properties, with the aim to select representative compounds for
experimental testing or to highlight the structural properties more related to specific
hazardous behavior.

Some of my researches, summarized in this chapter, led to the proposal of a
cumulative index, based on the outcome of the application of PCA for chemical
screening and ranking. This index (the PC1 score) condenses the main information
related to the studied properties. If it explains a reasonably significant variance
of the studied variables, it can be usefully modeled as a new aggregate endpoint
by QSAR approaches. The developed QSAR models exploit the already available
information and can be used to predict the potential behavior of chemicals without
experimental values or of new chemicals even before their synthesis. In fact, the
QSAR approach, which is based on theoretical molecular descriptors that can be
calculated for whatever drawn chemicals, can be applied without knowledge of any
experimental parameter.

Similarly, another chemoinformatic method, such as hierarchical cluster analysis,
can be applied for grouping chemicals according to their similarity based on several
properties. The obtained groups can then be modeled by QSAR classification
methods.

Many studies and published papers of the author 20-year researches at Insubria
University are focused on this combined approach of chemoinformatic analysis
(ranking indexes from PCA plus regression QSAR models of these cumulative
indexes; groups modeled as classes by classification QSAR models) for priori-
tization aims. These will be summarized in the following paragraphs, organized
according to the studied endpoints.

Multivariate Explorative Methods: PCA and HCA

The multivariate explorative techniques have the principal aim to condense the
information, present in any multivariate data set, into a more easily interpretable
view.

Principal component analysis (PCA) (Jackson 1995; Jolliffe 2002) is probably
the most widely known and used explorative multivariate method. In PCA, the
studied variables are linearly combined so that the obtained combinations (the
principal components, PCs) explain the variation in the original data with decreasing
explained variance. The first principal component (PC1) condenses the maximum
amount of possible data variance in a single variable, while the following orthogonal
PCs account for successively smaller quantities of the original variance.

To be useful and be considered sufficiently representative of the main information
included in the data, it is desirable that the first two PCs account for a substantial
proportion of the variance in the original data, while the remaining PCs condense
irrelevant information and noise and could be disregarded. The more common
representations of PCA are score plot, loading plot, and biplot, defined as the joint
representation of the rows and columns of a data matrix: the points (scores) represent
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the chemicals, while the vectors or lines represent the variables (loadings). The
length of each vector indicates the information associated with that specific variable,
while the angle between the vectors reflects their correlation.

Hierarchical cluster analysis (HCA) (Kaufman and Rousseeuw 1990) is a clus-
tering technique with the purpose to build a binary tree of the data that successively
merges similar groups of points. HCA creates clusters according to the measure
of distance or similarity between data points, based on measured characteristics,
connecting, in an iterative process, the nearest groups of objects. It is based on the
idea that objects are more related to nearby objects than to objects farther away.
The main output of the HCA is the dendrogram that summarizes the relationships
between objects in a visual binary tree. Clusters can be identified cutting the
dendrogram at different similarity levels. Hierarchical cluster analysis is one of the
best ways to observe how homogeneous groups of objects with similar properties
are formed and to identify classes.

QSAR Modeling of Ranking Indexes and Classes

In our environmental chemistry studies, PCA for obtaining ranking indexes and
regression QSAR modeling of these ranking indexes, as new cumulative endpoints,
and HCA for obtaining a priori classes and classification QSAR models have
been widely used in my group for screening, ranking, and priority setting in many
contexts. I’ll cite here and comment below only some of the most significant
and/or recent: (a) environmental partitioning and leaching of pesticides (Gramatica
and Di Guardo 2002; Gramatica et al. 2004a) and benzotriazoles (Bhhatarai and
Gramatica 2011b), (b) degradability of volatile organic compounds (VOCs) by
tropospheric oxidants (Gramatica et al. 2004b), (c) persistence of POPs by global
half-life index (GHLI) (Gramatica and Papa 2007; Papa and Gramatica 2008), (d)
rat/mouse toxicity of perfluorinated compounds (PFCs) (Bhhatarai and Gramatica
2010, 2011a), (e) aquatic toxicity of personal care products (PCPs) (Gramatica et al.
2016b) and pharmaceuticals (Sangion et al. 2015; Sangion and Gramatica 2016b),
and (f) PBT screening of various compounds by PBT Index (Papa and Gramatica
2010; Gramatica et al. 2015, 2016a; Cassani and Gramatica 2015; Sangion and
Gramatica 2016a).

Environmental Behavior

Leaching of Pesticides

The tendency of pesticides to pollute groundwaters and, in general, the partition-
ing of pesticides into different environmental compartments depend mainly on
physicochemical properties, such as soil organic carbon partition coefficient (Koc),
n-octanol/water partition coefficient (Kow), water solubility (Sw), vapor pressure
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Fig. 1 (a) PCA of environmental physicochemical properties of 135 pesticides and definition
of leaching index (LIN) and volatility index (VIN). (b) Scatter plot of the OLS model of LIN
(Permission from Gramatica and Di Guardo, Chemosphere, 2002)

(VP), and Henry’s law constant (H). We have applied PCA on these various
environmental partitioning properties of a heterogeneous and highly representative
data set of 135 pesticides of different chemical classes (acetanilides, carbamates,
dinitroanilines, organochlorines, organophosphates, phenylureas, triazines, tria-
zoles) to study the tendency to leach from soil into the surface and subsurface waters
(Gramatica and Di Guardo 2002) (Fig. 1a).

The resultant macrovariables, the PC1 and PC2 scores, were called leaching
index (LIN) and volatility index (VIN) and were proposed as cumulative partitioning
indexes in different environmental media. The component LIN tends to discriminate
between the relatively more sorbed/less soluble (on the left of Fig. 1a) and the less
sorbed/more soluble pesticides (on the right), while VIN appears to differentiate
between volatile (upper part of Fig. 1a) and nonvolatile compounds.
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Both indexes were modeled by OLS QSAR model, using theoretical DRAGON
molecular descriptors (Talete 2007) selected by genetic algorithms: they are mainly
atom and group count parameters as a number of halogens, nitro groups and
sulfur, plus Ms the mean electrotopological state of the molecule related to the
polarizability, and a topological descriptor ICR (the radial centric information index)
(Bonchev and Rouvray 1991). The model robustness and internal predictive power
are satisfactory; below the QSAR model equation for LIN, the cumulative index
which explains 65 % of the data variance and the corresponding plot in Fig. 1b are
reported:

LIN D �3:04 � 0:96nX � 2:28nNO2 C 3:42Ms � 1:74ICR � 0:45nS

n D 135; R2 D 87:0 %; Q2
LOO D 85:8 %; Q2

LMO D 85:7 %;

s D 0:66; F D 172:22; SDEP D 0:68 and SDEC D 0:65:

A combination of two chemoinformatic methods, principal component analysis for
ranking and hierarchical cluster analysis for the definition of four a priori classes
(Fig. 2a), according to the environmental behavior as soluble, sorbed, volatile,
or nonvolatile/medium class, was applied to the environmental physicochemical
properties of 54 pesticides of various chemical categories (Gramatica et al. 2004b).
The pesticides were finally assigned to the defined four classes by three different
classification methods (classification and regression tree (CART, the classification
tree in Fig. 2b), k-nearest neighbors (k-NN), and regularized discriminant analysis
(RDA)) with misclassification risk in cross validation ranging from 17 % to 18 %.
The discriminant variables were simple theoretical molecular descriptors, such
as MW, nHDon, and topological Balaban Index (Balaban 1983) (named J in
DRAGON). MW, which encodes information on molecule dimension, is able to
discriminate the chemicals that are contemporaneously most sorbed in organic soils
and least soluble in water; in fact it is well known that biggest molecules have the
greatest tendency to bind, by van der Waals forces, to the organic component of
the soil (mainly humic acids). The more soluble pesticides, which have the higher
possibility to form hydrogen bonds with water molecules, are discriminated by
nHDon, the number of groups able to donate hydrogen in the hydrogen bonds.
Furthermore, the chemicals with fewer intramolecular hydrogen bonds are the most
volatile.

Similar PCA ranking was also useful to highlight which benzotriazoles could
be most dangerous for the aquatic compartment (Bhhatarai and Gramatica 2011a):
these chemicals, used in the past mainly as pesticides, are now recognized as
new contaminants of emerging concern (CEC) for the environment. In fact they
are nowadays used as deicing additives and are a major source of pollution
predominantly of aquatic resources near the airports of major cities.

The presented chemoinformatic approaches allow the screening of the environ-
mental distribution of pesticides and a rapid predetermination of their possibility to
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Fig. 2 (a) Hierarchical cluster analysis of the environmental physicochemical properties of 54
pesticides for the definition of four a priori classes. (b) Classification tree of CART model of the
four classes (Permission from Gramatica et al. Int. J. Environ. Anal. Chem, 2004b)

pollute both surface and groundwaters, starting only from the molecular structure
without any a priori knowledge of the physicochemical properties.

Persistence

Persistence in the environment is an important criterion in prioritizing hazardous
chemicals and in identifying new persistent organic pollutants (POPs).

Various studies, based on various approaches, have been performed on this topic
(Öberg 2005, 2006; Muir and Howard 2006; Klasmeier et al. 2006; Wegmann et al.
2009; Howard and Muir 2010; Puzyn et al. 2011; Scheringer et al. 2012). Here some
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of my studies regarding the screening and prioritization using cumulative indexes
are summarized.

Degradability of Volatile Organic Compounds (VOCs) by Tropospheric
Oxidants
An indirect measure of the persistence of volatile organic compounds (VOCs) in
the atmosphere, and therefore a necessary preliminary parameter in environmental
exposure assessment, is the degradability, measured by the reaction rates with the
main tropospheric oxidants: hydroxyl radical and ozone during the daytime and
nitrate radical at night. The contemporaneous variation and influence of the rate
constants of the degradation by three oxidants (kOH, kNO3, and kO3) of several
VOCs, in determining their inherent tendency to degradability, were explored
by principal component analysis (Fig. 3a). The first component, along which
the variables are grouped in the same direction, discriminates between the less
degradable compounds, so the relatively more persistent (chemicals to the right in
the PCA graph) and the more degradable chemicals (chemicals to the left).

Thus, the PC1 score, which explained 81 % of the data variance for 399
chemicals, was defined as ATDIN, an atmospheric degradability index, and was
modeled by OLS, based on theoretical molecular descriptors and externally vali-
dated (Gramatica et al. 2004a) (scatter plot in Fig. 3b).

It is also interesting to note that the PC2 is able to highlight the different reactivity
of chemicals with ozone and with OH and NO3 radicals, respectively.

ATDIN D �17:59–1:80HOMO C 2:87nBnz–0:51BEHe4

ntraining D 227; R2 D 93:9 %; Q2
LOO D 93:7 %; Q2

LMO.50%/ D 93:5 %I

nprediction D 172I Q2
EXT D 92:3 %I

s D 0:387I SDEC D 0:384I SDEP D 0:391

The molecular descriptors of this model are informative of different aspects of
the studied reaction. The best descriptor is the energy of the highest occupied
molecular orbital (HOMO), as a measure of the molecular reactivity. The number
of aromatic rings (nBnz) is probably selected in the model to encode for the
different reactivity of aliphatic and aromatic chemicals in relation to the attack sites
for the three different oxidants. 2D-BCUT descriptors, BEHe4, weighted by the
atomic electronegativity of Sanderson (Burden 1989) encode for charge distribution
factors.

This modelcan be useful in avoiding the release into the environment of potential
persistent volatile compounds which are not inherently degradable in troposphere,
causing risk to humans and wildlife for their persistence at that atmospheric level.
Moreover, these chemicals could reach the stratosphere with potential dangerous
behavior on the ozone layer.
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Fig. 3 (a) PCA of the kinetic rate constants of degradation by tropospheric oxidants of 399 VOCs
and definition of ATDIN. (b) Scatter plot of QSAR model of ATDIN (Permission from Gramatica
et al. Atmos Environ2004a)

Screening of POPs by Environmental Half-Life (HL)
The degradation half-lives in various compartments are among the more commonly
used criteria for studying environmental persistence. Available half-life data for
degradation in air, water, sediment, and soil, for a set of 250 organic chemicals, were
combined in multivariate approach by principal component analysis. A ranking of
the studied organic pollutants according to their relative overall half-life is obtained
in this way: we named this global half-life index (GHLI) (Gramatica and Papa
2007).

The biplot relative to the first and second components is reported in Fig. 4a,
where the chemicals (points) are distributed according to their environmental per-
sistence, represented by the linear combination of their half-lives in the four selected
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Fig. 4 (a) PCA of the half-lives in four environmental compartments of 250 heterogeneous
chemicals and definition of global half-life index (GHLI) for POPs. (b) Scatter plot of the QSAR
model of GHLI (Permission from Gramatica and Papa, Environ. Sci. Technol., 2007)

media (the loading lines show the importance of each variable in the first two PCs).
The cumulative explained variance of the first two PCs is 94 %; the PC1 alone
providing a very significant part of the total information is 78 %. Since all the half-
lives in different media (the lines) are oriented in the same direction along the first
principal component, PC1 is a new macro-variable representing cumulative half-life
and condensing chemical tendency to environmental persistence. Therefore, PC1 is
useful to discriminate chemicals with regard to persistence: chemicals with high
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half-life values in all the media are located to the right of the PCA plot (Fig. 4a),
in the zone of global higher persistence (very persistent chemicals anywhere);
chemicals with a lower global half-life fall to the left of the graph, not being
persistent in any medium.

PC2, although less informative (E.V. 16 %), is also interesting: it separates the
compounds more persistent in air (upper parts in Fig. 4a, region 1), i.e., those with
higher long-range transfer (LRT) potential, from those more persistent in water, soil,
and sediment (region 3 in Fig. 4a).

A deeper analysis of the distribution of the studied chemicals confirms exper-
imental evidences: to the right, among the very persistent chemicals in all the
compartments (full triangles in Fig. 4a), most of the compounds recognized as POPs
by the Stockholm Convention (UNEP 2014) are located. Highly chlorinated PCBs
and hexachlorobenzene are among the most persistent compounds in this reference
scenario; they are grouped in region 1 owing to their global high persistence,
especially in air. The less chlorinated PCBs (PCB 3 and PCB 21), p,p’DDT, p,p’-
DDE and o,p’-DDE, highly chlorinated dioxins and some dioxin-like compounds,
as well as pesticides toxaphene, lindane, chlordane, dieldrin, and aldrin fall in region
3 of highly persistent chemicals, mainly in compartments different from air.

This global index GHLI was then modeled as a cumulative endpoint using a
QSAR approach based on theoretical DRAGON molecular descriptors. The original
set of available data was first randomly split into training and prediction sets: 50 %
of the compounds (125 compounds) were used for OLS model development, while
the other 50 % was put into the prediction set to validate the QSPR model. Given
below is the best model, selected by statistical approaches, and its statistical parame-
ters, which confirm model robustness and real external predictivity. Figure 4b shows
the plot of GHLI values from PCA versus the predicted GHLI values:

GHL Index D �3:12 C 0:33X0v C 5:1Mv � 0:32MAXDP � 0:61nHDon

� 0:5CIC0 � 0:61O � 060

ntraining D 125I R2 D 0:85I Q2
LOO D 0:83I Q2

BOOT D 0:83;

RMSE D 0:76I RMSE cv D 0:70I

nprediction D 125; R2
EXT D 0:79I RMSEP D 0:78:

A similar highly predictive model for GHLI, based on PaDEL-Descriptors (Yap
2011), has been recently implemented in the module QSARINS-Chem of the
software QSARINS (www.qsar.it) for easy applicability on new compounds, in
order to help in avoiding the synthesis of chemicals that have, inherent in their
molecular structure, the potentiality to be POPs.

The chemical environmental half-lives were also used for POP pre-screening
(Papa and Gramatica 2008) developing predictive classification models, based on
k-NN, CART, and counter-propagation artificial neural networks (CP-ANN). In
this approach, the three a priori classes of different degrees of persistence (high,
medium, and low) were determined by hierarchical cluster analysis (Fig. 5a) applied

www.qsar.it
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Fig. 5 (a) Hierarchical cluster analysis of environmental half-lives for defining three classes of
persistence; (b) CART tree of three classes for POP ranking (Permission from Papa and Gramatica
J. Mol. Graph. Mod., 2008)

to environmental half-lives. The range of overall external predictivity of the three
classification models was high, 75–85 %. The three discriminant structural variables
selected in this study (mean polarizability, Mp; maximum electrotopological varia-
tion, MAXDP; and molecular weight, MW, in the decision nodes of the CART tree
in Fig. 5b) are all bidimensional descriptors independent of chemical conformation,
thus easily calculable from the bidimensional structural graph of a compound. The
calculations of these variables can be performed starting from the simple SMILES
string of a chemical.

The application of both kind of models, regression of GHLI and classification
of persistence classes, using only a few structural descriptors, could allow a fast
preliminary identification and prioritization of not yet known POPs, just from
the knowledge of their molecular structure. The proposed multivariate approach
is particularly useful not only to screen and to make an early prioritization of
environmental persistence for pollutants already on the market, but also for not yet
synthesized compounds, which could represent safer alternative and replacement
solutions for recognized POPs. No method other than QSAR is applicable to detect
the potential persistence of completely new compounds.
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Toxicity

Endocrine Disruptors (EDs)

A large number of environmental chemicals are suspected to disrupt endocrine
systems by mimicking or antagonizing natural hormones. Such chemicals, named
endocrine disruptors (EDs), may have dangerous effects on the health of humans
and wildlife. Under REACH, the chemicals with demonstrated endocrine disruption
activity require authorization to be produced and used; in addition, safer alternatives
should be proposed. However, it is practically impossible to perform a variety of
toxicological tests on all potential EDs; thus, QSAR modeling for prioritization
has been applied by many authors in these last years (e.g., Shi et al. 2001; Hong
et al. 2002; Fang et al. 2003; Schmieder et al. 2003; Tong et al. 2003; Roncaglioni
et al. 2004; Asikainen et al. 2004, 2006; Saliner et al. 2006; Devillers et al. 2007,
2015; Dybdahl et al. 2012; Vuorinen et al. 2013; Browne et al. 2015) providing
promising methods for the screening of a set of chemicals for potential estrogenic
activity.

QSAR models of the estrogen receptor binding affinity of a data set of 128 NCTR
heterogeneous compounds (Ding et al. 2010) were built also in our laboratory by
OLS method using theoretical DRAGON descriptors (Liu et al. 2006), giving full
consideration to the OECD principles regulating QSAR acceptability (OECD 2004)
during model construction and assessment.

The results of several validation paths using different splitting methods (D-
optimal design, self-organizing maps (SOM), random on activity sampling) give
proof that the proposed QSAR model is robust and satisfactory (Q2

pred range,
0.76–0.81), thus providing a feasible and practical tool for the rapid screening of
the estrogen activity of organic compounds, supposed EDs. A similar regression
model, based on the same training set, and on PaDEL-Descriptors (Yap 2011), is
now available in the QSARINS-Chem module of the QSARINS software for easy
application on new chemicals (www.qsar.it).

On the same topic, satisfactory predictive models for EDs’ classification, based
on different classification methods, were proposed (Liu et al. 2007). In this study,
QSAR models, based on 232 structurally diverse chemicals from the NCTR
database as training set and on theoretical structural descriptors, were developed to
quickly and effectively identify possible estrogen-like chemicals by using nonlinear
classification methodologies (least squares support vector machine (LS-SVM),
counter-propagation artificial neural network (CP-ANN), and k-nearest neighbor
(k-NN)). The main descriptor, able to classify alone, with a concordance percentage
near 80 %, was nArOH, the number of phenolic groups. Therefore, chemicals with
phenolic groups have a great potentiality to be endocrine disruptors. The models
were externally validated on 87 chemicals (prediction set) not included in the
training set. All three methods gave satisfactory prediction results both for training
and prediction sets (accuracy range, 82.8–89.7 %); the most accurate model was
obtained by the LS-SVM approach. In addition, our models were also applied for
screening a big data set from US-EPA (more than 58,000 discrete organic chemicals)
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Fig. 6 Classification
obtained by consensus of
three methods on the
screening of more than
50,000 chemicals as potential
EDs

to verify the predictions by consensus: about 76 % of the screened chemicals were
predicted not to bind to an estrogen receptor (Fig. 6). The obtained results indicate
that the proposed QSAR models could provide a feasible and practical tool for
the rapid screening of huge data sets and a very useful prioritization approach
for focusing experimental tests only on potential estrogens. In fact, the common
40,300 negative compounds could be excluded from the potential ED list without
experiments, because the models have high accuracy and low false-negative rate
(3–9 %), while costly and lengthy experimental tests should be concentrated on the
common positives (7.8 %, meaning >4000) and eventually on the disagreements,
which are predicted as EDs by one classification method and not by the others.

An additional screening work was done to classify a big data set of EDs, both
estrogen receptor (ER) binders and androgen receptor (AR) antagonists, mainly
aiming to improve the external sensitivity in comparison to the literature models
(Vinggaard et al. 2008) and to screen for potential AR binders (Li and Gramatica
2010a). The k-NN, the local lazy method and alternating decision tree methods, and
the consensus approach were used to build different models, which improved the
sensitivity on external chemicals from 57.1 % (Vinggaard et al. 2008) to 76.4 %. The
models’ predictive abilities were further validated on a blind data set: the sensitivity
was even higher >85 %. Then the proposed classifiers were used: (i) to distinguish
a set of AR binders into antagonists and agonists, (ii) to screen a combined estrogen
receptor binder database to find out possible chemicals that can bind to both AR and
ER, and (iii) to virtually screen our in-house environmental chemical database. The
in silico screening results suggested that: (i) some compounds can affect the normal
endocrine system through a complex mechanism because they could bind both to
ER and AR; (ii) new EDs, which are non-ER binders, are recognized in silico as
binders to AR; and (iii) about 20 % of compounds in a big data set of environmental
chemicals are predicted as new AR antagonists. Therefore, the priority should be
given to them for experimentally testing their binding activities with AR. The results
of this complex screening study are summarized in Fig. 7.

Other QSAR models for screening and prioritization of potential EDs were
also developed in Insubria group on brominated flame retardants (Kovarich et al.
2011), on perfluorinated chemicals (Kovarich et al. 2012), as well as on other
heterogeneous chemicals (Li and Gramatica 2010b, c).
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Fig. 7 Results of
classification models for
endocrine disruptors and
prediction of potential
receptor binding (estrogen or
androgen) (Permission from
Li and Gramatica, J. Chem.
Inf. Mod., 2010a)

Ecotoxicity

A lot of chemicals that enter into the environment could have dangerous toxic
impact on different wild species. Aquatic organisms, such as algae, crustacean,
and fish, are normally used as test organism to determine ecotoxicological data.
However, also in relation to ecotoxicity, there is a relevant lack of experimental data;
therefore, several chemoinformatic approaches have been, and are continuously,
applied to model the existing data and to predict ecotoxicological endpoints for
various classes of chemicals of high concern (e.g., Vighi et al. 2001; Salvito et al.
2002; Sanderson et al. 2003, 2004; Öberg 2004; Lo Piparo et al. 2006; Roy 2006;
Mazzatorta et al. 2006; Sanderson and Thomsen 2009; Gramatica et al. 2012;
Sanderson 2012; Kar and Roy 2012; Cassani et al. 2013, 2014; Singh et al. 2014;
Roy et al. 2015). The majority of chemical regulators apply ECOSAR models
(US EPA 2012), but these models are not always applicable with satisfactory
reliability to all kind of chemicals. This problem, related to applicability domain,
has been recently highlighted for an important class of emerging environmental
pollutants, the pharmaceuticals (Madden et al. 2009), but it is relevant also for other
chemicals, such as personal care products (PCPs). Below, some examples of new
ecotoxicity studies, recently performed by the Insubria group on these contaminants
of emerging concern for the environment (PCPs and pharmaceuticals), are reported.

Aquatic Toxicity of Personal Care Products
PCP ingredients, widely used all over the world, during the last years became
chemicals of increasing environmental concern, mainly because they are detected
in water and may harm wildlife. Due to their high structural heterogeneity, to the
big number of endpoints and the huge lack of experimental data, in silico tools,
as QSAR models based on structural molecular descriptors, are highly useful to
quickly highlight the most hazardous and toxic compounds, prioritizing existing
or even not yet synthesized chemicals. In a recent study (Gramatica et al. 2016a),
new externally validated QSAR models, specific to predict acute PCP toxicity
in three key organisms of aquatic trophic level, i.e., algae (Pseudokirchneriella
subcapitata), crustacean (Daphnia magna), and fish (Pimephales promelas), were
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developed according to the OECD principles for the validation of QSARs, using
the QSARINS software (Gramatica et al. 2013). These OLS models, based on
theoretical molecular descriptors calculated by free PaDEL-Descriptor, selected by
genetic algorithm, are statistically robust and externally predictive (CCC range:89–
95 %). They were applied to predict the three modeled acute toxicities for 534 PCPs
without experimental data, verifying the wide structural applicability domain of
each model by the Insubria graphs (more than 95 % of 534 screened PCPs were
into the AD). The root mean squared error (RMSE) of each model for chemicals
in the prediction sets, not used for model development, was compared with the
corresponding RMSE of the ECOSAR models (US EPA 2012): the RMSE of the
Insubria models is always around half logarithmic units, while ECOSAR models
exhibit always RMSE values higher than one logarithmic unit. Then, according to
the consolidated approach in our group, a trend of cumulative acute aquatic toxicity
was highlighted by PCA of the three endpoints of ecotoxicity, allowing the ranking
of the overall most toxic for all three trophic levels of the aquatic compartment with
more than 90 % of data explained variance (Fig. 8). In the biplot of Fig. 8, the
most dangerous PCPs, in the right zone, are highlighted as filled squares, using the
multi-criteria decision making (MCDM), included in QSARINS-Chem (Gramatica
2014). MCDM is a technique that summarizes the performances of a certain number
of criteria simultaneously, as a single number (score) between 0 and 1. This is
done associating to every criteria, in our case different predictions for the studied
endpoints, a desirability function which values range from 0 to 1 (where 0 represents
the less toxic compound and 1 the most toxic), and giving different weights to
the selected criteria. The sum of the weights of the criteria must be 1, and in our
case, we used the same weight for each criterion: 0.333, which is 1/3 (total/number
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Fig. 8 PCA of experimental and predicted aquatic toxicity data for 484 PCPs and definition of the
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of criteria). The geometric average of all the values obtained from the desirability
functions gives the MCDM value (i.e., the ranking).

A priority list of 40 most hazardous PCPs was then proposed: it includes mainly
UV filters (in particular benzotriazoles), some phthalates, and also some fragrances.

Finally, the trend of PC1, which explains about 80 % of the data variance, was
proposed as an aquatic toxicity index (ATI). A QSAR model for the prediction
of ATI was developed, by OLS on 484 data and using the PaDEL descriptors
(scatter plot in Fig. 9a), to be applicable in QSARINS (www.qsar.it) for the a
priori detection of not yet tested PCPs and also for the preliminary chemical design

www.qsar.it
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of possibly not environmentally hazardous PCPs. The model, with the following
equation, is highly predictive and has a good applicability domain verified by the
Williams plot of Fig. 9b:

ATI D �14:27 C 0:33 XlogP C 18:33 Mp C 0:02 TIC1

ntraining D 324I R2 D 0:94I Q2
LOO D 0:93I Q2

LMO D 0:93; RMSE D 0:40I

RMSE cv D 0:40I

nprediction D 160I Q2
Fn D 093 � 0:94I CCCEXT D 0:97I RMSEEXT D 0:39:

The model is mainly driven by LogP descriptor, here represented by XlogP, which
has, as expected, a positive sign in the equation, increasing the toxicity of a
chemical. The remaining two descriptors, Mp and TIC1, both with a positive sign in
the model equation and thus with a positive impact on the cumulative toxicity trend
of PCPs, encode respectively for mean atomic polarizability and total information
content index (neighborhood symmetry of 1 order). These three descriptors are
mainly related to the complexity and the dimension of the molecule, but also to the
presence of electronegative atoms, giving higher values for big and halo-substituted
compounds.

Aquatic Toxicity of Pharmaceuticals
Similarly to the modeling and screening developed for PCPs, active pharmaceutical
ingredients (APIs) were also studied. Pharmaceuticals have become ubiquitary
present in the environment; for this reason in 2006, the European Medicines Evalua-
tion Agency (EMEA) published guidelines for the environmental risk assessment of
human pharmaceuticals. Every environmental risk assessment (ERA) requires large
amounts of data for each chemical, but, unfortunately, information on ecotoxicolog-
ical data is available only for a little percentage of APIs in literature and databases.
From literature, we collected and carefully curated data sets for the limited quantity
of ecotoxicity data of species at different trophic levels (algae, Daphnia, fish).
For each species, we developed ad hoc QSAR acute toxicity models, based on
PaDEL molecular descriptors, using the OLS method and genetic algorithm for
variable subset selection in QSARINS software (www.qsar.it). All models are
robust (R2 > 0.75, Q2

LOO > 0.70) and externally validated (CCC > 0.85) on different
splitting schemes, thus allowing reliable application to new pharmaceuticals. The
structural applicability domain (AD) of the proposed models to pharmaceuticals
without experimental data was verified and demonstrated to be very high with
74 % of chemicals inside the AD for all the toxicity models. The predictions
from Insubria models were always better than those obtained by ECOSAR (US
EPA 2012) (average RMSE of 0.5 for Insubria models against an average RMSE
of 1.3 for ECOSAR). Moreover, reliable predictions from the different models,
applied on a set of more than 1000 pharmaceuticals, were combined by PCA
to find an ecotoxicity trend representative of the pharmaceuticals’ toxicity in the

www.qsar.it
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whole aquatic ecosystem. This trend, called overall aquatic toxicity index (ATI)
for pharmaceuticals, was then modeled by molecular descriptors to obtain a QSAR
model useful to highlight, directly from the chemical structure, the pharmaceuticals
potentially most hazardous for the environment. This index, and the predictions
obtained by it, could be used to refine procedures of input prevention and control
at consumer level as well as a priori in the rational design of environmentally safer
pharmaceuticals (Sangion et al. 2015; Sangion and Gramatica 2016b; Fig. 10).
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Mammalian Toxicity on Rodents of Fluorinated Chemicals

Fully or highly fluorinated compounds, known as per- and polyfluorinated chemicals
(PFCs), are widely distributed and released in the environment, because of their use
in different household and industrial products. Some long-chain PFCs are classified
as emerging pollutants; in fact, they are found undegraded worldwide and even
in polar regions, but their environmental and toxicological effects are mostly not
well known. In our lab, under the CADASTER FP7 EU Project (www.cadaster.eu),
QSAR models of the mammalian toxicity of PFCs on two species of rodents, rat and
mouse, were developed, on two endpoints: LC50 data for inhalation (Bhhatarai and
Gramatica 2010) and LD50 oral toxicity (Bhhatarai and Gramatica 2011b).

The OLS models, based on DRAGON molecular descriptors selected by genetic
algorithm, were always developed on data sets split in different ways (random, by
structural similarity using self-organizing maps (SOM)) to verify the satisfactory
external predictivity.

Furthermore, to understand the contribution of each toxicity endpoint and the
mutual effect of rodent toxicity, the four models were applied individually to a
combined data set of 376 compounds, obtaining predictions for those without exper-
imental data. The compounds were checked for their belonging to the structural AD
of each model by Insubria graphs, and 204 compounds were found to be within
AD. The PCA of experimental and predicted inhalation and oral toxicity on both
rodents (rat and mouse) of PFCs, within the AD of all the four models, allowed to
rank PFCs according to their cumulated toxicity on rodents. In Fig. 11 the biplot
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of this PCA, which explains 75.6 % of data variance, is reported. The compounds
with experimental values of rodent inhalation (cross), rodent oral (filled triangles),
both rodent inhalation and oral (filled circles), and most common alkylated PFCs
(filled squares) are tagged. PC1 ranks the PFCs according to their cumulative rodent
toxicity, while PC2 differentiates the PFCs more toxic for rat oral toxicity from those
more toxic on the other endpoints. In the right zone of the PCA, the most dangerous
and already banned PFCs, as perfluorooctanoic acid (PFOA) and perfluorosulfonic
acid (PFSOA), are correctly located: this is a proof of the reliability of the obtained
screening and ranking results. Therefore, some other PFCs, which are located in the
same zone of concern, should be considered of potential toxicity and prioritized for
experimental tests.

Persistence Bioaccumulation Toxicity (PBT)

The chemicals that are contemporaneously persistent, bioaccumulative, and toxic
(PBT) are priority chemicals due to the potential risk they pose to humans and
ecosystems; therefore, they are considered substances of very high concern (SVHC),
which require authorization for use and plan for safer alternatives by REACH.
Therefore, in accordance to the precautionary principle, chemicals have to be
screened and evaluated for their overall PBT behavior. Unfortunately, for many of
the existing substances, even for high production volume (HPV), it is not known,
currently, if they could have a potential PBT-like behavior.

Several screening works (Muir and Howard 2006; Howard and Muir 2010; Öberg
and Iqbal 2012; Strempel et al. 2012) have highlighted that, among commercial
chemicals, many might be PBTs. Therefore, it is evident that not only different
approaches for priority setting should be compared to identify the existing potential
PBTs but also the “benign by design” approach of green chemistry should be applied
for planning the synthesis of safer alternatives to these dangerous compounds (Papa
and Gramatica 2010; Strempel et al. 2012; Gramatica et al. 2015, 2016a; Cassani
and Gramatica 2015; Sangion and Gramatica 2016a).

Currently, identifying substances as potential PBT or POP candidates relies
mainly on determining if specific properties of a chemical exceed threshold
values for each property related to PBT behavior (commonly, half-life in various
compartments for P, BCF for B, and a number of toxicity evidences for T) (Muir
and Howard 2006; Howard and Muir 2010). The most widely used tool for PBT
assessment is the US-EPA PBT Profiler (2006), because it is easily applicable
from the web (US EPA 2006). The PBT Profiler screens chemicals on the basis
of individual P, B, and T properties, calculated by QSAR models and compared to
cut off values for each endpoint.

As an alternative approach for PBT prioritization, we developed and proposed a
new tool for the screening of chemicals for their potential cumulative PBT behavior
(Papa and Gramatica 2010), as an inherent property of a compound that makes it
potentially hazardous. PCA of overall half-life in various compartments (the global
half-life index, commented above (Gramatica and Papa 2007)), for taking into
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account the chemical persistence (P), bioconcentration factor (BCF) (Gramatica and
Papa 2005) for bioaccumulation (B), and aquatic toxicity on Pimephales promelas
(Papa et al. 2005) for toxicity (T), allowed to rank 180 representative non-PBT
and PBT chemicals according to their cumulative PBT behavior. In fact, since the
loadings of the three properties (P, B, and T) are oriented in the same direction in the
PCA biplot (Fig. 12a), the PBTs are ranked on the right of the plot. Therefore, the
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PC1 score, which explains more than 77 % of the data variance, can be considered
as a PBT Index. The cutoff for PBTs was arbitrary fixed at 1.5 score value, by
comparison with the thresholds of the criteria normally applied for PBTs and very
P very B (vPvB). It is interesting to note that this Index is precautionary; in fact,
also some chemicals with only two thresholds of criteria exceeded are located in
the right zone (>1.5 of PC1 score): these compounds would be not recognized as
PBT by the normally applied criteria (as those in the US-PBT Profiler), while all the
chemicals located in region 3 are considered PBTs by the PBT Index.

This Insubria PBT Index was then modeled by OLS QSAR model, using
four simple molecular descriptors, with high verified external predictivity
(Q2

EXT D80 %). Thus, our work was based on two different steps according
to our consolidated approach: (a) the application of a multivariate tool, such as
PCA, for screening chemicals according to their cumulative PBT properties and
for the definition of the PC1 score as a PBT Index (biplot in Fig. 12a) and (b) the
development of a QSAR model of the PBT Index (scatter plot in Fig. 12b).

Our PBT Index model was recently redeveloped using the PaDEL-Descriptor
(Yap 2011), freely calculable online: therefore, the model is now easily applicable
in the module QSARINS-Chem of the software QSARINS (Gramatica et al. 2013,
2014) (www.qsar.it).

PBT Index D �1:42 C 0:65 nX C 0:22 nBondsM � 0:41 nHBDon_Lipinksi

� 0:09 MAXDP2

ntraining D 92; R2 D 0:89; RMSE D 0:52; Q2
LOO D 0:88; Q2

LMO30% D 0:87;

RMSECV D 0:55;

nprediction D 88; Q2
F1 D 0:89I CCCEXT D 0:94I RMSEEXT D 0:49:

The descriptors, selected for the best model by the genetic algorithm procedure,
are (in descending order of importance) nX (number of halogen atoms), nBondsM
(number of multiple bonds), nHDon_Lipinski (number of donor atoms for H
bonds), and MAXDP2 (maximal electrotopological positive variation). All of these
parameters are mono- or bidimensional and independent of chemical conformation,
thus easily calculable from the topological graph (2D sketch) or even from the
SMILES code. These variables take into account different chemical properties.
The most important descriptors, nX and nBM, which encode for substitution with
halogens and unsaturation, are known to increase the PBT behavior of chemicals.
On the contrary, MAXDP and nHDon are inversely related to the PBT Index.
These last two descriptors are related to a compound’s ability to form electrostatic
and dipole–dipole interactions, as well as hydrogen bonds in the surrounding
media.

Recently, we have extensively applied our PBT Index model for the screening
of large data sets of hundreds of heterogeneous chemicals (part 1 of the series

www.qsar.it
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“Early PBT assessment and prioritization of emerging environmental contaminants”
in Gramatica et al. 2015), to personal care product (PCP) ingredients (part 2 in
Cassani and Gramatica 2015), to flame retardants (part 3 in Gramatica et al. 2016a),
and to pharmaceuticals (part 4 in Sangion and Gramatica 2016a). In all these
screening studies, we have compared the PBT Index results with those obtained
by the US-EPA PBT Profiler, and we have proposed to consider as highly reliable
the predictions obtained in agreement by two methods (plot for flame retardants in
Fig. 13a).

It is interesting to note that in the screening of flame retardants (FRs), some
supposed “safer alternatives” to the banned FRs, which are already in commerce, are
detected as intrinsically hazardous for their PBT properties. They are “regrettable
substitutions.” If reliable predictive models, based on the chemical structure,
would be more often applied a priori in a green chemistry approach, from the
very beginning of the product development process, it would be possible to
avoid the continuous placing on the market, and consequently in the environ-
ment, of compounds that will be identified as PBTs, only several years after
their use.

Regarding the Insubria PBT Index, we have verified that it is, in the majority
of the screenings, more precautionary in highlighting more compounds as PBTs,
and the analysis of the disagreements, based on experimental evidences, supports
our results for the majority of the cases. It is also important to highlight that
the prediction by PBT Index for new chemicals can be verified for the model
applicability domain by the Insubria graph (Fig. 13b).

From these screening and prioritization studies, we have verified the reliability
of the Insubria PBT Index and, in general, the satisfactory agreement with the PBT
Profiler (always >70 %). Main interesting results are:

(a) In the screening of the Insubria data set of 2780 chemicals of environmental
concern (Gramatica et al. 2015), included in the QSARINS-Chem module
of the software QSARINS (Gramatica et al. 2013, 2014) (www.qsar.it), the
compounds predicted as PBTs by consensus (agreement >82 %) are more
than 300.

(b) In the screening of 534 PCP ingredients, only eight are prioritized as PBTs by
consensus of two methods: they are mainly UV filters as benzotriazoles (Cassani
and Gramatica 2015).

(c) In the screening of 128 flame retardants (FRs) (Fig. 13), some already banned
and some on the market as substitutes, 30 FRs, which are supposed “safer
alternatives,” are predicted as PBTs by both modeling tools in agreement
(Gramatica et al. 2016a).

(d) In the screening of 1267 pharmaceutical ingredients, only 35, of various
therapeutic categories, were included in a priority list of potential PBTs, while
83 % of the screened pharmaceuticals are predicted as non-PBTs by consensus
(Sangion and Gramatica 2016a).

www.qsar.it
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Fig. 13 (a) Graph of the agreement between Insubria PBT Index and US-EPA PBT Profiler for the
flame retardants study (in the graph are labeled banned flame retardant, halogen flame retardants
(HFRs), and halogen-free flame retardants (HFFRs)) (Permission from Gramatica et al., J. Hazard.
Mater. 2016a), (b) Insubria graph for the AD of Flame Retardant model

Conclusions

In this chapter, a review of the most recent and significant studies performed for
prioritization of chemicals in the Insubria QSAR research group is presented. These
studies are based on the fundamental assumption that the hazard of any chemical
is an inherent property of the molecular structure; therefore, that QSAR models
are an incomparable tool to extract and exploit the information related to any
physicochemical or biological property of compounds with available experimental
data. The application of externally validated predictive QSAR models to chemicals
without experimental data, which are into the model applicability domain, is useful
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for highlighting the potentially most hazardous compounds in the screening and
priority setting of big data sets of chemicals. This prioritization can allow to
concentrate experiments on prioritized chemicals, thus reducing time, costs, and
animal test, but also to avoid the synthesis, and introduction to the market and into
the environment, of harmful compounds, which could be recognized dangerous only
after evidence of human health concerns has been manifested. This is the basis of
the “benign by design” approach of green chemistry.

In these studies, we have demonstrated that, taking into account that the
chemical behavior derives from a contemporaneous combination of variables, the
application of various chemoinformatic methods, such as explorative analysis by
PCA and HCA, is useful in ranking and grouping chemicals according to their
cumulative behavior, based on more than a single property or activity. In this
way, ranking indexes can be proposed for priority-setting purposes and can be
also modeled by QSAR to exploit the fundamental information inherent in the
chemical structure. The possibility to continuously contaminate the environment
with “regrettable substitutions” could be highly reduced if a priori screenings, by
combining QSAR models and other chemometric approaches, will be more widely
applied. Unfortunately, so far, we do not learn enough from the past knowledge, and
we do not take advantage, in an extensive way, from the existing information on the
inherent hazard that is included in the chemical structure. This should be done, but
more expertise on chemoinformatic method for prioritization should be present also
at chemical regulation level.
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