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Abstract
In this chapter, we present an overview of various chemometric methods,
appropriate for analyzing and interpreting data from social media, industry,
academia, medicine, and other sources. We discuss unsupervised machine-
learning techniques used for grouping (hierarchical cluster analysis, k-means)
and exploring (principal component analysis, self-organizing Kohonen maps) all
types of data, both quantitative and qualitative. For each method described in
this chapter, we explain the basic concepts, provide a rudimentary algorithm, and
present practical applications. All the examples are based on a set of molecular
descriptors calculated for a selected group of persistent organic pollutants
(POPs).
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Introduction

The vast amount of digital information generated every day in social media,
industry, and academia necessitates the use of advanced techniques appropriate for
processing, analysis, and interpretation of data.

There are two main types of data analysis algorithms, namely, supervised
and unsupervised machine-learning methods. A simplified schematic of machine-
learning methods is presented in Fig. 1. Supervised learning is used for modeling,
i.e., making predictions with the help of a calibration, discrimination, or classifi-
cation model, depending on the research problem. Unsupervised learningPrincipal
component analysis (PCA), used for exploring the hidden data structures and
relationships between variables, helps us find groups (clusters) of objects (samples)
similar to each other or, conversely, significantly dissimilar from the rest, as
defined by a selected metric. The main difference between the two methods is
that when constructing a model, the unsupervised learning method utilizes only
the explanatory (independent) variable matrix (X), while the supervised learning
method takes also the response (dependent) variable (y) into account (Brown et al.
2009).

This chapter discusses methods of unsupervised machine learning, or pattern
recognition, which are often used in problem solving in various fields of research
such as chemistry, economics, forensic science, and medicine (Skwarzec et al. 2011;
Li et al. 2013; Kountchev and Iantovics 2013; Golebiowski et al. 2014; Petushkova
et al. 2014; Schnegg et al. 2015). It is meant as a brief overview of the most popular
methods, along with examples, so as to facilitate an easier understanding of the
topic.

Fig. 1 An overview of data mining methods
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Data

All examples given in this chapter are based on a data set on persistent organic pol-
lutants (POPs). This data set contains 21 molecular descriptors (Table 1) calculated
for 1436 chloro (“C”) and bromo (“B”) analogues of dibenzo-p-dioxins (PXDDs,
where X stands either for C or B), dibenzofurans (PXDFs), biphenyls (PXBs),
naphthalenes (PXNs), diphenyl ethers (PXDEs), and benzenes (XBs) (Gajewicz
et al. 2010). Most of the examples in this chapter will be based on a reduced set
of POPs, namely, polychlorinated naphthalenes PCNs, polychlorinated dibenzo-p-
dioxins PCDDs, and polychlorinated dibenzofurans PCDFs (Fig. 2).

As the POP class membership of each sample is known beforehand, the authors
chose to use this data as a tool for comparing the effectiveness and the performance
of each clustering method presented in this chapter.

Data Preparation

In order to ensure the reliability and accuracy of the results, we must first evaluate
the quality of the raw data. The purpose of such evaluation is identifying possible
mistakes (errors) made during data collection and reducing the risk of propagating

Table 1 Molecular descriptors

Symbol Definition of molecular descriptor Unit

nAT Number of atoms �

nX Number of halogen substituents �

nO Number of oxygen atoms �

MW Molecular weight u
HOF Standard heat of formation kcal� mol�1

EE Electronic energy eV
Core Core-core repulsion energy eV
TE Total energy eV
TEp Total energy of the corresponding cation eV
VIP Vertical ionization potential eV
HOMO Energy of the highest occupied molecular orbital Hartree
LUMO Energy of the lowest unoccupied molecular orbital Hartree
D Dipole moment Debye
SAS Solvent accessible surface Å2

MV Molecular volume Å3

Qm Lowest negative Mulliken partial charge on the molecule �

Qp Highest positive Mulliken partial charge on the molecule �

P Polarizability derived from the dipole moment Å3

EN Mulliken electronegativity Hartree
Hard Parr and Pople’s absolute hardness Hartree
Shift Schuurman MO shift alpha Hartree



2098 K. Odziomek et al.

No. Compound X1 X2 X3

1 PCN-01 ~ ~ ~

2 PCN-02 ~ ~ ~

3 PCN-03 ~ ~ ~

… … … … …

1436 PCDD-74 ~ ~ ~

DESCRIPTORS

m

n

Fig. 2 A schematic representation of the example POP data set used in this chapter with m samples
(molecules) and n variables (descriptors)

those errors during the next stages of analysis. Data control also allows us to assess
whether any variable transformations (preprocessing) are necessary. In order to
use pattern recognition methods presented in this chapter, we must first perform
a specific type of data transformation, called standardization, autoscaling, or Z-
transformation. Standardization is a way of centering and scaling data in such a way
(Eq. 1) that the resulting variables have a mean value equal to 0 and the standard
deviation equal to 1.

zi D
xi � �

�
(1)

where xi is the sample value, zi is the standardized sample value, � is the mean value
for all samples in the column, and � is the standard deviation of all the values in the
column.

It should be noted that, after this transformation, all the variables have mean value
equal to 0 and variance equal to 1 (see Fig. 3). Thusly, the effect of unequal value
ranges, caused by differing variable units, and has been nullified, as the standardized
data are unitless. Each variable has equal significance (weight) and influence on the
analysis results (Livingstone 2009).

Clustering

In order to explore the data, to identify and visualize their underlying structure,
and to understand the relationships between objects (samples), we should employ
clusteringClustering methods. Clustering is a way of looking for natural patterns or
groups in the data, in other words, a way of determining the relative positions of
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Fig. 3 Data transformation during autoscaling (a) raw data; (b) centered data, where � D 0; and
(c) centered and scaled data, where � D 0, � D 1

all objects in the multidimensional variable space. It is an unsupervised machine-
learning method, that is to say, the size and membership of the groups are not known
in advance. The groups are formed as a result of a clustering algorithm and are
extracted from the data set accordingly to criteria selected by the user.

As all clustering methods are built on the concept of similarity, not only do they
allow us to determine group membership but they also help us identify outliers.
Ways of measuring similarity will be discussed in depth later in this chapter.

There are two main approaches to clustering. The first one, called hierarchical,
produces levels of rank-ordered clusters. The second one, called partitive, sorts the
data into a predefined number of clusters of equal importance (Everitt et al. 2011).

Similarity and Distance

Similarity can be expressed in terms of distance between two objects in the variable
space. This space can be one-, two-, three-, or multidimensional, proportionally to
the number of variables. It is quite intuitive to interpret similarity and distance as
inverse concepts: the greater the distance between objects, the lesser their similarity.
Two objects are considered to have similar properties and, consequently, belong to
the same group, if the distance between them is sufficiently small (Brereton 2003).

The perception of similarity through distance, the way we interpret objects as
similar or not, depends on the distance metric selected, variables used, and data
transformation method applied.

Examples of different approaches to defining distances between objects, that is,
different similarity metrics, are shown in Fig. 4. The Euclidean distance between the
two objects, i(1) and j(2), denoted by line C, can be calculated according to Eq. 2:

DEuclidean D

v
u
u
t

J
X

j D1

�

xij � xkj

�2
(2)

where i, j are sample indices, n is the variable number, xi is the i-th sample value of
n-th variable, and xi is the j-th sample value of n-th variable.
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Fig. 4 Different approaches to defining distance metrics

In the presented example, the Euclidean distance between objects 1 and 2 is given
as:

C D
p

B2 C A2

C D

q

.5 � 1/2 C .4 � 1/2 D 5

The second distance metric represented in Fig. 4, known as Manhattan or city block
distance, is calculated as follows (Eq. 3):

DManhattan D

J
X

j D1

ˇ
ˇxij -xkj

ˇ
ˇ (3)

In the example:

DManhatan D 4 C 3 D 7

The last distance metric, Chebyshev, can be determined according to Eq. 4:

DChebyshev D max
ˇ
ˇxij � xkj

ˇ
ˇ (4)

In our example, jAj < jBj; thus,

DChebyshev D jBj D 4
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Table 2 Most popular distance metrics

No. Metric Equation Type Data type

1 Euclidean

v
u
u
t

J
X

j D1

�

xij � xkj

�2
Dissimilarity Interval/binary

2 Manhattan (city
block)

J
X

j D1

ˇ
ˇxij � xkj

ˇ
ˇ Dissimilarity Interval

3 Chebyshev max
ˇ
ˇxij � xkj

ˇ
ˇ Dissimilarity Interval

4 Minkowski(order
n)

n

v
u
u
t

J
X

j D1

�

xij � xkj

�n
Dissimilarity Interval

5 Canberra
J

X

j D1

ˇ
ˇxij C xkj

ˇ
ˇ

xij C xkj

Dissimilarity Interval

6 Mahalanobis n

v
u
u
t

J
X

j D1

�

xij � xkj

�n
S�1

�

xij � xkj

�n
Dissimilarity Interval

7 Cosine(Ochiai)

J
X

j D1

xij xkj

v
u
u
u
u
u
t

J
X

j D1

x2
ij

J
X

j D1

x2
kj

Similarity Interval/binary

8 Pearson
correlation
coefficient

J
X

j D1

�

xij � xi

� �

xkj � xj

�

v
u
u
u
u
u
t

J
X

j D1

�

xij � xi

�2
J

X

j D1

�

xkj � xj

�2

Similarity Interval/binary

9 Squared
Pearson
correlation
coefficient

2

6
6
6
6
6
6
4

J
X

j D1

�

xij � xi

� �

xkj � xj

�

v
u
u
u
u
u
t

J
X

j D1

�

xij � xi

�2
J

X

j D1

�

xkj � xj

�2

3

7
7
7
7
7
7
5

2

Similarity Interval/binary

Distance measures can emphasize similarity, as well as dissimilarity between the
objects. The abovementioned metrics highlight the differences between samples and
quantify dissimilarity. It should be noted that the choice of the distance measure
depends also on the type of data available. A list of the most popular (dis)similarity
metrics can be found in Table 2.

The measure of proximity between two clusters, or an object and an already
formed cluster, is called linkage (Varmuza and Filzmoser 2009). Let us assume there
are three clusters called C1 (with n1 objects), C2 (with n2 objects), and C3 (with n3

objects). If clusters C2 and C3 are aggregated to form a new single cluster called C4
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Table 3 Linkage types

Linkage type Equation

Single [nearest neighbor]. Distance between two clusters
is the minimum distance between any single observation
in one cluster and any single observation in the other
cluster

DC1C4 D min
�

DC1C2 ; DC1C3

�

Complete [furthest neighbor]. Distance between two
clusters is the maximum distance between any single
observation in one cluster and any single observation in
the other cluster

DC1C4 D max
�

DC1C2 ; DC1C3

�

Centroid [unweighted pair group method centroid,
UPGMC]. Euclidean distance between two clusters is the
distance between the cluster centroids (means, middle
points)

DC1C4 D kc1 � c4k

Average [unweighted pair group method with arithmetic
mean, UPGMA]. Distance between two clusters is the
mean distance between all observations in one cluster and
all observations in the other cluster

DC1C4 D n2

n2Cn3

�

DC1C2

�

C n3

n2Cn3

�

DC1C3

�

McQuitty [weighted pair group method with arithmetic
mean, WPGMA]. Distance between the newly formed
cluster and any other cluster is the mean value of the
distances from each of the two merged clusters to that
cluster

DC1C4 D 1
2

�

DC1C2 ; DC1C3

�

Ward [minimum variance]. The proximity of two clusters
is calculated as the Euclidean distance between their
centroids multiplied by a correction factor, thus
minimizing the within-cluster sum of squares

DC1C4 D kc1 � c4k
p

2n1n4

n1Cn4

(with n2 C n3 D n4 objects), the distance between cluster C1 and the new cluster C4

is calculated according to one of the approaches listed in Table 3.
The single linkage method is a good choice for identifying the most homogenous

(similar) groups. The complete linkage method tends to highlight the differences
between samples – the resulting groups are similar in size but very diverse. The
furthest neighbor method can be sensitive to outliers. While the single or complete
linkage methods are based on single-pair distances, the average and centroid linkage
methods use a more central measure of location.

Hierarchical Clustering

Hierarchical clustering is an iterative method of grouping objects into a tiered,
ordered structure, where all individuals are assigned to a specific, mutually exclusive
subgroups. There are two approaches to hierarchical clustering:

(a) Agglomerative (bottom-up), which starts with each of the n objects forming
separate, single-member clusters and recursively merges the two most similar
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groups or individuals into one of a higher level until all objects have been
combined into a single cluster

(b) Divisive (top-down), which starts with all n objects forming one single cluster
and with each iteration splits it into two smaller groups until all objects form
separate, single-member clusters

The agglomerative methods are widely used in various areas of science:
medicine, environmental science, computer vision, and analytical chemistry, which
is why the authors choose to focus on them in this section.

Advantages
• Wide range of similarity metrics and cluster linkage techniques
• Applicability to a variety of data types (interval, binary, and count data)

Disadvantages
• Ambiguity in selecting the final number of clusters
• Irreversibility of the merge at each level

Clustering Algorithm
The workflow of agglomerative hierarchical clustering is presented below. In this
example, the variables were all measured on different scales; therefore, prior to the
analysis, a data transformation is necessary. In order to convert data variables into
ones with comparable units, all the sample values were standardized, that is, mean
centered and variance scaled (Fig. 5).

Agglomerative hierarchical clustering consists of the following steps:

1. Computing the pairwise distance matrix (Fig. 6). Using a selected metric, the
distances between each point and all other objects in the data set are calculated.
Here, the Euclidean distance is used.

2. Forming clusters (Fig. 7). The first step is to find two objects with smallest
distance to each other (A and B). These objects will be merged into the first
cluster (C1).

3. Determining intercluster distances. Using a selected linkage technique, the
relative proximity of the new cluster C1 to all the remaining objects (C, D, E, and
F) is calculated. When estimating linkage, all unmerged objects are considered
to be single-member clusters or singletons. Here, the single linkage (nearest
neighbor) approach has been used.

4. Merging the previously formed cluster (C1) and the closest object C, into a new
cluster (C2) (Fig. 8).

5. Iterating step 3 thru 4 until all objects have been incorporated into a single cluster
with nested subclusters (Fig. 9). In our example, cluster C1 contains only objects
A and B. Cluster 3 contains only objects E and D. One tier up in the hierarchy,
cluster C2 contains cluster C1 and object C. Up another tier, Cluster C4 contains
cluster C2 and C3. The final tier the cluster C5 comprises all objects, formed by
merging cluster C4 and object F.
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Fig. 5 The effect of autoscaling on a randomly generated data set; (a) original (raw) data, (b)
autoscaled data

The hierarchical clustering results can be visualized as a tree-like diagram, called
the dendrogram plot (Fig. 10). Typically, the y-axis indicates the distance at each
successive split (or join) or branch height. On the x-axis, the objects are shown as
leaves.

There are three main types of dendrograms to choose from: rectangular, triangu-
lar, or circular, although the rectangular is most popular (see Fig. 11). Regardless
of the choice of the dendrogram type, the interpretation remains the same. Objects
belonging to the same cluster are always more similar to each other than to the
objects from other clusters.

Depending on the distance metric and linkage method used, the tree diagram will
be different (Fig. 12). For example, using the Canberra distance metric instead of the
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Fig. 6 Example of (a) Euclidean distance matrix, where the smallest distance between the two has
been highlighted, (b) visualization of the Euclidean distance between the closest objects – A and B

Fig. 7 Forming the first
cluster C1 by merging two
closest objects A and B,
based on the single linkage
approach

standard Euclidean distance will result in greater distance value ranges and distinct
cluster separation; see Fig. 12a.

Selecting appropriate distance and linkage parameters will help answer the
questions about the data structure and facilitate the correct interpretation of results.
When looking for similarities between samples, one should use the single linkage
method instead of the complete linkage approach (Fig. 12b).

Let us now turn to the POP data set. As we are trying to cluster the objects into
most diverse groups in order to find the common characteristics for POP samples
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Fig. 8 Forming the second
cluster by merging cluster C1

with the closest object C,
based on the single linkage
approach

Fig. 9 Final clustering
results, with showing
hierarchical (nested) cluster
structure

from the chemical groups of polychlorinated naphthalenes PCNs, polychlorinated
dibenzo-p-dioxins PCDDs, and polychlorinated dibenzofurans PCDFs, we used the
Euclidean distance metric. For comparison’s sake, we applied the three types of
linkage metrics to build a dendrogram: complete (Fig. 13a), Ward’s (Fig. 13b),
and single (Fig. 13c). Depending on the linkage method used, the number of main



50 Unsupervised Learning Methods and Similarity Analysis in Chemoinformatics 2107

Fig. 10 An example of a
rectangular dendrogram,
created using Euclidean
distance and complete linkage

A 
0.0

0.5

1.0

1.5

3.0

2.5

2.0

B C D E F 

a b c

Fig. 11 Different types of dendrograms (a) rectangular, (b) triangular, and (c) circular

branches varies significantly, e.g., for the complete method, four main clusters
can be identified; for Ward’s method, three main clusters are visible; and for the
single linkage method, two main cluster groups are noticeable. The preliminary
assumptions on cluster number are very subjective and depend on the person
analyzing the plots. Another scientist may see a completely different ramification
to the one presented by the authors.

Choosing Number of Clusters
The dendrogram resulting from agglomerative hierarchical clustering does not
explicitly specify group structure. Based only on the tree diagram, we are unable
to identify the number of groups and their memberships or size. That information
can, however, be obtained by “cutting” the dendrogram at a certain height (h) or by
specifying the desired number of groups (k). Choosing the cutoff point or a default
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b

a l

lll l

Fig. 12 Comparison of distance metrics and linkage methods: (a) Euclidean versus Canberra
distance, complete linkage; (b) single versus complete linkage, Euclidean distance

cluster number is not an easy task, especially considering the variety of data types,
units, and ranges, as well as differing needs and expectations of individual analysts.

A substantial number of approaches to determining the branch cut height can
be found in the literature (Milligan and Cooper 1985). The simplest one, a rule of
thumb really, is to use the square root of half of the sample number (Eq. 4):

g D
p

n
2

where n is the number of samples and g is the cutoff value.
In order to verify the number of main groups (clusters) identified through

different linkage methods, we use the rule of thumb approach. The number of
POP samples n equals to 288; therefore, the cutoff height g D 12. The resulting
groups for all three linkage methods, colored for better identification, are shown
in Fig. 14. When using the complete linkage method, after visual inspection, we
identified four main clusters. This verified when using the rule of thumb approach,
as shown in Fig. 14a. Curiously, the three main clusters initially identified in the
second dendrogram (Ward’s method) were later disproved by the rule of thumb,
which showed 11 subclusters (Fig. 14b). Interestingly, while we initially identified
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a

b

c

l l

l

ll

Fig. 13 Hierarchical clustering results for three POP groups (PCNs, PCDDs, and PCDFs) using
the Euclidean distance: (a) complete linkage, (b) Ward’s linkage method, (c) single linkage

two main subgroups in the third dendrogram (single linkage), according to the rule
of thumb, there is only one, all-encompassing cluster (Fig. 14c).

Other, more complex means of selecting the number of clusters are also available.
Most of them are automated in nature (i.e., those for which user input is not
necessary), such as the Cindex (Eq. 5):

Cindex D
S - Smin

Smax - Smin
(5)
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aa

b

c

Fig. 14 Varying number of clusters depending on the linkage method used: (a) complete linkage,
(b) Ward’s linkage method, (c) single linkage. The dashed vertical line shows the cutoff tree height
(g D 12)

where NC is the total number of pairs of objects from the same cluster, S is the sum
of distances for the total number of object pairs in the same cluster (NC), Smin is the
sum of the NC smallest distances between all the pairs of points in the entire data
set, and Smax is the sum of the NC largest distances between all the pairs of points
in the entire data set.

The Cindex takes values between 0 and 1, where a small value indicates good
clustering. In the case of the POP data set, there are 287 cluster sets (k D n-1
values) possible, ranging from 2 to 287. When comparing Cindex values for all
the possibilities (Fig. 15), we can see that the lowest Cindex

287 value is 0, for a
grouping consisting practically only of 287 one-element clusters. Such a grouping
is, of course, meaningless and unusable. Therefore, in practice, we look for a global
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Fig. 15 Number of clusters versus Cindex value

minimum and the lowest possible number of clusters at the same time. In our case,
when taking both of those condition into account, we arrive at Cindex

2 D 0:346,
found for k D 2. Therefore, two is the optimal cluster number.

Another numerical technique to determine the optimal cluster number is the
silhouette index Si, which is calculated individually for each sample (Eq. 6):

Si D
bi � ai

max fai ; ai g
(6)

where ai – is the average dissimilarity of i-th object to all other objects in the same
cluster, and bi – is the minimum of average dissimilarity of i-th object to all objects
in other, closest cluster.

The silhouette width Si can take values between �1 and 1. For objects with high
Si value (close to 1), the cluster assignment is correct and accurate. For samples with
silhouette value close to zero, the cluster assignment is ambiguous and imprecise.
That is, the sample may have very well been assigned to another cluster instead,
as it is equidistant from both clusters. Objects with Si, value close to �1, were
wrongly classified (assigned cluster membership) and lie somewhere in between all
the possible clusters.

The overall silhouette width is simply the average Si value over all objects in the
data set. When assessing the optimal number of clusters, the one with the maximum
average silhouette width should be chosen. The silhouette index should be visualized
in the form of a bar graph (silhouette plot), which, in addition to Si values, shows
cluster membership for each object (Fig. 16).

We used the silhouette plot to verify and compare the clustering for two different
linkage methods: complete (Fig. 16a) and Ward’s (Fig. 16b). In the case of complete
linkage, 71 out of 288 POP samples (24.65 % of the data) have Si values below 0,
meaning they could be considered as “misclustered” samples. Such a high number
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a b

Fig. 16 Silhouette plots for three POP groups (PCN, PDDD, and PCDF). Comparison of the
cluster number resulting from cutting dendrograms at height g D 12; (a) complete linkage, (b)
Ward’s linkage method. Groups have been color-coded for easier interpretation

of samples with negative silhouette values may suggest that the selected linkage
method may not be the most suitable for the data at hand. This conclusion is further
confirmed when looking at the silhouette plot for Ward’s method (Fig. 16b). There is
only one POP sample with the Si value below 0, suggesting that this linkage method
gives a more accurate separation of samples (grouping). It is worth noting that, if
a data set contains a significant number of samples with Si values below 0, it may
also suggest that the selected features (variable) do not describe the underlying data
structure in an appropriate manner.

There is also another way of comparing the cluster membership with the original
POP group, illustrated in Fig. 17. Cluster 1 consists of several PCNs and two PCDFs.
Cluster 2 contains the bulk of the data set, that is, the majority of samples from all
three POP groups (PCNs, PCDDs, and PCDFs). Cluster 3 and 4 contain a small
number of PCDDs and PCDFs. We see now why the silhouette analysis yielded 71
“misclustered” samples. The reason for such misclustering might be the use of too
many variables (in this case, all 21 molecular descriptors), some of which might be
redundant.

Despite the great number of cluster selection methods available, there is no sin-
gle, universally applicable technique regarded as a golden standard. The silhouette
index is a potential candidate for an effective and simple way of verifying the quality
and performance of the selected clustering algorithm. Sadly though, even the most
sophisticated cluster selection and identification method needs to be augmented by
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Fig. 17 Hierarchical clustering grouping versus the original chemical groups. Euclidean distance
and complete linkage method were used

user expertise and experience. No two research problems are alike; therefore, no
universal, unambiguous approach to all of them can be found.

k-means

The k-means algorithm is one of the most popular partitioning methods, mainly
because of its ease of use. It groups data into a user-defined number of clusters, k.
Each observation is assigned to the nearest cluster, the center of which is defined by
the arithmetic mean (average) value of its points, the centroid (Myatt 2007). Among
many available distance metrics (see Table 1) used in k-means, the Euclidean
distance is the most popular one. The main advantage of this method is its clarity
and simplicity, making its implementation an easy task.

Partitioning Algorithm
The algorithm consists of the following steps:

1. Setting up initial positions of the k cluster centers. This can be by supplying a set
of predefined centroid coordinates or by random generation of cluster centers.
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2. Calculating distances from each i-th element to each of the initial cluster centers
using a selected distance metric.

3. Based on sample-center distances, assigning each i-th element to the nearest
cluster.

4. Calculation of new cluster means (centroids) after object reassignment.
5. If the distance from the sample to the new cluster center is smaller than the

distance to the prior cluster center, assignment of the sample to a new cluster
with the closer centroid.

6. Iterating steps 2 thru 5 until permanent cluster assignment for all elements, i.e.,
until no element changes its cluster membership. It is possible to define the
maximum number of iterations regardless of group reassignment.

When applying the k-means method to the POP data set, we observed some
cluster overlap, as was the case with HCA results (Fig. 18).

In order to compare the clustering results from both the hierarchical and
partitioning method, we calculated the silhouette for each sample (Fig. 19). We
found that the overall performance of the k-means algorithm was better in terms
of cluster homogeneity; only 7 out of all 288 samples (2.43 % of all data) have Si

below 0, which means only seven of them have been “misclustered.” It is a great
improvement over the HCA clustering, which yielded 71 “misclustered” samples.

All partitioning methods divide the data into a set number clusters in a way that
optimizes an objective function, that is, meets specific criteria set for the results prior

Fig. 18 The results of k-means clustering for selected POP groups (PCNs, PCDDs, PCDFs)
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Fig. 19 The silhouette plot of k-means clustering results for the selected POP groups (PCNs,
PCDDs, PCDFs)

to the analysis. In case of k-means, the algorithm minimizes the sum of squared
errors, SSE (Han et al. 2012), the within-cluster sum of squared distances between
each sample and cluster center (Eq. 7).

SSE D

K
X

kD1

X

xi 2Ck

kxi � ckk2 (7)

where k is the number of clusters, Ck is the k-th cluster, ck is the centroid of the k-th
cluster, and xi is the sample.

It is important to note that a different choice of initial centroid positions may
result in a different final assignment of points to clusters. Therefore, it advisable to
run the k-means algorithm a number of times, each with a different set of starting
parameters, and then compare the results. This will ensure that the algorithm will
reach the global optimal cluster configuration and will not get “stuck” at a local
minimum of the objective function.

Advantages
• Effective when working with well-separated, compact clusters
• Computationally faster and more appropriate for large data sets than agglomera-

tive hierarchical clustering
• Intuitive use and ease of interpretation, simplicity of implementation
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Disadvantages
• The number of groups must be prespecified prior to running the algorithm
• Not robust to noisy data and outliers – might create nonoptimal clusters (solution:

use k-medoids)
• Not applicable for categorical data (solution: use k-modes)

k-medoids
While the k-means algorithm is a very simple and useful tool, it is quite susceptible
to extreme values or noise, which distort the mean value of the cluster. The
k-medoids algorithm is a modified version of the k-means approach, where rather
than averaging all objects in the cluster to find the center, the middle point, or
medoid, is selected from among the samples in the cluster (Everitt et al. 2011).
Thusly, the clusters are represented by their most centric element, instead of a
numerical value that may not belong to the cluster at all. Medoids are defined as
data points, whose average dissimilarity to all the objects in a cluster is minimal.

Both the k-means and k-medoids algorithms minimize the distance between all
points inside a cluster and its designated center. The difference being that, unlike
the k-means algorithm, k-medoids work with pairwise dissimilarities instead of
Euclidean distances.
The k-medoids algorithm is analogical to that of the k-means method:

1. Selection of an initial set of k-medoids among the n objects in the data set.
2. Assignment of each object in the data set to the nearest (least dissimilar) medoid.
3. Searching for more optimal medoids. Iteratively for every medoid m, swapping

(replacing) it with each one of the non-medoid objects oi to check if it improves
the total distance of the resulting clustering.

The suitability of the medoid “candidate” oi is assessed by computing its
average dissimilarity to all remaining non-medoid data points on¤i . The objective
function is the total cost of the new configuration, which is the sum of candidate-
no-medoid differences E (Eq. 8).

E D

n
X

iD1

d .oi ; m/ (8)

where d is the dissimilarity measure, oi is the non-medoid object, m is the
medoid, and n is the number of objects in the data set.

4. Selection of new medoids oi with the lowest cost of the configuration (Fig. 20).

k-modes
The k-means clustering algorithm cannot be applied to categorical data, as it relies
on means to represent cluster centers, and nonnumerical data have no defined mean
value. The k-modes, a variant of k-means, enables grouping categorical data by
using the mode as the cluster center point. Moreover, it replaces the Euclidean
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Fig. 20 The results of k-medoid clustering for the selected POP groups (PCNs, PCDDs, PCDFs)

distance metric from k-means with matching dissimilarity measure and a frequency-
based approach to update cluster modes.

The k-modes algorithm consists of the following steps (Khan and Kant 2007):

1. Selecting k initial modes, one for each of the cluster.
2. Assigning every data object to the cluster whose mode is nearest to it. The

proximity (dissimilarity) measure is based on the total number of mismatches
d (Eq. 9). The smaller the number of mismatches, the more similar the two
elements are.

d .X; Y / D

m
X

j D1

ı .xi ; yi /

�

0; xj D yi

1; xj ¤ yi

(9)

where X and Y are two categorical objects and m is the number of categorical
attributes; xj, yj are categories for attribute j.

3. Computing new modes for all clusters.
4. Repeating step 2 thru step 3 until no data object has changed its cluster

membership (Fig. 21).
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Fig. 21 The results of k-modes clustering for the selected POP groups (PCNs, PCDDs, CDFs)

PCA

When faced with a large, multidimensional set of variables, the sheer volume may
make it difficult to see patterns and relationships hidden in its structure. Principal
component analysis allows us to visualize and describe this structure by means
of reducing the dimensionality of the data. This method is based on principal
components (PCs), which are linear combinations of the original variables (PCs)
and form a new multidimensional space onto which the original data set is projected.

The main applications of principal component analysis are:

• Projecting multidimensional (multivariate) data onto 2D and 3D scatterplots
• Winnowing out important information from data noise
• Converting data with high inter-variable correlation into a set of uncorrelated

latent variables suitable for predictive modeling

In data mining, information content is measured in terms of data variance
(Eq. 10).

�2.x/ D

m
X

iD1

.xi � �/2

n � 1
(10)
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where � is the variance of variable x, � is the mean value of variable x, n is the
number of samples, and xi is the i-th sample of variable x.

Variables with very little difference in values (low variability) are in fact non-
informative and have little bearing on the clusters present in the data set. These
variables are inadequate to the task of describing and explaining the underlying data
structure, as they have very little influence on it.

In order to describe the linear relationship of two variables, we can calculate their
covariance:

cov .xk; xl / D

n
X

j D1

.xik � �k/ .xil � �l /

n � 1

where xk and xl are k-th and l-th variables, �k and �l are variable means, and n is
the number of samples.

The covariance parameter is the measure of how much the values of two variables
change together. If values of one variable change (e.g., increase) in the same
direction as values of the other, i.e., the variables tend to show similar behavior,
the covariance value is positive. Although, the covariance parameter, while a good
indicator of whether two variables correspond to each other, is not suitable for a
pairwise comparison of multiple variables with differing units and value ranges.
In other words, the same numerical value of covariance might mean a highly
proportional relationship for one pair of variables, whereas for another pair, it might
signify a completely random one.

In order to unambiguously assess and compare the relationships between vari-
ables, we must calculate the correlation coefficient r (Eq. 11):

r .xk; xl / D
cov .xk; xl /

p

var .xk/
p

var .xl /
(11)

where xk, xl are k-th and l-th variables, �2
k, �2

l are variable variances, and cov is
variable covariance.

The Workflow
Prior to the analysis, the data matrix X requires preprocessing and the preferred data
transformation methods is standardization (autoscaling). In the resulting autoscaled
matrix Z, all the variables have mean value � equal to 0 and the standard deviation
value ¢ equal to 1. Thus, any distorting effects caused by differing variable units
have been negated.

The principal component analysis consists of the following steps (Jolliffe 2002;
Brereton 2009):

1. Calculating the correlation-covariance (corr-cov) matrix C. The diagonal ele-
ments of a covariance matrix are the variable variances, and the non-diagonal



2120 K. Odziomek et al.

elements are their covariance. For standardized (autoscaled) data, the covariance
matrix is equivalent to the correlation matrix, and the diagonal elements are in
fact the Pearson’s correlation coefficients (Eq. 12):

var .xk/ D 1

var .xl / D 1

r .xk; xl / D cov .xk; xl /

(12)

where xk, xl are k-th and l-th variables, cov is the variable covariance, and r is the
variable correlation coefficient.

2. Computing the eigenvalues and eigenvectors of the correlation-covariance
matrix. The eigenvalues � indicate the amount of variance in data explained
by their corresponding principal component. Each eigenvector contains a set of
variable coefficients, i.e., loadings, P. The resulting eigenvectors P are arranged
in descending order of their eigenvalues. The loadings express the variables’
contributions to the principal components.

3. Calculating the scores. In order to obtain the positions of all data objects in
the new principal component space, we must calculate the principal component
scores, T. The scores matrix is a product of autoscaled matrix Z and the
eigenvector matrix P.

4. Determining the number of significant principal components, k. All principal
components are mutually orthogonal – each one contains unique information
that none of the others represent. Yet not all of the PCs are equally important.
Considering that they are sorted in a descending order of information content,
only a first selected few principal components will be useful in representing the
data set.

The essence of the mathematical operations performed in order to obtain the
principal components can be distilled into the scheme shown in Fig. 22. The rows
in matrix Z represent samples and the columns represent variables. The product TP
is an approximation of to the original data set, i.e., a model, the error of which is
being represented by matrix E.

Fig. 22 A schematic of PCA decomposition. k is the number of significant principal components,
Z is the n � m standardized data matrix, T is the n � k scores matrix, P is the k � m loadings
matrix, and E is the n � m error matrix
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Table 4 Eigenvalues and explained variance of the principal components – POP data set

PC Eigenvalue Explained variance [%] Cumulative explained variance [%]

1 11.36 54.07 54.07
2 5.75 27.40 81.48
3 2.25 10.70 92.18
4 0.93 4.42 96.59
5 0.44 2.07 98.67
6 0.11 0.53 99.20
7 0.08 0.40 99.60
8 0.06 0.28 99.88
9 0.02 0.07 99.96
10 0.01 0.02 99.98
11 0.00 0.01 99.99
12 0.00 0.00 100.00
13 0.00 0.00 100.00
14 0.00 0.00 100.00
15 0.00 0.00 100.00
16 0.00 0.00 100.00
17 0.00 0.00 100.00
18 0.00 0.00 100.00
19 0.00 0.00 100.00
20 0.00 0.00 100.00
21 0.00 0.00 100.00

Let us review the results of the principal component analysis of the POP data
set. There are various methods of selecting the significant number of principal
components (Jolliffe 2002):

1. The Kaiser criterion, which states that the significant PCs have eigenvalue greater
than or equal to 1. In our case (Table 4), we would choose the first three principal
components (PC1 thru PC3).

2. The minimum cumulative variance criterion is PC significance only for values
over a certain arbitrary threshold, here 90 %. Again, according to this rule, we
should use the first three principal components (PC1 thru PC3, Table 4).

3. The “elbow method” based on the scree plot (Fig. 23a). The “elbow” in question
is the point of the plot where the line reaches a plateau. We would make use of
the first four principal components (PC1 thru PC4).

We choose to obey the Kaiser criterion, that is, to consider PC1, PC2, and PC3
as the most significant.

The next step is to visualize the data set in the space created by the principal
components (Fig. 24), i.e., the scores. The principal component scores show the
position of all samples projected onto the PC hyperspace. When analyzing the scores
for the first three principal components, we noticed that PC1 and PC2 separate the
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Fig. 23 Explained variance of principal components for selected POP groups (PCNs, PCDDs,
PCDFs): (a) scree plot of the principal components (b) cumulative explained variance

three selected POP groups (PCNs, PCDDs, PCDFs) quite well (Fig. 24a), whereas
PC1 in combination with PC3 (Fig. 24b) seems to highlight possible outliers. When
juxtaposing PC2 and PC3, we see highly condensed group made up of PCN and
PCDF samples as well as highlight one possible outlier (Fig. 24c).

Knowing that each principal component is a linear combination of all variables
(descriptors) in the data set, we can use loadings to investigate which variables
influence them most. A variable is considered to be highly influential on the
principal component if the absolute value of its standardized loading is greater than
0.7 (Jolliffe 2002). What this means is that in reality, only the “highly influential”
variables dictate the internal data structure.

According to PC1’s loading vectors presented in Fig. 25, the first principal
component is determined by the size and bulk of the molecules. The contributing
structural descriptors (nX, MW, MV, and SAS) are all correlated with PC1, that, is
the greater the PC1 values, the higher the number of chlorine atoms, molecular mass,
volume, and surface. The polarizability (P) of a molecule and the core-core repul-
sion energy (Core) between two atoms are proportional to molecular size, which
is expressed by the high loading values of these descriptors. Another characteristic
dependent on the size of the molecular is its energy. Here, the proportion is inverse,
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Fig. 24 Scatterplots of the first three principal component scores (PC1, PC2, PC3) – POP data set

as values of energy and heat are expressed in negative numbers, so the bigger the
molecule, the lower (“more negative”) the energy value. This is expressed through a
set of descriptors: the heat of formation (HoF), the electronic energy (EE), the total
energy (TE) and the total energy of the corresponding cation (TEp), and the LUMO
energy and Parr and Pople’s absolute hardness (Hard). All of them have negative
loading values and are inversely correlated with PC1.

PC2 is determined by the molecule’s ability to donate and accept electrons. The
higher the number of oxygen atoms (nO) and the overall number of atoms in the
molecule (nAT), the more difficult it is to detach an electron, which is expressed
by the inverse proportion between those two descriptors and the vertical ionization
potential (VIP). VIP itself is calculated as the difference between the energy of
a neutral molecule and the energy of the corresponding cation. According to the
Koopmans’ theorem, the negative value of HOMO can be used as an approximation
of the first ionization energy, so in fact, both descriptors express the same molecular
feature. Conversely, the bigger the number of electronegative atoms (i.e., oxygen)
in the molecule, the greater the overall electronegativity (EN). The chemical shift
(Shift) is the equivalent of the electronegativity but with an opposite sign.
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Fig. 25 First three principal component loadings (PC1, PC2, PC3) – POP data set

PC3 represents the symmetry of a molecule, expressed through the highest
positive Mulliken charge on the molecule (Qp). The more symmetrical the structure
of a molecule, the lower the partial charge.

SOM

Self-organizing (or Kohonen) maps, SOMs (Kohonen 2001), are a type of unsuper-
vised partitive clustering methods. They are a quick and easy way of simultaneous
data grouping and visualization, inspired by the biological information transport and
processing system – neurons and synapses. SOMs are an ideal tool for analyzing
large, complex data sets for which the standard scatterplot would be unreadable due
to overlapping data points, the so-called overplotting.

SOMs preserve the topology, i.e., the relative distances between objects, of a
high-dimensional variable space while mapping it onto a low-dimensional repre-
sentation, usually a two-dimensional grid or plane.

Building SOMs

Determining the Structure
A Kohonen neural network consists of two layers (Kohonen 2001; Vesanto and
Alhoniemi 2000):
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Input layer Output layer

Fig. 26 A schematic representation of a SOM network

1. Input layer – an array of input vectors, each of length p, based on the original
data matrix; every sample (object) is represented by an input vector containing
its coordinates in the original p-dimensional variable space (Fig. 26).

2. Output layer – a grid with M nodes (neurons), where M is a number of nodes
determined by the user; each node is represented by a weight vector, or codebook
vectors, of length p, containing weights, i.e., values defining its location in the
original p-dimensional variable space (Fig. 26).

In order to set up the computations, one must first define and select a number of
parameters describing the shape, topology, and size of the network:

(i) Number of neurons in the output layer
(ii) Network shape: planar (1D line, 2D square or rectangle), cylindrical, and

toroidal
(iii) Neighborhood type: square, rectangular, or hexagonal
(iv) Neighborhood radius
(v) Neighborhood function: rectangular, Gaussian, cut Gaussian, triangular, and

exponential
(vi) Learning rate

(vii) Number of iterations during the training process

All of these parameters influence the network’s learning capabilities, quality of
grouping, and computation time.
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The number of neurons (i) defines the number of grid nodes present in the
output layer. The greater the number of neurons in the network, the more complex
problems it can solve and sharper the divide between resulting groups (clusters) – at
the cost of computational resources. Choosing too many neurons may mean that a
part of them will go unused when applied to low-complexity problems. Conversely,
employing an insufficient number of neurons produces overlapping clusters and loss
of information about class structure (Gemperline 2006).

The network shape (ii) describes the arrangement of the nodes in the network.
The simplest possible shape resembles a 1D chain, where each link is a node. The
more complex form can be a 2D map (arranged in a square or rectangular grid), 3D
cylinder to a toroid. To ensure the equal number of neighbors for every neuron, it is
best to use infinite, edgeless, toroidal form (Brown et al. 2009).

The neighborhood type (iii) is a method of counting the neighboring nodes. A
square neighborhood means that a neuron has four nearest neighbors, a hexagonal
neighborhood means that the neuron has six nearest neighbors, and a rectangular
neighborhood means that a neuron has nine nearest neighbors.

The neighborhood radius (iv) is the number of surrounding nodes associated with
the winner neuron or the best matching unit, BMU. This group of neurons, along
with the BMU, is called a neighborhood set. The radius value decreases during each
training cycle and is ultimately limited only to the winning neuron (Maimon and
Rokach 2005).

The neighborhood function (v) controls the intensity of change of the weights
in the codebook vectors from the neighborhood set, that is, the vectors closest to
the winner neuron. The most popular is the Gaussian function, through which the
winner neuron’s weight adjustment is greater than that of the remaining neurons
(Kohonen 2001; Brereton 2009; Brown et al. 2009).

The learning rate (vi) is responsible for the network’s performance. It’s a
coefficient which can take values between 0 and 1 and determines how similar the
neuron weight vectors will be to the input pattern or sample vector. The sample
vector is a randomly chosen object (sample) from the original data matrix, serving
as a reference point for the training vector at each iteration. The initial value of the
learning rate decreases with each iteration, the increment determined by a linear
or exponential function. Choosing a too small number may result in an insufficient
weight correction and therefore limited adjustment of codebook vectors in the p-
dimensional space. As a consequence, some of the map units may never get a chance
to fully learn the input pattern and sufficiently represent all the samples (Brereton
2009; Brown et al. 2009; Hastie et al. 2009).

The number of iterations (vii) defines the amount of repetitions in the training
cycle. Too small a number may result in an undertrained network, which in turn
leads to incorrect clustering. On the other hand, a too large number may lead to
waste of computational time and resources on redundant cycles when an optimal
solution had been found a few repetitions prior. The recommended number of
iteration samples is the number of map units multiplied by a factor of 500 (Brereton
2009).
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Fig. 27 Optimal weight vectors of the output neurons (codebook vectors) for the POP data set

Training
After establishing all the necessary parameters, it is time to begin training the
network, that is, performing an iterative search of optimal weight vectors of the
output neurons (Fig. 27). The steps of this iterative process are as follows (Vesanto
and Alhoniemi 2000; Brereton 2009; Brown et al. 2009):

1. Initializing the network – selecting the initial weights for M neuron. The most
common method is a random assignment of a value from a min-max range. The
number of weights in the codebook vector is equal to the number of variables
(features) in the original data set.

2. Selecting, usually at random, a single input vector.
3. Calculating the distances between the input vector and the neurons described by

the codebook vector in the p-dimensional variable space. The choice of distance
metric is left to the user – a list of the most commonly used one can be found
elsewhere in this chapter.
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Fig. 28 SOM U-matrix for the POP data set

4. Identifying the winner neuron, or best matching unit, the most similar, i.e., the
closest, to the input vector.

5. Adjustment of neuron positions. There are two methods of repositioning the
nodes in the variable space:
(a) Winner takes all, WTA – where only the winner neuron is relocated in the

direction of the input vector
(b) Winner takes most, WTM – where the winner neuron and the associated

neurons are repositioned in the vector space
6. Until the user-defined number of cycles has been reached, repeat the cycle

starting from step 2.

Visualization
Once we have determined the optimal weights of the output layer neurons, we can
graphically represent the relationships between them and the original data. There
are several aspects of SOMs to visualize (Brereton 2009):

1. Unified distance matrix, or U-matrix, which illustrates the similarity between
neurons (map units), color-coded by distance (Fig. 28). Based on the U-matrix, it
is possible to identify outliers as well as clusters, as neurons representing similar
samples are positioned at adjacent regions of the map.

2. Hit histogram, where the size of the map unit is proportional to the number of
points (objects) represented by that neuron (Fig. 29).

3. Component planes, which demonstrate how a specific variable influences the
SOMs (Fig. 30). Each variable from the data set can be represented on a separate
component plane.
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a

b

Fig. 29 Two ways of representing SOM hit histogram: (a) a 2D histogram, (b) a “classical”
barplot

a b

Fig. 30 SOM component planes: (a) molecular weight, MW, (b) vertical ionization potential, VIP

Quality Assessment
In order to assess the quality of the SOM training, there are a number of measures
that can be employed. Among the most popular are the (Brereton 2009):
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• MQE, mean quantization error. The average distance between each input vector
and its best matching unit, calculated according to Eq. 13:

MQE D

n
X

iD1

d .xi ; wc/

n
(13)

where d(xi, wc) is the distance between input vector (xi) and weight vector of the
winner neuron; n is a number of input patterns.

• TE, topographic error. The ratio of all input vectors for which the first and second
BMUs are not adjacent, calculated according to Eq. 14:

TE D

n
X

iD1

l .xi /

n
(14)

where l(xi) is a function equal to 1 when the first and second most similar codebook
vector of a particular sample is from adjacent units; otherwise, the function is 0.

Summary

In this chapter, we present selected unsupervised methods of data grouping and
exploration. Each of them allows the user to focus on different aspects of the data.
Hierarchical cluster analysis enables the initial exploration of the data structure
and determining which objects are similar to each other in the context of various
complexity levels. The k-means approach allows the user to more precisely identify
group membership by an iterative search of the variable space and real-time
improvement of clustering results. Thanks to modified versions of k-means, such
as k-medoids and k-modes, we are able to handle outliers and categorical data with
ease. With the help of robust exploratory methods, such as the principal component
analysis and self-organizing Kohonen maps, it is possible to examine large data
sets and determine which of the variable is crucial in describing underlying data
structure.

Each of the presented techniques has some drawbacks and limitations, which is
why user expertise and experience, as well as extensive knowledge on the inner
workings of these approaches, are essential for effective data analysis. We hope that
this chapter will serve as an overview and a starting point for further pursuit of
knowledge in this field.
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