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Abstract
Two aspects are quintessential if one seeks to successfully perform DFT calcu-
lations: a basic understanding of how the concepts and models underlying the
various manifestations of DFT are built and an essential knowledge of what can
be expected from DFT calculations and how to achieve the most appropriate
results. This chapter expands on the development and philosophy of DFT and
aims to illustrate the essentials of DFT in a manner that is intuitively accessible.
An analysis of the performance and applicability of DFT focuses on a repre-
sentative selection of chemical properties, including bond lengths, bond angles,
vibrational frequencies, electron affinities and ionization potentials, atomization
energies, heats of formation, energy barriers, bond energies, hydrogen bonding,
weak interactions, spin states, and excited states.

Introduction

Density functional theory (DFT) is an enticing subject. It appeals to chemists and
physicists alike, and it is entrancing for those who like to work on mathematical
physical aspects of problems, for those who relish computing observable properties
from theory, and for those who most enjoy developing correct qualitative descrip-
tions of phenomena. It is this combination of a qualitative model that at the same
time furnishes quantitative reliable estimates that makes DFT particularly attractive
for chemists.

DFT is an alternative, and complementary, to wave function theory (WFT).
Both approaches are variations of the basic theme of electronic structure theory,
and both methods originated during the late years of the 1920s. Whereas WFT
evolved rapidly and gained general popularity, DFT found itself in a state of
shadowy existence. It was the appearance of the key papers by Hohenberg and
Kohn (1964) and by Kohn and Sham (1965), generally perceived as the beginning
of modern DFT, which changed the perception and level of acceptance of DFT.
With the evolution of reliable computational technologies for DFT chemistry,
and with the advent of the generalized gradient approximation (GGA) during the
1980s, DFT emerged as powerful tool in computational chemistry, and without
exaggeration the 1990s can be called the decade of DFT in electronic structure
theory. During this time period, despite the lack of a complete development, DFT
was already competitive with the best WFT methods. Furthermore, the advancement
of computational hardware as well as software has progressed to a state where DFT
calculations of “real molecules” can be performed with high efficiency and without
major technical hurdles.

But at the end of the first decade of the new millennium, it appeared that DFT
might have become a victim of its own success. DFT has transformed into an
off-the-shelf technology and ready-to-crunch component and often was and still
is used as such. Still and all, it became clear that the happy days of black-box
DFT were over and that not all the promises of DFT came to fruition. DFT has its
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own limitations and shortcomings, and the numbers obtained from DFT calculations
began to lose some of their awe-inspiring admiration they enjoyed at the end of the
first millennium. At the same time, DFT has matured into a standard research tool,
used routinely by many experimental chemists to support their work.

Despite the fact that DFT has evolved into a first-choice approach for a stunning
potpourri of applications throughout chemistry and materials science, it is all too
well known that DFT in its current form still has serious limitations; Cohen et al.
(2012) identify and analyze current challenges to DFT. Moreover, it appears that
the philosophical, theoretical, and computational framework of DFT might lose
its prominent position in electronic structure theory. Fifty years after its formal
inception, Becke (2014) reviewed the development and current status of Kohn–
Sham density functional theory and raises the concern that increasing pressure to
deliver higher and higher accuracy and to adapt to ever more challenging problems
“may submerge the theory in the wave-function sea” (Becke 2014). But in whatever
direction the path of extended development will guide users and developers of
DFT, it seems evident that DFT will continue its role as research tool not only for
computational but also for theoretical inclined chemists.

We have composed our short instruction manual for chemists in view of the
ontogeny of DFT. A chemist using DFT calculations should be aware of the fact that
all approximations and simplifications of any general theory may lead to failures in
computed data. Every principally correct theory, if not executed with specific care,
may produce essentially wrong results and therefore erroneous predictions. Two
aspects are quintessential if one seeks to successfully perform DFT calculations:
a basic understanding of how the concepts and models underlying the various
manifestations of DFT are built and an essential knowledge of what can be expected
from DFT calculations and how to achieve the most appropriate results. Thus, we
have divided the main body of our directions into two parts.

In section “DFT: A Paradigm Shift in Theoretical Chemistry,” we expand on the
development and philosophy of DFT. We do not present a course or textbook work
on DFT; the interested reader will find a selection of references to the literature for
more elaborate and detailed descriptions. Rather, we aim to illustrate the essentials
of DFT in a manner that is intuitively accessible. For this reason, we will avoid
mathematical equations as much as possible, incorporate formulas into the flow of
the text, and only on occasion add the odd-numbered equation to the elaboration.
As a consequence, we have to abandon the rigor that unambiguous and well-defined
derivations require and introduce a certain degree of sloppiness. We hope that such
a treatment will facilitate the flow of our arguments and emphasize that what we
think are indispensable aspects of DFT.

In section “DFT: Computational Chemistry in Action,” we present an analysis of
the performance and applicability of DFT. We focus on a representative selection
of chemical properties and system types and base our review on a selection
of representing benchmarking studies, which encompass several well-established
density functionals together with the most recent efforts in the field. Due to the
multitude of papers that report DFT applications, our analysis is far from complete,
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but we aim to present a representative snapshot of the current situation of DFT at
the beginning of the second decade of the new millennium.

We will close our work with two additional short sections “DFTips” and “A
Concise Guide to the Literature,” where we present the reader with a few tips how
to use DFT, and with a collection of selected references as a concise guide to the by
now vast literature of DFT.

DFT: A Paradigm Shift in Theoretical Chemistry

Density functional theory is primarily a theory of electronic ground-state structure,
which is based on the electron density distribution ¡(r). In contrast to DFT, wave
function theory is an approach to electronic structure, which is based on the many-
electron wave function ‰(rn). In order to put the innovation of DFT into proper
perspective, we begin with a brief overview of WFT, before we illustrate the
essentials and growth of DFT.

The objective of WFT is the exact solution of the time-independent Schrödinger
equation (TISE), H‰ D E‰; for a system of interest. [We recall that in quantum
mechanics, associated with each measurable parameter in a physical system is an
operator, and the operator associated with the energy of a system is called the
Hamiltonian H. The Hamiltonian contains the operations associated with the kinetic
and potential energies of all particles that comprise a system. We further note that
the terms function, operator, and functional are to be understood such that a function
is a prescription which maps one or more numbers to another number, an operator is
a prescription which maps one function to another function, and a functional takes a
function and provides a number.] The solution to the TISE yields the wave function
‰ as well as the energy E for the system of interest. In a systematic, variational
search, one looks for the wave function that produces the lowest energy and arrives
at a description for the system in its ground state.

If we consider a system of nuclei and N electrons, solving the TISE – within
the Born–Oppenheimer separation between the apathetic ambulation of nuclei and
the rapid ramble of electrons – yields the electronic molecular wave function
‰el(r). This wave function depends explicitly on the 3 N coordinates of all N
electrons, all of which might undergo positional permutation due to repulsive
Coulomb interaction. A first approximation to the challenging task of solving
the TISE slackens the interaction between electrons by any exchange and thus
reduces the function � el(r) of 3 N variables to a product of N functions ¥ each
depending only on three variables, ‰el .r/ D …iD1;N�i .ri/. Atomic orbitals are
conveniently chosen to represent the functions ¥. However, such a Hartree product
of atomic orbitals violates the Pauli exclusion principle due to the fermion nature of
electrons, and hence the appropriate form for a system of noninteracting electrons
is a single determinant j�1 .r1/ ; : : : �n .rn/j ; known as Slater determinant. Such a
wave function, from the mathematical properties of determinants, is antisymmetric
with respect to exchange of two sets of electronic variables as it should be.
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One row of a Slater determinant carries contributions from all atomic orbitals �

and is commonly referred to as molecular orbital (MO) §§MO. This approximate
method for the determination of the ground-state wave function and ground-state
energy is the well-known Hartree–Fock (HF) method.

Although in the HF method the electrons obey exchange as required by the
Pauli exclusion principle, the electrons are noninteracting, and the movement of one
electron within the system is independent from the movement of all other electrons.
However, as the presence of Coulomb repulsion between electrons would suggest,
the electrons move in a correlated fashion. In order to allow for electron correlation,
configuration interaction (CI) is introduced in that the wave function is constructed
as a linear combination of several Slater determinants, obtained from a permutation
of electron occupancies among all MOs available. Increasing the number of Slater
determinants increases the accuracy of the calculations, although the added accuracy
comes with the price of added computational cost that often becomes the limiting
factor for WFT calculations.

This brief exposition brings about two main differences between DFT and WFT.
A WFT calculation in general, and increasing the accuracy of WFT calculations
in particular, is computationally demanding. DFT seems to be more cost-efficient;
after all, the simplest HF wave function ‰el(r) depends on 3 N spatial coordinates,
whereas the probability distribution of electrons in space ¡(r) depends only on three
coordinates. But there exist strategies how the result of WFT can be systematically
improved, whereas there is no methodical, standardized scheme to improve DFT
calculations. In the following, we will explore reasons for the WFT–DFT differ-
ences.

In WFT, atoms and molecules constitute the basic systems of interest. Since the
distribution and redistribution of electrons within atoms and molecules are central
to chemical properties and reactivity, we now limit ourselves to systems comprised
of N electrons in motion, with some two-particle interaction. The Hamiltonian of
such a system reads H D T C U C V, where T and U denote the operators for
kinetic energy and for electron–electron interaction energy, respectively. Whereas
U results in the internal potential energy of our system, the moving electrons
might in addition interact with an external potential, and the operation V recovers
the potential energy due to this extra interaction. For systems of electrons that
move in a field of fixed nuclei, the external potential V is always just the nuclear
field. Systems of electrons in combination with fields of fixed nuclei represent the
essential building blocks of matter such as molecules or solids. For a chemist, it
might appear counterintuitive that nuclei, being an essential part of a molecule,
represent an external potential, but the nuclear potential – although internal to a
molecule – is external to the density of the moving electrons.

If we consider the external potential to be a uniformly distributed background
positive charge, we arrive at the uniform or homogeneous electron gas (UEG or
HEG), also known as jellium. At zero temperature, the properties of jellium depend
solely upon the constant electron density distribution ¡ .r/ fD const:g. Such a treat-
ment of electronic density, the Thomas–Fermi (TF) model, constitutes the origins of
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DFT (Parr and Yang 1989). The TF model is able to describe the kinetic energy of
the UEG as functional of the electronic density, and later on Dirac added a density
functional for the exchange energy as a conclusion of the Pauli principle. The UEG
formalism itself provides the basis for the local density approximation (LDA).

Before we proceed, we take a small step back to WFT. At the beginning of the
1950s, Slater (1951) described the then current situation in WFT as follows: “The
Hartree-Fock equations furnish the best set of one-electron wave functions for use
in a self-consistent approximation to the problem of the motion of electrons in the
field of atomic nuclei. However, they are so complicated to use that they have not
been employed except in relatively simple cases.” Facing the decision “Do you want
to calculate it, or do you want it to be accurate?,” Slater decided to replace the
peculiar exchange term in the HF equations by something equivalent, yet easier to
calculate. Slater used the free-electron approximation for the exchange potential,
which, as Dirac has shown, could be expressed as a density functional. His new
method, termed HFS, “was easy enough to apply so that we can look forward to
using it even for heavy atoms” (Slater 1951), and in order to check its applicability,
he performed calculations for the transition metal ion CuC. The exchange potential
functional derived from the exchange energy functional contains one additional,
scalable parameter ˛, which led to the development of the X .̨ � method. This
model enjoyed a significant amount of popularity among physicists and is still a
topic of ongoing research activities (Zope and Dunlap 2006). The HFS – or the
X˛ �method – became the first practically used DFT method in chemistry.

Two points that were fundamental for the progress of DFT were already
anticipated within the advancements of the HFS – or X˛�method: (1) Every density
functional method to some degree contains one or more empirical parameters.
Therefore, DFT has often been regarded as “Yet another Semi-Empirical Method”
(YaSEM). The Hartree–Fock–Slater model, which can be regarded as ancestor of
modern DFT, is such an example. But whereas the HFS method is intrinsically
approximate, modern DFT is in principle exact (Kohn et al. 1996). (2) Transition
metal chemistry has played and continues to play a major role in the progression of
DFT. The work of Baerends and Ros (1978) is representative of the transition-metal–
HFS era, and Ziegler’s contributions, summarized in his early review article (Ziegler
1991), have provided the impetus that changed the perception of calculations based
on densities from YaSEM to DFT, “Das Future Tool.” A review article by Cramer
and Truhlar (2009) is dedicated solely to developments and progress of DFT for
transition metal chemistry and summarizes the state of affairs at the end of the first
decade of the new millennium.

At the heart of modern DFT is the rigorous, simple lemma of Hohenberg and
Kohn (1964), which states that the specification of the ground-state density, ¡(r),
determines the external potential V(r) uniquely (Eq. 1):

¡ .r/! V .r/ .unique/ (1)

This first theorem by Hohenberg and Kohn (HK-I) is not difficult to prove
(Parr and Yang 1989), but for a chemist, the essentials of HK-I that given a
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Fig. 1 Visualization of the first Hohenberg–Kohn theorem (density map drawn for a contour
envelope of 0.01 a.u.)

density, only one external potential corresponds to that density, are intuitively clear.
A pictorial representation of HK-I is shown in Fig. 1; we consider the density created
by 32 electrons that move around the external potential created by one oxygen,
three carbon, and six hydrogen nuclei. By inspection of a density map of a certain
density value, it becomes obvious that of all the atomic constellations considered,
only one seems to be consistent with the shape of the density map. Such a con-
sideration reflects ideas developed in the context of “conceptual DFT” (Geerlings
et al. 2003).

HK-I also expresses the fact that there is a one-to-one mapping between the
potential V(r), the particle density ¡(r), and the ground-state wave function ‰0

(Eq. 2):

¡.r/ ! V .r/ ! ‰0 (2)

This implies that all properties of a system are functionals of the ground-
state density, since any property may be determined as the expectation value of
the corresponding operator. With the help of this lemma, a minimal principle
for the energy as functional of ¡(r) can be derived. The second Hohenberg–
Kohn theorem (HK-II) provides the necessary guidelines to obtain the ground-state
energy. Following HK-II, a variational principle is established, according to which
the ground-state density of a system of interest can be determined.

In order to put the promise of the HK theorems that all properties of a system can
be obtained from its ground-state density, into reality, one would need a construction
that is computationally accessible while maintaining the formal exactness of HK-I
and HK-II. To this end, Kohn and Sham (1965) introduced a fictitious system of
N noninteracting electrons that have for their overall ground-state density the same
density as some real system of interest where the electrons do interact. Using some
aspects of HF theory, the ground-state wave function ‰0 of such a noninteracting
system is described by a single Slater determinant. The orbitals, which form this
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Slater determinant, known as Kohn–Sham (KS) orbitals ®KS, are solutions of
N single-particle equations. Following the variational principle, the ground-state
energy and the ground-state density are determined from variations in ®KS.

The essential contribution to the KS energy comes from the so-called exchange-
correlation energy EXC. It incorporates corrections to the kinetic energy due to the
interacting nature of the electrons of the real system, all nonclassical corrections
to the electron–electron repulsion, as well as electron self-interaction corrections.
If EXC is ignored, the physical content of the theory becomes identical to that of
the Hartree approximation. Thus, within the KS formalism, the electronic energy of
the ground state of a system of N electrons moving within an external potential of
nuclei is expressed – without approximations – as a functional of the ground-state
density (Eq. 3):

EŒ¡ �D TsŒ ¡ �CUŒ Œ¡.1/; ¡.2/ �CVneŒ ¡ �CEXC Œ ¡� (3)

In Eq. 3, the first term represents the kinetic energy of the system of N
noninteracting electrons, the second term corresponds to the Coulombic repulsions
between the total charge distributions at two different positions within the system,
and the third term accounts for nuclear–electron interactions, due to the presence
of an external potential. It is the fourth term, the functional for the exchange-
correlation energy EXC, which is responsible for the power and magic of DFT. What
makes current DFT applications approximate is the unknown analytic expression of
EXC, for which an approximation is needed.

The KS formalism is closely related to the HF formalism. What differentiates the
KS operator from the HF operator is the exchange-correlation potential VXC. VXC in
turn is a functional derivative of the exchange-correlation energy EXC. Furthermore,
the Hamiltonian H operating on the wave function that is associated with the density
of a fictitious system of N noninteracting electrons can be expressed as sum of one-
electron operators.

Whereas increasing the accuracy of HF calculations is accompanied with a
steep increase in computational cost, increasing the accuracy of DFT calculations
apparently requires modifications in VXC, which – if at all – only lead to a
moderate increase in computational cost. However, whereas it is well known how to
systematically improve the accuracy and quality of HF calculations, no comparable
strategy exists for DFT calculations within the confines of a KS approach. It appears
that a detailed knowledge of the exchange-correlation energy EXC is essential for
designing more accurate density functionals.

Holes and Electron Pairs

The exchange-correlation energy EXC is a relatively small part of the total energy
of a typical system, although it is by far the largest part of “nature’s glue” that
binds atoms together (Kurth and Perdew 2000). It arises because the electrons do not
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Fig. 2 Electrons in distress:
While trying to maximize the
attraction from the nuclei, an
electron experiences
enhanced repulsion from the
other electron as it moves
around in the molecular
framework (top). To
minimize the repulsion, each
electron creates an exclusion
area around itself, into which
no other electron can
penetrate (bottom) (Cartoon
by Lauren Bertolino)

move randomly through the density but avoid one another. Ziegler (1995) illustrates
the situation as follows: An electron will try to maximize the attraction from the
nuclei and minimize the repulsion from the other electrons, as it moves around in the
molecular framework. To do so, it creates an exclusion area or “no-fly zone” around
itself into which no other electron can penetrate, as pictorial exemplified in Fig. 2.
The exclusion zone is referred to as the exchange and correlation (XC) hole, and it
is the way in which the XC hole is modeled that distinguishes one electronic theory
from another. Each density functional has its own characteristic XC fingerprint.

The XC hole also determines to a large part EXC, which however contains
three different contributions. The first is the potential energy of exchange, which
also should include corrections for self-exchange or self-interaction. The second is
the potential energy of correlation due to the effect of Coulomb repulsion. Both
potential energies are negative and determined by the nature of the XC hole. The
third contribution to EXC is a smaller positive kinetic energy of correlation due to
the extra swerving motion of the electrons as they avoid one another (Perdew et al.
2009).

The XC hole arises from an extension of the concept of the unconditional one-
electron probability density ¡(1) by considering pairs of electrons and a resulting
conditional probability. When a reference electron is known to be at position 1, the
conditional probability ¡cond(2, 1) of the other electron to be at position 2 can be
written as the sum of the unconditional probability ¡(2) of the other electron and
the XC-hole density ¡XC�hole .2; 1/. Thus, the hole ¡XC�hole .2; 1/ describes how the
conditional density of the other electron deviates from its unconditional density ¡(2).

It is instructive to have a closer look at hole profiles, and as simple example, we
will consider the hydrogen molecule H2 with only two electrons or one electron pair.
In Fig. 3, hole densities for H2 are shown; the two nuclei HA and HB are separated
by 72 pm, and the reference electron is placed 15 pm to the left of nucleus HB.
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Fig. 3 Hole densities in the hydrogen molecule: Only the full XC-hole ¡XC�hole .2; 1/ has physical
meaning (Adapted from Baerends and Gritsenko (1997), with permission by the American
Chemical Society)

The XC hole can be split into contributions from the exchange or X hole,
which arises from the fermion nature of an electron obeying the Pauli principle
and the correlation or C hole due to Coulomb repulsion within the pair of electrons.
[The X hole and C hole are often referred to as Fermi hole and Coulomb hole,
respectively.]

The X hole puts an emphasis on the reference electron. It creates a taboo zone for
the other electron with a negative ¡X�hole .2; 1/ probability density not only around
the region in space where the reference electron currently is but also where it might
be. Regions in the vicinity of both nuclei HA and HB are declared as “no-fly zone.”
The C hole on the other hand puts an emphasis on the other electron. It excludes
regions where the other electron might experience Coulomb repulsion with the
reference electron, but it also maps out regions where the other electron can benefit
from attractive Coulomb interactions with nuclei. We see a negative ¡C�hole .2; 1/

probability density around HB but a positive ¡C�hole .2; 1/ probability, a buildup of
density, around HA far away from the reference electron. Whereas the X hole and
C hole illustrate exchange and correlation, only the combined XC hole has physical
meaning.

Before we continue, a short remark on the use of some language is in order.
Since the terms local and nonlocal are often recurred to in the context of DFT, and
often with different meanings, we briefly define how the terms local and nonlocal
are used in this work. An approximation is said to be local if its energy density
and related properties at any position of interest depend only on the electron density
neighborhood of the given position. Otherwise, an approximation is said to be fully
nonlocal. [We note that some physicists separate local approximations into “strictly
local” and “semilocal.”]

From an inspection of Fig. 3, it appears that both the C hole and the X hole are
inherently nonlocal (the same as the HF exchange energy). The XC hole, too, must
therefore be nonlocal, but its dominant contributions arise from the region around
its reference electron – the XC hole appears to be more local and less nonlocal than
the X or C hole. This observation already anticipates that local density functionals
might be able to produce approximate models for the nonlocal XC hole.
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Fig. 4 The Jacob’s ladder of
density functional
approximations to the
exchange-correlation energy
(Reprinted from Perdew et al.
(2009), with permission by
the American Chemical
Society)

Although it seems that there exists no systematic approach like in WFT to
improve the accuracy of DFT, the advancement of density functionals depends
on more precise descriptions not only of the XC hole but also of the exchange-
correlation energy EXC. This task can be approached in a methodical manner.

Climbing Jacob’s Ladder

Perdew and Schmidt (2001) compare the development of enhanced density func-
tionals to a climb of Jacob’s ladder, leading the way from the Hartree world to the
heaven of chemical accuracy, illustrated in Fig. 4. Each rung of the ladder adds a
refinement to the approximation of the exchange-correlation energy.

First Rung: The Local Density Approximation
The first rung employs only the local densities in the description of the exchange-
correlation energy. This method is known as the local density approximation (LDA).
[Although vital to the fermion nature of electrons, so far we have treated spin rather
novercal. But the issue of spin can be treated as well in density functional theory,
and the local spin density approximation (LSD or LSDA) replaces the spin-averaged
energy density with the energy density for a polarized homogeneous electron gas.
LDA and LSDA are now often used synonymously.]

LDA takes its densities from the uniform electron gas (UEG), and an analytical
form of a density functional for the exchange energy of the UEG can be derived (the
same exchange energy as used in the HFS method). No such expression exists for
the correlation energy, but the UEG correlation energy can be calculated numerically
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and fit in various ways. One successful and popular parameterization comes from
the work of Vosko, Wilk, and Nussair, referred to as VWN (Vosko et al. 1980).

LDA performs surprisingly well in predicting molecular properties that are based
on relative energy differences within a given density. Molecular geometries for
representative main group compounds could be reproduced in close agreement
to the experiment (Versluis and Ziegler 1988). For transition metal complexes,
metal–ligand separations are slightly underestimated, but still within acceptable
conformity with X-ray data (Ziegler 1995). However, properties that are based on
absolute energy differences between densities, such as bond energies, are not well
described by LDA, where a clear overbinding tendency emerged. LDA is therefore
a remarkably useful structural, though not thermochemical, tool. The disappointing
performance of LDA in estimating thermochemical properties spawned the devel-
opment of gradient-based methods, the second rung on Jacob’s ladder.

Second Rung: The Generalized Gradient Approximation
The second rung or generalized gradient approximation (GGA) adds the gradients
of the local densities to the exchange-correlation picture. It became clear that the
homogeneous electron gas is only of limited use as a model of the inhomogeneous
electron density within molecules, and approximations for exchange and correlation
energy were augmented by density gradients. [In the older literature, GGAs are
sometimes called nonlocal (LDA/NL), since the gradient implies a directional
change within the density.] Two early models for correlation (Perdew 1986) and
exchange (Becke 1988a) in combination resulted in the BP86 functional, the GGA
that was most influential in the early developments of transition metal DFT (Ziegler
1991). Gradient corrections are essential for a quantitative estimate of bond energies
as well as metal–ligand bond distances (Ziegler 1995).

Third Rung: Meta-Functionals
The third rung adds the kinetic energy density to the description of density
functionals (Tao et al. 2003) and addresses the smaller third contribution to EXC.
Such functionals are referred to as meta-functionals and, when built on second rung
functionals, as meta-GGA (MGGA).

The first three rungs of Jacob’s ladder all represent local functionals. They
often work because of proper accuracy for a slowly varying density or because of
error cancellation between exchange and correlation. Error cancellation can occur
because the exact XC hole is usually more localized around its reference electron
than the exact X hole (compare Fig. 3). Regions in which no error cancellation is
expected are regions where exchange dominates correlation (Perdew et al. 2009).

Climbing up the ladder, the approximations become more complicated, more
sophisticated, and typically more accurate. Computation times increase modestly
from the first to the third rungs and much more steeply after that. The added
ingredients on each higher rung of the ladder can be used to satisfy more exact
constraints or to achieve better agreement with experimental data (or both). These
two strategies define the nonempirical and semiempirical approaches commonly
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used to improve density functionals. Beginning with the fourth rung, the nature of
the density functionals changes from local to nonlocal.

Fourth Rung: Hyper-Functionals
The fourth rung, which also represents the first fully nonlocal rung, adds the exact
exchange energy density. Such a functional is termed hyper-GGA (HGGA). After
reaching the second rung, DFT progressed rapidly and took one giant step from
the second to the fourth rung, omitting meta-GGAs. Following the idea of adiabatic
connection, Becke derived a functional for exchange, which contained contributions
from the exact HF exchange (1993a). He then designed an advanced functional for
the exchange-correlation contribution containing three parameters for its various
parts, including gradient corrections for correlation, gradient corrects for exchange,
as well as an exact exchange contribution (1993b). These semiempirical coefficients
have been determined by a linear least-square fit to 56 atomization energies, 42
ionization potentials, eight proton affinities, and ten first-row total atomic energies.
Becke’s functional, combining HF theory and DFT with the use of three empirical
coefficients, was the first example and initiated the evolution of so-called hybrid
functionals. The hybrid functional B3LYP, based on Becke’s parameterization, was
to a large part responsible for the meteoric ascent of DFT during the 1990s.

While the first three rungs of Jacob’s ladder require no fitting of experimental
data, empiricism seems unavoidable on the fourth rung. This has caused some
skepticism, and it appeared that the success of “empirical DFT” would eventually
be responsible for the death of “true DFT.” Gill humorously described the situation
at the beginning of the new millennium in his obituary to DFT (Gill 2001). The
Jacob’s letter metaphor puts the addition of exact exchange to density functionals
into proper perspective.

The step from the third rung to the fourth rung results in a new class of
functionals, so-called HMGGAs. HMGGA functionals are currently a field of
active development and appear to produce promising results. M06, for example,
is a HMGGA with good accuracy for a variety of different chemical applications
ranging from transition metals over main-group thermochemistry to barrier heights
of chemical reactions. Thus, HMGGAs might be considered as a class of den-
sity functionals with broad applicability in chemistry (Zhao and Truhlar 2008a).
Whether HMGGA is read as hybrid meta-GGA or hyper meta-GGA is a matter of
taste; fortunately, both specifications result in the same acronym.

Fifth Rung
The fifth rung of Jacob’s ladder adds exact correlation as new ingredient. One might
think of this as an expansion of the density space of a system by adding virtual
densities into the picture. One approach to this problem is the use of the random-
phase approximation (RPA). RPA in DFT in turn is closely related to time-dependent
DFT (TD-DFT). The essence of RPA might be described as constructing the excited
states of a system as a superposition of particle-hole excitations.

When building a fifth-rung density functional for the exchange-correlation
energy, the RPA utilizes full exact exchange and constructs the correlation with the
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help of the unoccupied Kohn–Sham orbitals. Like the first three rungs of Jacob’s
ladder, the fifth rung requires no fitting. Although the essentials of RPA originated in
the 1950s, fifth-rung methodologies were considered too computationally expensive
for widespread use and application. Yet improvements in hardware and algorithms
also entered the development of RPA technology, and it seems that “RPA has the
potential to become a building block of future generations of electronic structure
methods” (Furche 2008).

In the early days of modern density functional theory, hazy clouds of ambiguity
that enfolded the XC hole obscured the view of Jacob’s ladder. The existence of
the third rung of Jacob’s ladder was recognized before the fourth rung entered the
Jacob’s ladder picture (Becke and Roussel 1989), but at first it did not appear as a
safe and secure stage for the ascent toward the heaven of chemical accuracy. Thus,
although MGGAs predate HGGAs, the computational development of HGGAs
predates that of MGGAs. Only after the clouds of ambiguity lifted, MGGAs became
a recognized DFT approach in computational chemistry, and HMGGAs began to
appear.

The Jacob’s ladder scheme is not the only way to arrive at exact functionals.
When leaving the confines of ordinary KS-DFT methods, and using ideas from
WFT, one arrives at ab initio density functional theory, the seamless connection
of DFT and WFT (Bartlett et al. 2005). While these methods have not yet positively
established themselves as standard approaches in computational chemistry, the
fundamental conception that guided the way to the fourth rung – capturing the best
of both worlds – marks the beginning of ab initio DFT and led to the notion of
double-hybrid theory (Grimme 2006a), in which DFT calculations are supported
not only by exact exchange but also by HF correlation. Along the same lines, range-
separated functionals (Leininger et al. 1997) base their decision on how to deal with
electron–electron correlation – the DFT or WFT way – on the central variable that
describes a pair of electrons. The idea also found its entry into the realm of exchange
(Tsuneda and Hirao 2014), and at the time of writing, it appears that the offspring
of parent functionals is ever more growing in number.

Practical DFT and the Density Functional Zoo

A practical DFT-based calculation is in many ways similar to a traditional HF
treatment in that the final outcome is a set of orbitals, the Kohn–Sham orbitals ®KS.
The KS orbitals are often expanded in terms of a basis set as in the traditional linear
combination of atomic orbital (LCAO) approach of traditional HF methods. Most
often, Gaussian-type basis functions are used to construct atomic orbitals (GTO).
A major exception is the Amsterdam Density Functional (ADF) suite of programs,
where Slater-type basis functions (STO) are used. ADF constitutes one of the first
programs developed essentially for applications of DFT.

The evaluation of matrix elements of the Kohn–Sham exchange-correlation
potential always requires at some step a 3-day numerical integration. Solutions to
the problem of carrying out 3D numerical integration for polyatomic systems to
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arbitrary precision (Becke 1988b) provided a major thrust for computational DFT,
and proficient improvements were made in connection with developments of the
ADF computer code (Boerrigter et al. 1988). The availability of economical numer-
ical integration schemes made the choice of STOs over GTOs computationally
compatible.

The local nature of the effective potential in the one-electron Kohn–Sham
equations affords efficient computational schemes. During the development of ADF,
the remaining Coulomb problem, the two-electron-integral “bottleneck,” has been
addressed by the introduction of auxiliary basis sets, the so-called density fitting
(Baerends et al. 1973).

Many of the pioneering improvements made during the development of the ADF
suite of programs have become standard tools in density functional calculations, and
as a result, DFT calculations perform compatible to, if not better than HF methods.
We note that a density fit is not possible, when the chosen functional utilizes exact
exchange.

By now, a plethora of density functionals is available for electronic structure
calculations. Toward the end of the first decade of the new millennium, Sousa
and coworkers have presented an authoritative review, in which they evaluate the
performance of over 50 different density functionals (Sousa et al. 2007). The authors
also report the percentage of occurrences of the names of different functionals in
journal titles and abstracts; we interpret these numbers as measure for usage and
popularity of the corresponding functional. Although new functionals appear every
year, the popularity ranking seems to possess some stability within a time interval
of several years. Thus, in Fig. 5, we have compiled data for the seven most popular
functionals, taken from the work of Sousa and coworkers, and include a popularity
pie chart as well.
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Fig. 5 Most popular density functionals at the end of the first decade of the new millennium (Data
based on results of extensive literature searches (Sousa et al. 2007))
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The key information conveyed in Fig. 5 is the fact that B3LYP is by far the
most popular density functional in chemistry, representing 80 % of the total of
occurrences of density functionals in the literature, in the period 1990–2006 (Sousa
et al. 2007). Other popular density functionals such as BLYP, B3PW91, and BP86
acquire usage shares of 5 % and less and can only be considered as also-rans in the
functional race.

It seems advisable to briefly talk about how to decipher the density functional
code. With the advent of GGAs at the end of the 1980s, the abbreviation for each
GGA functional usually consisted of two parts: the first for exchange and the second
for correlation. As an example, BP86 takes its exchange contribution from the work
of Becke (1988a) and correlation from the work of Perdew (1986). Similarly, BLYP
breaks down into B exchange and LYP correlation. Later, when gradient corrections
for exchange and correlation were often taken from the same work, the functional is
usually referred to by one combined code only. The GGA functional PBE takes its
gradients for exchange as well as for correlation from the work of Perdew, Burke,
and Ernzerhof. The same holds true for the MGGA TPSS. Strictly spoken, the PBE
functional should be referred to as PBEPBE. It is also possible that the individual
parts are combined with other functionals, for example, PBELYP or BPBE. HGGAs
usually contain one number that indicates the degree of parameterization when
building the hybrid: B3LYP refers to a three-parameter mixing of B exchange, LYP
correlation, and exact exchange, whereas B1LYP refers to a one-parameter hybrid
density functional. As density functionals get more elaborate and more complex,
the XC coding is not always strictly followed. The HMGGA M06 and its variations
(M06-L, M06-2X, M06-HF), for example, refer to a set of functionals developed at
the University of Minnesota in 2006.

The pie chart presented in Fig. 5 bears a striking resemblance to Pac-Man. Like
the arcade game Pac-Man, often credited with being a landmark in video game
history and virtually synonymous with video games, B3LYP has to be considered
a landmark in electronic structure theory and is often used as a synonym for DFT.
However, the same as there is more to video games than just Pac-Man, there is
more to density functional theory than just B3LYP. In section “DFT: Computational
Chemistry in Action,” we will explore the characteristics and capabilities of density
functional in more detail.

The reader, who would like to know more about the details and derivations of
DFT, will find valuable information about the basics in the A Chemist’s Guide to
Density Functional Theory (Koch & Holthausen 2002) and will learn more about
advanced aspects in the A Primer in Density Functional Theory (Fiolhais et al.
2003).

DFT: Computational Chemistry in Action

The breakthrough of DFT coincided with a rise of computational power at the end
of the last millennium. CPU architectures advanced from CISC to RISC designs,
supercomputers transformed from single vector processors to computing clusters.
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However, as the computational power increased, the problems too became more
and more demanding, and the molecules that found their way into input files for
density functional programs grew bigger and bigger. Computing time remains to
be a crucial factor when assessing the performance of computational methods,
and linear-scaling approaches are one of the great strengths of DFT (Yang 1991).
However, these techniques fall out of the scope of our review and assessment, and
we begin with a comparison of computational demands of representative density
functionals, following standard approaches.

Computational Performance

We start this section remarking that there is not something like “the best functional
and basis set for all properties.” Rather, the specific methodological approach to be
used depends from the specific problem at hand. Nevertheless, many functionals are
robust enough to give rather reasonable results in a large series of chemical proper-
ties, and the scope of this section is to provide an overview of the performances of
typical functionals and basis sets, trying to highlight which ones perform remarkably
better or remarkably worse than the average, if this is known. Further, as a practical
vademecum, the scope of this section is to give an overview of performances
under “standard working conditions.” Thus, the focus will be on performances that
can be expected when working with real-size systems (50–100 atoms including a
transition metal), which requires a compromise between the computer resources
available and the combination of functional and basis set used, rather than peak
performances that can be reached with a sophisticated last-generation functional
in combination with a very extended basis. On the other hand, there are several
excellent reviews that provide an accurate and critical assessment of the various
methods, with a particular focus on the best performances that can be achieved,
independently from the computational cost (Sousa et al. 2007; Cramer and Truhlar
2009). Methods that currently are computationally too expensive might become the
standard computational tools in the future.

Finally, the number of possible functionals is very large, so that it is more
confusing than enlightening to review all of them. In addition, it might well be
that the best functional for a specific problem has not been tested in the several
benchmarking studies published in the literature. As a general rule, before wasting
huge amounts of computer power with the wrong functional and/or basis set, it is
wiser to invest some time to read the literature to find which computational method
works better (or acceptably well) for a given problem and possibly have a feeling of
the accuracy through test calculations on small selected systems.

To give an idea of the relative cost of the various functionals, the relative
computational time required by some functionals in two standard applications such
as the calculations of the energy and of the first derivatives of the energy with respect
to the atomic coordinates (which must be calculated at each geometry optimization
step) and the calculation of the second derivatives of the energy with respect to the
atomic coordinates (which must be calculated for vibrational analysis) is reported
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Table 1 Relative performance of various functionals, as implemented in the Gaussian 09 package,
in the calculation of energy and gradients, or second derivatives, for an organometallic complex of
formula RuC31H33Cl2N3

E C gradients 2nd derivatives E C gradients
Method SVP TZVP

BP86 (density fit) GGA 1.0 1.0 1.6
BP86 GGA 1.5 1.9 4.1
PBE GGA 1.5 1.8 4.2
B3LYP HGGA 2.6 2.9 8.9
PBE1PBE HGGA 3.0 3.2 9.2
TPSS (density fit) MGGA 1.6 1.9 2.6
TPSS MGGA 2.1 2.3 5.1
TPSSh HMGGA 3.5 3.5 9.4
M06 HMGGA 3.6 4.0 10.6

in Table 1. The system considered in these calculations is a 70 atom Ru complex
whose brute formula is RuC31H33Cl2N3.

The data reported in Table 1 clearly indicate that GGA calculations are compu-
tationally very effective. In addition, for DFT methods that do not rely on exact
exchange, the performance can be further improved by using an auxiliary basis
set to fit the electron density (usually called density fit or resolution of identity).
Indeed, without this technical setup, the same GGA or MGGA functional – compare
the BP86 (density fit) and the simple BP86 values in Table 1 – is roughly 50 %
slower. The same consideration applies when MGGA functionals are considered;
compare the TPSS (density fit) and the simple TPSS values in Table 1. We note that
this technical acceleration is not possible when the Hartree–Fock exchange must
be evaluated, and thus HGGA and HMGGA calculations cannot benefit from it.
Generally speaking, there are marginal differences within a family of functionals,
and HGGA functionals are roughly 2–3 times slower than GGA functionals. MGGA
functionals, particularly when the resolution of identity technique is invoked,
are roughly 50 % slower than GGA functionals and thus are quite faster than
HGGA functionals. HMGGA functionals are roughly 3–4 times slower than GGA
functionals. This relative speed between the different families of functionals is
maintained when second derivatives are evaluated. Moving to the effect of the size
of the basis set, calculations performed with a triple-� plus one polarization function
of main group atoms results in an increase of the required computational time
by a factor of 2–3 roughly. Thus, on going from an accelerated GGA functional
in combination with a split valence plus one polarization function basis set, to a
HMGGA functional in combination with a triple-� plus one polarization function,
basis set result in an increase of the computational time by a factor of 10 roughly. In
other words, a GGA/SVP calculation that would take one day would require more
than one week, roughly, if performed at the HMGGA/TZVP level. This indicates
that the selection of the most appropriate computational method (both functional and
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basis set) must be a trade between the accuracy needed and the computational time
(or power) available. Of course, degradation of accuracy below the level required by
the specific problem at hand is not possible.

Properties of Molecular and Electronic Structure

To explore the capabilities of various density functionals, we have selected twelve
representative properties of atoms and molecules. We begin with molecular structure
(bond lengths, bond angles, vibrational frequencies) and basics of electronic struc-
ture (electron affinities and ionization potentials). We then proceed to the energetics
of transformations of molecules (atomization energies, heats of formation, energy
barriers), which will carry us to chemical bonding. The nature of the chemical
bond remains a central theme in theoretical chemistry, and we discuss regular
bonds as well as weak bonds, all being at the focus of ongoing research activities
(bond energies, hydrogen bonding, weak interactions). The issue of spin in DFT
deserves particular attention (spin states). Although DFT essentially is a ground-
state theory, excited states too can be treated with density functional theory, and
with our last property we briefly touch this topic (excited states). Time-dependent
density functional theory (TD-DFT) is a topic in its own right, and an appropriate
coverage of TD-DFT falls out of the scope of the present work. The reader will find
an entry into this excited field when studying the articles compiled by Marques and
coworkers (2006).

The twelve topics we selected in no way exhaust the capabilities of DFT, and any
property that can be treated with WFT is in principle accessible with DFT as well.
As an example, we refer the reader to a most instructive review by Neese (2009)
that illustrates the capabilities of DFT in the field of molecular spectroscopy.

When evaluating the performance of computational methods, benchmarking
is an essential procedure in which calculated properties are evaluated against
accurate experimental data. By now, a large number of problem-specific databases
have been established, which cover a wide variety of different physicochemical
properties, such as proton affinities, atomization energies, barrier heights, reaction
energies, and spectroscopic properties. However, these databases are not free from
chemical biases and often narrowed by the structural space of chemical intuition.
There is always the risk that when following established procedures, benchmark
studies might lose some of their general appeal. As to avoid the dangers of casual
benchmarking, Korth and Grimme have developed a “mindless” DFT benchmarking
protocol. Here, the databases consist of randomly generated molecules that rely on
systematic constraints (Korth and Grimme 2009) rather than on what is supposed to
be chemical insight.

In the following, we will make extensive reference to published benchmark
studies. However, it might well be that a particular molecule of interest to the reader
is not covered within one of the existing benchmark databases, and benchmark
studies in general provide good starting points for calculations, but no guarantee
for correctness.
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One: Bond Lengths
It is well established that almost any DFT approach, beyond LDA, is able to
reproduce correctly the geometry of molecular systems composed of main group
atoms. With the increase of computer resources, it is becoming customary to
test the performances of various methods through calculations on a rather large
set of molecules and to report statistical values. In one of such comparative
studies, 17 closed-shell molecules composed by first-row atoms, for which accurate
experimental geometries determined in the gas phase were available, confirmed that
the performance of commonly used GGA (BLYP, BPW91, and BP86) and HGGA
(B3LYP, B3PW91, and B3P86) is quite accurate, although the mean unsigned error
(MUE) on the bond length obtained with the GGA functionals, between 0.015 and
0.020 Å roughly, is slightly larger than that calculated with the HGGA functionals,
usually below 0.010 Å (Wang and Wilson 2004). The convergence of the geometry
was tested with respect to increasing basis set size from cc-pVDZ to aug-cc-pV5Z
and was shown to occur quickly. Convergence is typically reached at the triple-
� level, and beyond this level minor fluctuations, in the order of 0.002 Å, were
observed. Thus, excellent performances require that at least a triple-� basis set is
used. Similar conclusions were reached in a different benchmark study on a dataset
of 44 small molecules (Riley et al. 2007). Again, GGA functionals in combination
with Pople basis sets of the 6-31G family result in MUE between 0.015 and 0.020 Å,
while HGGA functional results in MUE below 0.010 Å. The MGGA functionals
tested resulted in a minor improvement relative to GGA functionals, while the
tested HMGGA functionals substantially reproduce the performance of HGGA
functionals. This indicates that the advantage of meta-functionals certainly is not
in bond distances.

To give an idea of the performance of some popular functionals, and also to
show the effect of the basis set, the dependence of the O–H bond length in water is
reported in Table 2 as an exemplary case. The data indicate that reasonably accurate
bond lengths (within 0.02 Å from the experimental value) can be achieved with
computationally cheap GGA functionals and that HGGA performs slightly better
with modest basis sets. As a general trend, the HGGA bond lengths are slightly
shorter than the corresponding GGA value and independent of the computational
approach; slightly shorter bond lengths are predicted with basis sets of increasing
quality. It is noteworthy that with the extended aug-cc-pV5Z basis set, the GGA
values slightly overestimate the experimental value, whereas the HGGA values
slightly underestimate it. Importantly, rather good results can be achieved also
with relatively small basis sets, which allow calculating geometries for fairly large
systems with a reasonable accuracy.

The very good performance of almost any functional to calculate accurately bond
lengths of molecular systems composed by main group atoms is not replicated when
bonds to transition metals are considered. Focusing on an extensive benchmark of
42 functionals on a database of 13 metal– ligand bond lengths, the MLBL13/05
database, all functionals provide rather good results, with MUE normally between

0.01 and 0.02
0

Å when a basis set of triple-� quality is used (Schultz et al. 2005a).
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Table 2 Performance of selected functionals and basis sets in predicting the experimental value
of the O–H bond length of water, 0.956 Å

BP86 revPBE B3LYP TPSS TPSSh M06

6-31G 0.985 0.984 0.976 0.983 0.978 0.970
SVP 0.976 0.974 0.967 0.974 0.969 0.963
6-31G(d,p) 0.974 0.973 0.965 0.972 0.967 0.960
TZVP 0.972 0.971 0.962 0.969 0.965 0.958
cc-pVDZ 0.978 0.977 0.969 0.977 0.972 0.964
cc-pVTZ 0.971 0.970 0.961 0.968 0.964 0.958
cc-pVQZ 0.970 0.968 0.960 0.968 0.963 0.956
cc-pV5Z 0.970 0.968 0.960 0.967 0.963 0.956
aug-cc-pVDZ 0.974 0.974 0.965 0.973 0.970 0.961
aug-cc-pVTZ 0.971 0.970 0.962 0.969 0.964 0.958
aug-cc-pVQZ 0.970 0.968 0.961 0.967 0.963 0.956
aug-cc-pV5Z 0.970 0.968 0.960 0.967 0.963 0.956

Extending the benchmark to a database containing the bond length of eight
metal–metal dimers, the TMBL8/05 databases, the situation deteriorates. GGA
functionals, including the popular BP86, BLYP, and PBE functionals, still provide
rather good results, with MUE between 0.02 and 0.03

0

Å when a basis set of
triple-� quality is used, while reducing the quality of the basis set to double-�
deteriorates performances remarkably, with MUE between 0.06 and 0.09 Å (Schultz
et al. 2005b). In the GGA family, the HTCH and OLYP functionals, with MUE
greater than 0.03

0

Å, should be avoided. The rather good performance of GGA
functionals is not replicated by HGGA functionals, including the popular B3LYP
and PBE1PBE functionals, with MUE between 0.08 and 0.09

0

Å. In the HGGA
family, the BH&HLYP and MPW1K functionals, with MUE greater than 0.12 Å,
should be avoided. Interestingly, MGGA functionals do not perform as or better than
GGA functionals in predicting bond lengths, but rather worse. Indeed, including
also the popular BB95 and TPSS functionals, they result in MUE greater than 0.06
0

Å. Introduction of HF exchange partially improves the performance of MGGA
functionals, and the tested HMGGA functionals, including the B1B95 and the
TPSSh functionals, result in MUE between 0.03 and 0.07 Å (Schultz et al. 2005a).
Finally, the M06 functional performs particularly poor, with a MUE of 0.131 Å
(Zhao and Truhlar 2008b).

To give an idea of the performance of some popular functionals in the calculation
of the M–ligand distances and of the effect of the metal on the bond distance of the
ubiquitous CO ligand, analysis of these distances in three typical binary carbonyl
complexes involving first-row transition metals is reported in Table 3.

Basically, all the functionals reproduce the experimental M–CO distances well
within 0.02 Å, but many of the functionals tested underestimate the difference in the
axial and equatorial Fe–CO distances. In this respect, HGGA and HMGGA func-
tionals seem to perform slightly better, although there is quite a debate on the exact
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Table 3 Performance of selected functionals, in combination with the TZVP basis set on all the
atoms, in predicting the experimental value of the M–C and C–O bond length (in Å) in three first-
row M(CO)n complexes

Ni(CO)4 Fe(CO)5 Cr(CO)6

M–C C–O M–Ceq, M–Cax C–Oeq, C–Oax M–C C–O
Exp. 1.838 1.141 1.803, 1.811 1.133, 1.117 1.918 1.141
BP86 GGA 1.828 1.151 1.809, 1.810 1.157, 1.153 1.910 1.155
PW91 GGA 1.824 1.149 1.805, 1.806 1.154, 1.151 1.906 1.153
revPBE GGA 1.829 1.150 1.809, 1.810 1.155, 1.153 1.911 1.154
B3LYP HGGA 1.845 1.137 1.820, 1.828 1.142, 1.138 1.926 1.141
PBE1PBE HGGA 1.822 1.134 1.796, 1.805 1.140, 1.136 1.900 1.138
B98 HGGA 1.839 1.137 1.813, 1.820 1.142, 1.138 1.915 1.141
TPSS MGGA 1.830 1.149 1.813, 1.816 1.154, 1.151 1.918 1.152
mPWKCIS MGGA 1.832 1.150 1.810, 1.811 1.156, 1.153 1.911 1.154
BB95 MGGA 1.833 1.150 1.811, 1.811 1.156, 1.153 1.912 1.154
TPSSh HMGGA 1.828 1.142 1.809, 1.815 1.147, 1.144 1.915 1.146
M06 HMGGA 1.848 1.133 1.820, 1.821 1.139, 1.135 1.920 1.138

assignment of the Fe–CO distances in Fe(CO)5. Similar good behavior is shown by
all the functionals in the prediction of the CO distance when bonded to a transition
metal, although the GGA and MGGA functionals tested yield systematically longer
CO distances. In this respect, HGGA and HMGGA functionals do perform slightly
better.

Two: Bond Angles
The good performance of almost every functional to predict correctly bond lengths
of molecular systems composed by main group atoms is confirmed in the case of
bond angles. Again, a benchmark study on 17 closed-shell molecules composed
by first-row atoms, for which accurate experimental geometries determined in the
gas phase was available, confirmed that the performance of commonly used GGA
(BLYP, BPW91, and BP86) and HGGA (B3LYP, B3PW91, and B3P86) functionals
is quite accurate, with a MUE between 1.0ı and 1.5ı (Wang and Wilson 2004).
Differently from bond lengths, GGA and HGGA methods perform rather similarly
on bond angles. Also for bond angles, the convergence was tested with respect to
increasing basis set size from cc-pVDZ to aug-cc-pV5Z and was shown to occur
quickly, and again convergence is typically reached at the triple-— level. Similar
conclusions were reached in a different benchmark study on a dataset of 44 small
molecules (Riley et al. 2007). All the functionals considered resulted in MUE
between 1.0ı and 1.5ı, independent of the functional used.

To give an idea of the performance of some popular GGA and HGGA function-
als, and also to show the effect of the basis set, the dependence of the H–O–H angle
in water is reported in Table 4 as an exemplary case. Accurate bond angles (within
1.0ı from the experimental value) can be achieved with all functionals and moderate
basis sets.
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Table 4 Performance of selected functionals and basis sets in predicting the experimental value
of the H–O–H angle of water, 105.2ı

BP86 revPBE B3LYP TPSS TPSSh M06

6-31G 107.2 107.1 108.3 107.1 107.7 109.4
SVP 102.2 102.1 103.1 102.3 102.7 103.3
6-31G(d,p) 103.1 103.0 104.0 103.3 103.7 104.5
TZVP 104.1 104.1 105.1 104.3 104.6 104.9
cc-pVDZ 101.7 101.7 102.7 104.9 102.3 102.8
cc-pVTZ 103.6 103.5 104.5 103.7 104.0 104.4
cc-pVQZ 103.9 104.0 104.9 104.0 104.3 104.8
cc-pV5Z 104.2 104.3 105.1 104.3 104.5 105.0
aug-cc-pVDZ 103.8 103.8 104.8 103.8 104.1 104.7
aug-cc-pVTZ 104.2 104.2 105.0 104.3 104.6 104.9
aug-cc-pVQZ 104.2 104.3 105.1 104.3 104.6 104.9
aug-cc-pV5Z 104.2 104.3 105.1 104.3 104.6 105.1

Three: Vibrational Frequencies
Benchmarking various DFT methods to reproduce accurately vibrational frequen-
cies of 35 molecular systems composed by main group atoms revealed that GGA
methods, with a MUE of roughly 40 cm�1, are among the most accurate functionals
(Riley et al. 2007). Indeed, the performance of several HGGA methods was at least
20 cm�1 worse, with MUE between 60 and 80 cm�1, and meta-functionals are not
an improvement. As for other geometrical properties, accurate performance requires
that a triple-� basis set be used. The GGA functionals also performed better than
HGGA functionals in the prediction of the vibrational frequency in nine homonu-
clear 3d metal dimers, with a MUE around 100 cm�1 for BLYP and BP86 and
around 120 cm�1 for B3LYP and B3P86. Nevertheless, both families of functionals
resulted in a rather large deviation from accurate data (Barden et al. 2000).

The performance of various functionals in the prediction of the CO stretching
frequency in typical binary carbonyl complexes with first-row transition metals
is exemplified in Table 5. Simple GGA and also MGGA functionals perform
better and are able to capture the experimental value with an accuracy of roughly
50–100 cm�1, while Hartree–Fock exchange seems to deteriorate results, since the
HGGA and HMGGA functionals reproduce the experimental value with an accuracy
of roughly 150–200 cm�1. In terms of percent, the GGA and MGGA functionals
overestimate the experimental values by 3–4 %, while the HGGA and HMGGA
functional by 6–10 %. While these results may seem quite accurate, almost all the
functionals considered are unable differentiate too little between metals. In fact, the
experimental value decreases by 58.1 cm�1 on going from Ni(CO)4 to Cr(CO)6, but
the functionals examined are unable to capture this difference. The best performing
are the B98 functional, with a difference of merely 15.0 cm�1, and the HGGA and
HMGGA with differences slightly smaller than 10 cm�1.

On the other hand, the simple BP86 GGA functional has been also tested in the
prediction of the CO stretching frequency in rather large organometallic complexes.
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Table 5 Performance of selected functionals, in combination with the TZVP basis set on all the
atoms, in predicting the symmetric frequency of the CO stretching mode in selected first-row
transition metal binary carbonyl complexes. Next to each calculated frequency is reported the
%error calculated as %err D 100*(�Exp./�DFT). The final column reports the difference between
the Ni(CO)4 and the Cr(CO)6 frequencies

Method Ni(CO)4 Fe(CO)5 Cr(CO)6 �Ni-�Cr

Exp. 2061.3 %err 2038.1 %err 2003.0 %err 58.1
BP86 GGA 2104.0 2.1 2103.0 3.2 2102.0 4.9 2.0
PW91 GGA 2116.0 2.7 2115.0 3.8 2115.0 5.6 1.0
revPBE GGA 2110.0 2.4 2109.0 3.5 2109.0 5.3 1.0
B3LYP HGGA 2194.0 6.5 2184.0 7.2 2185.0 9.1 9.0
PBE1PBE HGGA 2232.0 8.3 2223.0 9.1 2223.0 11.0 9.0
B98 HGGA 2212.0 7.3 2202.0 8.0 2197.0 9.7 15.0
TPSS MGGA 2121.0 2.9 2116.0 3.8 2117.0 5.7 4.0
mPWKCIS MGGA 2102.0 2.0 2102.0 3.1 2102.0 4.9 0.0
BB95 MGGA 2100.0 1.9 2100.0 3.0 2100.0 4.8 0.0
TPSSh HMGGA 2169.0 5.2 2162.0 6.1 2162.0 7.9 7.0
M06 HMGGA 2234.0 8.4 2224.0 9.1 2226.0 11.1 8.0
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Fig. 6 Iridium complexes that bear N-heterocyclic carbene ligands

For these large and computationally demanding systems, which are displayed in
Fig. 6, computationally effective methods are needed.

The data reported in Table 6 clearly show the very good performance of the BP86
functional, which is able to reproduce the higher frequency symmetric CO stretching
with an error of roughly 20 cm�1 only and the lower frequency asymmetric CO
stretching with an error of roughly 30 cm�1. Further, despite the poor performances
discussed above in the ability of GGA functionals to differentiate between different
binary M(CO)n complexes, comparison of the saturated N-heterocyclic carbene
complexes (SIPr and SIMes) with their unsaturated counterparts (IPr and IMes)
indicates that the DFT values reproduce the experimental finding that both CO
stretches are about 1 or 2 cm�1 smaller in the complexes with the unsaturated
N-heterocyclic carbene ligand (Kelly et al. 2008).
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Table 6 Experimental and
DFT calculated CO stretching
frequencies, in cm�1, in
several N-heterocyclic
carbene complexes

Method Experimental BP86

(IAd)Ir(CO)2Cl 2063.4 1979.8 2082 2010
(ICy)Ir(CO)2Cl 2064.8 1981.2 2083 2015
(IPr)Ir(CO)2Cl 2066.8 1981.0 2083 2005
(SIPr)Ir(CO)2Cl 2068.0 1981.8 2084 2007
(IMes)Ir(CO)2Cl 2066.4 1979.8 2084 2007
(SIMes)Ir(CO)2Cl 2068.0 1981.8 2085 2008

Table 7 Calculated and experimental electron affinities, in kcal/mol, for neutral late transition
metal M(CO)n complexes

System Experimental BP86/6-311G(d) B3LYP/6-311G(d)

Mn(CO) 25.7 25.0 24.0
Fe(CO) 26.7 25.7 21.8
Ni(CO) 18.5 19.1 13.8
Fe(CO)2 28.1 32.6 –
Ni(CO)2 14.8 19.9 16.0
Ni(CO)3 24.8 35.3 27.9

Four: Electron Affinities and Ionization Potentials
A benchmark study of 24 molecules from the G2/97 dataset, with the addition of
PO2, indicated that, with some exceptions, DFT methods reproduce the electron
affinity of molecular systems composed by main group atoms with a MUE close to
4 kcal/mol. Some hybrid functionals, such as the B98 functional, performs slightly
better (MUE D 3.15 kcal/mol), while GGA functionals with the P86 correlation
term usually perform rather poorly, with MUE around 6 kcal/mol (Riley et al.
2007). Finally, meta-functionals are not an improvement. As for any molecular
system with a negative charge, the calculation of electron affinity requires that
basis set containing diffuse functions are used. Moving to ionization potentials,
the performance of the various methods on 36 molecules from the G2/97 dataset,
with the addition of PO2, substantially replicates that found for electron affinities,
although the MUE, between 5 and 6 kcal/mol, is slightly larger (Wang and Wilson
2004). The B1B95 MHGGA functional provided the best performance, with a MUE
of 4.25 kcal/mol.

Moving to selected cases (see Table 7), the BP86 GGA functional seems quite
more accurate than the HGGA B3LYP functional in predicting the electron affinity
of highly unsaturated late transition metal M(CO)n complexes, but the HGGA
functional seems to be more accurate when the unsaturation at the metal is reduced
(Zhou et al. 2001). These results exemplify the difficulty to extract trends from
benchmarks, if the specific case at hand has not been included in the testing
dataset.
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Five: Atomization Energies
A benchmark study on 17 first-row closed-shell molecules indicated that in the
calculation of the atomization energy with the Dunning correlation-consistent basis
sets, the HGGA functionals, with a MUE of roughly 2.2 kcal/mol, outperform
GGA functionals, such as BLYP (MUE D 7.2 kcal/mol), with BP86 performing
particularly bad (MUE D 16.2 kcal/mol) (Wang and Wilson 2004). In another
benchmark study on the atomization energy of a dataset composed by 109 main
groups of organic and inorganic molecules, calculated with the MG3S basis set,
HGGA functionals were again confirmed to perform well, with MUE smaller
than 1.0 kcal/mol, while GGA functionals, such as the PBE, with a MUE of
3.0 kcal/mol, again performed poorly. The peak performance of 0.40 kcal/mol was
produced with the B1B95 functional, while the classic B3LYP resulted in a MUE
of 0.91 kcal/mol. Finally, HMGGA functionals were shown to perform similarly to
HGGA functionals (Zhao and Truhlar 2005a). A set of range-corrected functionals,
including the CAM-B3LYP, the LC-¨PBE, and the ¨B97 family, also performed
particularly well, with MUE between 0.51 and 0.89 kcal/mol (Peverati and Truhlar
2014). On the other hand, GGA functionals perform well when the atomization
energy of 9 metal dimers in the TMAE9/05 database is calculated, with MUE in
the range of 5–8 kcal/mol. HGGA functionals, instead, resulted in MUE around
15–30 kcal/mol, with only the B97-1, B97-2, and B98 functionals with MUE below
10 kcal/mol. MGGA and HMGGA functionals substantially replicate the results
obtained with non-meta-functionals, although the M05 and M06 functionals result
in the very low MUE of 6.9 and 4.7 kcal/mol, respectively (Zhao and Truhlar
2008b). These results are another indication that hybrid functionals usually perform
better for molecules composed by main group atoms, whereas GGA and MGGA
functionals perform better for transition metal chemistry.

Six: Heats of Formation
The accurate calculation of this property, even for rather simple molecular systems
composed by main group atoms, still represents a challenge for several functionals.
Indeed, the MUE on the heat of formation in a benchmark study on 24 molecules
from the G2/97 dataset, with the addition of PO2, spans the rather broad range of
10–30 kcal/mol, even if basis set of rather good quality, such as the 6-31CCG* basis
set, are used. Functionals to be avoided are those containing the P98 correlation
term among the GGA, the B1LYP and the B98 among the MGGA, the PBEKCIS
among the MGGA, and the BB1K among the HMGGA. On the other side,
good performances were obtained with the PBELYP, PW91LYP, MPWPW91, and
MPWPBE GGA functionals, the PBE1PBE and B3PW91 HGGA functionals, and
finally the TPSS and the TPSSKCIS MGGA functionals. With these functionals,
the MUE on the heats of formation usually is below 10 kcal/mol (Riley et al.
2007). Augmented correlation-consistent Dunning-type basis sets usually lead to
slightly better performances. Nevertheless, some computational results have cast a
shadow on the common procedure to test heats of formation on small molecules.
Indeed, it has been shown that almost all the functionals, including the popular
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B3LYP functional, are unable to predict correctly the heats of formation of n-alkanes
(Curtiss et al. 1997, 2000). Due to the inability to describe properly long-range
attractive dispersion interaction, practically all functionals introduce a systematic
error in the calculation of the isodesmic stabilization energy (Eq. 4). This systematic
error ranges between 0.90 kcal/mol for the HMGGA MPWB1K functional and
1.82 kcal/mol for the OLYP functional. The BP86 and PBE GGA functionals result
in an error of 1.25 and 1.08 kcal/mol, respectively, while the HGGA functional
B3LYP results in an error of 1.33 kcal/mol. While these errors may seem to be not
dramatic, they are per CH2 unit, so that the errors are between 10 and 20 kcal/mol
for a simple molecule such as n-decane (Wodrich et al. 2006).

n � CH3 � .CH2/m � CH3 Cm CH4 ! .mC 1/ C2H6 (4)

Seven: Energy Barriers
The performance of a series of functionals was tested to reproduce the barrier height
for a series of reactions. Starting from hydrogen transfer reactions, the forward and
backward barrier for the following 3 reactions OH � CCH4! CH3� CH2O; OH �
CH � ! O

�
3P

�
C H2; and H � C H2S ! HS � C H2, which constitute

the BH6 database (Lynch and Truhlar 2003), GGA functionals systematically
underestimate the barriers, with a MUE between 7.8 and 9.4 kcal/mol. Better
results were obtained with HGGA functionals, with MUE around 4.5–5.0 kcal/mol.
The mPWPW91 MGGA functional is not a clear improvement, with a MUE
of 8.5 kcal/mol, while HMGGA functionals such as the mPW1PW91 and the
MPW1K perform better, with MUE of 3.9 and 1.4 kcal/mol, respectively (Zhao
et al. 2004). Testing the functional on the larger BH42/04 database, consisting of
42 transition-state barrier heights of hydrogen transfer reactions in mostly open-
shell systems, gave substantially similar results (Zhao & Truhlar 2004). The HGGA
functionals underestimate barriers by a MUE of roughly 4 kcal/mol, while HMGGA
functionals give better results, with peak performances from the BB1K, XB1K,
and MPWB1K resulting in MUE around 1.2–1.3 kcal/mol. Similar conclusions are
achieved when the HTBH38 database, which contains 38 transition-state barrier
heights for 19 hydrogen transfer reactions, 18 of which involve radicals as reactant
and product, is considered. In this case, 10 examined HGGA functionals result
in an average MUE of 3.7 kcal/mol, while 7 range-corrected functionals slightly
decrease this value to 2.7 kcal/mol (Peverati and Truhlar 2014). Moving to 38
transition-state barrier heights for non-hydrogen transfer reactions constituting the
NHTBH38/04 database, and comprising 12 barrier heights for heavy-atom transfer
reactions, 16 barrier heights for nucleophilic substitution reactions, and 10 barrier
heights for non nucleophilic substitution unimolecular and association reactions,
GGA functionals, such as the PBE, still approximate barriers severely, with a
MUE of 8.64 kcal/mol. HGGA functionals, such as the B3LYP and the PBE1PBE
functionals, perform better, although the MUE, around 4 kcal/mol, still is quite large
(Zhao et al. 2005). MGGA functionals perform similarly to the GGA functionals,
while the performance of HMGGA is rather scattered. For example, the TPSSh and
the MPW1KCIS functionals do not perform impressively, with MUE of 6.6 and
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Table 8 Selected mean errors for HTBH38 and NHTBH38 database

Method
Hydrogen
transfer

Heavy atom
transfer

Nucleophilic
substitution

Unimolecular
and association

PBE GGA 9.32 14.93 6.97 3.35
BLYP GGA 7.52 14.66 8.40 3.51
B3LYP HGGA 4.23 8.49 3.25 2.02
PBE1PBE HGGA 4.22 6.62 2.05 2.16
TPSS MGGA 7.71 14.65 7.75 4.04
TPSSKCIS MGGA 4.69 9.26 4.88 2.12
TPSSh HMGGA 5.97 11.51 5.78 3.23
BB1K HMGGA 1.16 1.58 1.30 1.44

4.6 kcal/mol, respectively, while the MPW1K and the BB1K are very accurate,
with MUE of 1.3 and 1.2 kcal/mol, respectively (Zhao and Truhlar 2005a). As
for hydrogen transfer reactions, comparison between 7 range-separated functionals
and 10 HGGA functionals indicated that the range-separated functionals, with an
average MUE of 2.9 kcal/mol, perform slightly better than the HGGA functional,
with an average MUE of 3.7 kcal/mol. However, the peak performance of the
MPW1K and B97-3 HGGA functionals, with MUE around 1.5 kcal/mol, is not
reached by any of the range-separated functionals, with a minimum MUE of
2.41 kcal/mol achieved by the ¨B97 functional (Peverati and Truhlar 2014).

The breakdown of these cumulative MUEs for selected functionals is reported in
Table 8. Clearly, the most problematic cases are the transfer reaction of both hydro-
gen and heavy atoms. With the exception of the BB1K, all the other functionals fail
to a large and embarrassing extent. For the HTBH38 dataset, the M06 and M06-
2X HMGGA functionals, with MUE of 2.00 and 1.13 kcal/mol, also perform well
(Zhao and Truhlar 2005a). Barrier heights of nucleophilic substitutions are predicted
better, although GGA functionals still result in a too large MUE. Finally, the barrier
heights of unimolecular and association reactions are predicted with reasonably
accuracy by all functionals. Again, the performance of the BB1K functional is
extremely good for the four classes of reactions considered. Similarly good and
well-balanced performances are also obtained with other HMGGA functionals such
as the PW6BK and the MPWB1K functionals.

Similar extensive tests on another dataset, comprising the barrier height for 23
reactions of small systems with a radical transition state, also highlighted the good
performances of the HMGGA BB1K functional, with a MUE of 1.05 kcal/mol,
in predicting energy barriers. However, when the same functionals were tested on
a dataset of 6 barrier heights of larger systems with a singlet transition state, the
best performance was obtained with the simple HGGA B1LYP functional, with a
MUE of 2.58 kcal/mol, and the performance of the B3LYP functional, with a MUE
of 3.10 kcal/mol, was slightly worse, while all the HMGGA functionals tested,
including the BB1K functional, resulted in MUE greater than 4 kcal/mol (Riley
et al. 2007).
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Table 9 First metal–carbonyl dissociation energy, in kcal/mol, for selected first-row transition
metal systems. DFT values, calculated with the TZVP basis set on the metal, and the SVP or
TZVP basis sets on CO

Ni(CO)4 Fe(CO)5 Cr(CO)6

Exp. 24.9˙2a 41.5˙2b 36.8˙2b

Method SVP TZVP SVP TZVP SVP TZVP
BP86 GGA 32.3 29.4 50.1 46.8 46.0 42.8
PW91 GGA 34.3 31.4 52.8 49.4 48.6 45.5
revPBE GGA 33.9 30.9 52.1 48.6 48.2 44.9
B3LYP HGGA 24.2 21.3 42.1 38.8 39.8 36.5
PBE1PBE HGGA 29.2 26.4 50.1 47.1 46.1 43.4
B98 HGGA 25.6 22.8 44.7 41.8 41.5 38.6
TPSS MGGA 32.9 30.5 50.8 48.1 46.2 43.8
mPWKCIS MGGA 30.3 27.3 48.4 44.8 44.7 41.3
BB95 MGGA 30.4 27.4 48.8 45.2 45.4 42.4
TPSSh HMGGA 31.2 28.6 50.0 47.4 45.5 43.0
M06 HMGGA 25.6 22.5 44.2 40.3 45.0 41.7

Eight: Bond Energies
The performance of several functionals to predict bond energies on a database of
21 metal–ligand bond energies, the MLBL21/05 database (Schultz et al. 2005a),
indicated that GGA functionals predict metal–ligand bond energies with a MUE
between 6 and 12 kcal/mol, with the BLYP, PBE, and BP86 among the worst, and
that performances can be quite better at the HGGA level, with MUE normally
in the 5–7 kcal/mol range. MGGA and HMGGA functionals do not offer an
improvement, as exemplified by the MUE of the TPSS and TPSSh functionals,
7.9 and 5.5 kcal/mol, respectively, and by the M06 functional, with a MUE of
5.4 kcal/mol (Zhao and Truhlar 2008b).

Taking again some selected binary carbonyl complexes of first-row transition
metals as examples, the performance of various functionals in the prediction of the
first bond dissociation energy is reported in Table 9. The first clean result is that the
binding energy is strongly affected by the basis set quality, and a triple-� basis set
yields binding energies that are roughly 3–4 kcal/mol lower. Focusing on the TZVP
results, the GGA functionals examined consistently overestimate the CO binding
energy in the three complexes by roughly 3–6 kcal/mol. The PBE1PBE HGGA
functional performs like the GGA functionals examined, whereas the B3LYP, and
particularly the B98 functional, is among the best performing functionals. Meta-
functionals only offer a marginal improvement.

Nine: Hydrogen Bonding
Benchmarking various DFT methods to reproduce the H–bond interaction energy
of ten systems composed by main group atoms revealed that HGGA functionals
generally perform better than GGA functionals, with MUE around 0.5 kcal/mol,
and the B3LYP functional among the best. GGA functionals, instead, result in
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Table 10 H-bond interaction energy, in kcal/mol, of selected nucleic acid base pairs

Base pair MP2/aug-cc-pVQZ B3LYP/6-31G(d,p) PW91/6-31G(d,p)

G:C Watson–Crick �27.7 �25.5 �27.7
A:T Watson–Crick �15.1 �12.3 �14.5
G:U Wobble �15.7 �13.4 �14.8
U:U Calcutta �9.6 �7.5 �8.7

MUE between 0.5 and 2.0 kcal/mol, with the BLYP, MPWPW91, and MPWPBE
among the best performing (Riley et al. 2007). MGGA and HMGGA functionals
perform close to the B3LYP functional. In all cases, the quality of the basis sets
had a strong impact on the quality of the results, and at least a 6-31G(d,p) basis
set should be used. Further tests were performed on a database consisting of the
binding energies of 6 hydrogen bonding dimers, the HB6/04 database (Zhao and
Truhlar 2005b). Also these tests indicated that the performance of GGA functionals
is generally not very impressive, with MUE normally between 0.5 and 4 kcal/mol,
with the exception of the very well-performing PBE functional, with a MUE of
0.25 kcal/mol only. On the average HGGA performs better, with MUE between 0.3
and 1.0 kcal/mol, with the PBE1PBE functional, with a MUE of 0.27 kcal/mol,
among the best, while the B3LYP functional, with a MUE of 0.87 kcal/mol, does
not perform impressively. Meta-GGA and meta-HGGA functionals are not a great
improvement. These results have been achieved with the rather large aug-cc-pVTZ
basis set, using the 6-31CG(d,p) basis set leading to slightly lower performances.

Extensive tests of the performance of the B3LYP and PW91 functionals in the
case of H-bonded nucleic acid–base pairs indicated that the PW91 GGA functional
replicates with better accuracy the MP2/aug-cc-pVQZ values than the B3LYP
HGGA functional (Sponer et al. 2004). The B3LYP calculations underestimate
the interaction energies by few kcal/mol with relative error of 2.2 kcal/mol.
Representative values for Watson–Crick (G–C, A–T) purine–pyrimidine (G–U) and
pyrimidine–pyrimidine (U–U) pairs are presented in Table 10.

Ten: Weak Interactions
For a long time, one of the well-known failures of DFT was in the description of
long-range dispersion forces, which are the glue that keeps together Van der Waals
complexes and are at the basis of the well-known   �   stacking interactions.
Members of the former family are the rare-gas dimers that almost invariably are
predicted to be unbound (or bound by effect of the basis set superposition error)
by many GGA and HGGA functionals. Indeed, an extensive benchmark on the
WI4/04 datasets, composed by four rare-gas dimers (HeNe, NeNe, HeAr, and NeAr)
indicated that the B3LYP functional simply does not predict a energy well for
three out of the four dimers if the basis set superposition error is corrected by the
counterpoise procedure and that even including the basis set superposition error the
interaction energy is underestimated by 0.23 kcal/mol, and equilibrium distances

are overestimated by more than 1
0

Å. On the other hand, HMGGA functionals
were shown to reproduce with good accuracy both the interaction energy and the
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equilibrium distance of these dimers, with MUE on the counterpoise-corrected
binding energies below 0.05 kcal/mol by several functionals, such as the X1B95 and
the MPWB1K, and with MUE on the equilibrium distances as low as 0.10 Å, which
is a remarkable result for weakly interacting systems (Zhao and Truhlar 2004).

Enlarging the dataset to include also organic molecules, such as the C6H6–Ne,
and the (C2H4)2 and (CH4)2 dimers, indicated that standard GGA function-
als systematically underestimate the interaction energy by a MUE of roughly
0.4–1.0 kcal/mol, with the exception of the PBE functional, with a MUE of
0.30 kcal/mol. MGGA functionals do not perform much better, while a small
improvement is shown by HGGA functionals, with the best results from B97-1 with
a MUE of 0.20 kcal/mol. HMGGA functionals do not offer better performances,
although the largest MUE is reduced to 0.64 kcal/mol (Zhao and Truhlar 2005b).
Finally, better performances were shown by the M05-2X and M06-2X functionals,
with a MUE of only 0.03 and 0.09 kcal/mol, respectively, when applied to a dataset
formed by the four rare-gas dimers above, C6H6 � Ne; CH4 � Ne; and the (CH4)2

dimer. Surprisingly, on this reduced dataset, the well-performing B97-1 functional
was not tested (Zhao and Truhlar 2005b).

Moving to  �  stacking interactions, the performance of a series of functionals
was tested on the PPS5/05 database, which consists of binding energies of five
 �  stacking complexes, namely, (C2H2)2, (C2H4)2, and sandwich, T-shaped, and
parallel-displaced (C6H6)2 (Zhao and Truhlar 2005a). Basically, all the functionals
tested underestimated the binding energies in the PPS5/05 database, with MUE
in the range of 1.0–3.8 kcal/mol. This is not a minor failure, since the average
binding energy in the PPS5/05 dataset amounts to 2.02 kcal/mol only. The PBE
GGA functional, with a MUE of 2.1 kcal/mol, performs better than the B3LYP
HGGA functional, which results in a MUE of 3.2 kcal/mol. The best performances,
slightly above 1 kcal/mol, are obtained with the PWB6K, PW6B95, and MPWB1K.
A clear improvement is obtained with the M06-2X functional, with a MUE of
0.30 kcal/mol only. Reducing the amount of Hartree–Fock exchange deteriorates
somewhat performances, as evidenced by the MUE of 0.60 kcal/mol yielded by the
M06 functional Zhao and Truhlar 2008b).

Focusing on   �   stacking interactions between nucleic acid bases, which
are fundamental to describe properly the base–base stacking in nucleic acids, the
popular B3LYP is simply unable to find a minimum corresponding to the A���T as
well as the G���C base pairs in a stacked geometry. Of the six functionals tested, only
the MPWB1K and the PWB6K functionals resulted in stable stacked base pairs,
with an underestimation of the stacking energy of roughly 2–3 kcal/mol (Zhao &
Truhlar 2005c).

Range-separated functionals, which were developed with the particular intent
of describing properly the exchange term at long distances, offer a clear improve-
ment over the performance of classic HGGA functionals on weak interacting
systems. For example, when the performance of different families of functionals
is compared through the NCCE31/05 database, which comprises the various
databases described above, seven range-separated functionals, including the CAM-
B3LYP, the LC-¨PBE, and the ¨B97 functionals, with an average MUE of
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0.61 kcal/mol, perform clearly better than 10 HGGA functionals, with a MUE of
0.92 kcal/mol. However, it is important to remark that on the same NCCE31/05
database, functionals fitted to reproduce non-covalent interactions, as the M06
functional, with a MUE of 0.41 kcal/mol, also perform remarkably well (Peverati
and Truhlar 2014).

As a final remark, we note that, based on an idea earlier proposed for Hartree–
Fock calculations (Hepburn et al. 1975; Ahlrichs et al. 1977), the addition of an
empirical C6�R�6 dispersion term represents a very simple cure to the failure of
standard density functionals to predict dispersion interactions (Grimme 2006b).
This approach is treated extensively in Chapter 12, so we do not discuss it here in
details. We only remark the very good performance of a range-separated functional
that also include an empirical dispersion term, such as the wB97X-D functional, on
the NCCE31/05 database, with a MUE of only 0.32 kcal/mol.

Eleven: Spin States
The problem of a reliable prediction of the relative ordering of different spin states
in transition metal complexes remains a tough challenge for DFT – not only for
a quantitative judgment (energy separation between the different spin states) but
even for a qualitatively assessment (correct prediction of the spin ground state).
There is general consensus that GGA functionals overestimate the stability of
low-spin states, whereas the inclusion of Hartree–Fock exchange in the HGGA
functionals results in an overestimation of the stability of high spin states (Ghosh
2006; Swart 2008). This led to the development of the B3LYP* functional, in which
the amount of the Hartree–Fock exchange is reduced from 20 % of the original
B3LYP functional to 15 % (Reiher et al. 2001). Furthermore, it has been suggested
that results obtained with Slater-type basis sets converge rapidly with the basis set
size, while this convergence in case of Gaussian-type basis sets is much slower,
and demanding basis sets like Dunning’s correlation-consistent basis are needed to
achieve good results (Güell et al. 2008).

Besides the above general comment, benchmark tests of the different functionals
in this case are often hampered by the problem of accurate reference data and by the
problem that functionals that seem to behave properly for a metal or system simply
fail if the system changes (Ghosh 2006). Focusing on Fe complexes, a benchmark
study versus CASPT2 values (see Table 11) indicated that the OPBE functional
performs definitely better than commonly used GGA and HGGA functionals. In a
similar study, the performance of some DFT functionals to describe CASPT2 results
for a series of five Fe complexes indicated that the OLYP functional performed
remarkably well in these cases, whereas the success of the HGGA PBE1PBE,
B3LYP, and B3LYP* functionals varied from case to case (Pierloot and Vancoillie
2008). Finally, another benchmark study, in which various properties of Fe2, Fe2

�,
and FeOC, as obtained from a series of GGA, HGGA, MGGA, and HMGGA
functionals, were calculated, indicated that no single functional was found to yield
a satisfactory description of all characteristics for all states of these species (Sorkin
et al. 2008). These results clearly indicate that the spin-state problem still is an open
challenge for DFT.
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Table 11 Singlet–quintet splitting, Esinglet–Equintet in kcal/mol, for selected Fe complexes (Swart
2008)

Fe(H2O)6
2C Fe(NH3)6

2C Fe(bpy)3
2C MAD

CASPT2 46.6 20.3 �13.2
BP86 28.4 5.1 �23.2 14.5
RPBE 34.3 6.3 �29.9 14.3
B3LYP 33.1 14.1 0.6 11.2
PBE1PBE 46.0 24.7 9.0 9.1
OPBE 49.3 19.0 �14.9 1.9

MAD mean absolute deviation

Twelve: Excited States
Testing the performance of several functionals in the TD-DFT prediction of 21
valence and 20 Rydberg excitation energies in N2, O2, HCOOH, and tetracene
indicated that valence excitations are easier to predict than Rydberg excitation.
Indeed, valence excitations were predicted by 15 functionals with a MUE of 0.36 eV,
while Rydberg excitations were predicted with a MUE of 1.13 eV. Focusing on
valence excitations, HMGGA functionals such as TPSSh, B98, and B97-3 are the
best performers, with MUE as small as 0.25 eV. Nevertheless, GGA and HGGA
functionals, with a MUE of 0.32 and 0.28 eV for the PBE and B3LYP functionals,
respectively, also perform reasonably well. Differently, for the accurate prediction
of Rydberg excitations, a high amount of Hartree–Fock exchange, as in the M06-
2X and M06-HF functionals, with MUE lower than 0.4 eV, is beneficial. With
the exception of the also well-performing BMK functional, almost all the other
functionals tested results in MUE greater than 0.78 eV, with the PBE and B3LYP
functionals resulting in a MUE of 1.95 and 1.07 eV, respectively. When Rydberg
and valence excitations are combined into a single database, the best average
performance is of the M06-2X and BMK functionals, with a MUE around0.35 eV
(Zhao and Truhlar 2008b).

With regards to charge-transfer excitations, the performance of 16 functionals
was tested in the prediction of three charge-transfer excitation energies in tetracene
and in the NH3��F2 and C2H4��C2F4 complexes. The average MUE over the 16
functionals examined, 3.86 eV, is depressive. The only working functional is M06-
HF, with a MUE of 0.09 eV. However, the inclusion of Hartree–Fock exchange is
not the only reason for this surprisingly good performance, since simple HF and the
HFLYP functional results in MUE around 1 eV. With the exception of the M05-2X
and M06-2X, with a MUE around 2.5 eV, all the other functionals tested resulted
in a MUE greater than 3 eV (Zhao and Truhlar 2008b). As a final note, it would be
interesting to test the performance of the M06-HF on a larger database.

Moving to more complex organic molecules, the   !  � transitions of more
than 100 dyes from the major classes of chromophores have been investigated using
a TD-DFT with the PBE, PBE1PBE, and long-range corrected hybrid functionals.
The PBE1PBE and CAMB3LYP were shown to outperform all other approaches,
with the latter functional especially adequate to treat molecules with delocalized
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excited states. The PBE1PBE functional resulted in a MUE of 22 nm (0.14 eV)
with no deviation exceeding 100 nm (0.50 eV), thus delivering reasonable estimates
of the color of most organic dyes of practical or industrial interest. Long-range
functionals allowed a better description of the low-lying excited-state energies than
HGGA functionals, and linearly corrected long-range approaches yield an average
error of 10 nm (Jacquemin et al. 2008).

An extended test of the performance of 41 functionals in the calculation of
the electronic absorption spectra of Cu and Zn complexes by TD-DFT methods
indicated that HGGA functionals outperform GGA functionals. In the case of
the spin-unrestricted calculations on the CuII(thiosemicarbazonato) complex, the
functional best performing in the reproduction of the experimental spectra and
geometry was the B1LYP, while the B3LYP functional was ranked 8. This order
was not replicated in case of the spin-restricted ZnII(thiosemicarbazonato) complex,
where the best functional was PBE1PBE, with the B3LYP ranked 10. In both
cases, HGGA functionals did not offer an improvement. In almost all the cases,
the calculations underestimated the experimental excitation energies (Holland and
Green 2010). Nevertheless, it is may be worth noting that the OPBE and the OBLYP
functionals, which were shown to perform well in other cases, were not considered.

Orbitals in DFT

Since chemists long have used and continue to use orbitals as natural language
to explain and rationalize the complex reality of molecules that define the realms
of inorganic and organic chemistry, we conclude with a few remarks on orbitals
obtained from density functional calculations.

Originally, chemists have built their understanding of orbitals on constructs that
resulted from WFT analyses, and such an orbital is usually referred to as molecular
orbital (MO). One important aspect of an MO analysis is the investigation of orbital
overlap. A simplified wave function theory that emphasizes this particular feature
of orbital interaction, the extended Hückel theory (EHT), has revolutionized the
general perception of molecular structure and reaction mechanisms.

Since the Kohn–Sham orbitals, introduced and used in DFT, serve a different
purpose than creating a reasonable single determinantal wave function ‰, chemists
were seeking answers to the question “what do the Kohn–Sham orbitals and
eigenvalues mean?” as DFT moved into the spotlight of electronic structure theory.
A simple answer was based on a comparison of orbitals of small molecules (H2O,
N2, PdCl42�) obtained from WFT (Hartree–Fock, EHT) and DFT calculations: The
shape and symmetry properties of the KS orbitals are very similar to those calculated
by HF and EHT methods. The energy order of the occupied orbitals is in most cases
in agreement between WFT and DFT methods. Overall, the KS orbitals are a good
basis for qualitative interpretation of molecular orbitals (Stowasser and Hoffmann
1999). This simple conception of the meaning and the use of KS orbitals by now
has gained general acceptance, and chemists often use KS orbitals in ways that are
familiar to them from MO analysis.
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Baerends and Gritsenko (1997) have provided an answer to the same question
based on fundamental concepts of density functional theory. Among other aspects,
the authors identify the following two important characteristics of KS orbitals:

1. The highest occupied Kohn–Sham orbital energy is equal to the exact first
ionization energy. This is a property that is very desirable in qualitative MO
theory in general and is often simply assumed in such theories.

2. The lowest unoccupied Kohn–Sham orbital energy and all other virtual orbital
energies are solutions in exactly the same potential as the occupied orbitals. They
are therefore not shifted toward higher energies in the same way as Hartree–Fock
virtual orbitals are – HF orbital energy differences are not estimates of excitation
energies. Further, it has been observed empirically for a long time that KS orbital
energy differences are good approximations to excitation energies, and the KS
orbital energy differences play a role as a first approximation to the excitation
energy in the treatment of excitation energies using time-dependent DFT.

The authors therefore recommend KS orbitals and one-electron energies as
tools in the traditional qualitative MO considerations on which much of the
rationalizations of contemporary chemistry are based. The Kohn–Sham one-electron
model and KS orbitals provide an ideal MO theoretical context to apply concepts
such as “charge control” and “orbital control.” KS orbitals usually follow the
expected behavior, in terms of bonding and antibonding character in terms of
geometrical distortions and in terms of interaction with other atoms or molecules.

About 10 years later, Cramer and Truhlar (2009) presented a more conservative
view of the use of KS orbitals. One should be careful not to stretch the interpretation
of KS orbitals beyond its limits, since KS orbitals correspond to a fictitious
noninteracting system with the same electron density as the correct many-body
function. Since the density computed from KS orbitals is an approximation to
the exact density, properties that depend on individual orbitals, with the exception
of the energy of the highest occupied orbitals, should be interpreted with care.
Nonetheless, many studies published in the literature do employ DFT molecular
orbitals to interpret the electronic origins of chemical bonding and reactivity.

The quality of the KS orbitals depends to a large part on the ability of a
chosen density functional to correctly represent the ground-state density of a given
molecule. In most cases, different density functionals produce qualitatively identical
orbitals, which also agree with WFT orbitals. For molecules that might posses a
spin-polarized ground-state density, different methods of electronic structure calcu-
lation not only produce quantitatively different results but also lead to qualitatively
contrastive conclusions. One such case is illustrated in Fig. 7.

Figure 7 Energies and shapes of the two highest occupied (red-blue) and the
two lowest unoccupied (yellow-green) KS orbitals (contour envelope 0.05 a.u.)
of Fe(S2C2H2)2 extracted from an unpolarized ground-state density according to
GGA and HGGA DFT calculations. The molecule was constructed according to
D2h symmetry with a Fe–S bond length of 220 pm. Also shown for the sake of
comparison are orbitals obtained from an extended Hückel calculation.
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Fig. 7 Energies and shapes of the two highest occupied (red-blue) and the two lowest unoccupied
(yellow-green) KS-orbitals (contour envelope: 0.05 a.u.) of Fe(S2C2H2)2 extracted from an
unpolarized ground state density according to GGA and HGGA DFT calculations. The molecule
was constructed according to D2h symmetry with a Fe-S bond length of 220 pm. Also shown for
the sake of comparison are orbitals obtained from an extended Hückel calculation

But the essential understanding of chemical orbitals itself is open to inter-
pretation; Autschbach (2012) elaborates on the use and misuse of orbitals in
quantum theory and chemistry. Naturally, KS orbitals play an essential role in
this challenging controversy. We leave it to the reader to decide whether or not
chemically meaningful information can be extracted from the orbital picture as
displayed in Fig. 7.

DFTips

The advertent reader has noticed the many technical recommendations that we have
given within the discussion of the twelve selected scenarios for properties of atoms
and molecules. Here, we will close our instruction manual with a few pieces of
general advice.
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B3LYP Is No Synonym for DFT

Some researchers hold the opinion that given the fact that the B3LYP functional
has been identified as the most successful DFT method in an overwhelming
number of systematic investigations in very many areas of chemical research,
there is no persuasive motivation to recommend its replacement by one of the
other functionals. We do not agree with such a judgment. Although the B3LYP
functional is largely responsible for DFT becoming one of the most popular
tools in computational chemistry, it does have unsatisfactory performance issues,
notably the unreliable results obtained for transition metal chemistry (Zhao and
Truhlar 2008a). One should become aware of the capabilities and shortcomings of
particular density functionals. It might well be that B3LYP is the proper approach
to many chemical problems, but choosing a functional for its previous success
while ignoring its potential failures cannot be the right strategy to approach DFT
calculations.

Choose Your DFT Method Carefully

We agree with Burke’s interpretation of “The good, the bad and the ugly”: It is
good to choose one functional of each kind and stick with it. It is bad to run several
functionals and pick the “best” answer. And it is ugly to design your own functional
with 2300 parameters.

In view of the many functionals available, it is likely that one will find a
functional that fits one’s own particular problems. In view of possibilities offered by
computational programs that make it fairly easy to create new sets of parameterized
hybrid functionals, it is almost certain that for each chemical problem, the right
functional can be designed.

Following such an approach, density functional calculations lose their generality
and meaning. One should aim for consistency within one’s calculations, rather than
for the best agreement with experiment. If one choose a particular functional for
its characteristics and capabilities, the results of DFT calculations gain a predictive
quality.

Read the Fine Print

During the early days of HGGA development, it became clear that B3LYP is not
B3LYP (Hertwig and Koch 1997). Different programs based their implementation
of the B3LYP functional on different models of the underlying LDA and produced
slightly different results for the same chemical problem. The same considerations
apply to the gradient corrections for correlation; P86 requires a different choice
of LDA than LYP. Some computer programs automatically make the right choice,
while other programs rely on correct input instructions given by the user.
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Familiarize yourself with the default values and basic implementations of your
favorite DFT code. Default values are chosen with much consideration and, most
of the time, are just adequate. However, for subtle problems, you might find
it necessary, for example, to change the accuracy of the numerical integration
routines.

DFT Does Not Hold the Universal Answer to All Chemical Problems

You can expect that not all of your DFT calculations will produce satisfying results.
An increasing number of problem molecules are currently identified for which
standard density functionals fail to produce satisfactory results. Seemingly simple
stereoelectronic effects in alkane isomers provided a serious challenge for many
standard functionals, such as B3LYP, BLYP, or PBE (Grimme 2006c). However,
such failures are not bad news for DFT but rather good news. The origin of the
dissatisfying DFT performance has been carefully analyzed and led to the design
of improved functionals (Zhao et al. 2006). Be honest with your DFT results and
accept apparent failures – it might be just another small step climbing Jacob’s
ladder.

Make DFT an Integral Part of Your Work

Although in some areas of chemical research DFT is at the verge of becoming a stan-
dard research tool, necessary for the complete characterization of new molecules,
not every chemical problem warrants a full-fledged DFT investigation. However,
if you structure your computational approach beginning with an elaboration of
qualitative aspects before addressing a problem in a quantitative way, a few quick
DFT calculations might provide you with valuable insights how to further pursue
your line of work.

Follow Your Interests

As final advice we will leave you with the words of Nobel Prize laureate Harold
Kroto: Do something which interests you or which you enjoy, and do it to the
absolute best of your ability. If it interests you, however mundane it might seem
on the surface, still explore it because something unexpected often turns up just
when you least expect it.

We hope that our work could satisfy some old interests as well as perk some
new interests. We wish that our short instruction manual serves as a valuable guide
for the perplexed and provides some food for thought for the enlightened, be it in
agreement or in disagreement. If you follow your interests, keep an open mind, and
maintain a broad perspective, good things will happen.
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