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Abstract

Quantitative structure—activity relationship (QSAR) modeling is the major
chemin- formatics approach to exploring and exploiting the dependency of
chemical, biological, toxicological, or other types of activities or properties
on their molecular features. QSAR modeling has been traditionally used as
a lead optimization approach in drug discovery research. However, in recent
years QSAR modeling found broader applications in hit and lead discovery
by the means of virtual screening as well as in the area of drug-like property
prediction, and chemical risk assessment. These developments have been enabled
by the improved protocols for model development and most importantly, model
validation that focus on developing models with independently validated external
prediction power. This chapter reviews the predictive QSAR modeling workflow
developed in this laboratory that incorporates rigorous procedures for QSAR
model development, validation, and application to virtual screening. It also
provides several examples of the workflow application to the identification
of experimentally confirmed hit compounds as well as to chemical toxicity
modeling. We believe that methods and applications considered in this chapter
will be of interest and value to researchers working in the field of computational
drug discovery and environmental chemical risk assessment.

QSAR Methodology: Summary of Approaches for Model Building
and Validation

In order to find new leads in the process of drug design and discovery, there is a
need for efficient and robust computational procedures that can be used to screen
chemical databases and virtual libraries against molecules with known activities
or properties. For this purpose, quantitative structure—activity relationship (QSAR)
analysis is widely used. QSAR modeling provides an effective way for establishing
and exploiting the relationship between chemical structures and their biological
actions toward the development of novel drug candidates. Theoretically, QSAR
analysis is the application of mathematical and statistical methods for the devel-
opment of models for the prediction of biological activities or properties of com-
pounds. Formally, a QSAR model can be expressed in the following generic format:

Predicted Biological Activity = Function (Chemical Structure) (1)

A QSAR procedure tries to minimize the error of prediction, for example, in
the form of the sum of squares between predicted and observed activities.
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DATA PREPARATION

Searching for a chemical/biological/ toxicological target.

Finding/Compiling a dataset.

Dataset curation.

Selection and calculation of descriptors.

Selection of a machine-learning computational procedure(-s)

Division of a dataset multiple times into external evaluation and modeling sets.

QSAR MODEL DEVELOPMENT

Dividing the modeling set multiple times into training and test sets.

Building models using training sets.

Validating models using test sets.

For combi-QSAR, repeat the previous two steps for each pair of descriptor set and
computational procedure.

Select models with acceptable statistics for external validation.

Run Y-randomization test to avoid overfitting and chance correlation.

VALIDATION OF QSAR MODELS

Consensus prediction of the external evaluation set within the AD.
Find optimal Z-cutoffs by using two criteria: precision of consensus prediction and coverage.

VIRTUAL SCREENING OF CHEMICAL DATABASES

Similarity search using training or modeling set(s) with Z-cutoff.
Consensus prediction of theremaining compounds with QSAR models.

Fig. 1 Major steps of QSAR modeling

The process of QSAR model development can be divided into three parts: data
preparation, data analysis, and model validation (Fig. 1). Model validation should
include establishment of model applicability domain (AD). Recently, the European
Organization for Economic Co-operation and Development (OECD) developed
a set of principles for the development and validation of QSAR models, which,
in particular, requires “appropriate measures of goodness-of-fit, robustness, and
predictivity” (Organisation 2008). The OECD guidance document especially
emphasizes that QSAR models should be rigorously validated using external sets
of compounds that were not used in the model development.

Data Preparation

The first part of QSAR analysis includes selection of a molecular dataset for QSAR
studies, acquiring or calculation of molecular descriptors (quantities characterizing
molecular structures), and selection of a QSAR (statistical analysis and correlation)
method. Datasets for QSAR studies can be found in research papers or electronic
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databases available either publicly (PubChem 2010; BindingDB (Liu et al. 2007);
ChEMBL 2010; DSSTox 2008; NIMH Psychoactive Drug Screening (PDSP) 2010)
or commercially (e.g., Wombat (Olah et al. 2007) or MDDR 2009); more examples
are given in a recent review (Oprea and Tropsha 2006). The dataset should include
biological activity values for all compounds (e.g., binding energies to a receptor,
or inhibition constants ICs, or in case of toxicity modeling, lethal concentration in
water LCsg, or lethal dose LDsy, etc.) preferably measured in the same lab using
the same experimental method. If these experimental data are not available from
one lab or one source, and the correlation between measurements made in different
labs or by different methods cannot be established, they may not be used directly
in QSAR studies. Instead, compounds in the dataset should be given a rank or
assigned to categories of activities: for example, a compound can be very active,
moderately active, or inactive. In the majority of such cases, binary classification
is used, in which a compound is classified as either active or inactive. Another
situation may arise, when compounds in the dataset naturally belong to different
classes, for example, they are ligands to different receptors. In this case, the types of
ligand specificity for a target can be considered as classes of compound activities,
and the goal of QSAR analysis becomes to achieve accurate prediction of the target
specificity for a new compound.

According to the nature of the activity data, QSAR studies can be divided into
continuous (activities, i.e., response variable, takes many different values from
within some interval), category (activities are represented by ranks or ordinal
numbers), and classification (activities are different types of biological properties
which cannot be rank ordered) approaches.

Prior to QSAR modeling, a dataset should be curated, that is, all structures should
be verified with respect to their correct representation in the dataset; structures
containing atoms, for which there are no parameters for descriptor calculation
should be removed; structures consisting of several disconnected parts should be
removed; salts should be removed; a problem of isomerism should be addressed;
and duplicate structures should be removed. There are different tools available for
dataset curation. For example, Molecular Operating Environment (MOE) (2008)
includes DatabaseWash tool. It allows changing molecules’ names, adding or
removing hydrogen atoms, removing salts and heavy atoms, even if they are
covalently connected to the rest of the molecule, and changing or generating the
tautomers and protomers (cf. the MOE manual for more details). Various database
curation tools are included in ChemAxon (2008) as well. If commercial software
tools such as MOE are unavailable (notably, ChemAxon software is free to academic
investigators), one can use standard UNIX/LINUX tools to perform some of the
dataset cleaning tasks (Tropsha and Golbraikh 2010). It is important to have
some freely available molecular format converters such as OpenBabel (2010) or
MolConverter from ChemAxon (2008). Major procedures for database curation are
discussed in our recent paper (Fourches et al. 2010).

After the dataset is selected and curated, the next task is the acquisition or
calculation of descriptors. According to an excellent monograph titled Handbook
of Molecular Descriptors by Roberto Todeschini and Vivian Consonni (2000)
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molecular descriptors can be grouped into zero-dimensional [0D] (sometimes
referred to as constitutional descriptors), one-dimensional [1D] (e.g., counts of
different molecular groups, physicochemical properties of compounds, etc.), two-
dimensional [2D] (invariants of molecular graphs, e.g., connectivity indices, infor-
mation indices, counts of paths and walks, etc.), three-dimensional [3D], which are
based on geometrical spatial properties of molecules [e.g., Comparative Molecular
Field Analysis (CoMFA) descriptors (Tripos 2010) which are values of steric and
electrostatic fields around aligned molecules, and different CoMFA-like descriptors
(Klebe 1998; Kubinyi et al. 1998; Robinson et al. 1999)], and some other descrip-
tors. Some descriptors can be experimental or calculated physicochemical properties
of molecules such as molecular weight, molar refraction, energies of HOMO and
LUMO, normal boiling point, octanol/water partition coefficient, molecular surface,
molecular volume, etc.

Herein, we will not discuss different types of descriptors in detail but mention
briefly major descriptor software. Most of descriptors included in the Handbook
of Molecular Descriptors (Todeschini and Consonni 2000) can be calculated by
the Dragon software (Dragon 2007). Molconn-Z (2007) is another widely used
descriptor calculation software which calculates more than 800 descriptors. A
relatively small, but diverse set of molecular descriptors can be calculated by
the MOE (2008) software. Chirality molecular topological descriptors (CMTDs)
developed in our laboratory append 2D descriptors by conformation-independent
chirality and ZE-isomerism topological indices (Golbraikh and Tropsha 2003;
Golbraikh et al. 2001, 2002). Another group of descriptors frequently used in our
laboratory is atom-pair (AP) descriptors (Carhart et al. 1985). Each descriptor is
defined as a count of pairs of atoms of certain types being away from each other on
a certain topological distance (2D AP descriptors) or a Euclidean distance within
certain intervals (3D AP descriptors); chirality AP descriptors can be calculated as
well (Kovatcheva et al. 2005).

Many descriptors calculated from the knowledge of 3D structure of molecules
(3D descriptors) have been developed and published as well. Although these
are inherently more rigorous, one should keep in mind that their calculation
is much more time and resource consuming. In many QSAR applications, the
calculation of 3D descriptors should be preceded by conformational search and 3D
structure alignment. However, even for rigid compounds, it is not generally known
whether the alignment corresponds to real positions of molecules in the receptor
binding site (Cherkasov 2008). There are different conformational analysis and
pharmacophore modeling tools included in molecular modeling packages such as
MOE (2008), Sybyl (there are LINUX and MS Windows versions) (Tripos 2010),
Discovery Studio (2010), LigandScout (2010), etc. It has been demonstrated that
in many cases QSAR models based on 2D descriptors have comparable (or even
superior) predictivity than models based on 3D descriptors (Bures and Martin 1998;
Golbraikh et al. 2001; Hoffman et al. 1999; Zheng and Tropsha 2000). Thus when
3D QSAR studies are necessary, if possible, 3D alignment of molecules should be
preferably obtained by docking studies. VolSurf (Crivori et al. 2000; Cruciani et al.
2000) and GRIND (Pastor et al. 2000) descriptors are examples of alignment-free
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3D descriptors. But their calculation still requires extensive conformational analysis
of molecules. Both VolSurf and GRIND descriptors are available in Sybyl (VolSurf
and Almond modules) (Tripos 2010). Various types of descriptors can be calculated
by different modules of Schrodinger software (2010). Virtually, any molecular
modeling software package contains sets of its own descriptors and there are
many other descriptors not mentioned here that can be found in the specialized
literature.

There are sets of descriptors that take values of zero or one depending on the
presence or absence of certain predefined molecular features (or fragments) such
as oxygen atoms, aromatic rings, rings, double bonds, triple bonds, halogens, and
so on. These sets of descriptors are called molecular fingerprints or structural
keys. Such descriptors can be represented by bit strings and many are found in
popular software packages. For instance, several different sets of such descriptors
are included in MOE (2008), Sybyl (Tripos 2010), and others, and examples of their
use can be found in the published literature (McGregor and Pallai 1997; Waller
2004). Molecular holograms are similar to fingerprints; however, they use counts of
features rather than their presence or absence. For example, holograms are included
in the Sybyl HQSAR module (Tripos 2010). There are also more recent approaches
when molecular features are not predefined a priori (as fingerprints discussed above)
but are identified for each specific dataset. For example, frequent subgraph mining
approaches developed independently at the University of North Carolina (Huan et al.
2006) and at the Louis Pasteur University in Strasbourg (Horvath et al. 2007) can
find all frequent closed subgraphs (i.e., subgraph descriptors) for given datasets of
compounds described as chemical graphs. A large and diverse set of 2D descriptors
can be generated by MOLD?2 software (Hong et al. 2008) available from FDA. A
wide variety of descriptors are included in ADRIANA software (Gasteiger 2006).

Prior to QSAR studies, processing of descriptors is required. It includes:
exclusion of descriptors having the same value for all compounds in the dataset
as well as duplicate descriptors. To avoid higher influence on QSAR models of
descriptors with higher variance, all descriptors are usually normalized (in most
cases, range scaling or autoscaling is used). Molecular holograms or AP descriptors
do not need to be normalized. Molecular field values around molecules are also
not normalized. Preferably, descriptors with low variance and one of the highly
correlated pair of descriptors should be excluded as well.

Finally, data for QSAR model development can be represented in a form of a
table (see Table 1), in which each compound is a row and each descriptor as well as
activity is a column.

The Problem of Outliers

Success of QSAR modeling depends on the appropriate selection of a dataset for
QSAR studies. In a recent editorial of the Journal of Chemical Information and
Modeling, Maggiora (2006) noticed that one of the main deficiencies of many
chemical datasets is that they do not fully satisfy the main hypothesis underlying all
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Table 1 QSAR table

Compound Descriptor 1 Descriptor 2 ... Descriptor N | Activity
1 Xi1 X2 e XiN Y,

2 X1 X2 . Xon Y>

M Xmi Xm2 . XMN Ym

QSAR studies: Similar compoundsare expected to have similar biological activities
or properties. Maggiora defines the “cliffs” in the descriptor space where the
properties change so rapidly, that, in fact adding or deleting one small chemical
group can lead to a dramatic change in the compound’s property. In other words,
small changes of descriptor values can lead to large changes in molecular properties.
Generally, in this case there could be not just one outlier, but a subset of compounds
properties of which are different from those on the other “side” of the cliff. In other
words, cliffs are areas where the main QSAR hypothesis does not hold. So cliff
detection remains a major QSAR problem that has not been adequately addressed
in most of the reported studies.

There are two types of outliers we must be aware of: leverage (or structural)
outliers and activity outliers. In case of activity outliers the problem of “cliffs”
should be addressed as well. Recently, different approaches to find activity outliers
have been published (Bajorath et al. 2009; Guha and Van Drie 2008a, b; Sisay et al.
2009). We have suggested that Grubb’s (Environmental Protection Agency 1992)
and Dixon’s (Fallon et al. 1997) statistical tests can be used to find activity outliers
(Tropsha and Golbraikh 2010). Structural outliers can be defined as compounds that
are largely dissimilar to all other compounds in the descriptor space. The methods
of finding them are similar to finding compounds out of QSAR model applicability
domains (Tropsha and Golbraikh 2010) that is discussed below.

QSAR Model Development

The ultimate goal of QSAR analysis is the development of validated models for
accurate and precise prediction of biological activities of compounds which could
be potential leads in the process of drug discovery. Eventually, predictions should
be confirmed by experimental validation. The general QSAR modeling workflow
is represented in Fig. 2. Following the data curation step, we start by randomly
selecting a fraction of compounds (typically, 10-20 %) as an external evaluation
set. The Sphere Exclusion protocol implemented in our laboratory (Golbraikh and
Tropsha 2002; Golbraikh et al. 2003) is then used to rationally divide the remaining
subset of compounds (the modeling set) multiple times into pairs of training and
test sets that are used for model development and validation, respectively. We
employ multiple QSAR techniques based on the combinatorial exploration of all
possible pairs of descriptor sets and various supervised data analysis techniques
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Original Dataset

Curated Dataset

Modeling Sets | External Evaluation Sets |
Multiple Multiple
Training Sets Test Sets
Combi-QSAR —
Activity
Prediction

Validated Predictive Ext | Validati
Only accept models Models with High Internal xterna] Validation
that satisfy certain & External Accuracy Using Consensus

statistical criteria Prediction and
Applicability Domain

Database Screening
Using Applicability Domain

Fig. 2 Predictive QSAR modeling workflow

(combi-QSAR) (Fig. 3) and select models characterized by high accuracy in
predicting both training and test sets data. Validated models are finally tested
using the external evaluation set. The critical step of the external validation is
the use of applicability domains (ADs). If external validation demonstrates the
significant predictive power of the models, we employ them for virtual screening
of available chemical databases (e.g., ZINC (Irwin and Shoichet 2005)) to identify
putative active compounds and work with collaborators who could validate such hits
experimentally. The entire approach is described in detail in several recent papers
and reviews (Tropsha 2005; Tropsha and Golbraikh 2007).

QSAR Methods

QSAR modeling techniques employ various methods of multidimensional data
analysis as well as supervised machine learning used in different areas of research
in natural and social sciences such as biological sciences, geography, psychology,
medicine, economics, signal processing, speech recognition, forensic studies, etc.
Herein, it is impossible to discuss all the methods used in QSAR analysis. Instead,
we will name only some of them. All these methods can be classified into linear and
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I Compound representation in a dataset |

!

QSAR modeling |

etc.

MLR
PLS
kNN
SVM

Dragon descriptors

MOE descriptors

Molconn-Z descriptors
CoMFA descriptors

Volsurf descriptors

Frequent subgraphs

INNNREN

MOE descriptors

b il il

etc.

Fig. 3 Combinatorial QSAR modeling

nonlinear approaches. Linear methods include simple and multiple linear regression
(MLR), principal component regression (PCR), partial least squares (PLS), etc.
The main distinctive characteristic of these methods is the linearity of the function
approximating the biological activity (see Eq. 1) of their arguments (which are
molecular descriptors). In linear discriminant analysis (LDA), linear combinations
of descriptors are built, which define hyperplanes that separate representative points
of different classes of compounds in the multidimensional descriptor space.
Nonlinear methods can be based derived from linear or based on more complex
approaches that predict compound activities from their descriptors by the means
of nonlinear relationships. For example, if nonlinear terms (like squares, products,
or logarithms of some descriptors) are added to a linear regression, it becomes
nonlinear regression. Many nonlinear methods are derived from linear methods
via transforming them by a so-called kernel trick. Calculations are executed in a
so-called feature space where linear methods are applied. The advantage of these
methods is that there is no need to directly calculate the transformation functions.
Examples of such methods include non-linear support vector machines (SVMs)
and support vector regression (SVR) methods (Berk 2008; Vapnik 2000), nonlinear
discriminant analysis, kernel-PCA, kernel-PLS, etc. In the multidimensional feature
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space, SVM builds a soft margin hyperplane, which separates points belonging to
two different classes, or more hyperplanes to separate points of larger number of
classes. In contrast, SVR builds a hyperplane such that as many points as possible
are within the margin. Good SVM tutorial was written by Burges (1998), and
SVR tutorial by Smola and Schoelkopf (2004). Other non-linear methods include
k-nearest neighbors QSAR, in which the activity of a compound is predicted as a
(weighted) average of activities of its nearest neighbors. k-nearest neighbor methods
can include stochastic (Zheng and Tropsha 2000) or stepwise variable (descriptor)
selection (Ajmani et al. 2006).

Another large group of generally nonlinear methods are artificial neural net-
works (ANNs) (Neural Networks 1996; Salt et al. 2006; Zupan and Gasteiger
1999). Ensembles of ANNs can make use of bagging and boosting approaches
(Agrafiotis et al. 2002). ANNs consist of groups of artificial neurons. In feed-
forward back-propagation neural networks (Neural Networks 2010), neurons are
organized in input, hidden, and output layers. Input layer neurons receive descriptor
values of compounds, which are passed with different weights to the hidden
layer neurons. A neuron activation function is then applied at each neuron to
the sum of weighted inputs, and the results are passed to the output layer neu-
rons, which calculate predicted activities of compounds. During training process,
parameters of neuron functions and weights are adjusted so that the total error
of predictions is minimized. There are network architectures with multiple hidden
layers.

Recursive partitioning (RP) methods build decision trees in order to precisely
assign compounds to their classes. The tree consists of one root node containing
all objects (compounds), intermediate (or decision), and leaf (terminal) nodes. A
measure of node purity is introduced; for example, it could be the ratio of counts of
compounds belonging to majority and minority class in a node. At each node, the
procedure tries to partition the data to increase the purity measure, that is, to make
the difference between sum of child node purities and parent node purity as higher as
possible. Analysis is based on descriptor value distributions between classes at the
node. If such a partition at the node is impossible, it becomes a leaf node. Additional
criteria may be imposed on the minimum number of compounds in a leaf node, etc.
Compounds in each node satisfy certain descriptor criteria. After growing, some
leaves are consecutively removed based on the improvement of classification at
them (so-called pruning of a tree). Without pruning, the tree could be overfitted.
Prediction process consists of moving a query compound up the tree (based on
its descriptor values) until it reaches a leaf node. Predicted class of a compound
is defined as that of the majority class in this node. There are also RP regression
methods which are used, if response variable is continuous. There are several RP
algorithms widely used such as Classification and Regression Trees (CART (Berk
2008)), C4.5 (Quinlan 1993), C5.0 (2008), etc.

Random Forest methods (Breiman 2001; Random Forests 2001) construct
ensembles of trees based on multiple random selections of subsets of descriptors
and bootstrapping of compounds. The compounds not selected in a particular
bootstrapping are considered as a so-called out of bag set, and used as the test
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set. The trees are not pruned. Best trees in the forest are chosen for consensus
prediction of external compounds. The method can include bagging (Berk 2008;
Breiman 1996) and boosting (Berk 2008; Breiman 1998) approaches.

Target Functions

Based on the nature of the response variable, QSAR approaches can be grouped
into classification, category, or continuous QSAR ( vide infra). Classes are different
from categories in a sense that the former cannot be ordered in any scientifically
meaningful way, while the latter can be rank ordered.

Continuous QSAR Models

We suggested that the following validation criteria should be used for continuous
QSAR models (Tropsha and Golbraikh 2010): (1) leave-one-out (LOO) cross-
validated q2 (which is also used as the target function, that is, it is optimized
by the QSAR modeling procedure) (2) square of the correlation coefficient R(R*)
between the predicted and observed activities of the test set; (3) coefficients
of determination (predicted versus observed activities (R(z)), and observed versus
predicted activities (R’%) for the test set) for regressions through the origin; (4)
slopes k and k’ of regression lines through the origin (predicted versus observed
activities, and observed versus predicted activities for the test set). In our studies,
we consider models acceptable, if they have (1) ¢g> > 0.5; (2) R> > 0. 6; (3)

(R~ R})/R* < 0.1and 085 = k = L15or (R*~R{)/R® < 01 and

0.85 < K =< 1.15&) (| R(2J — R’% < 0.3. Sometimes, stricter criteria are used

(Tropsha and Golbraikh 2010).

In some papers, other criteria are used. For example, sometimes standard error
of prediction is used instead of (or together with) R?. Standard error of prediction
itself makes no sense until we compare it with the standard deviation for activities
of the test set, which brings us back to the correlation coefficients. If used, mean
absolute error (MAE) should be compared with the mean absolute deviation from
the mean. Sometimes, F-ratio is calculated, which is the variance explained by the
model divided by the unexplained variance. It is believed that the higher is the
F-ratio, the better is the model. We suppose that when F-ratio is used, it must be
always accompanied by the corresponding p-value.

Frequently, especially for linear models such as developed with multiple linear
regression (MLR) or partial least squares (PLS) the adjusted R? is used:

R n—1

sy =1-(1-R) )

n—c—1

where n is the number of compounds in the dataset, and c is the number of variables
(descriptors or principal components) included in the regression equation. It should
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be recognized that Rﬁ 4 = R?. The higher the number of explanatory variables c is,

the lower Rz "
with variable selection. R2 2qj 18 MOt a good criterion for variable selection kNN QSAR
models, since contrary to regression methods, in the kNN algorithm descriptors are
just selected or not selected, that is, their weights are either zero or one. As a result,
much larger set of descriptors is selected by the kNN procedure than, for example,

by stepwise regression.

is. R? aqj 18 particularly important for linear QSAR models developed

Target Functions and Validation Criteria for Classification QSAR
Models

We consider a classification QSAR model predictive, if the prediction accuracy
characterized by the correct classification rate (CCR) for each class is sufficiently
large:

corr

N
CCRclass = Cldss] (3)
N total

class

and the p-value for each CCRy, value is not higher than a predefined threshold (in
case of two classes, the CCR, threshold should not be lower than 0.65-0.70, and
generally, for any number of classes, p-value should not be higher than 0.05 for each
class).

For the classification QSAR with K classes, we shall use the following criterion

] K NCOIT
CCR = ?ZCCRi Zwal @)
i=1 i=1

along with the correct classification rate for each class (see Eq. 2). Criterion
4 is correct for both balanced and imbalanced (biased) datasets (i.e., when the
number of compounds of each class is different). For imbalanced datasets, for-
mula N(corr)/N(total), where N(corr) and N(total) are the number of compounds
predicted correctly and the total number of compounds in the dataset) is incorrect.
QSAR procedure should maximize the CCR value calculated according to Eq. 4,
and at the same time it should be penalized by too high differences between CCR
values for different classes.

Target Functions and Validation Criteria for Category QSAR
Models

Category QSAR with more than two classes should use target functions and
validation criteria other than those used in classification QSAR. These target
functions and validation criteria should consider errors as differences between
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predicted and observed categories, or increasing functions of these differences. The
total error of prediction over all compounds is the sum of all errors of predictions for
individual compounds. Let n;; be the number of compounds of category i assigned
by a model to category j (i, j = 1, ..., K). Then the total error is calculated as
follows:

K K
E=) > nif(i—jD. 5)

i=1j=1

where f (|i — j|) is the increasing function of errors. In case of biased datasets,
it would be important to normalize the errors for compounds of category i on the
number of compounds in this category:

K
E=Y Yo f i = s ©)

i=1"""j=1

where N; is the number of compounds of category i. QSAR procedure should
minimize the total error of prediction calculated with 5 or 6. In practice, the accuracy
can be defined as A = 1 — E/E.p, where E., is the expected total error. Thus,
QSAR procedure should maximize the target function A penalized by too high
differences between CCR values for different classes.

More detailed consideration of target functions and validation criteria as well as
different aspects of cost-sensitive learning, weighting, penalties, as well as threshold
moving in QSAR studies are discussed in our recent review (Tropsha and Golbraikh
2010). General aspects of cost-sensitive learning are discussed by Elkan (The
Foundations 2001) and Chen et al. (2004). Oversampling of the minority class, that
is, inclusion of compounds of the minority class in the dataset more than once, is
considered by Yen and Lee (2006), and Kubat and Matwin (1997). The opposite
approach, called undersampling, that is, removing part of the majority class from
the dataset, is considered by Japkowicz (2000). Using moving threshold for dividing
compounds into active and inactive classes when continuous property values are
available but one desires to use classification modeling approaches is considered
by Zhou and Liu (2006). In QSAR studies, threshold is usually moved toward the
larger class, which is easier to predict correctly.

Applicability Domains

Here we are approaching an extremely important problem of QSAR studies: model
applicability domain (AD). Formally, a QSAR model can predict the target property
for any compound for which chemical descriptors can be calculated. However,
if a compound is highly dissimilar from all compounds of the modeling set,
reliable prediction of its activity is unlikely to be realized. A concept of AD was
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developed and used to avoid such an unjustified extrapolation in activity prediction.
Applicability domains are one of the areas of intensive research. Different methods
of defining AD exist. Among others, the following definitions are considered by
Jaworska and colleagues (2005, 2008).

AD is defined as a hyperparallelepiped in the descriptor space in which represen-
tative points are distributed (Netzeva et al. 2006; Nikolova-Jeliazkova and Jaworska
2005; Saliner et al. 2006). Dimensionality of the hyperparallelepiped is equal to the
number of descriptors, and the size of each dimension is defined by the minimum
and maximum values of the corresponding descriptor or it stretches beyond these
limits to some extent up to predefined thresholds.

AD is defined as a convex hull of points in the multidimensional descriptor space
(Fechner et al. 2008).

The drawbacks of these definitions are as follows. Generally, the representative
points are distributed not in the entire hyperparallelepiped or convex hull, but only
in a small part of it. Another drawback is that structural outliers in the dataset
can enormously increase the size of the hyperparallelepiped, and the area around
the outlier will contain no other points. Consequently, for many compounds within
the hyperparallelepiped or convex hull, prediction will be unreliable. Besides, if the
number of linearly independent descriptors exceeds the number of compounds, the
convex hull is not unique.

Leverage for a compound is defined as the corresponding diagonal element of
the hat matrix (Afantitis et al. 2006). A compound is defined as outside of the AD,
if its leverage L is higher than 3 K/N, where K is the number of descriptors and
N is the number of compounds. The drawbacks of the leverage-based AD are as
follows. (a) for each external compound, it is necessary to recalculate leverage; (b)
if there are cavities in the representative point distribution area, a query compound
the representative point of which is in this area will be considered to be within the
AD, while in fact it is far from all other compounds (Tropsha and Golbraikh 2010).

In our studies, the AD is defined as the Euclidean distance threshold DT between
a query compound and its closest k-nearest neighbors of the training set. It is
calculated as follows:

DT =5+ Zo )

Here, y is the average Euclidean distance between each compound and its k-nearest
neighbors in the training set k is optimized in the course of QSAR modeling, and the
distances are calculated using descriptors selected by the optimized (model only),
o is the standard deviation of these Euclidean distances, and Z is an arbitrary cutoff
parameter defined by a user (de Cerqueira et al. 2006; Hsieh et al. 2008; Kovatcheva
et al. 2005; Zhang et al. 2008). We set the default value of this parameter Z at 0.5,
which formally places the allowed distance threshold at the mean plus one-half of
the standard deviation. We also define the AD in the entire descriptor space. In
this case, the same Eq. 7 is used, k = 1, Z = 0.5, and Euclidean distances are
calculated using all descriptors. Thus, if the distance of the external compound from
its nearest neighbor in the training set within either the entire descriptor space or
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the selected descriptor space exceeds these thresholds, the prediction is not made.
We have also investigated changes of predictive power by changing the values of Z-
cutoff. We have found that in general, starting from some Z-cutoff value, predictive
power decreases while Z-cutoff value increases (Zhu et al. 2009), as expected.
Instead of Euclidean distances, other distances and similarity measures can be used.

The predicted activity of a query compound by an ensemble of QSAR models
is calculated as the average over all predicted values. In binary QSAR modeling,
each model will predict the compound category as either O (inactive) or 1 (active);
however, different models used in an ensemble may yield inconsistent predictions.
Consequently, the averaged predicted activity value for an external compound
resulting from the use of an ensemble of models may fall anywhere within the [0;1]
range. For classification and category QSAR, the average predicted value is rounded
to the closest integer (which is a class or category number); in the case of imbalanced
datasets, rounding can be done using the moving threshold (vide supra). Predicted
average classes or categories (before rounding) that are closer to the nearest integers
are considered more reliable since such value indicates higher concordance between
different models. For example, before rounding, one compound has the predicted
value of 0.2, but the other has 0.4. Hence, both compounds are predicted to
belong to class 0 but the prediction for the first compound is considered more
reliable. Using these prediction values, additional constraint on the AD can be
defined by a threshold of the absolute difference between the predicted and the
rounded predicted activity. There are several other definitions of AD (Jaworska
and Nikolova-Jeliazkova 2008; Tetko et al. 2006) based on probability density
distributions, distances to models, etc.

Y-randomization

To establish model robustness, Y-randomization (randomization of the response
variable) test should be used. This test consists of repeating all the calculations
with scrambled activities of the training set. Ideally, calculations should be repeated
at least five (better, more) times. The goal of this procedure is to establish
whether models built with real activities of the training set have good statistics
not due to overfitting or chance correlation. If predictive power for the training
or the test set of all models built with randomized activities of the training set
is significantly lower than that of models built with real activities of the training
set, the latter ones are considered reliable. Using different parameters of the model
development procedure, multiple QSAR models are built which have acceptable
statistics. Suppose, the number of these models is m. Y-randomization test can
also give n models with acceptable statistics. For acceptance of models developed
with real activities of the training set, the condition n < m should be satisfied. In
(Kovatcheva et al. 2005) and (de Cerqueira et al. 2006), we have introduced the
measure of robustness R = 1 —n/m. If R > 0. 9, the models are considered robust
and their high predictive accuracy cannot be explained by the chance correlation
or overfitting. Y-randomization test is particularly important for small datasets.
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Unfortunately, in many publications on QSAR studies, Y-randomization test is not
carried out but all QSAR practitioners must be strongly encouraged to use this
simple procedure.

External Validation

Our previous experience suggests that the consensus prediction, which is the average
of predicted activities over all predictive models, always provides the most stable
results (Zhang et al. 2008; Zhu et al. 2008), and thus naturally avoids the need for
(the best) model selection based on the statistics for the training and test sets. The
consensus prediction of biological activity for an external compound on the basis
of several QSAR models is more reliable and provides better justification for the
experimental exploration of hits.

External evaluation set compounds are predicted by models that have passed
all validation criteria described above. Each compound is predicted by models for
which the compound is within the AD. Actually, each external compound should
be within the AD of the training set within the entire descriptor space as well (vide
supra). A useful parameter for consensus prediction is the minimum number (or
percentage) of models for which a compound is within the AD; it is defined by the
user. If the compound is found within the AD of a lower number of models, it is
considered to be outside of the AD. Prediction value is the average of predictions by
all models. If a compound is predicted by more than one model, standard deviation
of all predictions by these models is also calculated. For classification and category
QSAR, the average prediction value is rounded to the closest integer (which is a
class or category number); in case of imbalanced datasets, rounding can be done
using the moving threshold.

Predicted average classes or categories (before rounding), which are closer to
the nearest integers are considered more reliable (Zhang et al. 2008). Using these
prediction values, AD can be defined by a threshold of the absolute difference
between predicted and rounded predicted activity. For classification and category
QSAR, the same prediction accuracy criteria are used as for the training and test
sets. The situation is more complex for the continuous QSAR. In this case, if
the range of activities of the external evaluation set is comparable to that for the
modeling set, criteria (1)—(4) are used (see section “Target Functions”). Sometimes,
however, the external evaluation set may have a much smaller range of activities
than the modeling set, so it could be impossible to obtain sufficiently large R? value
(and other acceptable statistical characteristics) for it. In this case, we recommend
using the mean absolute error (MAE) or the standard error of prediction (SEP) as
discussed in one of our previous publications (Tropsha and Golbraikh 2010).

We have used consensus prediction in many studies (de Cerqueira et al. 2006;
Kovatcheva et al. 2005; Shen et al. 2004; Votano et al. 2004; Zhang et al. 2007, 2008;
Zhu et al. 2008) and have shown that in most cases it gives better prediction and
coverage than most of the individual predictive models. Thus, we recommend using
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consensus prediction for virtual screening of chemical databases and combinatorial
libraries for finding new lead compounds for drug discovery.

“Good Practices” in QSAR Modeling: Examples of Models
and Their Application to Virtual Screening and Lead
Identification

As discussed above, our experience in QSAR model development and validation
has led us to establishing a complex but straightforward workflow summarized
in Fig. 2. The last critical component of this workflow is the use of models to
identify tentative active hits that should be validated in experimental laboratories,
and we strongly encourage every computational scientist to use this ultimate model
validation strategy. We note that this approach shifts the emphasis from ensuring
good (best) statistics for the model that fits known experimental data toward
generating testable hypotheses about purported bioactive compounds. Thus, the
output of the modeling has exactly same format as the input, that is, chemical
structures and (predicted) activities making model interpretation and utilization
completely seamless for medicinal chemists. In our recent studies, we have been
fortunate to recruit experimental collaborators who have validated computational
hits identified through our modeling of anticonvulsants (Shen et al. 2004), HIV-1
reverse transcriptase inhibitors (Medina-Franco et al. 2005), D1 antagonists (Oloff
et al. 2005), antitumor compounds (Zhang et al. 2007), beta-lactamase inhibitors
(Hsieh et al. 2008), geranylgeranyltransferase inhibitors (Peterson et al. 2009), and
others. The discovery of novel bioactive chemical entities is the primary goal of
computational drug discovery, and the development of validated and predictive
QSAR models is critical to achieve this goal. We note that such studies could only
be done if there is sufficient data available for a series of tested compounds such that
robust validated models could be developed using the workflow described in Fig. 2.
We present several examples of these studies below to illustrate the use of QSAR
models as virtual screening tools for lead identification.

QSAR-Aided Discovery of Novel Anticonvulsant Compounds

We have applied kNN (Zheng and Tropsha 2000) and simulated annealing —
partial least squares (SA-PLS) (Cho et al. 1998) QSAR approaches to a dataset
of 48 chemically diverse functionalized amino acids (FAAs) with anticonvulsant
activity that were synthesized previously, and successful QSAR models of FAA
anticonvulsants have been developed (Shen et al. 2002). Both methods utilized
multiple descriptors such as molecular connectivity indices or atom-pair descriptors,
which are derived from two-dimensional molecular topology. QSAR models with
high internal accuracy were generated, with leave-one-out cross-validated R*(g*)
values ranging between 0.6 and 0.8. The ¢ values for the actual dataset were
significantly higher than those obtained for the same dataset with randomly shuffled
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activity values, indicating that models were statistically significant. The original
dataset was further divided into several training and test sets, and highly predictive
models providing ¢* values for the training sets greater than 0.5 and R? values for
the test sets greater than 0.6.

In the second phase of modeling, we have applied the validated QSAR models
to mining available chemical databases for new lead FAA anticonvulsant agents.
Two databases have been explored: the National Cancer Institute (nci 2007) and
Maybridge (2005) databases, including (at the time of that study) 237,771 and
55,273 chemical structures, respectively. Database mining was performed indepen-
dently using ten individual QSAR models that have been extensively validated using
several criteria of robustness and accuracy. Each individual model selected some
number of hits as a result of independent database mining, and the consensus hits
(i.e., those selected by all models) were further explored experimentally for their
anticonvulsant activity. As a result of computational screening of the NCI database,
27 compounds were selected as potential anticonvulsant agents and submitted to our
experimental collaborators. Of these 27 compounds, our collaborators chose two for
synthesis and evaluation; their choice was based on the ease of synthesis and the
fact that these two compounds had structural features that would not be expected
to be found in active compounds based on prior experience. Several additional
compounds, which were close analogs of these two were either taken from the
literature or designed in our collaborator’s laboratory. In total, seven compounds
were resynthesized and sent to the NIH for the Maximum Electroshock (MES) test
(a standard test for the anticonvulsant activity, which was used for the training set
compounds as well). The biological results indicated that upon initial and secondary
screening, five out of seven compounds tested showed anticonvulsant activity with
EDs less than 100 mg/kg, which is considered promising. Interestingly, all seven
compounds were also found to be very active in the same tests performed on rats (a
complete set of experimental data on rats for the training set were not available, and
therefore no QSAR models for rats were built).

Mining of the Maybridge database yielded two additional promisingcompounds
that were synthesized and sent to the NIH for the MES anticonvulsant test. One of
the compounds showed moderate anticonvulsant activity of EDsy between 30 and
100 mg/kg (in mice), while the other was found to be a very potent anticonvulsant
agent with EDsg of 18 mg/kg in mice (ip). In summary, both compounds were
found to be very active in both mice and rats. Figure 4 shows chemical structures
of experimentally confirmed hits that were identified by using validated QSAR
models for virtual screening as applied to the anticonvulsant dataset. It is important
to note that none of the compounds identified in external databases as potent
anticonvulsants and validated experimentally belong to the same class of FAA
molecules as the training set. This observation was very stimulating because it
underscored the power of our methodology to identify potent anticonvulsants of
novel chemical classes as compared to the training set compounds, which is one of
the most important goals of virtual screening.
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Fig. 4 Uniqueness of scaffolds for QSAR-based experimentally confirmed virtual screening hits
(a) as compared to training set compounds; (b) for the anticonvulsant dataset

QSAR-Enabled Discovery of Novel Anticancer Agents

A combined approach of validated QSAR modeling and virtual screening was
successfully applied to the discovery of novel tylophorine derivatives as anticancer
agents (Zhang et al. 2007). QSAR models have been initially developed for 52
chemically diverse phenathrene-based tylophorine derivatives (PBTs) with known
experimental ECsy using chemical topological descriptors (calculated with the
Molconn-Z program) and variable selection k-nearest neighbor (kNN) method.
Several validation protocols have been applied to achieve robust QSAR models.
The original dataset was divided into multiple training and test sets, and the models
were considered acceptable only if the leave-one-out cross-validated R*(¢?) values
were greater than 0.5 for the training sets and the correlation coefficient R? values
were greater than 0.6 for the test sets. Furthermore, the q2 values for the actual
dataset were shown to be significantly higher than those obtained for the same
dataset with randomized target properties (Y-randomization test), indicating that
models were statistically significant. Ten best models were then employed to mine a
commercially available ChemDiv Database (ca. 500 K compounds) resulting in 34
consensus hits with moderate to high predicted activities. Ten structurally diverse
hits were experimentally tested and eight were confirmed active with the highest
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experimental ECsy of 1.8 uM implying an exceptionally high hit rate (80 %). The
same ten models were further applied to predict EC50 for four new PBTs, and the
correlation coefficient (R?) between the experimental and predicted ECs for these
compounds plus eight active consensus hits was shown to be as high as 0.57.

QSAR Enabled Discovery of Novel Geranylgeranyltransferase |
Inhibitors (GGTIs)

The proper functioning of proteins often relies on posttranslational modification
of the polypeptide leading to changes in chemical characteristics. Found at the
extreme carboxyl terminus of the protein, one posttranslational “program” utilized
for over 140 proteins is the so-called CaaX box, where “C” is a cysteine, “aa” is
any aliphatic dipeptide, and “X” is the terminal residue that directs which of two
prenyl groups is added (Cox and Der 2002; Zhang and Casey 1996). Protein geranyl-
geranyltransferase type I (GGTase-I) transfers the 20-carbon geranylgeranyl group
to proteins including critical signaling molecules from many classes, for example,
the Ras superfamily (including K-Ras, Rho, Rap, Cdc42, and Rac), several G-
protein gamma subunits, protein kinases (rhodopsin kinase, phosphorylase kinase,
and GRK?7), and protein phosphatases (Casey and Seabra 1996; Sebti and Hamilton
2000). Several GGTIs have been developed that inhibit C20 lipid modification
of GGTase-I substrates. GGTIs have been primarily developed for use as cancer
therapeutics, particularly in cancers that have high levels, or activating mutations
of geranylgeranylated proteins (Sebti and Hamilton 2000; Winter-Vann and Casey
2005).

The pharmacological data for 48 GGTIs reported in (Peterson et al. 2009) were
generated as part of an iterative drug discovery program that led to GGTI-DU40
(Peterson et al. 2006). The structure of GGTI-DU40 can be discussed in the context
of the CaalL peptide framework. There is a free amide group, a spacer domain
relating to the dialiphatic motif, and critical sulfur as found in the requisite cysteine
residue of GGTase-I's substrates. Four additional GGTIs included in the data set
were peptidomimetics as well. Importantly, the modeling set included compounds
with different (chemical scaffolds), which in theory (and as we have established in
our study, in practice) should have enabled the identification of chemically diverse
hits from virtual screening.

Three different modeling techniques have been used to model GGTIs following
our general combi-QSAR strategy (Fig. 3); the specific workflow as applied to
the GGTI dataset is shown in Fig. 5. As the first step of our QSAR-based virtual
screening, the preliminary filtering of the 9.5 million compounds in our screening
library yielded 79 initial hits. This was done by using the global applicability domain
of all 48 GGTIs in the modeling set. After consensus predictions by 104 validated
kNN models, their predicted activities (pICsp) were found ranging from 4.51 to
5.96. Only 47 hits, including two pairs of stereoisomers, showed high predicted
activity (pICsy > 5.50) as well as high model coverage and were designated as the
final hits. Concurrently, two additional QSAR models were employed to reevaluate
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Fig. 5 The predictive QSAR modeling workflow illustrated for GGTIs Using purified recombi-
nant GGTase-I as an enzyme source and GGpp and Ras-CVLL as substrates, seven hit compounds
were tested in vitro as a matter of the experimental validation. The selection was based on high
predicted activity, availability, and structural uniqueness. All tested compounds showed inhibition
of GGTase-I with the pI/Cs, ranging from 3.63 to 5.44 (cf. Fig. 6)

those 79 hits in order to identify the consensus hits among all three methods. In the
end, seven compounds were prioritized for experimental validation based on high
predicted activity, uniqueness of structure, and availability.

The unexpected result was to identify several predicted actives that did not have
a common ring feature in their structure. In fact, seven highly ranked hits had
no apparent relationship with any of the training set molecules. They had furan,
triazole, tetrazole, and pyridine cores in their scaffolds while all non-peptidomimetic
compounds of the training set were based on a pyrazole core. Therefore, the seven
hit compounds appeared to be the structurally novel hits. Figure 6b shows chemical
structures of the three representative confirmed hits with novel scaffolds highlighted.
This study reconfirmed the observation that we already emphasized earlier with
anticonvulsant compounds that contrary to the common belief, QSAR-based virtual
screening is capable of identifying experimentally confirmed hit compounds with
novel scaffolds.

“Good Practices” in QSAR Model Development: Applications
to Toxicity Modeling

Many compounds entering clinical studies do not survive as a good pharmacological
lead to become a marketed drug. Chemical toxicity and safety have been regarded
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Fig. 6 Experimental validations of computational GGTI hits using GGTase-I in vitro activity
assay. (a) Inhibition curves; (b) Chemical structures of three representative confirmed hits; the
novel scaffolds in the structures are highlighted

as the major reason for attrition in the past decades (Kola and Landis 2004).
However, evaluation of chemical toxicity and safety in vivo at the early stage of
drug discovery process is expensive and time consuming. To replace the traditional
animal toxicity testing and to understand the relevant toxicological mechanisms,
many in vitro toxicity screens and computational toxicity models have been
developed and implemented by academic institutes and pharmaceutical companies
(Cheeseman 2005; Dash et al. 2009; Dix et al. 2007; Inglese et al. 2006; Park
et al. 2009; Riley and Kenna 2004; Valerio 2009; Yang et al. 2009). In the past
15 years, innovative technologies that enable rapid synthesis and high throughput
screening of large libraries of compounds have been adopted for toxicity studies.
As a result, there has been a huge increase in the number of compounds and the
associated testing data in different in vitro screens. With this data, it becomes
feasible to reveal the relationship between the high throughput in vitro toxicity
testing results and the low throughput in vivo low dose toxicity evaluation for the
same set of compounds. Understanding these relationships could help us delineate
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the mechanisms underlying animal toxicity of chemicals as well as potentially
improve our ability to predict chemical toxicity using short-term bioassays.

The unique advantage of using a computational toxicity model in risk analysis
is that a chemical could be evaluated for its toxicity potential even before it is
synthesized. The computational toxicity tools based on QSAR models have been
used to assist in predictive toxicological profiling of pharmaceutical substances for
understanding drug safety liabilities (Durham and Pearl 2001; Jacobson-Kram and
Contrera 2007; Muster et al. 2008; Valerio 2009), supporting regulatory decision
making on chemical safety and risk of toxicity (Bailey et al. 2005), and are effec-
tively enhancing an already rigorous US regulatory safety review of pharmaceutical
substances (Valerio 2008). Predictive QSAR models of chemical toxicity are
beginning to be used to evaluate compounds’ safety in the pharmaceutical industry
and environmental agencies (Durham and Pearl 2001; Snyder 2009). However, it
has been reported that most QSAR models do not work well for evaluating in
vivo toxicity, especially for external compounds (Zvinavashe et al. 2008, 2009).
Several reviews were published recently that challenge the feasibility and reliability
of QSAR models of chemical toxicity (Johnson 2008; Stouch et al. 2003). At the
same time, experimental data resulting from short-term high throughput screening
assays are emerging prompting the development of novel modeling approaches
that can combine short-term assay data and conventional chemical descriptors of
molecules to develop enhanced QSAR models of animal toxicity. We briefly review
these emerging approaches and applications below.

Quantitative Structure In Vitro-In Vivo Relationship Modeling

To stress a broad appeal of the conventional QSAR approach, it should be made
clear that from the statistical viewpoint QSAR modeling is a special case of general
statistical data mining and data modeling where the data is formatted to represent
objects described by multiple descriptors and the robust correlation between
descriptors and a target property (e.g., chemical toxicity in vivo) is sought. In
previous computational toxicology studies, additional physicochemical properties,
such as water partition coefficient (logP) (Klopman et al. 2003), water solubility
(Stoner et al. 2004), and melting point (Mayer and Reichenberg 2006) were used
successfully to augment computed chemical descriptors and improve the predictive
power of QSAR models. These studies suggest that using experimental results as
descriptors in QSAR modeling could prove beneficial. The already available and
rapidly growing HTS data for large and diverse chemical libraries makes it possible
to extend the scope of the conventional QSAR in toxicity studies by using in vitro
testing results as additional biological descriptors. Therefore, in some of the most
recent toxicology studies, the relationships between various in vitro and in vivo
toxicity testing results were generated (Forsby and Blaauboer 2007; Piersma et al.
2008; Schirmer et al. 2008; Sjostrom et al. 2008). Based on these reports, we
proposed a new modeling workflow called Quantitative Structure In vitro—In vivo
Relationship (QSIIRQuantitative structure in vitro—in vivo relationship (QSIIR)
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modeling) and used it in animal toxicity modeling studies (Zhu et al. 2008, 2009).
The target properties of QSIIR modeling were still biological activities, such as
different toxicity end points, but the content and interpretation of “descriptors”
and the resulting models is different. This focus on the prediction of the same
target property from different (chemical, biological, and genomic) characteristics
of environmental agents affords an opportunity to most fully explore the source-to-
outcome continuum of the modern experimental toxicology using cheminformatics
approaches. Figure 7— provides visual illustration of the integrated QSIIR approach
to in vivo toxicity modeling.

Using “Hybrid” Descriptors for QSIIR Modeling of Rodent
Carcinogenicity

To explore efficient approaches for rapid evaluation of chemical toxicity and human
health risk of environmental compounds, the National Toxicology Program (NTP),
in collaboration with the National Center for Chemical Genomics (NCGC) has
initiated an HTS Project (Inglese et al. 2006; Thomas et al. 2009). The first batch of
HTS results for a set of 1,408 compounds tested in six human cell lines was released
via PubChem. We have explored this data in terms of their utility for predicting
adverse health effects of the environmental agents (Zhu et al. 2008). Initially, the
classification k-nearest neighbor (kNN) QSAR modeling method was applied to
the HTS data only for the curated dataset of 384 compounds. The resulting models
had prediction accuracies for training, test (containing 275 compounds together),
and external validation (109 compounds) sets as high as 89 %, 71 %, and 74 %,
respectively. We then asked if HTS results could be of value in predicting rodent
carcinogenicities. We identified 383 compounds for which data were available from
both the Berkeley Carcinogenic Potency Database and NTP-HTS studies. We found
that compounds classified by HTS as “actives” in at least one cell line were likely
to be rodent carcinogens (sensitivity 77 %); however, HTS “inactives” were far
less informative (specificity 46 %). Using chemical descriptors only, kNN QSAR
modeling resulted in the overall external prediction accuracy of 62 % for rodent
carcinogenicity. Importantly, the prediction accuracy of the model was significantly
improved (to 73 %) when chemical descriptors were augmented by the HTS data,
which were regarded as biological descriptors (Fig. 8). Thus, our studies suggested,
for the first time, that combining HTS profiles with conventional chemical descrip-
tors could considerably improve the predictive power of computational approaches
in chemical toxicology.

Using “Hybrid” Descriptors for the QSIIR Modeling of Rodent
Acute Toxicity

We used the cell viability qHTS data from NCGC as mentioned in the above
section for the same 1,408 compounds but in 13 cell lines (Xia et al. 2008).
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Besides the carcinogenicity, we asked if HTS results could be of value in predicting
rodent acute toxicity (Sedykh et al. in press). For this purpose, we have identified
690 of these compounds, for which rodent acute toxicity data (i.e., toxic or
nontoxic) was also available. The classification kNN QSAR modeling method
was applied to these compounds using either chemical descriptors alone or as a
combination of chemical and qHTS biological (hybrid) descriptors as compound
features. The external prediction accuracy of models built with chemical descriptors
only was 76 %. In contract, the prediction accuracy was significantly improved to
85 % when using hybrid descriptors. The receiver operating characteristic (ROC)
curves of conventional QSAR models and different hybrid models are shown
in Fig. 9. The sensitivities and specificities of hybrid models are clearly better
than for conventional QSAR model for predicting the same external compounds.
Furthermore, the prediction coverage increased from 76 % when using chemical
descriptors only to 93 % when qHTS biological descriptors were also included. Our
studies suggest that combining HTS profiles, especially the dose—response qHTS
results, with conventional chemical descriptors could considerably improve the
predictive power of computational approaches for rodent acute toxicity assessment.

Collaborative and Consensus Modeling of Aquatic Toxicity

We discuss below the results of a recent important study of aquatic toxicity (Zhu
et al. 2008). In our opinion, this particular study may serve as a useful example
to illustrate the complexity and power of modern QSAR modeling approaches and
highlight the importance of collaborative and consensual model development.

The combinational QSAR modeling approach has been applied to a diverse series
of organic compounds tested for aquatic toxicity in Tetrahymena pyriformis in the
same laboratory over nearly a decade (Aptula et al. 2005; Netzeva and Schultz
2005; Schultz 1999; Schultz and Netzeva 2004; Schultz et al. 2001, 2002, 2003,
2005a, 2005b). The unique aspect of this research was that it was conducted in
collaboration between six academic groups specializing in cheminformatics and
computational toxicology. The common goals for our virtual collaboratory were
to explore the relative strengths of various QSAR approaches in their ability to
develop robust and externally predictive models of this particular toxicity end
point. We have endeavored to develop the most statistically robust, validated,
and externally predictive QSAR models of aquatic toxicity. The members of our
collaboratory included scientists from the University of North Carolina at Chapel
Hill in the United States (UNC); University of Louis Pasteur (ULP) in France;
University of Insubria (UI) in Italy; University of Kalmar (UK) in Sweden; Virtual
Computational Chemistry Laboratory (VCCLAB) in Germany; and the University
of British Columbia (UBC) in Canada. Each group relied on its own QSAR
modeling approaches to develop toxicity models using the same modeling set, and
we agreed to evaluate the realistic model performance using the same external
validation set(s).
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The T. pyriformis toxicity dataset used in this study was compiled from
several publications of the Schultz group as well as from data available at the
Tetratox database Web site of (http://www.vet.utk.edu/TETRATOX/). After deleting
duplicates as well as several compounds with conflicting test results and correcting
several chemical structures in the original data sources, our final dataset included
983 unique compounds. The dataset was randomly divided into two parts: (1) the
modeling set of 644 compounds; (2) the validation set including 339 compounds.
The former set was used for model development by each participating group and
the latter set was used to estimate the external prediction power of each model as a
universal metric of model performance. In addition, when this project was already
well underway, a new dataset had become available from the most recent publication
by the Schultz group (Schultz et al. 2007). It provided us with an additional external
set to evaluate the predictive power and reliability of all QSAR models. Among
compounds reported in (Schultz et al. 2007) 110 were unique, that is, not present
among the original set of 983 compounds; thus, these 110 compounds formed the
second independent validation set for our study.

Universal Statistical Figures of Merit for All Models

Different groups have employed different techniques and (sometimes) different sta-
tistical parameters to evaluate the performance of models developed independently
for the modeling set (described below). To harmonize the results of this study,
the same standard parameters were chosen to describe each model’s performance
as applied to the modeling and external test set predictions. Thus, we have
employed Qibs (squared leave-one-out cross-validation correlation coefficient) for
the modeling set, Rﬁbs (frequently described as coefficient of determination) for the
external validations sets, and MAE (mean absolute error) for the linear correlation
between predicted (¥prq) and experimental (Yexp) data (here, Y = pIGCs); these

parameters are defined as follows:

2

Qib: =1- Z (Yexp - YLOO)Z/Z (Yexp_ < Y>exp) ®)
Y Y
2
Ribs =1- Z (Yexp - Ypred)z/z (Yexp_ < Y>exp) )
Y Y
MAE =) "|Y = Yprea| /n (10)
Y

Many other statistical characteristics can be used to evaluate model performance;
however, we restricted ourselves to these three parameters that provide minimal but
sufficient information concerning any model’s ability to reproduce both the trends
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in experimental data for the test sets as well as mean accuracy of predicting all

experimental values. The models were considered acceptable if R2, exceeded 0.5.

Consensus QSAR Models of Aquatic Toxicity; Comparison
Between Methods and Models

The objective of this study from methodological prospective was to explore the
suitability of different QSAR modeling tools for the analysis of a dataset with
an important toxicological end point. Typically, such datasets are analyzed with
one (or several) modeling techniques, with a great emphasis on the (high value
of) statistical parameters of the training set models. In this study, we went well
beyond the modeling studies reported in the original publications in several respects.
First, we have compiled all reported data on chemical toxicity against T. pyriformis
in a single large dataset and attempted to develop global QSAR models for
the entire set. Second, we have employed multiple QSAR modeling techniques
thanks to the engagement of six collaborating groups. Third, we have focused
on defining model performance criteria not only using training set data but most
importantly using external validation sets that were not used in model development
in any way (unlike any common cross-validation procedure) (Gramatica 2007).
This focus afforded us the opportunity to evaluate and compare all models using
simple and objective universal criteria of external predictive accuracy, which in
our opinion is the most important single figure of merit for a QSAR model that
is of practical significance for experimental toxicologists. Fourth, we have explored
the significance of applicability domains and the power of consensus modeling in
maximizing the accuracy of external predictivity of our models.

We believe that results of our analysis lend a strong support for our strategy.
Indeed, all models performed quite well for the training set with even the lowest 02,
among them as high as 0.72. However, there was much greater variation between
these models when looking at their (universal and objective) performance criteria as
applied to the validation sets.

Of 15 QSAR approaches used in this study, nine implemented method-specific
applicability domains. Models that did not define the AD showed a reduced
predictive accuracy for the validation set II even though they yielded reasonable
results for the validation set I. On average, the use of applicability domains improved
the performance of individual models although the improvement came at the
expense of the lower chemistry space coverage.

For the most part all models succeeded in achieving reasonable accuracy of
external prediction especially when using the AD. It then appeared natural to
bring all models together to explore the power of consensus prediction. Thus, the
consensus model was constructed by averaging all available predicted values taking
into account the applicability domain of each individual model. In this case, we
could use only 9 of 15 models that had the AD defined. Since each model had its
unique way of defining the AD, each external compound could be found within
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the AD of anywhere between one and nine models so for averaging we only used
models covering the compound. The advantage of this data treatment is that the
overall coverage of the prediction is still high because it was rare to have an external
compound outside of the ADs of all available models. The results showed that the
prediction accuracy for both the modeling set and the validation sets was the best
compared to any individual model. The same observation could be made for the
correlation coefficient R2, . The coverage of this consensus model II was 100 % for
all three data sets. This observation suggests that consensus models afford both high
space coverage and high accuracy of prediction

In summary, this study presents an example of a fruitful international collabo-
ration between researchers that use different techniques and approaches but share
general principles of QSAR model development and validation. Significantly, we
did not make any assumptions about the purported mechanisms of aquatic toxicity
yet were able to develop statistically significant models for all experimentally
tested compounds. In this regard it is relevant to cite an opinion expressed in an
earlier publication by T. Schultz that “models that accurately predict acute toxicity
without first identifying toxic mechanisms are highly desirable” (Schultz 1999).
However, the most significant single result of our studies is the demonstrated
superior performance of the consensus modeling approach when all models are
used concurrently and predictions from individual models are averaged. We have
shown that both the predictive accuracy and coverage of the final consensus QSAR
models were superior as compared to these parameters for individual models.
The consensus models appeared robust in terms of being insensitive to both
incorporating individual models with low prediction accuracy and the inclusion
or exclusion of the AD. Another important result of this study is the power of
addressing complex problems in QSAR modeling by forming a virtual collaboratory
of independent research groups leading to the formulation and empirical testing of
best modeling practices. This latter endeavor is especially critical in light of the
growing interest of regulatory agencies to developing most reliable and predictive
models for environmental risk assessment (Yang et al. 2006) and placing such
models in the public domain.

Conclusions: Emerging Chemical/Biological Data and QSAR
Research Strategies

In the past 15 years, innovative technologies that enable rapid synthesis and
high throughput screening of large libraries of compounds have been adopted in
almost all major pharmaceutical and biotech companies. As a result, there has
been a huge increase in the number of compounds available on a routine basis
to quickly screen for novel drug candidates against new targets or pathways. In
contrast, such technologies have rarely become available to the academic research
community, thus limiting its ability to conduct large-scale chemical genetics or
chemical genomics research. The NIH Molecular Libraries Roadmap Initiative
has changed this situation by forming the national Molecular Library Screening
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Centers Network (MLSCN) (Austin et al. 2004) with the results of screening assays
made publicly available via PubChem (2010). These efforts have already led to the
unprecedented growth of available databases of biologically tested compounds [cf.
our recent review where we list about 20 available databases of compounds with
known bioactivity (Oprea and Tropsha 2006)].

This growth creates new challenges for QSAR modeling such as developing
novel approaches for the analysis and visualization of large databases of screening
data, novel biologically relevant chemical diversity or similarity measures, and
novel tools for virtual screening of compound libraries to ensure high expected
hit rates. Application studies discussed in this chapter have established that QSAR
models could be used successfully as virtual screening tools to discover compounds
with the desired biological activity in chemical databases or virtual libraries (Hsieh
et al. 2008; Oloff et al. 2005; Shen et al. 2004; Tropsha 2005; Tropsha and Zheng
2001; Zhang et al. 2007). The discovery of novel bioactive chemical entities is the
primary goal of computational drug discovery, and the development of validated
and predictive QSAR models is critical to achieve this goal. Due to the significant
recent increase in publicly available datasets of biologically active compounds and
the critical need to improve the hit rate of experimental compound screening there
is a strong need in developing widely accessible and reliable computational QSAR
modeling techniques and specific end-point predictors.
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