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Abstract
Methods of computational chemistry seem to often be simply a melange of
undecipherable acronyms. Frequently, the ability to characterize methods with
respect to their quality and applied approximations or to ascribe the proper
methodology to the physicochemical property of interest is sufficient to perform
research. However, it is worth knowing the fundamental ideas underlying the
computational techniques so that one may exploit the approximations intention-
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ally and efficiently. This chapter is an introduction to quantum chemistry methods
based on the wave function search in one-electron approximation.

Introduction: What and Why?

Quantum chemistry is a branch of science originating from quantum mechanics that
focuses on investigations of chemical systems. The mathematical roots of quantum
chemistry allow it to be treated as a methodology for solving an eigenvalue equation
for operators or – even simpler – finding solutions for some differential equations.
We cannot totally escape this way of thinking, since this is how things really are.
However, a chemist will comprehend quantum chemistry more as a helping tool in
experimental work, supporting description of chemical reactions, a tool that plays a
role similar to a spectrophotometer or a chromatographic column, a tool that can
provide information about the system under consideration, and a powerful tool,
the popularization of which was achieved thanks to the fast progress of computer
power and the hard work of people who made the transformation from pure theory
to computer programs possible. Their efforts were appreciated – in 1998, the Nobel
Prize was awarded to Walter Kohn “for his development of the density functional
theory” and John Pople “for his development of computational methods.”

From the point of view of the experimentalist, the apparatus of quantum
chemistry can be perceived similarly as the NMR spectrometer. One knows that
the quality of the obtained NMR spectrum depends not only on the magnetic field
of the magnet but also on the signal-processing capabilities. To successfully use
NMR spectroscopy in experimental work, detailed knowledge about the technology
of production and preparation of the magnets and electronic equipment is not a
requisite. It is enough to keep in mind that with the given frequency one gets
corresponding accuracy and information. All the rest is simply skill in sample prepa-
ration and expertise in spectrum interpretation. For effective usage of computational
techniques of quantum chemistry, one must be aware of applied approximation to
tune the accuracy of calculations and possess knowledge of the physicochemical
phenomenon one wants to describe.

The aim of the present chapter is to provide a gentle introduction to basic
quantum chemistry methods – the methods of solving the electronic Schrödinger
equation. The chapter is intended for people starting their adventure with computa-
tional chemistry and wanting it to become the tool, not the aim itself.

When discussing quantum chemistry, we cannot totally avoid quantum mechan-
ics. However, let us use another comparison: Traveling abroad it is good to know
some basic expressions in the local language of the country you go to. It makes life
easier and gives pleasure in interpersonal contacts. Still, no one expects a tourist
to speak a language as fluently as a native speaker. Therefore, to efficiently apply
computational techniques in experimental research, one has to learn some basic
quantum mechanical terms that will help during the journey through the remainder
of this chapter.
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Quantum Mechanics for Dummies

We will begin with the basic terms of quantum mechanics. In this section, they will
be introduced in an intuitive manner, to enable understanding of the next sections’
content, even by beginners.

We consider a system of N electrons in the field produced by the potentials arising
from nuclei (the nuclei are not treated as particles consisting of nucleons but just as
a point source of the electrostatic potential). We are interested only in one particular
case:

• The probability of finding the electrons of the considered system on the infinite
distance from the nuclei is equal to zero. In other words, we want our system to
constitute the whole entirety, not breaking into separate and independent parts
(this would be the case of the interaction of two electrons with no attraction –
two negative charges would repel each other to infinity).

• The energies of this system constitute the discrete spectrum.
• We want to know only the lowest value of energy (the wider approach can be

found in the next volume of the present book).

With such limitations, we do not need to consider all of the different general
cases and can simply concentrate on the bound-state chemistry.

A central notion in quantum chemistry is a wave function. This is a function
characterizing a state of the system. Therefore, it depends on the variables that are
adequate for the given system. This means that the wave function has to depend, at
least, on spatial coordinates describing motions of the particles in the investigated
system. Moreover, the wave function depends on so-called spin variables (spin is
an additional degree of freedom included a posteriori in nonrelativistic quantum
mechanics). This spin dependency can be built into the wave function by introducing
a spin function. For instance, for the electron with a label 1, its wave function
depends on the spatial coordinates x1, y1 and z1 and is multiplied by the spin function
˛(�1) or ˇ(�1), where �1 is a spin variable. The spin functions must fulfill the
following requirements:

Z
˛� .�1/ ˛ .�1/ d�1 D

Z
ˇ� .�1/ ˇ .�1/ d�1 D 1 (1)

Z
˛� .�1/ ˇ .�1/ d�1 D

Z
ˇ� .�1/ ˛ .�1/ d�1 D 0; (2)

where the integration is carried out over the spin variable, which can be treated as the
integration variable only. Such a construction may seem to be somehow unnatural;
however, it is a convenient way of ascribing spins to the electrons without dealing
with its origins.
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In general, the wave function must depend on time to reproduce information
about the time evolution of the system. However, since we are interested only in the
ground state of the system, we can neglect the time dependency. Considering the
bound state is equivalent to imposing the condition of the square integrability of the
wave function. The integral over all variables in the full range must exist:

“
: : :

Z
f �fd� D q; (3)

where q is a finite real number. An asterisk under the integral denotes the complex
conjugate; it comes from the fact that the wave function can be complex in general.
The square-integrability condition ensures that the wave function vanishes for the
infinite values of all spatial variables and, therefore, that our molecule is kept
together. In the above expression, the integration intervals and the integration
variables are not stated explicitly. For the investigated N-electron system, the wave
function depends on the 3 N spatial variables (for each particle i, we have xi,
yi, and zi coordinates) and additionally N spin variables (� i for the particle i):

f D f .x1; y1; z1; �1; x2; y2; z2; �2; : : : ; xN ; yN ; zN ; �N / : (4)

The volume element in this 4 N-dimensional space is

d� D dV � d�; (5)

where the spatial part can be written as

dV D dx1dy1d z1dx2dy2d z2 : : : dxN dyN d zN ; (6)

and the spin part is

d� D d�1d�2 : : : d�N : (7)

The spatial variables change from �1 to 1 and spin variables can take
allowed values. One can see that writing all of the integrals, variables, and
volume elements explicitly takes time and a lot of paper, even for relatively
small systems. Therefore, one usually keeps them in mind, not writing them
down.

The wave function contains all of the information about the state of the system.
In order to extract it, operators are applied. An operator can be understood by an
analogy to a function. The function ascribes a number to a number and the operator
ascribes a function to another function. In other words, the operator is a recipe for
how to obtain one function from another:

bAf D g: (8)
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We will denote operators by hats above the symbol to distinguish them from
functions and numbers. One of the particularly interesting cases is when the function
g is proportional to the function f,

g D af; (9)

where a is a number. Then Eq. 8 takes the form

bAf D af: (10)

Equation 10 is called an eigenvalue equation of the operator Â. The function f
fulfilling this equation is called an eigenfunction and a is an eigenvalue of the
operator Â. The Schrödinger equation

bH‰ D E‰ (11)

is a typical eigenvalue equation in which the Hamilton operator bH extracts the
information about the energy E of the system from the wave function ‰.

Like in the case of the wave function, we will not consider operators in general.
Let us concentrate on the Hamilton operator and its properties to simplify our
discussion. We need our operators ascribed to observables (Hamiltonian among
others) to satisfy the following requirements:

• Linearity – the operators must fulfill the condition

bA .˛f C ˇg/ D ˛bAf C ˇbAg; (12)

where now ˛ and ˇ are numbers. This seems simple and obvious; however, it
is not the property of all operators. For instance, the square root is not a linear
operator, since the square root of the sum is not equal to the sum of the square
roots.

• Real eigenvalues – only real values can be measured in a laboratory.
For these reasons, we will be interested in so-called Hermitian operators that

can be defined by the relation

“
: : :

Z
f �

1

�bAf2

�
d� D

“
: : :

Z
f2

�bAf1

��

d�: (13)

All the functions, variables, and integration intervals remain the same as in Eq. 3.
Writing of all these things in the expressions was already troublesome enough, and
things become even more complicated when operators appear. In order to make life
easier, Dirac notation can be applied. In this notation Eq. 13 has the form

D
f1

ˇ̌
ˇbAf2

E
D
DbAf1

ˇ̌
ˇf2

E
; (14)
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where the left-hand side can be equivalently written as
D
f1

ˇ̌
ˇbA
ˇ̌
ˇf2

E
; and the integral

of Eq. 3 becomes simply

D
f
ˇ̌
ˇf
E

D q: (15)

In this very convenient notation, it is also assumed that the integration intervals and
variables flow from the context.

Let us look at Hermitian operators more carefully, considering them in the
example of Hamiltonian. It has already been mentioned that such operators have
real eigenvalues. Furthermore, the eigenfunctions of the Hermitian operator that
correspond to different eigenvalues are orthogonal. In other words, for

bHf1 D E1f1 and bHf2 D E2f2; (16)

where .E1 ¤ E2/ ; one has

D
f1

ˇ̌
ˇf2

E
D
D
f2

ˇ̌
ˇf1

E
D 0: (17)

This will be a very useful property, since it will cause various terms in complicated
expressions to vanish. In the case of degeneration, or, in other words, when one of
the eigenvalues corresponds to two or more eigenfunctions, the eigenfunctions f1
and f2 can be orthogonalized.

It is worth considering the integral

D
f1

ˇ̌
ˇbH
ˇ̌
ˇf1

E
: (18)

Since f1 is the eigenfunction of bH with the eigenvalue E1, it is obvious that

D
f1

ˇ̌
ˇbH
ˇ̌
ˇf1

E
D
D
f1

ˇ̌
ˇE1f1

E
D E1

D
f1

ˇ̌
ˇf1

E
: (19)

It would be certainly more convenient if the result was a single number – the

eigenvalue E1. This would be the case if
D
f1

ˇ̌
ˇf1

E
D 1 or if we say the function

f1 was normalized to unity. It would be consistent with the interpretation of the

integral
D
f1

ˇ̌
ˇf1

E
as the probability of finding the system in the whole space – it

should be surely equal 1. This is a very handy requirement. Any function that does
not possess this property can be normalized by multiplying by the normalization
factor N D 1=

p
hf1jf1i. Then, the new function Qf1 will be given as

Qf1 D Nf1: (20)
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This new function Qf1 is also an eigenfunction of the Hamiltonian, since f1 was only

divided by the number

rD
f1

ˇ̌
ˇf1

E
and Hamiltonian is linear:

bH Qf1 D bHNf1 D N bHf1 D NEf1 D ENf1 D E Qf1: (21)

In the case of unnormalized functions, the expression for the eigenvalue E1 can be
obtained from Eq. 19:

E1 D

D
f1

ˇ̌
ˇbH
ˇ̌
ˇf1

E
D
f1

ˇ̌
ˇf1

E : (22)

However, many of the applied functions are not the eigenfunctions of the Hamilto-
nian. Therefore, let us investigate another interesting integral,

D
g
ˇ̌
ˇbH
ˇ̌
ˇg
E
; (23)

where g is not an eigenfunction of bH . In order to calculate this integral, an alternate
important property of the Hermitian operators needs to be exploited: the fact that
their eigenfunctions constitute a complete basis set. Each function depending on the
same variables as the eigenfunctions can be expressed as the linear combination of
the basis functions. Now, this concept seems to be hard-core mathematics; however,
anybody using computational techniques knows well that the two things one must
input to the ab initio program are the method and the basis set. Hence, let us make
a break from the general considerations of operators and abstract space functions
and concentrate for a while on the basis set concept in the example of simple
trigonometric functions.

In a calculus course, one learns how to express a function using a set of other
functions. For example, consider sinx function and expand it in the Taylor series
around 0:

sin x D

1X
iD1

.�1/i�1

.2i � 1/Š
x2i�1 D x �

x3

3Š
C

x5

5Š
� : : : : (24)

In Eq. 24, sinx function is expressed in the basis set of monomials:

sin x D

1X
kD1

ckxk; (25)

where ck are the expansion coefficients that need to be determined. In our case it is
simple, since ck result directly from the Taylor expansion and are equal:
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Table 1 Taylor expansion of
x function and standard
deviation for various
expansion lengths

n Fn �n

1 x 3.93 � 10�1

3 x � 1
6
x3 4.05 � 10�2

5 x � 1
6
x3 C 1

120
x5 2.08 � 10�3

7 x � 1
6
x3 C 1

120
x5 � 1

5;040
x7 6.39 � 10�5

ck D

(
.�1/.k�1/=2

kŠ
for odd k;

0 for even k:
(26)

The summation in Eqs. 24 and 25 goes from 1 to 1. In practice, finite and possibly
short expansions are applied:

Fn.x/ D

nX
iD1

ci x
i : (27)

This truncation of the series introduces an approximation to our function.
Let us analyze the x function in the range x 2 h� �

2 I �
2 i : The standard deviation

works well as the accuracy measure:

�n

sZ �
2

� �
2

.sin x � Fn.x//2dx: (28)

Table 1 summarizes data for small n values. Increasing the number of expansion
terms causes a decrease of the standard deviation values and more accurate repre-
sentation of the original x function. Given the required accuracy of the calculation,
the necessary value length of the expansion, n, can be found.

The following question arises: Why use Taylor expansion instead of x function
itself, if one needs to worry about the expansion accuracy? The answer is straightfor-
ward: simplifications and savings. It is much easier to operate on the polynomials
than on the trigonometric functions (for instance, the integral

R �
xi
�2

dx is much
easier to handle than

R
sin2xdx). Moreover, the required accuracy can often be

obtained with a relatively short expansion.
Let us now make the considerations more general. As was stated before, the

set of eigenfunctions of the Hermitian operator bH is complete and orthonormal –
functions are orthogonal and normalized:

8i;j

D
fi

ˇ̌
ˇfi

E
D ıij ; (29)

where ıij is a Kronecker symbol that takes value 1 for i D j and 0 otherwise.
The basis set completeness means that each function depending on the same set
of variables can be expressed by the basis functions:
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g D

1X
iD1

ci fi ; (30)

where coefficients ci need to be found. Knowing the normalized g function makes
this task simple, because of the orthonormality of the ffig set, the coefficients will
be equal:

ci D
D
fi

ˇ̌
ˇg
E
; (31)

since

D
fi

ˇ̌
ˇg
E

D

1X
j D1

ci

D
fi

ˇ̌
ˇfi

E
D

1X
j D1

cj ıij D ci : (32)

(Only one term for i D j, ci, remains; all other vanish for the Kronecker delta equals
zero if i ¤ j .) Similarly,

D
g
ˇ̌
ˇg
E

D

1X
j D1

c�
j cj : (33)

However, things are not that easy, since we usually apply the expansion (Eq. 30)
when we do not know the g function. Thus, the integrals (Eqs. 31 and 33) should be
perceived rather as the interpretation of the ci coefficients than the direct recipe for
the calculations. From Eq. 30, the g function can be treated as the linear combination
of the fi functions. Moreover (see Eq. 33), the probability that a system described
by the function g is in the state fj is given by c*

j cj.
Now let us consider the expression

D
g
ˇ̌
ˇbH
ˇ̌
ˇg
E

�
DbH E

g
; (34)

when g is not the Hamiltonian eigenfunction. Using the expansion Eq. 30 and the
fact that fi are the Hamiltonian eigenfunctions (Eq. 16), one obtains

D
g
ˇ̌
ˇbH
ˇ̌
ˇg
E

D

1X
j D1

c�
j cj Ej : (35)

The above integral is called an average (expectation) value, and Eq. 35 for
Hamiltonian carries the information about the average energy of the system in the
state described by the g function. Looking closer at Eq. 35 shows that this average
energy is simply a weighted average of all possible Ej energies of the system. The
weights are determined by the c*

j cj products – the probability of finding the system
in the fj state. It should be noticed that we used the linearity of the Hamiltonian
operator to achieve this result.
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Conclusion? Very optimistic: We can say something about the sought energy
value not knowing the eigenfunctions of the operator of interest, since for calcu-
lations of Eq. 35, we do not need fj functions. Strange? Not at all, if we recall
some linear algebra: Using three basis vectors, we can describe each and every
point in the 3D space. Likewise, the wave function can be perceived as a vector,

the Hermitian operator as the symmetric transformation matrix, an integral
D
f
ˇ̌
ˇg
E

as the dot product, orthogonality of functions as orthogonality of vectors, and
normalization as dividing the vector components by its length.

Now, when the “linear algebra” term has already appeared, let us see how it
is applied for solving the eigenequation. Almost all calculations are performed by
applying the basis functions. This means that the unknown function ‰ describing
the investigated system is expressed in the basis of known functions �i (see Eq. 30):

‰ �

nX
iD1

ci �i D ˆ; (36)

where ‰ is the eigenfunction of the Hamiltonian corresponding to a given eigen-
value E (Eq. 11). The task is to find such ci coefficients that the function ˆ would be
the best approximation to ‰. Since ˆ is an approximation to the wave function, the
corresponding energy will also be only approximated. Let us call the approximation
Eˆ. Basis functions �i are not the Hamiltonian eigenfunctions; therefore, to estimate
the energy, an average value must be calculated. Therefore, substituting Eq. 36 for
Eq. 11 and multiplying by ‰� D h†i ci �i j on both sides gives1

LHS D
DX

i

ci �i

ˇ̌
ˇbH
ˇ̌
ˇX

j

ci �j

E
D
X

i

X
j

c�
i cj

D
�i

ˇ̌
ˇbH
ˇ̌
ˇ�j

E
; (37)

RHS D Eˆ

X
i

X
j

c�
j cj h�i j�j

E
: (38)

1Here, different subscripts appear on the both sides of the integral. The sum does not depend on
the name of the summation index; thus, any subscript can be applied. However, one should not
apply the same index on both sides of the integral, since it can cause the erroneous omission of the
off-diagonal terms. Compare the overlap integral

D
‰

ˇ̌
ˇ‰
E

D

*X
i

ci �i

ˇ̌
ˇ̌
ˇ̌
X

j

cj �j

+
D hc1�1 C c2�2 C c3�3 C : : : jc1�1 C c2�2 C c3�3 C : : : i

D c�

1 c1 h�1 j�1 i C c�

1 c2 h�1 j�2 i C c�

1 c3 h�1 j�3 i C : : :

The explicit writing of all terms shows that not only the integrals h�ij�ii with the same
function on both sides are present, but also the contributions h�ij�ji with i ¤ j . Therefore, the
diversification of the subscripts prevents mistakes.
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In order to further simplify the notation, let us denote
D
�i

ˇ̌
ˇbH
ˇ̌
ˇ�j

E
by Hij and

D
�i

ˇ̌
ˇ�j

E
by Sij. Then,

X
i

X
j

c�
j cj Hij D Eˆ

X
i

X
j

c�
i cj Sij : (39)

Equivalently, in the matrix form

Hc D ScEˆ; (40)

where H is the Hamiltonian matrix with the elements Hij, S is called the overlap
matrix and is built of the overlap integrals Sij, and c denotes the vector of the ci

coefficients. The basis sets applied in practice are usually non-orthogonal, which
causes the off-diagonal terms in the S matrix to not vanish.

Such a method of finding approximate eigenvalues and eigenvectors of the
Hamiltonian is known as the Ritz method and is frequently applied in quantum
chemistry.

This simple introduction of basic terms of quantum mechanics is obviously far
from complete. One can notice the lack of further discussion of the degeneration,
the continuum spectrum, and many other topics. For these we encourage the reader
to dive into the following excellent books on quantum mechanics and chemistry:
Atkins and Friedman (2005), Griffiths (2004), Levine (2008), Lowe and Peterson
(2005), McQuarrie and Simon (1997), Piela (2007), Ratner and Schatz (2000), and
Szabo and Ostlund (1996).

On the Way to Quantum Chemistry

For the sake of simplification, we assume that the energy of the ground state of
our system differs from other energy values. This allows one to avoid embroilment
in technical details that are unnecessary at this point. Our system is described by
the wave function ‰ fulfilling the Schrödinger Eq. 11. It is important to notice
that this eigenvalue equation can be solved exactly only for hydrogen atoms. Any
more complicated system requires approximate techniques. In order to explain this
complication, let us look into the Hamilton operator. For the system of N electrons
and M nuclei, the full Hamiltonian is a sum of the following terms:

• Kinetic energy of electrons, bT e

• Kinetic energy of nuclei, bT n

• Energy of interactions between electrons, bV ee

• Energy of interactions between nuclei, bV nn

• Energy of interactions between a nucleus and an electron, bV ne
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In the atomic units, these terms have the following form:

bT e D �
1

2

NX
iD1

52
ri

(41)

bT n D �

MX
iD1

1

2mi

52
Ri

(42)

bV ee D

NX
iD1

NX
j >i

1

rij

(43)

bV nn D

MX
iD1

MX
j >i

Zi Zj

Rij

(44)

bV ne D �

NX
iD1

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌ (45)

where mi is the mass of the nucleus i, Zi stands for the nuclear charge, and rij

denotes the distance between the electrons i and j, rij D
ˇ̌
ri � rj

ˇ̌
. Likewise,

Rij refers to the internuclear distance, Rij D
ˇ̌
Ri � Rj

ˇ̌
. The presence of the

mutual distances between the particles causes a serious problem when solving the
Schrodinger equation; it does not allow one to decouple the equations.

Fortunately, from the chemist’s point of view, such a Hamiltonian is not very
useful. The chemist is not interested in each and every bit of information one can
get about any N-electron M-nuclei system; however, she or he is focused on the
given molecule, its conformations, interactions with the environment, and properties
(spectroscopic, magnetic, electric, and so on). What makes quantum mechanics a
valuable tool for chemists is the Born–Oppenheimer approximation, discussed in
detail in the previous chapter of this volume. Let us briefly summarize it to maintain
consistent notation throughout the chapter.

The chemist is concerned with the relative positions of the nuclei in the molecule
and with the internal energy, but not with the motions of the molecule as a whole.
This motion can be excluded from our consideration, for example, by elimination of
the center-of-mass translation. Moreover, the intermolecular (electrostatic) forces
acting on electrons and nuclei would be similar. This would cause much slower
internal motion of the heavy nuclei in comparison to light electrons. For this
reason, the approximate description of electron motion with parametric dependence
on the static positions of nuclei is justified. Such reasoning leads to adiabatic
approximation and finally to Born–Oppenheimer approximation.

According to this approximation, the Hamiltonian can be written as

bH D bT n C bH e C bV nn; (46)
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where bT n now has a meaning of nuclear kinetic energy of the molecule for which
the center of mass is stopped (however, there are still oscillations and rotations), and

bH e D bT e C bV ee C bV en (47)

is called an electronic Hamiltonian, and it represents the energy of the system after
omitting the nuclear kinetic energy term and nuclear repulsion. One can now focus
on the solution of the equation of the form

hbT n .R/ C bH e .rI R/ C bV nn .R/
i

‰ .r; R/ D E‰ .r; R/ : (48)

Here, the dependence on the electronic spatial variables r D .x1; y1; z1; : : : ; xN ;

yN ; zN / and the nuclear spatial variables R D .X1; Y1; Z1; : : : ; XM ; YM ; ZM /

is written explicitly. The semicolon sign in the bH e term denotes the parametric
dependence – for various R the various electronic equations are obtained.

With such a Hamiltonian, it seems reliable to distinguish also the nuclear f (R)
and electronic ‰e(r; R) part in the wave function

‰ .r; R/ � ‰e .rI R/ f .R/ ; (49)

which leads to a significant reduction of the problem.
Now Eq. 48 can be separated into three equations:

bH e .rI R/ ‰e .rI R/ D Ee .R/ ‰e .rI R/ (50)

�bH e .rI R/ C bV nn .R/
�

‰e .rI R/ D U .R/ ‰e .rI R/ (51)

�bT n .R/ C bU .R/
�

f .R/ D Ef .R/ (52)

The first two describe electronic motion for a given position of nuclei. The
difference between Ee(R) and U(R) is that in U(R) nuclear repulsion energy is
taken into account. These equations are milestones in our considerations for two
reasons. First, since we are now talking about “fixed positions of the nuclei,” finally
we have got molecules instead of an unspecified system containing some electrons
and some nuclei. The second is hidden in Eq. 52: Electronic energy and nuclear
repulsion energy constitute the potential, in which nuclei are moving. That is why
the proper description of electronic movement in a molecule is so important: The
electrons glue the whole molecule together.

Our attention in the rest of the chapter will be focused only on Eq. 50; hence, to
simplify notation, all the subscripts denoting the electronic case will be omitted:

bH e ! bH (53)
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‰e ! ‰ (54)

bH e‰e .r I R/ D Ee‰e .r I R/ ! bH‰ D E‰ (55)

The electronic wave function ‰ satisfies all the requirements discussed in the
previous sections, depends on the coordinates of N electrons, and additionally
must be antisymmetric with respect to the exchange of coordinates of two
electrons.2

It should be noted that the analytic solution of Eq. 50 is not known even for
the smallest molecule, i.e., H2. Therefore, the approximate techniques must be
applied to extract the necessary information about molecules of interest. Quantum
mechanics provides two tools:

• Variational principle
• Perturbation theory

Variational Principle: An Indicator

The variational principle allows one to judge the quality of the obtained solutions.
It can be formulated as follows: For the arbitrary trial function � that is square-
integrable, differentiable, and antisymmetric and depends on the same set of
variables as a sought ground-state ‰0 function, we have

E0 �

D
�
ˇ̌
ˇbH
ˇ̌
ˇ�
E

D
�
ˇ̌
ˇ�
E ; (56)

where E0 is the ground-state energy corresponding to ‰0 (Eq. 50). The important
consequence of the variational principle is that to estimate the energy of the system,
one does not need to solve the eigenequation (this we already know; see Eq. 35), and
moreover – what is crucial – the estimated energy value will always not be lower
than the exact eigenvalue E0.

The proof of the inequality (Eq. 56) is straightforward and can be derived from
Eqs. 30 and 35. The function � that satisfies the above requirements can be expanded
on the basis of the Hamiltonian eigenfunctions:

� D

1X
iD0

ci fi ; (57)

2In order to explain the antisymmetry requirement, we have to refer again to theory that is beyond
the scope of the present chapter. Let us simply state here that wave functions must be antisymmetric
without belaboring the point. This will mean that the exchange of the coordinates of the two
electrons causes the wave function to change the sign: ‰ .�1; �2/ D �‰ .�2; �1/ :
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where fi fulfill the eigenproblem bHfi D Ei fi . Thus,

D
�
ˇ̌
ˇbH
ˇ̌
ˇ�
E

D
�
ˇ̌
ˇ�
E D

X1

iD0
c�

i ci EiX1

iD0
c�

i ci

�

X1

iD0
c�

i ci E0X1

iD0
c�

i ci

D E0; (58)

with the assumption that E0 is the lowest of all Hamiltonian eigenvalues (Atkins
and Friedman 2005; Levine 2008; Lowe and Peterson 2005; McQuarrie and Simon
1997; Piela 2007; Szabo and Ostlund 1996).

Perturbation Calculus: The Art of Estimation

Due to the variational principle that is satisfied for the electronic Hamiltonian, the
group of methods of searching for parameters optimizing the energy value can be
constructed. The way of verification of the given wave function is the corresponding
energy value: The lower, the better. Besides this “quality control,” the variational
principle does not give the prescription for the choice of the trial wave functions.
Here comes the perturbation calculus – the method frequently applied in physics for
the estimation of the functions or values on the basis of partial knowledge about
the solutions of the investigated problem. We will consider here the Rayleigh–
Schrödinger variant of the perturbation calculus (Atkins and Friedman 2005; Levine
2008; Lowe and Peterson 2005; McQuarrie and Simon 1997; Piela 2007; Ratner and
Schatz 2000).

Let us assume that the total electronic Hamiltonian of the investigated system
can be divided into

bH D bH 0
C bH 1

; (59)

in such a fashion that we know the exact solutions of

bH 0
‰

.0/

k D E
.0/

k ‰
.0/

k ; (60)

where the subscript k enumerates the eigenvalues of the bH 0 operator in such a way
that E(0)

0 is the lowest energy. Now, one can say that the operator bH describes the
system for which bH 0 is an unperturbed operator and bH 1 denotes a perturbation.
We can assume that if the change in the system represented by bH 1 is minor, then
the functions ‰

(0)
k would be a good approximation to ‰k. Considering bH 0, one

postulates its Hermicity and that its eigenvalues are not degenerate (in our case,
for the ground state at least E(0)

0 must not be equal to any other eigenvalue). This
condition will become clear in a moment.

Knowing only the unperturbed solutions (Eq. 60), we would like to say some-
thing more about the ground-state energy of the investigated system. Nothing is
easier – we can calculate the average value of the full electronic Hamiltonian with
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the ‰
(0)
0 function. The variational principle states that the resulting energy will be

not lower than the exact energy:

E0 �
D
‰

.0/
0

ˇ̌
ˇbH 0

C bH 1
ˇ̌
ˇ‰.0/

0

E
D E

.0/
0 C E

.1/
0 : (61)

The term modifying E(0)
0 is simply

E
.1/
0 D

D
‰

.0/
0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E
: (62)

So far, the only new thing is the manner of partitioning the total energy into the
energy of the unperturbed system and the corrections (where E(1)

0 is not the only
term):

E0 D E
.0/
0 C E

.1/
0 C E

.2/
0 C :::: (63)

Likewise, the wave function can be written as

‰0 D ‰
.0/
0 C ‰

.1/
0 C ‰

.2/
0 C : : : ; (64)

where ‰
(1)
0 , ‰

(2)
0 and so forth are the corrections to the wave function of the

unperturbed system ‰
(0)
0 . Now, the electronic Schrödinger Eq. 50 becomes

�bH 0
C bH 1

� �
‰

.0/
0 C ‰

.1/
0 C ‰

.2/
0 C : : :

�

D
�
E

.0/
0 C E

.1/
0 C E

.2/
0 C : : :

� �
‰

.0/
0 C ‰

.1/
0 C ‰

.2/
0 C : : :

�
:

(65)

Introducing the expansions (Eqs. 63 and 64) does not increase our knowledge
about the energy or the wave function; it is only a different way of expressing the
unknowns by other unknowns. However, now we have a starting point for further
investigations.

The comparison of the terms on the left- and right-hand side of the above
expression is instructive. Let us regard as similar the terms with the same sum of
the superscripts (so-called perturbation order, by analogy to the multiplication and
ordering of polynomials). Simple multiplication in Eq. 65 and directing the terms of
the same order to separate equations gives

bH 0
‰

.0/
0 D E

.0/
0 ‰

.0/
0 ; (66)

bH 0
‰

.1/
0 C bH 1

‰
.0/
0 D E

.0/
0 ‰

.1/
0 C E

.1/
0 ‰

.0/
0 ; (67)

bH 0
‰

.2/
0 C bH 1

‰
.1/
0 D E

.0/
0 ‰

.2/
0 C E

.1/
0 ‰

.1/
0 C E

.2/
0 ‰

.0/
0 :

:::
(68)
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These equations link the corrections to the wave function and to the energy. Before
detailed investigation of the subsequent corrections, one more thing should be
underlined. Up to now, the function ‰0 is not normalized; only ‰

(0)
k are normalized.

Until the corrections to ‰0 were found, we would not be able to normalize it. We can
only write the normalization constant as N D 1p

h‰0j‰0i
: However, it is not necessary

at this moment. Now the intermediate normalization condition is more useful:D
‰

.0/
0

ˇ̌
ˇ‰0

E
D 1: (69)

Such a concept is based on the information that the eigenfunctions of bH 0 form an
orthonormal complete set of functions (that is one of the reasons why the Hermicity
of bH 0 was required) and they can be applied to express any other function, for
instance, ‰0 as

‰0 D

1X
kD0

ck‰
.0/

k C

1X
k¤0

ck‰
.0/

k : (70)

In this linear combination, the function ‰
(0)
0 has a distinguished meaning .c0 D 1/;

this is the approximation of the wave function of the considered system. Therefore,
one can require that ‰

(0)
0 does not have a contribution to the higher corrections:

‰0
(1), ‰0

(2), and so on:

1X
k¤0

ck‰
.0/

k D ‰
.1/
0 C ‰

.2/
0 C :::: (71)

Here, the benefits from the intermediate normalization are obvious: The function
‰

(0)
0 is orthogonal to each of the corrections (or, in other words, the corrections are

defined in such a way that they are orthogonal to ‰
(0)
0 ).

Therefore, there is an additional set of equations to be satisfied:
D
‰

.0/
0

ˇ̌
ˇ‰.n/

0

E
D ı0n; (72)

where the superscript n denotes the nth-order correction to the ground-state wave
function ‰0. Now we can go back to Eqs. 66, 67, and 68 and extract the corrections
to energy. For this purpose, each of the equations must be multiplied from the left-
hand side by ‰

(0)
0 and integrated:

E
.0/
0 D

D
‰

.0/
0

ˇ̌
ˇbH 0

ˇ̌
ˇ‰.0/

0

E
; (73)

E
.1/
0 D

D
‰

.0/
0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E
; (74)

E
.2/
0 D

D
‰

.0/
0

ˇ̌
ˇbH
ˇ̌
ˇ‰.1/

0

E
;

::: (75)
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The integrals
D
‰

.0/
0

ˇ̌
ˇbH 0

ˇ̌
ˇ‰.n/

0

E
vanish, since

D
‰

.0/
0

ˇ̌
ˇbH 0

ˇ̌
ˇ‰.n/

0

E
D
DbH 0

‰
.0/
0

ˇ̌
ˇ‰.n/

0

E
D E

.0/
0

D
‰

.0/
0

ˇ̌
ˇ‰.n/

0

E
D 0: (76)

Thus, obtaining the energy corrections of any order is straightforward. The general
expression for the nth-order correction can be written as

E
.n/
0 D

D
‰

.0/
0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.n�1/

0

E
for n > 1: (77)

The problem is that to obtain the corrections to the energy in the second or higher
orders, the corrections to the wave function are necessary. Then, let us try to find
‰

(1)
0 . This function can be expressed as the linear combination of the functions from

the orthonormal set f‰
(0)
k g for k ¤ 0:

‰
.1/
0 D

1X
k¤0

c
.1/

k ‰
.0/

k ; (78)

where c(1)
k are the expansion coefficients in the first-order correction. Again, the

whole thing reduces to finding the coefficients ck. Substituting Eq. 78 to Eq. 67
gives

�bH 0
� E

.0/
0

� 1X
k¤0

c
.1/

k ‰
.0/

k D
�
E

.1/
0 � bH 1

�
‰

.0/
0 : (79)

Integrating this equation with the ‰
(0)
l function leads to

LHS D

*
‰

.0/

l

ˇ̌
ˇbH 0

� E
.0/
0

ˇ̌
ˇ

1X
k¤0

ck‰
.0/

k

+
D

1X
k¤0

ck

D
‰

.0/

l

ˇ̌
ˇbH 0

� E
.0/
0

ˇ̌
ˇ‰.0/

k

E

D

1X
k¤0

ck

�
E

.0/

l � E
.0/
0

� D
‰

.0/

l

ˇ̌
ˇ‰.0/

k

E
D

1X
k¤0

ck

�
E

.0/

l � E
.0/
0

�
ılk

D cl

�
E

.0/

l � E
.0/
0

�
(80)

and

RHS D
D
‰

.0/

l

ˇ̌
ˇE.1/

0 � bH 1
ˇ̌
ˇ‰.0/

0

E
D E

.1/
0

D
‰

.0/

l

ˇ̌
ˇ‰.0/

0

E
�
D
‰

.0/

l

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E

D �
D
‰

.0/

l

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E
:

(81)
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Altogether, these allow one to write the coefficients of the expansion (Eq. 78) as

cl D

D
‰

.0/

l

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E

E
.0/
0 � E

.0/

l

: (82)

Hence, the first correction to the wave function is already known:

‰
.1/
0 D

1X
k¤0

D
‰

.0/

k

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E

E
.0/
0 � E

.0/

k

‰
.0/

k ; (83)

and, thereby, the second-order correction to the energy can be calculated as

E
.2/
0 D

1X
k¤0

D
‰

.0/

k

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

E

E
.0/
0 � E

.0/

k

D
‰

.0/
0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

k

E
: (84)

This is also equivalently written as

E
.2/
0 D

1X
k¤0

ˇ̌
ˇ
D
‰

.0/

k

ˇ̌
ˇbH 1

ˇ̌
ˇ‰.0/

0

Eˇ̌
ˇ2

E
.0/
0 � E

.0/

k

: (85)

The energy difference in the denominator of the above expression cannot be equal
to zero, and for this reason the non-degenerated ground state was assumed. The
higher-order corrections are sought in a similar manner, which just requires more
operations.

One of the interesting issues is the problem of variationality of the perturbation
calculus built upon the variational Hamiltonian. This is, however, a sophisticated
problem for advanced readers and will not be discussed here. It should be added, in
summary, that the manner of partitioning of the Hamilton operator was arbitrary.
The only prerequisites were the Hermitian character of the operators (for the
eigenfunctions to form the orthonormal set) and the non-degenerated ground-state
eigenenergy and nothing more. One should also remember that, in practice, even
solving the unperturbed problem cannot be performed exactly and the approx-
imations must be applied. The consequence could be the loss of accuracy for
higher-order corrections. Moreover, good convergence of the perturbation expansion
can be expected when the consecutive corrections are small in comparison to the
total estimated value. However, in such a case, the low orders of the series would
reproduce the sought value with relatively good accuracy. Thus, application of the
low orders of perturbation calculus is highly recommended.



142 D. Kędziera and A. Kaczmarek-Kedziera

One-Electron Approximation: Describe One and Say Something
About All

Equipped with general knowledge about the tools for the Schrödinger equation
solution, one can move to many-electron systems.

The electronic Hamiltonian for any many-electron system in atomic units has the
following form (compare Eqs. 41, 42, 43, 44, and 45):

bH D �
1

2

NX
iD1

�ri C

NX
iD1

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌ C

NX
iD1

NX
j DiC1

1ˇ̌
ri � rj

ˇ̌ : (86)

Let us look more closely. In the first term, we sum up over the number of electrons
N; in the second term, the summations run over the number of electrons N and
number of nuclei M; and the third term contains the double sum over the number of
electrons N. Thus, one can simplify the notation of the first two terms:

�
1

2

NX
iD1

�ri C

NX
iD1

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌ D

NX
iD1

0
@�

1

2
�ri C

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌
1
A: (87)

Now, denoting the term in parenthesis bybh(i),

bh.i/ D �
1

2
�ri C

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌ ; (88)

we get the part of the Hamiltonian depending only on the coordinates of one electron
i (and nuclear coordinates, but it does not bother us). Hence, the total electronic
Hamiltonian (Eq. 86) can be rewritten as the sum of one-electron and two-electron
contributions:

bH D

NX
iD1

bh.i/ C

NX
iD1

NX
j DiC1

bg .i; j /; (89)

where we introduced a symbol:

bg .i; j / D
1ˇ̌

ri � rj

ˇ̌ : (90)

It should be noticed that each of the one-electron Hamiltonians bh(i) describes a
single electron in the field of some potentials. Therefore, the exact solutions of the
eigenvalue problem for these one-electron operators are available. The problem lies
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in the ĝ(i, j) operator that couples two electrons together: It is not possible to separate
their coordinates exactly.

All electronic Hamiltonians have the same general form; they differ only in the
number of electrons N and the nuclear potential hidden in bh(i). One can choose
any possible chemical compounds and try to write the corresponding equations;
however, one would soon note the similarity of all of them. Therefore, we will
not invest time in describing the procedure for a polypeptide or a nanotube, but
for simplicity we will start from the two-electron helium atom (the simplest many-
electron system) and later try to generalize the considerations. For the helium atom:

• N D 2� two electrons
• M D 1� one nucleus

The generalization of the helium discussion into the larger (N-electron) systems
should be straightforward:

bh.1/ Cbh.2/ D

2X
iD1

bh.i/ !

NX
iD1

bh.i/; (91)

bg .1; 2/ D

2X
iD1

2X
j DiC1

bg .i; j / !

NX
iD1

NX
j DiC1

bg .i; j /; (92)

and finally

bh.i/ D �
1

2
�ri C

Z1

jri � R1j
! �

1

2
�ri C

MX
j D1

Zjˇ̌
ri � Rj

ˇ̌ : (93)

Recall that the exact solutions of the one-electron problem are known, and the task
is to solve the full problem. The ideas of the perturbation theory were explained in
the previous section. Now it is the time to apply the knowledge. The one-electron
part can be treated as the unperturbed Hamiltonian and the rest as the perturbation:

bH 0
Dbh.1/ Cbh.2/; bH 1

Dbg .1; 2/ ; (94)

where the normalized solutions for the one-electron part are known:

bh.1/�i .1/ D –i �i .1/; (95)

bh.2/�j .2/ D –j �j .2/: (96)

These functions require more attention. Although the electronic Hamiltonian – and
thereby the one-electron operators – do not act on the spin variables, the wave
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functions �k must carry on the spin dependence. Therefore, the function �k(l) is a
product of the spatial part depending on the three spatial coordinates of the electron l
and on the spin part and is called a spin-orbital. For simplicity, the set of coordinates
� l is written as a label of the electron, i.e., l. Such convention will be applied from
now on, with an exception where the � l labeling is really needed.

If an operator can be written as a sum of contributions acting on different
variables, its eigenfunction takes a form of the product of the eigenfunctions of the
subsequent operators in the summation. In the case of the helium atom, where bH 0

is a sum ofbh(1) andbh(2), the wave function ‰(1, 2) can be denoted as the product
of one-electron functions:

‰ .1; 2/ D �i .1/�j .2/: (97)

The eigenproblem for such a function gives the eigenvalue that is simply the sum of
the one-electron eigenvalues:

hbh.1/ Cbh.2/
i

�i .1/�j .2/ Dbh.1/�i .1/�j .2/ Cbh.2/�i .1/�j .2/

D
hbh.1/�i .1/

i
�j .2/ C

hbh.2/�j .2/
i

�i .1/

D Œ–i �i .1/� �j .2/ C
�
–j �j .2/

�
�i .1/

D
�
–i C –j

�
�i .1/�j .2/:

(98)

However, here the antisymmetry requirement should also be taken into account. The
many-electron function must change the sign with respect to the exchange of labels
of any two electrons:

‰ .1; 2/ D �‰ .2; 1/ : (99)

The product (Eq. 97) is not antisymmetric; the interchange of the electron labels
leads to

‰ .2; 1/ D �i .2/�j .1/ ¤ �‰ .1; 2/ ; (100)

and the result is a function different from the original ‰(1, 2). But another function,

‰ .1; 2/ �
�
�i .1/�j .2/ � �i .2/�j .1/

�
; (101)

satisfies the antisymmetry condition.
Moreover, the wave function ‰(1, 2) has to be normalized. This can be achieved

by calculating the following (overlap) integral:
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D
‰ .1; 2/

ˇ̌
ˇ‰ .1; 2/

E
D
D
N
�
�i .1/�j .2/��j .1/�i .2/

� ˇ̌ˇN �
�i .1/�j .2/��j .1/�i .2/

�E

D N 2
� ˝

�i .1/�j .2/
ˇ̌
�i .1/�j .2/

˛
�
˝
�i .1/�j .2/

ˇ̌
�j .1/�i .2/

˛

�
˝
�j .1/�i .2/

ˇ̌
�i .1/�j .2/

˛
C
˝
�j .1/�i .2/

ˇ̌
�j .1/�i .2/

˛ �
:

(102)

The spin-orbitals of electrons 1 and 2 are mutually independent; thus,

D
�i .1/�j .2/

ˇ̌
ˇ�k.1/�l .2/

E
D
D
�i .1/

ˇ̌
ˇ�k.1/

E D
�j .2/

ˇ̌
ˇ�l.2/

E
D ıikıjl ; (103)

where
D
�i .1/

ˇ̌
ˇ�k.1/

E
D ıik arises from the fact that the eigenfunctions of the

Hermitian operatorbh(1) form the orthonormal set. Hence, in Eq. 102 only the first
and last integral will be nonvanishing, and, finally,

D
‰ .1; 2/

ˇ̌
ˇ‰ .1; 2/

E
D 2N 2 D 1; (104)

and, therefore, the normalization constant N must equal 1=
p

2. In order to fulfill
the normalization and the antisymmetry request, the trial wave function can be
written as

‰ .1; 2/ D
1

p
2

�
�i .1/�j .2/ � �j .1/�i .2/

�
D

1
p

2

ˇ̌
ˇ̌ �i .1/ �i .2/

�j .1/ �j .2/

ˇ̌
ˇ̌ : (105)

Thereafter, the expectation value of the Hamiltonian can be calculated using the
same tricks as in Eq. 1023:
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�i .1/�j .2/
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ˇ�j .1/�i .2/

E
:

(106)

3Since the value of the integral does not depend on the name of the variable, the obvious equalityZ b

a

f .x/dx D

Z b

a

f .y/dy in the above case takes the form

�
�i .1/�j .2/

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌�j .1/�i .2/

	ˇ̌
ˇ̌ D

�
�i .2/�j .1/

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌�j .2/�i .1/

	
:
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The only difference with respect to the overlap integral is that the integrals
containing 1/r12 cannot be separated.

In the spirit of perturbation calculus, the expectation value (Eq. 106) can be
treated as the energy corrected up to the first order of perturbation expansion.
According to the variational principle, this integral is an upper bound of the exact
energy of the two-electron system under consideration. The recipe for correcting the
trial function is given by the perturbation theory: Apply functions corresponding to
the remaining states of the unperturbed system in the expansion. In other words,
in order to improve the wave function, the expansion built from products of the
remaining states of the systems should be used.

Let us summarize. The many-electron function of the system can be approxi-
mately written as the antisymmetrized product of the one-electron functions being
the solutions for the one-electron eigenvalue problem. This is the idea of the popular
one-electron approximation (Atkins and Friedman 2005; Lowe and Peterson 2005;
McQuarrie and Simon 1997; Ratner and Schatz 2000). In the N-electron case, one
obtains the trial function as the antisymmetrized product of N one-electron functions
that can be written in the form of the Slater determinant:

‰ .1; 2; : : : ; N / D
1

p
N Š

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.1/ �1.2/ : : : �1.N /

�2.1/ �2.2/ : : : �2.N /
:::

:::
: : :

:::

�N .1/ �N .2/ : : : �N .N /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ
: (107)

1=
p

N Š factor ensures the normalization of the wave function. Often, instead of
writing the whole determinant, only the diagonal is written down:

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

�1.1/ �1.2/ : : : �1.N /

�1.2/ �2.2/ : : : �2.2/
:::

:::
: : :

:::

�N .1/ �N .2/ : : : �N .N /

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ

D j�1.1/�2.2/ : : : �N .N /j : (108)

It is important to realize that the many-electron function in the form of the Slater
determinant is only an approximation. Intuition tells us that describing the many-
electron system using only one-electron functions cannot be exact. One needs to
be aware of the fact that such an approach causes the loss of some information
included in the sought wave function. In particular, the one-electron function cannot
“see” another electron; therefore, the terms coupling the mutual electron positions
are missing in the one-electron approximation.

For example, consider the two-electron function (Piela 2007)

F .1; 2/ �
�
e�ar1�br2�cr12 � e�ar2�br1�cr12

�
; (109)
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where r1, r2 are the electron–nucleus distances, r12 denotes the distance between
two electrons, and a, b, and c stand for the coefficients. F(1, 2) contains the factor
c correlating the electron motions. In the one-electron approach, such a function
would be approximated by the antisymmetrized function

f .1; 2/ �
�
e�ar1�br2 � e�ar2�br1

�
; (110)

with total neglect of this correlation. From the practical point of view, this means that
the trial function written as the single determinant does not allow reproduction of
the exact electronic energy, even when using the best possible one-electron functions
for its construction.

The question arises: Why use such an approach, knowing from the very begin-
ning that it is bad? The answer is simple. First, including the electron correlation
in the wave function is very expensive. For two electrons, one additional term
appears; for three, three terms; for four, six. In general, for N electrons there
are N(N � 1)/2 terms (the triangle of the N 	 N matrix without the diagonal
elements). Therefore, the number of coefficients describing the electron correlation
is much bigger than the number of one-electron terms. Calculating even the one-
electron coefficients is very time-consuming, and moreover, calculating the overlap
integrals and Hamiltonian matrix elements becomes prohibitively complicated with
the correlated functions. Second, perturbation theory provides ways of improving
the results. Expansion built on a higher number of determinants will lead to better
energy. Third, a chemist does not usually need exact data but only an appropriate
accuracy (furnishing a house does not require caliper measurements, just a quick
glance to estimate the size of the door and the furniture).

Therefore, let us stick to the one-electron approximation. The next section will
explain how to find the best possible spin-orbitals.

Hartree–Fock Method: It Is Not That Sophisticated

Now we are prepared to concentrate on the methods for solving the electron
equation. As you will see, they are only an extension of the already-discussed
techniques. We start with the fundamental Hartree–Fock method.

The main goal of this approximation is to find the spin-orbitals applied for
construction of the Slater determinant that will best reproduce the exact wave
function. We again begin our considerations with the two-electron system. The
problem is that the operatorbh(i) does not contain the part arising from the potential
of the second electron, and an operator responsible for this missing part must be
found. What we do know is that such an interaction is included in the two-electron
part of Eq. 106:

�
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r12
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ˇ̌ 1

r12
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ˇ̌ 1

r12

ˇ̌
ˇ̌�j .1/�i .2/

	
:

(111)
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Unfortunately, Eq. 111 contains the integrals that cannot be exactly separated into a
product of the simpler integrals depending only on the coordinates of one electron.
What we can propose is rewriting this equation in the following form:

�
1

r12

	
‰.1;2/

D h�i .1/ jb	.1/j �i .1/i C
˝
�j .2/ jb	.2/j �j .2/

˛
C the rest; (112)

where b	.1/ and b	.2/ are introduced to extract only the terms depending on the
coordinates of a single electron from Eq. 111 and “the rest” is what remains fromD

1
r12

E
‰ .1; 2/ after this extraction.

If such extraction were possible, the operatorsb	.1/ andb	.2/ could be applied to
improve our one-electron operators, which leads to the following equations:

hbh.1/ Cb	.1/
i

�i .1/ D –i �i .1/; (113)

hbh.2/ Cb	.2/
i

�j .2/ D –j �j .2/: (114)

The solutions of such equations (spin-orbitals � i, � j) can be used to build up the
Slater determinant. They ensure better approximation than Eqs. 95 and 96, since
they somehow provide for the influence of the second electron.

Therefore, our goal now is to utilize Eq. 106 (treating � i and � j) as known
functions) to find the best form of the operators b	.1/ and b	.2/. Adding zero,
written as

0 D

�
1

r12

	
‰.1;2/

�

�
1

r12

	
‰.1;2/

; (115)

to Eq. 111 allows one to ascribe, for instance,
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ˇ�i .1/�j .2/ � �j .1/�i .2/

E
:

Consider in more detail the integral containing b	.1/. We want it to be expressed
in such a way that only the coordinates of the electron labeled by 1 are explicitly
written under the integral:
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(116)

where two operators were defined:

bJ j .1/�i .1/ D


Z
��

j .�2/
1

r12

�j .�2/ d�2

�
�i .1/; (117)

bKj .1/�i .1/ D


Z
��

j .�2/
1

r12

�i .�2/ d�2

�
�j .1/: (118)

Despite a slightly different way of defining, they are still ordinary operators. An
operator is a function of a function. The operators Ĵj(1) and bKj .1/ act on the
function � i(1), producing another function, as was written in Eq. 8. The operatorbJj .1/ acting on � i(1) transforms it into the same function:

�i .1/
bJ j .1/
!


Z
��

j .�2/
1

r12

�j .�2/ d�2

�
�i .1/; (119)

and the operator bKj .1/ produces � j(1):

�i .1/
bKj .1/
!


Z
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j .�2/
1

r12

�i .�2/ d�2

�
�j .1/: (120)

The expressions on the right-hand side of the arrows are some functions of a
dependent variable �1 (the integration eliminates the dependence on �2; however,
its result is not a number but a function depending on �1). The interpretation of the
Ĵj(1) and bKj .1/ operators by ascribing them to observables is not straightforward.
These operators appear in the equations when we try to write the interaction between
two electrons as the average value of the one-electron operator calculated with the
one-electron function. However, in fact, they do appear as the difference:

b	HF
i .1/ D bJ j .1/ � bKj .1/: (121)

And the physical sense should be sought in this difference. Here, b	HF
i .1/ is an

operator of the average interaction of the electron labeled as 1, described by a spin-
orbital � i with the second electron characterized by � j(2). It should be noticed that
the potentialb	HF

i .1/ depends on � j(2), since this spin-orbital is necessary to define
Ĵj(1) and bKj .1/ operators.
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Similarly,

b	HF
j .2/ D bJ i .2/ � bKi .2/; (122)

where the action of operators Ĵj(1) and bKj .1/ on the function � j(2) is defined by

bJ i .2/�j .2/ D


Z
��

i .�1/
1

r12

�i .�1/ d�1
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�j .2/ (123)

bKi .2/�j .2/ D


Z
��

i .�1/
1

r12

�j .�1/ d�1

�
�i .2/: (124)

Here, one more important circumstance should be mentioned. The electronic
Hamiltonian does not depend on spin. However, the electronic wave function
is spin dependent. During the construction of the HF equations, this depen-
dence is introduced to the operators bK since they depend on two different
spin-orbitals.

Let us briefly review. We want to have a one-electron operator that includes the
interaction between the electrons in some averaged way. Such an operator must
depend on the function describing the motion of the second, adjacent electron.
Therefore, for the two-electron case, two coupled equations must be solved
(Eqs. 113 and 114). The word “coupled” that distinguishes this set of equations
from Eqs. 95 and 96 is crucial. Denoting

bf i .1/ Dbh.1/ Cb	HF
i .1/; (125)

one can rewrite the above equations as

bf k.1/�k.1/ D –k�k.1/; for k D i; j: (126)

bf i .1/ is called the Fock operator and Eq. 114 gives the Hartree–Fock equations.
It should be noted that the label of electrons determines only the name of the

integration variables, and the result of the integration does not depend on the name
of the variable. Therefore, what is really important is the label of the spin-orbital. It
will be even more pronounced in the N-electron case, when the electron labels are
applied only to show that the operator acts on one or two electron coordinates. The
form of the N-electron wave function depends only on the spin-orbitals and not on
the electron labels; they are just the integration variables.

The most popular way of solving Eq. 126 is the iterative procedure. It starts
from the guessed or chosen spin-orbitals � i(1) and � j(2) applied to construct the
potentials b	HF

i .1/ and b	HF
j .2/: Next, the obtained potentials are substituted to

Eq. 125 and solutions of Eq. 126 give the improved form of the � i(1) and � j(2)
spin-orbitals. These, on the other hand, are treated as the starting point again, and the
whole procedure is repeated until the starting and final orbitals of the given iteration
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do not differ much. This technique is called self-consistent field (SCF). Often the
abbreviations HF for Hartree–Fock method and SCF are used interchangeably. They
can also be joined together as SCF–HF, denoting the self-consistent way of solving
Hartree–Fock equations.

Let us assume that the spin-orbitals are already known. Concentrate on the
calculations of the average value of the Hamiltonian with the determinant build
of these spin-orbitals using the operators defined previously. Writing down the two-
electron part:
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one obtains the integrals that can be denoted by
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E
;

Kij D
D
�i .1/

ˇ̌
ˇbKj .1/

ˇ̌
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E
:

With this notation, the expression (Eq. 106) takes the following form:
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(127)

or if one wants to apply the spin-orbital energies – calculated earlier:

DbH .1; 2/
E
‰.1;2/

D –i C –j �
�
Jij � Kij

�
: (128)

Now it is time to generalize these considerations into the N-electron case. The recipe
for this transformation was given previously (Eqs. 91, 92, and 93). For the system
of N electrons, the set of N-coupled equations of the form

bf i .1/�i .1/ D –i �i .1/; for i D 1; : : : ; N (129)

must be solved. Here,

fi .1/ D h.1/ C

NX
j ¤i

�bJ j .1/ � bKj .1/
�

: (130)

The summation in the expression for the one-electron Fock operator arises from the
fact that now the given electron described by the spin-orbital i interacts with (N � 1)
electrons in the states determined by the remaining spin-orbitals.
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In searching for the ground state energy, one is interested in the lowest possible
energy. Therefore, the functions of choice are the spin-orbitals corresponding to the
lowest values of –. Such a set of spin-orbitals, called occupied, is opposite to any
other solutions of the Fock equations corresponding to higher energies. These are
known as virtual (unoccupied) orbitals.

Finally, the average value of the Hamiltonian can be written as

DbH .1; 2; : : : ; N /
E
‰.0/.N /

D

NX
iD1

–i �

NX
iD1

NX
j >i

�
Jij � Kij

�
D EHF

0

It should be emphasized that the energy estimated in this manner is not the simple

sum of the orbital energies. If the terms
XN

iD1

XN

j >i

�
Jij � Kij

�
are neglected,

the double summation of the electron–electron interaction would take place (Atkins
and Friedman 2005; Cramer 2004; Jensen 2006; Levine 2008; Lowe and Peterson
2005; McQuarrie and Simon 1997; Piela 2007; Ratner and Schatz 2000; Roos and
Widmark 2002; Szabo and Ostlund 1996).

Møller–Plesset Perturbation Theory: HF Is Just the Beginning

From here forward, we will treat the Hartree–Fock function as the basis for the
further investigations and denote it as ‰

(0)
0 , where the subscript 0 indicates the

ground state and the superscript (0) is the reference function. We will also omit
the explicit writing of the dependence of the Hamiltonian and the wave function on
the coordinates of N electrons. As a consequence,

D
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.0/
0

ˇ̌
ˇbH
ˇ̌
ˇ‰.0/

0

E
D EHF

0 : (131)

One of the possible ways of improving the HF results is the application of the
perturbation theory (Atkins and Friedman 2005; Cramer 2004; Jensen 2006; Levine
2008; McQuarrie and Simon 1997; Piela 2007; Ratner and Schatz 2000; Szabo and
Ostlund 1996). The Hamiltonian (Eq. 89) can be partitioned into the unperturbed
part and the perturbation in the following manner:
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(compare Eq. 125). Up to the first order in the perturbation theory, the energy is
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The correction to the HF energy appears in the second order:

E
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ˇbH 1
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Eˇ̌
ˇ 2

E
.0/
0 � E

.0/

k

: (134)

During calculations, the expansion of the spin-orbitals in the finite basis set is
applied. This allows identification of only the finite number of spin-orbitals. But the
number of all possible ‰

(0)
k functions can still be horrifyingly large. In practice, this

is equivalent to the finite but long expansion in the above summation. In quantum
chemistry we are interested in the best quality results with moderate expenses and
are continuously searching for more economical methods.

Careful examination of the second-order energy correction E(2)
0 shows that a

significant number of its terms do not contribute to the final result. Some work
invested in the manipulation of expressions allows one not only to learn the basic
computational apparatus but also to save a lot of effort.

In order to proceed comfortably, the notation should again be simplified. Let us
drop the superscript (0) denoting the zeroth-order functions (other functions will
not appear in our considerations). Additionally, we omit the subscript k from the
determinants containing the virtual spin-orbitals. In return, we explicitly specify
the pattern of spin-orbital exchange. Using Eq. 108, the Slater determinant can be
written as

ˇ̌
ˇ‰0

E
D j�1.1/�2.2/�3.3/�4.4/ : : : �N .N /i : (135)

The numbers of the occupied spin-orbitals vary from 1 to N. Thus, the virtual spin-
orbitals will be labeled starting from N C 1 onward. Now consider the example of
the determinant in which the occupied spin-orbital �3 is exchanged for the virtual
one, �N C8. The new determinant can be written as

ˇ̌
ˇ‰N C8

3

E
D
ˇ̌
ˇ�1.1/�2.2/�N C8.3/�4.4/ : : : �N .N /i ; (136)

where the subscript in ‰N C8
3 denotes the occupied orbital that is exchanged and

the superscript denotes the virtual one that takes its place. To generalize, one could
denote the occupied orbitals building the ‰0 function by first alphabet letters a, b, c,
d : : : and the virtuals by p, q, r, s : : : . Therefore, ‰N C8

3 can be written as ‰p
a, where

a D 3 and p D N C 8. Likewise, any determinant can be represented.
Thereafter, the influence of the function choice on the values of the integrals

appearing in the electronic energy calculations can be investigated. Similarly, as
in the case of Hamiltonian, the integrals can also be divided into two groups with
one-electron operator

bo1 D

NX
iD1

bo.i/; (137)
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where in place of ô(i) operators bh, (i) or bf .i/ will be used, and with two-electron
operator,

bO2 D
X

i

X
j >i



1

rij

�
: (138)

To get a full picture, we should analyze the following types of integrals:
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Any other will be equal to zero (Levine 2008; Szabo and Ostlund 1996).
Recall that the determinant of the N 	 N matrix can be represented as the

sum of the N! products of the matrix elements. According to Laplace’s formula,
a determinant can be expanded along a row or a column. Thus, calculation of the
h‰0jô1j‰p

ai integrals, when the occupied orbital a in ‰0 has been exchanged with
the virtual orbital p in ‰p

a, can be performed by expanding the determinant ‰0 along
the a-th row and the determinant ‰p

a along the p-th row:

‰0 D
1

p
N Š

NX
iD1

�a.i/Cai ; (142)

‰p
a D

1
p

N Š

NX
iD1
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The cofactors C can be perceived as the (N � 1)-electron determinants that have
been obtained from ‰0 and ‰p

a via the elimination of the a-th and p-th spin-orbitals,
respectively. Thus, after elimination of what is different in the two determinants, we
get both cofactors equal to each other. Hence,
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(144)
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where D
Cai

ˇ̌
ˇCpi

E
D .N � 1/Š; (145)

NX
iD1

h�a.i/ jbo.i/j �a.i/i D N h�a.1/ jbo.1/j �a.1/i (146)

was applied. If the cofactors are not the same – this would be the case when the
determinants differ from two or more spin-orbitals – the corresponding overlap
matrix is equal to zero according to the orthogonality condition. Thus,

˝
‰0 jbo1j ‰

p
a

˛
D
˝
�a.1/ jbo.1/j �p.1/

˛
;˝

‰0 jbo1j ‰
pq

ab

˛
D 0;˝

‰0 jbo1j ‰
pqr

abc

˛
D 0:

(147)

Similar (but a little more time-consuming) considerations for the two-electron
operators lead to the following expressions:

D
‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰p

a

E
D

NX
iD1


�
�a.1/�i .2/

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌�p.1/�i .2/

	

�
D
�a.1/�i .2/

ˇ̌
ˇ 1

r12

ˇ̌
ˇ�i .1/�p.2/

E�
D
‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰pq

ab

E
D
D
�a.1/�b.2/

ˇ̌
ˇ 1

r12

ˇ̌
ˇ�p.1/�q.2/

E

�
D
�a.1/�b.2/

ˇ̌
ˇ 1

r12

ˇ̌
ˇ�q.1/�p.2/

E
D
‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰pqr

abc

E
D 0:

(148)

In the first contact with these equations, one can have the feeling that something is

lost here. We start from the integrals with the N-electron functions and we finish
with the integral of only the electrons labeled by 1 and 2. What happened to the
rest? Again, it should be emphasized here that the electron labels symbolize only
the integration variables. What matters is the functions of these variables, namely,
spin-orbitals. Thus, in the integral with the one-electron operator, the electron
label 1 means that the integration is performed only over the variables of one
electron. Likewise, the two-electron operator integral depends on the variables of
two electrons, which is symbolized by two labels: 1 and 2.

In the integration of one-electron expressions, the electron label can be omitted
without any harm: h¥a.1/ jbo1.1/j ¥a.1/i. Likewise, in the two-electron case, we can
declare that the spin-orbitals are written in the given order. So,

�
�x.1/�y.2/

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌�v.1/�z.2/

	
D

�
�x�y

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌�v�z

	
: (149)
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Moreover, now there is no reason to explicitly write the � symbol. Thereby, the next
simplification of the notation is obvious:

h�a jbo1j �ai D ha jbo1j ai ;D
�x�y

ˇ̌
ˇ 1

r12

ˇ̌
ˇ�v�z

E
D
D
xy
ˇ̌
ˇ 1

r12

ˇ̌
ˇ vz

E
;

(150)

and finally, since the combination of the integrals
D
xy
ˇ̌
ˇ1=r12

ˇ̌
ˇvz
E

�
D
xy
ˇ̌
ˇ1=r12

ˇ̌
ˇvz
E

appears frequently, the following symbol is introduced:

hxy jj zvi D

�
xy

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌ vz

	
�

�
xy

ˇ̌
ˇ̌ 1

r12

ˇ̌
ˇ̌ zv

	
: (151)

Now Eqs. 147 and 148 can be rewritten as

˝
‰0 jbo1j ‰

p
a

˛
D ha jboj pi ;˝

‰0 jbo1j ‰
pq

ab

˛
D 0;˝

‰0 jbo1j ‰
pqr

abc

˛
D 0;

D
‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰p

a

E
D

NX
iD1

hai jj pii;

D
‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰pq

ab

E
D hab jj pqi ;D

‰0

ˇ̌
ˇbO2

ˇ̌
ˇ‰pqr

abc

E
D 0:

(152)

These simple equations, known as the Slater rules, allow for the following general
remark: If the one-electron operator is integrated with functions that differ by
more than one spin-orbital, the corresponding integral vanishes. Similarly, the result
is zero for the integration of two-electron operators with functions differing by
more than two spin-orbitals. Hitherto, only the integrals with ‰0 were considered.
However, it is easy to notice that functions ‰

pq
ab and ‰

pqr
abc differ by only one exchange

(spin-orbital �c ! �r ), etc. Therefore, the above considerations can be also applied
in any other cases.

In this abundance of equations, our main goal cannot be lost: All these derivations
were necessary to limit the types of the ‰k functions present in the MP2 energy
expression. Now, with a recognition of the above Slater rules, one can safely neglect
the integrals with the pairs of the ‰k functions differing with more than two spin-
orbital exchanges. But this is not everything.

Let us consider the integral

D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰p

a

E
D
D
a
ˇ̌
ˇbh
ˇ̌
ˇp
E

C
X

j


�
aj

ˇ̌
ˇ̌ 1

rij

ˇ̌
ˇ̌pj

	
�

�
aj

ˇ̌
ˇ̌ 1

rij

ˇ̌
ˇ̌ jp

	�
: (153)
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Since �
aj

ˇ̌
ˇ̌ 1

rij

ˇ̌
ˇ̌pj

	
D
D
a
ˇ̌
ˇ bJj

ˇ̌
ˇp
E
; (154)

and �
aj

ˇ̌
ˇ̌ 1

rij

ˇ̌
ˇ̌ jp

	
D
D
a
ˇ̌
ˇbKj

ˇ̌
ˇp
E
; (155)

one gets
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰p

a

E
D
D
a
ˇ̌
ˇbH 0

ˇ̌
ˇp
E
; (156)

which has to vanish, because

D
a
ˇ̌
ˇbH 0

ˇ̌
ˇp
E

D

*
a

ˇ̌
ˇ̌
ˇ

NX
iD1

f .i/

ˇ̌
ˇ̌
ˇp
+

D ha jf j pi D –pıap D 0; (157)

for it was assumed that a ¤ p.
The obtained result,

D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰p

a

E
D 0; (158)

is known as the Brillouin theorem. Applying it allows one also to show that
D
‰0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰p

a

E
D 0: (159)

Indeed, using

bH 1
D bH � bH 0

; (160)

one obtains D
‰0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰p

a

E
D
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰p

a

E
�
D
‰0

ˇ̌
ˇbH 0

ˇ̌
ˇ‰p

a

E

D 0 �

 
NX

iD1

–i

! D
‰0

ˇ̌
ˇ‰p

a

E

D 0:

(161)

Now is the time for an important conclusion: In order to calculate the correction to
the energy in MP2, the functions arising from ‰0 only by the exchange of precisely
two spin-orbitals need to be applied, not more, not less. Life becomes easier when
not calculating zero contributions in a complicated way.

Let us exploit the above knowledge to transform Eq. 134. The integral on the
right-hand side will be calculated with the functions ‰

pq
ab. Assuming b > a and q > p

allows avoidance of the integration with the same functions. The upper limit for
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the summations over a and b will be equal to N. For the remaining spin-orbitals,
it should be 1; however, in practice, the finite basis is applied and the upper limit
will be determined by the basis set size. Let us look into the numerator of Eq. 134
carefully. Denoting the total Fock operator as bF D

X
i

bf .i/, one gets

D
‰0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰pq

ab

E
D
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰pq

ab

E
�
D
‰0

ˇ̌
ˇbF
ˇ̌
ˇ‰pq

ab

E

D
D
ab
ˇ̌
ˇ 1

rij

ˇ̌
ˇpq

E
�
D
ab
ˇ̌
ˇ 1

rij

ˇ̌
ˇpq

E
;

(162)

since D
‰0

ˇ̌
ˇbF
ˇ̌
ˇ‰pq

ab

E
D 0 (163)

(integration of the one-electron operator with the functions differing by two spin-
orbitals; see Eq. 152).

Now consider the denominator of Eq. 134. The energy of the ground state is
simply a sum of N lowest spin-orbital energies:

E
.0/
0 D

NX
iD1

–i : (164)

The energy of the zeroth order for the function ‰
pq
ab is a similar sum with –a and –b

replaced by –p and –q:

E
.0/

.pq

ab /
D E

.0/
0 � –a � –b C –p C –q: (165)

Thus, the final form of Eq. 134 is

E
.2/
0 D

X
b>a

X
q>p

jhab jj pqij 2

–p C –q � –a � –b

: (166)

Why was it worth our hard work? Not only for satisfaction. These derivations are
necessary to understand the mechanisms employed in computational methods of
quantum chemistry. With the Slater rules, it is straightforward to recognize the
vanishing integrals. The double exchanges appear to be most important, since these
are the only exchanges that give rise to the energy corrections in the MP2 method.

According to the perturbation calculus, the wave function corrected in the first
order can be written as

‰ � ‰0 C
X
k¤0

ck‰k; (167)

where ck is given by

ck D

D
‰0

ˇ̌
ˇbH 1

ˇ̌
ˇ‰k

E

E0 � Ek

: (168)
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From the Slater rules, it is easy to estimate that the only nonvanishing terms will
arise from the double spin-orbital exchange in the wave function. The intuitive
statement is that the low-order corrections should have the larger impact and the
above considerations lead to the most important accomplishment of this section:
The largest contribution to the corrections of the Hartree–Fock function arises from
the functions with the doubly exchanged spin-orbitals.

Beyond the HF Wave Function

Having done all this hard work, one can now sit comfortably in an armchair
and think. The main goal of the quantum chemistry is to find the best possible
description of the state of the system (the best possible wave function). The exact
solutions of the Hamiltonian eigenproblem are unavailable and all we have are
approximations. We have become used to approximations in everyday life. The
important thing is to realize that the Hartree–Fock solutions can be improved. At
the beginning of this chapter, various properties of operators were discussed. Among
others, it was stated that the eigenfunctions of the Hermitian operators constitute the
complete sets and any other function of the same variables can be represented by
applying them. The one-electron spin-orbitals that are the eigenfunctions of the Fock
operator are accessible. They form the complete set, but only for the one-electron
functions. However, they can be applied to build up the N-electron determinants.
The set of all possible determinants is also complete and, therefore, can be applied
to express any N-electron function (Cramer 2004; Jensen 2006; Levine 2008; Lowe
and Peterson 2005; Piela 2007; Ratner and Schatz 2000; Roos and Widmark 2002;
Szabo and Ostlund 1996):

‰ D c0‰0 C
X
a;p

cp
a ‰p

a C
X

a;b;p;q

c
pq

ab ‰
pq

ab C
X

a;b;c;p;q;r

c
pqr

abc ‰
pqr

abc C : : : : (169)

For this purpose, only the coefficients c0, cp
a, cpq

ab, cpqr
abc, : : : need to be found. In the

ideal case, all the summations would be infinite and the problem must be reduced.
Still, instead of using the infinite expansions, the finite and relatively small number
of terms can be sufficient. Moreover, solving the Hartree–Fock equations in the
finite basis, one possesses only the finite number of orbitals that can be exchanged.

Anyway, it is instructive to see how large the number of terms in Eq. 169 can
be. Consider the methane molecule CH4. Calculations with the minimal basis set
(each orbital described by a single one-electron function; for carbon single functions
for each of the orbitals, 1 s, 2 s, 2px, 2py, 2pz, and for hydrogen a single function
for 1 s orbital) require 9 orbitals/18 spin-orbitals for the 10-electron system. From
the probability theory, the number of combinations (K) of k elements from the n-
element set can be calculated as

K D



n

k

�
D

nŠ

.n � k/ŠkŠ
: (170)
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In the case of methane, 10 electrons can be placed in 18 spin-orbitals on



18

10

�
D

43; 758 ways. This is equivalent to the 43,758 terms in the expansion (Eq. 169).
Impressive. And one needs to remember that the minimal basis set gives relatively
bad Hartree–Fock solutions and is not recommended in ab initio calculations.
However, increasing the basis set size causes the number of expansion terms to
grow dramatically. For instance, in the case of the so-called double- — basis set
(two functions per each orbital) for methane, one has 36 spin-orbitals, which makes
254,186,856 combinations! And double- — is still not much : : : .

Therefore, it is necessary to find some way to reduce the size of the problem.
The symmetry of the molecules can be applied here, and the fact that the chosen
determinants (or their linear combinations) must be the given functions of the
spin operators can be beneficial. Moreover, one would like to eliminate from the
expansion the determinants that are not crucial for the quality of the wave function,
and their neglect does not cause the deterioration of the description of the system
(or causes only slight deterioration). In other words, only the determinants that have
the significant contribution to the total energy must be chosen for the wave function
construction. Let us begin with the classification of the determinants, taking into
account the number of the spin-orbitals exchanged with respect to ‰0. For this
purpose, the averaged value of Hamiltonian calculated with ‰ will be useful. We
can write the wave function expansion as

‰ D c0‰0 C ScS C DcD C TcT C QcQ C : : : : (171)

The symbols’ meaning can be clearly deciphered by comparison with Eq. 169. S
denotes a vector build of the determinants constructed from ‰0 by single exchanges,
and cS is a vector of coefficients corresponding to the functions in S:

ScS D
X

a

X
q

cq
a‰q

a: (172)

In other words, S contains all the functions with the single exchanged spin-orbital.
Similarly, D would be the combination of the functions with double exchanges, T
with triple exchanges, and so forth. With such a notation, the function ‰ can be
treated as the scalar product of the basis vectors ‰0, S, D, : : : , and the coefficient
vector

ˇ̌
ˇ‰
E

D
h ˇ̌
ˇ‰0

E
;
ˇ̌
ˇS
E
;
ˇ̌
ˇD
E
;
ˇ̌
ˇT
E
; Qi ; : : :

i
:

2
666666664

c0

cS

cD

cT

cQ
:::

3
777777775

: (173)
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Using this notation, the Hamiltonian bH of the system can be linked in an elegant
way to a matrix H. Let us apply this form of the wave function for the calculation of
the Hamiltonian average value. To simplify the expressions, let us limit ourselves to
the truncated expansion:

‰SD D Œ‰0SD�

2
4 c0

cS

cD

3
5 D c0‰0 C ScS C DcD: (174)

The average value of the Hamiltonian can now be written as

hH i‰SD
D
D
‰SD

ˇ̌
ˇbH
ˇ̌
ˇ‰SD

E
D Œc0cScD�
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ˇ
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3
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ˇS
E
;
ˇ̌
ˇD
Ei24 c0

cS
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3
5 :

(175)

The vector multiplication leads to the following expression:
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c0 C cS



D
S
ˇ̌
ˇbH
ˇ̌
ˇS
E

cS C cS
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ˇD
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(176)

Such an equation is not very useful, since we still do not know the c0, cS and cD

coefficients determining the ‰SD function. The only thing that can be said about
them so far comes from the normalization requirement for ‰SD:

1 D c�
0 c0 C cS


 C cS C cD

cD: (177)

This is not enough to uniquely determine the wave function. However, going back

to Eq. 175 and multiplying only the inside vectors, one obtains

HSD D
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3
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(178)

We can then associate finding the approximate Hamiltonian eigenvalues with its
matrix in the ‰SD basis:
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hHi‰SD
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(179)

Because of the Hermitian character of the Hamilton operator, the HSD matrix
is symmetric and real. Its diagonalization provides the set of the eigenvalues
corresponding to its eigenvectors. We are interested in the ground-state energy and
thus, we need only the lowest eigenvalue of the HSD matrix and the respective
normalized eigenvector ‰SD.

Knowing the procedure for the finite basis (only single- and double-orbital
exchanges), we can see how it looks for the full (Eq. 171) expansion. The matrix
notation leads to the average value of the Hamiltonian, written as

hH i‰ D
�
c0; cS; cD; cT; cQ

�

2
6666666666664
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ˇ
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:

(180)

The vector multiplication permits one to perceive the average value as the eigen-
problem of the Hamiltonian matrix:
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3
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: (181)

It can be clearly seen that some blocks in this matrix are equal to zero. This happens
in two cases:

• The integrals between ‰0 and functions of the S type (single exchange of spin-
orbitals) vanish due to the Brillouin theorem, as was shown in the previous
section.
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• The integrals between the functions that differ by more than two exchanges, for
instance, S and Q type, vanish due to the Slater rules.

Even not knowing combinatorics, one can expect that the number of functions in
a block will grow drastically with and increase in the number of exchanges (block
S will contain less functions than D etc.). A bit of thinking in the beginning would
help to save a lot of time by not calculating zero integrals. Let’s see: Only in the

case of
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇD
E

and
D
S
ˇ̌
ˇbH
ˇ̌
ˇ S
E

blocks should all the elements be calculated. The

remaining matrices are sparse. For example, the
D
D
ˇ̌
ˇnwidehat fH g

ˇ̌
ˇD
E

block con-

tains the integrals of the following types:
D
‰

pq

ab

ˇ̌
ˇbH
ˇ̌
ˇ‰pq

ab

E
(the same function on both

sides),
D
‰

pq

ab

ˇ̌
ˇbH
ˇ̌
ˇ‰pr

ab

E
(differing by one exchange),

D
‰

pq

ab

ˇ̌
ˇbH
ˇ̌
ˇ‰rs

ab

E
(differing by

two exchanges),
D
‰

pq

ab

ˇ̌
ˇbH
ˇ̌
ˇ‰pq

ac

E
(differing by three exchanges), and

D
‰

pq

ab

ˇ̌
ˇbH
ˇ̌
ˇ‰pq

dc

E
(differing by four exchanges). Obviously, the two latter cases produce zeros.

With the large number of exchanges, the size of the blocks grows abruptly, but
most of the elements would be equal to zero. The simplification in this case would
be the limitation of the H matrix size by the elimination of the functions including
more than a given number of exchanges from the expansion. Let us leave only the
single exchange block. Thus, the Hamiltonian matrix has the form

Hs D

2
4
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰0

E
0

0
D
S
ˇ̌
ˇbH
ˇ̌
ˇS
E
3
5 : (182)

This is the block diagonal matrix. One of the properties of such matrices is that their
eigenvalue set is a sum of the eigenvalues of the diagonal blocks. This means that

the lowest possible eigenvalue is E0 D
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰0

E
, and in consequence, there is

no improvement in the ground-state energy with respect to the Hartree–Fock theory
when taking only the single orbital exchanges.

Hence, let us also include the functions of the D type. Now the Hamilton matrix
can be written as

HSD D

2
6664

D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰0

E
0

D
‰0

ˇ̌
ˇbH
ˇ̌
ˇD
E

0
D
S
ˇ̌
ˇbH
ˇ̌
ˇS
E D

S
ˇ̌
ˇbH
ˇ̌
ˇD
E

D
D
ˇ̌
ˇbH
ˇ̌
ˇ‰0

E D
D
ˇ̌
ˇbH
ˇ̌
ˇS
E D

D
ˇ̌
ˇbH
ˇ̌
ˇD
E

3
7775 : (183)

It is no longer a block diagonal matrix – all blocks contribute to its eigenvalues and
one can count on some improvement. An interesting observation, however, is that
here the functions with the single spin-orbital exchange also have influence on the

energy via the
D
S
ˇ̌
ˇbH
ˇ̌
ˇD
E

and
D
D
ˇ̌
ˇbH
ˇ̌
ˇS
E

blocks.
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Next, subsequent groups of functions can be applied containing more than two
spin-orbital exchanges. However, the calculations become prohibitively expensive,
even for moderate size of the systems, and the consecutive corrections are smaller
and smaller. The distinguished character of the double spin-orbital exchange was
already discussed within the MP2 method. Now one can also expect that including
double exchanges produces reasonable results with the moderate computational
cost. Then, why not save more and diagonalize only

HD D

2
4
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰0

E D
‰0

ˇ̌
ˇbH
ˇ̌
ˇD
E

D
D
ˇ̌
ˇbH
ˇ̌
ˇ‰0

E D
D
ˇ̌
ˇbH
ˇ̌
ˇD
E
3
5 (184)

instead of HSD? This can be done; however, savings are not that great, since the
number of S functions is significantly smaller than the number of D functions. Thus,
if one can afford HD diagonalization, HSD diagonalization is probably also within
easy reach.

The above reasoning has led to the sequence of quantum chemistry methods.
The best results can be obtained within full CI (FCI) by applying the full expansion
(Eq. 171) within the given basis set. This is certainly the most expensive variant.
Cheaper – but also worse – are, respectively, CISD based on the HSD matrix and
CID neglecting single exchanges (Cramer 2004; Jensen 2006; Levine 2008; Lowe
and Peterson 2005; Piela 2007; Ratner and Schatz 2000; Szabo and Ostlund 1996).

So far, the reference function has been a single determinant. Such an approach
is very limited. For instance, it does not allow one to describe a dissociation
process. Correct description of dissociation requires at least one determinant for
each subsystem. And, even in the cases when multi-determinant reference state
description is not obligatory, such an elastic wave function will provide an improved
description of the system of interest (Cramer 2004; Jensen 2006; Levine 2008; Piela
2007; Roos and Widmark 2002).

The multi-determinant wave function ‰ depends both on the expansion coef-
ficients and on the spin-orbitals building up the determinants. Both these sets of
variables can be optimized simultaneously. The particular case of this procedure,
when taking only the first expansion term, is the Hartree–Fock approximation
(SCF–HF). Therefore, the optimization of the multi-determinant wave function is
called the multiconfiguration (MC) SCF method. Even without a detailed study
of the MC–SCF equations, an improvement in the results with respect to the HF
energy can be expected. However, this approach is much more expensive, since
the spin-orbitals are optimized several times. Again, a time saving is desired.
Therefore, let us search for the spin-orbitals with the highest influence on the
total energy value. It has been observed that not all doubly exchanged functions
provide the same contribution to the energy. Some improve the result more and
others less. This is due to the spin-orbital energy differences. The exchange of the
spin-orbitals of significantly different energies does not contribute much to the total
energy improvement. Therefore, it can be requested that the exchange is included
in calculations only if the energy difference between the involved spin-orbitals is
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smaller than some given value. Hence, only some groups of spin-orbitals can be
exchanged.

Up to now, the spin-orbital notion was used. However, let us switch to the orbital
language that is frequently used for MC–SCF considerations.

For the N-electron system, the orbitals can be divided into three groups:

• Core orbitals, which are not varied, since they have too low orbital energies, but
are applied in the wave function expansion (doubly occupied orbitals)

• Active orbitals, which are exchanged in the expansion (partially occupied
orbitals)

• Virtual orbitals, which are not varied and not applied in the expansion (unoccu-
pied orbitals)

Instead of optimization of all the orbitals, only the active orbitals will be varied
within the complete active space self-consistent field (CASSCF) approximation. In
the acronym of this method, the number of active orbitals and active electrons is also
provided for the given system. For instance, CASSCF (6,4) denotes the calculations
with the expansion including all the possible exchanges of the four electrons within
the six active orbitals. The CASSCF approach leads to all possible exchanges in the
given active space, and for a moderately sized system, the size of the active spaces
can quickly exceed the computational resources. In such a case, the solution can be
the restricted active space self-consistent field (RASSCF) method, which supplies a
way of limiting the size of the active space.

Additionally, one needs to remember that for a powerful tool such as perturbation
theory, there is no obstacle to applying the multi-determinant reference function as
the unperturbed function in perturbation calculus. Thus, similar to the SCF–HF and
MP2 approaches, CASPT2 would be the second-order perturbation theory complete
active space method – the perturbationally corrected CASSCF.

Coupled Cluster Approximation: The Operator Strikes Back

It would seem that all the straightforward ways to improve wave function in the one-
electron approximation have been exploited. However, we now next discuss one of
the most accurate (and simultaneously most expensive) methods applied in quantum
chemistry.

The idea is simple. Consider again the expansion (Eq. 171). Introducing an
operator

bC D bC 0 C bC 1 C bC 2 C bC 3 C bC 4 C : : : ; (185)

defined as

bC 0 j‰0i D c0 j‰0i ; (186)

bC 1 j‰0i D ScS; (187)
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bC 2 j‰0i D DcD; (188)

bC 3 j‰0i D TcT; (189)

bC 4 j‰0i D QcQ; (190)

:::

allows one to write Eq. 171 in a very compact form:

‰ D bC ‰0: (191)

Now the problem of finding the appropriate expansion can be replaced by the
problem of finding the adequate operator. This is the essence of the coupled
cluster (CC) method. Here the assumption is made that the wave function can be
expressed by

‰ D ebT ‰0; (192)

where ‰0 is a reference function (depending on the approach, this can be the one-
determinant HF function or the multi-determinant function arising from MC–SCF)
and bT is a sought operator. Applying the expansion of the exponential function, it
can be written that

ebT Db1 C bT C
1

2Š
bT 2

C
1

3Š
bT 3

C : : : : (193)

Such an expanded form makes the interpretation of the bT operators easier. Putting

bT D bT 1 C bT 2 C bT 3 C bT 4 C : : : ; (194)

one can identify the subsequent bTi operators as corresponding to i-tuple exchanges
of the spin-orbitals in the reference function:

bT 1‰0 D
X
a;p

tp
a ‰p

a ; (195)

bT 2‰0 D
X

a;b;p;q

t
pq

ab ‰
pq

ab ; (196)

and so forth. The coefficients t (called “amplitudes”) are in general not equivalent
to the c coefficients in the CI expansion (see Eq. 171). In order to find their mutual
relation, let us consider the approximate operator:

bT � bT 1 C bT 2 C bT 3 C bT 4: (197)
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The operator (Eq. 193) takes the form

ebT 1CbT 2CbT 3CbT 4 Db1
C bT 1 C bT 2 C bT 3 C bT 4

C 1
2Š

�bT 1 C bT 2 C bT 3 C bT 4

�2

C 1
3Š

�bT 1 C bT 2 C bT 3 C bT 4

�3

C 1
4Š

�bT 1 C bT 2 C bT 3 C bT 4

�4

:

(198)

Limiting ourselves to the terms corresponding to not more than four spin-orbital
exchanges and writing it in the ordered way according to the number of exchanges,
one gets

ebT 1CbT 2CbT 3CbT 4 Db1
C bT 1

C bT 2 C 1
2
bT 2

1

C bT 3 C bT 1
bT 2 C 1

3
bT 3

1

C bT 4 C bT 1
bT 3 C 1

2
bT 2

2 C 1
2
bT 2

1
bT 2 C bT 4

1:

(199)

Now the direct comparison can be made:

bC 1 D bT 1; (200)

bC 2 D bT 2 C
1

2
bT 2

1; (201)

bC 3 D bT 3 C bT 1
bT 2 C

1

3
bT 3

1; (202)

bC 4 D bT 4 C bT 1
bT 3 C

1

2
bT 2

2 C
1

2
bT 2

1
bT 2 C bT 4

1: (203)

We have the relation between the bC i and bT i operators, but still neither bC i norbT i are known. Recall from the earlier sections that the double exchanges have a
significant influence on the energy improvement with respect to the Hartree–Fock
results. Taking double exchanges into account within the coupled cluster formalism
means that the operatorsbT 1 andbT 2 need to be determined. However, as a side effect,
they also allow inclusion of some not negligible contributions arising from the triple
and higher exchanges. In the above comparison, the bT 1 and bT 2 operators recover
two out of three terms in bC 3 and three out of five terms in bC 4. This is the power of
the CC method.

Unfortunately, the strength of this method does not go together with ease
of calculations. Obtaining the expressions for the operators bT is ransomed with
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compromises. Not only is the operator expansion (Eq. 194) truncated, but the basis
set is finite. Moreover, the variational character of the method is sacrificed.

In order to realize the complications, let us consider step-by-step the energy
calculation within the CC formalism. We begin, as usual, with the electron
Schrödinger Eq. 50. Substituting Eq. 192 gives

bHebT ‰0 D EebT ‰0: (204)

Taking into account that, due to (Eq. 193),

h‰0j ‰i D
D
‰0

ˇ̌
ˇebT

ˇ̌
ˇ‰0

E
D h‰0 j‰0 i D 1; (205)

the energy can be calculated as

E D
D
‰0

ˇ̌
ˇbHebT

ˇ̌
ˇ‰0

E
D
D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰
E
: (206)

This is not the Hamiltonian average value expression. Additionally, the operator
inside the bracket is not Hermitian. But, until we assume that (Eq. 192) is true, such
an approach works. We can also construct an integral:

D
‰

pq

ab

ˇ̌
ˇbHebT

ˇ̌
ˇ‰0

E
D E

D
‰

pq

ab

ˇ̌
ˇebT

ˇ̌
ˇ‰0

E
; (207)

which is the consequence of Eq. 204 and will be applied in the near future.
We should now concentrate on the way of determining the form of amplitudes.

To simplify the considerations, we can assume

bT � bT 2; (208)

which is equivalent to the CCD variant. We are interested in finding the amplitudes
tpq
ab. The final result of the calculations will be the approximate energy:

ECCD D
D
‰0

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E
: (209)

The information about the amplitude tpq
ab can be extracted from the integral

t
pq

ab D
D
‰

pq

ab

ˇ̌
ˇbT 2

ˇ̌
ˇ‰0

E
(210)

(see Eq. 196). However, the amplitudes are still not known, since we do not know
the bT 2 operator. Therefore, one more equation is necessary to elicit the sought
information. Let us begin with the approximated expression (Eq. 207):
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D
‰

pq

ab

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E
D ECCD

D
‰

pq

ab

ˇ̌
ˇebT 2

ˇ̌
ˇ‰0

E

D
D
‰0

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E D
‰

pq

ab

ˇ̌
ˇebT 2

ˇ̌
ˇ‰0

E
:

(211)

The expansion (Eq. 193) tailored to the present case,

ebT 2 Db1 C bT 2 C
1

2
bT 2

2 C : : : ; (212)

and substituted to the left-hand side of Eq. 211 gives

D
‰

pq

ab

ˇ̌
ˇbHebT

ˇ̌
ˇ‰0

E
D

�
‰

pq

ab

ˇ̌
ˇ̌bH



b1 C bT 2 C

1

2
bT 2

2

�ˇ̌
ˇ̌‰0

	
: (213)

Further terms are not necessary; in such a case, the functions on both sides of the
integral would differ with four and more spin-orbital exchanges (and Hamiltonian
is still a sum of one- and two-electron operators). Similarly, the expansion in the

integral
D
‰0

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E
will also be truncated on the second term:

D
‰0

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E
D
D
‰0

ˇ̌
ˇbH

�b1 C bT 2

�ˇ̌
ˇ‰0

E
: (214)

Remembering that

E
.0/
0 D

D
‰0

ˇ̌
ˇbH
ˇ̌
ˇ‰0

E
; (215)

one gets

D
‰0

ˇ̌
ˇbHebT 2

ˇ̌
ˇ‰0

E
D E

.0/
0 C

D
‰0

ˇ̌
ˇbHbT 2

ˇ̌
ˇ‰0

E
: (216)

The last integral on the right-hand side of Eq. 211,
D
‰

pq

ab

ˇ̌
ˇebT

ˇ̌
ˇ‰0

E
, can be nonvan-

ishing only if the functions on the right and left side are the same. This is possible
for

D
‰

pq

ab

ˇ̌
ˇebT 2

ˇ̌
ˇ‰0

E
D
D
‰

pq

ab

ˇ̌
ˇbT 2

ˇ̌
ˇ‰0

E
: (217)

This is the integral that can provide information about the desired amplitudes of
Eq. 210. Putting all these together, one gets

�
‰

pq

ab

ˇ̌
ˇ̌bH



b1 C bT 2 C

1

2
bT 2

2

�ˇ̌
ˇ̌‰0

	
D
�
E0 C

D
‰0

ˇ̌
ˇbHbT 2

ˇ̌
ˇ‰0

E� D
‰

pq

ab

ˇ̌
ˇbT 2

ˇ̌
ˇ‰0

E
:

(218)
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Therefore, the amplitude t
pq

ab D
D
‰

pq

ab

ˇ̌
ˇbT 2

ˇ̌
ˇ‰0

E
can be expressed as

t
pq

ab D

D
‰

pq

ab

ˇ̌
ˇbH

�b1 C bT 2 C 1
2
bT 2

2

�ˇ̌
ˇ‰0

E

E0 C
D
‰0

ˇ̌
ˇbHbT 2

ˇ̌
ˇ‰0

E : (219)

Unluckily, this does not mean that the amplitudes are known. Still, the above
expression also contains the tpq

ab amplitudes on the right-hand side in the bT 2

operators. Moreover, all other amplitudes are also present on the right-hand side.
The consequence of this aggravation is that the CC equations cannot be solved
separately, one by one. All together, the complicated set of nonlinear equations must
be handled. The number of equations is equal to the number of sought amplitudes.
This is the main reason for the huge computational cost of the CC calculations, even
though the variationality of the method was abandoned (Atkins and Friedman 2005;
Cramer 2004; Jensen 2006; Levine 2008; Piela 2007; Roos and Widmark 2002).

It can be seen that solving the CC equations is quite complicated, even in
the simplified case of the CCD approach. If one wanted to use the variational
Hamiltonian and apply its average value, the following integrals would appear:

D
‰
ˇ̌
ˇbH
ˇ̌
ˇ‰
E

D

�
‰0

ˇ̌
ˇ̌ebT t bHebT

ˇ̌
ˇ̌‰0

	
D
D
ebT ‰0

ˇ̌
ˇbH
ˇ̌
ˇ ebT ‰0

E
: (220)

In order to calculate them, one needs to know the form of all the bT i operators, since
not only the function on the right-hand side of the above integral will contain the
exchanged spin-orbitals but also the function on the left-hand side. Therefore, one

needs to calculate terms like
DbT 3‰0

ˇ̌
ˇbH
ˇ̌
ˇ bT 2‰0

E
and many others. This causes the

significant increase of the computational costs of the CC method.
Like in the MP n case, the CC method is worth using for the short expansion of

the bT operator. Thus, relatively good accuracy is obtained with a moderate price.

Conclusions

We have finally reached the end of the zeroth iteration in the process of learning
quantum chemistry methods. The beginner may feel saturated or even overwhelmed;
however, we hope that this chapter arouses interest. Our aim was to show that simple
ideas underlie quantum chemistry methods. The purpose is to put complicated
things in a simpler and more convenient form. One of the most popular rules in
computational chemistry is as follows: “If you cannot calculate something, divide it
into parts in such a way that you can calculate some contribution while the other is
too difficult.” For instance, nonrelativistic energy can be divided into HF energy and
correlation energy. Correlation energy accounts for the contribution that we cannot
calculate in practice, but methods such as MP n, CC, and CI allow one to find some
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part of it. It may happen (and it often does!) that what we can calculate will be
enough.

This chapter should be treated as the introduction to more advanced handbooks
or as a guide through the symbols and concepts applied in the later parts of this
book. Thus, some of the concepts are just touched upon, and many are omitted. If
the reader noticed this and wants to know more, it means that this chapter has met
its goal.
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