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Abstract A hybrid method for a fully coupled determination of aerodynamic sound
is introduced. From the instantaneous velocity and vorticity, determined by approx-
imate solutions of the Navier-Stokes equations, acoustic source terms are obtained,
which are plugged into the acoustic perturbation equations being solved with a high-
order discontinuous Galerkin method. The coupling method is discussed in detail
and results of validation tests of the aeroacoustics solver are presented.

1 Introduction

Noise reduction is one of the major challenges of today’s aircraft development, and
together with an increase in fuel efficiency one of the key goals in European aircraft
policy. The perceived noise levels of flying aircraft are to be reduced until 2050
by 65% compared to 2000 [14]. To achieve these goals, efficient, fully parallelized
algorithms are needed to predict the far-field noise of jet engines and complete
aircraft.

A hybrid large-eddy simulation-computational aeroacousticsmethod (LES-CAA)
for large-scale aeroacoustics simulations exists, [11]. However, this scheme suffers
from the limitations of having two separate tools that need to exchange a large data
volume via I/O operations. In the new approach, both the LES and CAA solvers are
part of the same simulation framework. While the LES solver is based on a finite-
volume method for the prediction of the flow field, the CAA approach is based on a
high-order discontinuous Galerkin (DG) solver for the acoustic field.

For the coupled LES-CAA solution, first a fully developed flow field has to be
obtained by the LES solver. The flow variables are time-averaged to provide mean
and perturbed quantities for density, pressure, and velocity. The fluctuating Lamb
vector, i.e., the outer product of vorticity and velocity, is then computed at each time

M. Schlottke-Lakemper (B) · M. Meinke · W. Schröder
Chair of Fluid Dynamics and Institute of Aerodynamics, RWTH Aachen University,
Wüllnerstraße 5a, 52062 Aachen, Germany
e-mail: m.schlottke-lakemper@aia.rwth-aachen.de

© Springer International Publishing Switzerland 2016
A. Dillmann et al. (eds.), New Results in Numerical and Experimental
Fluid Mechanics X, Notes on Numerical Fluid Mechanics
and Multidisciplinary Design 132, DOI 10.1007/978-3-319-27279-5_65

743



744 M. Schlottke-Lakemper et al.

step of the LES solver and passed on to the CAA subdomain. The new feature of
the hybrid method is that both the LES and CAA solver components are based on
a hierarchical Cartesian grid. Both solvers use a joint Cartesian mesh, in which the
individual features of the hierarchical grid can be colored to be either pureLESor pure
CAA cells or both. A space-filling curve, which operates on the joint mesh, is used
to split the domain into subdomains using different weights for the CAA and LES
cells. In so doing, subdomains are created for the parallel execution. The coupling
between the LES and CAA domains only requires memory transfer operations and
no additional communication between subdomains. Thus, the coupling of the two
solvers is especially efficient for massively parallel computing systems.

2 Acoustic Perturbation Equations

The acoustic perturbation equations (APE) were introduced in [3] and are used to
predict the acoustic field for flow-induced noise. They are derived from the linearized
Euler equations (LEE) andmodified to retain only acousticmodeswithout generating
vorticity or entropy modes.

Neglecting all viscous, non-linear and entropy-related contributions, the APE-4
system reads [3]

∂ p′

∂t
+ c̄2∇ ·

(
ρ̄u′ + ū

p′

c̄2

)
= 0, (1)

∂u′

∂t
+ ∇ (

ū · u′) + ∇
(

p′

ρ̄

)
= qm, (2)

where the source term qm is the Lamb vector

qm = −(ω × u)′. (3)

p is the pressure, u the velocity vector, ω the vorticity vector, ρ the density, and c
the speed of sound. The variables of the APE are perturbed quantities denoted by
prime (·)′ and are defined as φ′ := φ − φ̄, where the bar (·̄) denotes time-averaged
quantities.

3 Numerical Methods

3.1 Discontinuous Galerkin Approximation of the APE

A discontinuous Galerkin spectral element method (DGSEM) is used to determine
the acoustic field. DG methods were first described in [13] and subsequently applied
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to various physical problems. In [12], the DGSEM was proposed and has been used
extensively, e.g. in [5, 10].

Since the DGSEM elements correspond to cells in a finite-volume context, the
words cell or element can be used interchangeably. In the following sections, an
outline of the method is presented. It follows the derivations in [10] but considers
the specific characteristics of the used Cartesian grid.

Mapping to reference element A general system of hyperbolic conservation equa-
tions in three dimensions reads

∂u
∂t

+ ∇ · f (u) = 0, (4)

where u = u(x, t) is the vector of conservative variables {ui }nv

i=1 and f the flux
vector.

For efficiency reasons, the differential equation is mapped to a reference element,
which in three dimensions is a cube of size [−1, 1] × [−1, 1] × [−1, 1]. Introducing
the reference coordinate vector ξ = (ξ, η, ζ)ᵀ, the final transformed equation reads
(c.f. [10])

Ĵ ut + ∇ξ · f = 0. (5)

Ĵ is the Jacobian, which in the case of cube-to-cube transformations is just h
2 , where

h is the side length of the cube.

Weak solution The derivation of the DG method starts with the weak form of the
equation. Therefore, Eq. 5 is multiplied by a test function φ = φ(ξ) and integrated
over the reference element E ,

∫
E

(
Ĵ ut + ∇ξ · f

)
φ dξ = 0. (6)

Using integration by parts on the flux term, we obtain the weak formulation of the
differential equation

∫
E

Ĵ utφ dξ +
∫

∂E
( f · n)∗φ ds −

∫
E

f · ∇ξφ dξ = 0, (7)

where n is the surface normal vector in the reference system. On the element bound-
aries∂E , the value for the normal flux f · n is not unique, since the solutions in the left
u− and right u+ elements are discontinuous, similar to the finite-volume approach.
Therefore, a numerical flux ( f · n)∗ = g(u+, u−) is chosen that combines values
from both sides to a single flux. The local Lax-Friedrichs flux formulations are used.
A central scheme with an additional damping factor reads
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g(u+, u−) = 1

2

(
f (u+) + f (u−)

) · n + 1

2

(
max

u∈[u+,u−]
|a(u) · n|(u+ − u−)

)
, (8)

where a is the vector of eigenvalues of the flux Jacobian.

Choice of representation The solution u is approximated using a polynomial basis

u(ξ, t) ≈
N∑

i, j,k=0

ūi j k(t)ψi jk(ξ), ψi jk(ξ) = li (ξ)l j (η)lk(ζ), (9)

where the basis functions ψi jk are the product of one-dimensional Lagrange polyno-
mials l of degree N in each spatial direction and ūi j k(t) are the coefficients. The nodal
basis is defined on a set of interpolation points {ξ}N

i=0 on the interval ξ ∈ [−1, 1],
which in this work are the Legendre-Gauss nodes (Fig. 1). The fluxes are approxi-
mated using the same approach.

Quadrature for surface, volume, and time derivative integralsThe three integrals
in Eq. 7 are approximated by Gauss quadrature. Generally, Gauss quadrature of an
arbitrary function f (x) on the interval [a, b] with N + 1 nodes can be written as

b∫
a

f (x) dx ≈
N∑

i=1

ωi f (xi ), (10)

where the weights ωi and the integration nodes xi are specific to the chosen quadra-
ture type. Theseweights are pre-calculated and stored tomake the algorithm efficient.

Semi-discrete formulation and time integration With the interpolation points {ξi }
collocated at the Gauss nodes, all sums collapse into single values, yielding the
discrete DG operator L(u, t) = ut [10]. In the next step, the semi-discrete formu-
lation is integrated in time to obtain the solution at the next time step, for which a
low-storage fourth-order Runge-Kutta scheme is used [2].

uij

g(ξ, 1)

g(1, η)
ξ

η

Fig. 1 Legendre-Gauss nodes in a 2D reference element for N = 3
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3.2 Finite-Volume Method for the Flow Simulation

A second-order in space and time finite-volume method is used to solve the unsteady
Navier-Stokes equations for compressible flow. The solver has been extensively val-
idated and used for various flow problems [8, 9]. That is, a more detailed description
of the method can be found in the literature.

4 Coupling Strategy

To solve the acoustic perturbation equations, the averaged quantities ū and c̄ and the
source term qm have to be determined first. The flow solution is advanced without
coupling until the averaged quantities are statistically converged.

The coupling process can be outlined as follows: (1) advance the LES solution,
(2) calculate the source term from instantaneous and averaged quantities, (3) advance
the CAA solution. The actual coupling takes place over the source term computed
from the LES solution and used in the solver for the APE. This means that there is a
one-way coupling from the flow solution to the acoustic field, while the flow solution
is not influenced by the acoustic field.

In the following, some details of the coupling method are shown.

4.1 Spatial Coupling

The instantaneous variables of the source term qm are available after each time step
of the flow simulation. They have to be transferred, however, from the flow grid to the
acoustics grid. Since both simulations operate on different levels of the same grid,
identification of corresponding cells is possible by traversing the octree used for the
hierarchical Cartesian mesh. The type of the grid also guarantees that there are no
partially overlapping cells, i.e., a smaller cell is always fully contained inside a larger
cell. Furthermore, the fact that the DG elements are generally of higher order than
the finite-volume cells has to be taken into account. Depending on the resolution of
the fluid and acoustics problems, four types of transformations are possible.

One-to-one mapping The simplest case is when one fluid cell corresponds exactly
to one acoustics cell (Fig. 2a). In this case, the source term is calculated once in the
finite-volume part and the same value is used at all Gauss nodes of the DG element.

One-to-multiple mapping In case there is one fluid cell that is mapped to multiple
acoustics cells (Fig. 2b), the procedure is the same as for the 1-to-1 mapping, that
is, the source term is calculated once and then used at all Gauss nodes of all elements.
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(a) (b) (c)

Fig. 2 Possible spatial mappings for coupled simulations. Aeroacoustics cells (top) are white, fluid
cells (bottom) are grey. a One-to-one. b One-to-multiple. c Multiple-to-one

Multiple-to-one mappingHavingmultiple finite-volume cells mapped onto oneDG
element is the most difficult case (Fig. 2c), since the values at the Gauss nodes have
to be interpolated from more than one flow cell.

A natural choice would be to interpret the finite-volume cells as equidistant nodes
of a polynomial and to obtain the values at the Gauss nodes through projection. This,
however, can lead to spurious oscillations if the number of finite-volume cells and
thus the polynomial degree is high, especially in regions with large gradients. Other
possibilities are weighted least squares methods, nearest neighbor interpolation or
inverse distance weighting.

Which approach is the best depends on a number of factors. A practical consider-
ation is the computational cost of the chosen method, e.g., whether the effort scales
linearly with the number of degrees of freedom or worse, since the interpolation
has to take place at each flow simulation time step. The smoothness of the interpo-
lated function is also important, especially in high-gradient zones. Furthermore, it
is desireable to have a conservative interpolation scheme such as proposed in [4], to
avoid distorting the source terms.

Unmapped elements If there are regions without either a flow or acoustics grid,
no coupling is performed. When only acoustics cells exist, a far-field value for the
averaged quantities c̄ and ū has to be specified for the APE, e.g., the freestream
values of the flow field. The source term qm is set to zero with a smooth transition
from non-zero to zero values.

4.2 Temporal Coupling

Next, the temporal connection between the flow and acoustics simulations have to be
taken into account. Due to the explicit global time stepping, the problem of matching
the simulation times has to be solved once for each step.

Equal time step size The simplest approach is when both simulations use the same
time step. This can be achieved by determining the next time step in each method
and the minimum of both methods is used. In this case, no interpolation of datasets
has to be performed.
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Different time steps for the fluid and acoustic field Depending on the features of
the geometry, the time step for the aeroacoustics simulation may be smaller than for
the flow simulation or vice versa, and thus the source terms have to be interpolated
between two flow time steps. As for the spatial coupling, there are many different
interpolation methods to choose from.

Linear interpolation is the easiest approach, although with often inferior results.
In [6], several temporal interpolation methods suitable for hybrid aeroacoustics sim-
ulations are compared and evaluated, and least-squares optimized interpolators were
found to have the best properties when it comes to broadband error reduction.

4.3 Data Transfer

There are two possibilities of how to transfer data between the flow solution and
the acoustics solution: via data files written to disk, i.e., offline coupling, or through
in-memory data access, i.e., online coupling.

Offline coupling With offline coupling, the processes of obtaining the flow solution
and running the aeroacoustics simulation are completely separated. At first, the flow
solution is obtained and the source term qm is written to a file at certain time intervals.
During the acoustics simulation, the source terms are determined from the files by
interpolation in time.

Conceptually, this is the simplest approach, since except for the I/O routines noth-
ing has to be changed inside the two simulations. However, the high amount of data
that has to be transferred to and from the disk makes this method expensive in terms
of computational cost, especially for large-scale simulations on thousands of cores.

Online coupling When online coupling is used, both the flow and the acoustics
simulations are fully integrated and run synchroneously at the same time. Typically,
the flow solution will be advanced by one time step and the acoustics solution has to
be updated until they are both synchronized.

Since no files have to be written to disk, this approach is more efficient than
offline coupling. If the acoustics cells are kept on the same computational core as the
corresponding flow cells, the acoustics simulation can directly access the relevant
information by simple memory transfer operations. This locality of data is achieved
by the specific subdomain decomposition, which operates on the joint LES-CAA
grid.

On the other hand, the increased memory consumption makes it necessary to use
more computational cores. Furthermore, due to the different number of operations
for the finite-volume and the DG operator, paired with different numbers of flow cells
per acoustics cell, load balancing between the cores becomes mandatory to achieve
reasonable parallel efficiency. This is accomplished by assigning appropriate loads
to the fluid and acoustics cells.
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5 Results

5.1 Hot Coaxial Jet

In Fig. 3, results of an LES of a hot coaxial jet are shown. The solutions were
obtained using the finite-volume method described in Sec. 3.2 and are labelled ZFS.
The temperature ratio Tp/Ts between the primary (index p) and the secondary (index
s) jet is 0.37,while the velocity ratioUs/Up is 0.9. TheReynolds number based on the
secondary jet conditions is Res = 400,000. A 24-million-cell mesh and a maximum
resolution of 0.018h/D, i.e., cell length per jet diameter, were used. The results for
the velocity and turbulence intensity distributions show good agreement with the
data from Koh et al. [11].

5.2 Validation of the Aeroacoustics Solver

The results of the aeroacoustics solver show that it is capable of correctly predicting
the acoustic field of various validation cases.

Monopole in sheared mean flow Fig. 4 shows the results for wave propagation in a
sheared mean flow. An S-shaped velocity profile is prescribed for the mean velocity
ū and an analytical source term generates an acoustic monopole [3]. The DG solution
matches the reference solution very well.

Acoustic reflection at solid wall This is the simulation of the reflection of a pres-
sure pulse at a plane wall. The wall boundary conditions are prescribed by setting
the mean flow velocity components to zero at wall, ū = v̄ = 0, and by enforcing a
vanishing perturbed velocity normal to the wall, nx u′ + nyv

′ = 0. Both the setup and
the theoretical values are taken from [7]. The results in Fig. 5 show that the CAA
solver is able to correctly predict the propagation of acoustic waves and validate the
solid wall boundary conditions.
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Fig. 3 Hot coaxial jet results for ZFS (—) and Koh et al. [11] (−−) (left velocity gradients, center
centerline velocity, right centerline turbulent velocity)
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Fig. 4 Monopole in sheared mean flow (left perturbed pressure p′, right comparison of DGSEM
with LEE simulation results from [3] for p′ at y = 70 and t = 180)
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Fig. 5 Reflection of pressure pulse at solid wall (left perturbed pressure p′, right comparison of
DGSEM with analytical solution from [7] for p′ at x = y and t = 30)

Fig. 6 Monopole in plane wall (left perturbed pressure p′, right rms pressure along y-axis)

Monopole at a solid wall In this case, a plane sound wave is assumed to travel
through a small channel and to exit through a small orifice in a plane wall. Due to
the small size of the channel, the wave emanating from it is an approximation for
a singular monopole at the wall [1]. The reference values in Fig. 6 were obtained
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by calculating the theoretical values as the asymptotical far-field solution pRMS =
A/

√
r , where A = pRMS

√
r is the amplitude value at r = 15. The DGSEM rms

pressure distribution perfectly matches the theoretical data.

6 Conclusions

A hybrid approach for large-scale aeroacoustic simulations is described. The flow
field is predicted using an LES solver based on the finite-volume method. For the
CAA solver, a DG method is used. The coupling of the flow solver and the acoustics
solverminimizes the storage requirements andmakes the overall LES-CAAapproach
extremely efficient. Both solvers are validated and the results match the reference
data well.

Acknowledgments This work has been performed with the support from the JARA-HPC SimLab
Fluids & Solids Engineering of the RWTH Aachen University and the Forschungszentrum Jülich.
The authors would also like to thank Onur Cetin, Hsun-Jen Cheng, and Lev Liberson for fruitful
discussions.

References

1. Bauer, M., Dierke, J., Ewert, R.: Application of a discontinuous Galerkin method to discretize
acoustic perturbation equations. AIAA J. 49(5), 898–908 (2011)

2. Carpenter, M.H., Kennedy, C.: Fourth-order 2N-storage Runge-Kutta schemes. NASA Report
TM 109112, NASA Langley Research Center (1994)

3. Ewert, R., Schröder, W.: Acoustic perturbation equations based on flow decomposition via
source filtering. J. Comput. Phys. 188, 365–398 (2003)

4. Farrell, P., Maddison, J.: Conservative interpolation between volume meshes by local Galerkin
projection. Comput. Methods Appl. Mech. Eng. 200(1–4), 89–100 (2011)

5. Flad, D., Frank, H., Beck, A.D., Munz, C.-D.: A discontinuous Galerkin spectral element
method for the direct numerical simulation of aeroacoustics. AIAA Paper, pp. 2014–2740
(2014)

6. Geiser, G., Marinc, D., Schröder, W.: Comparison of source reconstruction methods for hybrid
aeroacoustic predictions. Int. J. Aeroacoustics 12(7–8), 639–662 (2014)

7. Hardin, J., Ristorcelli, J.R., Tam, C.K.W. (eds.): ISCASE/LaRC Workshop on Benchmark
Problems inComputationalAeroacoustics (CAA),NASAConferencePublication 3000.NASA
(1995)

8. Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for
Cartesian hierarchical grid methods. Comput. Fluids 37, 1103–1125 (2008)

9. Hartmann, D., Meinke, M.: A strictly conservative Cartesian cut-cell method for compressible
viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200, 1038–1052 (2011)

10. Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.-D.: Explicit
discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012)

11. Koh, S., Schröder, W.: Turbulence and heat excited noise sources in single and coaxial jets. J.
Sound Vib. 329, 786–803 (2010)

12. Kopriva, D., Woodruff, S., Hussaini, M.: Discontinuous spectral element approximation of
Maxwell’s equations. In: Cockburn, B., Kariadakis, G., Shu, C.W. (eds.) Proceedings of the
International Symposium on Discontinuous Galerkin Methods. Springer (2000)



A Hybrid Discontinuous Galerkin-Finite Volume Method … 753

13. Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical
Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)

14. Directorate-General for Research, Innovation European Union: Flightpath 2050: Europe’s
Vision for Aviation : Maintaining Global Leadership and Serving Society’s Needs. Office
for Official Publications of the European Communities (2011)


	A Hybrid Discontinuous Galerkin-Finite Volume Method for Computational Aeroacoustics
	1 Introduction
	2 Acoustic Perturbation Equations
	3 Numerical Methods
	3.1 Discontinuous Galerkin Approximation of the APE
	3.2 Finite-Volume Method for the Flow Simulation

	4 Coupling Strategy
	4.1 Spatial Coupling
	4.2 Temporal Coupling
	4.3 Data Transfer

	5 Results
	5.1 Hot Coaxial Jet
	5.2 Validation of the Aeroacoustics Solver

	6 Conclusions
	References


