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Abstract Following Othmer’s work [14] on the continuous adjoint formulation for
the computation of sensitivities of incompressible, steady-state, ducted flows, we
will introduce an iterative, CAD-free, continuous, adjoint-based shape optimization
procedure using gaussian filtered sensitivities and mesh morphing with radial basis
function interpolation based on the approach described by [1, 2] for the optimiza-
tion of the front part of the simplified model of a conceptual, generic high-speed
train with respect to drag and pressure wave via single- and multi-objective opti-
mization. We will show that, during pressure wave minimization, it was mainly the
area with the widest sidewise extension in the bogie section which was affected by
the strongest modifications while, on the other hand, for drag optimization the most
sensitive areas and significant changes can be found in the front part of the nose tip
section. First multi-objective investigations for two-dimensional testcases will show
the influence of weighting and morphing parameters on the optimization process
involving objective functions for drag and pressure wave.

1 Introduction

There aremany different numerical strategies to improve the aerodynamic features of
vehicles. Adjoint-based shape optimization techniques were significantly developed
by Pironneau [17, 18] and Jameson [10, 11]. There are two different ways to use
the adjoints in CFD: the discrete [5, 6, 12] and the continuous [15, 16] approach.
According to [14] we will apply the continuous adjoints.
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2 The Adjoint Approach

In our procedure, the solutions of primal and adjoint equations are iteratively used
to calculate surface sensitivities, which are used to modify the shape of the inves-
tigated geometry during mesh morphing. The expression primal equations refers to
the incompressible, steady RANS equations, which the adjoint equations are derived
from. The adjoint equations and boundary conditions depend on the formulation of
the optimization problem, i.e. the objective function. Let J be the objective function
describing an aerodynamic property to be minimized. In most technical applications,
these properties can be usually written as integrals of the pressure p and/or the flow
velocity u = (u1, u2, u3) in volumes Ω and/or on surfaces Γ = ∂Ω .

J :=
∫

Γ

JΓ (p, ui ) dΓ +
∫

Ω

JΩ (p, ui ) dΩ −→ min (1)

State variables providing any minimum of J must, however, satisfy the state
equations, which can be considered as additional constraints of the optimization
problem. In this work, we want to focus on the optimization of incompressible,
steady-state, turbulent flows around trains governed by the incompressible Reynolds-
averaged Navier-Stokes (RANS) equations [14].

Ri := ∂

∂x j

(
ui u j + δi j p − νeff

(
∂ui

∂x j
+ ∂u j

∂xi

))
= 0 (2)

Q := −∂ u j

∂x j
= 0, (i, j = 1, 2, 3) (3)

The effective kinematic viscosity νeff is the sum of molecular and turbulent vis-
cosity (ν + νt). For incompressible flows with constant density ρ, p denotes the
normalized, modified mean pressure

(
p/ρ + 2

3k
)
and ui the predicted Reynolds-

averaged parts (ui ) of the instantaneous velocity ui + u′
i . The turbulent kinetic energy

k = 1
2u′

i u
′
i is calculated from the fluctuating parts u′

i . The resulting constrained opti-
mization problemcanbe solved byusing theLagrange function L [4]. The introduced
Lagrange multipliers, or adjoint variables û = (

û1, û2, û3
)
and p̂ are used to weight

the constraints in Eqs. (2) and (3) to combine them with the cost function J :

L := J +
∫

Ω

[(
ûi Ri ) + ( p̂ Q

)]
dΩ −→ min (4)

The adjoint mean velocity ûi and the adjoint mean pressure p̂ have to be chosen
such that the variations of L wrt. the state variables u = (u1, u2, u3) and p vanish.
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δuL + δp L = δu J + δp J +
∫

Ω

[
ûi

(
δu Ri + δp Ri

) + p̂
(
δu Q + δp Q

)]
dΩ = 0 (5)

Starting with the incompressible, steady RANS Eqs. (2) and (3) and taking
into account the assumption of “frozen turbulence“ (δνeff = 0), integration by parts
and the use of the divergence theorem leads to the incompressible, adjoint RANS
equations

R̂i := ∂ JΩ

∂ui
−

(
∂ ûi

∂x j
+ ∂ û j

∂xi

)
u j + ∂

∂x j

(
δi j p̂ − νeff

(
∂ ûi

∂x j
+ ∂ û j

∂xi

))
= 0 (6)

Q̂ := ∂ JΩ

∂p
− ∂ ûi

∂xi
= 0 (7)

and the associated adjoint boundary conditions for walls and the inlet

ût = 0 (8)

ûn = −∂ JΓ

∂p
(9)

∂ p̂

∂n
= 0 (10)

and for the outlet

p̂ = û · u + ûnun + νeff (n · ∇) ûn + ∂ JΓ

∂un
(11)

0 = unût + νeff (n · ∇) ût + ∂ JΓ

∂ut
(12)

where n and t label the surface normal/tangential components and ∂/∂n describes the
surface normal gradient. The primal equations are used to calculate the primal state
variables ui and p. The solution of the adjoint equations provides the adjoint vari-
ables ûi and p̂. The results are used to determine surface sensitivities via sensitivity
analysis [14] which are used to evaluate the required shape modifications:

∂L

∂n
= −νeff

∂ut

∂n

∂ ût

∂n
(13)

The combination of filtered and smoothed surface sensitivities, preconditioned
by a linear convolution filter with gaussian kernel [19], with surface-normal vec-
tors provides the necessary surface modifications. During mesh morphing, radial
basis function interpolation is used to transfer these surface modifications on the
computational grid [1, 2, 7–9].
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3 Objective Functions

In this paper we will discuss the optimization of two different features of train
aerodynamics. We are using the objective functions for drag and pressure wave
minimization and we combine them for multi-objective optimization.

3.1 Drag Optimization

Thedrag forceF = (F1, F2, F3) acting in the direction of r = (r1, r2, r3) is calculated
from the pressure and the viscous forces on the objective surface of the train Γobj:

J := Firi =
∫

Γobj

cdr
(

pδi j − τi j
)

n jri dΓ =
∫

Γobj

JΓ dΓ, (14)

where τi j = 2νeff 12

(
∂ui
∂x j

+ ∂u j

∂xi

)
describes the viscous stress tensor, νeff = ν + νt the

effective viscosity and n = (n1, n2, n3) the surface normal vector. For unit consis-
tency reasons,we use an additional constant tomodify the dimensions of the objective
function so we can always use the same implementation of the adjoint multipliers
ûi (m/s) and p̂i

(
m2/s2

)
in (4) with every objective function. In this case we use

cdr = 1 (1/m s). This objective function is a surface integral and there are no contri-
butions from the volumeΩ . Consequently, the derivatives of JΩ in (6) and (7) vanish.
Nevertheless, the boundary conditions for ûi and p̂ in (8)–(12)must bemodifiedwith
the according derivatives of the objective function.

3.2 Pressure Pulse Optimization

At its nose and its tail a train generates a characteristical pressurewavewith a positive
and negative pressure peak [3]. For safety and security reasons, this pressure wave
is one of the most important issues of train aerodynamics as it affects objects and
structures around the train. In numerical investigations, the intensity of that pressure
wave can be quantified by integrating the squared differences between the pressure
p and the mean pressure pref over the volume cells Ωobj along a straight line parallel
to the track.

J :=
∫

Ωobj

cpw
2

(p − pref)
2 dΩ =

∫

Ωobj

JΩdΩ (15)
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Here, we use the constant cpw = 1 s/m2. The pressure-wave objective function is
a volume integral which is evaluated in the cells Ωobj along the sampling line. Thus,
we have to include the according derivatives of JΩ needed in the adjoint Eqs. (6)
and (7) while terms containing the derivatives of JΓ vanish completely in (8)–(12)
describing the adjoint boundary conditions.

3.3 Multi-Objective Optimization

There are different approaches for multi-objective optimization. The simplest way
is to use the individual objective functions and just combine the sensitivities at each
morphing step to evaluate one resulting shapemodification for all objective functions
involved. Another way is to run the optimization for a combined objective function.
Here,we can either define a special function describing a physical effect related to and
taking into account all the regarded aerodynamic features as a new, adapted objective
function. This can be a hard search. A much easier way is to sum up the functions
describing all the interesting flow characteristics. Especially if, like in our procedure,
the objective functions always have the same dimensions for implementation reasons.
On the other hand, the values of the different objective functions usually are not the
same order. This can lead to unbalanced combinations, which in turn means that the
optimization procedure will not lead to the desired combined optimum. To achieve
a more balanced optimization, we can weight them with weighting factors b. In this
paper, we combined the two described objective functions for pressure wave (15)
and drag (14):

J :=
∫

Γobj

bdrcdr
(

pδi j − τi j
)

n jri dΓ +
∫

Ωobj

bpwcpw
2

(p − pref)
2 dΩ (16)

4 Simulation Setup

The described continuous adjoint optimization procedure was applied on the con-
ceptional Next Generation Train (NGT) developed at the German Aerospace Center
DLR. For numerical simulations, we used a 1 : 25 scaled model of the NGT. To
reduce the computational effort, only the l = 620mm long, h = 176mm high and
w = 124mmwide front part was used for optimization, with the train floor 19.4mm
above ground. Details like wheels were omitted during the trial of the iterative opti-
mization procedure. Figure1 shows the CAD model of the NGT on the left and
a part of the hybrid computational grid in the symmetry plane on the right. We
used meshes with 2.7 × 106 cells for three-dimensional, and 21033 cells for two-
dimensional simulations of incompressible, steady-state, viscous, turbulent flows,
solving primal and adjoint RANS equations with the k − ω SST turbulence model
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Fig. 1 CAD model of the NGT and the symmetry plane of the hybrid computational grid

for the primal equations and the frozen turbulence approximation for the adjoint
equations. More detailed information about the grid and the simulation setup can be
found in [8]. The specified Reynolds number Re = 12.5 × 104 of the flow is based
on the scaled reference length lRe = 3/25m for trains and on the freestream velocity
ux = 12.5m/s using the kinematic viscosity ν = 1.2 × 10−5 m2/s.

5 Optimized Train Shapes

For this study, we ran two-dimensional and three-dimensional testcases for single-
andmulti-objective drag and pressurewave optimization.Bynow, themulti-objective
optimization procedure combining drag and pressure wave objective functions for
high speed trains was only tested for two-dimensional testcases but it is currently
being applied on three-dimensional configurations as well.

5.1 Two-Dimensional Testcases

For two-dimensional computations of the flow in the symmetry plane of the NGT
we used a hybrid mesh consisting of 30358 grid points forming 21033 cells, 8100 of
which belong to the structured boundary layer mesh.

5.1.1 Drag Optimization

Figure2 shows the drag coefficient of four testcases with different morphing para-
meters, and the resulting optimal nose shapes. The drag coefficients were evaluated
for the entire model, but shape optimization and mesh morphing have been applied
to the nose tip section only, as this has turned out to be the most sensitive area in these
testcases. The area shown in the small pictures on the right represents the deformation
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Fig. 2 Drag coefficient Cd for two-dimensional optimization with different sets of morphing para-
meters and control point distributions and the resulting optimum train nose shapes

area. For c and e, we used a smaller step size, leading to slower deformation, and the
gaussian filter radius was 20% smaller than for a and b. To preserve the train floor
from being affected by the initiated mesh motion, for testcases a–c, we excluded the
sensitivities in the area close the lower corner, with different radii defining the area of
exclusion where mesh motion can drop to zero towards the edge. Another, more effi-
cient strategy, was applied for testcase e, where additional zero-displacements were
preset on the train floor to keep it fixed, independently from the other parameters.
For all testcases, the drag coefficient drops constantly, but then starts to diverge after
reaching a local minimum. Hence, the procedure requires a mechanism that controls
the progress and stops the optimization when reaching a break condition. Further,
the parameter studies reveal that choosing a smaller step size will damp and delay
the divergence, as can be observed for c and e. In addition, sensitivities located close
to edges must be handled with care. They should be smoothed properly and contin-
uously distributed—if need be, by definition of additional zero-valued sensitivities
for fixed surfaces e.g.

5.1.2 Pressure Wave Optimization

In three-dimensional train aerodynamics it is mainly the lateral effect of the pres-
sure wave which is important. However, as there is no lateral dimension in two-
dimensional simulations of a train, we decided to use the area above the NGT,
237mm above ground, for the evaluation of the intensity of the generated pressure
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Table 1 Two-dimensional pressure wave optimization: values of the objective function, Eq. (14)

Iteration 0 1 2 3 4 5 6

JΓ (×10−3) 6.19132 6.19052 6.19038 6.19027 6.19019 6.19014 6.19013

wave according to (15). Table1 shows some values of the pressure wave objective
function for two-dimensional optimization.

5.1.3 Multi-Objective Optimization

For multi-objective optimization, we combined the objective functions for drag and
pressure wave according to Eq. (16). With JΓ,0 = 5.772321 × 10−3 and JΩ,0 =
6.19132 × 10−3, i.e. JΓ,0/JΩ,0 ≈ 0.93, the starting values of the contributing func-
tions have the same order. To demonstrate the influence of weighting factors, we ran
the optimization for bdr = 1 and different values of bpw. Figure3 shows the resulting
nose shapes on the left and the values of the two objective functions on the right. As
expected, with a small factor (bpw = 0.0093), the optimization yields a shape similar
to a drag optimized geometry while, in contrast, an increased value of bpw fore-
grounds the minimization of the pressure wave, which leads to different sensitivities
and hence results in a different shape.

5.2 Three-Dimensional Testcases

For the three-dimensional optimization of the nose part of the NGTwe used a hybrid
meshwith 2.7million cells. 350000 of these cells form the structured boundary layers
around the train and at the ground.

Fig. 3 Optimum shapes of the nose section for different balancing of J = JΓ + bpw × JΩ and the
development of the included objective functions during multi-objective optimization
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Table 2 Three-dimensional drag optimization: values of the objective function, Eq. (14)

Iteration 0 1 2 3

JΓ

(×10−2
)

7.43477 7.43425 7.43257 7.43239

5.2.1 Drag Optimization

During drag optimization for three-dimensional testcases we could obtain first results
shown in Table2. The procedure provides reduced drag coefficients but the step size
of the deformations was chosen rather small to ensure good mesh quality so more
iterations will be needed to achieve a higher reduction of the drag forces.

5.2.2 Pressure Wave Optimization

For three-dimensional pressure wave optimization of the NGT we used a line 0.12m
from the symmetry plane, 0.10m above the ground, according to the procedures
described in [3]. Figure4 shows the extent of the accumulated modifications of the
surface after five morphing steps. During mesh morphing, the maximum surface dis-
placement for each morphing step was limited to the initial boundary layer thickness
(δBLinit ∼ 4.8mm). The largest resulting total deformations can be observed around
the bulges in the lower part where they add up to 300% of the initial boundary
layer. As this objective function is defined and evaluated lateral of the train, and as it
mainly depends on the displacement of the fluid flowing around the vehicle, it seems
straightforward that the results of these calculations mostly aim for modifications in
this part of the body with the largest lateral extension. Figure5 reveals a consequent

Fig. 4 Total surface
displacements after five
iteration steps of pressure
wave optimization

Fig. 5 Pressure pulse of the
NGT and mean pressure
pre f (dashed) along the
evaluation line generated
after five cycles of the
optimization process
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Table 3 Three-dimensional pressure wave optimization: values of the objective function, Eq. (15)

Iteration 0 1 2 3 4 5

JΩ 22.14 20.64 20.68 19.46 18.45 17.60

weakening of the pressure pulse in the evaluation area during the process and the
results of the objective function shown in Table3 confirm that observation. At the
end of runtime the objective function could be reduced by a total of 20%.

6 Summary

Based on the solutions of primal and adjoint Reynolds-Averaged Navier-Stokes
(RANS) equations provided by the open source finite volume solver OpenFOAM
[13], as suggested by Othmer [14], we introduced an iterative, CAD-free shape
optimization process chain with the ability to be run automatically. Following the
approach of de Boer [2] and Bos [1] we have developed a mesh morphing tool
using gaussian filtering and radial basis function interpolation to calculate the new
mesh. The process chain was designed to optimize the shape of an idealized model
of the train head of the conceptional Next Generation Train (NGT), developed at
the German Aerospace Center (DLR), with respect to single and multiple objective
functions. We have applied the procedure to minimize the drag of the vehicle and
the generated pressure wave in two- and three-dimensional testcases. The sensitivity
analysis for pressure waveminimization have revealed that themost sensitive surface
areas are located on the sides of the body close to the bogie sections. On the other
hand, for drag optimization, it is rather the nose sectionwhich has themajor influence
on the objective function. For multi-objective optimization, we have combined these
two objective functions by weighted summation. First results for two dimensional
testcases have already provided optimized shapes while results for three-dimensional
testcases will be available soon.
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