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Abstract Numerical computations using the DLR-TAU code investigate the
differences and similarities between dynamic stall on the two-dimensional OA209
airfoil and the three-dimensional OA209 finite wing. The mean angle of attack in the
two-dimensional computations is reduced to match the effective angle of attack at
the spanwise position where in the finite wing computations the dynamic stall vortex
starts to evolve. Small variations of the mean angle of attack in the two-dimensional
numerical simulations show a change from trailing edge separation only to deep
dynamic stall. The analysis of the three-dimensional flow field reveals that after the
evolution of the dynamic stall vortex the flow field is split into two parts: 1. High
spanwise velocities towards the wing’s root in the region between the plane of the
first occurrence of stall and the wing’s root. 2. High spanwise velocities towards the
wing’s tip in the region between the plane of the first occurrence of stall and wing tip.

1 Introduction

In forward flight conditions and during maneuvers the helicopter airfoil can dynam-
ically stall leading to strong pitching moment peaks and thus to a limitation of the
helicopter flight envelope. Traditionally, research into dynamic stall relies strongly
on two-dimensional experiments [1, 2] where the wing spans the whole width of the
wind tunnel and on two-dimensional numerical simulations [3, 4]. But as dynamic
stall is a strongly three-dimensional phenomenon, it is necessary to understand how
three-dimensional dynamic stall differs from two-dimensional dynamic stall, so that
the value of existing two-dimensional dynamic stall data can be maximized.
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Investigations of three-dimensional dynamic stall with one free end were
experimentally investigated by Lorber [5] and numerically by Spentzos [6]. Both
showed the three-dimensional stall results in a generation of a dynamic stall vortex
near the wing root, which then spreads rapidly in the spanwise direction. In the wing
tip region the dynamic stall vortex is suppressed due to the interaction with the blade
tip vortex and the flow in this region is strongly curved.

A finite wing model (Fig. 1) using an untwisted OA209 cross section with thick-
ened root at y/s = 0 and rounded tip at y/s = 1was previously numerically investigated
[7] using theDLR-TAUcode andONERA’s elsA code under dynamic stall conditions
(Ma = 0.16, Re = 1 × 106, α = 17◦ ± 5◦, k = π f c/U∞ = 0.1). The geometry
was selected to match the ONERA finite wing experiment which was performed in
the ONERA F2 wind tunnel [8].

In this work, two-dimensional and three-dimensional computations on the OA209
finite wing using DLR-TAU are compared to investigate the differences and similar-
ities between two-dimensional and three-dimensional dynamic stall effects.

2 Numerical Method

RANS and URANS computations were performed with the two-dimensional OA209
airfoil and with the three-dimensional OA209 finite wing based on the experiment of
Le Pape et al. [8]. TheOA209 finitewingmodel (Fig. 1) was numerically investigated
using the DLR-TAU code [9] under the following dynamic stall conditions: Ma =
0.16, Re = 1×106, α = 17◦±5◦ and k = π f c/U∞ = 0.1. The two-dimensional
computations were investigated under the same flow conditions, but with a different
mean angle of attack to match the effective angle of attack at the position where
dynamic stall first occurred in 3D. The wing and the airfoil were pitched around the
quarter chord line by changing the farfield boundary conditions.

The numerical simulations were solved on an unstructured mixed element grid
using a finite volume approach. A Roe scheme and a central method with artificial

Fig. 1 CAD model of the
finite wing showing the
positions of PIV, LDV and
pressure measurements with
contours of the
non-dimensional streamwise
velocity Ux = Uxlocal /U∞
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scalar dissipation were used to solve the viscous fluxes and the inviscid fluxes,
respectively. To prevent accuracy from degrading and convergence from degener-
ation due to the small onflow Mach number, low Mach number preconditioning was
applied. The computations did not consider transition and the two-equation Menter
SST turbulence model [10] was used to close the RANS and URANS equations.
The three-dimensional URANS computations were run for 5 pitching cycles with
1500 iterations per period and 3000 iterations for the fifth period computed and the
two-dimensional URANS computations were run for 3 pitching cycles using 3000
iterations per period leading to a physical time step of Δt = 0.000057 s. 300 inner
iterations were used for both cases to produce a time-converged solution with a drop
of the Newton residuals by at least 1 order of magnitude during the whole dynamic
stall cycle.

For the three-dimensional mesh a hemispherical computational domain with 500
chord radius, symmetry conditions at the side of the wing’s root and far field condi-
tions at all other boundaries was used. An unstructured mixed element grid with 30
prisms in the normal direction to resolve the boundary layer and tetrahedral cells in
the outer flow field was created with the method used by Richter et al. [4]. The height
of the first prismatic layer and the stretching factor were adjusted to reach y+ ≤1
and the boundary layer thickness, respectively. The prerefined trapezoidal area with
a streamwise length of 6c, a maximum height of 5c and cell sizes of l/c = 3.33%, of
Richter et. al. [4] was stretched in the spanwise direction. It extends from the wing’s
root over the whole wing up to a half chord length over the wing’s tip to resolve the
wake and the vortices from dynamic stall and the blade tip.

To obtain comparable results the two-dimensional grid had the same resolution
as the three-dimensional grid at y/s = 0.36 (Fig. 2), a circular far field with 500 chord
radius and symmetry conditions in the spanwise direction.

Fig. 2 Grid resolution in the outer field of the three-dimensional grid at y/s = 0.36 (left) and the
two-dimensional grid (right)
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3 Results

The three-dimensional DLR-TAU dynamic stall computations using theMenter SST
turbulencemodel were visualized using isosurfaces of the λ2 criterion and color plots
of CP at a snapshot of α = 20.6◦ ↓ on the downstroke, showing the strongly three-
dimensional flow around the finite wing in Fig. 3. The evolution of an Ω-shaped
dynamic stall vortex at y/s≈0.40 can be seen and that separation close to the wing
tip and the wing root is suppressed due to the reduction of the effective angle of
attack. Furthermore, the blunt shape of the root leads to a continuous shedding of
vortices. Figure 4 shows the sectional lift coefficient at y/s = 0.36 and y/s = 0.50.
During the upstroke the behavior is identical, but stall at y/s = 0.50 is triggered by the
arrival of the Ω-shaped dynamic stall vortex first formed further inboard, resulting
in additional lift as the base point of the vortex passes the section, whereas y/s = 0.36
stalls as a two-dimensional airfoil.

Figure 5 compares the sectional lift coefficient of static two-dimensional com-
putations with the lift coefficient of static three-dimensional simulations at y/s =
0.36, approximately where the dynamic stall vortex starts to evolve. Due to three-
dimensional effects the effective angle of attack at stall is reduced by Δα ≈5◦ and
the gradient of the slope is reduced (ΔCL /Δα = 0.07/◦ for the three-dimensional case
and ΔCL /Δα = 0.11/◦ for the two-dimensional case).

Figure 5 showed that the effective angle of attack is reduced by Δα ≈5◦,
therefore two-dimensional URANS computations with the same settings as in the
three-dimensional case, but with mean angles of attack reduced by Δα = 4 − 6◦,
were performed to obtain the same effective angle of attack. In Fig. 6 large differ-
ences occur between the computations. The computations with lowest mean angle of

Fig. 3 Three-dimensional
dynamic stall behavior
around the OA209 wing.
Visualized by means of
isosurfaces of the λ2
criterion at α = 20.6◦ ↓

Fig. 4 Comparison of lift
for 3D dynamic DLR-TAU
computations using Menter
SST between y/s = 0.36 and
y/s = 0.5
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Fig. 5 Comparison of lift
for static DLR-TAU
computations using Menter
SST between the
two-dimensional case and
the three-dimensional case at
y/s = 0.36
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attackαmean = 11.0◦ shows only a small hysteresis in lift, whereas atαmean = 12.0◦ a
significant drop in lift at α = 15◦ ↓ on the downstroke occurs, Fig. 6 (left). For the
three highest mean angles of attack (αmean = 12.2◦, αmean = 12.5◦, αmean = 13.0◦)
stall occurs earlier with an additional overshoot in lift.

The strong sensitivity becomes even clearer when looking at the pitchingmoment,
Fig. 6 (right). The computation with αmean = 11.0◦ results in a counterclockwise
rotating curve, whereas the curve of αmean = 12.0◦ exhibit a pronounced pitch-
ing moment peak of CMP = −0.15 at α = 15.1◦ ↓ on the downstroke. The higher
the mean angle the larger the pitching moment peak becomes: CMP = −0.21 at
α = 15.2◦ ↓ for αmean = 12.1◦, CMP = −0.40 at α = 14.7◦ ↓ for αmean = 12.2◦,
CMP = −0.52 at α = 15.9◦ ↓ for αmean = 12.5◦ and CMP = −0.54 at α = 17.2◦ ↓
forαmean = 13.0◦. Especially, the large change fromαmean = 12.1◦ toαmean = 12.2◦
where the pitching moment peak increases by 90% is significant. In contrast the
pitching moment between αmean = 12.5◦ and αmean = 13.0◦ does not increase sig-
nificantly (+4%), but the pitching moment peak is moved to a higher angle of attack
(+1.3◦).

Figure 7 shows the comparison between three-dimensional dynamic stall com-
putations at y/s = 0.36 and two-dimensional dynamic stall computations with
αmean = 12.1◦. For clarity the three-dimensional data was shifted by Δα = −4.9◦
to display approximately the effective angle of attack for the three-dimensional case.
This two-dimensional case provides the most comparable integrated values with the
three-dimensional dynamic stall case at the section of the origin of the dynamic stall
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Fig. 6 Comparison between two-dimensional computations using different mean angles of attack.
Left lift. Right pitching moment
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Fig. 7 Comparison between two-dimensional computations with αmean = 12.1◦ and the three-
dimensional computations at y/s = 0.36 shifted by Δα = −4.9◦ to display approximately the effec-
tive angle of attack. Left lift. Right pitching moment

vortex, both for the lift (left) and for the pitching moment (right). For other sec-
tions of the three-dimensional case the results differ from the two-dimensional case,
because stall is triggered by the formation of the dynamic stall vortex at y/s = 0.36.
The lift gradient is ΔCL /Δα = 0.03/◦ higher and the pitching moment peak is 11%
stronger and 0.9◦ earlier with respect to the changed effective angle of attack in the
two-dimensional case.

Although the integratedvalues of these twocases are comparable, the aerodynamic
behavior is completely different as Figs. 8 and 9 show. Figure 8 shows snapshots
of the CP distribution and the streamlines around the finite wing at y/s = 0.36 for
angles of attack around stall. At αmax = 22◦ the flow starts to separate at the trailing
edge, at α = 20.8◦ ↓ on the downstroke the dynamic stall vortex is already formed
around the leading edge and moves downstream and spreads in the further process,
α = 20.2◦ ↓ and α = 19.4◦ ↓.

In contrast to the three-dimensional case the flow in 2D (Fig. 9) shows a less
pronounced stall region. At α = 16.9◦ ↓ the flow is separated at the trailing edge,
this subsequently enlarges and a vortex is formed within the separated region at
α = 14.2◦ ↓ leading to the pitching moment peak seen in Fig. 7.

The aerodynamic behavior of the two-dimensional computations using
αmean = 12.5◦ is shown in Fig. 10. For this case the beginning of the flow separation
is comparable to the three-dimensional case as a vortex is formed at the leading edge
at α = 16.9◦ ↓ (Fig. 10b), which then spreads as it moves downstream. The rea-
son for the differences between the three-dimensional case and the two-dimensional
case with αmean = 12.5◦ is due to the different strength of the vortex as it reaches
the trailing edge, where in the two-dimensional case the vortex is much more pro-
nounced and in the three-dimensional case the vortex loses it’s strengthwhilemoving
downstream.

The big difference between two-dimensional and three-dimensional flow is of
course the additional degree of freedom in the spanwise direction. Spanwise veloci-
ties in the two-dimensional case are nonexistent. To investigate this influence and the
process of the dynamic stall evolution in the spanwise direction, the non-dimensional
spanwise velocities Vy = Vylocal /U∞ and streamlines over the finite wing with the
wing root on the left and the wing tip on the right are plotted in Fig. 11 at x/c =
0.25 for α = 12.5◦ ↑, α = 21.8◦ ↑, α = 21.2◦ ↓, α = 20.7◦ ↓, α = 19.6◦ ↓ and
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Fig. 8 Stall behavior of the three-dimensional computation at y/s = 0.36

Fig. 9 Stall behavior of the two-dimensional computation 12.1◦±5◦
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Fig. 10 Stall behavior of the two-dimensional computation 12.5◦±5◦

α = 18.0◦↓. During attached flow (Fig. 11a), Vy is close to zero in the middle region
of the wing. The flow becomes more three-dimensional when moving towards the
wing’s tip or the wing’s root, with velocities towards the middle of the wing on the
suction side and outboard on the pressure side of the wing. With increasing angles of
attack this effect increases, see Fig. 11b. In Fig. 11c, the dynamic stall vortex evolves
and the flow field is split into two parts, left and right of the spanwise position of
the starting point of dynamic stall. Figure 11d–f show that large spanwise velocities
occur on the suction side of the finite wing, which temporarily exceed the inflow
velocity (not shown). Rootward of the starting point of dynamic stall the velocity is
pointed towards the wing’s root and tipward of the starting point of dynamic stall
the velocity is pointed towards the wing’s tip. Figure 11d shows that the spanwise
velocity is initially reduced to a small area close to the evolution point of dynamic
stall at α = 20.7◦ ↓, but then spreads fast and covers almost the whole area on the
suction side of the wing as the airfoil pitches down, see Fig. 11e, f. Due to this
velocity the dynamic stall vortex is deflected out of the plane where it occurs first
and is weakened in the plane at y/s = 0.36.
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Fig. 11 Non-dimensional spanwise velocity Vy = Vylocal /U∞ of the three-dimensional case at x/c
= 0.25
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4 Conclusion

Two-dimensional and three-dimensional numerical simulations were performed
using DLR-TAU. The analysis of the static computations showed that the effective
angle of attack is reduced byΔα ≈-5◦. Two-dimensionalURANS computationswith
the variation of the mean angle of attack from αmean = 11◦ to αmean = 13◦ revealed
the strong sensitivity of the dynamic stall behavior in this range, resulting in trailing
edge separation only at αmean = 11◦ and in deep dynamic stall at αmean = 13◦. The
change of the mean angle of attack from αmean = 12.1◦ to αmean = 12.2◦ resulted in
an increase of the pitching moment of 90%.

The analysis of the three-dimensional dynamic stall computations revealed the
flow field is separated into two parts with high spanwise velocities moving towards
the root in the inner part and high spanwise velocities moving towards the blade tip
in the outer part. These velocities result in the deflection of the dynamic stall vortex
out of the section where it evolves and a reduced pitching moment in this section.

Further investigations on the influence of the amplitude and the frequency on the
dynamic stall behavior will be carried out.
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