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Abstract

We consider Bayesian nonparametric density estimation with a Dirichlet process
kernel mixture as a prior on the class of Lebesgue univariate densities, the
emphasis being on the achievability of the error rate n�1=2, up to a logarithmic
factor, depending upon the kernel. We derive rates of convergence for the Bayes’
estimator of super-smooth densities that are location-scale mixtures of densities
whose Fourier transforms have sub-exponential tails. We show that a nearly
parametric rate is attainable in the L1-norm, under weak assumptions on the
tail decay of the true mixing distribution and the overall Dirichlet process base
measure.

1 Introduction

Consider the estimation of a density f0 on R from observations X1; : : : ; Xn taking
a Bayesian nonparametric approach. A prior is defined on a metric space of
probability measures with Lebesgue density and a summary of the posterior, e.g.,
the posterior expected density, is employed. The so-called what if approach, which
consists in investigating frequentist asymptotic properties of the posterior, under the
non-Bayesian assumption that the data are generated from a fixed density, provides
a way to validate priors on infinite-dimensional spaces. Desirable asymptotic prop-
erties of posterior distributions are consistency, minimax-optimal concentration rate
of the posterior mass around the “truth” as the sample size grows, possibly with full
adaptation to the regularity level of f0, if unknown, and distributional convergence.
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For bounded and convex distances, posterior contraction rates yield upper bounds on
convergence rates of the Bayes’ estimator, thus motivating the interest in their study.
Since the seminal articles of Ferguson [2] and Lo [4], the idea of constructing priors
on spaces of densities by convoluting a fixed kernel with a random distribution has
been successfully exploited in density estimation. Even if much progress has been
done during the last decade in understanding frequentist asymptotic properties of
mixture models, the choice of the kernel is a topic largely ignored in the literature,
except for the article of Wu and Ghosal [9], mainly focussed on consistency.
Posterior contraction rates for Dirichlet process kernel mixture priors have been
investigated by Ghosal and van der Vaart [3] and Scricciolo [5]. One key message
is that some constraints on the regularity of the kernel and on the tail decay of the
true mixing distribution are necessary to accurately estimate a density. Most of the
literature has dealt with the estimation of mixtures, with normal (or generalized
normal) kernel and mixing distribution having either compact support or sub-
exponential tails, finding a nearly parametric rate, up to a logarithmic factor, in
the L1-distance, but there are almost no results beyond the Gaussian kernel. The aim
of this work is to contribute to the understanding of the role of the kernel choice
in density estimation with a Dirichlet process mixture prior. The main result states
that a nearly parametric rate can be attained to estimate mixtures of super-smooth
densities having Fourier transforms that decay exponentially, whatever the kernel
tail decay, heavy tailed distributions, like Student’s-t or Cauchy, being included,
which have been proved to be extremely useful in accurately modeling different
kinds of financial data. For example, individual stock indices can be modeled as
stable laws. Multivariate stable laws have been fruitfully used in computer networks,
see Bickson and Guestrin [1]. The assumption on the exponential tail decay of the
true mixing distribution seems unavoidable in order to find a finite approximating
mixture with a sufficiently restricted number of points. This step is a delicate
mathematical point in the proof, see Lemma 1. Such an approximation result, which
is reported in the Appendix, may be of autonomous interest as well. In Sect. 2, we
fix the notation and present the result.

2 Main Result

We derive rates for location-scale mixtures of super-smooth densities. The model is
fF; G.x/ WD R 1

0
.F � K� /.x/ dG.�/, x 2 R, where K is a kernel density, F � D˛

is a Dirichlet process with base measure ˛ WD ˛.R/ N̨ , for 0 < ˛.R/ < 1
and N̨ a probability measure on R, and G � Dˇ , with finite and positive base
measure ˇ on .0; 1/. We assume that f0 D fF0; G0 , with F0 and G0 denoting the
true mixing distributions for the location and scale parameters, respectively. We use
the following assumptions.
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.A/ The true mixing distribution G0 for the scale parameter satisfies

Z 1

0

� dG0.�/ < 1 and
Z 1

0

1

�
dG0.�/ < 1: (1)

Also, for constants d1; d2 > 0 and 0 < �0
1 ; �0

2 � 1,

G0.s/ . e�d1s��0
1 as s ! 0 and 1 � G0.s/ . e�d2s�0

2 as s ! 1:

.B/ The base measure ˇ of the Dirichlet process prior for G has a continuous and
positive Lebesgue density ˇ0 on .0; 1/ such that, for constants Cj; Dj > 0,
j D 1; : : : ; 4, q1; q2; r1; r2 � 0 and 0 < �1; �2 � 1,

C1��q1 e�C2���1 .log.1=�//r1 � ˇ0.�/ � C3�
�q1 e�C4���1 .log.1=�//r1 (2)

for all � in a neighborhood of 0, and

D1�
q2 e�D2��2 .log �/r2 � ˇ0.�/ � D3�

q2 e�D4��2 .log �/r2 (3)

for all � large enough.

Remark 1 The right-hand side requirement in (1) has also been postulated by
Tokdar [7], see condition 3 of Lemma 5.1 and condition 4 of Theorem 5.2, pp. 102–
103. If, for example, G0 is an IG.�; �/, with shape parameter � > 0 and scale
parameter � > 0, then

R 1
0 ��1 dG0.�/ D .�=�/ < 1. If G0 is a right-truncated

distribution, then the requirement on the upper tail is satisfied with �0
2 D 1. A right-

truncated Inverse-Gamma distribution meets all the requirements of assumption
.A/.

Remark 2 Condition (2) is satisfied (with r1 D 0) if ˇ0 is an Inverse-Gamma
distribution. It can be seen that (2) implies that

ˇ..0; s�/ � exp

�

�C4

2
s��1

�

log
1

s

�r1
�

. e� 1
2 C4s��1 as s ! 0:

Condition (3) has been considered by van der Vaart and van Zanten [8], p. 2660, and
implies that ˇ..s; 1// . exp f�D4s�2 =2g as s ! 1, see Lemma 4.9, p. 2669.

We assess rates for location-scale mixtures of symmetric stable laws. The result
goes through to location-scale mixtures of Student’s-t distributions.

Theorem 1 Let K be the density of a symmetric stable law of index 0 < r � 2.
Suppose that f0 D R 1

0
.F0 � K� / dG0.�/, with the true mixing distribution F0 for the
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location parameter satisfying the tail condition

F0.f� W j� j > tg/ . exp f�c0t1CI.1; 2�.r/=.r�1/g for large t > 0; (4)

for some constant c0 > 0, and the true mixing distribution G0 for the scale
parameter satisfying assumption .A/, with �0

2 D 1. If the base measure ˛ has
a density ˛0 such that, for constants b > 0 and 0 < ı � 1 C I.1; 2�.r/=.r � 1/,
satisfies

˛0.�/ / e�bj� jı ; � 2 R; (5)

the base measure ˇ satisfies assumption .B/, with 0 < �j � �0
j � 1 and �j < �0

j
if rj > 0, j D 1; 2, then the posterior rate of convergence relative to the Hellinger
distance is "n D n�1=2.log n/� , with � > 0 depending on �0

1 ; �1; �2, and r.

Proof The proof is in the same spirit as that of Theorem 4.1 in Scricciolo [6], which,
for space limitations, cannot be reported here. Let N"n D n�1=2.log n/� and Q"n D
n�1=2.log n/	 , with � > 	 > 0 whose rather lengthy expressions we refrain from
writing down. Let 0 < sn � E.log.1= N"n//

�2	=�1 , 0 < Sn � F.log.1= N"n//
2	=�2 , and

0 < an � L.log.1= N"n//
2	=ı, with E; F; L > 0 suitable constants. Replacing the

expression of N in (A.19) of Lemma A.7 of Scricciolo [6], with that in Lemma 1,
we can estimate the covering number of the sieve set

Fn WD f fF; G W F.Œ�an; an�/ � 1 � N"n=2; G.Œsn; Sn�/ � 1 � N"n=2g

and show that log D.N"n; Fn; dH/ . .log n/2� D n N"2
n. Verification of the remaining

mass condition 
.F c
n / . exp f�.c2 C 4/n Q"2

ng can proceed as in the aforementioned
theorem using, among others, the fact that 2	 > 1.

We now turn to consider the small ball probability condition. For 0 < " < 1=4,
let a" WD .c�1

0 log.1=.s""///1=.1CI.1; 2�.r/=.r�1// and s" WD .d�1
1 log.1="//�1=�0

1 . Let
G�

0 be the re-normalized restriction of G0 to Œs"; S0�, with S0 the upper endpoint
of the support of G0, and F�

0 the re-normalized restriction of F0 to Œ�a"; a"�. Then,
kfF�

0 ; G�

0
� f0k1 . ". By Lemma 1, there exist discrete distributions F0

0 WD PN
jD1 pjı�j

on Œ�a"; a"� and G0
0 WD PN

kD1 qkı�k on Œs"; S0�, with at most N . .log.1="//2	�1

support points, such that k fF0

0; G0

0
� fF�

0 ; G�

0
k1 . ". For T" WD .2a" _ "�1=.rCI.0; 1�.r///,

kfF0

0; G0

0
� fF�

0 ; G�

0
k1 . T"kfF0

0; G0

0
� fF�

0 ; G�

0
k1 C T�r

" . "1�1=.rCI.0; 1�.r//:

Without loss of generality, the �j’s and �k’s can be taken to be at least 2"-separated.
For any distribution F on R and G on .0; 1/ such that

NX

jD1

jF.Œ�j � "; �j C "�/ � pjj � " and
NX

kD1

jG.Œ�k � "; �k C "�/ � qkj � ";
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by the same arguments as in the proof of Theorem 4.1 in Scricciolo [6],

kfF; G � fF0

0; G0

0
k1 . ":

Consequently,

d2
H. fF; G; f0/ � kfF; G � fF0

0; G0

0
k1 C kfF0

0; G0

0
� fF�

0 ; G�

0
k1 C kfF�

0 ; G�

0
� f0k1

. "1�1=.rCI.0; 1�.r//:

By an analogue of the last part of the same proof, we get that 
.BKL. f0I Q"2
n// &

exp f�c2n Q"2
ng.

Remark 3 Assumptions (4) on F0 and (5) on ˛0 imply that supp.F0/ � supp.˛/,
thus, F0 is in the weak support of D˛. Analogously, assumptions .A/ on G0 and
.B/ on ˇ0, together with the restrictions on �0

j ; �j, j D 1; 2, imply that supp.G0/ �
supp.ˇ/, thus, G0 is in the weak support of Dˇ.

Remark 4 If �1 D �2 D 1, then also �0
1 D �0

2 D 1, i.e., the true mixing
distribution G0 for � is compactly supported on an interval Œs0; S0�, for some
0 < s0 � S0 < 1, and (an upper bound on) the rate is given by "n D n�1=2.log n/� ,
with � whose value for Gaussian mixtures (r D 2) reduces to the same found by
Ghosal and van der Vaart [3] in Theorem 6.1, p. 1255.

Appendix

The following lemma provides an upper bound on the number of mixing com-
ponents of finite location-scale mixtures of symmetric stable laws that uniformly
approximate densities of the same type with compactly supported mixing distribu-
tions. We use E and E

0 to denote expectations corresponding to priors G and G0 for
the scale parameter ˙ , respectively.

Lemma 1 Let K be a density with Fourier transform such that, for constants A; � >

0 and 0 < r < 2, ˚K.t/ D Ae��jtjr , t 2 R. Let 0 < � < 1, 0 < a < 1 and
0 < s � S < 1 be given, with .a=s/ � 1. For any pair of probability measures F
on Œ�a; a� and G on Œs; S�, there exist discrete probability measures F0 on Œ�a; a�

and G0 on Œs; S�, with at most

N .

8
<̂

:̂

a
s � �

S
s

�r �
log 1

s�

�1C1=r
; if 0 < r � 1;

max
n�

a
s

�r=.r�1/
;

�
S
s

�r=.r�1/ �
log 1

sr�

�1=.r�1/
o

; if 1 < r < 2;

support points, such that kEŒF � K˙� � E
0ŒF0 � K˙�k1 . �.
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Proof We consider first the case where 1 < r < 2 because, since .a=s/ � 1 by
assumption, we can appeal to Lemma A.1 of Scricciolo [6]. The arguments of the
first part of the proof can be then used to deal also with the case where 0 < r � 1.
For each s � � � S, since

R 1
�1 j˚K.� t/j dt < 1, the inversion formula can be

applied to recover both F � K� and F0 � K� . For any M > 0 and x 2 R,

jEŒ.F � K˙ /.x/� � E
0Œ.F0 � K˙ /.x/�j

D 1

2


ˇ
ˇ
ˇ
ˇ
ˇ

Z S

s

Z 1

�1
e�itx˚K.� t/˚F.t/ dt dG.�/

�
Z S

s

Z 1

�1
e�itx˚K.� t/˚F0.t/ dt dG0.�/

ˇ
ˇ
ˇ
ˇ
ˇ

D 1

2


ˇ
ˇ
ˇ
ˇ
ˇ

�Z

jtj�M
C

Z

jtj>M

�

e�itx
�
˚F.t/EŒ˚K.˙ t/� � ˚F0.t/E0Œ˚K.˙ t/�

	
dt

ˇ
ˇ
ˇ
ˇ
ˇ
:

Let

U WD 1

2


ˇ
ˇ
ˇ
ˇ
ˇ

Z

jtj�M
e�itx

�
˚F.t/EŒ˚K.˙ t/� � ˚F0.t/E0Œ˚K.˙ t/�

	
dt

ˇ
ˇ
ˇ
ˇ
ˇ

and

V WD 1

2


ˇ
ˇ
ˇ
ˇ
ˇ

Z

jtj>M
e�itx

�
˚F.t/EŒ˚K.˙ t/� � ˚F0.t/E0Œ˚K.˙ t/�

	
dt

ˇ
ˇ
ˇ
ˇ
ˇ
:

For M � .�1=rs/�1.log.1=.sr"///1=r,

V � A

2


Z

jtj>M

Z S

s
e��.� jtj/r

d.G C G0/.�/ dt . ":

In order to find an upper bound on U, we apply Lemma A.1 of Ghosal and van der
Vaart [3], p. 1260, to both F and G. There exists a discrete probability measure F0
on Œ�a; a�, with at most N1 C 1 support points, where N1 is a positive integer to
be suitably chosen later on, such that it matches the (finite) moments of F up to the
order N1, i.e., E0Œ
j� D EŒ
j� for all j D 1; : : : ; N1. Analogously, there exists a
discrete probability measure G0 on Œs; S�, with at most N2 support points, where N2

is a positive integer to be suitably chosen later on, such that

E
0Œ˙ r`� WD

Z S

s
� r` dG0.�/ D

Z S

s
� r` dG.�/ DW EŒ˙ r`�; ` D 1; : : : ; N2 � 1:
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Both N1 and N2 will be chosen to be increasing functions of ". In virtue of the latter
matching conditions,

ˇ
ˇEŒ˚K.˙ t/� � E

0Œ˚K.˙ t/�
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇ
ˇ
E

"

˚K.˙ t/ � A
N2�1X

`D0

.�.˙ jtj/r/`

`Š

#ˇ
ˇ
ˇ
ˇ
ˇ

C
ˇ
ˇ
ˇ
ˇ
ˇ
E

0
"

˚K.˙ t/ � A
N2�1X

`D0

.�.˙ jtj/r/`

`Š

#ˇ
ˇ
ˇ
ˇ
ˇ

� 2A

.N2/Š
.�.Sjtj/r/N2 ; t 2 R: (6)

Using arguments of Lemma A.1 in Scricciolo [6] and inequality (6),

U � 1

2


Z

jtj�M

ˇ
ˇ˚F.t/EŒ˚K.˙ t/� � ˚F0.t/E0Œ˚K.˙ t/�

ˇ
ˇ dt

� 1

2


Z

jtj�M

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˚F.t/ �

N1X

jD0

.it/j

jŠ
EŒ
j�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
EŒj˚K.˙ t/j� dt

C 1

2


Z

jtj�M

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
˚F0.t/ �

N1X

jD0

.it/j

jŠ
E

0Œ
j�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
E

0Œj˚K.˙ t/j� dt

C 1

2


N1X

jD0

jEŒ
j�j
jŠ

Z

jtj�M
jtjj ˇ

ˇEŒ˚K.˙ t/� � E
0Œ˚K.˙ t/�

ˇ
ˇ dt

� 4AaN1


r.�sr/.N1C1/=r

� ..N1 C 1/=r/

� .N1 C 1/
C 2A


.N2/Š
.1 C aM/N1 .�.SM/r/N2M

� 4AaN1


r.�sr/.N1C1/=r

� ..N1 C 1/=r/

� .N1 C 1/
C

p
2A.1 C aM/N1 .�.SM/r/N2M


3=2e�N2NN2�1=2
2

;

where, in the last line, we have used Stirling’s approximation for .N2/Š, assuming
N2 is large enough. For N1 . maxflog.1=.s"//; .a=s/r=.r�1/g,

U1 WD 4AaN1


r.�sr/.N1C1/=r

� ..N1 C 1/=r/

� .N1 C 1/
. ":

Let M be such that aM � 1 and .�1=rSM/ � 2a. Then, for N2 � maxf.2N1 C 1/.r �
1/=.r.2 � r//; e3.�1=rSM/r=.r�1/; log.1="/g,

.1 C aM/N1 .�.SM/r/N2M � .�1=rSM/rN2C2N1C1 � .�1=rSM/rN2=.r�1/



56 C. Scricciolo

and

U2 WD
p

2A.1 C aM/N1 .�.SM/r/N2M


3=2e�N2NN2�1=2
2

. ":

Hence, N2 . maxf.a=s/r=.r�1/; ..S=s//r=.r�1/ .log.1=sr"//1=.r�1/g.
In the case where 0 < r � 1, since .a=s/ � 1, we need to restrict the support

of the mixing distribution F. To the aim, we consider a partition of Œ�a; a� into
k D d.a=s/.log.1=.s"///1=r�1e subintervals I1; : : : ; Ik of equal length 0 < l �
2s.log.1=.s"///�.1�r/=r and, possibly, a final interval IkC1 of length 0 � lkC1 < l.
Let J be the number of intervals in the partition, which can be either k or k C 1.
Write F D PJ

jD1 F.Ij/Fj, where Fj denotes the re-normalized restriction of F to Ij.

Then, for each s � � � S, we have .F � K� /.x/ D PJ
jD1 F.Ij/.Fj � K� /.x/, x 2 R.

For any probability measure F0 such that F0.Ij/ D F.Ij/, j D 1; : : : ; J,

jEŒ.F � K˙/.x/� � E
0Œ.F0 � K˙/.x/�j

�
JX

jD1

F.Ij/jEŒ.Fj � K˙ /.x/� � E
0Œ.F0

j � K˙ /.x/�j; x 2 R:

Reasoning as in the case where 1 < r < 2, with a to be understood as l=2 and N1 as
the number of support points of the generic Fj, for M � ..�=2/1=rs/�1.log.1="//1=r,

jEŒ.Fj � K˙ /.x/� � E
0Œ.F0

j � K˙ /.x/�j . U C V . .U1 C U2/ C "; x 2 R:

Since .a=s/ . .log.1=.s"///�.1�r/=r by construction, for N1 D log.1=.s"//, it turns
out that U1 . ". For N2 � maxfN1; 2e4�.SM/r log.1=.s"//; log.1="/g,

.1 C aM/N1 .�.SM/r/N2M � M.2�.SM/r log.1=.s"///N2

and U2 . ". Then, N2 . .S=s/r.log.1=.s"///2 and the total number NT of support
points of F0 is bounded above by

J � N1 . J � N2 . a

s
�

�
S

s

�r �

log
1

s"

�1C1=r

:

The proof is thus complete.

Remark 5 Lemma 1 does not cover the case where r D 2, i.e., the kernel is
Gaussian: this might possibly be due to the arguments laid out in the proof. This
case can be retrieved from Lemma A.2 in Scricciolo [6] when p D 2.
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