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Abstract. We propose a new family of quality metrics for graph draw-
ing; in particular, we concentrate on larger graphs. We illustrate these
metrics with examples and apply the metrics to data from previous exper-
iments, leading to the suggestion that the new metrics are effective.

1 Introduction

Several of the earliest papers on Graph Drawing (for example, [21–23]) discussed
requirements for a “good” visualization of a graph. For example, Tamassia et al.
[22] state:

Aesthetics: We use the term aesthetics to denote the criteria that con-
cern certain aspects of readability. A well-admitted aesthetics, valid inde-
pendently from the graphic standard, is the minimisation of crossings
between edges. Also, in order to avoid unnecessary waste of space, it is
usual to keep the area occupied by the drawing reasonably small. When
the grid standard is adopted, it is meaningful to minimize the number of
bends (turns) along the edges, as well as their total length.

We prefer the term quality metric rather than “aesthetics”. The underlying and
often unstated assumption that these geometric properties of layout measure
the “goodness” of a graph drawing was unchallenged until the experiments of
Purchase [20]. These experiments showed that task performance is correlated
with some of the previously defined quality metrics. A conclusive result was
that human task times and error rates were both correlated with the number of
edge crossings. Subsequent experiments have confirmed and refined these initial
results [11,17–19,25]. All these early experiments used relatively small graphs
as stimuli; human experiments with larger graphs began recently [13,14]. In
particular it has been pointed out that edges and vertices become “blobs” in
large graph drawings such as the biological network in Fig. 1; almost all the edge
crossings are hidden in the blobs. Any causal relationship between readability
and the number of edge crossings seems unlikely. In this paper we propose a
quality metric for large drawings such as Fig. 1.
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Fig. 1. Crossings can be hidden in a drawing of a large graph.

Although it is seldom explicitly stated as a quality metric for graph drawing,
stress is often used as such. There are various measures of stress (for example,
see [5,6,8,10]); the most commonly used is to define the stress in a drawing D

of a connected graph G = (V,E) as
∑

u,v∈V wuv (dG(u, v) − d�2(D(u),D(v)))2,
where dG(u, v) is the graph theoretic distance between u and v, d�2(D(u),D(v))
is the Euclidean distance between the locations D(u) and D(v) of u and v, and
wuv is a constant. Stress appears to measure the faithfulness of a graph draw-
ing [15] rather than its readability. For example, a low value of the stress in a
drawing indicates that the Euclidean distances between vertices are (approxi-
mately) proportional to the graph-theoretic distances in the graph.

Quality metrics are significant simply because they measure success or failure
of a graph drawing method. Most importantly, they are used as optimisation
goals in graph drawing algorithms. Methods that aim to draw graphs with a small
number of crossings are well established in the literature. Stress minimization
algorithms, in one form or another, are by far the most popular methods for
drawing undirected graphs.

This paper proposes a new family of quality metrics for graph visualization,
especially for large graph drawings. Here, by “large”, we mean that the graphs
are large enough to make “blobs” such as in Fig. 1 inevitable. This includes dense
graphs with at least a few hundred vertices and well as sparse graphs with at
least a few thousand vertices.

The proposed metrics are based on the notion of the “shape” of a set of
points in �2. Our proposal is that a drawing is good if the shape of the set of
vertex positions is similar to the original graph.

In Sect. 2, we describe this notion more precisely and illustrate with examples.
In Sect. 3 we give some empirical indication that the metrics are valid, based
on data sets from previous experiments [1,14]. Section 4 concludes with open
problems.
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2 Shape-Based Metrics

Figure 2 summarises our proposal. The quality of a drawing D of a graph G is
the similarity between G and the “shape” of the set of vertex locations of D. The
“shape” is expressed as a graph, called a “shape graph”. To make these notions
more precise, we need to examine the notion of the shape of a set of points, and
the notion of similarity between two graphs.

Original graph Graph drawing 

Point set  

Forget edges 

Shape graph 

The quality of the drawing is 
the similarity between  and 

Draw

Construct shape graph

Fig. 2. Shape-based quality metrics.

2.1 Shape as a Graph

Informally, a shape graph for a set of points P is a geometric graph G = (P,E)
that captures the “shape” of P . The classical example of a shape graph is the α
-shape [3]; however, α-shapes capture the shape of the boundary of P , and not
the internal structure of P . Another kind of shape graph is a “proximity graph”:
an edge is placed between two points p, q ∈ P if p is “close to” q in some sense.
There are many kinds of proximity graphs (see [24]); some examples are below.

– The k-nearest neighbours graph has a (directed) edge from point p ∈ P to
point q ∈ P if the number of points r ∈ P with d(p, r) < d(p, q) is at most
k − 1.

– The Delaunay triangulation: the dual of the Voronoi diagram on P .
– The Gabriel graph (GG) has an edge between distinct points p, q ∈ P if the

closed disc which has the line segment pq as a diameter contains no other
elements of P .

– The relative neighbourhood graph (RNG) has an edge between distinct points
p, q ∈ P if there is no point r ∈ P such that d(p, r) ≤ d(p, q) and d(q, r) ≤
d(p, q).

– A Euclidean minimum spanning tree (EMST) is a minimum spanning tree of
P where the weight of the edge between each pair of points is the Euclidean
distance.

Each of these shape graphs can be computed in O(n log n) time using standard
methods [16]. In Sect. 3 below, we examine quality metrics based on the Euclid-
ean minimum spanning tree, the Gabriel graph, and the relative neighborhood
graph respectively. However, our remarks apply in principle to any shape graph.
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2.2 Graph Similarity

Suppose that G1 = (V,E1) and G2 = (V,E2) are two graphs with the same
vertex set. A simple measure for the similarity of G1 and G2 is the Jaccard sum
similarity :

JSS(G1, G2) =
∑

u∈V

|N1(u) ∩ N2(u)|
|N1(u) ∪ N2(u)| , (1)

where Ni(u) is the set of neighbors of u in Gi for i = 1, 2. It is straight-forward
to compute the Jaccard sum similarity in linear time.

More complex measures for graph similarity include graph edit distance [7],
and measures based on the notion that the similarity of two vertices u and u′

depends on the similarity of their neighbours (see, for example, [12]). However,
these metrics are computationally expensive and do not scale beyond a few
thousand vertices; we have found that the Jaccard sum similarity is adequate
for our purposes.

2.3 The Metrics

We can now define our proposed metrics. Suppose that D is a drawing of a
graph G; we want to measure the quality of D. Let P denote the set of vertex
locations of D, and suppose that μ is a shape graph function (that is, μ takes
a set of points and produces a shape graph on this set of points). Further, let η
be a graph similarity function, that is, η takes two graphs as input and returns
a positive real number that indicates the similarity between these two graphs.
Then we define the quality metric Qμ,η by Qμ,η(D) = η(G,μ(P )).

These metrics are, in spirit, related to the “graph theoretic scagnostics” app-
roach to scatterplots (see [26]).

The “neighborhood inconsistency” [6] and “neighborhood preservation pre-
cision” [5,6] metrics used by Gansner et al. are also related, especially when the
shape graph μ is a kind of nearest neighbor graph. These two metrics have a dif-
ferent motivation to ours: rather than measure the general notion of shape, they
attempt to measure whether neighbours in the layout coincide with neighbours in
the graph. Nevertheless, we can regard the “neighborhood inconsistency” as an
example of a shape-based metric when the shape graph μ is a k-nearest neigh-
bor graph, and the similarity function η is based on the “stochastic neighbor
embedding” of Hinton and Roweis [9].

Throughout this paper we use the Jaccard sum similarity for graph similarity,
and so we abbreviate Qμ,η to Qμ. The time to compute Qμ depends on the choice
of μ; for all such choices μ described in this paper, Qμ can be computed in time
O(n log n).

2.4 An Example

Although our proposal is aimed at large graphs, this example uses a smaller
graph so that it is easier to understand. Consider the graph drawing D0 in
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Fig. 3. (a) A graph drawing D0. (b) The set P0 of vertex locations of D0. (c) A
Euclidean minimum spanning tree T0 on P0.

Fig. 3(a). The set P0 of vertex locations of D0 is shown in Fig. 3(b). A Euclidean
minimum spanning tree T0 on P0 is shown in Fig. 3(c).

Our proposal is that the quality QEMST (D0) of the graph drawing D0 can
be measured as the similarity between the (combinatorial) graphs in Fig. 3(a)
and (c). Using the Jaccard sum similarity in Eq. (1), we can calculate the value
QEMST (D0) as 0.61. The comparatively high value of QEMST (D0) expresses

Fig. 4. The drawing Dδ in the second column is formed from the drawing D0 in Fig. 3
by moving each vertex in a random direction by a random distance in the range [0, δ].
The graph Tδ in the third column is a Euclidean minimum spanning tree of the vertex
locations of Dδ.
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the fact that for each vertex u the neighbors of u in the shape graph T0 overlap
considerably with the neighbors of u in G. Intuitively, the graph drawing D0 is
a reasonably faithful representation of the graph G, in that the “shape” of D0

is similar to G.
Next we examine what happens when we make the drawing progressively

bad. Suppose that Dδ is formed from D0 by moving each vertex in a random
direction by a random distance in the range [0, δs], where s is the size of the
screen. Drawings Dδ for δ = 0.1, 0.2, and 0.5 are shown in Fig. 4. For δ = 0.1,
the shape of the drawing is fairly close to the graph, the minimum spanning
tree Tδ shares quite a few edges with Dδ, and the value QEMST (D0.1) = 0.42
is reasonably high. As δ increases, the minimum spanning tree Tδ shares fewer
edges with Dδ, and the values of QEMST (Dδ) fall. For δ = 0.5 the shape of the
drawing shows no resemblance to the graph, and QEMST (Dδ) is low. Intuitively,
as the drawing becomes worse, the shape of the set of points differs more and
more from the graph.

Larger examples are shown in Fig. 5, from the data set described in Sect. 3.1.
Here the graph drawing (a) has 1160 vertices and 6424 edges, and (b) is a
Euclidean minimum spanning tree of (a); the graph drawing (c) has 1749 vertices
and 13957 edges, and (d) is a Euclidean minimum spanning tree of (c). In both

Fig. 5. Two graph drawings from the data set described in Sect. 3.1, and Euclidean
minimum spanning trees of the vertex locations.
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cases, the Euclidean minimum spanning tree shares many edges with the graph,
and expresses the shape of the graph drawing well.

2.5 Remarks

We should point out that the metrics that we have defined above are not nor-
malised across graphs. If D and D′ are two drawings of the same graph, then
Qμ(D) > Qμ(D′) whenever D is a better drawing than D′. However, we make
no such claim for two drawings D and D′ of two different graphs.

Further, note that the Gabriel graph contains the relative neighborhood
graph, which in turn contains the Euclidean minimum spanning tree [24]. We
expect the Gabriel graph to model the shape of a set of points more precisely
than a Euclidean minimum spanning tree.

3 The Experiments

In this section, we describe how the shape-based quality metrics perform on two
specific data sets from previous experiments [1,14].

3.1 The “Untangling” Data Set

Marner et al. [14] introduced a newmethod calledGION for supporting interaction
with graph drawings on large displays. The user study of [14] focussed on the task
of untangling a graph drawing: subjects were presented with a graph drawing (a
Fruchterman-Reingold layout [4]), and were simply asked to untangle the layout.
Eight RNA sequence graphs were used, ranging from 1159 to 7885 vertices; there
were 16 subjects. The experimental system captured, for each subject and each
graph, a snapshot drawing every 5 seconds; the snapshot at time t is denoted by
Dt. Two such snapshot graph drawings are shown in Fig. 5(a) and (c). The main
result of the experiment was that the GION method is better in several ways than
more traditional interaction methods. For more details, see [14].

The experiment gave a large data set of graph drawings (8 graphs × 16 users
× 24 snapshot drawings) that we can use to check our shape-based quality met-
rics. For each snapshot Dt, we computed the number χ(Dt) of edge crossings, the
(scaled) stress σ(Dt), and the metrics QEMST (Dt), QGG(Dt), and QRND(Dt),
respectively based on Euclidean minimum spanning tree, Gabriel graphs, and
relative neighborhood graphs.

Commonly-held graph drawing wisdom is that χ(Dt) and σ(Dt) decrease
with the quality of the graph drawing. We expect that quality increases as the
graph is untangled, and so we expect that χ(Dt) and σ(Dt) decrease with t. In
contrast, the proposed quality metrics QEMST (Dt), QGG(Dt), and QRND(Dt)
are expected to increase with t. To make the comparison between these met-
rics easier, we place them on a comparable scale by inverting and normalising
crossings and stress, as follows. We define

Q̄χ(Dt) =
Mχ − χ(Dt)

Mχ
, Q̄σ(Dt) =

Mσ − σ(Dt)
Mσ

,
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where Mχ = maxt χ(Dt) and Mσ = maxt σ(Dt). Note that Q̄χ(Dt) (respec-
tively Q̄σ(Dt)) increases from 0 to 1 as the number of crossings (respectively
stress) increases from 0 to the maximum. For the shape-based metrics, we sim-
ply linearly normalise QEMST (respectively QGG and QRND) to give Q̄EMST

(respectively Q̄GG and Q̄RND) so that it increases from 0 to 1 as the quality of
the drawing increases.

It is reasonable to assume that the drawing improves in quality as the untan-
gling proceeds. However, the results reported in [14] were counterintuitive in
terms of crossings and stress: as the subjects untangled the graph drawings,
there was a tendency to increase both crossings and stress (that is, both Q̄χ and
Q̄σ decreased).

In contrast, we found that Q̄EMST , Q̄GG, and Q̄RND all increased as the
subjects untangled the drawings. The charts in Fig. 6 show Q̄χ, Q̄σ, Q̄EMST ,
Q̄GG, and Q̄RND, averaged over all subjects, for the first 3 of the 8 graphs. The
horizontal axis is time t; the vertical axis shows the values of the metrics. For
graphs #1 and #2, both crossings and stress increase with t (that is, Q̄χ(Dt) and
Q̄σ(Dt) decrease). In contrast, Q̄EMST , Q̄GG, and Q̄RND increase. Graphs #4,
#5, #6, #7, and #8 showed very similar patterns to graphs #1 and #2. Graph
#3 was a little different in that crossings decrease (and thus Q̄χ increases), albeit
chaotically.

Fig. 6. Metrics against untangling.

Overall, the data from the untangling experiment shows that both crossings
and stress metrics became worse as the subjects untangled the graphs, but the
shape-based metrics became better. With some provisos (see Sect. 3.3 below),
this suggests that the shape-based metrics are better than crossings and stress
for measuring untangling.

3.2 The “Preference” Data Set

Chimani et al. [1] report an experiment at the University of Osnabrueck aimed at
determining whether human preferences in graph drawing correlates with cross-
ings and stress. There were two follow-up experiments, at the Graph Drawing
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conference in 2014, and at the University of Sydney. The design and results of
all three experiments were similar; see [1]. Here we investigate the data from
the University of Sydney experiment, aiming to determine whether shape-based
metrics are correlated with preference.

This experiment had 40 subjects. Each subject was presented with 20
“instances”. Each instance displayed a pair of drawings of the same graph, as in
the screenshot in Fig. 7. There is a slider bar at the bottom of the screen, and
the subject indicates which of the pair of drawings he/she prefers by sliding to
the left or right. The slider bar has a scale on the left from 5 to 1 and on the
right from 1 to 5, with zero in the middle. The slider bar is used to give a score
to the drawing that the subject prefers, indicating how much the subject prefers
it. A score of 5 on the left indicates a strong preference for the drawing on the
left, and a score of 5 on the right indicates a strong preference for the drawing
on the right.

Fig. 7. Example of a typical “instance” (a graph pair shown to participants).

A total of 118 graphs, ranging in size from small (25 vertices and 29 edges) to
moderately large (8000 vertices and 15580 edges), were used. Five drawings for
each graph were generated, and the instances were chosen randomly. For details,
see [1].

The results for a particular quality metric Q are expressed in terms of the
“Q-ratio”, defined as follows. Consider an instance consisting of two drawings
Dleft and Dright of a graph G, such as in Fig. 7. Let Q(Dleft) (respectively
Q(Dright)) be the value of the Q metric for Dleft (respectively for Dright). We
define the Q-ratio for this instance as

max(Q(Dleft), Q(Dright))
min(Q(Dleft), Q(Dright))

.

If the Q-ratio is significantly larger than 1, then we expect that most subjects
prefer the drawing with the higher quality (according to the quality metric Q).
Further, as the Q-ratio increases, we expect that more and more subjects prefer
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the drawing with higher quality. To make this precise, we need to define some
further terms.

For each quality metric Q and each instance I we compute a score SQ(I) as
follows. Suppose that for this instance, the subject gives a score of x (0 ≤ x ≤ 5).
If the subject chose the drawing with a higher value of the quality metric Q, then
SQ(I) = x; otherwise SQ(I) = −x. The expectation that most subjects prefer the
drawing with the higher quality becomes an expectation that in most instances,
SQ(I) is positive.

For each metric Q, we chart the median of SQ(I) over all instances I against
the Q-ratio in Fig. 8. The charts for crossings and stress are shown in Fig. 8(a),
and for EMST, GG, and RNG in Fig. 8(b). For both crossing and stress, there
is adequate data for ratios from 1 to 5; however, the data for ratios larger than
4.5 is small (less than 20 instances) and the results at this end of the spectrum
must be treated with caution.

Fig. 8. Stress and crossing ratios, shape graph ratios, and preferences.

Crossings. Overall, there is a slight preference for fewer crossings (median over
all instances is +1). As the crossing ratio increases, the median preference
for the drawing with fewer crossings increases. When the crossing ratio is
above 2.5 the median preference for the drawing with fewer crossings is +3,
and stays steady at +3 as the crossing ratio increases beyond 2.5.

Stress. Overall, there is a preference for lower stress (median over all instances
is +2). As the stress ratio increases, the median preference for lower stress
rises; it hovers between +3 and +4 when the stress ratio is above 4.

For EMST, GG, and RNG, there is adequate data for ratios from 1 to 1.5; but
the data for ratios larger than 1.45 is small (less than 20 instances) and the
results at this end of the spectrum must be treated with caution.
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EMST. The median preference for the drawing with higher value of Q̄EMST

is chaotic when the EMST-ratio is less than 1.2. The preference rises to
+4 when the EMST-ratio rises from 1.2 to 1.3, and remains at +4 as the
EMST-ratio increases beyond 1.3.

GG. Overall, there is a preference for drawings with a higher value of Q̄GG

(median over all instances is +2). The preference for the drawing with higher
value of Q̄GG rises smoothly with GG-ratio. When the GG-ratio is above 1.2
the median preference for the drawing with higher value of Q̄GG is +4, and
remains at +4 as the GG-ratio increases beyond 1.2.

RNG. Overall, there is a preference for drawings with a higher value of Q̄RNG

(median over all instances is +1). The preference for the drawing with higher
value of Q̄RNG rises smoothly with RNG-ratio. When the RNG-ratio is above
1.2 the median preference for the drawing with higher value of Q̄RNG is +4,
and remains at +4 as the RNG-ratio increases beyond 1.2.

One can conclude that people prefer drawings with fewer crossings, lower
stress, and higher values for the shape-based metrics Q̄EMST , Q̄GG, and Q̄RND.
Note that the preference for better GG and RNG based metrics appears to be
a little stronger than the preference for fewer crossings and lower stress. The
overall preference for EMST-based metrics seems unreliable when the EMST-
ratio is small.

3.3 Remarks on the Experiments

The data from both the “untangling” experiment and the “preference” experi-
ment support the proposal that the shape-based metrics are good measures of
the quality of a graph drawing; there is some indication that the shape-based
metrics are better than crossings and stress. However, this support has some
limitations:

– Both experiments were designed for other purposes. Neither experiment was
designed to test the shape-based metrics. To completely validate the new
metrics, further study is needed.

– The “untangling” experiment used a very specific kind of graph: RNA
sequence graphs, which are locally dense with a global “tree-like” structure.
For more general classes of graphs, further experimentation would be useful.

– The experiments use the notions of “untangledness” and “preference” as prox-
ies for ground truth quality. It would be useful to test the metrics in a task-
oriented experiment.

4 Conclusion and Open Problems

This paper proposes a new family of metrics, aimed at measuring the quality
of large graph drawings. We have some evidence from data in two previous
experiments that these metrics are effective.

Our proposal raises several open problems:
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– Design experiments to fully validate shape-based metrics. In particular, it
would be interesting to know whether time and error of tasks on large graphs
(see [13]) is related to shape-based metric values.

– Design algorithms to produce layouts that optimise the metrics. Note that
(as with most graph layout problems) optimisation problems of this kind
are typically NP-hard (see, for example, [2]), and thus heuristic approaches
are in order. In particular, it would be interesting to know whether a stress
minimisation algorithm gives a reasonable approximation.
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