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Abstract. Drawing large graphs appropriately is an important step for
the visual analysis of data from real-world networks. Here we present
a novel multilevel algorithm to compute a graph layout with respect to
a recently proposed metric that combines layout stress and entropy. As
opposed to previous work, we do not solve the linear systems of the
maxent-stress metric with a typical numerical solver. Instead we use a
simple local iterative scheme within a multilevel approach. To accelerate
local optimization, we approximate long-range forces and use shared-
memory parallelism. Our experiments validate the high potential of our
approach, which is particularly appealing for dynamic graphs. In compar-
ison to the previously best maxent-stress optimizer, which is sequential,
our parallel implementation is on average 30 times faster already for sta-
tic graphs (and still faster if executed on one thread) while producing a
comparable solution quality.

1 Introduction

Drawing large networks (or graphs, we use both terms interchangeably) with
hundreds of thousands of nodes and edges has a variety of relevant applications.
One of them can be interactive visualization, which helps humans working on
graph data to gain insights about the properties of the data. If a very large high-
end display is not available for such purpose, a hierarchical approach allows the
user to select an appropriate zoom level [1]. Moreover, drawings of large graphs
can also be used as a preprocessing step in high-performance applications [22].
One very promising class of layout algorithms in this context is based on
the stress of a graph. Such algorithms can for instance be used for drawing
graphs with fixed distances between vertex pairs, provided a priori in a distance
matrix [13]. More recently, Gansner et al. [12] proposed a similar model that
includes besides the stress an additional entropy term (hence its name mazent-
stress). While still using shortest path distances, this model often results in more
satisfactory layouts for large networks. The optimization problem can be cast
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Fig. 1. Drawings of besstk31. Left to right: PivotMDS [5], Maxent [12], MulMent (new).

as solving Laplacian linear systems successively. Since each right-hand side in
this succession depends on the previous solution, many linear systems need to
be solved until convergence — more details can be found in Sect. 2.3.

Motivation. We want to employ this maxent-stress model for drawing large net-
works quickly. Yet, solving many large Laplacian linear systems can be quite
costly. A conjugate gradient solver (used in [12]) is easy to implement but has
superlinear running time. Solvers with provably nearly-linear running time exist
but are not yet competitive with established methods in practice (see [18] for
an experimental comparison). Multigrid methods [24,26] for Laplacian systems
may seem appealing in this context, but their setup phase building the multigrid
hierarchy can be expensive for large graphs.

Gansner et al. [12] also suggested (but did not use) a simpler iterative refine-
ment procedure for solving their optimization problem. This procedure would
be slow to converge if used unmodified. However, if designed and implemented
appropriately, it has the potential for fast convergence even on large graphs.
Moreover, as already observed in [12], it has high potential for parallelism and
should work well on dynamic graphs by profiting from previous solutions.

Outline and Contribution. The main contribution of this paper is to make the
alternative iterative local optimizer suggested by Gansner et al. [12] (for details
on this and other related work see Sect. 2) usable and fast in practice. To this end,
we design and implement a multilevel algorithm tailored to large networks with
unit target edge lengths (see Sect.3). The employed coarsening algorithm for
building the multilevel hierarchy can control the trade-off between the number of
hierarchy levels and convergence speed of the local optimizer. One property of the
local optimizer we exploit is its high degree of parallelism. Further acceleration
is obtained by approximating long-range forces. To this end, we use coarser
representatives stored in the multilevel hierarchy.

Our experimental results in Sect.4 show that force approximation rarely
affects the layout quality significantly — in terms of maxent-stress values as well
as visual quality, also see Fig. 1 and TR [27]. The parallel implementation of our
multilevel algorithm MulMent with force approximation is, however, on average
30 times faster than the reference implementation [12] — and even our sequential
approximate algorithm is faster than the reference. A contribution besides higher
speed is that, in contrast to [12], our approach does not require input coordinates
to optimize the maxent-stress measure.
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2 Preliminaries

2.1 Basic Concepts

Consider an undirected, connected graph G = (V, E, ¢,w,d) with node weights
c:V — Ryxg, edge weights w : ' — Ry, target edge lengths d : £ — Ry,
n = |V|, and m = |E|. Often the function d models the required distance between
two adjacent vertices. By default, our initial inputs will have unit edge length
d =1 as well as unit node weight and edge weight ¢ = 1, w = 1. However, we
will encounter weighted problems in the course of our multilevel algorithm. Let
N(w) := {u : {v,u} € E} denote the set of neighbors of v. A clustering of a
graph is a set of blocks (= clusters) of nodes {V1,...,Vi} that partition V| i.e.,
Viu-- UV =V and V;NV; =0 for ¢ # j. A layout of a graph is represented
as a coordinate vector x, where x, is the two-dimensional coordinate of vertex
v. Since edges are drawn as straight-line segments between their incident nodes,
x is sufficient to define the complete graph layout.

2.2 Related Work

Most general-purpose layout algorithms for arbitrary undirected graphs are
based on physical analogies and can be grouped, according to Hu and Shi [19],
into two main classes: algorithms in the spring-electrical model and algorithms
in the stress model. Both classes of algorithms often yield aesthetically pleasing
graph layouts that emphasize symmetries and avoid edge crossings at least in
sparse graphs. Recent surveys of algorithms in these models are given by Hu and
Shi [19] and by Kobourov [23].

In the spring-electrical model, first presented by Eades in 1984 [8], the analogy
is to represent nodes as electrically charged particles that repel each other while
edges are represented as springs exerting attraction forces to adjacent nodes. A
graph layout is then seen as a physical system of forces and the goal is to find an
optimal layout corresponding to a minimum energy state. Spring-electrical algo-
rithms are also known as spring embedders, with the algorithm by Fruchterman
and Reingold [10] being one of the most widely used spring embedder algorithms.
It simulates the physical system of attractive and repulsive forces and iteratively
moves each node into the direction of the resulting force. Each iteration requires,
however, a quadratic number of force computations due to the repulsive forces
between all pairs of nodes, which limits the scalability of the original approach.
A faster approximative force calculation method based on quadtrees, aggregat-
ing especially the long-range forces, has been proposed by Barnes and Hut [3] and
yields running times of O(nlogn) under certain assumptions.

The (full) stress model is closely related to multidimensional scaling [25],
and was introduced in graph drawing by Kamada and Kawai [21]. It is
based on defining ideal distances d,, not only between adjacent vertices but
between all vertex pairs (u,v) € V x V and then minimizing the layout stress
Zu?gv W ([|Tw — To|| — duv)?, where w,, is a weight factor typically chosen as
Wyp = 1/d?,. Often, the distance d,, between adjacent nodes is set to 1, while
the distance of non-adjacent nodes is the shortest-path distance in the graph.
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Solving this model is typically done by iteratively solving a series of linear sys-
tems [13]. The need to compute all-pairs shortest paths and to store a quadratic
number of distances again defeats the scalability of this original approach for
large graphs. One of the fastest algorithms for approximatively solving the stress
model instead is PivotMDS [5], which requires distance calculations from each
vertex only to a small set of k < n suitably chosen pivot vertices.

The stress model prescribes target distances not only for edges but for all
vertex pairs. While this is a reasonable approach, it still brings artificial infor-
mation into the layout process. An interesting alternative has been proposed
by Gansner et al. [12]. Their algorithm (called Mazent) uses the sparse stress
model, which only contains the stress terms for the edges of the graph. In order
to deal with the remaining degrees of freedom in the layout, they suggest using
the maximum entropy principle instead. Since our algorithm is closely related
to Maxent, we discuss the latter in more detail in Sect.2.3.

A general approach for speeding up layout computations for large graphs is
the multilevel technique, which has been used in the spring-electrical [16,29,32]
and in the stress model [11]. A multilevel algorithm computes a sequence of
increasingly coarse but structurally related graphs as abstractions of the original
graph. Starting from a layout of the coarsest graph, incremental refinement steps
using the previous layout as a scaffold eventually produce a layout of the entire
input graph, where the refinement steps are fast due to the good initial layouts.
Hachul and Jiinger [15] performed an extensive experimental evaluation of state-
of-the-art layout algorithms for large graphs, including multilevel algorithms, and
Bartel et al. [4] experimentally compared different combinations of coarsening,
placement, and layout methods for the generic multilevel approach.

In addition to sequential algorithms for drawing large graphs, there is previ-
ous research in parallel layout algorithms, particularly using a graphics processing
unit (GPU). Frishman and Tal [9] presented a multilevel force-based layout algo-
rithm and implemented it using GPU-based parallelization. Ingram et al. [20] also
exploit parallel GPU computations and presented a multilevel stress-based layout
algorithm. Godiyal et al. [14] implemented a fast multipole algorithm on the GPU.

2.3 Maxent-Stress Optimization

Gansner et al. [12] proposed the maxent-stress model that combines a sparse
stress model with an entropy term to resolve the degrees of freedom for non-
adjacent vertex pairs. The entropy term itself is optimized when all nodes are
spread out uniformly, similar to the repulsive forces in the spring-electrical
model. Gansner et al. [12] showed that the maxent-stress model performs well
on several measures of layout quality in distance-based embeddings and avoids
typical shortcomings of other stress models, particularly for non-rigid graphs.
Formally, the maxent-stress M () of a layout x is defined! as

! In fact, Gansner et al. define a slightly more general model that considers the stress
term for arbitrary supersets S O E and allows variations of the entropy term. Our
algorithm also works for the general model; to simplify the description, we restrict
ourselves to the default model.
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M(z) = Z Wao([[Tw = 20| = duw)? — Z In |z — 2ol (1)

{uv}eE {u,v}¢E

where d,, is the target distance between nodes v and v and w,, is a weight
factor typically chosen as w,, = 1/d2,. Throughout the paper, we use this as
a weight factor. The scaling factor « is used to modulate the strength of the
entropy term and is gradually reduced in the implementation.

Gansner et al. minimize the maxent-stress using a technique that repeatedly
solves Laplacian linear systems that additionally include a repulsive force vector
which is approximated following the quadtree method of Barnes and Hut [3].

Alternatively, they proposed (but did not implement) the following local
iterative force-based scheme to solve the maxent-stress model:

1 L — —
e LY ww<xv+dww>+a YTy

_ _ 27
Pu {uol€E |20 — | Pu (w01 ¢E 20 — x|l
where p, = > {uw}eE Wu- Note that sometimes we use the abbreviation
r(u,v) := 2=%- and shortly call these values r-values.
Hmu sz

3 Multilevel Maxent-Stress Optimization

As mentioned, a successful (meta)heuristic for graph drawing (and other opti-
mization problems on large graphs) is the multilevel approach. We also employ
this approach for maxent-stress optimization for several other reasons: (i) Some
graphs (such as road networks) feature a hierarchical structure, which can be
exploited to some extent by a multilevel approach and (ii) the computed hierar-
chy may be useful later on for multiscale visualization.

Before going into the details, we briefly sketch our algorithmic approach:
The method for creating the graph hierarchy is based on fast graph clustering
with controllable cluster sizes. Each cluster computed on one hierarchy level is
contracted into a new supervertex for the next level. After computing an initial
layout on the coarsest hierarchy level, we improve the drawing on each finer level
by iterating Eq. (2). Additionally, this process exploits the hierarchy and draws
vertices that are densely connected with each other (i.e. which are in the same
cluster) close to each other.

3.1 Coarsening and Initial Layout

To compute the clustering we adapt size-constrained label propagation
(SCLaP) [28], an algorithm originally developed for coarsening and local
improvement during multilevel graph partitioning. SCLaP itself is based on the
graph clustering algorithm label propagation [30]. The latter starts with a single-
ton clustering (i.e. each node is a cluster). The algorithm then works in rounds.
Roughly speaking, in each round the algorithm visits all nodes in random order
and assigns each node to the predominant cluster in its neighborhood. This way,
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cluster IDs (= labels) propagate through the graph and nodes in a dense cluster
usually agree on a common label.

However, clusters with unconstrained sizes are not desirable here since
they would hamper convergence of the local improvement phase. The trade-
off between this convergence speed and the number of hierarchy levels needs to
be chosen properly for a fast overall running time. That is why SCLaP constrains
cluster sizes, i.e. it introduces an upper bound U := max(max, c¢(v), W) on the
cluster sizes (W is specified below), where constraining on the maximum node
weight favors uniform coarsening. Consequently, in each SCLaP round, nodes
are assigned to the predominant cluster that is not overloaded after the label
change.

In our implementation, based on preliminary experiments, we set the para-
meter W to min(b”, m), where b and f are tuning parameters and h is the
level in the hierarchy that we are currently working on. The intuition behind
this choice is that we want the contraction process not to be too strong on the
fine levels in order to allow fast convergence of local improvement algorithms,
whereas we allow stronger contractions on coarser levels. If the contracted graph
is not more than 10 % smaller than the graph on the current level, we decrease
the value of f and set it to 0.7f.

While the original label propagation algorithm repeats the process until con-
vergence, SCLaP performs at most ¢ rounds, where ¢ is a tuning parameter. One
round of the algorithm can be implemented to run in O(n + m) time.

Contracting a clustering works as follows: each block of the clustering is
contracted into a single node. The weight of the node is set to the sum of the
weight of all nodes in the original block. There is an edge between two nodes u’
and v’ in the contracted graph if the two corresponding blocks in the clustering
are adjacent to each other in G, i.e. block u' and block v’ are connected by at
least one edge. The weight of an edge (u/,v’) is set to the sum of the weight of
edges that run between block ' and block v’ of the clustering.

Initial Layout. The process of computing a size-constrained clustering and con-
tracting it is repeated recursively. Then an initial layout is drawn, meaning that
each of the two nodes of the coarsest graph is assigned to a position. We place
the vertices such that the distance is optimal. The optimal distance of the two
vertices is defined and motivated in the next section.

3.2 Uncoarsening and Local Improvement

When the initial layout has been computed, the solution is successively pro-
longated to the next finer level, where a local maxent-stress minimizer is used
to improve the layout. For undoing the contraction, nodes that have been in a
cluster are drawn at a random position around the location of its coarse rep-
resentative. More precisely, let v be a (fine) vertex that is represented by the
coarse supervertex v’ at P = (x,y). We place v at a random position in a circle
around P with radius r := y/c(v’). We do this by picking an angle uniformly at
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random in [0, 27] and a distance to P uniformly at random in [0,7]. These two
values are then used as a polar coordinate for v with respect to the origin P.

Local Improvement. Our local improvement tries to minimize the maxent-stress
on each level of the hierarchy based on Eq. (2). Note, however, that simply iterat-
ing Eq. (2) on each level is not sensible since coarse vertices represent a multitude
of vertices. These vertices need space to be drawn on the next finer level. Now
let u and v be two vertices on the same fixed level. We adjust distances d,,, on
the current level in the hierarchy under consideration to \/c(u) + /c(v) with
the intuition that vertices represented by u should be drawn in a circle around
w with radius y/c(u) (similarly for v).

As Gansner et al. [12], we adjust the value of « in Eq. (2) during the process.
Since we want to approximate the maxent-stress, the value should be small.
However, it cannot be too small initially since one would only solve a sparse
stress model in this case. Hence, following Gansner et al. [12], we set a to one
initially and gradually reduce it by a := 0.3 - @ until ay,;, = 0.008 is reached.

We call a single update step of the coordinates of all vertices using Eq. (2)
an iteration. Multiple iterations with the same value of « are called round. The
current iteration uses the coordinates that have been computed in the previous
iteration. We perform at most a iterations with the same value of « in one round.
Then we reduce « as described above. If the relative change ||z‘T! — 2f||/||z||
in the layout is smaller than some threshold ¢, we directly reduce the value of «
and continue with the next round.

Faster Local Improvement. The local optimization algorithm presented above
has a theoretical running time of O(n?) per iteration. To speed this up, one can
use approximations for the distances in the entropy term in Eq. (2). We do this
by taking the cluster structure computed during coarsening into account: Let
Vi U... UV be the corresponding clustering and M : V — V/ = {1,...,k} be
the mapping that maps a node v € V' to its coarse representative. The first term
in Eq. (2) is computed as before and the second term is approximated by using
the coordinates of the corresponding coarse vertex. As formula the second term
written without the multiplicative factor ﬁ becomes

N Ty — Tl
Z r(u,v) + Z, v(v') low =22 Z r(u,v), (3)
M ZM () WM ) {uviel

where 2’ maps a coarse vertex to its coordinates and v(v') is the number of nodes
that the coarse vertex represents on the current finer level. Note that this is
different from the vertex weight ¢(v’) which represents the number of nodes that
the coarse vertex represents on the finest level. Roughly speaking, we reduced
the necessary amount of computation to add up the values of r by summing
up the correct values of r for all vertices that are in a sense close and using
approximations for vertices that are far away. In our context, a vertex is close if
it is in the same cluster as the currently processed vertex. If a vertex is not close,
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we use the coordinate of its coarse representative instead. We avoid unnecessary
computation by scaling the approximated value of r with the number v(v) of
vertices it represents and adding approximated value of r only once. The last
term in Eq. (3) subtracts values of r for {u, v} € E that have been added in good
faith in the first two summations.

Note that if M is the identity, then the term in Eq. (3) is the same as in the
original Eq.2. In this case the first two summations add up the r-values for all
pairs of vertices and the last sum subtracts the r-values for pairs that are in E.

After the update of the vertices on the current level, we update the coor-
dinates of the vertices on the coarser level used for approximation. We set the
coordinate of a vertex v’ on the coarser level to the barycenter of the vertices
represented by v'.

Note that one obtains even faster algorithms by using a coarser version of
the graph that is multiple levels beneath the current level in the graph hierarchy.
That means instead of using the next coarser graph, we use the contracted
graph which is h > 1 levels beneath the current graph in the hierarchy — if there
is such. Otherwise, we use the coarsest graph in the hierarchy. Obviously this
yields a trade-off between solution quality and running time. Also note that this
introduces an additional error. To see this, let the coarser vertices that have
the same coarse representative on the level used for approximating values of r
be called M-vertices (merged vertices). Now, for a vertex on the current level,
the r-values of M-vertices are not accounted for in Eq. (3). Hence, we look at
the parameter h carefully in Sect. 4 and evaluate its impact on running time and
solution quality. We call our algorithms MulMent and denote by MulMent; the
algorithm that uses an h-level approximation of the r-values. With h = 0 we
denote the quadratic-time algorithm. A rough analysis in TR [27] yields:

Proposition 1. Under the assumption of equal cluster sizes, the running time
h+2
of one iteration of algorithm MulMent,, h > 0, is O(m + nhiil), respectively.

Properly implemented, multilevel algorithms lead to fast convergence of their
local optimizers. Moreover, the overall work performed by the multilevel app-
roach is only a constant factor times the one on the finest level. This leads us to
the initial appraisal that the same asymptotic running times may hold for the
respective complete algorithms.

Shared-Memory Parallelization. Our shared-memory parallelization of an itera-
tion of the local optimizer uses OpenMP and works as follows: Since new coor-
dinates of the vertices in the same iteration can be computed independently, we
use multiple threads to do so. The relative change in the layout ||z* —2¢||/||z¢||
can be computed in parallel using a reduce operation. Parallelism is also used
analogously when working on different levels for the distance approximations
in the entropy term. Other parts of the overall algorithm could potentially be
parallelized, too — such as coarsening. However, already on medium sized graphs
coarsening consumes less than 5 % of the algorithm’s overall running time. More-
over, the relative running time of coarsening decreases even more with increasing
graph size so that the effort does not seem worth it.
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4 Experimental Evaluation

Methodology. We implemented? the algorithm described above using C+-+.
Parallelization of our algorithm has been done using OpenMP. We compiled
our programs using g++ 4.9 -O3 and OpenMP 3.1. Executables for Pivot-
MDS (PMDS) [5] and MaxEnt (GHN, for clarity we use the author names as
acronym) [12] have been kindly provided by Yifan Hu. When comparing layouts
computed by different algorithms, we evaluate two metrics. The first metric is the
full stress measure, F'(z) = >_, oy Wuo (|70 — 24| —duy)?, and the second one is
the maxent-stress function M (z) as defined in Eq. (1) at the final penalty level of
a = 0.008. The latter is of primary importance since that is what GHN and Mul-
Ment optimize for. The implementations PMDS and GHN sometimes compute
vertices that are on the same position. Hence, we add small random noise to the
coordinates of these layouts in order to be able to compute the maxent-stress.
More precisely, for each of the components of the 2D-coordinate of a node, we
randomly add or subtract a random value from the interval [10~7,10~4]. This
changes the full stress measure by less than 10~* percent on average. We follow
the methodology of Gansner et al. [12] and scale the layout of all algorithms
to minimize the stress to be fair to all methods: We find a scalar s such that
> uwer Wun(8][Tu — @y|| = duy)? is minimized for a given layout z.

Machine. Our machine has four Octa-Core Intel Xeon E5-4640 (Sandy Bridge)
processors (32 cores, 64 with hyperthreading active) which run at a clock speed of
2.4 GHz. It has 512 GB local memory, 20 MB L3-Cache and 8x256 KB L2-Cache.
Unless otherwise mentioned, our algorithms use all 64 cores (hyperthreading) of
that machine. Since PMDS and GHN are sequential algorithms, they use one
core of that machine.

Algorithm Configuration. After an extensive evaluation of the parameters, we
fixed the cluster coarsening parameters f to 20 and b to 2. The initial value of the
penalty parameter « is set to 1. We perform at most a = 2 iterations with the
same value of «, while it has not reached its minimum value of 0.008. When it has
reached its minimum value, we iterate until the relative error ||z‘*t — 2| /|||
is smaller than 0.0001. Yet, our experiments indicate that our algorithm is not
very sensitive about the choice of these parameters. We evaluate the influence
of the approximation level h in Sect. 4.1.

Instances. We use the instances 1138_bus, USpowerGrid, bcsstk31, commanche
and luxembourg employed in [12] and extend the set to include larger instances.
We excluded the graphs gd, gh882 and Ip_ship04l from [12] from our experiments
since the graphs are either not undirected or the corresponding matrix is rectan-
gular. Most of the instances taken from [12] are available at the Florida Sparse

2 We released the implementation of our algorithms as open source in the
KaDraw (Karlsruhe Graph Drawing) framework available at http://algo2.iti.kit.edu/
kadraw/.
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Matrix Collection [6]. The graphs 3elt, besstk31, fe_pwt and auto are available
at the Walshaw benchmark archive [31]. The graphs delX are Delaunay trian-
gulations of 2% random points in the unit square [17]. Moreover, the graphs
nyc and luxembourg are road networks. These graphs have been taken from the
benchmark set of the 9th and 10th DIMACS Implementation Challenge [2,7]. A
summary of the basic properties of these instances can be found in the technical
report version of this paper [27]. In any case, we draw the largest connected
component if the graph has more than one. We assume unit length distance for
all graphs.

4.1 Influence of Coarse Graph Approximation and Scalability

In this section, we investigate the influence of the parameter h on layout quality
and running time (algorithmic speedup) as well as the scalability of our algo-
rithms with varying number of threads (parallel speedup). We perform detailed
experiments on our medium sized networks (using 64 threads) and present par-
allel speedups on the largest graphs auto and del20. We report absolute running
times and parallel speedups for the graph del20 in Fig.2 and present detailed
data for the medium size networks as well as more plots in [27]. We do not report
layout quality metrics for auto and del20 since the size of the network makes it
infeasible to compute them and the result of the algorithm is independent of the
number of threads used.

We now investigate the influence of the parameter h. In general, the larger
the graphs get, the larger the algorithmic speedups obtained with increasing h.
On the smallest graph in this collection, we obtain an algorithmic speedup of
about 3 with h = 6 (fe_pwt) over MulMento. On the largest two instances in
this section, we obtain an algorithmic speedup of 30 with h = 9 (auto) and of
122 with h = 10 (del20). In addition, the precise choice of the parameter does
not seem to have a very large impact on solution quality on these graphs. This
is also due to the size of the networks. The graphs on which full stress measure
slightly increases are luxembourg and besstk31 (7% and 15 % respectively — see
[27]). The metric actually under consideration, maxent-stress, always remains
comparable. On all instances under consideration, we observe a locally optimal
value for h in terms of running time. It is around seven and seems to get larger
with increasing graph size. This is due to the fact that too large values of h
provide less precision and slower convergence.

On del20, the scalability with the number of threads is almost perfect for
small values of h. With enabled hyperthreading, we achieve slightly superlin-
ear speedups for MulMenty. As less work has to be done for increasing h,
speedups get smaller. The smallest speedup on this graph has been observed
for MulMent(. In this case, we achieve a speedup of 11.5 using 64 threads over
MulMent;o using one thread. With even larger h speedups increase again. The
parallel scalability on auto is similar.

Another interesting way to look at the data is the overall speedup — algorith-
mic and parallel speedup combined — achieved over MulMent, using only one
thread. The largest overall speedup is obtained by MulMenty using 64 threads.
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Fig. 2. Running times and parallel speedups of our algorithms on del20.

In this case, the overall speedup is larger than 4000 — reducing the running time
of the algorithm from 30 hours to 27 seconds. Speedups over PMDS and GHN
are found in the next section.

4.2 Comparison to Other Drawing Algorithms

We now compare MulMent to the two implementations PMDS [5] and GHN [12].
We do this on all networks but only report quality metrics for small and medium
sized graphs since it is infeasible to compute quality metrics for the large graphs.
We report detailed data in [27].

Most importantly, although MulMent sometimes performs a few percent
worse than GHN, the maxent-stress of all layouts is more or less similar. PMDS
performs slightly worse in this metric. Intriguingly, the alternative full stress
metric is consistently better on small networks for MulMent than the results
obtained by PMDS (except for h = 10). On the other hand, full stress obtained
by our algorithms is comparable to the layout computed by GHN on four out
of nine instances. On the three largest medium sized networks, we obtain worse
full stress than PMDS and GHN. However, this is not astonishing since our algo-
rithm does not optimize for full stress — in contrast to PMDS. And GHN at least
starts with a PMDS solution and improves maxent-stress afterwards.

Our implementations of MulMent7 19 are always faster than GHN, both of
them a factor 30 on average. Also, MulMenty ;o outperform even PMDS in terms
of running time as soon as the graphs get large enough (medium and large sized
graphs). On the large graphs, MulMent; is a factor of 2 to 3 faster than PMDS
and a factor of 32 to 63 faster than GHN. In addition, MulMent; ;o are also
several times faster than GHN when using one thread only (see TR [27]).

4.3 Dynamic Networks

One of the main advantages of the iterative scheme is its ability to use an existing
layout for computing a new one, e. g. for a graph that has changed over time. We
perform experiments with dynamic graphs obtained by modifying our medium
sized networks. Often one is interested in drawing graphs that have more or less
good locality. Hence, we define a random model that modifies the edges of a
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graph by removing random edges and inserting edges between vertices that are
not too far apart.

To be more precise, we start with an input graph G and perform a breadth
first search from a random start node to compute a random spanning tree. We
then remove % undirected non-tree edges at random in the beginning. Note
that this ensures that the graph stays connected. Afterwards, we insert % new
edges as follows. We pick a random node and insert an undirected edge to a
random node that has distance 1 < d < D in the original graph G, where D is
a tuning parameter. We denote the graph that results out of this process as Q).

We compute two layouts of Q). The first one updates coordinates given by an
initial layout of G (update algorithm). The second layout is computed by our
algorithm from scratch (scratch algorithm), i.e. discarding the initial layout. In
the first case, we start directly at the penalty level o = 0.008 and only update
coordinates on the finest level of the hierarchy. We compute the graph hierarchy
as before but stop the coarsening process after the computation of h levels.
Coordinates of the vertices on the approximation level are set to the middle
point of the vertices in the corresponding cluster initially.

We vary z € {1,5}, D € {2,16} and h € {0,7}, and present detailed data
in [27]. As expected, the running time of the update algorithm (t4ys) is always
smaller than the running time of the scratch algorithm (fscrateh). As MulMenty
performs less work than MulMent, algorithmic speedups are always larger for
the latter. For i = 0, the update algorithm is a factor of 4 faster than the scratch
algorithm on average. On the other hand, for h = 7 the update algorithm saves
about 50 % time on average over the scratch algorithm. Solution quality is not
influenced much. On average, the full stress measure of the update algorithm is
9 % larger and maxent-stress improves by 1 % compared to the scratch algorithm.
The increase in full stress is mostly due to the Delaunay instance and D = 16,
in which the full stress of the layout of the update algorithm is a factor of two
larger. The algorithmic speedup does not seem to be largely influenced by D.
However, we expect that much larger values of D will decrease the speedup of
the update algorithm over the scratch algorithm.

5 Conclusions

We have presented a new multilevel algorithm for iteratively and approximatively
optimizing the maxent-stress model, a model proposed by Gansner et al. [12] to
avoid typical pitfalls of other stress models. From the experimental evaluation we
conclude that our parallel algorithm produces layouts with similar visual qual-
ity and maxent-stress values as the reference implementation [12]. At the same
time it is on average 30 times faster, even more for dynamic graphs. Moreover,
our algorithm is even up to twice as fast as the fastest stress-based algorithm
PivotMDS [5]. It thus combines the high speed of PivotMDS with the high visual
quality of Maxent in a single algorithm, at least if a multicore system is available.

Currently our method is only capable of handling constant edge lengths. This
requirement is due to the way coarse vertices are placed and later interpolated
to a finer level. In future work we would like to eliminate this limitation.
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