
Drawing Graphs with Vertices and Edges
in Convex Position
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Abstract. A graph has strong convex dimension 2, if it admits a straight-
line drawing in the plane such that its vertices are in convex position
and the midpoints of its edges are also in convex position. Halman, Onn,
and Rothblum conjectured that graphs of strong convex dimension 2
are planar and therefore have at most 3n − 6 edges. We prove that all
such graphs have at most 2n − 3 edges while on the other hand we
present a class of non-planar graphs of strong convex dimension 2. We
also give lower bounds on the maximum number of edges a graph of
strong convex dimension 2 can have and discuss variants of this graph
class. We apply our results to questions about large convexly independent
sets in Minkowski sums of planar point sets, that have been of interest
in recent years.

1 Introduction

A point set X ⊆ R
2 is in (strictly) convex position if all its points are vertices

of their convex hull. A point set X is said to be in weakly convex position if X
lies on the boundary of its convex hull. A drawing of a graph G is an injective
mapping f : V (G) → R

2 such that edges are straight line segments connecting
vertices and neither midpoints of edges, nor vertices, nor midpoints and ver-
tices coincide. Through most of the paper we will not distinguish between (the
elements of) a graph and their drawings.

For i, j ∈ {s, w, a} we define Gj
i as the class of graphs admitting a draw-

ing such that the vertices are in

⎧
⎪⎨

⎪⎩

strictly convex if i = s

weakly convex if i = w

arbitrary if i = a

position and the
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midpoints of edges are in

⎧
⎪⎨

⎪⎩

strictly convex if j = s

weakly convex if j = w

arbitrary if j = a

position. Further, we define

gj
i (n) to be the maximum number of edges an n-vertex graph in Gj

i can have.
Clearly, all Gj

i are closed under taking subgraphs and Ga
s = Ga

w = Ga
a is the

class of all graphs.

Previous Results and Related Problems: Motivated by a special class of
convex optimization problems [4], Halman, Onn, and Rothblum [3] studied draw-
ings of graphs in R

d with similar constraints as described above. In particular,
in their language a graph has convex dimension 2 if and only if it is in Gs

a and
strong convex dimension 2 if and only if it is in Gs

s . They show that all trees
and cycles are in Gs

s , while K4 ∈ Gs
a \ Gs

s and K2,3 /∈ Gs
a. Moreover, they show

that n ≤ gs
s(n) ≤ 5n−8. Finally, they conjecture that all graphs in Gs

s are planar
and thus gs

s(n) ≤ 3n − 6.
The problem of computing gs

a(n) and gs
s(n) was rephrased and generalized

in the setting of convexly independent subsets of Minkowski sums of planar
point sets by Eisenbrand et al. [2] and then regarded as a problem of computa-
tional geometry in its own right. We introduce this setting and give an overview
of known results before explaining its relation to the original graph drawing
problem.

Given two point sets A,B ⊆ R
d their Minkowski sum A + B is defined

as {a+b | a ∈ A, b ∈ B}. Define M(m,n) as the largest cardinality of a convexly
independent set X ⊆ A + B, for A and B planar point sets with |A| = m
and |B| = n. In [2] it was shown that M(m,n) ∈ O(m2/3n2/3+m+n), which was
complemented with an asymptotically matching lower bound by B́ılka et al. [1]
even under the assumption that A itself is in convex position, i.e., M(m,n) ∈
Θ(m2/3n2/3 + m + n). Notably, the lower bound works also for the case A =
B, as shown by Swanepoel and Valtr [5]. In [6] Tiwary gives an upper bound
of O((m + n) log(m + n)) for the largest cardinality of a convexly independent
set X ⊆ A+B, for A and B planar convex point sets with |A| = m and |B| = n.
Determining the asymptotics in this case remains open.

The graph drawing problem of Halman et al. is related to the largest cardi-
nality of a convexly independent set X ⊂ A + A, for A some planar point set.
In fact, from X and A one can deduce a graph G ∈ Gs

a on vertex set A, with
an edge aa′ for all a �= a′ with a + a′ ∈ X. The midpoint of the edge aa′ then
just is 1

2 (a + a′). Conversely, from any G ∈ Gs
a one can construct X and A as

desired. The only trade-off in this translation are the pairs of the form aa, which
are not taken into account by the graph-model, because they correspond to ver-
tices. Hence, they do not play a role from the purely asymptotic point of view.
Thus, the results of [1,2,5] yield gs

a(n) = Θ(n4/3). Conversely, the bounds for
gs

s(n) obtained in [3] give that the largest cardinality of a convexly independent
set X ⊆ A + A, for A a planar convex point set with |A| = n is in Θ(n).

Our Results: In this paper we study the set of graph classes defined in the
introduction. We endow the list of properties of point sets considered in earlier
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works with weak convexity. We completely determine the inclusion relations on
the resulting classes. We prove that Gs

s contains non-planar graphs, which dis-
proves a conjecture of Halman et al. [3], and that Gw

s contains cubic graphs,
while we believe this to be false for Gs

s . We give new bounds for the parame-
ters gj

i (n): we show that gw
s (n) = 2n− 3, which is an upper bound for gs

s(n) and
therefore improves the upper bound of 3n − 6 conjectured by Halman et al. [3].
Furthermore we show that � 3

2 (n − 1)	 ≤ gs
s(n).

For the relation with Minkowski sums we show that the largest cardinality of
a weakly convexly independent set X ⊆ A + A, for A some convex planar point
set of |A| = n is 2n and of a strictly convex set is between 3

2n and 2n − 2.

2 Graph Drawings

Given a graph G drawn in the plane with straight line segments as edges, we
denote by PV the convex hull of its vertices and by PE the convex hull of the
midpoints of its edges. Clearly, PE is strictly contained in PV .

2.1 Inclusions of Classes

We show that most of the classes defined in the introduction coincide and deter-
mine the exact set of inclusions among the remaining classes.

Theorem 1. We have Gs
s = Gs

w � Gw
s � Gw

w = Gw
a = Ga

s = Ga
w = Ga

a and
Gs

s � Gs
a � Gw

w . Moreover, there is no inclusion relationship between Gs
a and Gw

s .
See Fig. 1 for an illustration.

Gs
s = Gs

w

Gw
s

Gw
w = Gw

a = Ga
s = Ga

w = Ga
a

Gs
a

Fig. 1. Inclusions and identities among the classes Gj
i .

Proof. Let us begin by proving that Gs
s = Gs

w, the inclusion Gs
s ⊂ Gs

w is obvious.
Take G ∈ Gs

w drawn in the required way. We observe that there exists δ > 0
such that if we move every vertex a distance < δ, then the midpoints of the
edges are still in convex position. Thus, whenever there are vertices z1, . . . , zk

in the interior of the segment connecting two vertices x, y, we do the following
construction. We assume without loss of generality that x is in the point (0, 0), y
is in (1, 0) and that PV is entirely contained in the closed halfplane {(a, b) | b ≤ 0}.
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We take s1, s2 ∈ R ∪ {±∞} the slopes of the previous and following edge of the
boundary of PV . Now we consider ε : 0 < ε < min{δ, |s1|, |s2|}, we observe
that the set P ′ := PV ∪ {(a, b) | 0 ≤ a ≤ 1 and 0 ≤ b ≤ εa(1 − a)} is convex.
Then, for all i ∈ {1, . . . , k}, if zi is in (λi, 0) with 0 < λi < 1, we translate zi

to the point (λi, ελi(1 − λi)). We observe that the point zi has been moved a
distance < ε/4 < δ and, then, the set of midpoints of the edges is still in convex
position. Moreover, now z1, . . . , zk are in the boundary of P ′. Repeating this
argument when necessary we get that G ∈ Gs

s .
To prove the strict inclusion Gs

s � Gw
s we show that the graph K4−e, i.e., the

graph obtained after removing an edge e from the complete graph K4 belongs
to Gw

s but not to Gs
s . Indeed, if we take x0, x1, x2, x3 the 4 vertices of K4 − e

and assume that e = x2x3, it suffices to draw x0 = (0, 1), x1 = (0, 0), x2 = (1, 0)
and x3 = (1, 2) to get that K4 − e ∈ Gw

s . Let us prove that K4 − e /∈ Gs
s .

Take x0, x1, x2, x3 in convex position, by means of an affine transformation we
may assume that x0 = (0, 1), x1 = (0, 0), x2 = (1, 0) and x3 = (a, b), with a, b > 0
and a+ b > 1. If xixi+1 mod 4 is an edge for all i ∈ {0, 1, 2, 3}, then clearly PE is
not convex because the midpoint of x0x3 is in the convex hull of the midpoints
of the other 4 edges. So, assume that x2x3 is not an edge, so the midpoints
of the edges are in positions m0 = (0, 1/2),m1 = (1/2, 0), m2 = (1/2, 1/2),
m3 = (a/2, b/2), m4 = (a/2, (b+1)/2). If m0,m1,m2,m3 are in convex position,
then we deduce that a < 1 or b < 1 but not both. However, if a < 1, then m3

belongs to the convex hull of {m0,m1,m2,m4}, and if b < 1, then m2 belongs
to the convex hull of {m0,m1,m3,m4}. Hence, we again have that PE is not
convex and we conclude that K4 − e /∈ Gs

s .
The strict inclusion Gw

s � Ga
a comes as a direct consequence of Theorem 2.

Let us see that every graph belongs to Gw
w , for this purpose it suffices to

show that Kn ∈ Gw
w . Indeed, drawing the vertices in the points (0, 0), and (1, 2i)

for i ∈ {1, . . . , n − 1} gives the result. Then, we clearly have that Gw
w = Gw

a =
Ga

s = Ga
w = Ga

a .
The strict inclusions Gs

s � Gs
a � Gw

w come from the facts that gs
a = Θ(n4/3)

and that, gs
s(n) ≤ gw

s (n) ≤ 2n−3 by Theorem 2. This also proves that Gs
a �⊂ Gw

s .
To prove that Gw

s �⊂ Gs
a it suffices to consider the complete bipartite graph K2,3.

Indeed, if {x1, x2, x3}, {y1, y2} is the vertex partition, it suffices to draw x1, x2, x3

in (0, 0), (4, 0), (3, 2), respectively, and y1, y2 in (1, 1), (4, 1), respectively, to get
that K2,3 ∈ Gw

s . Finally, K2,3 /∈ Gs
a was already shown in [3]. �

2.2 Bounds on Numbers of Edges

We show that � 3
2 (n − 1)	 ≤ gs

s(n) ≤ gw
s (n) = 2n − 3.

Whenever PV is weakly convex, for every vertex x, one can order the neigh-
bors of x according to their clockwise appearance around the border of PV

starting at x. If in this order the neighbors of x are y1, . . . , yk, then we say
that xy2, . . . , xyk−1 are the interior edges of x. Non-interior edges of x are called
exterior edges of x. Clearly, any vertex has at most two exterior edges. A vertex v
sees an edge e if the straight-line segment connecting v and the midpoint me

of e does not intersect the interior of PE .
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Lemma 1. If G ∈ Gw
s , then no vertex sees its interior edges. In particular, any

vertex sees at most 2 incident edges.

Proof. Assume that there exists a vertex x seeing an interior edge xui. Take
u1, uk such that xu1, xuk are the exterior edges of x. We consider G′ the induced
graph with vertex set V ′ = {v, u1, ui, uk} and denote by E′ its corresponding
edge set. Clearly PV ′ ⊂ PV and PE′ ⊂ PE , so x sees xui in PE′ . Moreover, xui

is still an interior edge of x in G′. Denote by mj the midpoint of the edge vuj ,
for j ∈ {1, i, k}. Since x sees xui, the closed halfplane supported by the line
passing through m1,mk containing x also contains mi.

However, since PV ′ is strictly convex ui and x are separated by the line
passing through u1, uk. This is a contradiction because mj = (uj + x)/2. See
Fig. 2. �

x

u1

ui

uk

m1
mi

mk

Fig. 2. The construction in Lemma 1

Theorem 2. If a graph G ∈ Gw
s has n vertices, then it has at most 2n−3 edges,

i.e., gw
s (n) ≤ 2n − 3.

Proof. Take G ∈ Gw
s . Since the midpoints of the edges are in weakly convex posi-

tion, every edge has to be seen by one of its vertices. Lemma 1 guarantees that
interior edges cannot be seen. Hence, no edge can be interior to both endpoints.
This proves that G has at most 2n edges.

We improve this bound by showing that at least three edges are exterior by
both their endpoints, i.e., are counted twice in the above estimate. During the
proof let us call such edges doubly exterior.

Since deleting leaves only decreases the ratio of vertices and edges, we can
assume that G has no leaves. Clearly, we can also assume that G has at least three
edges. For an edge e, we denote by H+

e and H−
e the open halfplanes supported by

the line containing e. We claim that whenever an edge e = xy is an interior edge
of x, then H+

e ∪{x} and H−
e ∪{x} contain a doubly exterior edge. This follows by

induction on the number of vertices in H+
e ∩PV . Since e is interior to x, there is

an edge f = xz contained in H+
e ∪{x} and exterior of x. If f is doubly exterior we

are done. Otherwise, we set H+
f the halfplane supported by the line containing f
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and not containing y. We claim that (H+
f ∪{z})∩PV ⊂ (H+

e ∪{x})∩PV . Indeed,
if there is a point v ∈ (H+

f ∪{z})∩PV but not in H+
e ∪{x}, then x is in the interior

of the triangle with vertices v, y, z ∈ PV , a contradiction. Thus, (H+
f ∪{z})∩PV

is contained in (H+
e ∪{x})∩PV and has less vertices of PV , in particular, it does

not contain x. By induction, we can guarantee that (H+
e ∪ {x}) ∩ PV contains a

doubly exterior edge. The same works for H−
e ∪ {x}.

Applying this argument to any edge e which is not doubly exterior gives
already two doubly exterior edges f, g contained in H+

e ∪ {x} and H−
e ∪ {x},

respectively. Choose an endpoint z of f , which is not an endpoint of g. Let h = zw
be the other exterior edge of z. If h is doubly exterior we are done. Otherwise,
none of H+

h ∪ {w} and H−
h ∪ {w} contains f because z /∈ H+

h and z /∈ H−
h ;

moreover one of H+
h ∪ {w} and H−

h ∪ {w} does not contain g. Thus, there must
be a third doubly exterior edge. �

Definition 1. For every n ≥ 2, we denote by Ln the graph consisting of two
paths P = (u1, . . . , u�n

2 �) and Q = (v1, . . . , v�n
2 �) and the edges u1v1 and uivi−1

and vjuj−1 for 1 < i ≤ �n
2 	 and 1 < j ≤ �n

2 �. We observe that Ln has 2n − 3
edges.

Theorem 3. For all n ≥ 2 we have Ln ∈ Gw
s , i.e., gw

s (n) ≥ 2n − 3.

Proof. For every k ≥ 1 we are constructing L4k+2 ∈ Gw
s (the result for other

values of n follows by suppressing degree 2 vertices). We take 0 < ε0 < ε1 < · · · <

ε2k and set δj :=
∑2k

i=j εi for all j ∈ {1, . . . , 2k}. We consider the graph G with
vertices ri = (i, δ2i), r′

i = (i,−δ2i) for i ∈ {0, . . . , k} and �i = (−i, δ2i−1), �′
i =

(−i,−δ2i−1) for i ∈ {1, . . . , k}; and edge set

{r0r
′
0}∪{ri�i, ri�

′
i, r

′
i�i, r

′
i�

′
i | 1 ≤ i ≤ k}∪{ri−1�i, ri−1�

′
i, r

′
i−1�i, r

′
i−1�

′
i | 1 ≤ i ≤ k}.

See Fig. 3 for an illustration of the final drawing. By construction, the midpoints
of the edges never coincide and they lie on the vertical lines x = 0 and x = −1/2;
thus they are in weakly convex position. It is straight-forward to verify that the
constructed graph is L4k+2. �

Definition 2. For every odd n ≥ 3, we denote by Bn the graph consisting of
an isolated C3 and n−3

2 copies of C4 altogether identified along a single edge uv.
We observe that Bn has 3

2 (n−1) edges and deleting a degree 2 vertex from Bn+1

one obtains an n-vertex graph with 3
2 (n − 1) − 1

2 edges.

Theorem 4. For all odd n ≥ 3 we have Bn ∈ Gs
s , i.e., gs

s(n) ≥ � 3
2 (n − 1)	.

Proof. Let n ≥ 3 be such that n − 3 is divisible by 4 (if n − 3 is not divisible
by 4, then Bn is an induced subgraph of Bn+1). We will first draw Bn in an
unfeasible way and then transform it into another one proving Bn ∈ Gs

s .
See Fig. 4 for an illustration of the final drawing.
We draw the C3 = (uvw) as an isosceles triangle with horizontal base uv.

Let u = (−1, 0), v = (1, 0), and w = (0, n−1
2 ). There are n − 3 remaining points.
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0

1

2

r0

r0
1

1

r1

r1

Fig. 3. The graph L6 is in Gw
s .

u v

w

x = 0

p1

p2

p3

p4 pr4

pr3

pr2

pr1

Fig. 4. The graph B11 is in Gs
s .

Draw one half of them on coordinates p�
i = (−1 − i, i) for 1 ≤ i ≤ n−3

2 and the
other half mirrored along the y-axis, i.e., pr

i = (1 + i, i) for 1 ≤ i ≤ n−3
2 .

Now we add all edges p�
iu (left edges), pr

i v (right edges), for 1 ≤ i ≤ n−3
2 and

edges of the form p�
ip

r
n−3
2 +1−i

(diagonal edges) for all 1 ≤ i ≤ n−3
2 .

We observe that the points p�
i and u lie on the line x+ y = −1, the points pr

i

and v lie on the line x − y = 1 and all midpoints of diagonal edges have y-
coordinate n−1

4 . In order to bring PV and PE into strict convex position, we
simultaneously decrease the y-coordinates of points p�

n−3
2 +1−i

, pr
n−3
2 +1−i

by 2iε

for i ∈ {1, . . . , n−3
2 } for a sufficiently small value ε > 0. It suffices to conveniently

decrease the y-coordinate of w to get a drawing witnessing that Bn ∈ Gs
s . �
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2.3 Further Members of Gs
s and Gw

s

We show that there are non-planar graphs in Gs
s and cubic graphs in Gw

s .

Definition 3. For all k ≥ 2, we denote by Hk the graph consisting of a 2k-
gon with vertices v1, . . . , v2k and a singly subdivided edge from vi to vi+3 mod 2k

for all i even, i.e., there are k degree 2 vertices u1, . . . , uk and edges uiv2i for
all i ∈ {1, . . . , k}, uiv2i+3 for all i ∈ {1, . . . , k−2}, uk−1v1 and ukv3. We observe
that Hk is planar if and only if k is even.

Theorem 5. For every k ≥ 2, Hk ∈ Gs
s . In particular, for every n ≥ 9 there is

a non-planar n-vertex graph in Gs
s .

Proof. We start by drawing C2k as a regular 2k-gon. Take an edge e = xy and
denote by x′, y′ the neighbors of x and y, respectively. For convenience consider e
to be of horizontal slope with the 2k-gon below it. Our goal is to place ve a new
vertex and edges vex

′, vey
′ preserving the convexity of vertices and midpoints of

edges. We consider the upward ray r based at the midpoint me of e and the upward
ray s of points whose x-coordinate is the average between the x-coordinates of
me and x′. We denote by Δ the triangle with vertices the midpoint mx′x of the
edge x′x, the point x and me. Since s ∩ Δ is nonempty, we place ve such that the
midpoint of vex

′ is in s∩Δ. Clearly ve is in r. Hence, the middle point of vey
′ is in

the corresponding triangle Δ′ and the convexity of vertices and midpoints of edges
is preserved. See Fig. 5 for an illustration. Since we only have to add a vertex on
alternating edges of C2k, these choices are independent of each other. It is easy to
verify that the constructed graph is Hk. �

r

mx x

y

x

x

Δ

s

ve

me y
Δ

e

Fig. 5. The construction in Theorem 5

Definition 4. For all k ≥ 3, we denote by Pk the graph consisting of a prism
over a k-cycle. We observe that Pk is a 3-regular graph.

Theorem 6. For every k ≥ 3, Pk ∈ Gw
s . In particular, for every even n ≥ 6

there is a 3-regular n-vertex graph in Gw
s .
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Proof. Let k ≥ 3. In order to draw Pk, place 2k vertices v0, . . . , v2k−1 as the
vertices of a 2k-gon in the plane, in which all inner angles are the same and at
most two different side lengths occur in alternating fashion around it. (Apart
from this, these lengths do not matter for the construction.) Add all inner
edges of the form vivi+2 mod 2k for all i and outer edges vivi+1 mod 2k for i even.
Clearly, the midpoints of outer edges are in strictly convex position and their
convex hull is a regular k-gon. Now, consider four vertices say v0, . . . , v3. They
induce two outer edges, v0v1 and v2v3 and two inner edges v0v2 and v1v3. Now,
the triangles v0v1v2 and v1v2v3 share the base segment v1v2. Hence, the seg-
ments mv2v3mv1v3 and mv2v0mv1v0 share the slope of v1v2. Now, since the angle
between v1v2 and v2v3 equals the angle between v1v2 and v0v1 and v0v1 and v2v3
are of equal length, the segment mv2v3mv1v0 also has the same slope. Thus, all
the midpoint lie on a line and all midpoints lie on the boundary of the midpoints
of outer edges. See Fig. 6 for an illustration. �

v0

v1v2

v3

Fig. 6. The construction in Theorem 6

One can show that Pk is not in Gs
s . More generally we believe that:

Conjecture 1. If G ∈ Gs
s then G is 2-degenerate.

2.4 Structural Questions

One can show that adding a leaf at the vertex r1 of L8 (see Definition 1) produces
a graph not in Gw

s . Under some conditions it is possible to add leafs to graphs
in Gs

s . We say that an edge is V -crossing if it intersects the interior of PV .

Proposition 1. Let G ∈ Gs
s be drawn in the required way. If uv is not V -

crossing, then attaching a new vertex w to v yields a graph in Gs
s .

Proof. Let G ∈ Gs
s with at least 3 vertices and let e = uv be the edge of G from

the statement. For convenience consider that uv come in clockwise order on the
boundary of PV . Consider the supporting hyperplane of PE through the midpoint
me of e, whose side containing PE contains v. A new midpoint can go inside the
triangle Δ defined by the two supporting hyperplanes containing me and the addi-
tional supporting hyperplane containing the clockwisely consecutive midpoint m′.
Since PE is contained in PV a part of Δ lies outside PV . Choosing the midpoint of
a new edge attached to v inside this region very close to e preserves strict convexity
of vertices and midpoints. See Fig. 7 for an illustration. �
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vu
me

e
Δ

m

w

Fig. 7. The construction in Proposition 1

We wonder whether the class Gs
s is closed under adding leafs.

Despite the fact that K2,n /∈ Gs
s , we have found in Theorem 4 a subdivision

of K2,n which belongs to Gs
s. Similarly, Theorem 5 gives that a subdivision

of K3,3 is in Gs
s while K3,3 is not. We have the impression that subdividing

edges facilitates drawings in Gs
s . Even more, we believe that:

Conjecture 2. The edges of every graph can be (multiply) subdivided such that
the resulting graph is in Gs

s .

3 Minkowski Sums

We show that the largest cardinality of a weakly convexly independent set X,
which is a subset of the Minkowski sum of a convex planar n-point set A with
itself is 2n. If X is required to be in strict convex position then its size lies
between 3

2n and 2n − 2.
As mentioned in the introduction there is a slight trade-off when translating

the graph drawing problem to the Minkowski sum problem. Since earlier works
have been considering only asymptotic bounds this was neglected. Here we are
fighting for constants, so we want to deal with it. Recall that a point in x ∈ X ⊆
A + A is not captured by the graph model if x = a + a for some a ∈ A. Thus,
the point x corresponds to a vertex in the drawing of the graph. It is now clear,
that in order to capture the trade-off we define g̃j

i (n) as the maximum of n′ +m,
where m is the number of edges of an n-vertex graph in Gj

i such that n′ of its
vertices can be added to the set of midpoints, such that the resulting set is in⎧
⎪⎨

⎪⎩

strictly convex if j = s

weakly convex if j = w

arbitrary if j = a

position.

Lemma 2. Let G ∈ Gw
s be drawn in the required way and v ∈ G. If v can be

added to the drawing of G such that v together with the midpoints of G is in
weakly convex position, then every edge vw ∈ G is seen by w.

Proof. Otherwise the midpoint of vw will be in the convex hull of v together
with parts of PE to the left and to the right of vw, see Fig. 8. �
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wv
PE

Fig. 8. The contradiction in Lemma 2

We say that an edge is good if it can be seen by both of its endpoints.

Theorem 7. For every n ≥ 3 we have g̃w
s (n) = 2n. This is, the largest cardi-

nality of a weakly convexly independent set X ⊆ A + A, for A a convex planar
n-point set, is 2n.

Proof. The lower bound comes from drawing Cn as the vertices and edges of a
convex polygon. The set of vertices and midpoints is in weakly convex position.

For the upper bound let G ∈ Gw
s with n vertices and m edges, we denote

by ni the number of vertices of G that see i of its incident edges for i ∈ {0, 1, 2}.
Since every edge is seen by at least one of its endpoints and every vertex sees
at most 2 of its incident edges (Lemma 1), we know that m = n1 + 2n2 − mg,
where mg is the number of good edges.

Let n′ be the number of vertices of G that can be added to the drawing such
that together with the midpoints they are in weakly convex position. Denote
by n′

i the number of these vertices that see i of its incident edges for i ∈ {0, 1, 2}.
By Lemma 2 the edges seen by an added vertex have to be good. Thus, mg ≥
1
2 (n′

1 + 2n′
2). This yields

m + n′ ≤ n1 + 2n2 − 1
2
(n′

1 + 2n′
2) + n′

0 + n′
1 + n′

2 ≤ n0 +
3
2
n1 + 2n2 ≤ 2n. �

Theorem 8. For every n ≥ 3 we have � 3
2n	 ≤ g̃s

s(n) ≤ 2n − 2. This is, the
largest cardinality of a convexly independent set X ⊆ A + A, for A a convex
planar n-point, lies within the above bounds.

Proof. The lower bound comes from drawing Cn as the vertices and edges of
a convex polygon. The set formed by an independent set of vertices and all
midpoints is in convex position.

Take G ∈ Gs
s with n vertices and m edges. The upper bound is very similar

to Theorem 7. Indeed, following the same notations we also get that m = n1 +
2n2 − mg. Again, the edges seen by an added vertex have to be good. Since
now moreover the set of addable vertices has to be independent, we have mg ≥
n′
1 + 2n′

2. This yields

m + n′ ≤ n1 + 2n2 − n′
1 − 2n′

2 + n′
0 + n′

1 + n′
2 ≤ n + n2 − n′

2.

If n+n2−n′
2 > 2n−2 then either n2 = n and n′

2 < 2, or n2 = n−1 and n′
2 = 0.

In both cases we get that n′ ≤ 1. By Theorem 2 we have m ≤ 2n − 3, then it
follows that m + n′ ≤ 2n − 2. �
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4 Conclusions

We have improved the known bounds on gs
s(n), the number of edges an n-vertex

graph of strong convex dimension can have. Still describing this function exactly
is open. Confirming our conjecture that graphs in Gs

s have degeneracy 2 would not
improve our bounds. Similarly, the exact largest cardinality g̃s

s(n) of a convexly
independent set X ⊆ A + A for A a convex planar n-point set, remains to be
determined. Curiously, in both cases we have shown that the correct answer lies
between 3

2n and 2n. The more general family Gw
s seems to be easier to handle,

in particular we have provided the exact value for both gw
s and g̃w

s .
From a more structural point of view we wonder what graph theoretical

measures can ensure that a graph is in Gs
s or Gw

s . The class Gw
s is not closed

under adding leafs. We do not know if the same holds for Gs
s . Finally, we believe

that subdividing a graph often enough ensures that it can be drawn in Gs
s .
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C.D.: A tight lower bound for convexly independent subsets of the Minkowski sums
of planar point sets. Electron. J. Combin. 17(1), Note 35, 4 (2010)

2. Eisenbrand, F., Pach, J., Rothvoß, T., Sopher, N.B.: Convexly independent subsets
of the Minkowski sum of planar point sets, Electron. J. Combin. 15(1), Note 8, 4
(2008)

3. Halman, N., Onn, S., Rothblum, U.G.: The convex dimension of a graph. Discrete
Appl. Math. 155(11), 1373–1383 (2007)

4. Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Discrete Comput.
Geom. 32(4), 549–566 (2004)

5. Swanepoel, K.J., Valtr, P.: Large convexly independent subsets of Minkowski sums.
Electron. J. Combin. 17(1) (2010). Research Paper 146, 7

6. Hans Raj Tiwary: On the largest convex subsets in Minkowski sums. Inf. Process.
Lett. 114(8), 405–407 (2014)


	Drawing Graphs with Vertices and Edges in Convex Position
	1 Introduction
	2 Graph Drawings
	2.1 Inclusions of Classes
	2.2 Bounds on Numbers of Edges
	2.3 Further Members of Gss and Gsw
	2.4 Structural Questions

	3 Minkowski Sums
	4 Conclusions
	References


