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Abstract. A simultaneous embedding with fized edges (SEFE) of two
planar graphs R and B is a pair of plane drawings of R and B that
coincide when restricted to their common vertices and edges. We show
that whenever R and B admit a SEFE, they also admit a SEFE in which
every edge is a polygonal curve with few bends and every pair of edges
has few crossings. Specifically: (1) if R and B are trees then one bend per
edge and four crossings per edge pair suffice, (2) if R is a planar graph
and B is a tree then six bends per edge and eight crossings per edge pair
suffice, and (3) if R and B are planar graphs then six bends per edge
and sixteen crossings per edge pair suffice. This improves on results by
Grilli et al. (GD’14), who prove that nine bends per edge suffice, and by
Chan et al. (GD’14), who prove that twenty-four crossings per edge pair
suffice.

1 Introduction

Let R = (Vg, ERr) and B = (Vp, Ep) be two planar graphs sharing a common
graph C = (Vg N Vg, Eg N Ep). The vertices and edges of C' are common, while
the other vertices and edges are exclusive. We refer to the edges of R, B, and
C as the red, blue, and black edges, respectively. A simultaneous embedding of R
and B is a pair of plane drawings of R and B, respectively, that agree on the
common vertices (see Fig. la—b).

Simultaneous graph embeddings have been a central topic of investigation for
the graph drawing community in the last decade, because of their applicability
to the visualization of dynamic graphs and of multiple graphs on the same vertex
set [6,11], and because of the depth and breadth of the theory they have been
found to be related to.

Brass et al. [6] initiated the research on this topic by investigating simultane-
ous geometric embeddings (or SGEs), which are simultaneous embeddings where
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a, b ‘,r‘/ﬂf

Fig. 1. (a-b) R and B with Vo = {a,b, ¢, d, e} and Ec = {(a,b), (b, ¢), (a,c), (c,d)}. (c)
Simultaneous embedding of R and B. (d) SGE of R and B. (e) SEFE of R and B.

all edges are represented by straight-line segments (see Fig.1d). This setting
proved to be fairly restrictive: there exist two trees [16] and even a tree and a
path [2] with no SGE. Furthermore, the problem of deciding whether two graphs
admit an SGE is NP-hard [12].

Two relaxations of SGE have been considered in the literature in which edges
are not forced to be straight-line segments. In the first setting, we look for a
simultaneous embedding of two given planar graphs R and B in which every
edge is drawn as a polygonal curve with few bends. Di Giacomo and Liotta [9]
proved that two bends per edge always suffice. If R and B are trees, then one
bend per edge is sufficient [10]. Note that black edges may be represented by
different curves in each drawing. The variant in which the edges of R and B
might only cross at right angles has also been considered [3]. In the second
setting, we look for a simultaneous embedding with fized edges (or SEFE) of R
and B: a simultaneous embedding in which every common edge is represented
by the same simple curve in the plane (see Fig.le). In other words, a SEFE
is a drawing of the union graph (Vg U Vg, Er U Ep) that determines a plane
drawing of R (of B) when restricted to the vertices and edges of R (resp. of B).
While not every two planar graphs admit a SEFE, this setting is less restrictive
than SGE: for example, every tree and every planar graph admit a SEFE [13].
Determining the complexity of deciding whether two given graphs admit a SEFE
is a major open problem in the field of graph drawing. Polynomial-time testing
algorithms are known in many restricted cases, such as when the common graph
C' is biconnected [1] or when C' is a set of disjoint cycles [5]. We refer to an
excellent survey by Bléisius et al. [4] for many other results.

In this paper we present algorithms to construct SEFEs in which edges are
represented by polygonal curves. For the purpose of guaranteeing the readability
of the representation, we aim at minimizing two natural aesthetic criteria: the
number of bends per edge and the number of crossings per edge pair. Both
criteria have been recently considered in relation to the construction of a SEFE.
Namely, Grilli et al. [17] proved that every combinatorial SEFE can be realized
as a SEFE with at most nine bends per edge, a bound which improves to three
bends per edge when the common graph is biconnected. Further, Chan et al. [7]
proved that if R and B admit a SEFE, then they admit a SEFE in which every
red-blue edge pair crosses at most twenty-four times.

Contribution. We improve on the results of Grilli et al. [17] and of Chan
et al. [7] by proving the following results. (1) Any two trees admit a SEFE with
one bend per edge; thus, every two edges cross at most four times. The number
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of bends is the best possible, since two trees exist with no SGE [16]. (2) Any
planar graph and any tree admit a SEFE with six bends per edge in which every
two edges cross at most eight times. (3) Any two planar graphs that admit a
SEFE also admit a SEFE with six bends per edge in which every two edges cross
at most sixteen times. In all cases, the common edges are straight-line segments.
Because of space limits, we present the result for trees and we just sketch the
ideas for the other results. For the full version of the paper see [14].

2 Preliminaries

A plane drawing of a (multi)graph G determines a circular ordering of the edges
incident to each vertex of G; the set of these orderings is called a rotation system.
Two plane drawings of G are equivalent if they have the same rotation system,
the same containment relationship between cycles, and the same outer face (the
second condition is redundant if G is connected). A planar embedding is an
equivalence class of plane drawings. Analogously, a SEFE of two planar graphs
R and B determines a circular ordering of the edges incident to each vertex
(comprising edges incident to both R and B); the set of these orderings is the
rotation system of the SEFE. Two SEFEs of R and B are equivalent if they have
the same rotation system and if their restriction to the vertices and edges of
R (of B) determines two equivalent plane drawings of R (resp. of B). Finally,
a combinatorial SEFE £ for two planar graphs R and B is an equivalence class
of SEFEs; we denote by &|r (by £|p) the planar embedding of R (resp. of B)
obtained by restricting £ to the vertices and edges of R (resp. of B).

A subdivision of a multigraph G is a graph G’ obtained by replacing edges
of G with paths, whose internal vertices are called subdivision vertices. If G’ is
a subdivision of G, the operation of flattening subdivision vertices in G’ returns
G. The contraction of an edge (u, v) in a multigraph G leads to a multigraph G’
by replacing (u, v) with a vertex w incident to all the edges u and v are incident
to in G; k parallel edges (u,v) in G lead to k — 1 self-loops incident to w in G’
(the contracted edge is not in G'). If G has a planar embedding &g, then G’

inherits a planar embedding Eq as follows. Let aq,...,ax,v and by, ..., by, u be
the clockwise orders of the neighbors of u and v in Eg, respectively. Then the
clockwise order of the neighbors of w is a1, ..., ak, b1, ..., bs. The contraction of

a connected graph is the contraction of all its edges.

The straight-line segment between points p and q is denoted by pg. The angle
of pq is the angle between the ray from p in positive z-direction and the ray from
p through pg. A polygon P is strictly-convex if at every vertex the interior angle
is < 7 ; also, P is star-shaped if there exists a point p* such that pp* C P, for
every vertex p of P; the kernel of P is the set of all such points p*.

A I-page book embedding (1IPBE) is a plane drawing where all vertices are
placed on an oriented line £ called spine and all edges are curves in the halfplane
to the left of £. A 2-page book embedding (2PBE) is a plane drawing where all
vertices are placed on a spine ¢ and each edge is a curve in one of the two
halfplanes delimited by /.
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3 Two Trees

In this section we describe an algorithm that computes a SEFE of any two trees
R and B with one bend per edge. Let C be the common graph of R and B.

We outline our algorithm. In Step 1, we compute a combinatorial SEFE of R
and B for every vertex the incident black edges are consecutive in the circular
order of incident edges. In Step 2, we contract each component of C', obtaining
trees R’ from R and B’ from B. In Step 3, we independently augment R’ and
B’ to Hamiltonian planar graphs, so as to satisfy topological constraints that
are necessary for the subsequent drawing algorithms. In Step 4, we use the
Hamiltonian augmentations to construct a simultaneous embedding of R’ and
B’ with one bend per edge, similarly to an algorithm of Erten and Kobourov [10].
Finally, in Step 5, we expand the components of C' by modifying the simultaneous
embedding of R’ and B’ in a neighborhood of each vertex to make room for the
components of C. We now describe these steps in detail.

Step 1: Combinatorial SEFE. Fix the clockwise order of edges incident to
each vertex as follows: all black edges in any order, then all red edges in any
order, and then all blue edges in any order (each sequence might be empty).
As any rotation system for a tree determines a planar embedding, this results
in a combinatorial SEFE £ of R and B (Fig.2a). We may assume that every
component S of C is incident to at least one red and one blue edge: If S is not
incident to any, say, blue edge, then B =S = C| since B is connected, and any
plane straight-line drawing of R is a SEFE of R and B.

(b)

Fig. 2. (a) A connected component S of C, together with its incident exclusive edges.
(b) Vertex v resulting from the contraction of S.

For every component S of C' we pick two incident edges r(S) and b(S) as
follows. In any SEFE equivalent to £ let « be a simple closed curve surrounding
S and close enough to it so that v has no crossing in its interior. Note that ~y
intersects all the exclusive edges incident to S in some clockwise order in which
all the exclusive edges incident to a single vertex of S appear consecutively. Let
r(S) be any red edge not preceded by a red edge in this order and let b(S) be
the first blue edge after r(.5). We define a total ordering gg of the vertices of S,
as the order in which their exclusive edges intersect v (a curve is added incident
to every vertex of S with no incident exclusive edge for this purpose), where the
first vertex of pg is the endvertex of r(S).

Lemma 1. The straight-line drawing of S obtained by placing its vertices on a
strictly-convexr curve X\ in the order defined by og is plane.
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Proof. For every vertex v of .S, shrink v along an exclusive edge incident to v so
that v passes through v and still every edge of S lies in its interior. Eventually ~
passes through all the vertices of S in the order gg. The planarity of the drawing
of S implies that there are no two edges whose endvertices alternate along .
Then placing the vertices of S on A in the order gg leads to a plane straight-line
drawing of S. |

Step 2: Contractions. Contract each component S of C' to a single vertex v.
The resulting trees R’ = (V},, ER) and B’ = (V}, E3) have planar embeddings
Er and Ep/ inherited from £ and Ep, respectively. Vertex v is common to R’
and B’; let r(v) and b(v) be the edges corresponding to 7(S) and b(S) after the
contraction. See Fig. 2b.

Step 3: Hamiltonian Augmentations. We describe this step for R’ only; the
treatment of B’ is analogous and independent. The goal is to find a vertex order
corresponding to a 1PBE of R’. All edges between consecutive vertices along
the spine £, as well as the edge between the first and last vertex along ¢, can
be added to a 1PBE while maintaining planarity: hence the 1PBE is essentially
a Hamiltonian augmentation of R’. For Step 5 we need to place r(v), for each
common vertex v, as in the following.

Lemma 2. There is a 1PBE for R’ equivalent to Er: such that, for every com-
mon vertex v, the spine passes through v right before r(v) in clockwise order
around v.

Proof. We construct the embedding recursively. For each exclusive vertex v, let
r(v) be an arbitrary edge incident to v. Arbitrarily choose a vertex s as the root
of R’ and place s on £. Place the other endpoint of r(s) after s on ¢ and all
remaining neighbors of s, if any, in between in the order given by £g/. Then
process every child v of s (and the subtree below v) recursively as follows (and
ensure that all subtrees stay in pairwise disjoint parts of the spine, for instance,
by assigning a specific region to each).

(a) (b)

Fig. 3. Embedding the children of v if (a) p # v’ or (b) p = v'. Parts of the embedding
already constructed are in the shaded regions.

Note that both v and the parent p of v are already embedded. By symmetry
we can assume that p lies before v on the spine. Let v’ be the endvertex of r(v)
different from v. If p # o', we place the other endvertex of r(v) right before v.
Both if p # v’ (see Fig. 3a) and if p = v’ (see Fig. 3b), we place the other children
of v, if any, according to £g/, in the parts of the spine between p and v’, and
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after v. If v is not a leaf, then all its children are processed recursively in the
same fashion. It is easily checked that the resulting embedding is a 1PBE that
satisfies the stated properties. (I

Step 4: Simultaneous Embedding. We now construct a simultaneous embed-
ding of R’ and B’. Let o, be the order of the edges around a vertex v obtained by
sweeping a ray clockwise around v, starting in direction of the negative z-axis.

Lemma 3. For every € > 0, R’ and B’ admit a simultaneous embedding with
one bend per edge in which:

— all edges of Er: (Ep/) incident to each vertex v in V}, (resp. V) leave v within
an angle of [—¢&; +¢] with respect to the positive y-direction (resp. x-direction);

— the drawing restricted to R’ (to B') is equivalent to Eg: (resp. to Ep/); and

— for every common vertex v, the first red (blue) edge in o, is r(v) (resp. b(v)).

Proof. Our algorithm is very similar to algorithms due to Brass et al. [6] and
Erten and Kobourov [10]. These algorithms, however, do not guarantee the con-
struction of a simultaneous embedding in which the order of the edges incident
to each vertex is as stated in the lemma. This order is essential for the upcoming
expansion step.

We assign x-coordinates 1,...,|Vg/| (y-coordinates |Vp/|,...,1) to the ver-
tices of R’ (resp. of B’) according to the order in which they occur on the spine
in the 1PBE of R’ (resp. of B’) computed in Lemma 2. This determines the
placement of every common vertex. Set any not-yet-assigned coordinate to O.

We now draw the edges of R’ (the construction for B’ is symmetric). The
idea is to realize the 1PBE of R’ with its vertices placed as above and its edges
drawn as z-monotone polygonal curves with one bend. We proceed as follows.
The 1PBE of R’ defines a partial order of the edges corresponding to the way
they nest. For example, denoting the vertices by their order along the spine, edge
(3,4) preceeds (3,5) and (2,5), while (1,2) and (6, 7) are incomparable. We draw
the edges of R’ in any linearization of this partial order. Suppose we have drawn
some edges and let (u,v) be the next edge to be drawn. Assume w.l.o.g. that
the z-coordinate of w is smaller than the one of v. For some &,, > 0, consider
the ray g, emanating from w with an angle of 7/2 — e,, (with respect to the
positive z-axis). Similarly, let g, be the ray emanating from v with an angle of
/2 4 €4r. We choose g, < € sufficiently small so that:

(1) no vertex in Vi \ {u} lies in the region to the left of the underlying (oriented)
line of g, and to the right of the vertical line through w;

(2) no vertex in Vg \ {v} lies in the region to the right of the underlying (ori-
ented) line of g, and to the left of the vertical line through v; and

(3) neither g, nor g, intersects any previously drawn edge.

As no two vertices of R’ have the same z-coordinate, we can choose g,
as claimed. The corresponding rays o, and p, intersect in some point: this is
where we place the bend-point of (u,v). The resulting drawing is equivalent
to the 1PBE of R’ and therefore to £r/. The remaining claimed properties are
preserved from the 1PBE. O
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Step 5: Expansion. We now expand the components of C in the drawing
produced by Lemma 3 one by one in any order. Let I' be the current drawing, v
be a vertex corresponding to a not-yet-expanded component S of C, and p be the
point on which v is placed in I'. Note that the red and blue edges incident to v
may be incident to different vertices in S. Let o, = (e1,...,¢e¢), where ey, ..., ey
are red and €41, ..., e, are blue. By Lemma 3, r(v) = e; and b(v) = ep4+1. Each
edge incident to v is drawn as a polygonal curve with one bend. Let b; be the
bend-point of e;. The plan is to delete p and segments pb; in I" to obtain I".
Then draw S in I inside a small disk around p and draw segments from S to
b1,...,bs. See Fig. 4. For an € > 0, let D, be the disk with radius ¢ centered at
p. Let I'g (I') be the restriction of I" (resp. I') to the red and black edges. We
state the following propositions only for the red graph; the propositions for the
blue graph are analogous. By continuity, v can be moved around slightly in I'g
while maintaining a plane drawing for the red graph. This implies the following.

€k
[ ..-€k+1

Fig. 4. Expanding a component S in a small disk D. around p.

Proposition 1. There exists a dg > 0 with the following property. For every
drawing I'f, obtained from I'y, by drawing S in Ds,,, the red segments from S to
b1,...,b, do not cross any segment already present in I'y.

Proposition 2. There exists anegr > 0 with the following property. Letqi, . .., qx
be any k (not necessarily distinct) points in this clockwise order on the upper semi-
circle of De,. Then the segments q1by, . . ., qibx do not intersect except at common
endpoints.

Proof. The angles of pby, .. ., pby, are distinct and strictly decreasing, by Lemma 3
and by the way ey, ..., e are labeled. We claim that eg can be chosen sufficiently
small so that the angles of ¢ b1, . .., qiby are also distinct and strictly decreasing.
For a certain ¢, let I;(¢) be the interval of all angles v such that the ray with
angle a from b; intersects D.. Since the angles of pby,...,pby are distinct, it
follows that the intervals I7(0), ..., Ix(0) are disjoint. By continuity, there exists
an eg > 0 for which I;(er), ..., Ix(er) are also disjoint, and the claim follows for
this er. Finally, two segments ¢;b; and m with 4 < j and ¢; # ¢; can intersect
only if the angle of ¢;b; is smaller than the angle of %, which does not happen
by the claim. |




Simultaneous Embeddings with Few Bends and Crossings 173

Lemma 4. There exists an € > 0 with the following property. We can expand S
to obtain a simultaneous embedding I'* from I'' by drawing the vertices of S on
the boundary of D., the edges of S as straight-line segments, and by connecting
S to by, ..., by with straight-line segments.

Proof. Let dg, dp, €r, and ep be the constants given by Propositions 1 and 2
and their analogous formulations for B. Let € := min{dg, dp,2r,ep}. Place the
vertices of S as distinct points on the boundary of the upper-right quadrant of
D, in the order pg. By Lemma 1, this placement determines a straight-line plane
drawing of S. Draw straight-line segments from the vertices of S to by,..., by,
thus completing the drawing of the exclusive edges incident to S. We prove that
the red segments incident to .S do not cross any red or black edge; the proof for
the blue segments is analogous. By Proposition 1, the red segments incident to
S do not cross the red and black segments not incident to S. Also, they do not
cross the edges of S, which are internal to D.. Further, Proposition 2 ensures
that these segments do not cross each other. Namely, the linear order of the
vertices of S defined by the sequence of red edges ey, ..., e is a subsequence of
0s, given that the embedding £r/ of R’ is the one inherited from £g, given that
Lemma 3 produces a drawing of R’ respecting £/ and in which e; = r(v), and
given that the endvertex of r(S) in S is the first vertex of pg. O

Theorem 1. Let R and B be two trees. There exists a SEFE of R and B in
which every exclusive edge is a polygonal curve with one bend, every common
edge is a straight-line segment, and every two exclusive edges cross at most four
times.

Proof. By Lemma 3, R’ and B’ admit a simultaneous embedding with one bend
per edge. By repeated applications of Lemma 4, the simultaneous embedding of
R’ and B’ can be turned into a SEFE of R and B in which every exclusive edge
has one bend and every common edge is a straight-line segment. Finally, any
two exclusive edges cross at most four times, given that each of them consists of
two straight-line segments. (I

4 A Planar Graph and a Tree (sketch)

In this section we sketch an algorithm that computes a SEFE of any planar graph
R and any tree B in which every edge of R has at most six bends and every
edge of B has one bend. The common graph C of R and B is a forest, as it is a
subgraph of B. The algorithm is similar to the one for trees (Sect.3), however,
it encounters some of the complications one needs to handle when dealing with
pairs of planar graphs (Sect.5). A detailed description of the algorithm and a
proof of its correctness can be found in [14]. The algorithm consists of several
steps.

Step 1: Antennas. We modify R and B as follows. Each red edge (u,v), with
u and v in C, is replaced by a path (u,ue,v.,v), whose first and third edge
are black, and whose second edge is red; also, each red edge (u,v), with u in
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C and v not in C, is replaced by a path (u,ue,v), with (u,u.) black and with
(te,v) red. Denote by R’ and B’ the resulting planar graph and tree. While this
modification costs two extra bends per edge of R in the final SEFE of R and
B (which will be obtained from a SEFE of R’ and B’ by removing vertices and
edges not in R and B), it establishes the property that, for every exclusive edge
e of R, every common endvertex of e is incident to e, to a common edge, and
to no other edge.

Step 2: Combinatorial SEFE. We construct a combinatorial SEFE £ of R’
and B’ such that at each vertex v of the common graph C’ of R’ and B’, all
the edges of C’ are consecutive in the circular order of the edges incident to v.
While this is done similarly to the case of tree-tree pairs, the existence of this
combinatorial SEFE here is possible only because of the antennas introduced in
Step 1. Edges r(S) and b(S), ordering pg, and planar embeddings g and Ep/
are defined as in Sect. 3.

Step 3: Contractions. We contract each component of C’ to a vertex in R’
and in B’, determining a planar multigraph R” (with loops) and a tree B’
respectively. Graphs R” and B” inherit planar embeddings £r~ and g~ from
Er and Epr, respectively. Let r(v) and b(v) be the edges corresponding to r(S)
and b(5).

Step 4: Hamiltonian Augmentations. A Hamiltonian augmentation of B”
is computed by Lemma 2. A Hamiltonian augmentation of R” might not exist,
thus we subdivide some edges of R” and then augment the subdivided R” into
a graph R"' containing a Hamiltonian cycle C (which we assume to be oriented
counter-clockwise), none of whose edges is part of an original edge of R”.

The augmentation does not alter the embedding of R”, that is, it produces a
planar embedding £g/ that contains a subdivision of £z ; also, for each common
vertex v of R” and B”, the edge of C entering v is right before r(v) in the
clockwise order of edges incident to v in Eg». Each edge e of R” either is also
an edge of R (as it has not been subdivided) or corresponds to a path with
three edges in R (as it has been subdivided twice). In the former case, e is to
the left of C; in the latter case, the path corresponding to e starts to the left of
C, then moves to its right, and then ends again to its left.

The augmentation can be computed as follows: let T be a spanning tree of
R draw a closed curve v in Eg» around T crossing twice every edge of R” not
in T; replace such crossings with subdivision vertices for the edges of R” and
insert dummy vertices on v; modify v in a neighborhood of each vertex v of R”,
so that v passes through v.

Step 5: Simultaneous Embedding. In order to construct a simultaneous
embedding of R” and B”, we would like to use known algorithms that embed
planar graph pairs simultaneously with two bends per edge [8,9,19]. However,
the existence of self-loops in R” prevents us from doing that. Thus, we modify
those algorithms to prove that a simultaneous embedding of R” and B” exists
in which every edge of R” (of B") is a polygonal curve with at most four bends
(resp. with one bend) and every two edges cross at most eight times. Further,
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the planar embeddings £z~ and £~ of R” and B’ are respected, the first red
(blue) edge in oy, is r(v) (resp. b(v)), where o, is defined as in Sect. 3, and all the
edges of R” leave their incident vertices within an angle of [—¢; 4¢] with respect
to the positive y-direction (resp. z-direction).

The embedding algorithm is similar to the one in Lemma 3. First, the vertices
of R (of B") are assigned increasing z-coordinates (decreasing y-coordinates),
according to their order along the Hamiltonian cycle in R” (in B”). The edges
of B"” and the not subdivided edges of R” are drawn as steep 1-bend curves.
Every other edge e of R” is a path with three edges in R"'; drawing each of
these edges as a steep 1-bend curve would result in e having five bends (one per
edge of R composing e, plus two corresponding to the subdivision vertices for
e); one bend is saved by placing all the subdivision vertices for the edges of R”
on a strictly-convex curve, so that the edges of R” between them can be drawn
as straight-line segments rather than as 1-bend curves.

Step 6: Expansion. Expand the components of C’ in the simultaneous embed-
ding of R” and B”, as in Sect. 3; this results in a SEFE of R’ and B’. Remove
vertices and edges not in R and B, obtaining a SEFE of R and B. We get the
following.

Theorem 2. Let R be a planar graph and let B be a tree. There erists a SEFE
of R and B in which every exclusive edge of R is a polygonal curve with at most
sixz bends, every exclusive edge of B is a polygonal curve with one bend, every
common edge is a straight-line segment, and every two exclusive edges cross at
most eight times.

5 Two Planar Graphs (sketch)

In this section we sketch an algorithm that computes a SEFE of any two planar
graphs R and B in which every edge has at most six bends. A detailed description
of the algorithm and a proof of its correctness can be found in [14].

We assume that a combinatorial SEFE £ of R and B is given, that no exclusive
vertex or edge lies in the outer face of C in &, and that R and B are connected.
We make the first assumption since determining the existence of such a SEFE
is a problem of unknown complexity [4]; the last two assumptions can be met
after an initial augmentation. We introduce antennas, as in Sect. 4, turning R
and B into planar graphs R’ and B’ with a common graph C’; however, here
the modification is performed for both graphs. This costs two extra bends per
edge in the final SEFE of R and B; however, it establishes the property that,
for every exclusive edge e, every common endvertex of e is incident to e, to a
common edge, and to no other edge. A combinatorial SEFE £’ of R’ and B’ is
derived from £ by drawing the antennas as “very small” curves on top of the
edges they partially replace. Let Ecs be the restriction of £ to C’.

We now construct a SEFE of R’ and B’. Similarly to Sects. 3 and 4, we would
like to contract each component S of C’, construct a simultaneous embedding of
the resulting graphs, and finally expand the components of C’. However, S is
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not a tree here, but rather a planar graph containing other components of C’ in
its internal faces. Hence, the contraction — simultaneous embedding — expansion
process does not happen just once, but rather we proceed from the outside to
the inside of C’ iteratively, each time applying that process to draw certain
subgraphs of R’ and B’, until R' and B’ have been entirely drawn. We now
sketch how this is done.

We start by representing the cycle 6* delimiting the outer face of C’ in £’ as
a strictly-convex polygon A*. Next, assume that a SEFE I'” of two subgraphs
R” of R' and B” of B’ has been constructed. Let C” be the common graph of
R"” and B” and let Egr, Egr, and Ecr be the planar embeddings of R”, B”, and
C" in &', respectively. Assume that the following properties hold for I'”.

— (BENDS AND CROSSINGS): every edge is a polygonal curve with at most four
bends, every common edge is a straight-line segment, and every two exclusive
edges cross at most sixteen times;

— (EMBEDDING): the restrictions of I'” to R”, B”, and C” are equivalent to
Errry Epr, and Ecr, Tespectively; and

— (POLYGONS): each not-yet-drawn vertex or edge of R’ or B’ lies in &£’ inside
a simple cycle 67 in C” which is represented in I by a star-shaped empty
polygon Ay; further, if an edge exists in C’ that lies inside 6 in & and
that belongs to the same 2-connected component of C’ as s, then Ay is a
strictly-convex polygon.

These properties are initially met with R = B” = C” = §* and with
I' = A*. It remains to describe how to insert in I vertices and edges of R’
and B’ that are not yet in I'”, while maintaining these properties. Since R’
and B’ are finite graphs, this will eventually lead to a SEFE of R’ and B’. We
distinguish two cases.

In Case 1, a 2-connected component Sy of C” exists such that: (i) the outer
face of Sy in ¢ is delimited by a simple cycle 05 belonging to C” and containing
no vertex or edge of C” in its interior in £cr; and (ii) Sy contains edges inside
07 in Ecv, hence by property POLYGONS, d5 is a strictly-convex polygon Ay in
I'". As observed in [18], a straight-line plane drawing I’y of Sy exists in which
the outer face of Sy is delimited by Ay and every internal face is delimited
by a star-shaped polygon. Plugging I'; in I"” maintains properties BENDS AND
CROSSINGS, EMBEDDING, and POLYGONS.

In Case 2, let §; be a simple cycle belonging to C”, containing no vertex or
edge of C” in its interior in £, and containing a not-yet-drawn vertex or edge in
its interior in £’. By property POLYGONS, d is a star-shaped polygon Ay in I'”.
Since Case 1 does not apply, é¢ delimits a face f of Ec in its interior (possibly
with other cycles of C”). Let C’(f) be the subgraph of C’ composed of the
vertices and edges incident to f in Ecr. Also, let R'(f) (B’(f)) be the subgraph
of R’ (of B’) composed of C’(f) and of the red (blue) vertices and edges lying in
f in &’; these are the graphs we draw while maintaining properties BENDS AND
CROSSINGS, EMBEDDING, and POLYGONS. This proof is the most involved part
of the paper.
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We give an algorithm that draws R'(f) and B’(f) in four steps, with the app-
roach of Sects.3 and 4: (Step 1) contract each component of C’(f), obtaining
planar multigraphs R”(f) and B"”(f); (Step 2) independently compute Hamil-
tonian augmentations of R”(f) and B”(f); (Step 3) construct a simultaneous
embedding I'"'(f) of R”(f) and B”(f), relying on their Hamiltonian augmenta-
tions; and (Step 4) expand each component of C’(f) in I'"'(f), obtaining a SEFE
I'(f) of R(f) and B'(f).

Differently from the previous sections, a simultaneous embedding has to be
constructed for two planar multigraphs; this is not a big issue though, other
than for the number of bends of B'(f) in I''(f). What is a major complication
is that, in order to extend the SEFE I'” of R” and B” by plugging I"'(f) into it,
we need to ensure that I and I''(f) coincide along the part they share, which
is polygon Ay. That is, the SEFE I'(f) of R'(f) and B’(f) we construct has to
coincide with Ay when restricted to 6.

The impact of this constraint on the contraction — simultaneous embedding —
expansion process is as follows. The contraction and Hamiltonian augmentation
steps stay unchanged. Denote by u* the vertex of R”(f) and B”(f) to which
the 2-connected component S* of C’(f) containing d; has been contracted. The
simultaneous embedding step is also very similar to the one in Sect. 4, except
that it ensures that u* and its adjacent bends are in certain geometric positions.
The expansion step changes heavily. Namely: (i) we expand the components
S # 8% of C'(f) in I'{ in the usual way; (ii) we define a region H* inside the
kernel of Ay; (iii) we construct a drawing I'* of S* such that dy is represented
as Ay and all the other vertices and edges of S* are inside Ay but outside H*;
we rotate and scale I'y and place it in H*; and we finally connect I'* with I'{
via straight-line segments, thus obtaining ;. We then plug I'; in I'”, so that
they coincide along Ay, obtaining a drawing satisfying Properties BENDS AND
CROSSINGS, EMBEDDING, and POLYGONS. We get the following.

Theorem 3. Let R and B be two planar graphs. If there exists a SEFE of R and
B, then there also exists a SEFE of R and B in which every edge is a polygonal
curve with at most sixz bends, every common edge is a straight-line segment, and
every two exclusive edges cross at most sizteen times.

6 Conclusions

In this paper we proved upper bounds for the number of bends per edge and
the number of crossings per edge pair required to realize a SEFE with polygonal
curves as edges.

While the bound on the number of bends per edge we presented for tree-tree
pairs is tight, there is room for improvement for pairs of planar graphs, as the
best known lower bound [6] only states that one bend per edge might be needed.
We suspect that our upper bound could be improved by designing an algorithm
that constructs a simultaneous embedding of two planar multigraphs with less
than four bends per edge. A related interesting problem is to determine how
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many bends per edge are needed to construct a simultaneous embedding of pairs
of (simple) planar graphs. The best known upper bound is two [8,9,19] and the
best known lower bound is one [15].

As a final research direction, we mention the problem of constructing SEFEs
of pairs of planar graphs in polynomial area, while matching our bounds for the
number of bends per edge and crossings per pair of edges.
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