
Emilio Di Giacomo
Anna Lubiw (Eds.)

 123

LN
CS

 9
41

1

23rd International Symposium, GD 2015
Los Angeles, CA, USA, September 24–26, 2015
Revised Selected Papers

Graph Drawing
and Network Visualization

Lecture Notes in Computer Science 9411

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Emilio Di Giacomo • Anna Lubiw (Eds.)

Graph Drawing
and Network Visualization
23rd International Symposium, GD 2015
Los Angeles, CA, USA, September 24–26, 2015
Revised Selected Papers

123

Editors
Emilio Di Giacomo
Università degli Studi di Perugia
Perugia
Italy

Anna Lubiw
School of Computer Science
University of Waterloo
Waterloo, ON
Canada

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27260-3 ISBN 978-3-319-27261-0 (eBook)
DOI 10.1007/978-3-319-27261-0

Library of Congress Control Number: 2015955866

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at the 23rd International Symposium on
Graph Drawing and Network Visualization (GD 2015), which took place September
24–26, 2015, in Los Angeles, California, USA. The conference was hosted by Cali-
fornia State University at Northridge, with Csaba Tóth as chair of the Organizing
Committee. A total of 86 participants from 12 countries attended the conference.

This year the symposium added “Network Visualization” to its name to better
emphasize the focus of the conference both on the combinatorial and algorithmic
aspects of graph drawing, and on the design of visualization systems and interfaces.

Paper submissions were divided into three tracks plus a poster track: Track 1 for
combinatorial and algorithmic aspects; Track 2 for experimental, applied, and network
visualization aspects; and Track 3 for shorter notes and demos. All tracks were handled
by a single Program Committee. The total number of submissions was 77 papers and
nine posters. At least three Program Committee members reviewed each submission
and the Program Committee then accepted 42 papers and eight posters, for acceptance
rates of 24/42 in Track 1, 11/22 in Track 2, 7/13 in Track 3, and 8/9 posters. In addition
to the papers, these proceedings include a two-page description of each poster.

GD 2015 was preceded by a two-day graduate workshop on “Recent Trends in
Graph Drawing: Curves, Graphs, and Intersections.” A report about the workshop is
included in the proceedings.

There were two invited talks at GD 2015. Herbert Edelsbrunner of the Institute of
Science and Technology, Austria, talked about “Shape, Homology, Persistence, and
Stability.” Kwan-Liu Ma of the University of California at Davis, USA, talked about
“Emerging Topics in Network Visualization.” Abstracts of both talks are included in
these proceedings.

Springer sponsored awards for best paper in each of Track 1 and Track 2, plus a best
presentation award and a best poster award. The Program Committee voted to give the
best paper award in Track 1 to “Drawing Graphs Using a Small Number of Obstacles,”
by M. Balko, J. Cibulka, and P. Valtr, and in Track 2 to “An Incremental Layout
Method for Visualizing Online Dynamic Graphs,” by T. Crnovrsanin, J. Chu, and K.-L.
Ma. The participants of the conference voted to give the best presentation award to M.
Löffler for his presentation of the paper “Realization of Simply Connected Polygonal
Linkages and Recognition of Unit Disk Contact Trees” and the best poster award to
P. Angelini, G. Da Lozzo, G. Di Battista, F. Frati, M. Patrignani, and I. Rutter for their
poster entitled “On the Relationship Between Map Graphs and Clique Planar Graphs.”

Following tradition, the 22nd Annual Graph Drawing Contest was held during the
conference. The contest had two parts, each with two categories: Creative Topics
(Graph Classes and Tic Tac Toe) and Live Challenge (Automatic Category and Manual
Category). Awards were made in each of the four categories. A report about the contest
is included in the proceedings.

Many people and organizations contributed to the success of GD 2015. We thank
the Program Committee members and the additional reviewers for carefully reviewing
the submitted papers and posters and for putting together a strong and interesting
program. Thanks to all the authors for choosing GD 2015 as the publication venue for
their research.

We warmly thank the Organizing Committee, Bernardo Ábrego, Silvia Fernández-
Merchant, Csaba Tóth, and all the volunteers from the California State University at
Northridge, who put a lot of time and effort into the organization of GD 2015. This
year’s Contest Committee was chaired by Maarten Löffler, Utrecht University. We
thank the committee for preparing interesting and challenging problems.

GD 2015 thanks its sponsors, “diamond” sponsor California State University at
Northridge, “gold” sponsors Tom Sawyer Software and yWorks, “silver” sponsor
Microsoft, and “bronze” sponsor Springer. Their generous support helps ensure the
continued success of this conference.

The 24th International Symposium on Graph Drawing and Network Visualization
(GD 2016) will take place September 19–21, 2016, in Athens, Greece. Yifan Hu and
Martin Nöllenberg will co-chair the Program Committee, and Antonios Symvonis will
chair the Organizing Committee.

October 2015 Emilio Di Giacomo
Anna Lubiw

VI Preface

Organization

Program Committee

Carla Binucci University of Perugia, Italy
Prosenjit Bose Carleton University, Canada
Giuseppe Di Battista Roma Tre University, Italy
Emilio Di Giacomo

(Co-chair)
University of Perugia, Italy

Vida Dujmović University of Ottawa, Canada
Tim Dwyer Monash University, Australia
Fabrizio Frati Roma Tre University, Italy
Michael Goodrich University of California, Irvine, USA
Nathalie Henry Riche Microsoft Research, USA
Yifan Hu Yahoo Labs, USA
Michael Kaufmann University of Tübingen, Germany
Andreas Kerren Linnaeus University, Sweden
Anna Lubiw (Co-chair) University of Waterloo, Canada
Tamara Munzner University of British Columbia, Canada
Stephen North Infovisible LLC, USA
Martin Nöllenburg Karlsruhe Institute of Technology, Germany
Yoshio Okamoto University of Electro-Communications, Japan
Ignaz Rutter Karlsruhe Institute of Technology, Germany
Maria Saumell University of West Bohemia, Czech Republic
Marcus Schaefer DePaul University, USA
Heidrun Schumann University of Rostock, Germany
Geza Toth Rényi Institute, Hungary
Jarke van Wijk Eindhoven University of Technology, The Netherlands
Alexander Wolff University of Würzburg, Germany

Organizing Committee

Bernardo Ábrego California State University at Northridge, USA
Silvia Fernández-Merchant California State University at Northridge, USA
Csaba D. Tóth (Chair) California State University at Northridge, USA

Graph Drawing Contest Committee

Philipp Kindermann University of Würzburg, Germany
Maarten Löffler (Chair) Utrecht University, The Netherlands
Lev Nachmanson Microsoft Research, USA
Ignaz Rutter Karlsruhe Institute of Technology, Germany

Additional Reviewers

Aichholzer, Oswin
Angelini, Patrizio
Bekos, Michael
Bläsius, Thomas
Bruckdorfer, Till
Da Lozzo, Giordano
Di Bartolomeo, Marco
Di Donato, Valentino
Didimo, Walter
van Dijk, Thomas C.
Feng, Wendy
Fink, Martin
Fulek, Radoslav
Gansner, Emden
Grilli, Luca
Hasunuma, Toru
Hernandez, Gregorio
Kainen, Paul
Khoury, Marc
Kieffer, Steven
Kindermann, Philipp
Klein, Karsten
Kleist, Linda
Kobourov, Stephen
Kucher, Kostiantyn
Kusters, Vincent
Lee, Bongshin
Lipp, Fabian
Liu, Qingsong
Löffler, Maarten
Mchedlidze, Tamara
Mondal, Debajyoti

Montecchiani, Fabrizio
Morin, Pat
Nayyeri, Amir
Niedermann, Benjamin
Ozeki, Kenta
Park, Ji-Won
Patrignani, Maurizio
Pizzonia, Maurizio
Prutkin, Roman
Radermacher, Marcel
Raftopoulou, Chrysanthi
Richter, Bruce
Roselli, Vincenzo
Schreiber, Falk
Sheffer, Adam
Shermer, Thomas
Shi, Conglei
Smorodinsky, Shakhar
Song, Qi
Spisla, Christiane
Strash, Darren
Ueckerdt, Torsten
van den Elzen, Stef
van Renssen, Andr
Verbeek, Kevin
Vesonder, Gregg
Yamanaka, Katsuhisa
Yang, Yalong
Yoghourdjian, Vahan
Zielke, Christian
Zimmer, Björn

VIII Organization

Sponsors

Diamond Sponsor

Gold Sponsors

Silver Sponsor

Bronze Sponsor

Organization IX

Invited Talks

Shape, Homology, Persistence, and Stability

Herbert Edelsbrunner

Institute of Science and Technology, Austria

Abstract. My personal journey to the fascinating world of geometric forms
started more than 30 years ago with the invention of alpha shapes in the plane. It
took about 10 years before we generalized the concept to higher dimensions, we
produced working software with a graphics interface for the three-dimensional
case. At the same time, we added homology to the computations. Needless to
say that this foreshadowed the inception of persistent homology, because it
suggested the study of filtrations to capture the scale of a shape or data set.
Importantly, this method has fast algorithms. The arguably most useful result on
persistent homology is the stability of its diagrams under perturbations.

Emerging Topics in Network Visualization

Kwan-Liu Ma

University of California at Davis, USA

Abstract. Visualizing networks commonly found in a wide variety of applica-
tions, such as bioinformatics, computer security, social networks, telecommu-
nication, transportation systems, etc., can lead to important insights. While
visualizing small, static networks is relatively easy to do, larger and more
complex networks present many challenges. In particular, real-world network
data are almost all time-varying, and effective techniques for visualizing and
analyzing networks evolving over time are lacking. I will discuss emerging
topics in network visualization using research results that my group has pro-
duced as examples.

Contents

Large and Dynamic Graphs

GraphMaps: Browsing Large Graphs as Interactive Maps. 3
Lev Nachmanson, Roman Prutkin, Bongshin Lee, Nathalie Henry Riche,
Alexander E. Holroyd, and Xiaoji Chen

An Incremental Layout Method for Visualizing Online Dynamic Graphs 16
Tarik Crnovrsanin, Jacqueline Chu, and Kwan-Liu Ma

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 30
Henning Meyerhenke, Martin Nöllenburg, and Christian Schulz

A Million Edge Drawing for a Fistful of Dollars. 44
Alessio Arleo, Walter Didimo, Giuseppe Liotta,
and Fabrizio Montecchiani

Faster Force-Directed Graph Drawing with the Well-Separated Pair
Decomposition . 52

Fabian Lipp, Alexander Wolff, and Johannes Zink

Crossing Numbers

The Degenerate Crossing Number and Higher-Genus Embeddings 63
Marcus Schaefer and Daniel Štefankovič

On Degree Properties of Crossing-Critical Families of Graphs 75
Drago Bokal, Mojca Bračič, Marek Derňár, and Petr Hliněný

Genus, Treewidth, and Local Crossing Number . 87
Vida Dujmović, David Eppstein, and David R. Wood

Hanani-Tutte for Radial Planarity . 99
Radoslav Fulek, Michael Pelsmajer, and Marcus Schaefer

Experiments

Drawing Planar Cubic 3-Connected Graphs with Few Segments:
Algorithms and Experiments. 113

Alexander Igamberdiev, Wouter Meulemans, and André Schulz

The Book Embedding Problem from a SAT-Solving Perspective. 125
Michael A. Bekos, Michael Kaufmann, and Christian Zielke

http://dx.doi.org/10.1007/978-3-319-27261-0_1
http://dx.doi.org/10.1007/978-3-319-27261-0_2
http://dx.doi.org/10.1007/978-3-319-27261-0_3
http://dx.doi.org/10.1007/978-3-319-27261-0_4
http://dx.doi.org/10.1007/978-3-319-27261-0_5
http://dx.doi.org/10.1007/978-3-319-27261-0_5
http://dx.doi.org/10.1007/978-3-319-27261-0_6
http://dx.doi.org/10.1007/978-3-319-27261-0_7
http://dx.doi.org/10.1007/978-3-319-27261-0_8
http://dx.doi.org/10.1007/978-3-319-27261-0_9
http://dx.doi.org/10.1007/978-3-319-27261-0_10
http://dx.doi.org/10.1007/978-3-319-27261-0_10
http://dx.doi.org/10.1007/978-3-319-27261-0_11

Size- and Port-Aware Horizontal Node Coordinate Assignment. 139
Ulf Rüegg, Christoph Daniel Schulze, John Julian Carstens,
and Reinhard von Hanxleden

Area, Bends, Crossings

Small-Area Orthogonal Drawings of 3-Connected Graphs 153
Therese Biedl and Jens M. Schmidt

Simultaneous Embeddings with Few Bends and Crossings 166
Fabrizio Frati, Michael Hoffmann, and Vincent Kusters

Rook-Drawing for Plane Graphs . 180
David Auber, Nicolas Bonichon, Paul Dorbec, and Claire Pennarun

On Minimizing Crossings in Storyline Visualizations. 192
Irina Kostitsyna, Martin Nöllenburg, Valentin Polishchuk,
André Schulz, and Darren Strash

Maximizing the Degree of (Geometric) Thickness-t Regular Graphs 199
Christian A. Duncan

Intersection Representations

On the Zarankiewicz Problem for Intersection Hypergraphs 207
Nabil H. Mustafa and János Pach

Intersection-Link Representations of Graphs . 217
Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista,
Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter

Combinatorial Properties of Triangle-Free Rectangle Arrangements
and the Squarability Problem . 231

Jonathan Klawitter, Martin Nöllenburg, and Torsten Ueckerdt

Applications

Displaying User Behavior in the Collaborative Graph Visualization
System OnGraX . 247

Björn Zimmer and Andreas Kerren

Confluent Orthogonal Drawings of Syntax Diagrams 260
Michael J. Bannister, David A. Brown, and David Eppstein

KOJAPH: Visual Definition and Exploration of Patterns in Graph Databases . . . 272
Walter Didimo, Francesco Giacchè, and Fabrizio Montecchiani

XVI Contents

http://dx.doi.org/10.1007/978-3-319-27261-0_12
http://dx.doi.org/10.1007/978-3-319-27261-0_13
http://dx.doi.org/10.1007/978-3-319-27261-0_14
http://dx.doi.org/10.1007/978-3-319-27261-0_15
http://dx.doi.org/10.1007/978-3-319-27261-0_16
http://dx.doi.org/10.1007/978-3-319-27261-0_17
http://dx.doi.org/10.1007/978-3-319-27261-0_18
http://dx.doi.org/10.1007/978-3-319-27261-0_19
http://dx.doi.org/10.1007/978-3-319-27261-0_20
http://dx.doi.org/10.1007/978-3-319-27261-0_20
http://dx.doi.org/10.1007/978-3-319-27261-0_21
http://dx.doi.org/10.1007/978-3-319-27261-0_21
http://dx.doi.org/10.1007/978-3-319-27261-0_22
http://dx.doi.org/10.1007/978-3-319-27261-0_23

Drawings with Crossings

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 281
Carla Binucci, Markus Chimani, Walter Didimo, Martin Gronemann,
Karsten Klein, Jan Kratochvíl, Fabrizio Montecchiani,
and Ioannis G. Tollis

Recognizing and Drawing IC-Planar Graphs . 295
Franz J. Brandenburg, Walter Didimo, William S. Evans,
Philipp Kindermann, Giuseppe Liotta, and Fabrizio Montecchiani

Simple Realizability of Complete Abstract Topological Graphs Simplified . . . 309
Jan Kynčl

The Utility of Untangling. 321
Vida Dujmović

Polygons and Convexity

Representing Directed Trees as Straight Skeletons . 335
Oswin Aichholzer, Therese Biedl, Thomas Hackl, Martin Held,
Stefan Huber, Peter Palfrader, and Birgit Vogtenhuber

Drawing Graphs with Vertices and Edges in Convex Position. 348
Ignacio García-Marco and Kolja Knauer

Drawing Graphs Using a Small Number of Obstacles 360
Martin Balko, Josef Cibulka, and Pavel Valtr

Vertical Visibility Among Parallel Polygons in Three Dimensions. 373
Radoslav Fulek and Rados Radoicic

Drawing Graphs on Point Sets

Alternating Paths and Cycles of Minimum Length. 383
William S. Evans, Giuseppe Liotta, Henk Meijer, and Stephen Wismath

On Embeddability of Buses in Point Sets . 395
Till Bruckdorfer, Michael Kaufmann, Stephen G. Kobourov,
and Sergey Pupyrev

A Universal Point Set for 2-Outerplanar Graphs . 409
Patrizio Angelini, Till Bruckdorfer, Michael Kaufmann,
and Tamara Mchedlidze

Linear-Size Universal Point Sets for One-Bend Drawings. 423
Maarten Löffler and Csaba D. Tóth

Contents XVII

http://dx.doi.org/10.1007/978-3-319-27261-0_24
http://dx.doi.org/10.1007/978-3-319-27261-0_25
http://dx.doi.org/10.1007/978-3-319-27261-0_26
http://dx.doi.org/10.1007/978-3-319-27261-0_27
http://dx.doi.org/10.1007/978-3-319-27261-0_28
http://dx.doi.org/10.1007/978-3-319-27261-0_29
http://dx.doi.org/10.1007/978-3-319-27261-0_30
http://dx.doi.org/10.1007/978-3-319-27261-0_31
http://dx.doi.org/10.1007/978-3-319-27261-0_32
http://dx.doi.org/10.1007/978-3-319-27261-0_33
http://dx.doi.org/10.1007/978-3-319-27261-0_34
http://dx.doi.org/10.1007/978-3-319-27261-0_35

Contact Representations

Recognizing Weighted Disk Contact Graphs. 433
Boris Klemz, Martin Nöllenburg, and Roman Prutkin

Realization of Simply Connected Polygonal Linkages and Recognition
of Unit Disk Contact Trees. 447

Clinton Bowen, Stephane Durocher, Maarten Löffler, Anika Rounds,
André Schulz, and Csaba D. Tóth

Towards Characterizing Graphs with a Sliceable Rectangular Dual 460
Vincent Kusters and Bettina Speckmann

Pixel and Voxel Representations of Graphs . 472
Md. Jawaherul Alam, Thomas Bläsius, Ignaz Rutter, Torsten Ueckerdt,
and Alexander Wolff

User Studies

A Tale of Two Communities: Assessing Homophily in Node-Link
Diagrams . 489

Wouter Meulemans and André Schulz

Shape-Based Quality Metrics for Large Graph Visualization 502
Peter Eades, Seok-Hee Hong, Karsten Klein, and An Nguyen

On the Readability of Boundary Labeling . 515
Lukas Barth, Andreas Gemsa, Benjamin Niedermann,
and Martin Nöllenburg

Graph Drawing Contest

Graph Drawing Contest Report . 531
Philipp Kindermann, Maarten Löffler, Lev Nachmanson,
and Ignaz Rutter

Graduate Workshop Report

Graduate Workshop Recent Trends in Graph Drawing: Curves, Graphs,
and Intersections . 541

Bernardo M. Ábrego, Silvia Fernández-Merchant,
and Csaba D. Tóth

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-27261-0_36
http://dx.doi.org/10.1007/978-3-319-27261-0_37
http://dx.doi.org/10.1007/978-3-319-27261-0_37
http://dx.doi.org/10.1007/978-3-319-27261-0_38
http://dx.doi.org/10.1007/978-3-319-27261-0_39
http://dx.doi.org/10.1007/978-3-319-27261-0_40
http://dx.doi.org/10.1007/978-3-319-27261-0_40
http://dx.doi.org/10.1007/978-3-319-27261-0_41
http://dx.doi.org/10.1007/978-3-319-27261-0_42
http://dx.doi.org/10.1007/978-3-319-27261-0_43
http://dx.doi.org/10.1007/978-3-319-27261-0_44
http://dx.doi.org/10.1007/978-3-319-27261-0_44

Posters

L-Visibility Drawings of IC-Planar Graphs . 545
Giuseppe Liotta and Fabrizio Montecchiani

On the Relationship Between Map Graphs and Clique Planar Graphs 548
Patrizio Angelini, Giordano Da Lozzo, Giuseppe Di Battista,
Fabrizio Frati, Maurizio Patrignani, and Ignaz Rutter

PED User Study . 551
Till Bruckdorfer, Michael Kaufmann, and Simon Leibßle

SVEN: An Alternative Storyline Framework for Dynamic Graph
Visualization . 554

Dustin L. Arendt

Knuthian Drawings of Series-Parallel Flowcharts . 556
Michael T. Goodrich, Timothy Johnson, and Manuel Torres

Gestalt Principles in Graph Drawing . 558
Stephen G. Kobourov, Tamara Mchedlidze, and Laura Vonessen

Drawing Graphs Using Body Gestures. 561
Yeganeh Bahoo, Andrea Bunt, Stephane Durocher, and Sahar Mehrpour

Augmenting Planar Straight Line Graphs to 2-Edge-Connectivity 563
Hugo Alves Akitaya, Jonathan Castello, Yauheniya Lahoda,
Anika Rounds, and Csaba D. Tóth

Author Index . 565

Contents XIX

http://dx.doi.org/10.1007/978-3-319-27261-0_45
http://dx.doi.org/10.1007/978-3-319-27261-0_46
http://dx.doi.org/10.1007/978-3-319-27261-0_47
http://dx.doi.org/10.1007/978-3-319-27261-0_48
http://dx.doi.org/10.1007/978-3-319-27261-0_48
http://dx.doi.org/10.1007/978-3-319-27261-0_49
http://dx.doi.org/10.1007/978-3-319-27261-0_50
http://dx.doi.org/10.1007/978-3-319-27261-0_51
http://dx.doi.org/10.1007/978-3-319-27261-0_52

Large and Dynamic Graphs

GraphMaps: Browsing Large Graphs
as Interactive Maps

Lev Nachmanson1(B), Roman Prutkin2, Bongshin Lee1,
Nathalie Henry Riche1, Alexander E. Holroyd1, and Xiaoji Chen3

1 Microsoft Research, Redmond, WA, USA
{levnach,bongshin,nath,holroyd}@microsoft.com

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
roman.prutkin@kit.edu

3 Microsoft, Redmond, WA, USA
missx@xbox.com

Abstract. Algorithms for laying out large graphs have seen significant
progress in the past decade. However, browsing large graphs remains
a challenge. Rendering thousands of graphical elements at once often
results in a cluttered image, and navigating these elements naively can
cause disorientation. To address this challenge we propose a method
called GraphMaps, mimicking the browsing experience of online geo-
graphic maps.

GraphMaps creates a sequence of layers, where each layer refines the
previous one. During graph browsing, GraphMaps chooses the layer cor-
responding to the zoom level, and renders only those entities of the layer
that intersect the current viewport. The result is that, regardless of the
graph size, the number of entities rendered at each view does not exceed
a predefined threshold, yet all graph elements can be explored by the
standard zoom and pan operations.

GraphMaps preprocesses a graph in such a way that during browsing,
the geometry of the entities is stable, and the viewer is responsive. Our
case studies indicate that GraphMaps is useful in gaining an overview of
a large graph, and also in exploring a graph on a finer level of detail.

1 Introduction

Graphs are ubiquitous in many different domains such as information technology,
social analysis or biology. Graphs are routinely visualized, but their large size is
often a barrier. The difficulty comes not from the layout which can be calculated
very fast. (For example, by using Brandes and Pich’s algorithm [9] a graph
with several thousand nodes and links can be laid out in a few seconds on a
regular personal computer.) Rather, viewing and browsing these large graphs is
problematic. Firstly, rendering thousands of graphical elements on a computer
might take a considerable time and may result in a cluttered image if the graph
is dense. Secondly, navigating thousands of elements rendered naively disorients
the user.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 3–15, 2015.
DOI: 10.1007/978-3-319-27261-0 1

4 L. Nachmanson et al.

Fig. 1. A graph (https://github.com/ekoontz/graphviz/blob/master/rtest/graphs/
b100.dot.) with 1436 nodes and 5806 edges. (a) The full view with a standard method
which draws all nodes and edges regardless of the zoom. (b) The full view rendered by
GraphMaps. (c) A view with the zoom close to 9.13 with the standard viewing. (d) A
view with zoom 9.26 with GraphMaps.

Our intention is to provide a graph browsing experience similar to that of
online geographic maps, for example, Bing or Google Maps. We propose a set
of requirements for such a visualization and introduce a method, GraphMaps,
fulfilling these requirements. GraphMaps renders a graph as an interactive map
by displaying only the most essential elements for the current view. We allow fast
interactions using standard pan and zoom operations. The drawing is visually
stable, in the sense that during these operations, nodes do not change their
relative positions, and edges do not change their geometry. To the best of our
knowledge, GraphMaps is the first method having these properties. Figure 1
illustrates the method.

Related Work. The problem of visualizing large graphs has been extensively
addressed in the literature, but here we discuss only the approaches most relevant
to ours. Most research efforts have concentrated on reducing the number of
visual elements to make node-link diagrams readable. We mention three different
approaches.

Aggregation techniques group vertices and edges of the graph together to obtain
a smaller graph [10]. Most techniques compute a hierarchical partitioning and

https://github.com/ekoontz/graphviz/blob/master/rtest/graphs/b100.dot
https://github.com/ekoontz/graphviz/blob/master/rtest/graphs/b100.dot

GraphMaps: Browsing Large Graphs as Interactive Maps 5

offer interaction to explore different branches of the tree. Early work by Eades
and Feng [11] proposes 3-dimension visualization to navigate in this tree. Abello
et al. [2] use treemaps and fisheye view to show a combination of the hierarchy
levels. Later research [1] demonstrated that such hierarchy-based techniques can
scale up to very large graphs (16 million edges and 200, 000 nodes). Similar
approaches attempt to give more clues about the content of the aggregates.
Balzer and Deussen [6] represent aggregates by 3-dimensional shapes, whose sizes
convey the number of vertices, with bundled edges whose thickness indicates the
density of the connection. Zinmaier et al. [26] utilize the GPU to create an
aggregated image of a large graph, using heatmaps to convey the number of
vertices and edges in the aggregates. Van den Elzen and van Wijk [12] recently
introduced a system for interactive exploration of large graphs via manual or
automatic selections and aggregations.

While these techniques can scale up to very large graphs, they have sev-
eral disadvantages. Aggregating nodes involves a loss of information concerning
intra- and inter-connectivity. Spatial stability is another issue. The drawing may
change dramatically when several entities collapse into one, potentially disori-
enting the user.

Multiscale techniques allow users to explore the partition hierarchy at different
depths. These techniques aim at disambiguating the topology induced by aggre-
gating vertices and edges together. Auber et al. [5] propose a clustered multiscale
technique, for which the interiors of the aggregates are shown at a finer scale.
However, aggregated edges are shown between clusters, risking misinterpretation.
Henry et al. [18] propose a hybrid technique that can only represent one level of
clustering. In a similar spirit van Ham and van Wijk [15] propose an aggregate
method in which users can expand one aggregate at a time. Henry et al. [17]
attempt to indicate inter-aggregate connectivity by duplicating elements, but
their solution only works for a single level of clustering.

A different technique by Koren et al. [13] aims at smoothly integrating the
level of detail, as opposed to discrete partitioning of the graph. The authors
build a hierarchy of graphs and, for each viewpoint, construct a smaller graph by
“borrowing” parts of the corresponding hierarchy levels and adjusting the layout
of this smaller graph. The strength of this technique is that it avoids potentially
misleading partitioning of the graph. However, there is a lack of stability: a small
change in viewport may lead to a large change in the viewed graph. The fisheye
technique of the paper may also add a spatial distortion, further disrupting the
user’s mental map.

Filtering techniques approach the visualization of large graphs by filtering the
elements rendered in the view. For example, SocialAction [22] provides a set of
measures to rank vertices and edges, rendering node-link diagrams with man-
ageable sizes. A related technique by Perer and van Ham [16] proposes to build
a filtered node-link diagram based on the queries made by the user, via the
concept of degree-of-interest. The principal disadvantage of these techniques is
the lack of overview of the entire graph. The progressive rendering approach

6 L. Nachmanson et al.

proposed by Auber et al. [3,4] renders the node-link diagram entities in order
of their importance. The rendering stops when the view changes. Given enough
non-interaction time, all entities intersecting the viewport are rendered. In con-
trast to the previous filtering techniques, the benefit of this approach is to reveal
the key features of the graph first. However, the user does not directly control
the level of detail, which potentially disrupts the experience.

GMaps by Gansner et al. [14] also uses the map metaphor to draw graphs.
Its main focus is on representing clusters of vertices as countries with map-like
borders and coloring. The entire graph is drawn on top of the map as a node-
link diagram with straight lines. When zooming in, labels of less important nodes
appear gradually.

Design Rationale Motivated by Online Maps. Exploring online geographic
maps is probably the most common scenario for browsing large graphs. Millions
of people every day browse maps on their cellular phones or computers for finding
a location or driving directions. We decided to search for key ideas used in
interactive geographic maps that could be applied to browsing general graphs.
One insight is that showing everything at all times is counterproductive. In a
digital map on the top level we only see major cities and major roads connecting
them. Objects on finer levels of detail, like smaller roads, are not shown explicitly.
They may be hinted by using, for example, pre-rendered bitmap tiles. When we
zoom in, other, less significant features appear and become labeled. Online maps
can answer search queries such as finding a route from source to destination or
showing a point of interest close to the mouse position.

Design goals identified are as follows:

1. The method should be able to reveal most details of the graph by using only
the zoom in, zoom out, and pan operations. As we zoom in, more vertices and
edges should appear according to their importance. Interactions such as node
or edge highlighting or search by label should help discover further details.

2. During these operations, the user’s mental map must be preserved. In partic-
ular, vertex positions and edge trajectories should not change between zoom
levels.

3. In order to limit visual clutter, the number of rendered visual elements at
each view should not exceed some predefined bound.

2 Method Description

The input to the algorithm is a graph with given node positions; the edge routes
are not part of the input. The output is a set of layers containing nodes and edge
routes. Let G = (V,E) be the input graph, where V is the set of nodes and E
the set of edges. The input also includes an ordering of V . This ordering should
reflect the relative importance of the vertices. If such an ordering is not provided
then we can sort the nodes, for example, by using PageRank [21], by node degree,

GraphMaps: Browsing Large Graphs as Interactive Maps 7

or by shortest-path betweenness [8]. Finding a good order reflecting the node
importance is a separate problem which is outside the scope of this research.
Here we look at the node order as input and consider V = [v1, . . . , vN] to be an
array. Before giving a detailed description of the algorithm we describe its high
level steps.

We build the layer 0, denoted by L0, as follows. For some number k0 > 0 we
assign nodes v1, . . . , vk0 to L0 and route all edges (vm, vn) ∈ E with m,n ≤ k0.
Suppose we have already built Li−1 containing vertices vj , for j ≤ ki−1. Then,
if ki−1 < N , that is we have vertices that are not assigned to a layer yet,
for a number ki ≥ ki−1 we assign nodes v1, . . . , vki

to Li and route all edges
(vm, vn) ∈ E with m,n ≤ ki. Otherwise we are done. Note that a node can be
assigned to several consecutive layers. To achieve the assignment we define a
function z from V to the set {20, 21, 22, . . . }. The value z(v) we call the zoom
level of the node. For n ∈ N0, the layer Ln contains node v if and only if
z(v) ≤ 2n. For each layer an edge is represented by a set of straight line segments
called rails. We define function z on rails too, but the layer assignment rule is
different for rails; a rail r belongs to Ln iff z(r) is equal to 2n.

Calculation of Layers. Algorithm 1 computes the function z on the nodes
and extends it to the rails. The flow of the algorithm is illustrated in Fig. 2.

Let B be the bounding box of G with width w and height h. For i,j,n ∈ N0

we define Tn
ij as the rectangle with width wn = w/2n, height hn = h/2n and the

8 L. Nachmanson et al.

(a)

0
1

2
3 4

5

6

7
8

9
1011

12

1314
1516

1718

19

20

(b)

(c)

0
1

2

3
4

5

6

7
8

9 10
1112 13

14

15

16

17

18

19

20
21

22

23

24

25
26

27

28

29 30

31

32

3334

35

36

(d)

37

(e)

0
1

2

3
4

5

6

7

8

9 10
1112 13

14

15
16

17
18

19

20
21

22

23

24

25

26

27

28

29 30

31

32

33
34

35

36

37
38

39
40

41

42

43

44

45

46

(f)

Fig. 2. Graph abstract.dot, QN = 80, QR = 180. (a) The mesh containing node bound-
aries of layer 0 (thick). (b) Nodes of layer 0 (green) and rails of edges routed using the
mesh in (a) (black). Adding node 20 would exceed the node quota. (c) The mesh con-
taining rails and node boundaries of layer 0 and boundaries of candidate nodes for
layer 1 (thick). (d) Node 37 has inserted nodes 6 and 28 as neighbors. The edges inci-
dent to Node 37 are routed through red rails, which are new maximal rails. After adding
the red rails the upper left tile would intersect more than QR/4 = 45 maximal rails.
(e) Mesh containing rails and node boundaries of layer 1 and candidates for layer 2.
(f) All nodes and edges are added to layer 2 without exceeding the quotas (Color figure
online).

bottom left corner with coordinates x = u+ i ·wn and y = v+j ·hn, where (u, v)
is the left bottom corner of B. We call Tn

ij a tile. The algorithm is driven by
positive integers QN and QR, which we call node and rail quota, respectively.

GraphMaps: Browsing Large Graphs as Interactive Maps 9

We say that tile Tn
ij exceeds node quota QN if it intersects more than QN/4

nodes of layer n.
To work with the rail quota QR we need the following definition. For a set of

rails R and a rail r ∈ R we call r maximal in R if r is not a sub-segment of any
other rail in R. During the algorithm we maintain the set of maximal rails among
the set of rails already assigned to layers and count intersections between the
tiles and the maximal rails only. The union of all maximal rails will always form
the same set of points as the union of all rails created so far. Tile Tn

ij exceeds rail
quota if it intersects more than QR/4 rails which are maximal among all rails of
layer n and below. Assume both QN and QR are divisible by 4.

The outer loop of Algorithm 1 in line 3 works as follows. Starting with n = 0,
each call to ProcessLayer in line 4 tries to greedily assign the nodes to the cur-
rent layer. Each such attempt starts with the first unassigned node in V . Proce-
dure ProcessLayer terminates if adding the next node in V and its edges inci-
dent to already assigned nodes would exceed the node or rail quota of some tile.

After calling ProcessLayer tile dimensions and the node size become twice
smaller, and a new attempt starts for n + 1 in line 4. The algorithm stops
when all nodes are assigned to a layer. Figure 2 illustrates Algorithm 1 for graph
abstract.dot1 with 47 nodes, labeled from 0 to 46 according to their order in V .

In line 6 tileMap is a map from N
2
0 to N

2
0. If for some n we have tileMap

(i, j) = (r, k), then r nodes in Ln and k maximal rails intersect Tn
ij .

Consider ProcessLayer for n = 0. For this case the domain of tileMap
is {(0, 0)}. The sets assignedNodes and maximalRails are empty, and there
is only one tile T 0

0,0, which has the size of B (blue in Figs. 2a and 2b). After
executing line 7 the set candidateNodes contains the first QN/4 nodes of V
(green in Fig. 2b). The boundaries of these nodes are represented by regular
polygons (thick in Fig. 2a) and used to generate a triangular mesh M . The mesh
is a constrained triangulation in a sense that any straight line segment of the
input can still be traced in M although it can be split into several segments.
The edges with both endpoints in candidateNodes are routed on M .

In the i + 1-th iteration of the loop in line 12 the algorithm tries to add
node i, while nodes 0, . . . , i − 1 have already been added to L0, and tileMap
(0,0)=(i, k), where k ≤ QR/4 is the number of rails used by edges routed so far.
All these rails are maximal rails by construction.

In line 13 the routes of edges from node i to nodes 0, . . . , i−1 are computed as
shortest paths on M , and the set rails(v) is the set of all rails of these routes. In
line 14 we find maximalRailsOfV, the rails from rails(v) which are maximal
with respect to the set maximalRails ∪ rails(v). In the case of n = 0 they
are all the rails of rails(v)\ maximalRails. For n ≥ 1, these are the rails from
rails(v) covered by no rail from maximalRails. In Fig. 2d, such maximal rails
for node 37 are drawn red.

If T 0
0,0 still contains no more than QR/4 rails after adding maximalRail-

sOfV, then node i is added to L0. Otherwise, ProcessLayer terminates.
1 https://github.com/ekoontz/graphviz/blob/master/rtest/graphs/abstract.dot.

https://github.com/ekoontz/graphviz/blob/master/rtest/graphs/abstract.dot

10 L. Nachmanson et al.

In Fig. 2b, all QN/4 = 20 candidate nodes and the rails on the corresponding
edges could be added to L0.

The procedure works similarly for n ≥ 1. One notable difference is that
rails from Ln−1 are passed as input to the mesh generator in addition to the
boundaries of the appropriate nodes in line 9. For more details we refer to the
in the full version [19]. Figures 2c, . . . , 2f show ProcessLayer for n = 1, 2.

Using the Layers During the Visualization. Let H be a rectangle. We
denote by w(H) the width of H and by h(p) the height of H. Recall that B
is the bounding box of G. Then the zoom level of H to B is the value l(H) =
min{w(B)

w(H) ,
h(B)
h(H)}.

Let K be the transformation matrix from the graph to the user window W .
Then the rectangle P = K−1(W), where K−1 is the inverse of K, is the current
viewport.

To decide which elements of G are displayed to the user, we find the zoom
level Z = l(P) and set the layer index n = max(0, �log2 Z�). Finally, the elements
displayed to the user are all the nodes and rails of layer Ln intersecting P . We
show in the full version [19] that, by following this strategy, we render at most
QN nodes, and the rendered rails can be exactly covered by at most QR maximal
rails.

Edge Routing and Overlap Removal. Consider the nodes of L0. To con-
struct a graph on which the edges are routed, we first create a regular polygon
for each vertex. Then, we generate a triangular mesh using the Triangle mesh
generator by Shewchuk [23]. By inserting additional vertices Triangle creates
meshes with a lower-bounded minimum angle, which implies the upper-bounded
vertex degree. Each edge between a pair of L0 nodes is then assigned the cor-
responding Euclidean shortest path in the mesh, which is computed using the
A∗ algorithm. Mesh segments lying on such paths become rails of L0 and the
remaining mesh segments are discarded.

We now proceed with edge routing for Ln for n ≥ 1. Consider Procedure
ProcessLayer. Since the initial node placement did not take edge trajectories
into account, at the beginning of the procedure some unassigned nodes might
overlap the entities of Ln−1. We move these nodes away from their initial posi-
tions to resolve these overlaps, but this might create overlaps with the nodes
that are not assigned to a layer yet.

The overlap removal process happens before line 7. We follow the metro map
labeling method of Wu et al. [25]. All line segments and bounding boxes of fixed
nodes are drawn on a monochromatic bitmap and the image is dilated by the
diameter of a node on Ln. To define a position for a candidate node v at which
it does not overlap already placed nodes or rails, we find a free pixel p in the
image, ideally close to the initial location of v. We draw a dilated v at p and
proceed with the next candidate, etc.

To generate a graph for edge routing on Ln, we use the bounding polygons
of nodes from candidateNodes and the nodes of Ln−1, and the rails of Ln−1,

GraphMaps: Browsing Large Graphs as Interactive Maps 11

Fig. 3. Caltech graph on four different zoom levels visualized using our approach.

as the input segments for Triangle. Already routed edges maintain their trajec-
tories, while edges incident to a node not belonging to Ln−1 are routed over the
triangulation created by Triangle in line 13. To create the bundling effect by
reusing existing rails, we slightly reduce their weights during routing.

Pre-rendered Tiles. To help users gain spatial orientation, we hint the nodes
which are not yet visible at the current zoom level, but will appear if we zoom
in further. We create and store on the disk the images of some graph nodes and
use them as the background. The images are generated very fast and are loaded
and unloaded dynamically by a background thread to keep the visualization
responsive. See [19] for more details.

Interaction. We define several interactions in addition to the zoom and pan.
Clicking on a node (even if it is hinted, but not visible yet) highlights all edges
incident to it and unhides all adjacent nodes. The highlighted elements are always
shown regardless of the zoom level. Clicking on a rail highlights the most impor-
tant edge passing through it, and unhides the edge endpoints. Additionally, nodes
can be searched by substrings of their labels.

3 Experiments

Visualizing and Evaluating Clusterings. The test graph of our first exper-
iment is the Caltech graph used by Nocaj et al. [20]. It is the graph of Facebook

12 L. Nachmanson et al.

Fig. 4. (a) Caltech graph visualized using Gephi. (b), (c): showing neighbors of node
“165 2007” (leftmost orange node surrounded by green nodes) using Gephi and our
tool (Color figure online).

friendships at California Institute of Technology from September 2005 and con-
tains 769 nodes and 16k edges [24]. The nodes are labeled by class year and
residence, or house, of the corresponding student, and colored by the house.
Label 0 denotes missing data. A computer science researcher, with focus on
clustering algorithms, used GraphMaps to browse this graph. He was interested
in discovering the connectivity structure of the graph, e.g., which houses or years
have strong ties. The researcher’s tool of choice for visualizing clusterings was
Gephi [7]. The node layout was computed by a force-directed layout algorithm
applied to the Simmelian backbone of the graph, as proposed by Nocaj et al.
[20]. The result is shown in Fig. 4a. The same initial layout was used as input
for GraphMaps. The resulting drawing on four different zoom levels is shown
in Fig. 3.

The user noted that the view in Fig. 4a was too dense and gave no insight
into the graph connectivity. On the other hand, he found our result in Fig. 3
less cluttered. The user mentioned that when looking at the drawing created
by GraphMaps, for some pairs of nodes one may think that an edge between
them exists, when, in fact, it does not. However, by using additional interactions
besides zoom and pan, e.g., edge highlighting, the connectivity can be under-
stood.

One interaction mode that the user tested for both tools was selecting all
neighbors of a node. In Gephi, when hovering the mouse over a node, all non-
incident edges and non-adjacent nodes are grayed out; see Fig. 4b. In our method,
when clicking on a node, routes of all its incident edges are highlighted and, addi-
tionally, all adjacent nodes are shown, regardless of the zoom level; see Fig. 4c.
According to the user, both methods provided satisfactory results. He noted that
GraphMaps, by using edge bundling, provides a tidier picture than Gephi.

For dense graphs, like Caltech, the user would prefer to view the neighbors of
a node in GraphMaps. The user commented that, contrary to Gephi, GraphMaps
exposes the most important nodes and their labels in a readable fashion.

GraphMaps: Browsing Large Graphs as Interactive Maps 13

Experiments with Other Graphs. In the video at http://1drv.ms/1IsBEVh
we demonstrate browsing the graph “composers”2 with GraphMaps. The nodes
of the graph represent the articles on Wikipedia on composers, and the edges
represent Internet links between the articles. We show the user interactions that
help us to explore the graph.

When browsing the graph of InfoVis coauthors, created from ACM data,
another user was able to notice two groups of coauthors, one connected to Peter
Eades, and another one to Ulrik Brandes and Michael Goodrich. By selecting
all direct neighbors of Peter Eades, the user was able to see that only one mem-
ber of the second group, Roberto Tamassia, has a paper with Peter Eades; see
the corresponding figure in the full version [19]. Further analysis showed that,
according to the data set, Roberto Tamassia, is the only author with coauthors
from both groups. GraphMaps enabled the user to gain insights on the graph
structure.

Running Time. GraphMaps processes a graph with 1463 nodes and 5806 edges
for 1 min, a graph with 3405 nodes and 13832 edges for 130 seconds, and a graph
with 38395 nodes and 85763 for less than 6 hours. The experiments were done
on an HP-Z820 with Intel Xeon CPU E5-2690 under Windows 8.1. The required
memory was 16 GB. The current bottleneck in performance is the edge routing.
We hope to speed up the edge routing by using parallel processing.

The Sources of GraphMaps. GraphMaps is implemented in MSAGL, which
is available as Open Source at github.com/Microsoft/automatic-graph-layout.

4 Discussion

The users of GraphMaps appreciate its aesthetics and the similarity to brows-
ing online maps. GraphMaps helps in gaining the first impression of the graph
structure and, in spite of the fact that precise knowledge of the connectivity
cannot be obtained with GraphMaps by zooming and panning alone, additional
interactions allow answering the queries as, for example, finding if two nodes are
direct neighbors. A current shortcoming of GraphMaps is that the direction of
the edges is lost. It happens for other methods as well, when edges are bundled.
Solving this issue is a possible future work item. The labeling algorithm needs
improvement, since it does not always respect the node ranking and does not
always utilize free space well enough.

Future Work. Currently we cannot guarantee that our layer generation algo-
rithm always reaches the end, although, in all our experiments it did. Creating a
version of the algorithm which provably stops, or, even better, guarantees that
2 http://www.graphdrawing.de/contest2011/topic2-2011.html.

http://1drv.ms/1IsBEVh
http://github.com/Microsoft/automatic-graph-layout
http://www.graphdrawing.de/contest2011/topic2-2011.html

14 L. Nachmanson et al.

the number of generated layers is within predefined bounds, is a very interesting
problem.

Another problem is finding a node placement that works nicely with the node
ranking to improve the distribution of nodes among levels. Ideally, such a layout
algorithm is aware of the edge routing too, and avoids the overlap removal step.

Acknowledgements. We are grateful to Roberto Sonnino for the useful discussions
on the rendering of the tile images in a background thread, and to Itzhak Benenson
for sharing with us his ideas on the visualization style.

References

1. Abello, J., van Ham, F., Krishnan, N.: Ask-graphview: a large scale graph visual-
ization system. IEEE Trans. Vis. Comput. Graph. 12(5), 669–676 (2006)

2. Abello, J., Kobourov, S.G., Yusufov, R.: Visualizing large graphs with compound-
fisheye views and treemaps. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp.
431–441. Springer, Heidelberg (2005)

3. Auber, D.: Using Strahler numbers for real time visual exploration of huge graphs.
In: Computer Vision and Graphics (ICCVG’02), pp. 56–69 (2002)

4. Auber, D.: Tulip - a huge graph visualization framework. In: Graph Drawing Soft-
ware, pp. 105–126 (2004)

5. Auber, D., Chiricota, Y., Jourdan, F., Melançon, G.: Multiscale visualization of
small world networks. In: IEEE Symposium on Information Visualization (INFO-
VIS’03), pp. 75–81 (2003)

6. Balzer, M., Deussen, O.: Level-of-detail visualization of clustered graph layouts.
In: Asia-Pacific Symposium on Information Visualisation (APVIS’07), pp. 133–
140. IEEE (2007)

7. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-
ing and manipulating networks. In: International AAAI Conference on Weblogs
and Social Media (ICWSM’09) (2009)

8. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2),
163–177 (2001)

9. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007)

10. Brunel, E., Gemsa, A., Krug, M., Rutter, I., Wagner, D.: Generalizing geometric
graphs. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 179–190. Springer,
Heidelberg (2011)

11. Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S.C.
(ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)

12. van den Elzen, S., van Wijk, J.: Multivariate network exploration and presentation:
from detail to overview via selections and aggregations. IEEE Trans. Vis. Comput.
Graph. 20(12), 2310–2319 (2014)

13. Gansner, E.R., Koren, Y., North, S.C.: Topological fisheye views for visualizing
large graphs. IEEE Trans. Vis. Comput. Graph. 11(4), 457–468 (2005)

14. Gansner, E., Hu, Y., Kobourov, S.: Gmap: visualizing graphs and clusters as maps.
In: IEEE Pacific Visualization Symposium (PacificVis’10), pp. 201–208. IEEE
(2010)

GraphMaps: Browsing Large Graphs as Interactive Maps 15

15. van Ham, F., van Wijk, J.: Interactive visualization of small world graphs. In: IEEE
Symposium on Information Visualization (INFOVIS’04), pp. 199–206 (2004)

16. van Ham, F., Perer, A.: Search, show context, expand on demand: supporting
large graph exploration with degree-of-interest. IEEE Trans. Vis. Comput. Graph.
15(6), 953–960 (2009)

17. Henry, N., Bezerianos, A., Fekete, J.D.: Improving the readability of clustered
social networks using node duplication. IEEE Trans. Vis. Comput. Graph. 14(6),
1317–1324 (2008)

18. Henry, N., Fekete, J.D., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

19. Nachmanson, L., Prutkin, R., Lee, B., Riche, N.H., Holroyd, A.E., Chen, X.:
Graphmaps: Browsing large graphs as interactive maps. CoRR arXiv:1506.06745
(2015)

20. Nocaj, A., Ortmann, M., Brandes, U.: Untangling hairballs. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 101–112. Springer, Heidelberg
(2014)

21. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking:
Bringing order to the web. Technical report 1999–66, Stanford InfoLab (1999)

22. Perer, A., Shneiderman, B.: Balancing systematic and flexible exploration of social
networks. IEEE Trans. Vis. Comput. Graph. 12(5), 693–700 (2006)

23. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation.
Comput. Geom. Theory Appl. 22(1–3), 21–74 (2002)

24. Traud, A.L., Kelsic, E.D., Mucha, P.J., Porter, M.A.: Comparing community struc-
ture to characteristics in online collegiate social networks. SIAM Rev. 53(3), 526–
543 (2011)

25. Wu, H.-Y., Takahashi, S., Lin, C.-C., Yen, H.-C.: A zone-based approach for placing
annotation labels on metro maps. In: Dickmann, L., Volkmann, G., Malaka, R.,
Boll, S., Krüger, A., Olivier, P. (eds.) SG 2011. LNCS, vol. 6815, pp. 91–102.
Springer, Heidelberg (2011)

26. Zinsmaier, M., Brandes, U., Deussen, O., Strobelt, H.: Interactive level-of-detail
rendering of large graphs. IEEE Trans. Vis. Comput. Graph. 18(12), 2486–2495
(2012)

http://arxiv.org/abs/1506.06745

An Incremental Layout Method for Visualizing
Online Dynamic Graphs

Tarik Crnovrsanin(B), Jacqueline Chu, and Kwan-Liu Ma

University of California, Davis, USA
{tecrnovr,sjchu}@ucdavis.edu, ma@cs.ucdavis.edu

Abstract. Graphs provide a visual means for examining relation data
and force-directed methods are often used to lay out graphs for viewing.
Making sense of a dynamic graph as it evolves over time is challenging,
and previous force-directed methods were designed for static graphs. In
this paper, we present an incremental version of a multilevel multi-pole
layout method with a refinement scheme incorporated, which enables us
to visualize online dynamic networks while maintaining a mental map
of the graph structure. We demonstrate the effectiveness of our method
and compare it to previous methods using several network data sets.

Keywords: Dynamic graphs · Streaming data · Graph layout

1 Introduction

In many fields of study, from biology to chemistry to sociology, software engi-
neering and cyber security, an essential task is to identify and understand rela-
tionships of interest among different entities. Graphs in the form of nodes
and links are commonly used to represent such relations. Graph drawing
is an indispensable tool for visually studying the relationships. Many tech-
niques have been introduced for aesthetically and efficiently laying out sta-
tic graphs [11,13,14,16,17], but a large class of real-world applications involve
graphs that change over time [8].

Visualizing dynamic graphs is often done by animating over the sequence
of graphs [3,9,10,22] or by displaying selected ones side-by-side as small multi-
ples [25]. Finding the best way to visualize dynamic graphs remains a challenging
research topic. When laying out dynamic graphs for visual analysis, the primary
goal is to ensure the stability of the layout [5,10,15,18] and preserve the mental
map [1,21–23].

Most previous dynamic graph algorithms address the problem of laying out
offline graphs consisting of the entire sequence of graphs. With prior knowledge
of the complete time sequence, we can best optimize the layout for animation
and specific analysis goals [4,8,9,19]. For online, real-time monitoring or analysis
applications, however, the graph is constantly updated and how the graph might
change over time cannot be predicted. Making optimal layouts for such evolving
graphs is an even more challenging problem, which has received limited attention
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 16–29, 2015.
DOI: 10.1007/978-3-319-27261-0 2

An Incremental Layout Method for Visualizing Online Dynamic Graphs 17

Fig. 1. An undesirable limitation. A graph has many disconnected components (a),
and a node is introduced linking two components together (b). One layout method [10]
allows the new node (in orange) and its neighbors to move after the new node is added.
If these nodes cannot reach their ideal position in a single time step, they are affixed
to the same positions (c) until new nodes or edges are later introduced into the same
neighborhood (Color figure online).

in existing research [6,10,12,19]. One reason is that online dynamic graph data
were not readily available, but the situation has begun to change with the rapid
growth of mobile, online, and real-time monitoring applications. Consequently,
demands for the ability to understand online dynamic graph data have arisen in
various fields.

We have examined previous online dynamic graph layout methods and found
they have some undesirable limitations in layout quality or the connectivity of
the graph. Some are too expensive to use for real-time applications. In order
to speed up the process of laying out an online dynamic graph, a commonly
employed approach is to anchor large portions of the graph and allow only a
small subset of the graph to move; nevertheless, this speedup comes with several
tradeoffs. One tradeoff is that when a new node or an edge is introduced, only
that node and its neighbors are allowed to move at that instance. In most cases,
nodes are placed near their ideal spots. If two disconnected components merge,
the nodes usually cannot reach their ideal spots at once, as depicted in Fig. 1. In
addition, linking disconnected graphs may lead to edge crossings. Parts of the
graph would stay in suboptimal positions, unless new nodes or edges are added
to the same neighborhood to allow the layout algorithm to fix this problem.

In this paper, we present an incremental version of the multilevel multi-pole
layout method that is suitable for visualizing online dynamic graphs. Our work
makes the following contributions to online dynamic graph drawing:

– The incremental layout method reduces the computation cost while best char-
acterizing inherent network structure and maintaining graph readability.

– Our refinement technique reduces edge crossings and long edges by using the
nodes’ energy to determine correct placement.

– The refinement technique can be applied independently or in tandem with an
existing force-directed layout method.

– The layout is fast because our implementation for both the layout and refine-
ment calculations are GPU-accelerated.

We evaluated our methods using several dynamic graph data sets, including
ones from real-world online applications, and compared the layouts with those

18 T. Crnovrsanin et al.

produced by previous methods. The test results demonstrate the effectiveness
and usability of our method.

2 Related Work

Online dynamic graphs are series of graphs in which time steps are not known
ahead of time. Lee et al. [19] was one of the earliest to work with online graphs.
The algorithm preserves the mental map while generating aesthetically pleasing
graphs. The drawback is that the algorithm is slow, recalculating the full layout
at each time step. Brandes and Wagner [6] instead used Bayesian decision theory
to generate the graph. Their work characterizes the tradeoff between dynamic
stability and local quality using conditional probabilities. Frishman and Tal [10]
created a novel force-directed algorithm that can handle large graphs. Their GPU
implementation provides a 17 times speedup over the CPU version. Gorochowski
et al. [12] used the age of the node to stabilize the graph. The age was calculated
based on when the node appeared and how much movement it saw through
its life. Che et al. [7] proposed a novel layout algorithm that enforces graph
component shapes by using Laplacian constrained distance embedding. However,
the Gorochowski et al. and Frishman and Tal algorithms do not address the
disconnected component problem mentioned in the introduction.

Our layout method addresses this problem by using a novel refinement tech-
nique that gradually alleviates areas of high energy. Energy is defined as the
amount of force applied to a node. In Sect. 4, our evaluation shows that our
method produces more aesthetic graphs at the cost of more movement in the
graph. This movement is necessary to reduce long edges and edge crossings that
occur.

3 An Incremental Algorithm

Our incremental algorithm is a modified version of FM3, which is a fast,
multlievel, multi-pole, force-directed layout method. What makes FM3 fast is
that it does not calculate all the repulsion forces, which is the most expensive
operation of any force-directed calculation. For a single time step, given the
finest level of the graph G = (V,E) = G0, FM3 reduces computation by par-
titioning and collapsing G0 until reaching a prescribed number of nodes. This
subset of nodes represents the coarsest level, K. A force calculation is applied
to this graph GK , where the resulting node positions are used as the initial lay-
out for the next finer graph, GK−1. These steps are repeated until the original
graph G0 is drawn. More details of FM3 can be found in Godiyal [11], which
our GPU-accelerated implementation is based on.

FM3 is not designed for online dynamic graphs drawing. To make it incre-
mental, we need to:

1. Include an initial layout construction step
2. Add a merging step, which includes placing new nodes and selecting nodes

to move

An Incremental Layout Method for Visualizing Online Dynamic Graphs 19

Fig. 2. The figure shows how our algorithm assigns positions to new nodes. A dashed
node and edge indicate a new node and edge, respectively. Nodes colored in orange
represent nodes that are flagged to move by our algorithm. (a) A node with no edges
is placed randomly inside the bounding box of the graph. (b) A node connected to a
positioned node is placed at a desired length, dl, from the positioned node. (c) A node
connected to at least two positioned nodes is placed at the centroid of the position
nodes. (d) When an edge is added or removed between two positioned nodes, our
algorithm flags both nodes to move (Color figure online).

3. Modify the multilevel calculation step
4. Pick a specific force model for the force calculation step
5. Add an animation step for smooth transition of the layout rendering.

We do not modify the multi-pole calculation step. We describe each of these five
steps in more detail below.

Initial Layout Construction: For the initial layout, L0, we use standard
FM3 layout with a degree metric for the selection of the super nodes, which
is described in the Multilevel Calculation section.

Merging: This stage attempts to place new nodes at their ideal positions by
using affixed nodes from the previous layout. Initial node placement is impera-
tive because error is introduced when previously positioned nodes are at their
suboptimal positions. This error propagates across layouts, making it difficult to
correct in subsequent time steps.

Our approach minimizes this error by assigning coordinates to new nodes in
the following manner. Positioned nodes from Li−1 are copied over to Li. If a new
node v is not connected to any other positioned node, v is placed in a random
position within the bounds of the graph, as shown in Fig. 2a. If v is connected to
one positioned node u, v is placed randomly around u at a distance dl. dl is the
desired length between two connected nodes in our spring-based energy model,
as seen in Fig. 2b. If v is connected to at least two positioned nodes, v is placed
at the geometric center of all the connected nodes, shown in Fig. 2c. All affected
nodes are flagged to move.

In our merging stage, the insertion or deletion of edges affects node place-
ment. If an edge is inserted between two new nodes, u and v, node u is randomly
placed inside the bounding box, similar to Fig. 2a, and node v is placed randomly
around u at a radius of dl, equivalent to Fig. 2b. Both nodes are selected to move.
Also, our method moves affixed nodes when a new edge is introduced to another
node–whether new or affixed–namely, when node u is connected and node v is

20 T. Crnovrsanin et al.

Fig. 3. Energy levels are mapped from yellow to red, where red represents high energy.
Refinement allows only nodes with high energy (a) to move until they reach a low
energy state, which is represented in yellow (b) (Color figure online).

not. Since it is not restricted by other nodes, node v is randomly placed around
node u at a distance dl as if it were a new node and is marked to move. Another
instance of node placement is the change of connectivity between positioned
nodes u and v. When an edge is removed, the two affected nodes are flagged
to move because their current positions are invalid and should move closer to
their respective components. After adding an edge, we flag both nodes to move,
shown in Fig. 2d, to minimize overlapping edges in case these components are
distant from one another.

Multilevel Calculation: In FM3, the process of picking a super node–a single
node that represents a large set of nodes from the finer levels–is done randomly
or by indexing [11]. When dealing with multiple levels from the coarsening of
G0, our method is more deterministic when selecting a super node than FM3’s
multilevel approach. A super node is selected by having the highest degree. A
new node will have a low chance of becoming a super node, but the likelihood
increases when its degree increases.

Having a multilevel representation of the graph alleviates the computation
time. In incremental layout methods, including ours, only nodes within a certain
vicinity have their forces calculated. Also, coarser graph levels have cheaper
computation compared to the original graph because force calculations are done
on the super nodes. Starting from the coarsest level, the super node’s resulting
movement is used to interpolate the movement of its adjacent nodes at the next
finer graph level, until the finest level G0 is reached. In our method, when we
calculate Li, we compute the layout 250 times at the coarsest level. The number
of iterations to compute the layout linearly decays per level until we reach the
finest level. At the finest level, we compute the layout 30 times.

Our method uses a contribution factor to restrict the super nodes’ range of
movement. This solves the problem of nodes at coarser levels of the graph having
greater range of movement than those at finer levels. Without the contribution
factor, large disparities of movement occur due to simulated annealing. This
causes suboptimal node positioning, which ultimately degrades the final graph
level at G0. The contribution factor is determined by how many nodes are allowed

An Incremental Layout Method for Visualizing Online Dynamic Graphs 21

to move under the super node. For instance, if there is only one node that is
allowed to move under a super node, then the super node will only move slightly.

Force Calculation: Our repulsive forces are modeled as

F rep =
C ∗ (u − v)
‖u − v‖3 (1)

to achieve a greater spreading of disconnected graph components. Our spring
forces can be modeled as [11]

F spring = ‖u − v‖ ∗ log

(‖u − v‖
dl

)
∗ (u − v) (2)

where C is the repulsive constant and dl is the desired length between two
nodes. In practice, we found that C as 4.0 and dl as 0.055 works best with our
implementation.

Animation: Animation is employed to display the graph changes between Li−1

to Li. Existing nodes smoothly transition into their new positions from Li−1 to
Li. New nodes do not exist in Li−1 and must be introduced into Li.

By default, we use Graph Diaries [2], an animation mode that uses different
stages to emphasize graph changes, such as deletion, movement, and addition.

3.1 Refinement Method

Our method allows nodes to reposition themselves if high energy, which is char-
acterized by long edges and edge crossings, exists between their components.
This occurrence is not adequately addressed by previous methods. We minimize
this effect by refining a subset of the graph which not only reduces the cost of
refinement, but shortens long edges–a result of minimizing the total energy in
these components.

We expect that refinement is best used when it runs independently from the
layout method. However, a layout method may not have a sufficient time window
to apply refinement in between time steps. A possible option is to incorporate
refinement directly into the layout method. However, such integrated refinement
has limited opportunities to fix the graph as it is only called once before the
main layout algorithm is executed.

We describe our implementation, which makes refinement a viable option for
existing layout methods. In our refinement technique, we compute the layout for
the finest level of the graph. Although the original graph, G0, does not leverage
the multilevel algorithm, we run the layout step for a subset of the graph that
has been marked to have high energy. In addition, refinement runs the layout
step for a set number of iterations. This is an adjustable parameter, in which
reducing the number of steps trades quality for speed. In our implementation, we
have set this number to 20. We modify the temperature factor, defined in FM3,

22 T. Crnovrsanin et al.

to “anneal” nodes to their final positions. This factor affects the mental map’s
quality [24] and complements our force model. In our system, we set temperature
to 1.0.

Ideally, we want an approach that will gradually modify the graph, but only
move high energy nodes. This reduces the overall energy in the system. We
calculate the energy per node by deriving the relation F = ∇En [10]. Given two
nodes, positioned at u and v, the repulsive energy is calculated by

Enrep =
−C

‖u − v‖ (3)

The spring energy is calculated by

Enspring =
1
9

∗ (‖u − v‖3 ∗ (log
(‖u − v‖

dl

)
− 1) + dl3) (4)

The total energy for node v is computed by summing over all edges connected
to v and all v and u node pairs: En(v) = Enrep + Enspring.

En(v) =
∑

u,v∈V,u�=v

−C

‖u − v‖ +
∑

u:(u,v)∈E

‖u − v‖ ∗ log

(‖u − v‖
dl

)
∗ (u − v) (5)

Calculating the energy for nodes takes O(N2 + E) time, where N is the
number of nodes and E is the number of edges. The cost comes from the all-pair
computation. Computing a single iteration of the layout is O(N ∗ log(N) + E),
making the computation of energy more expensive. In most cases, the cost of
one energy computation is cheaper than the cost of computing the entire layout.
It is possible to achieve the same cost for the energy computation by leveraging
FM3’s multi-pole method to estimate the energy instead. Since FM3 uses a kd-
tree for traversal [11], this adds another O(N ∗ log(N)) cost for the multi-pole
estimation. The estimation will be faster with large graphs.

Once we quantify the energy for individual nodes, we need to determine when
a node’s energy is high in relation to the entire system. Every introduced node
or edge increases the total energy of the system, making it difficult to define
high energy. A simple approach is to subtract graph Gk from Gk−1 to see which
nodes have high energy. However, this is only conclusive for the current time
step and nodes that gradually increase in energy over time will not be detected.

Instead, we take the mean of the nodes’ energy, μ, and compare it against
each node, yielding a definition of high energy. The mean scales with the total
energy, UTotal, and allows us to compare the individual nodes. Thus, we define
a node to have high energy when abs(UTotal−µ)

µ > K, where K is a user-defined
constant. In our implementation, we define K to be 1.

4 Evaluation

In this section, we evaluate our layout method visually and use a series of metrics
to examine the stability, quality and time of our layout method for comparison

An Incremental Layout Method for Visualizing Online Dynamic Graphs 23

Table 1. Comparison of layout methods using energy, Δ position, and time. Lowest
quantities are in bold. Results characterize the graphs’ state throughout the observed
session. Energy is the total energy in the system, Δ position is the change in nodes’
position, and time is measured in seconds.

Layout method McFarland Stack overflow-live Stack overflow Facebook

Energy Δpos Time Energy Δpos Time Energy Δpos Time Energy Δpos Time

Pinning 1584 2.48 0.020 137651 119 0.067 1457k 151 0.084 14803k 308 0.208

Aging 25.12 0.747 0.021 546130 272 0.061 113188k 658 0.085 186310k 1019 0.131

Our Layout 1159 0.745 0.008 24764 350 0.059 862k 658 0.084 9724k 3042 0.133

against existing methods. We apply our refinement technique to these methods
to show the benefits of relieving high energy areas when nodes are placed in
suboptimal positions. We discuss the details of the metrics used to characterize
the graphs’ state. We use a combination of real and synthesized data sets that
vary in both size and the number of time steps.

4.1 Layout Methods

The evaluation of our layout method is done by comparing it against two
advanced online dynamic layout methods called “pinning”, by Frishman and
Tal [10], and “aging”, by Gorochowski et al. [12]. Pinning reduces calculation
by allowing recently updated nodes and their neighbors to move. Nodes closer
to the recently updated node have wider range of movement. Aging uses an
“aging factor” that is quantified by a relationship between the node’s age and
how much its immediate neighborhood has changed over time. Nodes that are
younger, or experience a large amount of change around them, have more free-
dom to move. We could not find existing implementation of these algorithms,
so we implemented them according to their respective papers. Any assumptions
made when implementing these methods can be found in the Appendix (http://
vis.cs.ucdavis.edu/papers/tarik incremental appendix.pdf).

4.2 Data Sets

We use four data sets with varying size and velocity. The first data set is taken
from McFarland’s study [20] which documents student interaction in a classroom.
The visualization of this graph shows clusters that expand, shrink, and split over
time. This data set is our smallest graph, with 20 nodes and 82 time steps. We
use the McFarland data set for direct comparison against pinning and aging
algorithms since their results are shown in Gorochowski et al’s work.

The second and third data sets are from Stack Overflow, a forum where indi-
viduals post questions about programming. Users not only answer questions, but
also provide feedback to the questions and supplied answers. Users are rewarded
points when they post popular questions, answers, or comments. The first Stack
Overflow data set is a one-month trial run of the collection in November 2014.
The data set starts with 304 nodes and 606 edges and expands to 4000 nodes and
5000 edges. The second data set, Stack Overflow Live, is a live feed of the site.

http://vis.cs.ucdavis.edu/papers/tarik_incremental_appendix.pdf
http://vis.cs.ucdavis.edu/papers/tarik_incremental_appendix.pdf

24 T. Crnovrsanin et al.

Fig. 4. Visualization of the Stack Overflow-Live data using pinning, our layout method
with independent refinement, and aging at the same instance. Pinning tends to have
nodes near the center due to its central attractive force, whereas aging and our layout
have nodes spread out across the viewing space. Pinning and aging generate long edges
and edge crossings (a,b,e,f)–characteristics which degrade the graph over time. With
refinement, our method relieves this problem by shifting parts of the graph to lower
the system’s energy (c,d).

At the time of the measuring for generating Table 1, the data set started with
80 nodes and 80 edges and ended with 638 nodes and 964 edges. Both data sets
are characterized by many small, independent components that merge together
over time.

The last data set is from Facebook and is acquired from a website hosting
collections of streaming graph data sets [26]. This data set starts with 822 nodes
and 1160 edges and expands to 1268 nodes and 2004 edges. The Facebook data
set focuses on connections between individuals. The data set, an example of a
small world graph, is characterized by one large cluster and many small clusters.

4.3 Metrics

Stability is synonymous to the preservation of the mental map. Stability mea-
sures the amount of change in a graph by quantifying the change in position for
all nodes or the distance a node moved. New nodes’ change in position is 0 at
the first time step they are introduced.

Timing is measured before and after every layout computation call. We use
the average time across layout computations to assess the speed of layout meth-
ods. The speed of our refinement technique is difficult to measure because it runs
when the layout is waiting for new data. Therefore, it is not part of the layout
step and can be considered free as it is not taking away from the computation
of the layout.

Selecting a quality metric to evaluate dynamic layouts is difficult. There have
been few studies looking at the importance of preserving the mental map in
dynamic layouts [23,24]. We define quality as the measurement of energy, where
low energy produces aesthetically-pleasing graphs–nodes are placed at optimal

An Incremental Layout Method for Visualizing Online Dynamic Graphs 25

Table 2. Comparison of pinning with and without refinement, using energy, Δ position,
and time to measure the performance. Lowest quantities are in bold. Results character-
ize the graphs’ state throughout the observed session. Energy is the total energy in the
system, Δ position is the change in nodes’ position, and time is measured in seconds.

Layout method McFarland Stack oveflow-live Stack overflow Facebook

Energy Δpos Time Energy Δpos Time Energy Δpos Time Energy Δpos Time

Pinning 1584 2.48 0.020 138k 119 0.067 1457k 151 0.084 14803k 308 0.208

Pinning+ref 671 6.92 0.020 42.9k 294 0.082 43.8k 317 0.0124 76.6k 409 0.231

edge lengths from each other, making the graph’s structure easy to comprehend.
We use the total energy of the system to match the metrics used by Frishman
and Tal [10] and Gorochowski et al. [12]. Since our refinement technique uses
our energy model to determine which nodes have high energy, we simply sum
the energy for all nodes as such

Entotal =
∑

i=1...n

En(i) (6)

where n is the total number of nodes.
To ensure fair comparisons of layout quality, all layout implementations use

the same force model. Aging naturally uses our force model, since it is built
upon our layout method. Our pinning implementation uses our spring-system
force model.

4.4 Analysis of Our Layout Method

The results of our study are given in Tables 1 and 2, Figs. 4 and 5, and http://
vis.cs.ucdavis.edu/Videos/Incr.mp4.

The evaluation is conducted on a Macbook Pro laptop. It has an Nvidia
GeForce GT 750M graphics card, a 2.3 GHz Intel Core i7 processor, and 16 giga-
bytes of RAM.

Quality, Stability, and Timing Comparisons: Table 1 is the quantitative
comparison amongst our layout method, pinning, and aging. Figure 4 shows a
visual comparison of the three layouts for Stack Overflow-Live data set. In the
pinning results, a distinct ring of nodes forms. The ring is a consequence of the
pinning implementation, which places new nodes with no edges around this ring.
Nodes are spread out in aging and our layout method because nodes are placed
randomly inside the bounding box.

From Table 1, we can see in most cases our layout has the lowest energy. We
observe around 1.5 to 5.5 times improvement over pinning and 19 to 133 times for
aging. The low energy is attributed to the layout gradually repairing itself. This
translates visually, where our layout method better handles merging of distant
components than the other two methods. Our layout reduces long edges or edge
crossings, whereas these problems are evident in the other two layouts due to
their high energy.

http://vis.cs.ucdavis.edu/Videos/Incr.mp4
http://vis.cs.ucdavis.edu/Videos/Incr.mp4

26 T. Crnovrsanin et al.

Fig. 5. Visualization of the Stack Overflow data, comparing solely pinning and pinning
with independent refinement at the same instance. Many of the same trends found in
Fig. 4 are observed in this visualization. Pinning suffers from long edges and edge
crossings (a,b), which are fixed when refinement is added (c,d).

The layout’s stability is analyzed using an average Δ position. In general,
the pinning layout has the smallest average Δ position because it uses pinning
weights to minimize node movement in order to produce a stable layout. Our
layout has a higher Δ position because nodes are shifting into a better position
to reduce energy. Aging also suffers from large Δ position. This is explained
by the layout attempting to shorten long edges. In all accounts, our refinement
technique increases node movement in favor of gradually fixing the graph, evident
in Fig. 4.

Across the layout implementations, there are small differences in speed when
computing layouts. Based on our results, additional force calculations do not
necessarily increase computation time. This is likely attributed to how nodes are
partitioned and bottlenecks found in the GPU. The GPU may not be fully uti-
lized when running the force calculations. For each node, a GPU thread is created
for each kd-tree leaf for force calculations. Depending on the implementation, a
kd-tree can have leaves that vary in size from 4 to 20 nodes. A bottleneck occurs
when the GPU is waiting for kd-tree leaf nodes that take longer to process.

Refinement with Pinning: Table 2 shows the results of applying our refine-
ment technique to pinning. With refinement, pinning has 3 to 200 times lower
energy. As expected, the refinement version takes longer to calculate than pin-
ning by itself. However, this extra time is negligible, as refinement is meant
to run while the layout is idle. Similar to Table 1, pinning with refinement has
higher Δ position than pinning. From Fig. 5, we can see that extra movement is
used to fix long edges and spread out nodes.

An Incremental Layout Method for Visualizing Online Dynamic Graphs 27

Figure 5 shows the benefits of our refinement technique. We can see that long
edges or edge crossings are less evident on the right figure. The added benefit is
that refinement helps spread out the nodes in each component, making it easier
to see the structure.

The previous layout methods used in our evaluation have unique benefits.
Pinning maintains graph stability using pinning weights to restrict node move-
ment. Aging provides an anchor point for graph exploration by moving nodes
based on their evolutionary changes. However, our layout algorithm places nodes
at their optimal positions by considering each node’s energy. Our refinement
technique identifies high energy components in the graph and reduces the sys-
tem’s energy by gradually moving nodes to a lower energy state. Our results show
that our refinement technique can be used to improve existing layout methods
with respect to both layout quality and aesthetics, creating graph drawings that
best visualize the relations between involved entities.

5 Conclusion

We have presented an incremental layout method and a refinement technique
for visualizing online dynamic graphs that is used to create stable and aesthetic
layouts. First, we have shown how to convert FM3 into an incremental multilevel
multi-pole algorithm. Second, our refinement technique is used to identify high
energy nodes and move them to a low energy state. The refinement technique can
be used in tandem or separately from the layout method. Lastly, we are able to
employ a GPU to accelerate the layout and refinement technique. An empirical
evaluation with metrics shows that our method helps improve the stability and
aesthetic appeal of layouts.

Acnowledgments. This research is sponsored in part by the U.S. National Science
Foundation via grants NSF DRL-1323214 and NSF IIS-1320229, the U.S. Department
of Energy through grant DE-FC02-12ER26072, and also the UC Davis RISE program.

References

1. Archambault, D., Purchase, H.C., Pinaud, B.: Animation, small multiples, and the
effect of mental map preservation in dynamic graphs. IEEE Trans. Vis. Comput.
Graph. 17(4), 539–552 (2011)

2. Bach, B., Pietriga, E., Fekete, J.D.: GraphDiaries: animated transitions and tem-
poral navigation for dynamic networks. IEEE Trans. Vis. Comput. Graph. 20(5),
740–754 (2014)

3. Boitmanis, K., Brandes, U., Pich, C.: Visualizing internet evolution on the
autonomous systems level. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD
2007. LNCS, vol. 4875, pp. 365–376. Springer, Heidelberg (2008)

4. Brandes, U., Fleischer, D., Puppe, T.: Dynamic spectral layout of small worlds.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 25–36. Springer,
Heidelberg (2006)

28 T. Crnovrsanin et al.

5. Brandes, U., Mader, M.: A quantitative comparison of stress-minimization
approaches for offline dynamic graph drawing. In: Speckmann, B. (ed.) GD 2011.
LNCS, vol. 7034, pp. 99–110. Springer, Heidelberg (2011)

6. Brandes, U., Wagner, D.: A bayesian paradigm for dynamic graph layout.
In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 236–247. Springer,
Heidelberg (1997)

7. Che, L., Liang, J., Yuan, X., Shen, J., Xu, J., Li, Y.: Laplacian-based dynamic
graph visualization. In: Visualization Symposium (PacificVis), 2015 IEEE Pacific,
pp. 69–73 (2015)

8. Diehl, S., Görg, C.: Graphs, they are changing. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 23–31. Springer, Heidelberg (2002)

9. Erten, C., Harding, P.J., Kobourov, S.G., Wampler, K., Yee, G.: Graphael: graph
animations with evolving layouts. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912,
pp. 98–110. Springer, Heidelberg (2004)

10. Frishman, Y., Tal, A.: Online dynamic graph drawing. IEEE Trans. Vis. Comput.
Graph. 14(4), 727–740 (2008)

11. Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing
on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
90–101. Springer, Heidelberg (2009)

12. Gorochowski, T., di Bernardo, M., Grierson, C.: Using aging to visually uncover
evolutionary processes on networks. IEEE Trans. Vis. Comput. Graph. 18(8),
1343–1352 (2012)

13. Hachul, S., Jünger, M.: An experimental comparison of fast algorithms for drawing
general large graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843,
pp. 235–250. Springer, Heidelberg (2006)

14. Harel, D., Koren, Y.: A fast multi-scale method for drawing large graphs. In: Marks,
J. (ed.) GD 2000. LNCS, vol. 1984, pp. 183–196. Springer, Heidelberg (2001)

15. Hu, Y., Kobourov, S.G., Veeramoni, S.: Embedding, clustering and coloring for
dynamic maps. In: Visualization Symposium (PacificVis), 2012 IEEE Pacific, pp.
33–40 (2012)

16. Khoury, M., Hu, Y., Krishnan, S., Scheidegger, C.: Drawing large graphs by low-
rank stress majorization. Comput. Graph. Forum 31(3pt1), 975–984 (2012)

17. Koren, Y., Carmel, L., Harel, D.: Drawing huge graphs by algebraic multigrid
optimization. Multiscale Model. Simul. 1, 645–673 (2003)

18. Kumar, G., Garland, M.: Visual exploration of complex time-varying graphs. IEEE
Trans. Vis. Comput. Graph. 12(5), 805–812 (2006)

19. Lee, Y.Y., Lin, C.C., Yen, H.C.: Mental map preserving graph drawing using sim-
ulated annealing. In: Proceedings of the 2006 Asia-Pacific Symposium on Informa-
tion Visualisation, APVis 2006, Vol. 60, pp. 179–188 (2006)

20. Mcfarland, D.: Student resistance: how the formal and informal organization of
classrooms facilitate everyday forms of student defiance. Am. J. Sociol. 107(3),
612–678 (2001)

21. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Vi. Lang. Comput. 6(2), 183–210 (1995)

22. North, S.C.: Incremental layout in dynadag. In: Brandenburg, F.J. (ed.) GD 1995.
LNCS, vol. 1027, pp. 409–418. Springer, Heidelberg (1996)

23. Purchase, H.C., Hoggan, E., Görg, C.: How important is the “Mental Map”? – an
empirical investigation of a dynamic graph layout algorithm. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 184–195. Springer, Heidelberg
(2007)

An Incremental Layout Method for Visualizing Online Dynamic Graphs 29

24. Purchase, H.C., Samra, A.: Extremes are better: investigating mental map preser-
vation in dynamic graphs. In: Stapleton, G., Howse, J., Lee, J. (eds.) Diagrams
2008. LNCS (LNAI), vol. 5223, pp. 60–73. Springer, Heidelberg (2008)

25. Tufte, E.R.: Envisioning Information. Graphic Press, Cheshire (1990)
26. Yao, Y.: Collection and streaming of graph datasets. http://www.eecs.wsu.edu/

yyao/StreamingGraphs.html

http://www.eecs.wsu.edu/yyao/StreamingGraphs.html
http://www.eecs.wsu.edu/yyao/StreamingGraphs.html

Drawing Large Graphs by Multilevel
Maxent-Stress Optimization

Henning Meyerhenke1, Martin Nöllenburg2, and Christian Schulz1(B)

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT),
Karlsruhe, Germany

{meyerhenke,christian.schulz}@kit.edu
2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

noellenburg@ac.tuwien.ac.at

Abstract. Drawing large graphs appropriately is an important step for
the visual analysis of data from real-world networks. Here we present
a novel multilevel algorithm to compute a graph layout with respect to
a recently proposed metric that combines layout stress and entropy. As
opposed to previous work, we do not solve the linear systems of the
maxent-stress metric with a typical numerical solver. Instead we use a
simple local iterative scheme within a multilevel approach. To accelerate
local optimization, we approximate long-range forces and use shared-
memory parallelism. Our experiments validate the high potential of our
approach, which is particularly appealing for dynamic graphs. In compar-
ison to the previously best maxent-stress optimizer, which is sequential,
our parallel implementation is on average 30 times faster already for sta-
tic graphs (and still faster if executed on one thread) while producing a
comparable solution quality.

1 Introduction

Drawing large networks (or graphs, we use both terms interchangeably) with
hundreds of thousands of nodes and edges has a variety of relevant applications.
One of them can be interactive visualization, which helps humans working on
graph data to gain insights about the properties of the data. If a very large high-
end display is not available for such purpose, a hierarchical approach allows the
user to select an appropriate zoom level [1]. Moreover, drawings of large graphs
can also be used as a preprocessing step in high-performance applications [22].

One very promising class of layout algorithms in this context is based on
the stress of a graph. Such algorithms can for instance be used for drawing
graphs with fixed distances between vertex pairs, provided a priori in a distance
matrix [13]. More recently, Gansner et al. [12] proposed a similar model that
includes besides the stress an additional entropy term (hence its name maxent-
stress). While still using shortest path distances, this model often results in more
satisfactory layouts for large networks. The optimization problem can be cast

This is a short version of the technical report (TR) [27].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 30–43, 2015.
DOI: 10.1007/978-3-319-27261-0 3

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 31

Fig. 1.Drawings of bcsstk31. Left to right: PivotMDS [5], Maxent [12], MulMent (new).

as solving Laplacian linear systems successively. Since each right-hand side in
this succession depends on the previous solution, many linear systems need to
be solved until convergence – more details can be found in Sect. 2.3.

Motivation. We want to employ this maxent-stress model for drawing large net-
works quickly. Yet, solving many large Laplacian linear systems can be quite
costly. A conjugate gradient solver (used in [12]) is easy to implement but has
superlinear running time. Solvers with provably nearly-linear running time exist
but are not yet competitive with established methods in practice (see [18] for
an experimental comparison). Multigrid methods [24,26] for Laplacian systems
may seem appealing in this context, but their setup phase building the multigrid
hierarchy can be expensive for large graphs.

Gansner et al. [12] also suggested (but did not use) a simpler iterative refine-
ment procedure for solving their optimization problem. This procedure would
be slow to converge if used unmodified. However, if designed and implemented
appropriately, it has the potential for fast convergence even on large graphs.
Moreover, as already observed in [12], it has high potential for parallelism and
should work well on dynamic graphs by profiting from previous solutions.

Outline and Contribution. The main contribution of this paper is to make the
alternative iterative local optimizer suggested by Gansner et al. [12] (for details
on this and other related work see Sect. 2) usable and fast in practice. To this end,
we design and implement a multilevel algorithm tailored to large networks with
unit target edge lengths (see Sect. 3). The employed coarsening algorithm for
building the multilevel hierarchy can control the trade-off between the number of
hierarchy levels and convergence speed of the local optimizer. One property of the
local optimizer we exploit is its high degree of parallelism. Further acceleration
is obtained by approximating long-range forces. To this end, we use coarser
representatives stored in the multilevel hierarchy.

Our experimental results in Sect. 4 show that force approximation rarely
affects the layout quality significantly – in terms of maxent-stress values as well
as visual quality, also see Fig. 1 and TR [27]. The parallel implementation of our
multilevel algorithm MulMent with force approximation is, however, on average
30 times faster than the reference implementation [12] – and even our sequential
approximate algorithm is faster than the reference. A contribution besides higher
speed is that, in contrast to [12], our approach does not require input coordinates
to optimize the maxent-stress measure.

32 H. Meyerhenke et al.

2 Preliminaries

2.1 Basic Concepts

Consider an undirected, connected graph G = (V,E, c, ω, d) with node weights
c : V → R≥0, edge weights ω : E → R≥0, target edge lengths d : E → R>0,
n = |V |, and m = |E|. Often the function d models the required distance between
two adjacent vertices. By default, our initial inputs will have unit edge length
d ≡ 1 as well as unit node weight and edge weight c ≡ 1, ω ≡ 1. However, we
will encounter weighted problems in the course of our multilevel algorithm. Let
N(v) := {u : {v, u} ∈ E} denote the set of neighbors of v. A clustering of a
graph is a set of blocks (= clusters) of nodes {V1, . . . , Vk} that partition V , i.e.,
V1 ∪ · · · ∪ Vk = V and Vi ∩ Vj = ∅ for i �= j. A layout of a graph is represented
as a coordinate vector x, where xv is the two-dimensional coordinate of vertex
v. Since edges are drawn as straight-line segments between their incident nodes,
x is sufficient to define the complete graph layout.

2.2 Related Work

Most general-purpose layout algorithms for arbitrary undirected graphs are
based on physical analogies and can be grouped, according to Hu and Shi [19],
into two main classes: algorithms in the spring-electrical model and algorithms
in the stress model. Both classes of algorithms often yield aesthetically pleasing
graph layouts that emphasize symmetries and avoid edge crossings at least in
sparse graphs. Recent surveys of algorithms in these models are given by Hu and
Shi [19] and by Kobourov [23].

In the spring-electrical model, first presented by Eades in 1984 [8], the analogy
is to represent nodes as electrically charged particles that repel each other while
edges are represented as springs exerting attraction forces to adjacent nodes. A
graph layout is then seen as a physical system of forces and the goal is to find an
optimal layout corresponding to a minimum energy state. Spring-electrical algo-
rithms are also known as spring embedders, with the algorithm by Fruchterman
and Reingold [10] being one of the most widely used spring embedder algorithms.
It simulates the physical system of attractive and repulsive forces and iteratively
moves each node into the direction of the resulting force. Each iteration requires,
however, a quadratic number of force computations due to the repulsive forces
between all pairs of nodes, which limits the scalability of the original approach.
A faster approximative force calculation method based on quadtrees, aggregat-
ing especially the long-range forces, has been proposed by Barnes and Hut [3] and
yields running times of O(n log n) under certain assumptions.

The (full) stress model is closely related to multidimensional scaling [25],
and was introduced in graph drawing by Kamada and Kawai [21]. It is
based on defining ideal distances duv not only between adjacent vertices but
between all vertex pairs (u, v) ∈ V × V and then minimizing the layout stress∑

u�=v wuv(||xu − xv|| − duv)2, where wuv is a weight factor typically chosen as
wuv = 1/d2uv. Often, the distance duv between adjacent nodes is set to 1, while
the distance of non-adjacent nodes is the shortest-path distance in the graph.

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 33

Solving this model is typically done by iteratively solving a series of linear sys-
tems [13]. The need to compute all-pairs shortest paths and to store a quadratic
number of distances again defeats the scalability of this original approach for
large graphs. One of the fastest algorithms for approximatively solving the stress
model instead is PivotMDS [5], which requires distance calculations from each
vertex only to a small set of k 	 n suitably chosen pivot vertices.

The stress model prescribes target distances not only for edges but for all
vertex pairs. While this is a reasonable approach, it still brings artificial infor-
mation into the layout process. An interesting alternative has been proposed
by Gansner et al. [12]. Their algorithm (called Maxent) uses the sparse stress
model, which only contains the stress terms for the edges of the graph. In order
to deal with the remaining degrees of freedom in the layout, they suggest using
the maximum entropy principle instead. Since our algorithm is closely related
to Maxent, we discuss the latter in more detail in Sect. 2.3.

A general approach for speeding up layout computations for large graphs is
the multilevel technique, which has been used in the spring-electrical [16,29,32]
and in the stress model [11]. A multilevel algorithm computes a sequence of
increasingly coarse but structurally related graphs as abstractions of the original
graph. Starting from a layout of the coarsest graph, incremental refinement steps
using the previous layout as a scaffold eventually produce a layout of the entire
input graph, where the refinement steps are fast due to the good initial layouts.
Hachul and Jünger [15] performed an extensive experimental evaluation of state-
of-the-art layout algorithms for large graphs, including multilevel algorithms, and
Bartel et al. [4] experimentally compared different combinations of coarsening,
placement, and layout methods for the generic multilevel approach.

In addition to sequential algorithms for drawing large graphs, there is previ-
ous research in parallel layout algorithms, particularly using a graphics processing
unit (GPU). Frishman and Tal [9] presented a multilevel force-based layout algo-
rithm and implemented it using GPU-based parallelization. Ingram et al. [20] also
exploit parallel GPU computations and presented a multilevel stress-based layout
algorithm. Godiyal et al. [14] implemented a fast multipole algorithm on the GPU.

2.3 Maxent-Stress Optimization

Gansner et al. [12] proposed the maxent-stress model that combines a sparse
stress model with an entropy term to resolve the degrees of freedom for non-
adjacent vertex pairs. The entropy term itself is optimized when all nodes are
spread out uniformly, similar to the repulsive forces in the spring-electrical
model. Gansner et al. [12] showed that the maxent-stress model performs well
on several measures of layout quality in distance-based embeddings and avoids
typical shortcomings of other stress models, particularly for non-rigid graphs.
Formally, the maxent-stress M(x) of a layout x is defined1 as

1 In fact, Gansner et al. define a slightly more general model that considers the stress
term for arbitrary supersets S ⊇ E and allows variations of the entropy term. Our
algorithm also works for the general model; to simplify the description, we restrict
ourselves to the default model.

34 H. Meyerhenke et al.

M(x) =
∑

{u,v}∈E

wuv(||xu − xv|| − duv)2 − α
∑

{u,v}�∈E

ln ||xu − xv||, (1)

where duv is the target distance between nodes u and v and wuv is a weight
factor typically chosen as wuv = 1/d2uv. Throughout the paper, we use this as
a weight factor. The scaling factor α is used to modulate the strength of the
entropy term and is gradually reduced in the implementation.

Gansner et al. minimize the maxent-stress using a technique that repeatedly
solves Laplacian linear systems that additionally include a repulsive force vector
which is approximated following the quadtree method of Barnes and Hut [3].

Alternatively, they proposed (but did not implement) the following local
iterative force-based scheme to solve the maxent-stress model:

xu ← 1
ρu

∑
{u,v}∈E

wuv

(
xv + duv

xu − xv

‖xu − xv‖
)

+
α

ρu

∑
{u,v}/∈E

xu − xv

‖xu − xv‖2 , (2)

where ρu =
∑

{u,v}∈E wuv. Note that sometimes we use the abbreviation
r(u, v) := xu−xv

‖xu−xv‖2 and shortly call these values r-values.

3 Multilevel Maxent-Stress Optimization

As mentioned, a successful (meta)heuristic for graph drawing (and other opti-
mization problems on large graphs) is the multilevel approach. We also employ
this approach for maxent-stress optimization for several other reasons: (i) Some
graphs (such as road networks) feature a hierarchical structure, which can be
exploited to some extent by a multilevel approach and (ii) the computed hierar-
chy may be useful later on for multiscale visualization.

Before going into the details, we briefly sketch our algorithmic approach:
The method for creating the graph hierarchy is based on fast graph clustering
with controllable cluster sizes. Each cluster computed on one hierarchy level is
contracted into a new supervertex for the next level. After computing an initial
layout on the coarsest hierarchy level, we improve the drawing on each finer level
by iterating Eq. (2). Additionally, this process exploits the hierarchy and draws
vertices that are densely connected with each other (i. e. which are in the same
cluster) close to each other.

3.1 Coarsening and Initial Layout

To compute the clustering we adapt size-constrained label propagation
(SCLaP) [28], an algorithm originally developed for coarsening and local
improvement during multilevel graph partitioning. SCLaP itself is based on the
graph clustering algorithm label propagation [30]. The latter starts with a single-
ton clustering (i. e. each node is a cluster). The algorithm then works in rounds.
Roughly speaking, in each round the algorithm visits all nodes in random order
and assigns each node to the predominant cluster in its neighborhood. This way,

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 35

cluster IDs (= labels) propagate through the graph and nodes in a dense cluster
usually agree on a common label.

However, clusters with unconstrained sizes are not desirable here since
they would hamper convergence of the local improvement phase. The trade-
off between this convergence speed and the number of hierarchy levels needs to
be chosen properly for a fast overall running time. That is why SCLaP constrains
cluster sizes, i. e. it introduces an upper bound U := max(maxv c(v),W) on the
cluster sizes (W is specified below), where constraining on the maximum node
weight favors uniform coarsening. Consequently, in each SCLaP round, nodes
are assigned to the predominant cluster that is not overloaded after the label
change.

In our implementation, based on preliminary experiments, we set the para-
meter W to min(bh, |V |

f), where b and f are tuning parameters and h is the
level in the hierarchy that we are currently working on. The intuition behind
this choice is that we want the contraction process not to be too strong on the
fine levels in order to allow fast convergence of local improvement algorithms,
whereas we allow stronger contractions on coarser levels. If the contracted graph
is not more than 10 % smaller than the graph on the current level, we decrease
the value of f and set it to 0.7f .

While the original label propagation algorithm repeats the process until con-
vergence, SCLaP performs at most � rounds, where � is a tuning parameter. One
round of the algorithm can be implemented to run in O(n + m) time.

Contracting a clustering works as follows: each block of the clustering is
contracted into a single node. The weight of the node is set to the sum of the
weight of all nodes in the original block. There is an edge between two nodes u′

and v′ in the contracted graph if the two corresponding blocks in the clustering
are adjacent to each other in G, i. e. block u′ and block v′ are connected by at
least one edge. The weight of an edge (u′, v′) is set to the sum of the weight of
edges that run between block u′ and block v′ of the clustering.

Initial Layout. The process of computing a size-constrained clustering and con-
tracting it is repeated recursively. Then an initial layout is drawn, meaning that
each of the two nodes of the coarsest graph is assigned to a position. We place
the vertices such that the distance is optimal. The optimal distance of the two
vertices is defined and motivated in the next section.

3.2 Uncoarsening and Local Improvement

When the initial layout has been computed, the solution is successively pro-
longated to the next finer level, where a local maxent-stress minimizer is used
to improve the layout. For undoing the contraction, nodes that have been in a
cluster are drawn at a random position around the location of its coarse rep-
resentative. More precisely, let v be a (fine) vertex that is represented by the
coarse supervertex v′ at P = (x, y). We place v at a random position in a circle
around P with radius r :=

√
c(v′). We do this by picking an angle uniformly at

36 H. Meyerhenke et al.

random in [0, 2π] and a distance to P uniformly at random in [0, r]. These two
values are then used as a polar coordinate for v with respect to the origin P .

Local Improvement. Our local improvement tries to minimize the maxent-stress
on each level of the hierarchy based on Eq. (2). Note, however, that simply iterat-
ing Eq. (2) on each level is not sensible since coarse vertices represent a multitude
of vertices. These vertices need space to be drawn on the next finer level. Now
let u and v be two vertices on the same fixed level. We adjust distances duv on
the current level in the hierarchy under consideration to

√
c(u) +

√
c(v) with

the intuition that vertices represented by u should be drawn in a circle around
u with radius

√
c(u) (similarly for v).

As Gansner et al. [12], we adjust the value of α in Eq. (2) during the process.
Since we want to approximate the maxent-stress, the value should be small.
However, it cannot be too small initially since one would only solve a sparse
stress model in this case. Hence, following Gansner et al. [12], we set α to one
initially and gradually reduce it by α := 0.3 · α until αmin = 0.008 is reached.

We call a single update step of the coordinates of all vertices using Eq. (2)
an iteration. Multiple iterations with the same value of α are called round. The
current iteration uses the coordinates that have been computed in the previous
iteration. We perform at most a iterations with the same value of α in one round.
Then we reduce α as described above. If the relative change ||x�+1 − x�||/||x�||
in the layout is smaller than some threshold ε, we directly reduce the value of α
and continue with the next round.

Faster Local Improvement. The local optimization algorithm presented above
has a theoretical running time of O(n2) per iteration. To speed this up, one can
use approximations for the distances in the entropy term in Eq. (2). We do this
by taking the cluster structure computed during coarsening into account: Let
V1 ∪ . . . ∪ Vk be the corresponding clustering and M : V → V ′ = {1, . . . , k} be
the mapping that maps a node v ∈ V to its coarse representative. The first term
in Eq. (2) is computed as before and the second term is approximated by using
the coordinates of the corresponding coarse vertex. As formula the second term
written without the multiplicative factor α

ρu
becomes

∑
u�=v

M(u)=M(v)

r(u, v) +
∑

v′∈V ′
v′ �=M(u)

ν(v′)
xu − x′

v′

‖xu − x′
v′‖2 −

∑
{u,v}∈E

r(u, v), (3)

where x′ maps a coarse vertex to its coordinates and ν(v′) is the number of nodes
that the coarse vertex represents on the current finer level. Note that this is
different from the vertex weight c(v′) which represents the number of nodes that
the coarse vertex represents on the finest level. Roughly speaking, we reduced
the necessary amount of computation to add up the values of r by summing
up the correct values of r for all vertices that are in a sense close and using
approximations for vertices that are far away. In our context, a vertex is close if
it is in the same cluster as the currently processed vertex. If a vertex is not close,

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 37

we use the coordinate of its coarse representative instead. We avoid unnecessary
computation by scaling the approximated value of r with the number ν(v′) of
vertices it represents and adding approximated value of r only once. The last
term in Eq. (3) subtracts values of r for {u, v} ∈ E that have been added in good
faith in the first two summations.

Note that if M is the identity, then the term in Eq. (3) is the same as in the
original Eq. 2. In this case the first two summations add up the r-values for all
pairs of vertices and the last sum subtracts the r-values for pairs that are in E.

After the update of the vertices on the current level, we update the coor-
dinates of the vertices on the coarser level used for approximation. We set the
coordinate of a vertex v′ on the coarser level to the barycenter of the vertices
represented by v′.

Note that one obtains even faster algorithms by using a coarser version of
the graph that is multiple levels beneath the current level in the graph hierarchy.
That means instead of using the next coarser graph, we use the contracted
graph which is h > 1 levels beneath the current graph in the hierarchy – if there
is such. Otherwise, we use the coarsest graph in the hierarchy. Obviously this
yields a trade-off between solution quality and running time. Also note that this
introduces an additional error. To see this, let the coarser vertices that have
the same coarse representative on the level used for approximating values of r
be called M-vertices (merged vertices). Now, for a vertex on the current level,
the r-values of M-vertices are not accounted for in Eq. (3). Hence, we look at
the parameter h carefully in Sect. 4 and evaluate its impact on running time and
solution quality. We call our algorithms MulMent and denote by MulMenth the
algorithm that uses an h-level approximation of the r-values. With h = 0 we
denote the quadratic-time algorithm. A rough analysis in TR [27] yields:

Proposition 1. Under the assumption of equal cluster sizes, the running time
of one iteration of algorithm MulMenth, h ≥ 0, is O(m + n

h+2
h+1), respectively.

Properly implemented, multilevel algorithms lead to fast convergence of their
local optimizers. Moreover, the overall work performed by the multilevel app-
roach is only a constant factor times the one on the finest level. This leads us to
the initial appraisal that the same asymptotic running times may hold for the
respective complete algorithms.

Shared-Memory Parallelization. Our shared-memory parallelization of an itera-
tion of the local optimizer uses OpenMP and works as follows: Since new coor-
dinates of the vertices in the same iteration can be computed independently, we
use multiple threads to do so. The relative change in the layout ||x�+1−x�||/||x�||
can be computed in parallel using a reduce operation. Parallelism is also used
analogously when working on different levels for the distance approximations
in the entropy term. Other parts of the overall algorithm could potentially be
parallelized, too – such as coarsening. However, already on medium sized graphs
coarsening consumes less than 5 % of the algorithm’s overall running time. More-
over, the relative running time of coarsening decreases even more with increasing
graph size so that the effort does not seem worth it.

38 H. Meyerhenke et al.

4 Experimental Evaluation

Methodology. We implemented2 the algorithm described above using C++.
Parallelization of our algorithm has been done using OpenMP. We compiled
our programs using g++ 4.9 -O3 and OpenMP 3.1. Executables for Pivot-
MDS (PMDS) [5] and MaxEnt (GHN, for clarity we use the author names as
acronym) [12] have been kindly provided by Yifan Hu. When comparing layouts
computed by different algorithms, we evaluate two metrics. The first metric is the
full stress measure, F (x) =

∑
u,v∈V wuv(||xu−xv||−duv)2, and the second one is

the maxent-stress function M(x) as defined in Eq. (1) at the final penalty level of
α = 0.008. The latter is of primary importance since that is what GHN and Mul-
Ment optimize for. The implementations PMDS and GHN sometimes compute
vertices that are on the same position. Hence, we add small random noise to the
coordinates of these layouts in order to be able to compute the maxent-stress.
More precisely, for each of the components of the 2D-coordinate of a node, we
randomly add or subtract a random value from the interval [10−7, 10−4]. This
changes the full stress measure by less than 10−4 percent on average. We follow
the methodology of Gansner et al. [12] and scale the layout of all algorithms
to minimize the stress to be fair to all methods: We find a scalar s such that∑

u,v∈V wuv(s||xu − xv|| − duv)2 is minimized for a given layout x.

Machine. Our machine has four Octa-Core Intel Xeon E5-4640 (Sandy Bridge)
processors (32 cores, 64 with hyperthreading active) which run at a clock speed of
2.4 GHz. It has 512 GB local memory, 20 MB L3-Cache and 8x256 KB L2-Cache.
Unless otherwise mentioned, our algorithms use all 64 cores (hyperthreading) of
that machine. Since PMDS and GHN are sequential algorithms, they use one
core of that machine.

Algorithm Configuration. After an extensive evaluation of the parameters, we
fixed the cluster coarsening parameters f to 20 and b to 2. The initial value of the
penalty parameter α is set to 1. We perform at most a = 2 iterations with the
same value of α, while it has not reached its minimum value of 0.008. When it has
reached its minimum value, we iterate until the relative error ||x�+1 − x�||/||x�||
is smaller than 0.0001. Yet, our experiments indicate that our algorithm is not
very sensitive about the choice of these parameters. We evaluate the influence
of the approximation level h in Sect. 4.1.

Instances. We use the instances 1138 bus, USpowerGrid, bcsstk31, commanche
and luxembourg employed in [12] and extend the set to include larger instances.
We excluded the graphs gd, qh882 and lp ship04l from [12] from our experiments
since the graphs are either not undirected or the corresponding matrix is rectan-
gular. Most of the instances taken from [12] are available at the Florida Sparse

2 We released the implementation of our algorithms as open source in the
KaDraw (Karlsruhe Graph Drawing) framework available at http://algo2.iti.kit.edu/
kadraw/.

http://algo2.iti.kit.edu/kadraw/
http://algo2.iti.kit.edu/kadraw/

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 39

Matrix Collection [6]. The graphs 3elt, bcsstk31, fe pwt and auto are available
at the Walshaw benchmark archive [31]. The graphs delX are Delaunay trian-
gulations of 2X random points in the unit square [17]. Moreover, the graphs
nyc and luxembourg are road networks. These graphs have been taken from the
benchmark set of the 9th and 10th DIMACS Implementation Challenge [2,7]. A
summary of the basic properties of these instances can be found in the technical
report version of this paper [27]. In any case, we draw the largest connected
component if the graph has more than one. We assume unit length distance for
all graphs.

4.1 Influence of Coarse Graph Approximation and Scalability

In this section, we investigate the influence of the parameter h on layout quality
and running time (algorithmic speedup) as well as the scalability of our algo-
rithms with varying number of threads (parallel speedup). We perform detailed
experiments on our medium sized networks (using 64 threads) and present par-
allel speedups on the largest graphs auto and del20. We report absolute running
times and parallel speedups for the graph del20 in Fig. 2 and present detailed
data for the medium size networks as well as more plots in [27]. We do not report
layout quality metrics for auto and del20 since the size of the network makes it
infeasible to compute them and the result of the algorithm is independent of the
number of threads used.

We now investigate the influence of the parameter h. In general, the larger
the graphs get, the larger the algorithmic speedups obtained with increasing h.
On the smallest graph in this collection, we obtain an algorithmic speedup of
about 3 with h = 6 (fe pwt) over MulMent0. On the largest two instances in
this section, we obtain an algorithmic speedup of 30 with h = 9 (auto) and of
122 with h = 10 (del20). In addition, the precise choice of the parameter does
not seem to have a very large impact on solution quality on these graphs. This
is also due to the size of the networks. The graphs on which full stress measure
slightly increases are luxembourg and bcsstk31 (7 % and 15 % respectively – see
[27]). The metric actually under consideration, maxent-stress, always remains
comparable. On all instances under consideration, we observe a locally optimal
value for h in terms of running time. It is around seven and seems to get larger
with increasing graph size. This is due to the fact that too large values of h
provide less precision and slower convergence.

On del20, the scalability with the number of threads is almost perfect for
small values of h. With enabled hyperthreading, we achieve slightly superlin-
ear speedups for MulMent0. As less work has to be done for increasing h,
speedups get smaller. The smallest speedup on this graph has been observed
for MulMent10. In this case, we achieve a speedup of 11.5 using 64 threads over
MulMent10 using one thread. With even larger h speedups increase again. The
parallel scalability on auto is similar.

Another interesting way to look at the data is the overall speedup – algorith-
mic and parallel speedup combined – achieved over MulMent0 using only one
thread. The largest overall speedup is obtained by MulMent10 using 64 threads.

40 H. Meyerhenke et al.

102

103

104

105

106

1 2 4 8 16 32 64

to
ta

l t
im

e
[s

]

number of PEs p

MulMent0
MulMent1
MulMent2

MulMent3
MulMent4
MulMent5

MulMent6
MulMent7
MulMent8

MulMent9
MulMent10
MulMent11

1

2

4

8

16

32

1 2 4 8 16 32 64

S p

number of PEs p

MulMent0
MulMent1
MulMent2
MulMent3
MulMent4
MulMent5

MulMent6
MulMent7
MulMent8
MulMent9
MulMent10
MulMent11

Fig. 2. Running times and parallel speedups of our algorithms on del20.

In this case, the overall speedup is larger than 4000 – reducing the running time
of the algorithm from 30 hours to 27 seconds. Speedups over PMDS and GHN
are found in the next section.

4.2 Comparison to Other Drawing Algorithms

We now compare MulMent to the two implementations PMDS [5] and GHN [12].
We do this on all networks but only report quality metrics for small and medium
sized graphs since it is infeasible to compute quality metrics for the large graphs.
We report detailed data in [27].

Most importantly, although MulMent sometimes performs a few percent
worse than GHN, the maxent-stress of all layouts is more or less similar. PMDS
performs slightly worse in this metric. Intriguingly, the alternative full stress
metric is consistently better on small networks for MulMent than the results
obtained by PMDS (except for h = 10). On the other hand, full stress obtained
by our algorithms is comparable to the layout computed by GHN on four out
of nine instances. On the three largest medium sized networks, we obtain worse
full stress than PMDS and GHN. However, this is not astonishing since our algo-
rithm does not optimize for full stress – in contrast to PMDS. And GHN at least
starts with a PMDS solution and improves maxent-stress afterwards.

Our implementations of MulMent7,10 are always faster than GHN, both of
them a factor 30 on average. Also, MulMent7,10 outperform even PMDS in terms
of running time as soon as the graphs get large enough (medium and large sized
graphs). On the large graphs, MulMent10 is a factor of 2 to 3 faster than PMDS
and a factor of 32 to 63 faster than GHN. In addition, MulMent7,10 are also
several times faster than GHN when using one thread only (see TR [27]).

4.3 Dynamic Networks

One of the main advantages of the iterative scheme is its ability to use an existing
layout for computing a new one, e. g. for a graph that has changed over time. We
perform experiments with dynamic graphs obtained by modifying our medium
sized networks. Often one is interested in drawing graphs that have more or less
good locality. Hence, we define a random model that modifies the edges of a

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 41

graph by removing random edges and inserting edges between vertices that are
not too far apart.

To be more precise, we start with an input graph G and perform a breadth
first search from a random start node to compute a random spanning tree. We
then remove x% undirected non-tree edges at random in the beginning. Note
that this ensures that the graph stays connected. Afterwards, we insert x% new
edges as follows. We pick a random node and insert an undirected edge to a
random node that has distance 1 < d ≤ D in the original graph G, where D is
a tuning parameter. We denote the graph that results out of this process as Q.

We compute two layouts of Q. The first one updates coordinates given by an
initial layout of G (update algorithm). The second layout is computed by our
algorithm from scratch (scratch algorithm), i. e. discarding the initial layout. In
the first case, we start directly at the penalty level α = 0.008 and only update
coordinates on the finest level of the hierarchy. We compute the graph hierarchy
as before but stop the coarsening process after the computation of h levels.
Coordinates of the vertices on the approximation level are set to the middle
point of the vertices in the corresponding cluster initially.

We vary x ∈ {1, 5}, D ∈ {2, 16} and h ∈ {0, 7}, and present detailed data
in [27]. As expected, the running time of the update algorithm (tdyn) is always
smaller than the running time of the scratch algorithm (tscratch). As MulMent7
performs less work than MulMent0, algorithmic speedups are always larger for
the latter. For h = 0, the update algorithm is a factor of 4 faster than the scratch
algorithm on average. On the other hand, for h = 7 the update algorithm saves
about 50 % time on average over the scratch algorithm. Solution quality is not
influenced much. On average, the full stress measure of the update algorithm is
9 % larger and maxent-stress improves by 1 % compared to the scratch algorithm.
The increase in full stress is mostly due to the Delaunay instance and D = 16,
in which the full stress of the layout of the update algorithm is a factor of two
larger. The algorithmic speedup does not seem to be largely influenced by D.
However, we expect that much larger values of D will decrease the speedup of
the update algorithm over the scratch algorithm.

5 Conclusions

We have presented a new multilevel algorithm for iteratively and approximatively
optimizing the maxent-stress model, a model proposed by Gansner et al. [12] to
avoid typical pitfalls of other stress models. From the experimental evaluation we
conclude that our parallel algorithm produces layouts with similar visual qual-
ity and maxent-stress values as the reference implementation [12]. At the same
time it is on average 30 times faster, even more for dynamic graphs. Moreover,
our algorithm is even up to twice as fast as the fastest stress-based algorithm
PivotMDS [5]. It thus combines the high speed of PivotMDS with the high visual
quality of Maxent in a single algorithm, at least if a multicore system is available.

Currently our method is only capable of handling constant edge lengths. This
requirement is due to the way coarse vertices are placed and later interpolated
to a finer level. In future work we would like to eliminate this limitation.

42 H. Meyerhenke et al.

Acknowledgements. Financial support by DFG is acknowledged (DFG grants ME
3619/3-1 and SA 933/10-1). We thank Yifan Hu for providing us the codes from [12].

References

1. Abello, J., van Ham, F., Krishnan, N.: ASK-GraphView: a large scale graph visu-
alization system. IEEE Trans. Vis. Comput. Graph. 12(5), 669–676 (2006)

2. Bader, D.A., Meyerhenke, H., Sanders, P., Schulz, C., Kappes, A., Wagner, D.:
A benchmark set for graph clustering and graph partitioning. In: Encyclopedia of
Social Network Analysis and Mining (2014)

3. Barnes, J., Hut, P.: A hierarchical O(n log n) force-calculation algorithm. Nature
324, 446–449 (1986)

4. Bartel, G., Gutwenger, C., Klein, K., Mutzel, P.: An experimental evaluation of
multilevel layout methods. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 80–91. Springer, Heidelberg (2011)

5. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007)

6. Davis, T.: The university of florida sparse matrix collection (2008). http://www.
cise.ufl.edu/research/sparse/matrices

7. Demetrescu, C., Goldberg, A.V., Johnson, D.S.: The Shortest Path Problem: 9th
DIMACS Implementation Challenge, vol. 74. AMS (2009)

8. Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 146–160
(1984)

9. Frishman, Y., Tal, A.: Multi-level graph layout on the GPU. IEEE Trans. Vis.
Comput. Graph. 13(6), 1310–1319 (2007)

10. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

11. Gajer, P., Kobourov, S.G.: GRIP: Graph drawing with intelligent placement. J.
Graph Algorithms Appl. 6(3), 202–224 (2002)

12. Gansner, E.R., Hu, Y., North, S.C.: A maxent-stress model for graph layout. IEEE
Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)

13. Gansner, E.R., Koren, Y., North, S.C.: Graph drawing by stress majorization. In:
Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005)

14. Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing
on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
90–101. Springer, Heidelberg (2009)

15. Hachul, S., Jünger, M.: Large-graph layout algorithms at work: an experimental
study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)

16. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005)

17. Holtgrewe, M., Sanders, P., Schulz, C.: Engineering a scalable high quality graph
partitioner. In: IEEE Parallel and Distributed Computing (IPDPS 2010), pp. 1–12.
IEEE (2010)

18. Hoske, D., Lukarski, D., Meyerhenke, H., Wegner, M.: Is nearly-linear the same
in theory and practice? a case study with a combinatorial laplacian solver. In:
Bampis, E. (ed.) SEA 2015. LNCS, vol. 9125, pp. 205–218. Springer, Heidelberg
(2015)

http://www.cise.ufl.edu/research/sparse/matrices
http://www.cise.ufl.edu/research/sparse/matrices

Drawing Large Graphs by Multilevel Maxent-Stress Optimization 43

19. Hu, Y., Shi, L.: Visualizing large graphs. Wiley Interdisc. Rev. Comput. Stat. 7(2),
115–136 (2015)

20. Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE
Trans. Vis. Comput. Graph. 15(2), 249–261 (2009)

21. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31, 7–15 (1989)

22. Kirmani, S., Raghavan, P.: Scalable parallel graph partitioning. In: High Perfor-
mance Computing, Networking, Storage and Analysis (S 2013), pp. 51:1–51:10.
ACM (2013)

23. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book of Graph Drawing and Visualization, Chap. 12, pp. 383–408. CRC Press,
Boca Raton (2013)

24. Koutis, I., Miller, G.L., Tolliver, D.: Combinatorial preconditioners and multilevel
solvers for problems in computer vision and image processing. Comput. Vis. Image
Underst. 115(12), 1638–1646 (2011)

25. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika 29(1), 1–27 (1964)

26. Livne, O.E., Brandt, A.: Lean algebraic multigrid (LAMG): fast graph Laplacian
linear solver. SIAM J. Sci. Comput. 34(4), B499–B522 (2012)

27. Meyerhenke, H., Nöllenburg, M., Schulz, C.: Drawing large graphs by multilevel
maxent-stress optimization. CoRR, arXiv:1506.04383 (2015)

28. Meyerhenke, H., Sanders, P., Schulz, C.: Partitioning complex networks via size-
constrained clustering. In: Gudmundsson, J., Katajainen, J. (eds.) SEA 2014.
LNCS, vol. 8504, pp. 351–363. Springer, Heidelberg (2014)

29. Quigley, A., Eades, P.: FADE: graph drawing, clustering, and visual abstraction.
In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 197–210. Springer, Heidelberg
(2001)

30. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phy. Rev. E 76(3), 036106 (2007)

31. Soper, A.J., Walshaw, C., Cross, M.: A combined evolutionary search and multi-
level optimisation approach to graph-partitioning. J. Global Optim. 29(2), 225–241
(2004)

32. Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph
Algorithms Appl. 7(3), 253–285 (2003)

http://arxiv.org/abs/1506.04383

A Million Edge Drawing for a Fistful of Dollars

Alessio Arleo, Walter Didimo(B), Giuseppe Liotta,
and Fabrizio Montecchiani

Università degli Studi di Perugia, Perugia, Italy
alessio.arleo@studenti.unipg.it,

{walter.didimo,giuseppe.liotta,fabrizio.montecchiani}@unipg.it

Abstract. In this paper we study the problem of designing a graph
drawing algorithm for large graphs. The algorithm must be simple to
implement and the computing infrastructure must not require major
hardware or software investments. We report about the experimental
analysis of a simple implementation of a spring embedder in Giraph,
a vertex-centric open source framework for distributed computing. The
algorithm is tested on real graphs of up to 1 million edges by using a cheap
PaaS (Platform as a Service) infrastructure of Amazon. We can afford
drawing graphs with about one million edges in about 8 min, by spending
less than 1 USD per drawing for the cloud computing infrastructure.

1 Introduction

Classical force-directed algorithms, like spring embedders, are by far the most
popular graph drawing techniques (see, e.g., [4,10]). One of the key components
of this success is the simplicity of their implementation and the effectiveness of
the resulting drawings. Spring embedders make the final user only a few lines
of code away from an effective layout of a network. They model the graph as
a physical system, where vertices are equally-charged electrical particles that
repeal each other and edges are modeled as springs that give rise to attractive
forces. Computing a drawing corresponds to finding an equilibrium state of the
force system by a simple iterative approach (see, e.g., [5,6]).

The main drawback of spring embedders is that they are relatively expen-
sive in terms of computational resources, which gives rise to scalability problems
even for graphs with a few thousands vertices. To overcome this limit, sophis-
ticated variants of force-directed algorithms have been proposed; they include
hierarchical space partitioning, multidimensional scaling techniques, multi-scale
techniques, and stress-majorization approaches (see, e.g., [1,8,10] for a survey).
Also, both centralized and parallel multi-scale force-directed algorithms that use
the power of graphical processing units (GPU) are described [7,9,14,18]. They
scale to graphs with some million edges, but their implementation is not easy

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001. We are grateful to Clint East-
wood and Sergio Leone for inspiring the title of this work with their movies.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 44–51, 2015.
DOI: 10.1007/978-3-319-27261-0 4

A Million Edge Drawing for a Fistful of Dollars 45

and the required infrastructure could be expensive in terms of hardware and
maintenance.

A few works concentrate on designing relatively simple parallel implementa-
tions of classical spring embedders. Mueller et al. [13] and Chae et al. [2] propose
a graph visualization algorithm that uses multiple large displays. Vertices are
evenly distributed on the different displays, each associated with a different
processor, which is responsible for computing the positions of its vertices; scala-
bility experiments are limited to graphs with some thousand vertices. Tikhonova
and Ma [15] present a parallel force-directed algorithm that scales well to graphs
with some hundred thousand edges. It is important to remark that all the above
algorithms are mainly parallel, rather than distributed, force-directed techniques.
Their basic idea is to partition the set of vertices among the processors and to
keep data locality as much as possible throughout the computation.

Motivated by the increasing availability of scalable cloud computing services,
we study the problem of adapting a simple spring embedder to a distributed
architecture. We want to use such an algorithm on a cheap PaaS (Platform
as a Service) infrastructure to compute drawings of graphs with million edges.
We design, engineer, and experiment a distributed Fruchterman-Reingold (FR)
spring embedder [6] in the open source Giraph framework [3], on a small Ama-
zon cluster of 10 computers, each equipped with 4 vCPUs (http://aws.amazon.

com/en/elasticmapreduce/). Giraph is a popular computing framework for distrib-
uted graph algorithms, used for instance by Facebook to analyze social networks
(http://giraph.apache.org/).

Our distributed algorithm is based on the “Think-Like-A-Vertex (TLAV)”
design paradigm [12] and its performance is experimentally tested on a set of
real-world graphs whose size varies from tens of thousand to one million edges.
The experiments measure not only the execution time and the visual complexity,
but also the cost in dollars on the Amazon PaaS infrastructure. For example,
computing a drawing on a graph of our test suite with 1,049,866 edges required
about 8 min, which corresponds to less than 1$ payed to Amazon. The parallel
algorithm described by Tikhonova and Ma [15] needs about 40 min for a graph
of 260,385 edges, on 32 processors of the PSC’s BigBen Cray XT3 cluster.

The remainder of the paper is organized as follows. Section 2 describes the
algorithmic pipeline of our distributed spring embedder. The experimental analy-
sis is the subject of Sect. 3. Conclusions and future work can be found in Sect. 4.

2 A Vertex Centric Spring Embedder

The vertex-centric programming model is a paradigm for distributed processing
frameworks to address computing challenges on large graphs. The main idea
behind this model is to “Think-Like-A-Vertex” (TLAV), which translates to
implementing distributed algorithms from the perspective of a vertex rather
than the whole graph. Such an approach improves locality, demonstrates linear
scalability, and provides a natural way to express and compute many iterative
graph algorithms [12]. TLAV approaches overcome the limits of other popular

http://aws.amazon.com/en/elasticmapreduce/
http://aws.amazon.com/en/elasticmapreduce/
http://giraph.apache.org/

46 A. Arleo et al.

Pruning Partitioning Layout ReinsertionG Γ

Fig. 1. Algorithm pipeline of Clint: G is the input graph and Γ the computed drawing.

distributed paradigms like MapReduce, which are often poor-performing for iter-
ative graph algorithms.

The first published implementation of a TLAV framework was Google’s
Pregel [11], based on the Bulk Synchronous Programming model (BSP) [16].
Giraph is a popular open-source TLAV framework built on the Apache Hadoop
infrastructure [3]. In Giraph, the computation is split into supersteps executed
iteratively and synchronously. A superstep consists of two processing steps: (i) a
vertex executes a user-defined vertex function based on both local vertex data,
and on data coming from adjacent vertices; (ii) the results of such local com-
putation are sent to the vertex neighbors along its incident edges. Supersteps
always end with a synchronization barrier which guarantees that messages sent
in a given superstep are received at the beginning of the next superstep. The
whole computation ends after a fixed number of supersteps has occurred or when
all vertices are inactive (i.e., no message has been sent).

Our distributed spring embedder algorithm, called Clint, is simple and is
based on the fact that a classical force-directed approach can be naturally rein-
terpreted according to a vertex-centric paradigm. Clint is designed to run on
a cluster of computers within a TLAV framework and consists of the following
algorithmic pipeline (see also Fig. 1).

Pruning: For the sake of efficiency, we first remove all vertices of degree one
from the graph, which will be reinserted at the end of the computation by means
of an ad-hoc technique. This operation can be directly performed while loading
the graph. The number of degree-one vertices adjacent to a vertex v is stored as
a local information of v, to be used throughout the computation.

Partitioning: We then partition the vertex set into subsets, each assigned to
a computing unit, also called worker in Giraph; in the distributed architecture,
each computer may have more than one worker. The default partitioning algo-
rithm provided by Giraph aims at making the partition sets of uniform size, but
it does not take into account the graph topology (it is based on applying a hash
function). As a result a default Giraph partition may have a very high number of
edges that connect vertices of different partition sets; this would negatively affect
the communication load between different computing units. To cope with this
problem, we used a partitioning algorithm by Vaquero et al., called Spinner [17],
which creates balanced partition sets by exploiting the graph topology. It is based
on iterative vertex migrations, relying only on local information.

Layout: Recall that classic spring embedders split the computation into a set
of iterations. In each iteration every vertex updates its position based on the
positions of all other vertices. The computation ends after a fixed number of
iterations has occurred or when the positions of the vertices become sufficiently

A Million Edge Drawing for a Fistful of Dollars 47

stable. The design of a distributed spring embedder within the TLAV para-
digm must consider the following architectural constraints: (i) each vertex can
exchange messages only with its neighbors, (ii) each vertex can locally store a
small amount of data, and (iii) the communication load, i.e., the total number
of messages and length sent at a particular superstep, should not be too high,
for example linear in the number of edges of the graph. These three constraints
together do not allow for simple strategies to make a vertex aware of the posi-
tions of all other vertices in the graph, and hence a distributed spring embedding
approach must use some locality principle. We exploit the experimental evidence
that in a drawing computed by a spring embedder: (a) the graph theoretic dis-
tance between two vertices is a good approximation for their geometric distance;
(b) the fact that the repulsive forces between a vertex u and a vertex v tend to be
less influential as the distance between u and v increases. See, e.g., [10]. Hence,
we find it reasonable to adopt a locality principle where the force acting on each
vertex v only depends on its k-neighborhood Nv(k), i.e., the set of vertices whose
graph theoretic distance from v is at most k, where k is a suitably defined con-
stant. The attractive and repulsive forces acting on a vertex are defined according
to the FR spring embedder model [6]. In our distributed implementation, each
drawing iteration consists of a sequence of Giraph supersteps.

An iteration works as follows. By means of a controlled flooding technique,
every vertex v knows the position of each vertex in Nv(k). In the first superstep,
vertex v sends a message to its neighbors. The message contains the coordinates
of v, its unique identifier, and an integer number, called TTL (Time-To-Live),
equal to k. In the second superstep, v processes the received messages and uses
them to compute the attractive and repulsive forces with respect to its adjacent
vertices. Then, v uses a data structure Hv (a hash set) to store the unique
identifiers of its neighbors. The TTL of each received message is decreased by
one unit, and the message is broadcasted to v’s neighbors. In superstep i (i > 2),
vertex v processes the received messages and, for each message, v first checks
whether the sender u is already present in Hv. If this is not the case, v uses the
message to compute the repulsive force with respect to u, and then u is added to
Hv. Otherwise, the forces between u and v had already been computed in some
previous superstep. In both cases, the TTL of the message is decreased by one
unit, and if the TTL is still greater than zero, the message is broadcasted. When
no message is sent, the coordinates of each vertex are updated and the iteration
is ended.

Reinsertion: After a drawing of the pruned graph has been computed, we
reinsert the degree-one vertices by means of an ad-hoc technique. The general
idea is to reinsert in a region close to v its adjacent vertices of degree one.
Namely, each angle around v formed by two consecutive edges will host a number
of vertices that is proportional to its extent. To reduce the crossings, the edges
incident to the reinserted vertices are assigned a length of one tenth of the ideal
spring length. We found experimentally that this solution gives good results on
graphs with many one-degree vertices.

48 A. Arleo et al.

Table 1. Benchmark of real-world complex networks and results of our experiments.

Clint- k = 2 Clint- k = 3 FR

|V | |E| δ Time

[sec.]

$ CR (106) Time

[sec.]

$ CR (106) Time [sec.] CR(106)

add32 4,960 9,462 28 30.3 0.04 0.26 40.2 0.06 0.24 6.9 0.1

ca-GrQc 5,242 14,496 17 112.6 0.16 2.08 128.9 0.18 1.2 4.9 1.85

grund 15,575 17,427 15 36.1 0.05 0.34 46.3 0.07 0.19 71 0.35

pGp-giantcompo 10,680 48,632 17 35.1 0.05 3.11 72.4 0.1 2.02 32.2 1.8

p2p-Gnutella04 10,876 39,994 9 39.2 0.06 73.8 122 0.17 59.5 40 12.3

ca-CondMat 23,133 93,497 14 179.1 0.25 146.8 525.4 0.74 100.2 59 77.9

p2p-Gnutella31 62,586 147,892 11 58.5 0.08 694.4 323.5 0.46 545.4 - -

amazon0302 262,111 899,792 32 203.2 0.29 5,267.4 1,228.7 1.74 4,213.9 - -

com-amazon 334,863 925,872 44 278.9 0.39 3,314.6 946.8 1.34 3,130.3 - -

com-DBLP 317,080 1,049,866 21 508.5 0.72 11,978.7 - - - - -

The pipeline described above is applied independently to each connected
component of the input graph. The layouts of the different components are then
conveniently arranged in a matrix, so to avoid overlap. The pre-processing phase
that computes the connected components of the graph is a distributed adapta-
tion of a classical BFS algorithm, still based on a simple flooding technique.
We experimentally observed that, when the graph consists of many connected
components, the time required for such a pre-processing step could be higher
than 70% of the total time.

We conclude this section with the analysis of the time complexity of Clint.
Let G be a graph with n vertices and maximum vertex degree Δ. Recall that
k is the integer value used to initialize the TTL of each message. Then the
local function computed by each vertex costs O(Δk), since each vertex needs to
process (in constant time) one message for each of its neighbors at distance at
most k, which are O(Δk). Moreover, let c be the number of computing units.
Assuming that each of them handles (approximately) n/c vertices, we have that
each superstep costs O(Δk)nc . Let s be the maximum number of supersteps that
Clint performs (if no equilibrium is reached before), then the time complexity
is O(Δk)sn

c . If we assume that c and s are two constants in the size of the graph,
then we have O(Δk)n, which, in the worst case, corresponds to O(nk+1).

3 Experiments

We experimentally studied the performances of Clint. We took into account two
main experimental hypotheses: H1. For small values of k (k ≤ 2), Clint can
draw graphs up to one million edges in a reasonable time, on a cloud computing
platform whose cost per hour is cheap. This hypothesis is motivated by the fact
that, for a small k, the amount of data stored at each vertex should be relatively
small and the message traffic load should be limited. H2. When the diameter of
the graph is not too high, small increases of k may give rise to relatively high
improvements of the drawing quality. Nevertheless, small diameters may cause
a dramatic increase of the running time even for small changes of k, because the
data stored at each vertex might significantly grow.

A Million Edge Drawing for a Fistful of Dollars 49

To test our hypotheses, we performed the experiments on a benchmark of 10
real graphs with up to 1 million edges, taken from the Sparse Matrix Collection of
the University of Florida (http://www.cise.ufl.edu/research/sparse/matrices/) and
from the Stanford Large Networks Dataset Collection (http://snap.stanford.edu/

data/index.html). Previous experiments on the subject use a comparable number
of real graphs (see, e.g., [15]). On each graph, we ran Clint with k ∈ {2, 3}.
Every computation ended after at most 100 iterations (corresponding to a few
hundreds Giraph supersteps). The experiments were executed on the Amazon
EC2 infrastructure, using a cluster of 10 memory-optimized instances (R3.xlarge)
with 4 vCPUs and 30.5 GiB RAM each. The cost per hour to use this infrastruc-
ture is about 5 USD. Table 1 reports some experimental data. Each row refers
to a different network, with the networks ordered according to increasing num-
ber of edges. The columns report the number |V | of vertices and |E| of edges,
the network diameter δ, the running time of Clint, the Amazon cost for the
drawing, and the number of crossings in the drawing.

Concerning H1, the data suggest that this hypothesis is not disproved. The
computation of the biggest network of our test suite, consisting of more than
one million edges, took about 8 min with k = 2. Most of this time was required
for sending messages among the different Giraph workers. The cloud computing
infrastructure cost of the computation is less than 1 USD. On graph com-DBLP,
the computation for k = 3 failed due to a lack of storage resources, which means
that more than 10 workers are necessary in this case. On the other hand, for
the 4 smallest networks of the test suite we were able to compute the layout
up to k = 5. The running time on ca-GrQc and ca-CondMat is higher than that
spent on other graphs of similar size; more than 70% of this time was needed to
compute the (many) connected components of these graphs.

Concerning H2, we report the quality of the drawings in terms of number of
edge crossings. The improvement passing from k = 2 to k = 3 varies from 6% (on
com-amazon) to 44% (on grund). As expected, the improvement is usually higher
on networks with relatively small diameter. Also the increase of the running
time, going from k = 2 to k = 3, is usually more severe for small diameters. For
example, graph p2p-Gnutella04 has half the size of graph ca-CondMat, and its
diameter is also much smaller; nevertheless, the increase of running time passing
from k = 2 to k = 3 on p2p-Gnutella04 is higher (211%) than on ca-CondMat
(193%). Again, the increase of time on graph amazon0302 (whose diameter is
32) is almost twice that on graph com-amazon (whose diameter is 44), although
the latter is bigger than the former. Hence, also hypothesis H2 is not disproved.

In addition to the above experiments, we ran a centralized version of the FR
algorithm against our benchmark on an Intel i7 3630QM laptop, with 2.4 GHz
and 8 GB of RAM. Namely, we ran the optimized FR implementation available in
the OGDF library (http://www.ogdf.net/). This algorithm was able to complete
the computation for the 6 smaller graphs of the test suite. The last two columns
report the time and the number of crossings of the centralized FR computations.
In the average, the drawings computed by Clint for k = 3 have about 1.8
times the number of crossings of those computed by FR. In some cases however,

http://www.cise.ufl.edu/research/sparse/matrices/
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://www.ogdf.net/

50 A. Arleo et al.

Clint performed better than FR (see ca-GrQC and grund) or similarly (see pGp-
giantcompo). About the running time, Clint is often slower than the centralized
FR, due to the time required by the flooding techniques for exchanging messages
and by the fix infrastructure cost of the distributed environment, which is better
amortized over the computation of bigger instances.

We also tried to estimate the strong scalability of Clint, that is, how the
running time varies on a given instance when the number of workers increases.
For each graph we ran Clint also with 6 and 8 workers. For the largest graphs
and for k = 2, passing from 6 to 8 workers improves the running time of about
20%, while passing from 8 to 10 workers causes a further decrease of about 10%.
These percentages increase for k = 3. On the smaller graphs, the benefit of using
more workers is evident from k ≥ 4.

4 Conclusions and Future Research

We described and experimented the first TLAV distributed spring embedder.
Our results are promising, but more experiments would help to find better trade-
offs between values of k, running time, drawing quality, and number of workers
in the PaaS. Future work includes: (a) Developing TLAV versions of multi-
scale force-directed algorithms, able to compute several million edge graphs on a
common cloud computing service; this would improve running times and drawing
quality. (b) Designing a vertex-centric distributed service to interact with the
visualizations of very large graphs; a TLAV drawing algorithm should be one of
the core components of such a service.

References

1. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling
of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp.
42–53. Springer, Heidelberg (2007)

2. Chae, S., Majumder, A., Gopi, M.: Hd-graphviz: highly distributed graph visual-
ization on tiled displays. In: ICVGIP 2012, pp. 43:1–43:8. ACM (2012)

3. Ching, A.: Giraph: large-scale graph processing infrastructure on hadoop. In:
Hadoop Summit (2011)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice
Hall, Upper Saddle River, NJ (1999)

5. Eades, P.: A heuristic for graph drawing. Congr. Numerant. 42, 149–160 (1984)
6. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.

Software, Practice and Experience 21(11), 1129–1164 (1991)
7. Godiyal, A., Hoberock, J., Garland, M., Hart, J.C.: Rapid multipole graph drawing

on the GPU. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp.
90–101. Springer, Heidelberg (2009)

8. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005)

9. Ingram, S., Munzner, T., Olano, M.: Glimmer: multilevel MDS on the GPU. IEEE
Trans. Vis. Comput. Graph. 15(2), 249–261 (2009)

A Million Edge Drawing for a Fistful of Dollars 51

10. Kobourov, S.G.: Force-directed drawing algorithms. In: Tamassia, R. (ed.) Hand-
book of Graph Drawing and Visualization, pp. 383–408. CRC Press, Boca Raton
(2013)

11. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: SIGMOD 2010,
pp. 135–146. ACM (2010)

12. McCune, R.R., Weninger, T., Madey, G.: Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Comput.
Surv. 1(1), 1–35 (2015)

13. Mueller, C., Gregor, D., Lumsdaine, A.: Distributed force-directed graph layout
and visualization. In: EGPGV 2006, pp. 83–90. Eurographics (2006)

14. Sharma, P., Khurana, U., Shneiderman, B., Scharrenbroich, M., Locke, J.: Speeding
up network layout and centrality measures for social computing goals. In: Salerno,
J., Yang, S.J., Nau, D., Chai, S.-K. (eds.) SBP 2011. LNCS, vol. 6589, pp. 244–251.
Springer, Heidelberg (2011)

15. Tikhonova, A., Ma, K.: A scalable parallel force-directed graph layout algorithm.
In: EGPGV 2008, pp. 25–32. Eurographics (2008)

16. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

17. Vaquero, L.M., Cuadrado, F., Logothetis, D., Martella, C.: Adaptive partitioning
for large-scale dynamic graphs. In: ICDCS 2014, pp. 144–153. IEEE (2014)

18. Yunis, E., Yokota, R., Ahmadia, A.: Scalable force directed graph layout algorithms
using fast multipole methods. In: ISPDC 2012, pp. 180–187. IEEE (2012)

Faster Force-Directed Graph Drawing
with the Well-Separated Pair Decomposition

Fabian Lipp(B), Alexander Wolff, and Johannes Zink

Lehrstuhl für Informatik I, Universität Würzburg, Würzburg, Germany
fabian.lipp@uni-wuerzburg.de

http://www1.informatik.uni-wuerzburg.de/en/staff

Abstract. The force-directed paradigm is one of the few generic
approaches to drawing graphs. Since force-directed algorithms can be
extended easily, they are used frequently. Most of these algorithms are,
however, quite slow on large graphs as they compute a quadratic number
of forces in each iteration. We speed up this computation by using an
approximation based on the well-separated pair decomposition.

We perform experiments on a large number of graphs and show that
we can strongly reduce the runtime—even on graphs with less then a
hundred vertices—without a significant influence on the quality of the
drawings (in terms of number of crossings and deviation in edge lengths).

1 Introduction

Force-directed algorithms are commonly used to draw graphs. They can be used
on a wide range of graphs without further knowledge of the graphs’ structure.
The idea is to define physical forces between the vertices of the graph. These
forces are applied to the vertices iteratively until stable positions are reached.
The well-known spring-embedder algorithm of Eades [5] models the edges as
springs. His approach was refined by Fruchterman and Reingold [9]. Between
pairs of adjacent vertices they apply attracting forces caused by springs. To
prevent vertices getting too close, they apply repulsive forces between all pairs
of vertices.

Generally, force-directed methods are easy to implement and can be extended
well. For example, Fink et al. [7] defined additional forces to draw Metro lines in
Metro maps as Bézier curves instead of as polygonal chains. Different aesthetic
criteria can be balanced by weighing them accordingly. Force-directed algorithms
can in principle be used for relatively large graphs with hundreds of vertices and
often yield acceptable results. Unfortunately, force-directed methods are rather
slow on such graphs. This is caused by the computation of the repulsive force
for every vertex pair, which yields a quadratic runtime for each iteration. In this
paper, we present a new approach to speed this up.

Previous Work. There are a lot of techniques to speed up force-directed algo-
rithms. For example, Barnes and Hut [1] use a quadtree, a multi-purpose spatial

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 52–59, 2015.
DOI: 10.1007/978-3-319-27261-0 5

Faster Force-Directed Graph Drawing 53

data structure, to approximate the forces between the vertex pairs. We will com-
pare our algorithm to theirs subsequently. Another approach is the multilevel
paradigm introduced by Walshaw [15]. After contracting dense subgraphs, the
resulting coarse graph is laid out. Then the vertices are uncontracted and a lay-
out of the whole graph based on the coarse layout is computed. This can be done
over several levels. The multilevel paradigm does not rule out our WSPD-based
approach; our approach can be applied to each level.

Various force-directed graph drawing algorithms have been compared
before [2,3,8]. We use some of the quality criteria described in the literature
to evaluate our algorithm.

Callahan and Kosaraju [4] defined a decomposition for point sets in the
plane, the well-separated pair decomposition (WSPD). Given a point set P and
a number s > 0, this decomposition consists of pairs of subsets (Ai, Bi)i=1,...,k

of P with two properties. First, for each pair (p, q) ∈ P 2 with p �= q, there is a
unique index i ∈ {1, . . . , k} such that p ∈ Ai and q ∈ Bi or vice versa. Second,
each pair (Ai, Bi) must be s-well-separated, that is, the distance between the
two sets is at least s times the larger of the diameters of the sets. Callahan and
Kosaraju showed how to construct a WSPD for a set of n points in O(n log n)
time where the number k of pairs of sets is linear in n.

The WSPD has been used for graph drawing before; Gronemann [10]
employed it to speed up the fast multipole multilevel method [11]. While our
WSPD is based on the split tree [4], Gronemann’s is based on a quadtree.

Our Contribution. We use the WSPD in order to speed up the force-directed
algorithm of Fruchterman and Reingold (FR). Instead of computing the repulsive
forces for every pair of points, we represent every set A1, . . . , Ak, B1, . . . , Bk in
the decomposition by its barycenter and use the barycenter of a set, say Ai, as
an approximation when computing the forces between this set and a point in Bi.
Thus, an iteration takes us O(n log n) time, instead of Ω(n2) for the classical
algorithm.

Additionally, our method is very simple and allows the user to define forces
arbitrarily—as long as the total force on a point p is the sum of the forces of
point pairs in which p is involved. Hence, our approach can be applied to other
force-directed algorithms as well. We don’t consider other techniques such as
Multidimensional Scaling (MDS) or multi-level algorithms in this paper, as we
only want to show that we can speed up a force-directed graph layout algo-
rithm using the WSPD. We guess that this technique can be applied to other
algorithms as well. In the above-mentioned fast multipole method, in contrast,
the approximation of the repulsive forces is quite complicated (as Hachul and
Jünger [11] point out); it requires the expansion of a Laurent series.

2 Algorithm

In this section, we describe our WSPD-based implementation, analyze its asymp-
totic running time, and give a heuristic speed-up method.

54 F. Lipp et al.

Constructing a WSPD. There are various ways to construct an efficient WSPD,
that is, a WSPD with a linear number of pairs of sets. We use the split tree as
described by Callahan and Kosaraju [4] when introducing the WSPD. Our imple-
mentation follows the algorithm FastSplitTree in the textbook of Narasimhan
and Smid [13, Sect. 9.3.2]. Given n points, this algorithm constructs a linear-size
split tree in O(n log n) time. Given the tree, a WSPD with separation constant s
can be built in O(s2n) time.

The Force-Directed Algorithm. The general principle of a force-directed algo-
rithm is as follows. In every iteration, the algorithm computes forces on the ver-
tices. These forces depend on the current position of the vertices in the drawing.
The forces are applied as an offset to the position of each vertex. The algorithm
terminates after a given number of iterations or when the forces get below a
certain threshold.

A classical force-directed algorithm such as FR computes, in every iteration,
an attractive force for any pair of adjacent vertices and a repulsive force for any
pair of vertices. Fruchterman and Reingold [9] use Fattractive(u, v) = d2/c and
Frepulsive(u, v) = −c2/d, where c is a constant describing the ideal edge length
and d = d(u, v) is the distance between vertices u and v in the current drawing.

Our modified algorithm is shown in Algorithm1. We first compute a fair
split tree T for the current positions of the vertices of G (which are stored in the
leaves of T). Each node μ of T corresponds to the set of vertices in the leaves
of the subtree rooted in μ. Bottom-up, we compute the barycenters of the sets
corresponding to the nodes of T . From T , we compute a WSPD (Ai, Bi)i for
the current vertex positions. Each set Ai (and Bi) of the WSPD corresponds
to a node αi (and βi) of T . For each pair (Ai, Bi) of the WSPD, we compute
Frepulsive from the barycenter of Ai to the barycenter of Bi (and vice versa), and
store the results (in an accumulative fashion) in αi and βi. Finally, we traverse T
top-down. During the traversal, we add to the force of each node the force of
the parent node. When we reach the leaves of T , which correspond to the graph
vertices, we have computed the resulting force for each vertex.

Running Time. We denote the number of vertices of the given graph by n and
the number of edges by m. In each iteration, the classical algorithm computes
the attractive forces in O(m) time and the repulsive forces in O(n2) time.

We don’t modify the computation of the attractive forces. For computing
the repulsive forces, the most expensive step is the computation of the split
tree T and the WSPD, which takes O(n log n) time. The barycenters of the sets
corresponding to the nodes of T can be computed bottom-up in linear time. The
forces between the pairs of the WSPD can also be computed in linear total time.
The same holds for the forces acting on the vertices. In total, hence, an iteration
takes O(m + n log n) time.

Improvements. To speed up our algorithm, we compute a new split tree and the
resulting WSPD only every few iterations. To be precise, we only recompute it
when �5 log i� changes, where i is the current iteration. Thus, the WSPD may

Faster Force-Directed Graph Drawing 55

Algorithm 1. WSPD-based force computation for a graph G = (V,E)
// attractive forces for adjacent vertices:

foreach e = (u, v) ∈ E do
u.addForce(Fattractive(u, v)); v.addForce(Fattractive(v, u))

// approximation of repulsive forces:

Compute a fair split tree T for the current positions of the vertices (stored in the
leaves of T).
For each node μ of T , compute the barycenter c(μ) of the leaves of the subtree
rooted in μ.
Compute a WSPD (Ai, Bi)i=1,...,k from T ; each Ai (Bi) corresponds to a node αi

(βi) of T .
for i = 1 to k do

αi.addForce(|Bi| · Frepulsive(c(αi), c(βi)))
βi.addForce(|Ai| · Frepulsive(c(βi), c(αi)))

Traverse the split tree top-down to compute the total force for every vertex of G.

not be valid for the current vertex positions. This makes the approximation of
the forces more inaccurate, but our experiments show that this method does not
change the quality of the drawings significantly, while the running time decreases
notably (see Figs. 1, 2 and 3).

Implementation. Our Java implementation is based on FRLayout, the FR algo-
rithm implemented in the JUNG library [12]. We slightly optimized the code,
which reduced the runtime by a constant factor. Additionally, we removed the
frame that bounded the drawing area, as it caused ugly drawings for larger
graphs. For our experimental comparison in Sect. 3, we used FRLayout with
these modifications. It is this implementation that we then sped up using the
WSPD. We recompute the WSPD only every few iterations as described in the
previous paragraph. We call the result FR+WSPD. For comparison, we also
implemented the quadtree-based speed-up method of Barnes and Hut [1], which
we call FR+Quad, and a grid-based approach suggested already by Fruchter-
man and Reingold [9], which we call FR+Grid. To widen the scope of our study,
we included some algorithms implemented in C++ in the Open Graph Drawing
Framework (OGDF, www.ogdf.net): GEM, FM3 (with and without multilevel
technique, then we call it FM3 single) of Hachul and Jünger [11], and FRExact
(the exact FR implementation in OGDF).

3 Experimental Results

We formulate the following hypotheses which we then test experimentally.

(H1) The quality of the drawings produced by FR+WSPD is comparable to that
of FRLayout.

(H2) On sufficiently large graphs, FR+WSPD is faster than FRLayout.

www.ogdf.net

56 F. Lipp et al.

50 100 150

0.3

0.35

50 100 150 200 250 300
0.1

0.2

0.3

0.4

Number of edge crossings

St
an

da
rd

de
vi

at
io

n
of

ed
ge

le
ng

th

FRLayout (JUNG) FRExact (OGDF)
FR+Grid FM3 (OGDF)
FR+Quad, Θ = 1.0 FM3 single (OGDF)
FR+WSPD, s = 0.1 GEM (OGDF)

Fig. 1. Standard deviation of the edge length (y-axis) over number of edge crossings
(x-axis) for various variants of the algorithm, applied to all 140 Rome graphs with
exactly 100 vertices. Top: quality of the unmodified FRLayout algorithm and its vari-
ants FR+WSPD, FR+Quad, and FR+Grid. Bottom: FR+WSPD and some algorithms
implemented in OGDF. For each algorithm, a vertical and a horizontal line mark its
median performance.

We assume these hypotheses due to the favorable properties of the WSPD: the
separation property hints at (H1) and the improved time complexity per iteration
implies (H2).

We tested our algorithms on two data sets; (i) the Rome graph collection [14]
that contains 11528 undirected connected graphs with 10–100 vertices each, and
(ii) 40 random graphs that we generated using the EppsteinPowerLawGenerator
[6] in JUNG, which yields graphs whose structure is similar to Web graphs. Our
graphs had 2,500, 5,000, 7,500, . . . , 100,000 vertices and 2.5 times as many edges.
We considered only the largest connected component of each generated graph.

The experiments were performed on an Intel Xeon CPU with 2.67 GHz and 20
GB RAM running Linux. The computer has 16 cores, but we did not parallelize
our code. During our experiments, only one core was operating at close-to-full
capacity.

We measured the quality of the drawings by (a) the number of edge crossings
and (b) the standard deviation of the edge length (normalized by the mean edge
length). These criteria have been used before to compare force-directed layout
algorithms [3,8].

Faster Force-Directed Graph Drawing 57

10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

Number of vertices

R
un

ni
ng

tim
e

in
se

co
nd

s
FRLayout (JUNG) FRExact (OGDF)
FR+Grid FM3 (OGDF)
FR+Quad, Θ = 1.0 FM3 single (OGDF)
FR+WSPD, s = 0.1 GEM (OGDF)

Fig. 2. The runtimes for the different variants of the algorithm as a function of the
number of vertices. Each point in the plots represents the mean value of the runtimes
on all Rome graphs with the given number of vertices. The markers are used only as a
tool to identify the plots.

0 20,000 40,000 60,000 80,000 100,000
0

50

100

150

Number of vertices

R
un

ni
ng

tim
e

in
se

co
nd

s

Fig. 3. The runtimes of the algorithms on 40 random graphs. The graphs
were generated using the EppsteinPowerLawGenerator [6] in JUNG with |V | =
2,500, 5,000, 7,500, . . . , 100,000 and |E| ≈ 2.5 · |V |. Only the largest connected com-
ponent of each generated graph was considered. Other than in Fig. 2, each marker
represents one of the tested graphs. The legend is the same.

To test hypothesis (H1), we compared the quality of the drawings of FRLay-
out, FR+WSPD, FR+Quad, and FR+Grid. In order to vary as few parameters
as possible, we kept the size of the graphs constant in this part of the study.
We used all Rome graphs with exactly 100 vertices. The 140 graphs have, on
average, 135 edges.

We first compared the outputs of FR+WSPD for different values (0.01, 0.1, 1)
of the separation constant s. The distribution of the results in the plot was
roughly the same, that is, the quality of the drawings did not strongly depend
on s. Using s = 1 was about 30 % slower than s = 0.1 or s = 0.01.

58 F. Lipp et al.

Similarly, FR+Quad has a parameter Θ that controls how fine the given point
set is subdivided. Increasing Θ decreases the running time. Our experiments
confirmed what Barnes and Hut [1] observed: only values of Θ close to 1 give
results with a similar quality as the unmodified algorithm.

The upper scatterplot in Fig. 1 compares variants of FR based on different
speed-up techniques. Compared to FRLayout, FR+Quad is slightly worse in
terms of uniformity of edge lengths and FR+WSPD is slightly worse in terms of
edge crossings and between FRLayout and FR+Quad in terms of edge lengths.
FR+Grid is worse in both measures, especially in the number of edge crossings.
Hence, there is support for hypothesis (H1).

The lower scatterplot in Fig. 1 compares FR+WSPD to the above-mentioned
OGDF algorithms. In terms of uniformity of edge lengths, there are two clear
clusters: the two FM3 variants are better than the rest. In terms of crossings,
GEM is best, followed by the FM3 variants, and then by FR+WSPD, which
surprisingly is better than FRExact.

To test hypothesis (H2), we measured the runtimes of the all algorithms
on the Rome graphs (Fig. 2) and the random graphs (Fig. 3). In Java, we only
measure the time used for the thread running the force-directed algorithm in
our Java Virtual Machine; this eliminates the influence of the garbage collector
and the JIT compiler on our measurements. In C++, we used an OGDF method
for measuring the CPU time. For each graph size, we display the mean runtime
over all graphs of that size.

The results are as follows. As expected, FR+WSPD (with s = 0.1) is faster
than FRLayout on larger graphs. We were surprised, however, to see that
FR+WSPD overtakes FRLayout already around n ≈ 30. FR+WSPD also turned
out to be faster than FR+Quad (with Θ = 1) and than FM3 by a factor of 1.5
to 3. FR+WSPD and FR+Grid are comparable in speed, and twice as fast as
GEM. Recall, however, that FR+Grid tends to produce more edge crossings
(Fig. 1). Concerning the comparison between Java and C++, FRExact (in C++)
is roughly four times faster than FRLayout (in Java).

Conclusion. Our experiments show that the WSPD-based approach speeds up
force-directed graph drawing algorithms such as FR considerably without sac-
rificing the quality of the drawings. The main feature of the new approach is
its simplicity. We plan to combine our approach with multi-level techniques in
order to draw much larger graphs.

References

1. Barnes, J., Hut, P.: A hierarchical O(N log N) force-calculation algorithm. Nature
324(6096), 446–449 (1986)

2. Bartel, G., Gutwenger, C., Klein, K., Mutzel, P.: An experimental evaluation of
multilevel layout methods. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS,
vol. 6502, pp. 80–91. Springer, Heidelberg (2011)

3. Brandenburg, F.J., Himsolt, M., Rohrer, C.: An experimental comparison of force-
directed and randomized graph drawing algorithms. In: Brandenburg, F.J. (ed.)
GD 1995. LNCS, vol. 1027, pp. 76–87. Springer, Heidelberg (1996)

Faster Force-Directed Graph Drawing 59

4. Callahan, P.B., Kosaraju, S.R.: A decomposition of multidimensional point sets
with applications to k-nearest-neighbors and n-body potential fields. J. ACM
42(1), 67–90 (1995)

5. Eades, P.: A heuristics for graph drawing. Congr. Numerantium 42, 146–160 (1984)
6. Eppstein, D., Wang, J.Y.: A steady state model for graph power laws. In: 2nd

International Workshop Web Dynamics (2002). http://arxiv.org/abs/cs/0204001
7. Fink, M., Haverkort, H., Nöllenburg, M., Roberts, M., Schuhmann, J., Wolff, A.:

Drawing metro maps using Bézier curves. In: Didimo, W., Patrignani, M. (eds.)
GD 2012. LNCS, vol. 7704, pp. 463–474. Springer, Heidelberg (2013)

8. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected
graphs. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403.
Springer, Heidelberg (1995)

9. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

10. Gronemann, M.: Engineering the fast-multipole-multilevel method for multicore
and SIMD architectures. Master’s thesis, Department of Computer Science, TU
Dortmund (2009)

11. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005)

12. JUNG: Java Universal Network/Graph Framework. http://jung.sourceforge.net.
Accessed 2 September 2015

13. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University
Press, New York, NY, USA (2007)

14. Rome Graphs. http://graphdrawing.org/data.html, http://www.graphdrawing.
org/download/rome-graphml.tgz. Accessed 2 September 2015

15. Walshaw, C.: A multilevel algorithm for force-directed graph-drawing. J. Graph
Algorithms Appl. 7(3), 253–285 (2003)

http://arxiv.org/abs/cs/0204001
http://jung.sourceforge.net
http://graphdrawing.org/data.html
http://www.graphdrawing.org/download/rome-graphml.tgz
http://www.graphdrawing.org/download/rome-graphml.tgz

Crossing Numbers

The Degenerate Crossing Number
and Higher-Genus Embeddings

Marcus Schaefer1(B) and Daniel Štefankovič2

1 DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

2 University of Rochester, Rochester, NY 14627, USA
stefanko@cs.rochester.edu

Abstract. If a graph embeds in a surface with k crosscaps, does it
always have an embedding in the same surface in which every edge passes
through each crosscap at most once? This well-known open problem can
be restated using crossing numbers: the degenerate crossing number,
dcr(G), of G equals the smallest number k so that G has an embed-
ding in a surface with k crosscaps in which every edge passes through
each crosscap at most once. The genus crossing number, gcr(G), of G
equals the smallest number k so that G has an embedding in a surface
with k crosscaps. The question then becomes whether dcr(G) = gcr(G),
and it is in this form that it was first asked by Mohar.

We show that dcr(G) ≤ 6 gcr(G), and dcr(G) = gcr(G) as long as
dcr(G) ≤ 3. We can separate dcr and gcr for (single-vertex) graphs with
embedding schemes, but it is not clear whether the separating exam-
ple can be extended into separations on simple graphs. Finally, we show
that if a graph can be embedded in a surface with crosscaps, then it has
an embedding in that surface in which every edge passes through each
crosscap at most twice. This implies that dcr is NP-complete.

Keywords: Degenerate crossing number · Non-orientable genus · Genus
crossing number

1 Introduction

When defining the crossing number of a graph, one typically requires that at
most two edges cross in any point. If k > 2 edges cross in a single point, these
edges can be perturbed slightly to create

(
k
2

)
crossings of pairs of edges, so multi-

ple crossings in a single point can always be avoided. Günter Rote and M. Sharir,
according to Pach and Tóth [10] asked “what happens if multiple crossings are
counted only once”. This led Pach and Tóth to introduce the degenerate cross-
ing number: we allow drawings which are degenerate in the sense that more than
two edges are allowed to cross in a single point (but which are otherwise stan-
dard, in particular, edges have to actually cross, not touch, and self-crossings
are not allowed). The degenerate crossing number of the drawing is the number
of crossing points in the drawing. The degenerate crossing number, dcr(G), of a
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 63–74, 2015.
DOI: 10.1007/978-3-319-27261-0 6

64 M. Schaefer and D. Štefankovič

graph G is the smallest degenerate crossing number of any (degenerate) drawing
of G. Some papers (e.g. [1]) restrict drawings to be simple, that is, every two
edges intersect (or cross, that’s not always clearly defined1) at most once; to dis-
tinguish this variant from dcr we call it the simple degenerate crossing number,
dcr∗(G).2

If we modify the definition of the degenerate crossing number to allow self-
crossings of edges, we obtain the genus crossing number, gcr(G), which was
introduced by Mohar [8]. By definition, gcr(G) ≤ dcr(G). Mohar conjectured
that gcr(G) = dcr(G). Equality of these two numbers would be particularly
interesting, since, as Mohar observes, gcr(G) = γ̃(G), where γ̃(G) is the non-
orientable genus (or the minimum crosscap number) of G, the smallest number
k so that G can be embedded on a surface with k crosscaps (we allow the
special case of k = 0 for planar graphs). Each crossing of multiple edges can
be replaced by a crosscap and vice versa, since edges have to cross (and may
not touch) in a crossing point. Similarly, dcr(G) can be viewed (as we did in the
abstract) as the smallest number k so that G has an embedding on a surface with
k crosscaps so that every edge passes through each crosscap at most once. An
edge not being allowed to pass through a crosscap more than once corresponds to
prohibiting self-crossings in degenerate drawings in the plane. We view crosscaps
as geometric, rather than purely topological objects, a view which we believe
makes sense in graph drawing, where we need to visualize objects.3

We do not yet know, whether gcr(G) = dcr(G) in general, but we can separate
them, if we are allowed to equip graphs with an embedding scheme (a fixed
rotation at each vertex, and a signature for each edge). In that case, there are
graphs for which gcr is 3, but dcr is 4 as we will see in Theorem4.

Remark 1 (Visualizing Graphs in Higher-Order Surfaces). Whether gcr = dcr or
not has consequences for visualizing graphs embeddable in higher-order surfaces
in the plane. Typically, such graphs are visualized using a (canonical) polygonal
schema. There are polynomial-time algorithms for this task, e.g., see [4] for
orientable surfaces, also see [3,5,7]. Assuming that vertices may not lie on the
boundary (of the polygonal schema), the question gcr = dcr then becomes: do
edges have to pass through the same side of a schema more than once? Many
of the visualization algorithms (including [3]) start by contracting the graph
to a single-vertex graph with an embedding scheme; for these algorithms, the
example in Theorem 4 shows that edges can be forced to cross through the same
side more than once.

On the other hand, we can show that dcr(G) ≤ 6 gcr(G), so any graph embed-
dable in a surface with k crosscaps can be embedded in a surface with at most 6k
crosscaps so that every edge passes through each crosscap at most once. We will
1 The difference is that a shared endpoint counts as an intersection, but not a crossing.
2 An example in the entry on degenerate crossing number in [12] shows that it matters

whether dcr∗ is defined so as to allow crossings between adjacent edges or not.
3 Mohar [8] uses a “planarizing system of disjoint 1-sided curves” to define “passing

through a crosscap” formally.

The Degenerate Crossing Number and Higher-Genus Embeddings 65

establish this in Theorem 2. If we allow an edge to pass through each crosscap
just twice, it turns out that every graph can then be embedded in a surface with
γ̃(G) crosscaps (Theorem 5).

1.1 Known Results

Pach and Tóth [10] showed that dcr(G) < |E(G)|. For the simple degenerate
crossing number, a crossing lemma is known: dcr∗(G) ≥ c · |E(G)|3/|V(G)|2 for
|E(G)| ≥ 4|V (G)| (and some constant c > 0). This was shown by Ackerman
and Pinchasei [1], improving an earlier result by Pach and Tóth. We should also
mention work by Harborth [6], who may have been the first to study multiple
crossings in drawings. His goal is to maximize the number of multiway crossings.
For example, he shows that K2m can be drawn with two m-fold crossings; he
conjectured that K2m cannot be drawn with three or more m-fold crossings.

2 Tools

We start with some basic facts about (simple) closed curves on a non-orientable
surface S. A closed curve C is called non-separating if S − C consists of a single
piece. Otherwise, C is separating. If it is separating, it can be contractible (one of
the two pieces is homeomorphic to a disk) or surface-separating. The sidedness of
a closed curve is the number of sides it has: it is either one-sided (its neighborhood
is a Moebius strip) or two-sided. A closed curve C in a non-orientable surface
maximal if S − C is orientable (equivalently, if C passes through every crosscap
an odd number of times).4

A surface can contain only a small number of different types of closed curves.
The following lemma makes this precise.

Lemma 1 (Malnič, Mohar [9, Proposition 4.2.7]). If G is a graph embed-
ded in a surface S, and P is a collection of internally disjoint paths between
vertices a and b (where a = b is allowed), so that no two of the paths bound a
disk in S, then

|P| ≤
{

3 γ̃(S) − 2 if γ̃(S) ≥ 2
γ̃(S) + 1 otherwise.

Remark 2. We are interested in the case where a = b and there are no surface
separating paths; a better upper bound for that case would improve the upper
bound in Theorem4.

We also need some tools from topological graph theory to describe and han-
dle embeddings of graphs on non-orientable surfaces. On orientable surfaces,
an embedding can be described by a rotation system which prescribes a rota-
tion (a clockwise, cyclic ordering) of the ends of all edges incident to a vertex.
4 There seems to be no standard name for curves of this type in the literature. Bojan

Mohar suggests “orienting”.

66 M. Schaefer and D. Štefankovič

On non-orientable surfaces, we also need to prescribe, for every edge, its signa-
ture, which is a number in {−1, 1}. A cycle in G is two-sided if the signature
of its edges multiply to 1, otherwise, it is one-sided. A rotation system ρ and
signature λ together form an embedding scheme (ρ, λ) of a graph on a surface.
A drawing of a graph in a surface realizes an embedding scheme (ρ, λ), if the
rotation at each vertex is as prescribed by ρ, and the sidedness of each cycle is
as prescribed by the signatures of the edges. The sidedness of a cycle is deter-
mined by the parity of how often the cycle passes through crosscaps. Typical
operations on graphs (removing/adding a vertex/edge, contracting an edge) are
easily performed on the embedding scheme as well. For details, see [9, Sect. 3.3].

Arguments and algorithms for graph embeddings can often be simplified by
replacing an embedded graph with a single-vertex graph with embedding scheme.
This is often done for visualizing embeddings of graphs in higher-genus surfaces
in the plane (see Remark 1). Note that in a single-vertex graph every edge is
a loop, hence a closed curve, and we can talk about the sidedness, which then
directly correspond to its signature: a one-sided loop has signature −1, and a
two-sided loop signature 1. For a graph G with embedding scheme (ρ, λ) we define
gcr(G, ρ, λ) as the smallest number k so that G has an embedding realizing (ρ, λ)
on a surface with k crosscaps. Similarly, dcr(G, ρ, λ) is the smallest degenerate
crossing number of any drawing of G which realizes the embedding scheme (ρ, λ).

The next lemma shows that as far as gcr is concerned, we can replace a graph
with a graph on a single vertex equipped with an embedding scheme. For dcr
we can do so for upper bounds only.

Lemma 2. For every graph G there is a single-vertex graph G′ with embedding
scheme (ρ, λ) so that gcr(G) = gcr(G′, ρ, λ), and dcr(G) ≤ dcr(G′, ρ, λ). More-
over, any embedding of (G′, ρ, λ) can be turned into an embedding of G without
changing dcr or gcr of the embedding by uncontracting edges.

Proof. Fix an embedding of G on a surface S with k = gcr(G) crosscaps. We
can assume that G is connected (if it is not, we can extend G to a triangulation
of S). Let T be a spanning tree of G. Contract edges of T , merging rotations
in the embedding scheme at vertices that are identified and updating signatures
of edges. Let G′ be the resulting single-vertex graph with embedding scheme
(ρ, λ). Then gcr(G′, ρ, λ) ≤ gcr(G). If gcr(G′, ρ, λ) < gcr(G) were true, we could
undo the operations which turned G into G′ (since we maintained the embedding
scheme) to find an embedding of G on a surface with less than gcr(G) crosscaps,
which is a contradiction, so gcr(G) = gcr(G′, ρ, λ). The same argument shows
that dcr(G′, ρ, λ) < dcr(G) is not possible, so dcr(G) ≤ dcr(G′, ρ, λ). �

Note that we do not claim that dcr(G) ≥ dcr(G′, ρ, λ), the construction we
used may force an edge through a crosscap multiple times, so dcr can increase.
Lemma 2 allows us to replace a graph with a single-vertex graph when showing
that dcr can be bounded in gcr.

Finally, we need some basic techniques to deal with curves in a surface.

Theorem 1 (Weak Hanani-Tutte Theorem for Surfaces [2,11]). If G is
drawn in a surface so that every pair of edges crosses an even number of times,
then G has an embedding on the same surface with the same embedding scheme.

The Degenerate Crossing Number and Higher-Genus Embeddings 67

It is well-known that a handle and two crosscaps are equivalent in the presence
of another crosscap. So a graph embeddable on a surface with h handles can be
embedded on a surface with 2h + 1 crosscaps so that every edge is two-sided. The
following lemma shows that the odd number of crosscaps is not accidental when
restricting to orientable embeddings, where we call an embedding (G, ρ, λ) of a
graph G orientable if all cycles in G are two-sided (equivalently, multiplying the
signatures of edges along each cycle, one always gets 1). Note that if G is a single-
vertex graph, then its embedding is orientable, if all loops have signature 1.

Lemma 3. Suppose k is minimal so that a connected graph (G, ρ) with rotation
ρ has an orientable embedding on a surface with k crosscaps. Then either k = 0,
or k ≥ 3 and k is odd.

Proof. Fix an orientable embedding of (G, ρ) in a surface with k crosscaps, where
k is minimal. We can assume that G is a single-vertex graph (contract edges of
a spanning tree, this leaves the embedding orientable, so λ(e) = 1 for all loops e
now). Suppose k is even. Let c be one of the crosscaps. For any edge that passes
oddly through c, push that edge over all crosscaps. Note that pushing an edge over
all crosscaps does not change the parity of crossing between any pair of edges since
the number of crosscaps is even and every edge initially crosses through an even
number of crosscaps oddly, and this remains true. At the end of this operation we
have a drawing of G in which every pair of edges crosses an even number of times,
and all edges pass through c an even number of times. We can then push all edges
off c, again maintaining that every pair of edges crosses evenly. Now, by Theorem1,
(G, ρ, λ) has an orientable embedding in the surface with k − 1 crosscaps, so k
cannot have been even if it was minimal. If k = 1, then an orientable embedding
on the projective plane implies that the graph is planar (since every edge passes
through the single crosscap an even number of times).

Corollary 1. If a single-vertex graph (G, ρ) has an orientable embedding on a
non-orientable surface with k ≥ 2 crosscaps, we can add a one-sided loop into
its embedding scheme, without changing the surface.

Proof. Let k′ ≤ k be minimal so that (G, ρ) has an orientable embedding on the
surface with k′ crosscaps. If k′ = 0, then we can add two crosscaps, and a loop
that passes through one of them; since k ≥ 2 this is sufficient. Otherwise, by
Lemma 3 we can assume that k′ is odd and at least 3. To G add a loop with its
ends consecutive in the rotation. Now push this loop once over each crosscap.
Since all other loops are two-sided, every pair of edges crosses evenly, so by
Theorem 1 the graph embeds in the surface with the same embedding scheme.
The loop we added is one-sided and maximal.

3 Removing Self-Crossings

Theorem 2. dcr(H) ≤ 6 gcr(H).

68 M. Schaefer and D. Štefankovič

So a degenerate drawing with self-crossings can be cleaned of self-crossings
at the expense of increasing the degenerate crossing number by a factor of six.
We will make use of the following lemma.5

Lemma 4. dcr(H) ≤ 2|E(H)|.
Proof. Use Lemma 2 to create a single-vertex graph G on vertex v with embed-
ding scheme (ρ, λ) so that dcr(H) ≤ dcr(G, ρ, λ). We proceed by induction on
|E(G)| = |E(H)|. If |E(G)| = 0, there is nothing to show, so G has at least one
loop. Pick a loop e whose ends at v are closest in the sense, that no other edge
begins and ends in the wedge formed by the two ends of e (we direct e to differ-
entiate between the two parts of the rotation system at v enclosed by the ends of
v). If we can, we pick e one-sided. Suppose e is one-sided. Let (G′, ρ′, λ′) be the
graph obtained from G by reversing the order of the edges enclosed in the wedge
formed by e (we “flip” the wedge), changing all their signatures (since every edge
has at most one end in the wedge that flips the signature of every edge which has
an end in the wedge), and removing e. By induction dcr(G′, ρ′, λ′) ≤ 2|E(G′)|.
We can now add a crosscap close to v and pass all edges in the former wedge
through that crosscap, reattaching them to v in their original order. This also
reestablishes the original signatures of edges in G. Finally, we add back e in its
proper place in the rotation, passing it through the crosscap once. By construc-
tion, dcr(G, ρ, λ) ≤ 1 + dcr(G′, ρ′, λ′) ≤ 2|E(G)|.

If there is no closest, one-sided loop, e must be two-sided. Let G̃ be the same
as G with one modification: let λ̃(e) = −1 and proceed as in the first case.
We obtain a graph G̃′ so that dcr(G̃, ρ, λ̃) ≤ 1 + dcr(G̃′, ρ′, λ̃′). Now add one
additional crosscap passing only edge e through it, making it two-sided again.
This shows that dcr(G, ρ, λ) ≤ 1+dcr(G̃, ρ, λ̃) ≤ 2+dcr(G̃′, ρ′, λ̃′) ≤ 2|E(G)|. �

Proof (of Theorem 2). Let H be a graph with gcr(H) = k. Fix an embed-
ding of H on a surface S with k crosscaps. By Lemma 2 we can transform H
into a graph G on a single vertex v with an embedding scheme (ρ, λ) so that
gcr(H) = gcr(G, ρ, λ) and dcr(H) ≤ dcr(G, ρ, λ). We show the result by induction
on |E(G)| = |E(H)|.

If |E(G)| ≤ 3k, then the result follows from Lemma 4. So we can assume
that |E(G)| > 3k. Lemma 1 implies that in this case there are two loops e and f
so that e∪ f bounds a disk (e and f are homotopic). Remove the disk (with any
loops it may contain) from the surface, and identify e and f . Since this removes
at least one edge from G we can apply induction to the resulting graph G′. From
G′ we can reconstruct an embedding of G by splitting e, f into two loops and
reinserting the disk. Any loops in the disk which are not homotopic to e and f
can be drawn close to v (so they do not use any crosscaps that e and f may be
using). Any loops parallel to e and f use the same crosscaps as e and f , so in
the resulting drawing no edge uses any crosscap more than once (note that any
such loops have the same signature as e and f , since e and f bound a disk). �
5 This approach was suggested by one of the reviewers, and simplifies the original

proof.

The Degenerate Crossing Number and Higher-Genus Embeddings 69

Since the proof works with single-vertex graphs with embedding schemes, the
separation of gcr and dcr for those types of graphs (Theorem4) implies that the
proof approach in Theorem2 will not yield gcr = dcr, but we can prove equality
for small values.

Theorem 3. If dcr(G) ≤ 3, then gcr(G) = dcr(G).

For graphs with embedding scheme, this result is sharp, as Theorem4 shows.

Proof. Since gcr(G) ≤ dcr(G) it is sufficient to show that if gcr(G) ≤ 2, then
dcr(G) ≤ gcr(G). By Lemma 2 it is sufficient to prove the result for single-vertex
graphs with embedding scheme: for G there is a single-vertex graph G′ and
an embedding scheme (ρ, λ) so that dcr(G) ≤ dcr(G′, ρ, λ) and gcr(G′, ρ, λ) =
gcr(G), so establishing dcr(G′, ρ, λ) ≤ gcr(G′, ρ, λ) will prove the result.

If gcr(G′, ρ, λ) = 0, there is nothing to prove. If gcr(G′, ρ, λ) = 1 all loops
are either two-sided and contractible or one-sided. Pick a closest loop e (in the
sense defined in Lemma 4: every edge has at most one end in the wedge formed
by e). If e is one-sided, we can proceed as in Lemma 4, cutting along e, flipping
the wedge enclosed by e and changing the signature of all edges in the wedge. The
resulting graph is embedded in a plane, and we can add back e so that it, and
the edges it encloses cross through the crosscap exactly once. If e is two-sided, the
ends of e must be consecutive. We can then remove e from the drawing, induc-
tively draw the remaining graph, and add e back locally without using any cross-
caps. If gcr(G′, ρ, λ) = 2, there may be two-sided loops which are not contractible.
However, if there is a closest one-sided loop, or a closest two-sided loop which is
contractible, we can proceed as in the case of a single crosscap. Hence, all closest
loops are two-sided, and either separating, or maximal. Suppose there is a one-
sided loop f . Then the wedge enclosed by f must contain both ends of another
loop e. Pick e so it is closest (within the wedge formed by f). Now e cannot be
maximal, since the ends of a maximal loop alternate with the ends of a one-sided
loop in the rotation. Hence e is separating. But then anything starting inside the
wedge formed by e must end within the wedge as well, so since e was chosen to
be closest, its ends have to be consecutive in the rotation. We can then remove e,
inductively draw the remaining graph, and add e back into the rotation without
using any additional crosscaps. We conclude that there is no one-sided loop f , so
all loops are two-sided. By Lemma 3, the graph is planar in this case. �

A closer look at the proof of Theorems 2 and 3 show that they are purely
combinatorial, and the bounds can be implemented algorithmically.

4 Separating dcr and gcr with Embedding Schemes

Theorem 4. There is a single-vertex graph G with embedding scheme (ρ, λ) for
which 3 = gcr(G, ρ, λ) < dcr(G, ρ, λ) = 4.

Proof. See the graph pictured in Fig. 1(a). The single vertex is drawn as the outer
cycle, to make the picture easier to read. So there are 5 loop edges e1, . . . , e5 in

70 M. Schaefer and D. Štefankovič

this graph, the rotation at v is e1, e2, e3, e4, e5, e3, e2, e1, e4, e5, and the signatures
are as in the embedding: λ(e1) = λ(e3) = λ(e4) = λ(e5) = 1 and λ(e2) = −1. The
drawing of G in Fig. 1(a) shows that gcr(G, ρ, λ) ≤ 3. If gcr(G, ρ, λ) ≤ 2 were
true, then e2 would have to pass through exactly one of the two crosscaps oddly,
say ⊗1. Since the ends of e4 and e5 alternate with the ends of e2, both e4 and e5
must also pass through ⊗1 oddly. Since e4 and e5 are two-sided, they must then
also pass through ⊗2 oddly. But then e4 and e5 would be parallel (in the sense
that their ends do not alternate), contradicting the fact that their ends alternate
in the rotation. Hence, gcr(G, ρ, λ) = 3. The embedding in Fig. 1(b) shows that
dcr(G, ρ, λ) ≤ 4, so we are left with the proof that dcr(G, ρ, λ) ≥ 4. Suppose,
for a contradiction, that G can be realized on a surface with three crosscaps
so that every edge passes through each crosscap at most once, and the embed-
ding scheme is (ρ, λ), as specified in Fig. 1(a). Then each edge in {e1, e3, e4, e5}
passes through an even number of crosscaps. Since none of these edges can be
separating (since they would all separate ends of other edges in the rotation),
they each pass through two crosscaps. Edge e2 passes through an odd number of
crosscaps. It cannot pass through all three crosscaps, since then all other edges
would be parallel to it (as each would share two crosscaps with e2), but the ends
of e2 alternate with the ends of e4 and e5. Hence, e2 passes through exactly one
crosscap, say ⊗1. Since e3 is parallel to e2, it must then pass through ⊗2 and
⊗3. Now e4 and e5 alternate ends with both e2 and e3, so one of them, say e4,
by symmetry, passes through ⊗1 and ⊗2 and e5 passes through ⊗1 and ⊗3.

Edge ⊗1 ⊗2 ⊗3

e2 1 0 0
e3 0 1 1
e4 1 1 0
e5 1 0 1
e1 0 1 1

Now e1 is parallel to e2 and e3 and passes through two crosscaps, which must
therefore be ⊗2 and ⊗3. Now suppose there were such a drawing. Since edges
pass through crosscaps at most once, we can think of crosscaps as vertices. But
then, there is a path from an end of e1 to an end of e3 which passes through ⊗2

and ⊗3 but not through ⊗1. That path now separates the two ends of e2, since
e2 may only pass through ⊗1. �

Question 1. Can the construction in Theorem 4 be used to construct for every n
a single-vertex graph G with embedding scheme (ρ, λ) so that n ≤ dcr(G, ρ, λ) ≤
3/4gcr(G, ρ, λ)?

5 Nice Embeddings of Higher Genus Graphs

In this section we consider relaxing the restriction on how often each edge may
pass through each crosscap. It turns out that increasing the limit to two is
sufficient.

The Degenerate Crossing Number and Higher-Genus Embeddings 71

e1 e2 e3 e4

e5

e1 e2 e3 e4

e5

Fig. 1. Graph G with rotation displayed as outer cycle. (a) G embedded in a surface
with three crosscaps, requiring e1 to pass through one crossscap twice. (b) G embedded
in a surface with four crosscaps, each edge passing through each crosscap at most once.

Theorem 5. If a graph is embeddable in a non-orientable surface S, then it can
be embedded in S so that every edge passes through each crosscap at most twice.

This means, G always has a nearly degenerate drawing in the plane with at
most gcr(G) crossings, and in which each edge has at most gcr(G) self-crossings.
In the language of topology [8], it means that there is a planarizing system of
disjoint one-sided curves each of which intersects every edge of the graph at most
twice.

By Theorem 4 the theorem is tight if the graph is given with an embedding
scheme (which may not be changed), even if the graph consists of a single vertex.

We will concentrate the proof in a more technical lemma, which may be of
interest in its own right. For the proof, we need the Euler genus, eg(G, ρ, λ) of
an embedded graph, which is defined as 1 + |E| − |F |, where |E| is the number
of edges of G and |F | the number of faces in the embedding scheme (ρ, λ) of
G (note that this is a purely combinatorial notion). It’s tempting to assume
that gcr(G, ρ, λ) = eg(G, ρ, λ), but that is not actually true; take, for example,
a single vertex with two two-sided edges alternating at the vertex. The Euler
genus of this graph is 2, while it requires 3 crosscaps to realize. The following
lemma clarifies the relationship.

Recall that an embedded single-vertex graph (G, ρ, λ) is orientable, if λ(e) =
1 for all e ∈ E(G).

Lemma 5. If (G, ρ, λ) is a single-vertex graph with embedding scheme, then it
has an embedding in a surface with eg(G, ρ, λ) crosscaps in which every edge uses
every crosscap at most twice, unless (G, ρ, λ) is orientable, in which case such
an embedding exists in a surface with eg(G, ρ, λ) + 1 crosscaps.

We leave the proof of Lemma 5 to the journal version of the paper. The proof
can be viewed as a (more sophisticated) extension of the proof of Theorem 3.
Since we allow edges to cross through a crosscap twice, the construction becomes
simpler, in that we can process one-sided loops, even if they are not closest.
The new ingredient needed is a technique for dealing with separating loops. For
example, consider the embedding scheme described by ρ(v) = (abbacdcd), and
λ(b) = −1, and λ(a) = λ(c) = λ(d) = 1, as illustrated in Fig. 2(a). The Euler
genus of this graph is 3, and a is a separating loop, splitting the graph into two

72 M. Schaefer and D. Štefankovič

pieces, one of Euler genus 1, and the other of Euler genus 2. The problem now
is that the piece of Euler genus 2 is orientable, and hence needs 3 crosscaps to
realize by itself. Hence, some care is needed when merging drawings in this case;
the solution in this case is shown in Fig. 2(b). Details will be found in the journal
version.

a

b

cd

v

1

−1

1 1

a

b

c d

v
(a () b)

Fig. 2. (a) Embedding scheme with Euler genus 3; edges are a (red/dashed), b (black),
and c, d (blue/dotted). (b) Actual embedding of same scheme on surface with three
crosscaps, in which every edge passes through every crosscap at most twice (Color
figure online).

Proof (of Theorem 5). Fix an embedding of a graph G on a surface with k =
γ̃(G) crosscaps (without loss of generality, we can assume that it is a minimum
genus embedding). By Lemma 2 there is a single-vertex graph G′ with embedding
scheme (ρ, λ) so that gcr(G) = gcr(G′, ρ, λ). It is sufficient to prove the result for
G′, since an embedding of G′ with embedding scheme (ρ, λ) can be turned back
into an embedding of G by uncontracting and deleting edges (in case G was not
connected). Since these operations can be done close to the single vertex of G′, this
does not affect how often edges pass through any crosscap. Hence, we can assume
that G is given as a graph on a single vertex v with embedding scheme (ρ, λ).

Since (G, ρ, λ) is an embedding on the surface with k crosscaps, eg(G, ρ, λ) ≤
k. If (G, ρ, λ) is not orientable, then the result follows immediately from Lemma5.
If (G, ρ, λ) is orientable, we apply Corollary 1 to extend (G, ρ, λ) to an embed-
ding scheme (G′, ρ′, λ′) which still embeds in the same surface, and is no longer
orientable. Since eg(G, ρ, λ) ≤ eg(G′, ρ′, λ′) ≤ k, and (G′, ρ′, λ′) is not orientable,
Lemma 5 gives us an embedding of (G′, ρ′, λ′), and thereby (G, ρ, λ) in a surface
with k crosscaps, in which every edge passes through each crosscap at most
twice, completing the proof. �

The proof of Theorem 5 is entirely combinatorial, so it can be made
algorithmic.

Corollary 2. Determining the degenerate crossing number is NP-complete,
even if the graph is cubic.

The Degenerate Crossing Number and Higher-Genus Embeddings 73

Proof. The problem lies in NP (since every edge passes through each crosscap at
most once we can guess the embedding). On the other hand, Thomassen [9,13]
showed that the non-orientable genus problem is NP-complete, even for cubic
graphs. For a given cubic graph G, let G′ be the result of replacing each edge
of G with a path of length 2|E(G)|, and attaching a (local, planar) gadget to
each vertex of degree 2, to ensure that G′ is cubic. If G has orientable genus
at most k, then, by Theorem 5, there is an embedding in which every edge
passes through each of the crosscaps at most twice. Since we can assume that
k ≤ |E(G)| (e.g. [10]), this implies that G′ can be embedded so that every
edge passes through each crosscap at most once. In other words, the degenerate
crossing number of G′ equals the non-orientable genus of G, showing that dcr is
NP-complete. �

6 Open Questions

The main open question which remains is whether dcr(G) = gcr(G); one could
weaken this question in various ways, and, for example ask whether dcr(G) ≤
gcr(G) + c for some constant c? Another approach would be to ask whether
dcr(G) = gcr(G) if we allow a limited number of self-crossings along each edge.
Theorem 5 implies that gcr(G) self-crossings along each edge are sufficient, but
can a constant bound be achieved?

Acknowledgments. We would like to thank Bojan Mohar for suggesting the question,
and giving us detailed feedback on earlier drafts of this paper. We are also grateful for
helpful comments by the anonymous reviewers.

References

1. Ackerman, E., Pinchasi, R.: On the degenerate crossing number. Discrete Comput.
Geom. 49(3), 695–702 (2013)

2. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

3. Dey, T.K., Schipper, H.: A new technique to compute polygonal schema for 2-
manifolds with application to null-homotopy detection. Discrete Comput. Geom.
14(1), 93–110 (1995)

4. Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus
graphs. J. Graph Algorithms Appl. 15(1), 7–32 (2011)

5. Erickson, J., Har-Peled, S.: Optimally cutting a surface into a disk. Discrete Com-
put. Geom. 31(1), 37–59 (2004). ACM Symposium on Computational Geometry,
Barcelona 2002

6. Harborth, H.: Drawings of graphs and multiple crossings. In: Alavi, Y., Chartrand,
G., Lick, D.R., Wall, C.E., Lesniak, L. (eds.) Graph Theory with Applications to
Algorithms and Computer Science (Kalamazoo, Mich., 1984), pp. 413–421. Wiley-
Interscience Publication, New York (1985)

74 M. Schaefer and D. Štefankovič

7. Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polyg-
onal schema of an orientable triangulated surface. In: Proceedings of the Sev-
enteenth Annual Symposium on Computational Geometry (SCG-01), pp. 80–89.
ACM Press, New York, 3–5 2001

8. Mohar, B.: The genus crossing number. Ars Math. Contemp. 2(2), 157–162 (2009)
9. Mohar, B., Thomassen, C.: Graphs on Surfaces. Johns Hopkins Studies in the

Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD (2001)
10. Pach, J., Tóth, G.: Degenerate crossing numbers. Discrete Comput. Geom. 41(3),

376–384 (2009)
11. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on sur-

faces. European J. Combin. 30(7), 1704–1717 (2009)
12. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J.

Comb. 20, 1–90 (2013). Dynamic Survey, #DS21
13. Thomassen, C.: The genus problem for cubic graphs. J. Comb. Theory Ser. B

69(1), 52–58 (1997)

On Degree Properties of Crossing-Critical
Families of Graphs

Drago Bokal1, Mojca Bračič1, Marek Derňár2, and Petr Hliněný2(B)

1 Faculty of Natural Sciences and Mathematics, University of Maribor,
Maribor, Slovenia

drago.bokal@um.si, mojca.bracic@student.um.si
2 Faculty of Informatics, Masaryk University, Brno, Czech Republic

m.dernar@gmail.com, hlineny@fi.muni.cz

Abstract. Answering an open question from 2007, we construct infinite
k-crossing-critical families of graphs which contain vertices of any pre-
scribed odd degree, for sufficiently large k. From this we derive that, for
any set of integers D such that min(D) ≥ 3 and 3, 4 ∈ D, and for all
sufficiently large k there exists a k-crossing-critical family such that the
numbers in D are precisely the vertex degrees which occur arbitrarily
often in any large enough graph in this family. We also investigate what
are the possible average degrees of such crossing-critical families.

Keywords: Crossing number · Tile drawing · Degree-universality ·
Average degree · Crossing-critical graph

1 Introduction

Reducing the number of crossings in a drawing of a graph is considered one of the
most important drawing aesthetics. Consequently, great deal of research work
has been invested into understanding what forces the number of edge crossings in
a drawing of the graph to be high. There exist strong quantitative lower bounds,
such as the famous Crossing Lemma [1,14]. However, the quantitative bounds
typically show their strength only in dense graphs, while in the area of graph
drawing we often deal with graphs having few edges.

The reasons for sparse graphs to have many crossings in any drawing are
structural (there is a lot of “nonplanarity” in them). These reasons can be
understood via so called k-crossing-critical graphs, which are the subgraph-
minimal graphs that require at least k edge crossings (the “minimal obstruc-
tions”). While there are only two 1-crossing-critical graphs, up to subdivisions—
the Kuratowski graphs K5 and K3,3—it has been known already since Širáň’s [19]

D. Bokal—This research was supported by the internationalisation of Slovene higher
education within the framework of the Operational Programme for Human Resources
Development 2007–2013 and by the Slovenian Research Agency project L7–5459.
M. Derňár and P. Hliněný—This research was supported by the Czech Science Foun-
dation under the project 14-03501S.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 75–86, 2015.
DOI: 10.1007/978-3-319-27261-0 7

76 D. Bokal et al.

and Kochol’s [13] constructions that the structure of crossing-critical graphs is
quite rich and nontrivial for any k ≥ 2.

Although 2-crossing-critical graphs can be reasonably (although not easily)
described [5], a full description for any k ≥ 3 is clearly out of our current reach.
Consequently, research has focused on interesting properties shared by all k-
crossing-critical graphs (for certain k), successfull attempts include, e.g., [7,8,10,
12,17]. While we would like to establish as many specific properties of crossing-
critical graphs as possible, the reality unfortunately seems to be against it. Many
desired and conjectured properties of crossing-critical graphs have already been
disproved by often complex and sophisticated constructions showing the odd
behaviour of crossing-critical families, e.g. [6,9,11,18].

We study properties of infinite families of k-crossing-critical graphs, for fixed
values of k, since sporadic “small” examples of critical graphs tend to behave
very wildly for every k > 1. Among the most studied such properties are those
related to vertex degrees in the critical families, see [3,6,8,11,18]. Often the
research focused on the average degree a k-crossing-critical family may have—
this rational number clearly falls into the interval [3, 6] if we forbid degree-2
vertices. It is now known [8] that the true values fall into the open interval
(3, 6), and all the rational values in this interval can be achieved [3].

In connection with the proof of bounded pathwidth for k-crossing-critical
families [9,10], it turned out to be a fundamental question whether k-crossing-
critical graphs have maximum degree bounded in k. The somehow unexpected
negative answer was given by Dvořák and Mohar [6]. In 2007, Bokal noted that
all the known (by that time) constructions of infinite k-crossing-critical families
seem to use only vertices of degrees 3, 4, 6, and he asked what other degrees
can occur frequently (see the definition in Sect. 2) in k-crossing-critical families.
Shortly after that Hliněný extended his previous construction [9] to include an
arbitrary combination of any even degrees [11], for sufficiently large k.

Though, [11] answered only the easier half of Bokal’s question, and it
remained a wide open problem of whether there exist infinite k-crossing-critical
families whose members contain many vertices of odd degrees greater than 5.
Our joint investigation has recently led to an ultimate positive answer.

The contribution and new results of our paper can be summarized as follows:

– In Sect. 2, we review the tools which are commonly used in constructions of
crossing-critical families.

– Sect. 3 presents the key new contribution—a construction of crossing-critical
graphs with repeated occurrence of any prescribed odd vertex degree (Propo-
sition 3.1 and Theorem 3.2).

– In Sect. 4, we combine the new construction of Sect. 3 with previously known
constructions to prove the following: for any set of integers D such that
min(D) = 3 and 3, 4 ∈ D, and for all sufficiently large k there exists an
infinite k-crossing-critical family such that the numbers in D are precisely the
vertex degrees which occur frequently in this family (Theorem 4.2).

– We then extend the previous results in Sect. 5 to include also an exhaustive
discussion of possible average vertex degrees attained by our degree-restricted
crossing-critical families (Theorem 5.1).

On Degree Properties of Crossing-Critical Families of Graphs 77

– Finally, in the concluding Sect. 6 we pay special attention to 2-crossing-critical
graphs, and list some remaining open questions.

2 Preliminaries

We consider finite multigraphs without loops by default (i.e., we allow multiple
edges unless we explicitly call a graph simple), and use the standard graph
terminology otherwise. The degree of a vertex v in a graph G is the number of
edges of G incident to v (cf. multigraphs), and the average degree of G is the
average of all the vertex degrees of G.

Crossing Number. In a drawing of a graph G, the vertices of G are points
and the edges are simple curves joining their endvertices. It is required that no
edge passes through a vertex, and no three edges cross in a common point. The
crossing number cr(G) of a graph G is the minimum number of crossing points
of edges in a drawing of G in the plane. For k ∈ N, we say that a graph G is
k-crossing-critical, if cr(G) ≥ k but cr(G − e) < k for each edge e ∈ E(G).

Note that a vertex of degree 2 in G is not relevant for a drawing of G and for
the crossing number, and we will often replace such vertices by edges between
their two neighbours. Since also vertices of degree 1 are irrelevant for the crossing
number, it is quite common to assume minimum degree 3.

Degree-Universality. The following terms formalize a vague notion that a
certain vertex degree occurs frequently or arbitrarily often in an infinite family.
For a finite set D ⊆ N, we say that a family of graphs F is D-universal , if and
only if, for every integer m there exists a graph G ∈ F , such that G has at least
m vertices of degree d for each d ∈ D. It follows easily that F has infinitely
many such graphs.

Clearly, if F is D universal and D′ ⊆ D, then F is also D′-universal. The
family of all sets D, for which a given F is D-universal, therefore forms a poset
under relation ⊆. Maximal elements of this poset are of particular interest, and
for “well-behaved” F , these maximal elements are finite and unique. We dis-
tinguish this case with the following definition: F is D-max-universal , if it is
D-universal, there are only finitely many degrees appearing in graphs of F that
are not in D, and there exists an integer M , such that any degree not in D
appears at most M times in any graph of F .

Note that if F is D-max-universal and D′-max-universal, at the same time,
then D = D′. It can also be easily seen that if F is D-max-universal then there
exists infinite F ′ ⊆ F such that, for any m, every sufficiently large member of F ′

has at least m vertices of degree d for each d ∈ D. Though, we do not specifically
mention this property in the formal definition.

Tools for Crossing-Critical Graphs. A principal tool used in many con-
structions of crossing-critical graphs are tiles. They were implicitly used already
in the early papers by Kochol [13] and Richter–Thomassen [17], although they
were formalized only later in the work of Pinnontoan and Richter [15,16]. In our

78 D. Bokal et al.

contribution, we use an extension of their formalization from [3], which we also
briefly sketch here.

A tile is a triple T = (G,λ, ρ) where λ, ρ ⊆ V (G) are two disjoint sequences
of distinct vertices of G, called the left and right wall of T , respectively. A tile
drawing of T is a drawing of the underlying graph G in the unit square such that
the vertices of λ occur in this order on the left side of the square and those of ρ
in this order on the right side of it. The tile crossing number tcr(T) of a tile T
is the smallest crossing number over all tile drawings of T .

For simplicity, in this brief exposition, we shall assume that all tiles con-
sidered in construction of a single graph satisfy |λ| = |ρ| = w for a suitable
constant w ≥ 2 depending on the graph (though, a more general treatment is
obviously possible). The join of two tiles T = (G,λ, ρ) and T ′ = (G′, λ′, ρ′) is
defined as the tile T ⊗T ′ := (G′′, λ, ρ′), where G′′ is the graph obtained from the
disjoint union of G and G′, by identifying ρi with λ′

i for i = 1, . . . , w. Specially,
if ρi = λ′

i is a vertex of degree 2 (after the identification), we replace it with a
single edge in G′′. Since the operation ⊗ is associative, we can safely define the
join of a sequence of tiles T = (T0, T1, . . . , Tm) as ⊗T = T0 ⊗ T1 ⊗ . . . ⊗ Tm.
The cyclization of a tile T = (G,λ, ρ), denoted by ◦T , is the ordinary graph
obtained from G by identifying λi with ρi for i = 1, . . . , w. The cyclization of a
sequence of tiles T = (T0, T1, . . . , Tm) is ◦ T := ◦(⊗T). Again, possible degree-2
vertices are replaced with single edges.

Let T = (G,λ, ρ) be a tile. The right-inverted tile T � is the tile (G,λ, ρ̄) and
the left-inverted tile �T is (G, λ̄, ρ), where λ̄ and ρ̄ denote the inverted sequences
of λ, ρ. For a sequence of tiles T = (T0, . . . , Tm), let T � := (T0, . . . , Tm−1, T

�
m).

One can easily get the following (cf. [15]): for any tile T , cr(◦T) ≤ tcr(T), and
for every sequence of tiles T = (T0, T1, . . . , Tm), tcr(⊗T) ≤ ∑m

i=0 tcr(Ti). On the
other hand, corresponding lower bounds on the crossing number of cyclizations
of tile sequences are also possible [3], under additional technical assumptions. A
tile T = (G,λ, ρ) is planar if tcr(T) = 0. T is perfect if the following hold:

– G − λ and G − ρ are connected;
– for every v ∈ λ there is a path from v to the right wall ρ in G internally

disjoint from λ, and for every u ∈ ρ there is a path from u to the left wall λ
in G internally disjoint from ρ;

– for every 0 ≤ i < j ≤ w, there is a pair of disjoint paths, one joining λi and
ρi, and the other joining λj and ρj .

We are particularly interested in the following specialized result:

Theorem 2.1 ([3]). Let T0, . . . , Tm be copies of a perfect planar tile T , and
T = (T0, . . . , Tm). Assume that, for some integer k ≥ 1, we have m ≥ 4k − 2
and tcr(⊗(T �)) ≥ k. Then, cr(◦(T �)) ≥ k.

To lower-bound the tile crossing number (e.g., for use in Theorem 2.1), we
use the following simple tool. A traversing path in a tile T = (G,λ, ρ) is a path
P ⊆ G such that one end of P is in λ and the other in ρ, and P is internally
disjoint from λ ∪ ρ. A pair of traversing paths {P,Q} is twisted if P,Q are

On Degree Properties of Crossing-Critical Families of Graphs 79

disjoint and the mutual order of their ends in λ is the opposite of their order
in ρ. Obviously, a twisted pair must induce a crossing in any tile drawing of T .
A family of twisted pairs of traversing paths is called a twisted family .

Lemma 2.2 ([3]). Let F be a twisted family in a tile T , such that no edge
occurs in two distinct paths of ∪F . Then, tcr(T) ≥ |F|.

The second tool for constructing crossing-critical families is the so called zip
product [2,3], which we introduce in a simplified setting [11]. For i ∈ {1, 2}, let
Gi be a simple graph and let vi ∈ V (Gi) be a vertex of degree 3, such that
Gi − vi is connected. We denote the neighbours of vi by ui

j for j ∈ {1, 2, 3}. The
zip product of G1 and G2 according to v1, v2 and their neighbours, is obtained
from the disjoint union of G1 − v1 and G2 − v2 by adding the three edges u1

1u
2
1,

u1
2u

2
2, u1

3u
2
3. The following is true in this special case:

Theorem 2.3 ([4]). Let G be a zip product of G1 and G2 according to degree-3
vertices. Then, cr(G) = cr(G1) + cr(G2). Consequently, if Gi is ki-crossing-
critical for i = 1, 2, then G is (k1 + k2)-crossing-critical.

3 Crossing-Critical Families with High Odd Degrees

We first present a new construction of a crossing-critical family containing many
vertices of an arbitrarily prescribed odd degree (recall that the question of an
existence of such families has been the main motivation for this research).

Fig. 1. A tile drawing of the tile G3,4. The wall vertices are drawn in white.

The construction defines a graph G(�, n,m) with three integer parameters
� ≥ 1, n ≥ 3 and odd m ≥ 3, as follows. There is a tile G�,n, with the walls of size
n+�−1, which is illustrated in Fig. 1 and formally defined below. Let G(�, n,m) =
(G�,n, �G�,n

�, G�,n . . . , �G�,n
�, G�,n) be a sequence of such tiles of length m, and

let G(�, n,m) be constructed as the join ◦(G(�, n,m) �). In the degenerate case
of � = 0, the graph G(0, n,m) is defined as the “staircase strip” graph from
Bokal’s [3], and G(0, n,m) will be contained in G(�, n,m) as a subdivision for
every �.

80 D. Bokal et al.

P3

P2

P1

S1

S2

.

.

.

.
S7

S8

Q1

Q2

Q3

Fig. 2. A fragment of the tile G3,8 = H3,8 ⊗ �H3,8
� ⊗ H3,8; defining the one tile H3,8

(left, between the dashed margins) and showing the composition H3,8⊗�H3,8
� in G3,8.

The tile G�,n is composed of three copies of a smaller tile H�,n such that
G�,n = H�,n ⊗ �H�,n

� ⊗ H�,n. A fragment illustrating the join H3,8 ⊗ �H3,8
�

is presented in Fig. 2. Formally, H�,n consists of 2� + n pairwise edge disjoint
paths, grouped into three families P ′

1, . . . , P
′
� , Q′

1, . . . , Q
′
�, and S′

1, . . . , S
′
n, and

an additional set F ′ of 2(n − 2) edges not on these paths.

– The paths S′
1, . . . , S

′
n are pairwise vertex-disjoint except that S′

1 shares one
vertex with S′

2 (w1 in Fig. 2). The additional 2(n − 2) edges of F ′ are in pairs
between vertices of the paths S′

i−1 and S′
i for i = 3, . . . , n, as depicted in Fig. 2

(edges u1z1, z2z3, . . . , z22z23).
– The union S′

1 ∪ . . . ∪ S′
n ∪ F ′ is (consequently) a subdivision of the aforemen-

tioned staircase tile from [3].
– The paths Q′

1, . . . , Q
′
� all share the bottom-most vertex u1 of S′

n on the left
wall of H�,n, and are combined in such a way that Q′

i, i = 1, . . . , �, shares
exactly one vertex with Q′

i−1 (with S′
n for i = 1) other than u1 and this

shared vertex is of degree 4, as depicted near the right wall in Fig. 2 (vertices
v6, v8, v10). The paths P ′

1, . . . , P
′
� analogously share the top-most vertex u2 of

S′
1 on the right wall of H�,n and are symmetric to Q′s.

Let P ′′
i , Q′′

i , S′′
i denote the paths obtained as the union of the three copies of

each of P ′
i , Q

′
i, S

′
i in G�,n. Then P ′′

1 , . . . , P ′′
� , Q′′

1 , . . . , Q′′
� , and S′′

1 , . . . , S′′
n are all

traversing paths of the tile G�,n. Let Pi, Qi, Si denote the corresponding unions
of the paths in whole G(�, n,m).

The proof of the following basic properties is straightforward, as attentive
reader could easily verify from the illustrating pictures of H�,n (recall that degree-
2 vertices are removed in a tile join).

Proposition 3.1. For every � ≥ 1 and n ≥ 3, the tiles H�,n, and hence also
G�,n, are perfect planar tiles. The graph G(�, n,m) has 3m(2�+4n−8) vertices,

On Degree Properties of Crossing-Critical Families of Graphs 81

out of which 3m · 2� have degree 4, 3m(4n − 9) have degree 3, and remaining
3m vertices have degree 2� + 3. The average degree of G(�, n,m) is

5l + 6n − 12
l + 2n − 4

. �

We conclude with the main desired property of the graph G(�, n,m).

Theorem 3.2. Let � ≥ 1, n ≥ 3 be integers. Let k = (�2 +
(
n
2

) − 1 + 2�(n − 1))
and m ≥ 4k − 1 be odd. Then the graph G(�, n,m) is k-crossing-critical.

Proof. By using Theorem 2.1 and symmetry, it suffices to prove the following:

(I) tcr
(⊗ G(�, n,m) �) ≥ k, and

(II) every edge of G�,n corresponding to one copy of H�,n in it is critical, meaning
that tcr(G�,n

� − e) < k for every edge e ∈ E(H�,n) ⊆ E(G�,n).

Recall the pairwise edge-disjoint traversing paths P1, . . . , P�, Q1, . . . , Q�, and
S1, . . . , Sn of the composed tile ⊗G(�, n,m). We define the following disjoint sets
of pairs of these paths, such that each pair is formed by vertex-disjoint paths:

– A = {{Pi, Qj} : 1 ≤ i, j ≤ �} where |A| = �2,
– B = {{Pi, Sj} : 1 ≤ i ≤ �, 1 < j ≤ n} where |B| = �(n − 1),
– C = {{Qi, Sj} : 1 ≤ i ≤ �, 1 ≤ j < n} where |C| = �(n − 1).

Each pair in A∪B∪C is twisted in ⊗G(�, n,m)�, and so these pairs account for at
least |A|+ |B|+ |C| = 2�(n−1)+�2 crossings in a tile drawing of ⊗G(�, n,m)�, by
Lemma 2.2. Importantly, each of these crossings involves at least one edge of R =
P1∪. . .∪P�∪Q1∪. . .∪Q�. The subgraph ⊗G(�, n,m)−E(R) contains a subdivision
of the staircase strip ⊗G(0, n,m). Hence any tile drawing of ⊗G(�, n,m)� contains
at least another tcr

(⊗ G(0, n,m)�) crossings not involving any edges of R. Since
tcr

(⊗G(0, n,m)�) ≥ (
n
2

)−1 by [3], we get tcr
(⊗G(�, n,m)�) ≥ (

n
2

)−1+2�(n−1)
+�2 = k, thus proving (I).

Fig. 3. A fragment of an optimal tile drawing of G2,4
�.

To finish with (II), we investigate the tile drawing in Fig. 3. It is routine to
count that a natural generalization of this drawing has precisely

(
n−1
2

)
+(n−2)�+

82 D. Bokal et al.

(�+1)2+(�+1)(n−3)+� = k crossings, and so it is optimal. Consequently, every
edge which is crossed in Fig. 3 is critical, are so are edges which become crossed
after suitable local sliding of some vertex or edge (while preserving optimality)
in the picture. This way one can easily verify that all the edges of a copy of H2,4

in G2,4, up to symmetry, are critical; except possibly three z3z4, z5u2, z6z7. The
following local changes in the picture verify criticality also for the latter three
edges:

– for z3z4, slide the edge z3z7 up (above u2) and the edge w1u2 slightly down,
– for z5u2, z6z7, slide the edge z3z7 up (above z6), the edge w1u2 down

(below z4), and the edge z4v5 together with the vertex v5 suitably up.

An extension of this argument to the general case of G�,n is again routine. �

4 Families with Prescribed Frequent Degrees

In order to fully answer the primary question of this paper—about which vertex
degrees other than 3, 4, 6 can occur arbitrarily often in infinite k-crossing-critical
families—we start by repeating the three ingredients we have got so far. First,
there is a bunch of established critical constructions essentially covering all the
even degree cases and degree 3. Second, we have newly covered the cases of any
fixed odd degree in Sect. 3. And third, we have got the zip product operation.

Proposition 4.1. There exist (infinite) families F of simple, 3-connected, k-
crossing-critical graphs such that, in addition, the following holds:

(a) ([11, Sect. 4].) For every k ≥ 10 or odd k ≥ 5, and every rational r ∈
(4, 6 − 8

k+1), a family F which is {4, 6}-max-universal and each member of
F is of average degree exactly r, and another F which is {4}-max-universal
and of average degree exactly 4. Every graph of the two families has the set of
its vertex degrees equal to {3, 4, 6} (e.g., degree 3 repeats six times in each).

(b) ([11, Sects. 3 and 4].) For every ε > 0, any integer k ≥ 5 and every set De

of even integers such that min(De) = 4 and 6 ≤ max(De) ≤ 2k − 2, a family
F which is De-max-universal, and each graph of F has the set of its vertex
degrees De ∪ {3} and is of average degree from the interval (4, 4 + ε).

(c) ([13] for k = 2 and [3] for general k, see G(0, n,m).) For every k =
(
n
2

) − 1
where n ≥ 3 is an integer, a family F which is {3, 4}-max-universal and each
member of F is of average degree equal to 3 + 1

4n−7 .
(d) (G(�, 3,m) in Theorem 3.2.) For every k = �2 + 4� + 2 where � ≥ 1 is an

integer, a family F which is {3, 4, 2� + 3}-max-universal and each member
of F is of average degree 5 − 4

�+2 .

Using the zip product and Theorem 2.3, we can hence easily combine all the
cases of Proposition 4.1 to obtain the following “ultimate” answer:

Theorem 4.2. Let D be any finite set of integers such that min(D) ≥ 3. Then
there is an integer K = K(D), such that for every k ≥ K, there exists a D-
universal family of simple, 3-connected, k-crossing-critical graphs. Moreover, if
either 3, 4 ∈ D or both 4 ∈ D and D contains only even numbers, then there
exists a D-max-universal such family. All the vertex degrees are from D∪{3, 4, 6}.

On Degree Properties of Crossing-Critical Families of Graphs 83

5 Families with Prescribed Average Degree

In addition to Theorem 4.2, we are going to show that the claimed D-max-
universality property can be combined with nearly any feasible rational average
degree of the family. The full statement reads:

Theorem 5.1. Let D be any finite set of integers such that min(D) ≥ 3 and
A ⊂ R an interval. Assume that at least one of the following assumptions holds:

(a) D ⊇ {3, 4, 6} and A = (3, 6),
(b) D � {3, 4} and A = (3, 4], or D = {3, 4} and A = (3, 4),
(c) D � {3, 4} and A = (3, 5− 8

b+1) where b ≥ 9 is the largest odd number in D,
(d) D ⊇ {4, 6} has only even numbers and A = (4, 6), or D = {4} and A = {4}.
Then, for every rational r ∈ A ∩ Q, there is an integer K = K(D, r) such that
for every k ≥ K, there exists a D-max-universal family of simple, 3-connected,
k-crossing-critical graphs of average degree precisely r.

Due to limited space, we only sketch a proof of the theorem. The basic idea of
balancing the average degree in a crossing-critical family is quite simple; assume
we have two families Fa,Fb of fixed average degrees a < b, respectively, and
containing some degree-3 vertices. Then, we can use zip product of graphs from
the two families to obtain a new family of average degree equal to a convex
combination of a and b. This simple scheme, however, has two difficulties:

(I) If one combines graphs G1 ∈ Fa and G2 ∈ Fb, the average degree of the
disjoint union G1 ∪G2 is the average of a, b weighted by the sizes of G1, G2.
Hence we need flexibility in choosing members of Fa,Fb of various size.

(II) Moreover, after a zip product of G1, G2, the resulting average degree is no
longer this weighted average of a, b but a slightly different rational number.
We take care of this problem by introducing a special compensation gadget
whose role is to revert the change in average degree caused by zip product.

Addressing (I); a family of graphs F is scalable if all the graphs in F have
equal average degree and for every G ∈ F and every integer a, there exists
H ∈ F such that |V (H)| = a|V (G)|. Furthermore, F is D-max-universal scalable
if, additionally, H contains at least a vertices of each degree from D and the
number of vertices of degrees not in D is bounded independently of a.

Trivially, the families of Proposition 4.1 (c),(d) are D-max-universal scal-
able for D = {3, 4} and D = {3, 4, 2� + 3}, respectively. For families as in
Proposition 4.1 (a),(b), the analogous property can be established by a slight
modification of the very flexible construction from [11].

Addressing (II); we again exploit the construction from [11], defining a flexible
gadget M c

m as a special case of Proposition 4.1 (a). The graph M c
m, for any

m ≥ 12 and 0 ≤ c ≤ m, is simple, 3-connected, and 5-crossing-critical. The way
“compensating by” M c

m works, is formulated next:

84 D. Bokal et al.

Lemma 5.2. Let G1, . . . , Gt be graphs, each having at least two degree-3 ver-
tices, and q ∈ N. If H is a graph obtained by arbitrarily using the zip product of
all G1, . . . , Gt and of Mq+t

m , m ≥ max(q + t, 12), then the average degree of H
is equal to the average degree of the disjoint union of G1, . . . , Gt and Mq

m.

The next step is to naturally combine available scalable critical families to
obtain, with the help of Theorem 2.3 and Lemma 5.2, new families of arbitrary
“intermediate” rational average degrees:

Lemma 5.3. Assume we have simple, Di-max-universal scalable, 3-connected,
ki-crossing-critical families Fi of average degree ri, i = 1, . . . , t, such that r1 <
r2. Then for every k ≥ k1 + · · · + kt + 5 and any r ∈ (r1, r2) ∩ Q, there exists a
(D1 ∪ · · · ∪ Dt)-max-universal family of simple, 3-connected, k-crossing-critical
graphs of average degree exactly r.

While leaving technical details of these tools to a full paper, we finish with
an overview of their case-specific application to Theorem 5.1:

Proof (of Theorem 5.1). The case (d) has already been proved in [11], see
Proposition 4.1 (a). In all other cases, let F1 be the family from Proposi-
tion 4.1 (c) such that the parameter n satisfies r1 = 3 + 1

4n−7 < r (where
r ∈ A ∩ Q, r > 3, is the desired fixed average degree).

In the case (a), let F2 be a family from Proposition 4.1 (a) with average
degree equal to arbitrary (but fixed) r2 ∈ (r, 6) �= ∅, and chosen as scalable.
In the case (c), let F2 be the family from Proposition 4.1 (d) for the parameter
� such that b = 2� + 3; in this case r2 = 5 − 8

b+1 > r. Finally, consider the
remaining sub-cases of (b). If D = {3, 4}, then let F2 be the second family from
Proposition 4.1 (a) with average degree r2 = 4. If D � {3, 4}, then let F2 be
the family from Proposition 4.1 (b), made scalable and of fixed average degree
r2 > 4.

In each of the choices of F1,F2 above, it holds r1 < r < r2. Furthermore, if
needed to fulfill D-max-universality, add more scalable families F3, . . . as in the
proof of Theorem 4.2. Theorem 5.1 then follows directly from Lemma 5.3. �

6 Final Remarks

In the previous constructions, we have always assumed that the fixed crossing
number k of the families is sufficiently large. One can, on the other hand, ask
what happens if we fix a small value of k beforehand (i.e., independently of the
asked degree properties).

In this direction, there is the remarkable result of Dvořák and Mohar [6]
proving the existence of k-crossing-critical families with unbounded maximum
degree for any k ≥ 171. Unfortunately, since [6] is not really constructive, we
do not know anything exact about the degrees occurring in these families. An
explicit construction of a k-crossing-critical family with unbounded maximum
degree is known only in the projective plane [12] for k ≥ 2, but that falls outside
of the area of interest of this paper.

On Degree Properties of Crossing-Critical Families of Graphs 85

Fig. 4. Fractions (each of three tiles) of constructions of simple, 3-connected, 2-cross-
ing-critical and D-max-universal families for D = {3, 5} (left) and D = {3, 6} (right).

It thus appears natural to thoroughly investigate the least non-trivial case
of k = 2, with help of the remarkably involved characterization result [5]1. Due
to limited space, we can only very briefly survey the obtained results.

Theorem 6.1 A simple, 3-connected 2-crossing-critical D-max-universal family
exists if and only if {3} � D ⊆ {3, 4, 5, 6}. Without the simplicity requirement,
such a family exists if and only if D ⊆ {3, 4, 5, 6}, |D| ≥ 2, and D ∩ {3, 4} �= ∅.
We remark that it is important that Theorem 6.1 deals with infinite such families
(via the universality property) since not all of the (finitely many) sporadic small
2-crossing-critical graphs are explicitly known [5]. Examples of two sub-cases of
Theorem 6.1 can be found in Fig. 4.

Theorem 6.2 A simple, 3-connected, 2-crossing-critical infinite family of
graphs with average degree r ∈ Q exists if and only if r ∈ [31

5 , 4]. Without
the simplicity requirement, such a family exists if and only if r ∈ [31

5 , 4 2
3].

At last, we return to the statement of Theorem 4.2, which always requires
4 ∈ D. On the other hand, from Theorem 6.1 we know that there exist D-max-
universal families of simple, 3-connected, 2-crossing-critical graphs for D = {3, 5}
and D = {3, 6} (Fig. 4), e.g., when 4 �∈ D, and these can be generalized to any
k > 2 by a zip product with copies of K3,3.

Hence it is an interesting open question of whether there exists a D-max-
universal k-crossing-critical family such that D ∩ {3, 4} = ∅. It is unlikely that
the answer would be easy since the question is related to another long standing
open problem—whether there exists a 5-regular k-crossing-critical infinite family.
Related to this is the same question of existence of a 4-regular k-crossing-critical
family, which does exist for k = 3 [17] and the construction can be generalized
to any k ≥ 6, but the cases k = 4, 5 remain open.

Many more questions can be asked in a direct relation to the statement of
Theorem 5.1, but we are able to mention only a few of the interesting ones. E.g.,
if 6 �∈ D, can the average degree of such a family be from the interval [5, 6)? Or,
assuming 3 ∈ D but 4 �∈ D, for which sets D one can achieve D-max-universality
and what are the related average degrees?

We finish with another interesting structural conjecture:

Conjecture 6.3. There is a function g : N → R
+ such that, any sufficiently

large simple 3-connected k-crossing-critical graph has average degree greater
than 3 + g(k).
1 Even though this very long manuscript [5] is not published yet, its main result has

been known already for many years and it is widely believed to be right.

86 D. Bokal et al.

References

1. Ajtai, M., Chvátal, V., Newborn, M., Szemerédi, E.: Crossing-free subgraphs.In:
Theory and Practice of Combinatorics. North-Holland Mathematics Studies,
vol.60, pp. 9–12. North-Holland (1982)

2. Bokal, D.: On the crossing numbers of cartesian products with paths. J. Comb.
Theory Ser. B 97(3), 381–384 (2007)

3. Bokal, D.: Infinite families of crossing-critical graphs with prescribed average degree
and crossing number. J. Graph Theory 65(2), 139–162 (2010)

4. Bokal, D., Chimani, M., Leaños, J.: Crossing number additivity over edge cuts.
Eur. J. Comb. 34(6), 1010–1018 (2013)

5. Bokal, D., Oporowski, B., Richter, R.B., Salazar, G.: Characterizing 2-crossing-
critical graphs. Manuscript, 171 p. http://arxiv.org/abs/1312.3712 (2013)

6. Dvořák, Z., Mohar, B.: Crossing-critical graphs with large maximum degree. J.
Comb. Theory, Ser. B 100(4), 413–417 (2010)

7. Geelen, J.F., Richter, R.B., Salazar, G.: Embedding grids in surfaces. Eur. J. Comb.
25(6), 785–792 (2004)

8. Hernández-Vélez, C., Salazar, G., Thomas, R.: Nested cycles in large triangulations
and crossing-critical graphs. J. Comb. Theory, Ser. B 102(1), 86–92 (2012)

9. Hlinecaronný, P.: Crossing-critical graphs and path-width. In: Mutzel, P., Jünger,
M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 102–114. Springer, Heidelberg
(2002)

10. Hliněný, P.: Crossing-number critical graphs have bounded path-width. J. Comb.
Theory Ser. B 88(2), 347–367 (2003)

11. Hliněný, P.: New infinite families of almost-planar crossing-critical graphs. Electr.
J. Comb. 15 R102 (2008)

12. Hliněný, P., Salazar, G.: Stars and bonds in crossing-critical graphs. J. Graph
Theory 65(3), 198–215 (2010)

13. Kochol, M.: Construction of crossing-critical graphs. Discrete Math. 66(3), 311–
313 (1987)

14. Leighton, T.: Complexity Issues in VLSI. Foundations of Computing Series. MIT
Press, Cambridge (1983)

15. Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs II: Planar
tiles. J. Graph Theory 42(4), 332–341 (2003)

16. Pinontoan, B., Richter, R.B.: Crossing numbers of sequences of graphs I: General
tiles. Australas. J. Comb. 30, 197–206 (2004)

17. Richter, R.B., Thomassen, C.: Minimal graphs with crossing number at least k. J.
Comb. Theory Ser. B 58(2), 217–224 (1993)

18. Salazar, G.: Infinite families of crossing-critical graphs with given average degree.
Discrete Math. 271(1–3), 343–350 (2003)

19. Širáň, J.: Infinite families of crossing-critical graphs with a given crossing number.
Discrete Math. 48(1), 129–132 (1984)

http://arxiv.org/abs/1312.3712

Genus, Treewidth, and Local Crossing Number

Vida Dujmović1, David Eppstein2(B), and David R. Wood3

1 School of Computer Science and Electrical Engineering,
University of Ottawa, Ottawa, Canada

vida.dujmovic@uottawa.ca
2 Department of Computer Science, University of California,

Irvine, CA, USA
eppstein@uci.edu

3 School of Mathematical Sciences, Monash University, Melbourne, Australia
david.wood@monash.edu

Abstract. We consider relations between the size, treewidth, and local
crossing number (maximum number of crossings per edge) of graphs
embedded on topological surfaces. We show that an n-vertex graph
embedded on a surface of genus g with at most k crossings per edge
has treewidth O(

√
(g + 1)(k + 1)n) and layered treewidth O((g + 1)k),

and that these bounds are tight up to a constant factor. As a special
case, the k-planar graphs with n vertices have treewidth O(

√
(k + 1)n)

and layered treewidth O(k + 1), which are tight bounds that improve a
previously known O((k + 1)3/4n1/2) treewidth bound. Additionally, we
show that for g < m, every m-edge graph can be embedded on a surface
of genus g with O((m/(g + 1)) log2 g) crossings per edge, which is tight
to a polylogarithmic factor.

1 Introduction

Treewidth is a graph parameter that measures how similar a graph is to a tree. It
is a key measure of the complexity of a graph and is of fundamental importance
in algorithmic graph theory and structural graph theory, especially in Robertson
and Seymour’s graph minors project. Treewidth is closely related to the size of a
smallest separator, a set of vertices whose removal splits the graph into connected
components of at most 2n

3 vertices, where n (as always) is the number of vertices
in the graph. Graphs of low treewidth necessarily have small separators, and
graphs in which every subgraph has a small separator have low treewidth [1,2].
See Sect. 2 for a detailed definition of treewidth.

A graph is k-planar if it can be drawn in the plane with at most k crossings
on each edge. The local crossing number of the graph is the minimum k for which
it is k-planar [3, pages 51–53]. An important example is the p× q × r grid graph,
with vertex set [p] × [q] × [r] and all edges of the form (x, y, z)(x + 1, y, z) or
(x, y, z)(x, y + 1, z) or (x, y, z)(x, y, z + 1). A suitable linear projection from the
natural three-dimensional embedding of this graph to the plane gives a (r − 1)-
planar drawing, as illustrated in Fig. 1.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 87–98, 2015.
DOI: 10.1007/978-3-319-27261-0 8

88 V. Dujmović et al.

Fig. 1. The p× q × r grid graph is (r − 1)-planar.

The starting point for our work is the following question: what is the max-
imum treewidth of k-planar graphs? Grigoriev and Bodlaender [4] studied this
question and proved an upper bound of O(k3/4n1/2). We improve this and give
the following tight bound:

Theorem 1. The maximum treewidth of k-planar n-vertex graphs is

Θ
(
min

{
n,

√
(k + 1)n

})
.

More generally, define a graph to be (g, k)-planar if it can be drawn in a sur-
face of Euler genus at most g with at most k crossings on each edge.1 For instance,
Guy et al. [5] investigated the local crossing number of toroidal embeddings—in
this notation, the (2, k)-planar graphs. We again determine an optimal bound
on the treewidth of such graphs.

Theorem 2. The maximum treewidth of (g, k)-planar n-vertex graphs is

Θ
(
min

{
n,

√
(g + 1)(k + 1)n

})
.

In both these theorems, the k = 0 case (with no crossings) is well known [6].
We prove our upper bounds by using the concept of layered treewidth [7], and
we prove matching lower bounds by finding (g, k)-planar graphs without large
separators and using the known relations between separator size and treewidth.

Finally, we study the (g, k)-planarity of graphs as a function of their number
of edges. For (global) crossing number, it is known that a graph with n vertices
and m edges drawn on a surface of genus g (sufficiently small with respect
to m) may require Ω(min{m2/g,m2/n}) crossings, and it can be drawn with
O((m2 log2 g)/g) crossings [8]. In particular, the lower bound implies that some
graphs require Ω(m/g) crossings per edge on average, and therefore also in the
worst case. We prove a nearly-matching upper bound:
1 The Euler genus is 2h for an orientable surface with h handles, and c for a non-

orientable surface with c cross-caps.

Genus, Treewidth, and Local Crossing Number 89

Theorem 3. For every graph G with m edges, for every integer g � 1, there is
a drawing of G in the orientable surface with at most g handles and with

O

(
m log2 g

g

)

crossings per edge.

2 Background

For ε ∈ (0, 1), a set S of vertices in a graph G is an ε-separator of G if each
component of G−S has at most ε|V (G)| vertices. It is conventional to set ε = 2/3
but the precise choice makes no difference to the asymptotic size of a separator.

A tree-decomposition of a graph G is given by a tree T whose nodes index a
collection (Bx ⊆ V (G) : x ∈ V (T)) of sets of vertices in G called bags, such that:

– For every edge vw of G, some bag Bx contains both v and w, and
– For every vertex v of G, the set {x ∈ V (T) : v ∈ Bx} induces a non-empty

(connected) subtree of T .

The width of a tree-decomposition is maxx |Bx| − 1, and the treewidth tw(G)
of a graph G is the minimum width of any tree decomposition of G. Treewidth
was introduced (with a different but equivalent definition) by Halin [9] and tree
decompositions were introduced by Robertson and Seymour [10] who proved:

Lemma 1 [10]. Every graph with treewidth k has a 1
2 -separator of size at most

k + 1.

The notion of layered tree decompositions is a key tool in proving our main
theorems. A layering of a graph G is a partition (V0, V1, . . . , Vt) of V (G) such
that for every edge vw ∈ E(G), if v ∈ Vi and w ∈ Vj , then |i − j| � 1. Each set
Vi is called a layer. For example, for a vertex r of a connected graph G, if Vi is
the set of vertices at distance i from r, then (V0, V1, . . .) is a layering of G, called
the bfs layering of G starting from r. A bfs tree of G rooted at r is a spanning
tree of G such that for every vertex v of G, the distance between v and r in G
equals the distance between v and r in T . Thus, if v ∈ Vi then the vr-path in T
contains exactly one vertex from layer Vj for 0 � j � i.

The layered width of a tree-decomposition (Bx : x ∈ V (T)) of a graph G is
the minimum integer � such that, for some layering (V0, V1, . . . , Vt) of G, each
bag Bx contains at most � vertices in each layer Vi. The layered treewidth of a
graph G is the minimum layered width of a tree-decomposition of G. Note that
if we only consider the trivial layering in which all vertices belong to one layer,
then layered treewidth equals treewidth plus 1.

Dujmović, Morin, and Wood [7] introduced layered treewidth and proved the
following results, where a graph G is apex if G − v is planar for some vertex v:

90 V. Dujmović et al.

Theorem 4 (Dujmović, Morin, and Wood [7]).

(a) Every planar graph has layered treewidth at most 3.
(b) Every graph with Euler genus g has layered treewidth at most 2g + 3.
(c) For every apex graph H, there is a number c such that every H-minor-free

graph has layered treewidth at most c.
(d) If a minor-closed class has bounded layered treewidth, then it excludes a fixed

apex graph as a minor.

The same characterization by forbidden apex minors was previously known
for minor-closed classes of bounded local treewidth [11], establishing the equiv-
alence of bounded local treewidth and bounded layered treewidth in minor-
closed classes; however, for families of graphs that are not minor-closed, layered
treewidth and local treewidth are distinct. Sergey Norin established the following
connection between layered treewidth and treewidth:

Theorem 5 (Norin; see [7]). Every n-vertex graph with layered treewidth k
has treewidth at most 2

√
kn.

Several results that follow depend on expanders; see [12] for a survey.

Lemma 2. For every ε ∈ (0, 1) there exists β > 0, such that for all k � 3 and
n � k+1 (such that n is even if k is odd), there exists a k-regular n-vertex graph
H (called an expander) in which every ε-separator in H has size at least βn.

3 k-Planar Graphs

The following is our first contribution.

Theorem 6. Every k-planar graph has layered treewidth at most 6(k + 1).

Proof. Let G be k-planar; draw G with at most k crossings per edge, and arbi-
trarily orient each edge of G. Let G′ be the graph obtained from G by replacing
each crossing by a new degree-4 vertex. Then G′ is planar. By Theorem 4(a),
G′ has layered treewidth at most 3. That is, there is a tree decomposition T ′ of
G′, and a layering V ′

0 , V
′
1 , . . . of G′, such that each bag of T ′ contains at most

three vertices in each layer V ′
i . For each vertex v of G′, let T ′

v be the subtree
of T ′ formed by the bags that contain v.

Let T be the decomposition of G obtained by replacing each occurrence of a
dummy vertex x in a bag of T ′ by the tails of the two edges that cross at x. We
now show that T is a tree-decomposition of G. For each vertex v of G, let Tv be
the subgraph of T formed by the bags that contain v. Let G′

v be the subgraph
of G′ induced by v and the division vertices on the edges for which v is the
tail. Then G′

v is connected. Thus T ′
v, which is precisely the set of bags of T ′

that intersect G′
v, form a (connected) subtree of T ′. Moreover, for each oriented

edge vw of G, if x is the division vertex of vw adjacent to w, then T ′
x and T ′

w

intersect. Since Tv contains T ′
x, and Tw contains T ′

w, we have that Tv and Tw

intersect. Thus T is a tree-decomposition of G. By construction, each bag of T
contains at most six vertices in each layer V ′

i .

Genus, Treewidth, and Local Crossing Number 91

Note that distG′(v, w) � k + 1 for each edge vw of G. Thus, if v ∈ V ′
i and

w ∈ V ′
j then |i−j| � k+1. Let V0 be the union of the first k+1 layers restricted

to V (G), let V1 be the union of the second k+1 layers restricted to V (G), and so
on. That is, for i � 0, let Vi := V (G)∩ (V ′

(k+1)i ∪V ′
(k+1)i+1 ∪ · · · ∪V ′

(k+1)(i+1)−1).
Then V0, V1, . . . is a partition of V (G). Moreover, if v ∈ Vi and w ∈ Vj for some
edge vw of G, then |i − j| � 1. Thus V1, V2, . . . is a layering of G. Since each
layer in G consists of at most k + 1 layers in G′, the layered treewidth of this
decomposition is at most 6(k + 1). ��
Theorem 4 does not imply Theorem6, because 1-planar graphs may contain arbi-
trarily large complete graph minors. For example, the n × n × 2 grid graph is
1-planar, and contracting the i-th row in the front grid with the i-th column in
the back grid gives a Kn minor.

Theorems 5 and 6 imply the upper bound in Theorem1:

Theorem 7. Every k-planar n-vertex graph has treewidth at most 2
√

6(k + 1)n.

We now prove the corresponding lower bound.

Theorem 8. For 1 � k � 3
2n there is a k-planar graph on n vertices with

treewidth at least c
√

kn for some constant c > 0.

Proof. Let G be a cubic expander with n vertices. Then G has treewidth at
least εn for some constant ε > 0 (see for example Grohe and Marx [13]). Consider
a straight-line drawing of G. Clearly, each edge is crossed less than |E(G)| = 3

2n
times. Subdivide each edge of G at most 3n

2k times to produce a k-planar graph G′

with n′ vertices, where n′ � n + 3n
2

3n
2k < 4n2

k . Subdivision does not change the
treewidth of a graph. Thus G′ has treewidth at least εn � ε

2

√
kn′. ��

Combining the bound of Theorem7 with the trivial upper bound tw(G) � n
for k ≥ n shows that the maximum treewidth of k-planar n-vertex graphs is
Θ(min{n,

√
kn}) for arbitrary k and n. This completes the proof of Theorem1.

4 (g, k)-Planar Graphs

Recall that a graph is (g, k)-planar if it can be drawn in a surface of Euler genus
at most g with at most k crossings on each edge. The proof method used in
Theorem 6 in conjunction with Theorem4(b) leads to the following theorem.

Theorem 9. Every (g, k)-planar graph G has layered treewidth at most (4g + 6)
(k + 1).

Proof. Consider a drawing of G with at most k crossings per edge on a surface
Σ of Euler genus g. Arbitrarily orient each edge of G. Let G′ be the graph
obtained from G by replacing each crossing by a new degree-4 vertex. Then G′

is embedded in Σ with no crossings, and thus has Euler genus at most g. By
Theorem 4(b), G′ has layered treewidth at most 2g + 3. That is, there is a tree

92 V. Dujmović et al.

decomposition T ′ of G′, and a layering V ′
0 , V ′

1 , . . . of G′, such that each bag of
T ′ contains at most 2g + 3 vertices in each layer V ′

i . For each vertex v of G′, let
T ′

v be the subtree of T ′ formed by the bags that contain v.
Let T be the decomposition of G obtained by replacing each occurrence of a

dummy vertex x in a bag of T ′ by the tails of the two edges that cross at x. We
now show that T is a tree-decomposition of G. For each vertex v of G, let Tv be
the subgraph of T formed by the bags that contain v. Let G′

v be the subgraph
of G′ induced by v and the division vertices on the edges for which v is the tail.
Then G′

v is connected. Thus T ′
v, which is precisely the set of bags of T ′ that

intersect G′
v, form a (connected) subtree of T ′. Moreover, for each oriented edge

vw of G, if x is the division vertex of vw adjacent to w, then T ′
x and T ′

w intersect.
Since Tv contains T ′

x, and Tw contains T ′
w, we have that Tv and Tw intersect.

Thus T is a tree-decomposition of G. By construction, each bag of T contains
at most 4g + 6 vertices in each layer V ′

i .
Note that distG′(v, w) � k + 1 for each edge vw of G. Thus, if v ∈ V ′

i and
w ∈ V ′

j then |i−j| � k+1. Let V0 be the union of the first k+1 layers restricted
to V (G), let V1 be the union of the second k+1 layers restricted to V (G), and so
on. That is, for i � 0, let Vi := V (G)∩ (V ′

(k+1)i ∪V ′
(k+1)i+1 ∪ · · · ∪V ′

(k+1)(i+1)−1).
Then V0, V1, . . . is a partition of V (G). Moreover, if v ∈ Vi and w ∈ Vj for some
edge vw of G, then |i − j| � 1. Thus V1, V2, . . . is a layering of G. Since each
layer in G consists of at most k + 1 layers in G′, the layered treewidth of this
decomposition is at most (4g + 6)(k + 1). ��
Theorems 9 and 5 imply:

Theorem 10. Every n-vertex (g, k)-planar graph has treewidth at most

2
√

(4g + 6)(k + 1)n.

We now show that this bound is tight up to a constant factor.

Theorem 11. For all g, k � 0 and infinitely many n there is an n-vertex (g, k)-
planar graph with treewidth Ω(

√
(g + 1)(k + 1)n).

The proof of this result depends on the separation properties of the p× q × r
grid graph (which is (r − 1)-planar). The next two results are not optimal, but
have simple proofs and are all that is needed for the main proof that follows.

Lemma 3. For q � (1
1−ε)r, every ε-separator of the q × r grid graph has size at

least r.

Proof. Let S be a set of at most r − 1 vertices in the q × r grid graph. Some row
R avoids S, and at least q − r + 1 columns avoid S. The union of these columns
with R induces a connected subgraph with at least (q − r + 1)r > εqr vertices.
Thus S is not an ε-separator. ��
Lemma 4. For p � q � (1

1−ε)r, every ε-separator of the p × q × r grid graph
has size at least (1−ε

1+ε)qr.

Genus, Treewidth, and Local Crossing Number 93

Proof. Let G be the p × q × r grid graph. Let n := |V (G)| = pqr. Let S be an
ε-separator of G. Let A1, . . . , Ac be the components of G − S. Thus |Ai| � εn.
For x ∈ [p], let Gx := {(x, y, z) : y ∈ [q], z ∈ [r]} called a slice. Say Gx belongs to
Ai and Ai owns Gx if |Ai ∩ Gx| � 1+ε

2 qr. Clearly, no two components own the
same slice. First suppose that at least two components each own a slice. That
is, Gv belongs to Ai and Gw belongs to Aj for some v < w and i
= j. Let X :=
{(y, z) : (v, y, z) ∈ Gv, (w, y, z) ∈ Gw}. Then |X| � 2(1+ε

2)qr−qr = εqr. For each
(y, z) ∈ X, the ‘straight’ path (v, y, z), (v + 1, y, z), . . . , (w, y, z) contains some
vertex in S. Since these paths are pairwise disjoint, |S| � |X| � εqr � 1−ε

1+εqr

(since ε > 1
2). Now assume that at most one component, say A1, owns a slice.

Say A1 owns t slices. Thus t(1+ε
2)qr � |Ai| � εpqr and t � 2ε

1+εp. Hence, at least
(1 − 2ε

1+ε)p slices belong to no component. For such a slice Gv, each component
of Gv −S is contained in some Ai and thus has at most (1+ε

2)qr vertices. That is,
S ∩Gv is a (1+ε

2)-separator of the q × r grid graph induced by Gv. By Lemma 3,
|S ∩ Gv| � r. Thus |S| � (1 − 2ε

1+ε)pr � (1−ε
1+ε)qr. ��

Proof (of Theorem 11). Let r := k + 1.
First suppose that g � 19. Let G be the q × q × r grid graph where q � 2r.

As observed above, G is k-planar and thus (g, k)-planar. Lemma 4 implies that
every 1

2 -separator of G has size at least 1
3qr. Lemma 1 thus implies that G has

treewidth at least 1
3qr − 1, which is at least Ω(

√
(g + 1)(k + 1)n), as desired.

Now assume that g � 20. By Lemma 2 there is a 4-regular expander H on
m := � g

4� � 5 vertices. Thus H has 2m edges, H embeds in the orientable
surface with 2m handles, and thus has Euler genus at most 4m � g. We may
assume that q :=

√
n/rm is an integer with q � 8r. Let G be obtained from

H by replacing each vertex v of H by a copy of the q × q × r grid graph with
vertex set Dv, and replacing each edge of H by a matching of qr edges, so that
G[Dv ∪ Dw] is a 2q × q × r grid, as shown in Fig. 2. Thus G is (g, k)-planar with
q2rm = n vertices.

Let S be a 1
2 -separator in G. Let A1, . . . , Ac be the components of G − S.

Thus |Ai| � 1
2n for i ∈ [c]. Initialise sets S′ := A′

1 := · · · := A′
c := ∅.

For each vertex v of H, if |S∩Dv| � qr
14 then put v ∈ S′. Otherwise, |S∩Dv| <

qr
14 . Note that Lemma 4 is applicable with ε = 13

15 since q � 8r > 1
1−13/15r and

1−13/15
1+13/15 = 1

14 . Lemma 4 thus implies that S ∩ Dv is not a 13
15 -separator. Hence

some component of Dv −S has at least 13
15q2r vertices. Since 13

15 > 1
2 , exactly one

component of Dv − S has at least 13
15q2r vertices. This component is a subset of

Ai for some i ∈ [c]; add v to A′
i. Thus S′, A′

1. . . . , A
′
c is a partition of V (H).

We now prove that S′ is a 15
26 -separator in H. Suppose that v ∈ A′

i and
w ∈ A′

j for some edge vw of H. Let D be the vertex set of the 2q × q × r grid
graph induced by Dv ∪Dw. Since v
∈ S′ and w
∈ S′, we have |S ∩Dv| < qr

14 and
|S ∩ Dw| < qr

14 . Thus |S ∩ D| < qr
7 . Note that Lemma 4 is applicable with ε = 3

4

since q � 8r > 1
1−3/4r and 1−3/4

1+3/4 = 1
7 . Lemma 4 thus implies that S ∩ D is not

a 3
4 -separator of G[D]. Hence some component X of G[D] − S containsat least

94 V. Dujmović et al.

Fig. 2. Construction of G in the proof of Theorem 11.

3
4 |D| = 3

2q2r vertices. Each of Dv and Dw can contain at most q2r vertices in X.
Thus Dv and Dw each contain at least 1

2q2r vertices in X. Thus, by construction,
v and w are in the same A′

i. That is, there is no edge of H between distinct A′
i

and A′
j , and each component of H −S′ is contained in some A′

i. For each i ∈ [c],
we have 1

2q2rm � |Ai| � 13
15q2r|A′

i| implying |A′
i| � 15

26m. Therefore S′ is a
15
26 -separator in H.

By Lemma 2, |S′| � βm for some constant β > 0. Thus |S| � qr
14 |S′| �

β
14mqr. By Lemma 1, G has treewidth at least β

14mqr − 1 = β
14

√
mrn − 1 �

Ω(
√

g(k + 1)n), as desired. ��
Note that the proof of Theorem 11 in the case k = 0 is very similar to that of
Gilbert, Hutchison, and Tarjan [6].

For gk � n the trivial upper bound of tw(G) � n is better than that given in
Theorem 10. We conclude that the maximum treewidth of (g, k)-planar n-vertex
graphs is Θ(min{n,

√
(g + 1)(k + 1)n}) for arbitrary g, k, n. This completes the

proof of Theorem 2.

5 Drawings with Few Crossings per Edge

This section studies the following natural conjecture: for every surface Σ of Euler
genus g, every graph G with m edges has a drawing in Σ with O(m

g+1) crossings
per edge. This conjecture is trivial at both extremes: with g = 0, every graph
has a straight-line drawing in the plane (and therefore a drawing in the sphere)

Genus, Treewidth, and Local Crossing Number 95

with at most m crossings per edge, and with g = 2m, every graph has a drawing
in the orientable surface with one handle per edge. Moreover, if this conjecture
is true, it would provide a simple proof of Theorem11 in the same manner as
the proof of Theorem 8.

Our starting point is the following well-known result of Leighton and Rao
[14, Theorem 22, p. 822]:

Theorem 12 (Leighton and Rao [14]). Let G be a graph with bounded degree
and n vertices, mapped one-to-one onto the vertices of an expander graph H.
Then the edges of G can be mapped onto paths in H so that each path has length
O(log n) and each edge of H is used by O(log n) paths.

It is straightforward to extend this result to regular graphs G of unbounded
degree, with the number of paths per edge of H increasing in proportion to the
degree. However, there are two difficulties with using it in our application. First,
it does not directly handle graphs in which there is considerable variation in
degree from vertex to vertex: in such cases we would want the number of paths
per edge to be controlled by the average degree in G, but instead it is controlled
by the maximum degree. And second, it does not allow us to control separately
the sizes of G and H; instead, both must have the same number of vertices. To
handle these issues, we do not map the vertices of our input graph G directly
to the vertices of an expander H; instead, we keep the vertices of G and the
vertices of H disjoint from each other, connecting them by a bipartite graph
that balances the degrees, according to the following lemma.

Lemma 5. Let d1, d2, . . . , dn be a sequence of positive integers, and let q be
any positive integer. Then there exists a bipartite graph with colour classes
{v1, . . . , vn} and {w1, . . . , wq}, at most n + q − 1 edges, and a labelling of the
edges with positive integers, such that

– each vertex vi is incident to a set of edges whose labels sum to di, and
– each pair of distinct vertices wi and wj are incident to sets of edges whose

label sums differ by at most 1.

Proof. Preassign label sums of �∑ di/q� or �∑ di/q� to each vertex wi so that the
resulting values sum to

∑
di. We will construct a bipartite graph and a labelling

whose sums match the numbers d1, . . . , dn on one side of the bipartition and
whose sums match the preassigned numbers on the other side.

Build this graph and its labelling one edge at a time, starting from a graph
with no edges. At each step, let vi and wj be the vertices on each side of the
bipartition with the smallest indices whose edge labels do not yet sum to the
required values, add an edge from vi to wj , and label this edge with the largest
integer that does not exceed the required sum on either vertex.

Each step completes the sum for at least one vertex. Because the required
values on the two sides of the bipartition both sum to

∑
di, the final step com-

pletes the sum for two vertices, vn and wq. Therefore, the total number of steps,
and the total number of edges added to the graph, is at most n + q − 1. ��

96 V. Dujmović et al.

Fig. 3. A graph (left) with degree sequence 7, 5, 5, 4, 3, 3, 2, 1 and a bipartite graph
(right) formed from this degree sequence by Lemma 5. The large numbers are the edge
labels of the lemma, and the small numbers along the top and bottom of the bipartite
graph give the sums of incident edge labels at each vertex. The top sums match the
given degree sequence, while the bottom sums all differ by at most 1.

By combining this load-balancing step with the Leighton-Rao expander-
routing scheme, we may obtain a more versatile mapping of our given graph
G to a host graph H, with better control over the genus of the surface we obtain
from H. This genus will be determined by the cyclomatic number of H, where
the cyclomatic number of a graph with n vertices and m edges is m − n + 1.
This number is the dimension of the cycle space of the graph, and the first Betti
number of the topological space obtained from the graph by replacing each edge
by a line segment.

Lemma 6. Let G be an arbitrary graph, with m edges, and let Q be a q-vertex
bounded-degree expander graph. Then there exists a host graph H, a one-to-one
mapping of the vertices of G to a subset of vertices of H, and a mapping of the
edges of G to paths in H, with the following properties:

– The vertices of H that are not images of vertices in G induce a subgraph
isomorphic to Q.

– The image of an edge e in G forms a path of length O(log q) that starts and
ends at the image of the endpoints of e, and passes through the image of no
other vertex of G.

– Each vertex of H that is not an image of a vertex in G is crossed by
O((m log q)/q) paths.

– The cyclomatic number of H is O(q).

Proof. Let the vertices of G be u1, . . . , un. Apply Lemma 5 to the degree sequence
of G to form a bipartite graph H with bipartition {v1, . . . , vn}, {w1, . . . , wq}
(Fig. 3). Then add edges between pairs of vertices (wi, wj) so that {w1, . . . , wq}
induces a subgraph isomorphic to Q. In this way, each vertex ui in G is mapped
to a vertex vi in H so that the mapping is one-to-one and the unmapped vertices
form a copy of Q, as required. The cyclomatic number of H equals the cyclomatic
number of Q, plus n+q−1 (for the added edges in the bipartite graph), minus n
(for the added vertices relative to Q). These two added and subtracted terms
cancel, leaving the cyclomatic number of Q plus q−1, which is O(q) as required.

Genus, Treewidth, and Local Crossing Number 97

It remains to find paths in H corresponding to the edges in G. Assign each
edge uiuj of G to a pair of vertices (wi′ , wj′) adjacent to the images vi and vj in
H, so that the number of edges of G assigned to each edge between {v1, . . . , vn}
and {w1, . . . , wq} equals the corresponding label. Complete each path by apply-
ing Theorem 12 to the copy of Q; this gives paths of length O(log q) connecting
each pair (wi′ , wj′) obtained in this way. These pairs do not form a bounded-
degree graph, but they can be partitioned into O(m/q) bounded-degree graphs,
each of which causes each vertex in the copy of Q to be crossed O(log q) times.
Combining these suproblems, each vertex in the copy of Q is crossed by a total
of O((m log q)/q) paths, as required. ��
We are now ready to prove the existence of embeddings with small local crossing
number, on surfaces of arbitrary genus.

Proof (of Theorem 3). Given a graph G, to be embedded on a surface with at
most g handles and with few crossings per edge, choose q so that the O(q) bound
on the cyclomatic number of the graph H in Lemma 6 is at most g, and apply
Lemma 6 to find a graph H and a mapping from G to H obeying the conditions
of the lemma.

To turn this mapping into the desired embedding of G, replace each vertex
of degree d in H by a sphere, punctured by the removal of d unit-radius disks,
and form a surface (as a cell complex, not necessarily embedded into three-
dimensional space) by replacing each edge xy of H by a unit-radius cylinder
connecting boundaries of removed disks on the spheres for vertices x and y.
The number of handles on the resulting surface (shown in Fig. 4) equals the
cyclomatic number of H, which is at most g.

Fig. 4. A topological surface obtained by replacing each vertex of a graph by a punc-
tured sphere, and each edge of the graph by a cylinder connecting two punctures. Image
Square pyramid pyramid.png by Tom Ruen on Wikimedia commons, made available
under a Creative Commons CC-BY-SA 4.0 International license.

Embed each vertex of G as an arbitrarily chosen point on the sphere of the
corresponding vertex of H, and each edge of G as a curve through the sequence
of spheres and cylinders corresponding to its path in H. Choose this embedding

https://commons.wikimedia.org/wiki/File:Square_pyramid_pyramid.png

98 V. Dujmović et al.

so that no intersection of edge curves occurs within any of the cylinders, and so
that every pair of edges that are mapped to curves on the same sphere meet at
most once, either at a crossing point or a shared endpoint.

Because the spheres that contain vertices of G only contain curves incident
to those vertices, they do not have any crossings. Each edge is mapped to a curve
through O(log g) of the remaining spheres, and can cross at most O((m log g)/g)
other curves within each such sphere. Therefore, the maximum number of cross-
ings per edge is O((m log2 g)/g). ��

Acknowledgement. This research was initiated at the Workshop on Graphs and
Geometry held at the Bellairs Research Institute in 2015. Vida Dujmović was supported
by NSERC. David Eppstein was supported in part by NSF grant CCF-1228639. David
Wood was supported by the Australian Research Council.

References

1. Dvorák, Z., Norin, S.: Treewidth of graphs with balanced separations. Electronic
preprint arXiv: 1408.3869 (2014)

2. Reed, B.A.: Tree width and tangles: a new connectivity measure and some appli-
cations. In: Bailey, R.A. (ed.) Surveys in Combinatorics. London Mathematical
Society Lecture Note Series, vol. 241, pp. 87–162. Cambridge University Press,
Cambridge (1997)

3. Schaefer, M.: The graph crossing number and its variants: a survey. Electron. J.
Combin. DS21 (2014)

4. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007)

5. Guy, R.K., Jenkyns, T., Schaer, J.: The toroidal crossing number of the complete
graph. J. Comb. Theor. 4, 376–390 (1968)

6. Gilbert, J.R., Hutchinson, J.P., Tarjan, R.E.: A separator theorem for graphs of
bounded genus. J. Algorithms 5(3), 391–407 (1984)

7. Dujmović, V., Morin, P., Wood, D.R.: Layered separators in minor-closed families
with applications. Electronic preprint arXiv: 1306.1595 (2013)

8. Shahrokhi, F., Székely, L.A., Sýkora, O., Vrt’o, I.: Drawings of graphs on surfaces
with few crossings. Algorithmica 16(1), 118–131 (1996)

9. Halin, R.: S-functions for graphs. J. Geometry 8(1–2), 171–186 (1976)
10. Robertson, N., Seymour, P.D.: Graph minors. II. algorithmic aspects of tree-width.

J. Algorithms 7(3), 309–322 (1986)
11. Eppstein, D.: Diameter and treewidth in minor-closed graph families. Algorithmica

27, 275–291 (2000)
12. Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. Bull.

Am. Math. Soc. 43(4), 439–561 (2006)
13. Grohe, M., Marx, D.: On tree width, bramble size, and expansion. J. Combin.

Theory Ser. B 99(1), 218–228 (2009)
14. Leighton, T., Rao, S.: Multicommodity max-flow min-cut theorems and their use

in designing approximation algorithms. J. ACM 46(6), 787–832 (1999)

http://arxiv.org/abs/1408.3869
http://arxiv.org/abs/1306.1595

Hanani-Tutte for Radial Planarity

Radoslav Fulek1, Michael Pelsmajer2, and Marcus Schaefer3(B)

1 IST Austria, Am Campus 1, Klosterneuburg 3400, Austria
radoslav.fulek@gmail.com

2 Illinois Institute of Technology, Chicago, IL 60616, USA
pelsmajer@iit.edu

3 DePaul University, Chicago, IL 60604, USA
mschaefer@cs.depaul.edu

Abstract. A drawing of a graph G is radial if the vertices of G are
placed on concentric circles C1, . . . , Ck with common center c, and edges
are drawn radially: every edge intersects every circle centered at c at most
once. G is radial planar if it has a radial embedding, that is, a crossing-
free radial drawing. If the vertices of G are ordered or partitioned into
ordered levels (as they are for leveled graphs), we require that the assign-
ment of vertices to circles corresponds to the given ordering or leveling.

We show that a graph G is radial planar if G has a radial draw-
ing in which every two edges cross an even number of times; the radial
embedding has the same leveling as the radial drawing. In other words,
we establish the weak variant of the Hanani-Tutte theorem for radial
planarity. This generalizes a result by Pach and Tóth.

1 Introduction

In a leveled graph every vertex is assigned a level in {1, . . . , k}. We can capture
the leveling of the graph visually, by placing the vertices on parallel lines or
concentric circles corresponding to the levels of G. To further emphasize the
levels, we can require that edges respect the levels in the sense that edges must
lie between the levels of their endpoints, and be monotone in the sense that they
intersect any line (circle) parallel to (concentric with) the chosen lines (circles)
at most once. If we choose lines, we obtain the concept of level-planarity; for
circles we get radial (level) planarity.

Radial planarity was introduced by Bachmaier, Brandenburg and Forster [1]
as a generalization of level-planarity [6]. Radial layouts are a popular visualiza-
tion tool (see [7] for a recent survey); early examples of radial graph layouts
can be found in the literature on sociometry [13]. Bachmaier, Brandenburg and
Forster [1] showed that radial planarity can be tested, and an embedding can be
found, in linear time. Their algorithm is based on a variant of PQ-trees [2] and is
rather intricate. It generalizes an earlier linear time algorithm for level-planarity

Radoslav Fulek — The research leading to these results has received funding from
the People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement no [291734].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 99–110, 2015.
DOI: 10.1007/978-3-319-27261-0 9

100 R. Fulek et al.

testing by Jünger and Leipert [12]. In this paper, we take the first step toward
an alternative algorithm for radial planarity testing via a Hanani-Tutte style
characterization.

The classical Hanani-Tutte theorem [5,20] states that a graph is planar if and
only if it can be drawn in the plane so that every two independent edges cross
an even number of times. A particularly nice algorithmic consequence of this
result is that it reduces planarity testing to solving a system of linear equation
(of polynomial size) over Z2, a purely algebraic problem which can be solved in
polynomial time.

If we could show that a leveled graph G is radial planar if it has a radial
drawing (respecting the leveling) in which every two independent edges cross
an even number of times, we would have a new, very simple, polynomial-time
algorithm for radial planarity. We conjecture that this (strong) Hanani-Tutte
characterization of radial planarity is true, and take the first step toward this
result: a weak Hanani-Tutte theorem. A weak variant of the Hanani-Tutte theo-
rem makes the stronger assumption that every two edges cross an even number
of times. Often, this leads to stronger conclusions. For example, it is known that
if a graph can be drawn in a surface so that every two edges cross evenly, then
the graph has an embedding on that surface with the same rotation system, i.e.
the cyclic order of ends at each vertex remains the same [3,16].

Our main result, proved in Sect. 3, is the following theorem:

Theorem 1. Suppose a leveled graph G has a radial drawing in which every two
edges cross an even number of times. Then G has a radial embedding with the
same rotation system. (All drawings respect the given leveling.)

Theorem 1 implies a polynomial time algorithm for the radial planarity test-
ing of a leveled graph G if a combinatorial embedding (rotation system) of G is
fixed. This algorithm (sketched in Sect. 4) is based on solving a system of lin-
ear equations over Z2, see also [19, Sect. 1.4]. Thus, our algorithm runs in time
O(|V (G)|2ω), where O(nω) is the complexity of multiplication of two square n×n
matrices. Since our linear system is sparse, it is also possible to use Wiedemann’s
randomized algorithm [21], with expected running time O(n4 log n2) in our case.

Remark 1. While we do not know whether the (strong) Hanani-Tutte character-
ization of radial planarity holds, it can still be used for an algorithmic solution of
the radial planarity problem, in the following sense: one can write a polynomial-
time algorithm which—given leveled graph G—either returns a radial planar
embedding of G, states that G is not radial planar, or stops with “don’t know”.
If the algorithm outputs one of the first two answers, it is correct. If the strong
Hanani-Tutte theorem for radial planarity is true, then the third answer will not
occur. The details of how this can be done have been explained in a paper by
Gutwenger, Mutzel, and Schaefer [11], where such an algorithm was successfully
implemented for c-planarity. �

Hanani-Tutte for Radial Planarity 101

Theorem 1 is a generalization of a weak variant of the Hanani-Tutte theorem
for level-planarity1, first proved by Pach and Tóth [9,14]. The full Hanani-Tutte
theorem for level-planarity was established only more recently [9], and it led to
a quadratic time level-planarity test. A computational study of Chimani and
Zeranski [4] of various algorithms for upward planarity testing (an NP-complete
problem related to level-planarity), showed that the algorithm based on the
Hanani-Tutte characterization of level-planarity performs very well in practice
(it beats all other algorithms in nearly all scenarios).

Hanani-Tutte style characterizations have also been established for partially
embedded planar graphs, several classes of simultaneously embedded planar
graphs [18], and two-clustered graphs [8]. The family of counterexamples in
[8, Sect. 4] shows that a straightforward variant of the Hanani-Tutte theorem for
clustered graphs with more than two clusters fails. Gutwenger et al. [11] showed
that by using the reduction from [18], this counterexample can be turned into
a counterexample for a variant of the Hanani-Tutte theorem for two simultane-
ously embedded planar graphs [18, Conjecture 6.20]. For higher-genus (compact)
surfaces, the weak variant is known to hold in all surfaces [3,17], while the strong
variant is known for the projective plane only [15]. It remains an intriguing open
problem whether the strong Hanani-Tutte theorem holds for closed surfaces other
than the sphere and projective plane.

2 Terminology

For the purposes of this paper, graphs may have multi-edges, but no loops. An
ordered graph G = (V,E) is a graph whose vertices are equipped with a total
order v1 < v2 < · · · < vn. We consider an ordered graph a special case of a leveled
graph, in which every vertex of G is assigned a level, a number in {1, . . . , k} for
some k. The leveling of the vertices induces a natural ordering of the vertices.

For convenience we represent radial drawings as drawings on a (standing)
cylinder. Intuitively, imagine placing a cylindrically-shaped mirror in the center
of a radial drawing as described in the introduction.2

The cylinder C is S
1 × I, where S

1 is a unit circle and I is the unit interval
[0, 1]. Thus, a point on C is a pair (s, i), where s ∈ S

1 and i ∈ I. The projection
of C to S

1, or I, maps (s, i) ∈ C to s, or i. We denote a projection of a point or
a subset α of S1 × I to I by I(α). The winding number of a closed curve on a
cylinder is the number of times the projection to S

1 of the curve winds around
S
1, i.e., the number of times the projection passes through an arbitrary point

of S1 in the counter clockwise sense minus the number of times the projection
passes through the point in the clockwise sense. A closed curve (or a cycle in a
graph) on a cylinder is essential if it has an odd winding number.

1 The result is stated for x-monotonicity, the special case of level-planarity in which
every level contains a single vertex. As we will see below, this special case is equivalent
to the general case.

2 Search for “cylindrical mirror anamorphoses” on the web for many cool pictures of
this transformation.

102 R. Fulek et al.

With this, a radial drawing of G is a drawing of G on C such that the
projection to I of every edge is injective (i.e., an edge does not “turn back”)
and for every pair of vertices vi < vj we have I(vi) < I(vj). We also speak
of an edge being radial when it satisfies this condition. In a radial drawing an
upper edge and lower edge, respectively, at v is an edge incident to v for which
min(I(e)) = I(v) and max(I(e)) = I(v). A vertex v is a sink (source), if v has
no upper (lower) edges. In order to avoid some inconvenient situation we assume
that I(G) is contained in the interior of I.

The rotation at a vertex in a drawing (on any surface) of a graph is the cyclic
order of the ends of edges incident to the vertex in the drawing. The rotation
system is the set of rotations at all the vertices in the drawing. In the case
of radial drawings the upper (lower) rotation at a vertex v is the linear order
of the end pieces of the upper (lower) edges in the rotation at v starting with
the direction corresponding to the clockwise orientation of S1. The rotation at
a vertex in a radial drawing is completely determined by its upper and lower
rotation. The rotation system of a radial drawing is the set of the upper and
lower rotations at all the vertices in the drawing.

In what follows we consider drawings of G in the (Euclidean) plane or on a
cylinder. Thus, every embedded cycle of G is separating, i.e. its complement in
the ambient space of G has two components. Also, the complement of any closed
curve (possibly with self-crossings) can be two-colored so that connected regions
each get one color and neighboring regions receive opposite colors.

A drawing of G is even if every two edges in the drawing cross an even number
of times. After a sufficiently generic continuous deformation of a drawing of G
the parity of the number of crossings between a pair of edges changes only when
an edge passes through a vertex during the deformation. We call this event an
edge-vertex switch. In particular, when an edge e passes through a vertex v the
parity of the number of crossings between e and every edge incident to v changes.

3 Weak Hanani-Tutte for Radial Drawings

In this section, we prove Theorem 1, the weak Hanani-Tutte theorem for radial
planarity. We claim that it will be sufficient to restrict ourselves to the special
case in which every level of G contains a single vertex, an ordered graph.

Theorem 2. Suppose the ordered graph G has an even radial drawing. Then G
has a radial embedding with the same rotation system, and the winding parity of
every cycle remains the same.3 (All drawings respect the ordering.)

The reduction of Theorem 1 to Theorem 2 is based on the same construction
used in [9, Sect. 4.2] to reduce level-planarity to x-monotonicity: Suppose we are
given an even radial drawing of a leveled graph G. If any level of G contains
3 The claim about the invariance of the parity of the winding number of every cycle

in Theorem 2 is a consequence of the preservation of the rotation system (a proof
will be included in the journal version).

Hanani-Tutte for Radial Planarity 103

more than one vertex, we do the following: if any vertex at that level is a source
or a sink, we add a crossing-free edge on the empty side of that vertex. We
place the new vertex at a new level, close to the current level we are working on.
We now slightly perturb all the vertices of the current level so no two vertices
are at the same level (without moving them past any of the new vertices we
created). We can do so, while keeping all edges radial, and without introducing
any crossings. Since the new vertices we added are at unique levels, we only
perform the perturbation on the original levels. Call the resulting ordered graph
G′. By Theorem 2, G′ has a radial embedding with the same rotation system, and
the winding number of every cycle unchanged. We can now move all perturbed
vertices back to their original levels, the additional edges we added ensure that
this is always possible.

We will make use of the weak Hanani-Tutte theorem for x-monotone graphs
due to Pach and Tóth [14], reproved in [9].

Theorem 3 (Pach, Tóth [14]). Suppose that G can be drawn so that edges
are x-monotone and every two edges cross an even number of times. Then there
exists an embedding of G, in which the vertices are drawn as in the given drawing
of G, the edges are x-monotone, and the rotation system is the same.

Figure 1 shows an example of a graph for which x-monotonicity and radial
planarity differ. A radial embedding of a graph not admitting an x-monotone
embedding, must contain an essential cycle.

I

S
1

S
1 − p

I

v1

v3
v2

v4
v5v6 v6 v5

v4

v3

v1
v2

Fig. 1. An instance of an ordered graph that admits a radial embedding but does
not admit an x-monotone embedding. The left and the right edge of the rectangle are
identified in the left part of the figure.

3.1 Working with Even Radial Drawings

Given a connected graph G with a rotation system, we can define a facial walk
purely combinatorially by following the edges according to the rotation system
(see, for example, [10, Sect. 3.2.6]). A vertex and edge, respectively, is incident
to a face if it appears on its facial walk. By gluing disks to each facial walk, one
obtains a surface with the graph embedded in it. In case the surface is a sphere,
each vertex occurs at most once on every facial walk of G if and only if G does

104 R. Fulek et al.

not contain a cut-vertex. Any drawing of a graph G on an orientable surface
defines a rotation system. For an even drawing of a connected graph G on the
plane, the facial walks obtained from the rotation system correspond to a planar
embedding. This is the weak Hanani-Tutte theorem [3,16]:

Theorem 4. Let G be a graph. Suppose that G has an even drawing in the
plane. Then G has an embedding in the plane with the same rotation system.

Let v denote a vertex incident to a face f . Let e = uv and e′ = vw denote
a pair of consecutive edges on the facial walk of a face f in an embedding of
a graph G. (Note that e and e′ might be equal.) The edges e and e′ define a
wedge at v in f which is a portion of f in a small topological ε-neighborhood
of v between e and e′. By Theorem 4, any even drawing of G corresponds to
its embedding with the same rotation system. Hence, every consecutive pair of
edges e = uv and e′ = vw in the rotation at v in an even drawing defines a
wedge in the corresponding embedding of G. Thus, a face f in an even drawing
of G is given by the set of wedges corresponding to f in the embedding of G.
From the set of wedges representing a face f in an even drawing we obtain the
facial walk Wf of f , since every two consecutive edges on Wf define a wedge of
f . By slightly abusing the notation we will denote the facial walk Wf by f .

We consider a radial embedding of a connected graph G. Let a maximum
(minimum) of a face f in the radial embedding of G be the maximum (minimum)
i such that vi is incident to f . Let a local maximum (minimum) of a face f be
a vertex v incident to f such that v > u,w (v < u,w), where u and w are the
predecessor and successor of v on the facial walk of f . An outer face in a radial
embedding is a face containing 0 × S

1 or 1 × S
1. A face is an inner face if it is

not an outer face.
Let f be a face in G given by an even radial drawing. The boundary curve

of f is a closed curve traversing the facial walk of f in its close topological
neighborhood, and at vertices passing through wedges in f . We naturally extend
the notion of the winding number to a face defined as the winding number of its
boundary curve. The two-coloring of f is the two-coloring of the complement of
its boundary curve. A point in the complement of the boundary curve of f is in
the interior (exterior) of f if it receives the same (opposite) color as a wedge in
f when we two-color f . Note that in an even drawing all the wedges in a face
have the same color. The outer face in an even radial drawing is a face having
0×S

1 or 1×S
1 in its interior. In an even radial drawing an outer face containing

0 × S
1 (1 × S

1) is the lower (upper) outer face. If G has only one outer face f , f
is simultaneously the lower and upper outer face. A face that is not an outer face
is an inner face. For a closed non-essential curve on the cylinder we define the
interior (exterior) as the union of the connected components in its complement
whose color is different (the same) as the color of 0 × S

1 in the two-coloring of
its complement.

Let v be a local minimum or maximum of a face f . A wedge ω at v in f in a
radial drawing is convex (concave) if the angle bounding ω in a small topological
neighborhood of v is convex and concave. Let C be a cycle in a radial drawing

Hanani-Tutte for Radial Planarity 105

of G. We consider C to be a subgraph of G whose drawing is inherited from
that of G. Now, C represents two faces. It is easy to see that C is non-essential
if and only if in the two-coloring of (the complement of) C the concave wedge
of C at the minimum and maximum of C receive the same color, i.e., are in the
same face defined by C. Indeed, the parity of the number of crossings between
a “vertical” path in C joining 0 × S

1 with 1 × S
1, and C equals to the winding

number of C by the definition of the winding number of C.
In a radial embedding of a connected graph G we observe that a face f is

an outer face if and only if vn is its maximum, or v1 is its minimum, and the
wedge in f at vn or v1 is concave. Thus, either G has two outer faces one of
which is lower and one of which is upper, or G has exactly one outer face. In the
former, the boundary curve of the outer faces is essential. In the latter G does
not contain any essential cycle. The same is true also in even radial drawings.

Lemma 1. In an even radial drawing of a connected graph G at most one face
can have a concave wedge at its maximum or minimum, which necessarily hap-
pens only at vn or v1. Consequently, either G has two outer faces one of which
is lower and one of which is upper, or G has exactly one outer face.

The next lemma simplifies the type of faces we have to deal with.

Lemma 2. Let G be a connected graph. Suppose that G has an even radial
drawing. Then we can augment the drawing of G by adding edges so that the
resulting drawing is still even and radial, every face of G has at most two local
minima and two maxima, and each outer face has exactly one local minimum
and one local maximum.

Proofs of previous lemmata will be contained in the journal version of the
paper.

3.2 Proof of Theorem 2

A connected component G1 of G drawn radially is essential if it contains an
essential cycle.

Given a graph G with a radial drawing, consider the augmentation of G that’s
guaranteed by Lemma 2. If Theorem 2 is true for the augmented graph, then it is
clearly true for G as well. Thus, it suffices to prove Theorem 2 for graphs of the
form constructed in Lemma 2. Even more, we can restrict ourselves to connected
components of the graph, as the following lemma shows (proof left to the journal
version).

Lemma 3. A counterexample to Theorem2 with the smallest number of vertices
is not disconnected.

Before we turn to the proof of Theorem 2 we present one more tool which
allows us to clear an arbitrary edge in an even radial drawing of crossings while
keeping the drawing radial and even. This is a slight extension of redrawing
results we have used in previous papers [17, Fig. 3]. A proof will be included in
the journal version.

106 R. Fulek et al.

Lemma 4. Let G denote a graph given by an independently even radial drawing.
Let e denote an arbitrary edge of G crossing every other edge in G evenly. We
can redraw the edges crossing e inside I(e)×S

1 so that (i) e is crossing free, (ii)
the resulting drawing remains even and radial, (iii) the rotation system and the
points representing vertices are the same as in the given drawing, (iv) the parity
of winding number remains the same for all cycles.

Proof (of Theorem 2). For the sake of contradiction let G denote a minimal
counterexample with respect to the number N of ordered pairs of vertices (u, v),
u < v, of G, where u is a source and v is a sink. By Lemma 3, we assume that G
is connected and by Lemma 2 we assume that each face of G contains at most
two local minima and each outer face at most one local minimum. We construct
a radial embedding D of G inductively as Dn, where every Di, 1 ≤ i ≤ n, is an
even radial drawing of a graph Gi obtained from G by subdividing certain edges
in their interior without altering its radial planarity such that Di is crossing free
in [0, I(vi)] × S

1. Since throughout the proof we keep the rotation system of G
unchanged (after suppressing the subdividing vertices in Gi), this contradicts
the choice of G.

We proceed by constructing compatible cyclic orders Oi given by the order
of appearance of points in Di ∩ (I(vi) × S

1) along I(vi) × S
1. The elements,

i.e., points, in Oi’s are denoted by the objects of Gi, i.e., edges and vertices,
they belong to. By “compatible” we mean that for two consecutive orders Oi

and Oi+1 (after suppressing the subdividing vertices in Gi) the order Oi+1 is
obtained from Oi using an auxiliary order O′

i as follows. We obtain O′
i from

Oi by replacing vi with its upper edges. We obtain Oi+1 from O′
i by replacing

the lower edges of vi+1 appearing consecutively in O′
i with vi+1 if vi+1 is not a

source. Otherwise, we obtain Oi+1 from O′
i by placing vi+1 between two edges

bounding the face that contains the concave wedge at vi+1.
In the base case there is nothing to prove. We just put G1 := G. For i+1 > 1,

we distinguish two cases depending on whether vi+1 is a source or not. We work
in Di from the induction hypothesis. We subdivide in Gi every edge e′ whose
projection I(e′) contains vi in its interior at a point pe′ whose projection I(pe′) ∈
(I(vi), I(vi)+ε), where ε is sufficiently small such that [I(vi), I(vi)+ε]×S

1 is free
of edge crossings. Let Gi+1 denote the resulting graph. Clearly, such subdivisions
have no effect on the embeddability and do not alter the value N . The order O′

i

is obtained by taking Di ∩ ((I(vi) + ε) × S
1). There are two cases to distinguish

depending on whether vi+1 is a source.

The vertex vi+1is not a source. First, if vi+1 is not a source let e denote a lower
edge at vi+1, see Fig. 2. In Di we clear e of crossings by using Lemma 4.

Now, if the lower edges at vi+1 do not appear consecutively in O′
i we neces-

sarily obtain a pair of edges crossing an odd number of times (contradiction). If
e is crossing free, every pair of edges cross in [I(vi), I(vi+1)]×S

1 an even number
of times, if and only if Di∩(I(vi+1)×S

1) yields the same circular order as O′
i. We

continuously deform the drawing in (I(vi)− ε, I(vi+1)+ ε)×S
1 so that the order

of the edges at I(vi+1) × S
1 is the same as in O′

i while keeping e crossing free.

Hanani-Tutte for Radial Planarity 107

vi+1

vi

b d c a

e a b c d

vi+1

vi

b d c a

a b c de

(a () b)

vi+1

vi

b d c a

e a b c d

(c)

Fig. 2. Case: vi+1 is not a source. (a) Drawing of [I(vi), I(vi+1)]×S
1 (left and right sides

are identified), dashed curves may cross. (b) Edges crossing I(vi+1) × S
1 are deformed

in a small neighborhood of I(vi+1)×S
1 so their cyclic order matches Oi. (c) Edges are

redrawn using geodesics.

Thus, in particular we do not perform any edge-vertex switch during the defor-
mation. Now, every pair of edges in [I(vi), I(vi+1)]×S

1 cross an even number of
times. Thus, we can replace the pieces of edges in [I(vi), I(vi+1)]×S

1 by geodes-
ics connecting the same ends, which yields a desired Di+1. Note that the lower
rotation at vi+1 is preserved since every pair of edges cross in [I(vi), I(vi+1)]×S

1

an even number of times.

The vertex vi+1is a source. Let f denote the face in which vi+1 has the concave
wedge. Let v denote the local maximum of f which is not the maximum of f . If
v does not exists it follows that the maximum of f is a cut-vertex, and we let
v be this cut-vertex. Let u denote the minimum of f . Let P denote the path in
the walk f from u to v not containing vi+1. Let Q denote the path in the walk
f from vi+1 to v not containing u. In Di we clear P of crossings by a repeated
application of Lemma 4.

Unlike the previous case, we cannot, in general, deform the edges in (I(vi) −
ε, I(vi+1) + ε) × S

1 while keeping P crossing free to obtain the order of edges at
I(vi+1) × S

1 compatible with O′
i. This might require an edge-vertex switch with

vi+1 yielding a pair of edges crossing an odd number of times. Let S denote the

108 R. Fulek et al.

cyclic interval between vi+1 and P in (I(vi+1)×S
1) corresponding to the interior

of f determined by the order of end pieces of P and Q in the upper rotation
at v. The problem arises if the interior of S is crossed by edges. Thus, we first
have to clean S of edges. We proceed by reducing Gi+1 so that in the reduced
instance no edge crosses S.

From now on, an edge e is always an edge such that I(e) contains I(vi+1) in
its interior. Let Ge denote the connected component of Gi+1[{vi+1, . . . vn}]∪{e}
containing e, where Gi+1[{vi+1, . . . vn}] denotes the induced subgraph of G on
{vi+1, . . . vn}. An edge e sprouts beyond v if max(I(Ge)) ≥ I(v).

The crucial observation is, that after we cleaned P of crossings,

(i) S is crossed only by edges e not sprouting beyond v; and
(ii) the union G′

i of subgraphs Ge, for e’s not sprouting beyond v, does not
contain an essential cycle. The smaller vertices of e’s are seeds of G′

i. (We
recall that after the subdivisions I(Ge) ⊆ [I(vi), 1].)

Since the interior of (I(P) × S
1) \ P is homeomorphic to the plane, (ii) is

obvious once we establish (i). To prove (i), consider a closed curve C obtained by
concatenating the part of f between vi+1 and v (not containing u); the part of
P between v and I(vi+1) × S

1; and the part of I(vi+1) × S
1 crossing the interior

of f , i.e., not crossing P . Claim (i) follows since e crosses C an odd number of
times, and hence, the only way for e to sprout beyond v is to have an edge in
Ge splitting a wedge in the interior of f which is impossible.

If G′
i is empty, S is not crossed by an edge, and hence, the order of edges in

Oi+1 is inherited from O′
i. The drawing Di+1 is obtained analogously as in the

case when vi+1 was not a source. Otherwise, consider a connected component
H of G′

i given by the even radial drawing inherited from the drawing Di of
Gi+1. Let SH ⊆ S

1 denote the smallest connected subset such that the set
CH = [I(vi), I(vi) + ε] × SH contains all seeds of H and does not intersect P .
Let H ′ denote the union of H with all Ge for e intersecting CH . By evenness of
the drawing I(H ′) ⊆ [I(vi),max(I(H))], since the curve (I(vi) + ε) × SH and a
part of the outer face of H in [I(vi) + ε, 1] × S

1 disjoint from P define a (non-
essential) cycle having the non-seed vertices of V (H ′)\V (H) in its interior. Let z
be the vertex, for which I(z) = max(I(H ′)). Then z has a concave wedge inside
a face f ′ for which max(f ′) > max(I(H ′)). Indeed, f ′ is not an outer face by
Lemma 1, since f ′ has a local maximum whose corresponding wedge is concave
and different from vn. Thus, the maximum of f ′ is different from z which is a
local maximum of f ′.

We reduce Gi+1 by removing the edges of H ′ from it, and identifying the
seeds of H ′ thereby replacing them by a single vertex si. In Di, this corresponds
to contracting CH to a point while keeping the drawing radial and even. Let G′

denote the resulting graph. Note that N necessarily decreased in G′. Indeed,
at least the contribution of the source-sink pair (vi+1, z) towards N decreased.
Since Gi+1 was a minimal counterexample, G′ has a desired radial embedding.
Similarly, let H ′′ denote the graph obtained from H ′ by identifying its seeds and
denoting the resulting vertex by s′

i. By the weak variant of the Hanani-Tutte
theorem for monotone drawings, Theorem3, we obtain a radial embedding of

Hanani-Tutte for Radial Planarity 109

H ′′ without an essential cycle. We combine the embeddings of H ′′ and G′ by
identifying si and s′

i, and uncontracting si. We have room to accommodate H ′′

inside f ′, since max(f ′) > max(I(H ′)). �

4 Algorithm

Theorem 1 reduces the problem of radial planarity testing with a fixed rotation
system to a system of linear equations over Z2. For planarity testing, systems
like this were first constructed by Wu and Tutte [19, Sect. 1.4.2].

Unlike the x-monotone case, two drawings of an edge e with fixed endpoints
may not be obtainable from each other by a continuous deformation of e, while
keeping e radial: two radial drawings of e may also differ by a number of (Dehn)
twists. The system has a variable xe,v for every edge-vertex switch (e, v) such
that I(v) ∈ I(e), and xe for every edge twist. Since we work in Z2 orientation of a
twist does not matter. We consider a twist of e = uv, u < v, as being performed
very close to v, i.e., the twist is carried out by removing a small portion Pe of e
such that we have I(w) �∈ I(Pe), for all vertices w, and reconnecting the severed
pieces of e by a curve intersecting every edge e′, s.t. I(Pe) ⊂ I(e′), exactly once.
Observe that with respect to the parity of crossings between edges performing a
twist close to v equals performing an edge-vertex switch of e with all the vertices
w < v (even those w for which w < u). Hence, any twist of e keeping e radial
can be simulated by a twist of e very close to v and a set of edge-vertex switches
of e with certain vertices w, for which u < w < v.

By the previous paragraph a linear system for testing radial planarity with
the fixed rotation system looks as follows. Given an arbitrary radial drawing of
G we denote by cr(e, f) the parity of the number of crossings between e and f .
In the linear system, for each pair of independent edges (e, f) = (uv,wz), where
u < v, w < z, u < w, and w < v, we have xe,w +xe,z +xf = cr(e, f) if z < v, and
xe,w + xf,v + xe = cr(e, f) if z > v. For a pair of edges (e, f) = (uv, uw), where
u < v < w, we have xf,v +xe = cr(e, f) and for a pair of edges (e, f) = (uv, uw),
where u > v > w, we have xf,v + xe + xf = cr(e, f). For a pair of edges
(e, f) = (uv, uv), where u < v, we have xe + xf = cr(e, f).

References

1. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and
embedding in linear time. J. Graph Algorithms Appl. 9, 2005 (2005)

2. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

3. Cairns, G., Nikolayevsky, Y.: Bounds for generalized thrackles. Discrete Comput.
Geom. 23(2), 191–206 (2000)

4. Chimani, M., Zeranski, R.: Upward planarity testing: a computational study. In:
Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 13–24. Springer,
Heidelberg (2013)

110 R. Fulek et al.

5. Chojnacki, C., Hanani, H.: Über wesentlich unplättbare Kurven im dreidimension-
alen Raume. Fundamenta Mathematicae 23, 135–142 (1934)

6. Di Battista, G., Nardelli, E.: Hierarchies and planarity theory. IEEE Trans. Syst.
Man Cybern. 18(6), 1035–1046 (1989)

7. Di Giacomo, E., Didimo, W., Liotta, G.: Spine and radial drawings, chapter 8.
In: Roberto, T. (ed.) Handbook of Graph Drawing and Visualization. Discrete
Mathematics and Its Applications. Chapman and Hall/CRC, Boca Raton (2013)

8. Fulek, R., Kynčl, J., Malinović, I., Pálvölgyi, D.: Clustered planarity testing revis-
ited. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 428–439.
Springer, Heidelberg (2014)

9. Fulek, R., Pelsmajer, M., Schaefer, M., Štefankovič, D.: Hanani-Tutte, monotone
drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph
Theory, pp. 263–287. Springer, New York (2013)

10. Gross, J.L., Tucker, T.W.: Topological Graph Theory. Dover Publications Inc.,
Mineola (2001). Reprint of the 1987 original

11. Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte
for testing c-planarity. In: McGeoch, C.C., Meyer, U. (eds.) 2014 Proceedings of
the Sixteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pp. 86–97. SIAM, Portland (2014)

12. Jünger, M., Leipert, S.: Level planar embedding in linear time. J. Graph Algorithms
Appl. 6(1), 72–81 (2002)

13. Northway, M.L.: A method for depicting social relationships obtained by sociomet-
ric testing. Sociometry 3(2), 144–150 (1940)

14. Pach, J., Tóth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39–47 (2004). Updated version: arXiv:1101.0967

15. Pelsmajer, M.J., Schaefer, M., Stasi, D.: Strong Hanani-Tutte on the projective
plane. SIAM J. Discrete Math. 23(3), 1317–1323 (2009)

16. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings. J. Com-
bin. Theor. Ser. B 97(4), 489–500 (2007)

17. Pelsmajer, M.J., Schaefer, M., Štefankovič, D.: Removing even crossings on sur-
faces. Eur. J. Comb. 30(7), 1704–1717 (2009)

18. Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants.
J. Graph Algortihms Appl. 17(4), 367–440 (2013)

19. Schaefer, M.: Hanani-Tutte and related results. In: Bárány, I., Böröczky, K.J., Tóth,
G.F., Pach, J. (eds.) A Tribute to László Fejes Tóth. Bolyai Society Mathematical
Studies, vol. 24, pp. 259–299. Springer, Berlin (2014)

20. Tutte, W.T.: Toward a theory of crossing numbers. J. Comb. Theor. 8, 45–53
(1970)

21. Wiedemann, D.H.: Solving sparse linear equations over finite fields. IEEE Trans.
Inf. Theor. 32(1), 54–62 (1986)

http://arxiv.org/abs/1101.0967

Experiments

Drawing Planar Cubic 3-Connected Graphs
with Few Segments: Algorithms

and Experiments

Alexander Igamberdiev1, Wouter Meulemans2(B), and André Schulz1(B)

1 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany
{alexander.igamberdiev,andre.schulz}@fernuni-hagen.de

2 GiCentre, City University London, London, UK
wouter.meulemans@city.ac.uk

Abstract. A drawing of a graph can be understood as an arrangement
of geometric objects. In the most natural setting the arrangement is
formed by straight-line segments. Every cubic planar 3-connected graph
with n vertices has such a drawing with only n/2+3 segments, matching
the lower bound. This result is due to Mondal et al. [J. of Comb. Opt.,
25], who gave an algorithm for constructing such drawings.

We introduce two new algorithms that also produce drawings with
n/2+3 segments. One algorithm is based on a sequence of dual edge con-
tractions, the other is based on a recursion of nested cycles. We also show
a flaw in the algorithm of Mondal et al. and present a fix for it. We then
compare the performance of these three algorithms by measuring angular
resolution, edge length and face aspect ratio of the constructed drawings.
We observe that the corrected algorithm of Mondal et al. mostly outper-
forms the other algorithms, especially in terms of angular resolution.
However, the new algorithms perform better in terms of edge length and
minimal face aspect ratio.

1 Introduction

To assess the quality of network visualizations, many criteria have been investi-
gated, such as crossing minimization, bend minimization and angular resolution
(see [9] for an overview). The structural complexity of a graph is often measured
in terms of its number of vertices or edges. This, however, does not necessarily
correspond to its cognitive load (mental effort needed to interpret a drawing).
Bends and crossings increase the cognitive load, making it harder to interpret a
graph visualization, and should be avoided.

We consider the following measure of visual complexity for planar graphs [8]:
the number of basic geometric objects that are needed to realize the drawing.
For example, if a path in the graph is placed along a line, then we do not need
one line segment for each edge in this path; one line segment can represent
the entire path. In contrast to bends and crossings, which increase the cognitive

Funded by the German Research Foundation (DFG) under grant SCHU 2458/4-1.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 113–124, 2015.
DOI: 10.1007/978-3-319-27261-0 10

114 A. Igamberdiev et al.

load, this definition of visual complexity aims to measure a reduction in cognitive
load in comparison to the structural complexity. The basic geometric shapes are
typically straight-line segments or circular arcs. Upper and lower bounds on the
necessary visual complexity of various graph classes are known [2,3,8]. A lower
bound for any graph is N/2, where N is the number of odd-degree vertices: at
least one geometric object must have its endpoint at such a vertex. Computing
the optimal visual complexity of line-segment drawings is NP-hard [4].

We consider line-segment drawings for planar cubic 3-connected graphs;
unless mentioned otherwise, “graph” is used to refer to a graph of this class. Any
plane drawing has at least three vertices of the same face on its convex hull: such a
vertex is the endpoint of the line segment for each incident edge. Thus, we obtain
a lower bound of n/2+3 line segments, as n is even. Dujmović gave an algorithm
for drawing general planar graphs with low visual complexity [2]. This algo-
rithm will draw a cubic planar graph with n + 2 line segments. Mondal et al. [7]
improve this by giving an algorithm that uses n/2 + 4 segments. Moreover this
algorithms places the vertices on a (n/2 + 1) × (n/2 + 1) grid and uses only
6 different slopes. A variant of the algorithm is also suggested, one that does
not place the vertices on a grid and uses 7 distinct slopes, but attains a visual
complexity of n/2 + 3. The presentation of Mondal et al. contains a flaw, but it
can be fixed as discussed in Sect. 4.

To compute a plane drawing matching the lower bound, we are given (or
pick) three convex hull vertices; these are referred to as the suspension vertices.
For all other internal vertices, we decide which two incident edges lie on the same
line segment, that is, which of the three angles is flat. Hence, this corresponds to
a flat-angle assignment ; we refer to plane drawings that match the lower bound
as flat-angle drawings. Note that any face in a flat-angle drawing is nonstrictly
convex. Aerts and Felsner [1] describe conditions for the stretchability of flat-
angle assignments. From a stretchable assignment, a layout can be obtained by
solving a system of harmonic (linear) equations with arbitrary edge weights, very
similar to the directed version of Tutte’s barycentric embedding as presented by
Haas et al. [6]. How to efficiently compute stretchable flat-angle assignments
remains an open problem.
Contributions. We present two different new O(n2)-time algorithms (Sects. 2
and 3) to construct a plane drawing with n/2 + 3 segments for n ≥ 6, match-
ing the lower bound. From the constructed drawings, a flat-angle assignment
is derived, which is then used to set up a system of harmonic equations [1].
By solving the system using uniform edge weights we can redraw the layouts to
(possibly) increase their visual appeal. To the best of our knowledge the new algo-
rithms present novel methods to incrementally build up cubic planar 3-connected
graphs by simple and local modifications. These construction sequences might
also find applications outside of our applications.

We review the algorithm of Mondal et al. and discuss cases where it might
produce degenerate drawings. We then present a fix for these problematic cases.
This leaves us with three algorithms that produce drawings of cubic planar
3-connected graphs with low visual complexity; see Fig. 1. We run several exper-

Drawing Planar Cubic 3-Connected Graphs with Few Segments 115

Fig. 1. Result of the various algorithms for the same graph and outer face. (left)
Deconstruction algorithm. (middle) Windmill algorithm. (right) Mondal algorithm.

iments and evaluate the performance of these algorithms by measuring geometric
features of the produced drawings. In particular, we measure angular resolution,
edge length, and face aspect ratio. We use two data sets for our experiments. For
the first data set we sample over the set of all cubic planar 3-connected graphs
with 24 to 30 vertices. The second data set is given by the set of 146 popular
graphs with at most 30 vertices from the Wolfram graph database1.

2 The Deconstruction Algorithm

For this algorithm we define an operation called edge insertion2: pick two edges
that belong to one face, subdivide both edges and add a new edge between the
new degree-2 vertices while preserving planarity. It is folklore that every cubic
3-connected graph can be obtained from K4 by a sequence of edge insertions
(e.g., [5, page 243]). For our purpose we need a slightly stronger version (proven
in the full version): any cubic planar 3-connected graph other than K4 can be
constructed by a sequence of edge insertions from the triangular prism, while
not adding new edges in a given outer face (though outer-face edges may be
subdivided).

An edge whose removal (understood as a reverse edge insertion) maintains
planarity, 3-regularity, 3-connectivity, and a chosen outer face is called a good
edge. We compute a construction order by repeatedly removing a good edge
(a good edge always exists as proven in the full version). This procedure always
finishes on a triangular prism which has a trivial flat-angle drawing for any outer
face. Note that the construction sequence is not necessarily unique. For the later
analysis (Sect. 5), we distinguish three different strategies on how to select the
removed edge from the set of all good edges in every step:

(R)We select the edge randomly from the set of all good edges.
(S) We select a good edge with minimal sum of the degrees of its incident faces.
(L) Analogous to (S), we select a good edge with maximal sum of degrees.
1 http://reference.wolfram.com/language/ref/GraphData.html.
2 This is not the graph-theoretic notion of edge insertion.

http://reference.wolfram.com/language/ref/GraphData.html

116 A. Igamberdiev et al.

(1)

(3)

(2)

Fig. 2. Edge insertion that connects (1) noncollinear edges of a face, (2) collinear edges
separated by one vertex, and (3) collinear edges separated by two or more vertices. In
case 2 and 3, we reassign the flat angle at the first and/or last separating vertex.

We remark that there is no basis to suggest that the strategies (S) or (L) might
perform particularly well: we study these strategies primarily to have a more
structured procedure against which we can compare the randomized strategy.

Once we have obtained the construction order, we can reconstruct the original
graph from the triangular prism with a sequence of edge insertions maintaining
a flat-angle drawing (see Fig. 2). When inserting edges, we may have different
possibilities how to update the flat-angle assignment. Depending on our strategy
we may obtain different drawings. If an edge insertion “connects” two edges that
are not aligned, we have an obvious way how to add the new edge: we pick a
subdivision point on each of the edges and add the new edge as a straight-line
segment connecting these points. If the two edges are aligned (part of a common
segment �), we need to modify the existing drawing. Let u and v be the new
vertices that we introduce and let s1, . . . , sk be the vertices in between u and v
on �; see Fig. 3(a). Since the graph after adding e is planar, all segments starting
at si have to leave � on the same side. We first draw the new edge (u, v) on
top of � such that v coincides with sk. To repair the degeneracy, we tilt the old
part of � that was running between u and sk as done in Fig. 3(b). Here we let
sk “slide” on its segment that was not part of �. For k ≥ 2 we have also the
following alternative how to insert (u, v): we draw a segment parallel to � that
runs between the segments starting at s1 and sk. We place all endpoints si on
this new segment without changing any slopes of the old segments. We now take
the old vertex s1 as u, and the old vertex sk as v as depicted in Fig. 3(c). We
refer to the latter strategy as the alternate insertion operation.

e

u v
s1 s2 s3

s3
s2

s1

u ve

s3s2s1

u ve

(c)(b)(a)

Fig. 3. (a) Inserting edge e = (u, v) with its endpoints on the same side of a face (a).
(b) The standard insertion. (c) An alternative strategy.

Drawing Planar Cubic 3-Connected Graphs with Few Segments 117

With three different strategies (R, S and L) and an alternative insertion
operation (ALT), we have six variants of the Deconstruction algorithm, referred
to as DEC-R, DEC-R-ALT, DEC-S, DEC-S-ALT, DEC-L and DEC-L-ALT.

3 The Windmill Algorithm

The Windmill algorithm computes a flat-angle drawing, working its way inward
from the outer face, until all vertices have been processed. It does so recursively,
using as parameter a simple cycle C in the graph. It assumes that C is drawn
as a nonstrictly convex polygon. Its convex corners correspond to suspension
vertices or vertices having an edge outside C; any flat vertex has an edge inside C.
Initially, C is the outer face, drawn as an equilateral triangle with the suspension
vertices as corners (Fig. 4(a)). Based on the cyclic sequence F of faces along the
inside of C, a recursive step for cycle C is done using the first of the cases below:

1. If at most one vertex lies inside C, we draw all chords as line segments. The
one vertex (if present) is positioned to lie on a line segment between two of
its neighbors. See Fig. 4(b→c,e→f).

2. If a face occurs more than once in F , we draw its paths inside C as line
segments and recurse on a subcycle for each path. See Fig. 4(c→d).

3. If two faces share an edge, but are not consecutive in F , we draw three line
segments to represent the paths inside C along the two faces and recurse on
the two subcycles created. See Fig. 4(a→b).

4. Otherwise, we create a windmill pattern with the sequence of faces along C.
We recurse on the cycle inside the windmill. See Fig. 4(d→e).

(a) (b) (c)

(d) (e) (f)

Fig. 4. The Windmill algorithm. Cycles are drawn thick; unshaded cycles are processed
in the next step. (a) Initial call. (b→ . . . →e) Consecutive states. (f) Final result. (e→f)
Two cycles are processed. (a,c) Hashures indicate faces relevant for case 3 and 2.

118 A. Igamberdiev et al.

(a) (b) (c)

Fig. 5. (a) The dual restricted to F . Shortest cycle is given with solid lines. (b) Decom-
posing the face boundaries for the windmill structure. (c) Drawing the windmill pattern
and the bypassed components as triangles. Three cycles are recursed on (hashures).

There is a subtlety for case 3: the faces must lie on different sides of the polygon
for C. Otherwise, the condition on C described above cannot be maintained in a
plane drawing. Therefore, we use case 4 to handle such a pattern using additional
recursive calls. Below, we sketch how this works.

To construct a windmill, we proceed as follows (see Fig. 5). First, we consider
the dual of the given graph, restricted to the vertices that are dual to the faces
in F . Ideally, this is a simple cycle. However, two nonconsecutive faces of F that
are adjacent (and, because of case 3, lie on the same side of C) cause a chord in
this cycle. We find the shortest cycle in this restricted dual to create the windmill
(Fig. 5(a)). The face boundaries of the faces on this cycle are decomposed as to
provide the basic windmill structure (Fig. 5(b)). This bypasses any components
separated by a chord in the dual. These are inserted as triangles at the correct
place and recursed on as well, after drawing the windmill pattern (Fig. 5(c)).

Windmills can be created in a clockwise or counterclockwise direction. To
decide, we provide two strategies. The first is to always choose the same direc-
tion; the other is to alternate clockwise and counterclockwise, depending on the
recursion depth. We refer to these variants as WIN and WIN-ALT respectively.

Crucial to the proof of correctness is showing that any cycle C is nonstrictly
convex and any vertex on C, for which the third edge is not drawn yet, is either
a suspension vertex or its other two edges (part of C) are drawn collinearly: in
either case, we need not worry about aligning the undrawn edge with another to
obtain minimal visual complexity (since each nonsuspension vertex must have
exactly two aligned edges). For full details and proofs, we refer to the full version.

4 The Mondal Algorithm

Mondal et al. [7] describe two linear-time algorithms for drawing cubic planar
3-connected graphs: one results in a grid drawing with n/2+4 line segments; the
other attains minimal visual complexity but does not produce a grid drawing.
Both algorithms introduce the vertices as given by a canonical order.

Drawing Planar Cubic 3-Connected Graphs with Few Segments 119

case 4d

u
v

u

v

a
b

(a) (b)

(c) (d)

a b

q

p

case 4b
a

b

a
b

q

v

u

v

u

p

Fig. 6. (a) State before adding b between u and v. (b) After adding b, before adding a
vertex between a and b. (c) Rotating about q as described in [7] results in a nonplane
drawing. (d) Rotating about p as described here yields a plane result.

We observed that the grid algorithm as described by Mondal et al. [7] is
flawed. The example in Fig. 6 illustrates the problem. When adding a chain of
vertices from u to v (case 4d in [7], see Fig. 6(a–b)), the vertex at u is “rotated”
to give it an incident edge with slope 1. In the next step, we may need to rotate
backward to give vertex b an incident edge with slope ∞ (case 4b in [7], see
Fig. 6(b–c)). However, the point computed to rotate about is erroneous: it is
point q. This causes u to be placed on top of q, resulting in a nonplane drawing.

To resolve this issue, we suggest the following procedure for determining the
correct pivot point. For case 4b, we walk downward along the slope 1 edges,
until we find a pivot vertex p that has either two slope 0 edges or a downward
edge with slope 1 and downward edge with slope ∞. In this case, every vertex
w along the path is moved �(w) positions to the left, where �(w) is the vertical
distance between w and pivot vertex p. We refer to this as a left-rotation. The
correct result for the counter example is given in Fig. 6(d).

Analogously for case 4d, we walk downward along the slope ∞ edges, until
we find a pivot vertex p that has either two slope 0 edges or a downward edge
with slope 1 and downward edge with slope ∞. In this case, every vertex w along
the path is moved r(w) positions to the right, where r(w) is the vertical distance
between w and pivot vertex p. We refer to this as a right-rotation.

To prove that left- and right-rotations maintain a plane drawing, we must
show that for every degree-3 vertex along the path to the pivot vertex, any
horizontal edge in the direction of the rotation has sufficient length. This is
captured by the invariant below. To simplify notation, we define r(w) and �(w)
to be 0, if w is not on a path that may be right-rotated or left-rotated respectively.

Invariant 1. Consider an edge e = (u, v) with slope 0 and let u and v be its left
and right vertex respectively. The length of e is at least 1 + r(u) + �(v).

120 A. Igamberdiev et al.

Observe that r(u) or �(v) is nonzero only in situations where u has been left-
rotated or v has been right-rotated. To fully prove this statement is out of scope
for this paper. Also, note that this is the invariant for the grid algorithm. For
the minimal-complexity algorithm, we must multiply the values of r(·) and �(·)
by two, and observe that rotations are not performed with slope ∞ edges: their
role is taken by slope −1 edges.

Moreover, we observe that the Mondal algorithm achieving minimal visual
complexity can be easily adapted to lie fully on a grid and use only six slopes as
well. To this end, we need to do only the following: whenever the bottom point
is moved to the right, it is moved downwards for an equal distance. This ensures
that its incident edge maintains a slope of −1.

Thus, we have two variants of the Mondal algorithms, both on a grid and
with only 6 slopes for its edges: one uses n/2 + 4 line segments, but draws on
a smaller grid than the second algorithm that uses only n/2 + 3 line segments.
We refer to these as MON-GRID and MON-MIN respectively.

5 Experiments

We have three different algorithms (each with its own variants) to draw planar
cubic 3-connected graphs using only n/2+3 line segments. The drawings (Fig. 1)
are obviously different, but—as the visual complexity is the same—we need cri-
teria to further assess the overall quality. In this section we discuss experimental
results comparing the 10 algorithm variants described in the previous sections.

5.1 Graphs

We generated all planar cubic 3-connected graphs with 24, 26, 28 and 30 vertices,
using plantri3. From each batch we sampled 500 graphs uniformly at random,
resulting in a total of 2000 graphs. The Wolfram data set shows roughly the
same patterns can be observed as for the random data set. As the graphs in this
data set are typically smaller, some differences arise.

5.2 Measures

We use the following three measures to quantify the quality of a graph layout.

Angular Resolution. At each internal vertex in the graph, we measure the small-
est angle as an indicator of angular resolution. Since one angle is always π,
the best angular resolution is π/2. Angular resolution measures how easily dis-
cernible the incident edges are. A high value indicates a good angular resolution.

Edge Length. We measure all edge lengths in the graph, normalized to
a percentage of the diagonal of the smallest enclosing axis-aligned square.

3 http://cs.anu.edu.au/∼bdm/plantri/.

http://cs.anu.edu.au/~bdm/plantri/

Drawing Planar Cubic 3-Connected Graphs with Few Segments 121

Though edge lengths should neither be too short nor too long, we in partic-
ular look at avoiding long edges4: we consider lower values for edge length to be
better.
Aspect Ratio. For each face, we measure the aspect ratio of the smallest enclos-
ing (not necessarily axis-aligned) rectangle. To compute this ratio, we divide the
length of its shorter side by the length of its longer side, yielding a value between
0 and 1. High values thus indicate a good aspect ratio. This is a simple indicator
of fatness, as all faces are convex.
Measuring Procedure. For each graph, we run each algorithm using each pos-
sible face of the graph as an outer face. For each measure, we compute both
the average value over all elements (vertices, edges, faces) as well as the worst
value. The worst value is the minimum value for angular resolution and face
aspect ratio, and the maximum value for the edge length. For both the aver-
age and worst value, we compute the average over all drawings for a particular
graph, i.e., what may be expected for that graph if we had chosen an outer face
uniformly at random. Thus, we have six measures in total.

5.3 Algorithm Comparison

Figure 7 shows the measured results for all graphs in the data set, summarized
as a box plot. For the DEC algorithms, only the ALT variants are shown, as the
results of the other variants are very similar.
Angular Resolution. The MON algorithms clearly perform better than the WIN
algorithms, which in turn outperform the DEC algorithms. This was to be
expected due to the fixed slopes used in the MON algorithms. We observed that
for the Wolfram data set, the angular resolution tends to increase for the WIN
and DEC algorithms. However, for the MON algorithms, there in fact seems to
be a slight decrease.
Edge Length. The worst-case values show that the MON algorithms perform
worst, and the WIN algorithms perform best; average edge length shows that
MON is slightly behind the WIN and DEC algorithms. Though statistically
significant (later in this section), the differences are only minor. The maximum
edge length for the WIN and DEC algorithms is lower due to its placement in
an equilateral triangle and the possibility of having additional vertices on all
sides of this triangle; the MON algorithms always have a long edge, close to
the diagonal of the drawing. For the MON-MIN algorithm, this worst-case edge
length is smaller than for MON-GRID. This is caused by our modification which
moves one point downward, thereby increasing the grid size.
Face Aspect Ratio. We see that the DEC algorithms are outperformed by the
other algorithms in terms of average ratio. MON-MIN outperforms MON-GRID
and the WIN algorithms. However, looking at the minimal face aspect ratio of a
drawing, we see that DEC outperforms the MON algorithms, and MON-GRID

4 Informal investigation of minimal edge lengths suggested only tiny differences,
though MON-GRID was slightly ahead of the other algorithms.

122 A. Igamberdiev et al.

DEC-L-ALT
DEC-S-ALT
DEC-R-ALT

WIN-ALT
WIN

MON-GRID
MON-MIN

Average Minimum A
n
gu

lar
resolu

tion

0 π/2 0 π/2

E
d
ge

len
gth

Maximum

A
sp

ect
ratio

DEC-L-ALT
DEC-S-ALT
DEC-R-ALT

WIN-ALT
WIN

MON-GRID
MON-MIN

Average

0 50% 0 100%

DEC-L-ALT
DEC-S-ALT
DEC-R-ALT

WIN-ALT
WIN

MON-GRID
MON-MIN

Average Minimum

0 1 0 0.5

Fig. 7. Box plot of the measured results. For length, lower values indicate better draw-
ings; for the other measurements, higher values indicate better drawings.

is actually slightly ahead of MON-MIN. For the Wolfram data set, containing
smaller graphs (n = 16.5 on average), we observe that the average face aspect
ratio of the MON algorithms decreases: MON-MIN is in line with the DEC algo-
rithms and the MON-GRID algorithm has lost its lead on the WIN algorithms.

We conclude from the above that the WIN algorithms generally outperform
DEC algorithms. Between the WIN and MON algorithms, there is no clear
agreement between the measures: the MON algorithms perform very well in
angular resolution, but worse in edge length; for the face aspect ratio, it depends
whether we consider the average or minimum ratio in a drawing.
Statistical Analysis. We further investigate the differences by performing an
RM-ANOVA analysis on the measurements with a post-hoc Tukey HSD test to
reveal the pairwise differences. The Skewness and Kurtosis of all measurements

Drawing Planar Cubic 3-Connected Graphs with Few Segments 123

-6 6-5 -4 -3 -2 -1 0 1 2 3 4 5

DEC-R

DEC-R-ALT

DEC-S

DEC-S-ALT

DEC-L

DEC-L-ALT

WIN

WIN-ALT

MON-GRID

MON-MIN

d
iff

=
2.5%

D
E

C
-R

D
E

C
-R

-A
L
T

D
E

C
-S

D
E

C
-S

-A
L
T

D
E

C
-L

D
E

C
-L

-A
L
T

W
IN

W
IN

-A
L
T

M
O

N
-G

R
ID

M
O

N
-M

IN

D
E

C
-R

D
E

C
-R

-A
L
T

D
E

C
-S

D
E

C
-S

-A
L
T

D
E

C
-L

D
E

C
-L

-A
L
T

W
IN

W
IN

-A
L
T

M
O

N
-G

R
ID

M
O

N
-M

IN

Fig. 8. (Left) Number of “wins” (measures for which the row-algorithm outperforms
the column-algorithm), using p < 0.001 in a Tukey HSD test with an estimated differ-
ence in means of at least 2.5 %. (Right) The number of “wins” minus the number of
“losses” in the left table, giving an overall view of relative performance.

are within the range [−2, 2], thus providing evidence for the assumption of the
normal distribution for these analyses. The only exception is the minimal angu-
lar resolution for the MON algorithms, which are constant at π/4. These are
excluded from the statistical analysis; we consider the MON algorithms to (sig-
nificantly) outperform the other algorithms due to the high difference in means.

The results of this statistical investigation are summarized in Fig. 8. For this,
we require an estimated difference in means of at least 2.5% of the possible range
of values, i.e., a difference of π/80 for angular resolution, 2.5% for edge length
and 0.025 for face aspect ratio.

We verify that the WIN algorithms clearly outperform the DEC algorithms,
in at least four measures (out of six). Between the two variants, there is no differ-
ence. As observed above, whether the MON algorithms outperform another algo-
rithm depends highly on the measure. The MON-MIN algorithm “wins” more
often than it “loses” compared to any other algorithm. However, the MON-GRID
algorithm is outperformed by the WIN algorithms. The DEC algorithms are not
distinguishable between themselves. They outperform the MON algorithms for
some measures, but are outperformed by the MON algorithms more often.

6 Conclusions

We studied algorithms for drawing cubic planar 3-connected graphs with minimal
visual complexity, i.e., with as few line segments as possible. The lower bound

124 A. Igamberdiev et al.

is n/2 + 3 for a graph with n vertices, and we introduced two new algorithms to
match this lower bound. These algorithms may be of independent interest, as a
way of constructing planar cubic 3-connected graphs. Moreover, we resolved a
flaw in an existing algorithm by Mondal et al. [7].

This leaves us with three algorithms, each with two or more variants. We
performed an experiment with two data sets to compare the performance of these
algorithms in terms of angular resolution, edge length and face aspect ratio. The
Deconstruction algorithm is always outperformed by the Windmill algorithm,
but the Windmill algorithm seems to be on par with the Mondal algorithm:
depending on the criterion, one or the other performs better. One aspect that
was not taken into consideration though, is that the Mondal algorithm comes
with a maximum grid size and uses only 6 slopes to draw the line segments.
Future Work. We studied visual complexity for planar cubic 3-connected graphs,
which is rather restrictive. Future algorithmic work may aim towards reducing
the gap between upper and lower bounds for other graph classes such as trian-
gulations or general planar graphs (see [3]). Moreover, the definition of visual
complexity is not limited to line segments, but may include for example the use
of circular arcs (see [8]). We may investigate how many vertices are spanned by a
line segment—but what is “better” here is not immediately clear. Moreover, we
may look into applying the system of harmonic equations to the Mondal layouts.

Furthermore, it would be interesting to investigate whether the definition
of visual complexity correlates to an observer’s assessment of complexity. In
other words, are drawings with minimal visual complexity indeed perceived to
be simpler than those with higher visual complexity? Moreover, can we establish
a relation between visual complexity and cognitive load? The graph may be
visually simpler, but that does not readily imply that it is easier to interpret.

References

1. Aerts, N., Felsner, S.: Straight line triangle representations. In: Wismath, S.,
Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 119–130. Springer, Heidelberg (2013)

2. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.: Drawings of planar graphs
with few slopes and segments. CGTA 38, 194–212 (2007)

3. Durocher, S., Mondal, D.: Drawing plane triangulations with few segments. In:
Proceedings of 26th CCCG, pp. 40–45 (2014)

4. Durocher, S., Mondal, D., Nishat, R., Whitesides, S.: A note on minimum-segment
drawings of planar graphs. J. Graph Algorithm Appl. 17(3), 301–328 (2013)

5. Grünbaum, B.: Convex Polytopes (Graduate Texts in Math), 2nd edn. Springer-
Verlag, New York (2003)

6. Haas, R., Orden, D., Rote, G., Santos, F., Servatius, B., Servatius, H.,
Souvaine, D.L., Streinu, I., Whiteley, W.: Planar minimally rigid graphs and pseudo-
triangulations. Comput. Geom. 31(1–2), 31–61 (2005)

7. Mondal, D., Nishat, R., Biswas, S., Rahman, S.: Minimum-segment convex drawings
of 3-connected cubic plane graphs. J. Comb. Opt. 25, 460–480 (2013)

8. Schulz, A.: Drawing graphs with few arcs. In: Brandstädt, A., Jansen, K., Reischuk, R.
(eds.) WG 2013. LNCS, vol. 8165, pp. 406–417. Springer, Heidelberg (2013)

9. Tamassia, R.: Handbook of Graph Drawing and Visualization. CRC Press,
Boca Raton (2013)

The Book Embedding Problem
from a SAT-Solving Perspective

Michael A. Bekos(B), Michael Kaufmann, and Christian Zielke

Wilhelm-Schickard-Institut Für Informatik, Universität Tübingen,
Tübingen, Germany

{bekos,mk,zielke}@informatik.uni-tuebingen.de

Abstract. In a book embedding, the vertices of a graph are placed on
the spine of a book and the edges are assigned to pages, so that edges
of the same page do not cross. In this paper, we approach the problem
of determining whether a graph can be embedded in a book of a certain
number of pages from a different perspective: We propose a simple and
quite intuitive SAT formulation, which is robust enough to solve non-
trivial instances of the problem in reasonable time. As a byproduct, we
show a lower bound of 4 on the page number of 1-planar graphs.

1 Introduction

Embedding graphs in books is a fundamental issue in graph theory that has
received considerable attention (see, e.g., [5] for an overview). In a book embed-
ding [26], the vertices of a graph are restricted to a line, referred to as the spine
of the book, and the edges are drawn at different half-planes delimited by the
spine, called pages of the book. The task is to find a so-called linear order of
the vertices along the spine and an assignment of the edges of the graph to the
pages of the book, so that no two edges of the same page cross; see Fig. 1b. The
book thickness or page number of a graph is the smallest number of pages that
are required by any book embedding of the graph.

Problems on book embeddings are mainly classified into two categories based
on whether the graph to be embedded is planar or not. For non-planar graphs,
it is known that there exist graphs on n vertices that have book thickness Θ(n),
e.g., the book thickness of the complete graph Kn is �n/2� [3]. Sublinear book
thickness have, e.g., graphs with subquadratic number of edges [24], subquadratic
genus [23] or sublinear treewidth [13]. Constant book thickness have, e.g., all
minor-closed graphs [6] or the k-trees for fixed k [16]. Another class of non-
planar graphs that was recently proved to have constant book thickness is the
class of 1-planar graphs [2].

For planar graphs, a remarkable result is due to Yannakakis, who back in 1986
proved that any planar graph can be embedded in a book with four pages [33].
However, more restricted subclasses of planar graphs allow embeddings in books
with fewer pages. Bernhart and Kainen [3] showed that the graphs which can
be embedded in single-page books are the outerplanar graphs, while the graphs
which can be embedded in books with two pages are the subhamiltonian ones.
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 125–138, 2015.
DOI: 10.1007/978-3-319-27261-0 11

126 M.A. Bekos et al.

It is known that not all planar graphs are subhamiltonian and the corre-
sponding decision problem whether a maximal planar graph is Hamiltonian (and
therefore two-page book embeddable) is NP-complete [32]. However, several sub-
classes of planar graphs are known to be Hamiltonian or subhamiltonian, see,
e.g., [1,11,12,19,21,25].

A well-known non-subhamiltonian graph is the Goldner-Harary one [17]. This
graph, however, is a planar 3-tree and hence 3-page book embeddable [18].
To the best of our knowledge, there is no planar graph whose page number
is four. In other words, it is not known whether the upper bound of four pages of
Yannakakis [33] is tight or not.

Our Contribution. We suggest an alternative approach to the problem of
determining whether a graph can be embedded in a book of a certain number of
pages. We propose a formulation of the problem as a SAT instance, which can be
useful in practice (note that, apart from their independent theoretical interest,
book embeddings find applications in several contexts, such as VLSI design,
fault-tolerant processing, sorting networks and parallel matrix multiplication,
see e.g., [11,20,28,30]). It turns out that our formulation is of a simple nature,
quite intuitive and easy-to-implement, but simultaneously robust enough to solve
non-trivial instances of the problem in reasonable amount of time (e.g., within
20 min we can test whether a maximal planar graphs with up to 400 vertices is
3-page book embeddable), as we will see in our experimental study.

Note that SAT formulations are not so common in graph drawing. A few
notable exceptions are [4,10,15]. In our context, of interest is the work of Biedl
et al. [4], who proposed ILP and SAT formulations for several grid-based graph
problems. Their general formulation can be extended to solve our problem as
well. However, from the authors’ experimental evaluation (and we could also
confirm it) it follows that their approach is limited to solve relatively small
instances within reasonable time, e.g., within 20 min one can cope with graphs
whose size in vertices and edges does not exceed 100.

A List of Hypotheses. When we started working on this project, we placed
several hypotheses that we wanted to prove or disprove. So, before we proceed
with the description of our formulation, we first list and then discuss the most
important ones:

H1: There is a (maximal) planar graph whose book thickness is four.
H2: There is a 1-planar graph whose book thickness is (at least) four.
H3: There is a (maximal) planar graph, which cannot be embedded in a book

of three pages, if the subgraphs embedded at each page must be acyclic.
H4: There is a maximal planar graph, say Ga, which in any of its book embed-

dings on three pages has at least one face whose edges are on the same
page.

H5: There is a maximal planar graph, say Gc, which in any of its book embed-
dings on three pages has a face, say f∗

c , whose edges cannot be on the same
page.

The Book Embedding Problem from a SAT-Solving Perspective 127

Summary and Discussion. Clearly, our ultimate goal was to find a planar
graph supporting Hypothesis 1. During our extensive practical analysis, we tested
several hundreds maximal planar graphs (both randomly created and crafted),
but we did not manage to find one supporting Hypothesis 1. We also tested a
specific graph with roughly 600 vertices out of the family of planar graphs that
Yannakakis proposed to require page number four, but it turned out to be 3-page
book embeddable for this particular size.

On the positive side, we proved that the weakest version of Hypothesis 2
holds. In particular, we managed to find a relatively small 1-planar graph whose
book thickness is exactly four; see Fig. 1. To the best of our knowledge, this is
the first (non-trivial) lower bound on the book thickness of 1-planar graphs.

1

2 3

4

5

6 7

8

(a)

1 2 345 67 8

(b)

Fig. 1. (a) A 1-planar graph, whose underlying planar structure (solid drawn) is the
cube graph. (b) A 4-page embedding, in which the fourth page contains a single edge
(dotted drawn).

We were surprised that we did not succeed in proving that Hypothesis 3
holds. Note that it is very natural to try to embed a tree-structured subgraph
at each of the available pages of the book, if one seeks to prove that indeed all
planar graphs can be embedded in books of three pages. For example, Heath [18]
who constructively proved that all planar 3-trees fit into books with three pages
used exactly this approach: the subgraphs embedded at each of the three pages
of the book are acyclic.

Note that we managed to prove a weaker version of Hypothesis 3, according
to which the input maximal planar graph has n vertices and cannot be embedded
in a book with three pages, so that:(i)the subgraph assigned to each of the three
pages is a tree on n − 1 vertices and, additionally, (ii) the three vertices, that
are not spanned by the three trees are pairwise adjacent forming a face fo of
the graph, say w.l.o.g. its outerface. This negative results implies that it is not
always possible to construct a 3-page book embedding based on a Schnyder
decomposition into three trees (regardless of the linear order underneath).

From our experimental evaluation (see Sect. 3), we quickly observed that the
practical limitation of testing the book-embedability of maximal planar graphs
on three pages with our SAT formulation (that we present in Sect. 2) lies at
around 600 to 700 vertices. Larger graphs lead to instance sizes, that excess
several gigabytes of random access memory. Hypotheses 4 and 5 in conjunction
describe an approach, that could potentially overcome this bottleneck. To see

128 M.A. Bekos et al.

this, assume that the two planar graphs, denoted by Ga and Gc in Hypotheses 4
and 5, exist (note, however, that we did not succeed in finding them). If for each
face fa of Ga, we create a copy of graph Gc and identify each of the vertices
of face f∗

c of Gc with one of the vertices of face fa of Ga, then we will obtain
a (drastically larger) planar graph, that is not 3-page book-embeddable. This is
because Ga must contain at least one face whose edges are on the same page,
while in the same time face f∗

c would require at least one of them not to be at
the same page.

2 SAT Formulation

Let G = (V,E), with V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, be a graph
for which we seek to decide, whether it can be embedded in a book with p ≥ 2
pages. Next we describe a logic formula F(G, p) that will solve this problem by
encoding it as a SAT instance. Recall that any SAT problem can be described in
conjunctive normal form (CNF), which is a conjunction of clauses; each clause
being a disjunction of (possibly negated) literals. We will define F(G, p) by its
set of variables and a corresponding set of rules. The rules will ensure the proper
assignment of the variables and will be given in propositional logic, which can
be converted into CNF clauses straightforwardly [27].

The variables of F(G, p) model a book embedding of G in a book with p pages,
if it exists. Thus, we use variables σ(vi, vj) for each pair of vertices vi, vj ∈ V to
determine, whether vertex vi is to the left of vertex vj along the spine. If that is
the case, the assignment is σ(vi, vj) = true. In this so-called relative encoding,
the variables encode a relative order between the vertices. Clearly, asymmetry
has to hold for these variables, which is ensured by the following rule:

σ(vi, vj) ↔ ¬σ(vj , vi)

With this asymmetry rule, variables σ(vi, vj) can be defined only for i < j. The
other literals, σ(vi, vj) with i > j, can be replaced by ¬σ(vj , vi). This results in
a significantly smaller formula, which is easier to be solved by a SAT solver [31].
The following transitivity rule for the σ-relation ensures a proper order of the
vertices along the spine:

σ(vi, vj) ∧ σ(vj , vk) → σ(vi, vk) ∀ pairwise distinct vi, vj , vk ∈ V

The search space of possible satisfying assignments can be reduced by choosing a
particular vertex as the first vertex along the spine and by assuming w.l.o.g. that
v2 is to the left of v3. These choices can be easily encoded by the direction rules:

σ(v1, vi) ∀vi ∈ V with i > 1
σ(v2, v3)

Note that the direction rules are represented by unit clauses that fix σ(v1, vi),
for i > 1 and σ(v2, v3) to be true. Via unit propagation (that is, a basic operation

The Book Embedding Problem from a SAT-Solving Perspective 129

performed by all SAT solvers [14]) other constraints may become simpler or even
already satisfied.

To encode the assignment of the edges to the pages of the book, we introduce
a variable φq(ei) for every edge ei ∈ E and every possible page 1 ≤ q ≤ p.
Thereby φq(ei) = true means that the edge ei is assigned to the q-th page of
the book. Every edge has to be assigned to one page, which is ensured by the
page assignment rule:

φ1(ei) ∨ φ2(ei) ∨ . . . ∨ φp(ei) ∀ei ∈ E

We can again reduce the search space by the fixed page assignment rule, that
fixes a single edge on a particular page, e.g., edge e1 ∈ E to page 1:

φ1(e1)

To forbid crossings among edges of the same page, we first introduce a variable
χ(ei, ej) for each pair of edges ei, ej ∈ E, which describes whether ei and ej are
assigned to the same page. ei, ej ∈ E are assigned to the same page, if and only
if, they are both assigned to one of the available pages, which is ensured by the
same page rule:

((φ1(ei) ∧ φ1(ej)) ∨ . . . ∨ (φk(ei) ∧ φk(ej))) → χ(ei, ej) ∀ei, ej ∈ E

To ensure planarity, it is enough to ensure that two edges which are assigned to
the same page do not cross. So, if (vi, vj), (vk, v�) ∈ E are two edges of G, such
that vertices vi, vj , vk and v� are pairwise different, this can be ensured by the
following planarity rule:

χ((vi, vj), (vk, v�)) →
¬(σ(vi, vk) ∧ σ(vk, vj) ∧ σ(vj , v�)) ∧¬(σ(vi, v�) ∧ σ(v�, vj) ∧ σ(vj , vk))

∧¬(σ(vj , vk) ∧ σ(vk, vi) ∧ σ(vi, v�)) ∧¬(σ(vj , v�) ∧ σ(v�, vi) ∧ σ(vi, vk))
∧¬(σ(vk, vi) ∧ σ(vi, v�) ∧ σ(v�, vj)) ∧¬(σ(vk, vj) ∧ σ(vj , v�) ∧ σ(v�, vi))
∧¬(σ(v�, vi) ∧ σ(vi, vk) ∧ σ(vk, vj)) ∧¬(σ(v�, vj) ∧ σ(vj , vk) ∧ σ(vk, vi))

Theorem 1. Let G = (V,E) be a graph and p ∈ N. Then, G admits a book
embedding on p pages, if and only if, F(G, p) is satisfiable. In addition, F(G, p)
has O(n2 + m2 + pm) variables and O(n3 + m2) clauses.

Proof. The number of σ-, χ- and φ-variables are O(n2), O(m2) and O(pm),
respectively, which implies that F(G, p) has O(n2 + m2 + pm) variables. The
number of clauses of F(G, p) is dominated by the number of transitivity, same-
page and planarity rules, which yield in total O(n3 + m2) clauses. So, to prove
this theorem, it remains to show that: (i) a book embedding on p pages yields a
satisfying assignment of F(G, p) and (ii)a satisfying assignment of F(G, p) yields
a book embedding on p pages.

(i) From an embedding to an assignment: Assume that G has a book embedding
E(G, p) on p pages. From E(G, p), we obtain an order of the vertices along the

130 M.A. Bekos et al.

spine and an assignment of the edges to the pages. We define an assignment
(σ̂, φ̂, χ̂) to the σ-, φ- and χ-variables of F(G, p) consistent with the intended
meaning of the variables as follows. (a) σ̂(vi, vj) = true, if and only if vi is
before vj along the spine, (b) φ̂q(ei) = true, if and only if ei is assigned to the
q-th page, (c) χ̂(ei, ej) = true, if and only if ei and ej are assigned to the same
page. To prove that assignment (σ̂, φ̂, χ̂) satisfies F(G, p), we consider all rules
of F(G, p):

– The transitivity and asymmetry rules are satisfied by (σ̂, φ̂, χ̂), since σ̂ is a
complete order over the vertices of G (by definition of the assignment).

– The direction rules are also satisfied, since we can assume w.l.o.g. that in
E(G, p) vertex v1 ∈ V is the first vertex along the spine and v2 is to the left of
v3. Note that if this is not the case, then we can circularly-shift the vertices
of G along the spine and potentially mirror E(G, p) and obtain an equivalent
embedding which has the aforementioned properties; see e.g., [33].

– The page assignment rule is trivially satisfied by the definition of the assign-
ment and the fact that E(G, p) was given.

– The fixed page assignment rule can be satisfied as well, since we can assume
w.l.o.g. that the first page of E(G, p) is the page where edge e1 ∈ E is
assigned to.

– The same page rule is trivially satisfied due to the definition of the assignment.
– It remains to show that all planarity rules are satisfied. For the sake of contra-

diction, assume that the assignment (σ̂, φ̂, χ̂) violates a planarity rule for some
pair of edges (vi, vj) and (vk, v�). We know that χ̂((vi, vj), (vk, v�)) = true
and further σ̂(vi, vk) = σ̂(vk, vj) = σ̂(vj , v�) = true. Hence, in E(G, p) we
have that vk is between vi and vj , while v� is not between vi and vj . Thus,
(vi, vj) and (vk, v�) are on the same page and cross in E(G, p), which is a clear
contradiction.

(ii) From an assignment to an embedding: Let (σ̂, φ̂, χ̂) be a satisfying assignment
to F(G, p). Let ξ : V �→ {1, . . . , n} be a function which maps each vertex v ∈ V

to a position along the spine. Based on (σ̂, φ̂, χ̂), map ξ can be defined as follows:

ξ(vi) = 1 + |{vj : σ(vj , vi) = true, 1 ≤ j ≤ n, j = i}|
Since (σ̂, φ̂, χ̂) satisfies the asymmetry and transitivity rules, it follows that all
positions assigned to the vertices of G are pairwise different. Therefore, a proper
global ordering is obtained. Since by the page assignment rule, every edge of
G is assigned to at least one page, we only have to show that each page is
crossing-free. Assume for the sake of contradiction that (vi, vj) and (vk, v�) are
two edges of G that are assigned to the same page and cross. In this case, one
of the following relationships must hold:

min{ξ(vi), ξ(vj)} < min{ξ(vk), ξ(v�)} < max{ξ(vi), ξ(vj)} < max{ξ(vk), ξ(v�)}
min{ξ(vk), ξ(v�)} < min{ξ(vi), ξ(vj)} < max{ξ(vk), ξ(v�)} < max{ξ(vi), ξ(vj)}
However, neither is possible, since both configurations do not comply with the
planarity rule of (σ̂, φ̂, χ̂). Therefore, each page is crossing-free, as desired. ��

The Book Embedding Problem from a SAT-Solving Perspective 131

So far, we have described a SAT formulation that tests, whether a given graph
G = (V,E) admits an embedding in a book with p ≥ 2 pages. Of course, this
formulation can be extended with additional variables and rules. In the following,
we will introduce three different extensions, which encode Hypotheses 3, 4 and 5.

2.1 A First Variant to check Hypothesis 3

In this subsection, we present a SAT formulation to check Hypothesis 3. Recall
that, we seek to check whether a maximal planar graph G can be embedded
in p = 3 pages, so that the subgraph assigned to each of the three pages is
an acyclic graph. In the following, we will extend formula F(G, 3) with new
variables and rules to encode the additional requirement. We denote by Ff (G, 3)
the resulting formula.

Let N (v) be the set of vertices adjacent to v ∈ V . For every edge (vi, vj) ∈ E,
variable πq(vi, vj) describes, whether vertex vi is the parent of vertex vj in the
forest of page q ∈ {1, 2, 3}. Variable πq(vj , vi) is defined symmetrically. We
ensure, that exactly one of the two variables is true when (vi, vj) is assigned to
page q, and both of the variables are false, when (vi, vj) is not assigned to page
q, by the parent rules:

φq((vi, vj)) → (πq(vi, vj) ∧ ¬πq(vj , vi)) ∨ (¬πq(vi, vj) ∧ πq(vj , vi))
¬φq((vi, vj)) → (¬πq(vi, vj) ∧ ¬πq(vj , vi))

We also have to ensure, that every vertex vi ∈ V has at most one parent vertex
in the forest of page q, which can be done via the single parent rule:

(¬πq(vk, vi) ∨ ¬πq(v�, vi)), ∀vk, v� ∈ N (vi) : vk = v�

To ensure acyclicity, we use variables αq(vi, vj) that describe, whether vertex vi

is an ancestor of vj in the forest of page q. We know that whenever for an edge
(vi, vj) ∈ E vertex vi is the parent of vertex vj on page q, that vi is the ancestor
for vj on that page as well, which results in the parent ancestor rule:

πq(vi, vj) → αq(vi, vj)

Clearly, transitivity as well as antisymmetry has to hold for the ancestor rela-
tionship:

(αq(vi, vj) ∧ αq(vj , vk)) → αq(vi, vk) ∀ pairwise distinct vi, vj , vk ∈ V

αq(vi, vj) → ¬αq(vj , vi) ∀ pairwise distinct vi, vj ∈ V

Theorem 2. Let G = (V,E) be a (maximal) planar graph. Then, G admits a
book embedding on three pages, so that the subgraph assigned to each of the three
pages is a forest, if and only, if Ff (G, 3) is satisfiable.

Proof. We use the same technique as in the proof of Theorem 1. So, consider an
embedding E(G, 3) in three pages yield by our formulation. We claim that the

132 M.A. Bekos et al.

subgraphs embedded at each page are acyclic. For contradiction, assume that
there is a cycle Cq at page q. If we direct each edge of Cq from the child to the
parent vertex, then all edges of Cq must have the same orientation, that is, either
clockwise or counterclockwise along Cq (otherwise, there is a vertex of Cq that has
two parents, deviating the single parent rule). The transitivity of the ancestor
relationship implies that the antisymmetry property is deviated along Cq, which
is a contradiction. Hence, the subgraphs embedded at each page of E(G, 3) are
indeed acyclic. Following similar arguments as in the second part of the proof of
Theorem 1, we can easily prove that a satisfying assignment of Ff (G, 3) yields
a book embedding on 3 pages, in which the subgraph assigned to each page is a
forest, which completes the proof. ��
Note that Ff (G, 3) has asymptotically the same number of variables and clauses
as F(G, 3). Our formulation can be easily adjusted to check whether the sub-
graph assigned to each page is a tree. In this scenario, we employ an additional
variable ρq(vi) for each vertex vi ∈ V that describes whether vi is the root of
the tree of page q ∈ {1, 2, 3}. Vertex vi is the root of the tree of page q if and
only if it has no parent and (at least) one child at page q, which can be ensured
via the following root rule:

(
∧

vj∈N (vi)

¬πq(vj , vi)) ∧ (
∨

vk∈N (vi)

πq(vi, vk)) ↔ ρq(vi)

We ensure that there are not two or more roots on the same page q via the single
root rule:

(¬ρq(vi) ∨ ¬ρq(vj)), ∀vi, vj ∈ V ; i = j

2.2 A Second Variant to Check Hypothesis 4

Assume that Ga = (Va, Ea) is a maximal planar graph, that is embeddable in a
book with 3 pages. Let Δ(Ga) = {f1, f2, . . . , f2|Va|−4} be the set of faces of Ga.
In the following, we describe an extension to the formula F(Ga, 3) that forbids
the so-called unicolored faces, that is, faces whose edges are assigned to the same
page of the book. We denote the resulting formula by Fa(Ga, 3).

In comparison to our previous approaches, we are not searching for a single
book embedding, for which an additional property holds, but rather we have to
test whether all possible book embeddings have this property. We will use the
same page variables already present in F(Ga, 3) to ensure this property via the
forbid unicolored face rule:

(¬χ(ei, ej) ∨ ¬χ(ei, ek)) ∀f = {ei, ej , ek} ∈ Δ(Ga)

Theorem 3. Fa(Ga, 3) is unsatisfiable, if and only if, for every possible book
embedding E(Ga, 3) there exists a unicolored face fi ∈ Δ(Ga), i = 1, . . . , 2|Va|−4.

Proof. Directly follows from the validity of F(Ga, 3). ��

The Book Embedding Problem from a SAT-Solving Perspective 133

2.3 A Third Variant to Check Hypothesis 5

Assume that Gc = (Vc, Ec) is a maximal planar graph, that is embeddable in a
book with 3 pages and let Δ(Gc) be the set of faces of Gc. To check whether a
particular face f∗ = {ei, ej , ek} ∈ Δ(Gc) cannot be unicolored in any possible
book embedding of Gc, we again use the already present same page variables of
F(Gc, 3):

(χ(ei, ej) ∧ χ(ei, ek)), f∗ = {ei, ej , ek} ∈ Δ(Gc)

The force unicolored face rule yields a new formula, which we denote by
Fc(Gc; f∗, 3). By the following theorem, it follows that in order to check Hypoth-
esis 5 one has to check 2|Vc| − 4, different formulas; one for each face of Gc.

Theorem 4. Fc(Gc; f∗, 3) is unsatisfiable, if and only, if there exists no book
embedding of Gc with f∗ being unicolored.

Proof. Directly follows from the validity of F(Gc, 3). ��

3 Experiments

In this section, we present an experimental evaluation of our SAT formulation.
We ran our experiments on a Linux machine with four cores at 2, 5 GHz and 8
GB of RAM. The implementation that creates the SAT instances was done in
Java. For solving the SAT instances, we used the SApperloT solver [22]. This
solver is as fast as the well-known minisat [14] solver for smaller graphs, but it
considerably outperforms minisat for increasing instance sizes. The runtime we
report consists of both, the time to create the instance and the time to solve it.
Note that the time to create the SAT instance for small graphs is neglectable.
For large graphs, however, that step can take a few minutes.

Established Benchmark Sets. Since the Rome and the North graphs are pop-
ular test sets for planar and nearly planar graphs, we also used them as test sets for
our experiment (cf. http://www.graphdrawing.org). The Rome graphs are 11534
graphs; 3281 of them are planar and 8253 are non-planar. Their average density is
0.069, where the density of a graph G = (V,E) is 2|E|/(|V |(|V |−1)). The number
of vertices of the Rome graphs range from 10 to 110. The corresponding number
of edges range from 9 to 158.

It is eye-catching, that all planar Rome graphs are 2-page book embeddable
(see Table 1). The non-planar ones are 3-page embeddable. But since the Rome
graphs are very sparse this result was more or less expected. Note that 99% of
the planar Rome graphs (that is, 3248 out of 3282) are solved within 2 s. For the
non-planar Rome graphs, the same ratio (that is, 8169 out of 8253) is achieved
after 6.25 s.

As a second benchmark set, we used the North graphs which are 1277 graphs;
854 of them are planar and 423 are non-planar. The number of vertices of these

http://www.graphdrawing.org

134 M.A. Bekos et al.

graphs range from 10 to 100. The corresponding number of edges range from 9
to 241. Their average density is 0.13. Again, all planar graphs were 2-page book
embeddable. The runtime to compute the corresponding embedding for the vast
majority of the planar North graphs was rather small. In particular, 97.5% of
them (that is, 833 out of 854 graphs) were solved within 3 s, with the maximum
runtime being 9.4 s.

Table 1. Overview of the results for the established benchmark sets.

planar nonplanar

Graph class # p = 2 # p = 3 p = 4 p = 5 see below

Rome 3281 3281 8253 8253 0 0

North 854 854 423 329 25 8 61

The non-planar North graphs show the practical limitations of our formu-
lation. In particular, we could determine the page number of only 344 out of
423 graphs within the time limit of 1200 s. Finding a 3-page book embedding is
much faster than proving that such an embedding does not exist (see Fig. 2b).
For the remaining 79 graphs, we increased the timeout to 3 h and we managed
to get at least some partial results: (i) for 18 graphs we computed their exact
page number, (ii) 27 graphs fit in four pages but we were not able to determine
whether they could fit in three pages, (iii) 32 graphs did not fit in three pages
(and 6 out of them did not even fit in four pages), but we did not manage to
determine their page number. Nevertheless, all non-planar North graphs could
fit into 8 pages and since the focus of the paper is mostly on planar and 1-planar
graphs, we did not further investigated the book embeddability of these graphs.

Crafted Graphs. To prove Hypothesis 1, we also crafted several maximal pla-
nar graphs with at least 500 vertices each, which we tested for 3-page book
embeddability. To avoid testing Hamiltonian graphs, we adopted a two-step
approach that was inspired by the graph class that Yannakakis proposed as
candidate to require four pages. In the first step, we chose a triangulated pla-
nar (not necessarily non-Hamiltonian) graph as the base for the second step. In
the second step, we augmented the base graph by specific operations to make
it non-Hamiltonian (and therefore not 2-page embeddable). Examples of these
operations are: (i) stellate a face f , that is, introduce a new vertex and connect
it to all vertices of f , (ii) replace a triangular face by an octahedron, (iii) embed
a non-Hamiltonian planar graph Gf to a face f by identifying the vertices of f
with the vertices of a particular face of Gf .

We observed that these operations most of the times yield non-Hamiltonian
planar graphs. Note that they do not generate the whole class of non-Hamiltonian
planar graphs and not even a uniformly-distributed random subset. The graphs,
that we crafted and tested with this approach, were all maximal planar with at
least 500 and at most 700 vertices. The runtime to check each instance ranged
from few hours to a couple of days.

The Book Embedding Problem from a SAT-Solving Perspective 135

Fig. 2. (a) Rome graphs: Runtime to compute 2-page embeddings for the planar ones
(green) and 3-page embeddings for the non-planar ones (red). (b) Non-planar North
graphs: Time needed to compute 3-page embeddings (green) and to prove that no
3-page embedding exist (red). (c) The runtime for maximal 1-planar graphs with 25
vertices. The red curve shows the runtime to prove that no 3-page embedding exist;
the green curve shows the runtime to compute 4-page embeddings. (d) The runtime to
compute 4-page embeddings for randomized maximal 1-planar graphs.

1-Planar Graphs. To check Hypothesis 2 for more than four pages, we initially
generated all 2,098,675 planar triconnected quadrangulations with 25 vertices
and minimum degree three using plantri [8]. By augmenting every face with two
crossing edges, the generated quadrangulations yield optimal 1-planar graphs
(recall that a 1-planar graph on n vertices is said to be optimal, if it has exactly
4n − 8 edges, which is the maximum possible [7]). Our experiments showed that
all tested optimal 1-planar graphs required four pages. The runtime distribution
is shown in Fig. 2c. Computing a 4-page embedding was always fast: For 99.06%
of the graphs the solver found a solution within 4.7 s. The maximum runtime
for a single instance was 186 s. Proving that no 3-page embedding existed was
harder. In less than 5 min., 94.4% of the instances could be solved. However, for
very few instances this could take up to two hours.

To obtain a better understanding of the connection between the runtime of
our approach and the size of the graphs, we randomly created 8312 optimal
1-planar graphs of different sizes varying from 50 to 155 vertices. Starting from
the cube graph (see Fig. 1), we iteratively applied at random one of the two

136 M.A. Bekos et al.

operations described in [29] in order to generate all optimal 1-planar graphs,
until we reached the desired size of the graph. The runtime to compute 4-page
embeddings for these graphs is shown in Fig. 2d. For nearly all graphs up to 100
vertices a 4-page embedding could be computed within two minutes. However,
with increasing vertex-count, the amount of graphs that could take up to several
hours to compute a 4-page embedding rises rapidly.

Randomized Planar Graphs. To check Hypotheses 3-5, we generated a large
set of random maximal planar graphs as follows. We applied Delaunay triangu-
lation on a set of randomly created points within a triangular region. To avoid
Hamiltonian graphs, we stellated every face of the produced Delaunay triangula-
tions. Our results are summarized in the following. Note that none of the tested
graphs corroborate Hypotheses 3-5.

– For Hypothesis 3, we tested 15, 040 maximal planar graphs of varying number
of vertices between 25 and 80. We were able to solve 70.78% of the instances
(that is, 10, 646 out of 15, 040) within 3 min. and 76.37% (that is, 11, 487 out
of 15, 040) of the instances within 20 min., which was the time limit of the
computation.

– For Hypothesis 4, we tested 7, 174 maximal planar graphs of varying number
of vertices between 59 and 125. We were able to solve 92.75% of the instances
(that is, 6621 out of 7174) within 10 min. and 99% of the instances within an
hour. The maximum time that was needed to solve a single instance was 5 h
and 6 min.

– For Hypothesis 5, we managed to test 277, 284 maximal planar graphs of
varying number n of vertices between 59 and 95. Every single instance, each
containing 2n − 4 different SAT formulas, required only few seconds to be
tested.

4 Conclusions and Discussion

In this paper, we approached the problem of determining whether a graph can be
embedded in a book of a given number of pages from a SAT-solving perspective.
By elaborating natural hypotheses for planar and 1-planar graphs, we gained
valuable insights to the problem. We now tend to believe that the following
refined hypotheses hold:

H6: All planar graphs admit 3-page book embeddings, in which additionally the
subgraphs assigned to each page are trees.

H7: Optimal 1-planar graphs have book thickness four.
H8: The book thickness of general 1-planar graphs is not more than five.

Our experimental evaluation showed that our approach can be useful, since
it can cope with non-trivial instances in reasonable amount of time. However,
around the optimal solution, where the problem switches from unsatisfiable to

The Book Embedding Problem from a SAT-Solving Perspective 137

satisfiable, we observed the well-known phase transitional behavior for SAT prob-
lems [9]. So, in this context, we mention two more major open problems. The
first one is to refine our SAT approach to support denser graphs. The second one
is to extend it to other grid-based problems. For example, with our formulation
it could be possible to solve larger instances for several of the problems studied,
e.g., by Biedl et al. [4].

References

1. Bekos, M., Gronemann, M., Raftopoulou, C.N.: Two-page book embeddings of
4-planar graphs. In: STACS, vol. 25, pp. 137–148. LIPIcs, Schloss Dagstuhl (2014)

2. Bekos, M.A., Bruckdorfer, T., Kaufmann, M., Raftopoulou, C.: 1-planar graphs
have constant book thickness. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 130–141. Springer, Heidelberg (2015)

3. Bernhart, F., Kainen, P.: The book thickness of a graph. Comb. Theory 27(3),
320–331 (1979)

4. Biedl, T., Bläsius, T., Niedermann, B., Nöllenburg, M., Prutkin, R., Rutter, I.:
Using ILP/SAT to determine pathwidth, visibility representations, and other grid-
based graph drawings. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242,
pp. 460–471. Springer, Heidelberg (2013)

5. Bilski, T.: Embedding graphs in books: a survey. IEEE Proc. Comput. Digit. Tech.
139(2), 134–138 (1992)

6. Blankenship, R.: Book embeddings of graphs. Ph.D. thesis, Louisiana State Uni-
versity (2003)

7. Bodendiek, R., Schumacher, H., Wagner, K.: Über 1-optimale graphen. Math.
Nachr. 117(1), 323–339 (1984)

8. Brinkmann, G., Greenberg, S., Greenhill, C.S., McKay, B.D., Thomas, R., Wollan,
P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305(1–3),
33–54 (2005)

9. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: Mylopoulos, J., Reiter, R. (eds.) AI, pp. 331–340. Morgan Kaufmann (1991)

10. Chimani, M., Zeranski, R.: Upward planarity testing via SAT. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 248–259. Springer, Heidelberg
(2013)

11. Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Embedding graphs in books:
a layout problem with applications to VLSI design. SIAM J. Algebraic Discrete
Method 8(1), 33–58 (1987)

12. Cornuéjols, G., Naddef, D., Pulleyblank, W.: Halin graphs and the travelling sales-
man problem. Math. Programm. 26(3), 287–294 (1983)

13. Dujmović, V., Wood, D.: Graph treewidth and geometric thickness parameters.
Discrete Comput. Geom. 37(4), 641–670 (2007)

14. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

15. Gange, G., Stuckey, P.J., Marriott, K.: Optimal k -level planarization and crossing
minimization. In: Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp.
238–249. Springer, Heidelberg (2011)

16. Ganley, J.L., Heath, L.S.: The pagenumber of k-trees is O(k). Discrete Appl. Math.
109(3), 215–221 (2001)

138 M.A. Bekos et al.

17. Goldner, A., Harary, F.: Note on a smallest nonhamiltonian maximal planar graph.
Bull. Malays. Math. Sci. Soc. 1(6), 41–42 (1975)

18. Heath, L.: Embedding planar graphs in seven pages. In: FOCS, pp. 74–83. IEEE
Computer Society (1984)

19. Heath, L.: Algorithms for embedding graphs in books. Ph.D. thesis, University of
N. Carolina (1985)

20. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as
machines for laying out graphs. SIAM J. Discrete Math. 3(5), 398–412 (1992)

21. Kainen, P.C., Overbay, S.: Extension of a theorem of Whitney. Appl. Math. Lett.
20(7), 835–837 (2007)

22. Kottler, S.: Description of the SApperloT, SArTagnan and MoUsSaka solvers for
the SAT-competition 2011 (2011)

23. Malitz, S.: Genus g graphs have pagenumber O(
√
q). J. Algorithms 17(1), 85–109

(1994)
24. Malitz, S.: Graphs with e edges have pagenumber O(

√
E). J. Algorithms 17(1),

71–84 (1994)
25. Nishizeki, T., Chiba, N.: Hamiltonian cycles. In: Planar Graphs: Theory and Algo-

rithms, chap. 10, pp. 171–184. Dover Books on Mathematics, Courier Dover Pub-
lications (2008)

26. Ollmann, T.: On the book thicknesses of various graphs. In: Hoffman, F., Levow,
R., Thomas, R. (eds.) Southeastern Conference on Combinatorics, Graph Theory
and Computing. Congressus Numerantium, vol. VIII, p. 459 (1973)

27. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J.
Symbolic Comput. 2(3), 293–304 (1986)

28. Rosenberg, A.L.: The Diogenes approach to testable fault-tolerant arrays of proces-
sors. IEEE Trans. Comput. C–32(10), 902–910 (1983)

29. Suzuki, Y.: Optimal 1-planar graphs which triangulate other surfaces. Discrete
Math. 310(1), 6–11 (2010)

30. Tarjan, R.: Sorting using networks of queues and stacks. J. ACM 19(2), 341–346
(1972)

31. Velev, M.N., Gao, P.: Efficient SAT techniques for relative encoding of permuta-
tions with constraints. In: Nicholson, A., Li, X. (eds.) AI 2009. LNCS, vol. 5866,
pp. 517–527. Springer, Heidelberg (2009)

32. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal
planar graphs. Technical report TR-298, EECS Department, Princeton University
(1982)

33. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
C–38(1), 36–67 (1989)

Size- and Port-Aware Horizontal Node
Coordinate Assignment

Ulf Rüegg(B), Christoph Daniel Schulze, John Julian Carstens,
and Reinhard von Hanxleden

Department of Computer Science, Christian-Albrechts-Universität zu Kiel,
Kiel, Germany

{uru,cds,jjc,rvh}@informatik.uni-kiel.de

Abstract. The approach by Sugiyama et al. is widely used to auto-
matically draw directed graphs. One of its steps is to assign horizon-
tal coordinates to nodes. Brandes and Koepf presented a method that
proved to work well in practice. We extend this method to make it pos-
sible to draw diagrams with nodes that have considerably different sizes
and with edges that have fixed attachment points on a node’s perimeter
(ports). Our extensions integrate seamlessly with the original method
and preserve the linear execution time.

1 Introduction

The layer-based approach to graph layout as introduced by Sugiyama et al. [6]
is a well-established methodology to automatically draw directed graphs in the
plane. It is defined as a pipeline of three subsequent phases: node layering dis-
tributes the nodes into subsequent layers such that edges only point from lower
to higher layers; crossing minimization orders the nodes in each layer such that
the number of edge crossings is minimized; finally x-coordinate assignment (or
node placement) determines x coordinates for nodes. In practice, an initial cycle
breaking phase as well as a final edge routing phase are often added to support
cyclic graphs and non-simple edge routing styles.

In the area of model-driven engineering (MDE), graphical languages are often
used to model complex software systems. For instance, tools such as LabVIEW
(National Instruments), EHANDBOOK (ETAS), and Ptolemy (UC Berkeley)
allow to model systems using data flow diagrams and make use of automatic
layout algorithms to arrange nodes and edges. In such diagrams edges are usu-
ally routed in an orthogonal fashion and connect to nodes through dedicated
attachment points on a node’s boundary (so-called ports). Also, nodes have con-
siderably different sizes, see Fig. 1 for examples.

All of these characteristics pose challenges for automatic graph drawing
algorithms that are rarely addressed by existing solutions. Previous work by
Schulze et al. [5] introduced methods that extend the layer-based approach to
support the special requirements of data flow diagrams, focusing on crossing
minimization and edge routing. In this paper, we focus on node placement.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 139–150, 2015.
DOI: 10.1007/978-3-319-27261-0 12

140 U. Rüegg et al.

(a) EHANDBOOK

(b) Ptolemy
(c) SCG [7]

Fig. 1. Exemplary drawings using the methods presented here. They would not be
drawable solely with the existing algorithm [1] since they contain ports and nodes of
considerably different sizes.

While we refer to Healy and Nikolov [3] for a general overview of existing
node placement approaches, it is worth noting that most of them try to a certain
extent to reduce the number of edge bend points. For one thing, the approach
introduced by Sander [4] ensures that long edges are always drawn straight, but
uses a barycenter-like balanced placement for all other edges. Once a node has
more than one outgoing edge, this usually results in two bend points per edge.
For another thing, the approach introduced by Brandes and Koepf [1], extending
ideas of Buchheim et al. [2], tries to draw as many edges straight as possible.

Contributions. Brandes and Koepf assume that all nodes have the same size and
do not take ports into account; thus their algorithm straightens at most one
outgoing edge per node. In this paper, we extend the approach by Brandes and
Koepf to remove these restrictions and take the opportunity to place nodes such
that more than one outgoing edge per node can be drawn straight. This leads to
drawings as seen in Fig. 1. Throughout the paper we will assume that the node
placement algorithm cannot change the size of nodes and the position of ports.

Outline. Following the usual conventions, we start by introducing the required
terminology in the next section. Sect. 3 then gives an overview of the algorithm
by Brandes and Koepf before Sect. 4 introduces our extensions. We evaluate our
algorithm in Sect. 5 and close with a conclusion and future work in Sect. 6.

Size- and Port-Aware Horizontal Node Coordinate Assignment 141

2 Preliminaries

Let G = (V, P, π,E) denote a directed graph with ports, where V is a set of nodes
and P a set of ports, i. e. attachment points on a node’s boundary. π : P �→ V
assigns each port to a node. E ⊆ P ×P is a set of directed edges connecting the
ports.

During the first steps of the layer-based approach cyclic graphs are made
acyclic, a layering is calculated, and an ordering is determined for each layer.
A layering L is an ordered partition of V into non-empty layers L1, . . . , L|L|
and L(v) → {1, . . . , |L|} maps each node v ∈ V to the index of its respective
layer. Since all edges must point in the same direction, L(π(p)) < L(π(q)) must
hold for all edges (p, q) ∈ E. An edge (p, q) is short if L(π(q)) − L(π(p)) = 1;
it is long otherwise. A layering is proper if all edges are short. Note that a
layering can be made proper by splitting long edges and introducing dummy
nodes. We refer to the short edges of a proper layering as edge segments. That
is, an original edge can be represented by one or more edge segments. Each layer
Li ∈ L is an ordered tuple of nodes (vi

1, . . . , v
i
n), where n = |Li|. The position of

a node vi
j in layer i is pos(vi

j) = j and the predecessor of a node vi
j with j > 1

is pred(vi
j) = vi

j−1. This gives a properly layered, directed, acyclic graph with
ports (LDAGP) G′ = (V ′, P ′, π′, E′,L). The set of nodes now includes a set of
dummy nodes D such that V ′ = V ∪ D. For each dummy node two ports are
introduced and edges are added and reconnected accordingly.

Finally, let width : V ′ �→ R assign a width to each node. Throughout this
paper, we assume that for an edge (p, q) ∈ E, p is on the lower boundary of π(p)
and q is on the upper boundary of π(q) to prevent edges from crossing nodes.
Let xp : P ′ �→ R assign positions to ports relative to the leftmost point on their
respective boundary.

3 The Original Algorithm

In this section we give a brief summary of the original algorithm of Brandes
and Koepf. For further details we refer to the paper itself [1]. The basic idea
of the algorithm is to traverse a given graph in different directions to calculate
four extremal layouts and combine them into a balanced final layout. The algo-
rithm is divided into the following steps: (1) During Vertical Alignment nodes
are combined into so-called blocks. Different directions may result in different
blocks. Edges between the nodes in a block will be drawn straight. (2) Horizon-
tal Compaction moves the calculated blocks as close to each other as possible
and assigns explicit x coordinates to nodes. Depending on the direction nodes
are either compacted leftwards or rightwards. (3) Balancing combines the four
extremal layouts resulting from the previous two steps to a final drawing.

A direction is a combination of traversing the layers of L either downwards
or upwards and traversing the nodes in each layer either rightwards or leftwards.
For brevity, we will limit our explanations and examples throughout this paper
to the combination of downwards and rightwards. The other three combinations
are easy to infer.

142 U. Rüegg et al.

(a) Graph (b) Blocks (c) Block graph (d) Classes

Fig. 2. Gray boxes in (b) show the calculated alignments (blocks) for the graph (a).
In (c) the block graph is depicted with the two sinks in darker gray, (d) shows the
corresponding classes.

During the alignment step nodes are aligned with their median neighbor in
the preceding layer. Consecutively aligned nodes are referred to as a block, see
Fig. 2b for an illustration. Let B denote the set of blocks of an LDAGP G′, where
each block b ∈ B is represented as an ordered tuple of edges (e0, . . . , en). For
compaction, an auxiliary block graph is constructed as seen in Fig. 2c. Blocks
are the nodes in the block graph and are connected by an edge if two nodes of
different blocks are consecutive in their layer. Within the block graph, blocks
are divided into classes. A class is defined by a unique sink that is reachable
by all of the class’s nodes. Positions subject to a global separation value δg are
then assigned to blocks using a longest path layering within each class, which
recursively assigns positions relative to the class’s sink. If two adjacent blocks are
part of the same class, their relative positions can be determined immediately. If
they belong to different classes, the blocks impose a minimum required separation
between the involved classes. This separation is remembered and applied after
all blocks have been placed.

As mentioned earlier, the original approach does not cater for varying node
sizes and ports. For one thing, ports reveal two problems that are illustrated in
Fig. 3a. First, in the depicted graph no edge is drawn straight even though all
nodes of the blocks B1 and B2 are neatly left-aligned. Second, node n1 has two
ports both of which would allow the connected edge to be drawn straight. Yet,
n1 and n4 are part of different blocks that will be separated during the com-
paction step. In addition, different node sizes increase the two aforementioned
problems and render the global separation value δg impractical. δg would have
to be larger than the widest node of the graph to avoid overlapping nodes, pos-
sibly leaving a lot of whitespace. Figure 3b and c show two drawings that would
be more desirable using a local separation δl. Furthermore, in conjunction with
orthogonally drawn edges, as opposed to general polylines, the balancing step
often yields undesirable bendpoints (see Fig. 3d). For this reason we consider the
balancing step to be optional and, if discarded, choose the final layout out of the
four possible candidates based on the smallest width.

During the rest of this paper, we will keep our explanations and pseudo code
as close as possible to the style and notation of the original paper. There, the
following data records are used for a node v ∈ V : root[v] denotes the root node

Size- and Port-Aware Horizontal Node Coordinate Assignment 143

(a) Original (b) Compact (c) Straight (d) Balanced

Fig. 3. Illustration of the additional challenges for the node placement phase imposed
by ports. In (a) a global separation value δg is used to space blocks B1 and B2, and
ports are neglected. (b) shows a compact drawing where ports are considered and the
same blocks can flow into one another using a local separation δl. (d) shows the result
of executing a balancing step (as it is part of the original algorithm [1]) in conjunction
with orthogonally drawn edges that, as opposed to (c), yields more edge bends.

of v’s block; align[v] maps to the next node within v’s block in the current
iteration direction and represents a cyclically linked list; sink[v] stores the sink
of the class v belongs to; shift[v] holds the distance by which the class of v
should be moved during compaction.

4 Size- and Port-Aware Node Coordinate Assignment

In this section we present our extensions. First, we add a step that we call
inner shift. It calculates offsets for nodes within a block to account for ports and
simultaneously determines the width of the blocks, which is required to calculate
the size of a layout. Second, we extend the compaction phase to consider node
sizes when calculating explicit x-coordinates. Third, we modify the objective
such that more straight edges are, to a certain extent, favored over achieving
the most compact layout possible. All additions integrate seamlessly with the
original algorithm and preserve its linear execution time.

While the first two modifications share the objectives of the original algo-
rithm, the third one considers straight edges to be more important than com-
pactness. Since different diagram types demand different aesthetics, the third
change is optional in our algorithm.

Node Size and Port Support. The original algorithm assigns the same x-coordinate
to all nodes within a block. This automatically yields straight edges if all nodes
have the same size and the same attachment points for edges. Here we extend this
in two ways. First, blocks have a width that depends on the sizes of the block’s
nodes. Second, each node has an inner shift, which is an offset relative to a
block’s left border. The inner shift is used to properly deal with ports.

Given a set of blocks B calculated by the vertical alignment method of the
original algorithm, we execute Algorithm 1. For each block, it iterates through
the block’s edges (p, q), considers p to be fixed and determines an offset value for

144 U. Rüegg et al.

Algorithm 1. inner shift
Input: LDAGP with blocks B
Output: innerShift[v] (inner-block offset of node v),

blockSize[b] (size of block b)
1 function inner shift()
2 innerShift[v] ← 0 ∀v ∈ V
3 for b ∈ B do
4 left ← 0; right ← 0
5 for (p, q) ∈ b do
6 s ← innerShift[π(p)] + xp(p) − xp(q)
7 innerShift[π(q)] ← s
8 left ← min(left, s)
9 right ← max(right, s+width(π(q)))

10 for all nodes v in block b do
11 innerShift[v] −= left

12 blockSize[b] ← right − left

Fig. 4. Illustration of the inner shift. Nodes n2, n3, and n4 have an inner shift value
different from zero. It defines the offset within the node’s block and is depicted by the
dashed lines. Also, both blocks B1 and B2 have an extent.

π(q) such that (p, q) can be drawn straight. Additionally, the maximum extent
of the nodes to either side of the starting node’s leftmost coordinate is recorded.
Using these values, the size of each block is calculated and all inner shift values
are shifted to be relative to the leftmost coordinate of any of the block’s nodes.
The block size is used to determine the width of each extremal layout. Figure 4
illustrates the effect of the inner shift.

Given an inner shift for the nodes of each block, the horizontal compaction
technique is applied with the alterations seen in lines 10 and 13 of Algorithm2.
Contrary to the original method, the inner shift and the width of the nodes
are considered while iterating through the block. Note that we consider the
individual width of every node and do not use the overall width of a block. This
allows blocks to “flow” into each other, as seen in Fig. 3b.

Moreover, the inner shift of a node and its size have to be considered during
the final balancing step, which is easy to incorporate into the original algorithm.

Improving Straightness. A wider node can allow for more than one edge to
be drawn straight. The original algorithm did not have to address this since
nodes were considered to be uniform. We solve this as follows. Remember that
our extended compaction step as shown in Algorithm 2 compacts blocks and
classes as much as possible. This implies that for a given iteration direction only
such edges are possible candidates for additional straightening where one of the
involved blocks was moved “too far” (for instance node n4 in Fig. 3b). In other
words, we have to prevent the blocks of such edges to be compacted too far in
order to get more straight edges.

The procedure we apply can be seen in Fig. 5. In (a) everything is compacted
as much as possible. In (b) a threshold value thresh is used to prevent node n5
from moving further to the left, resulting in a straight edge.

Size- and Port-Aware Horizontal Node Coordinate Assignment 145

Algorithm 2. place block
Input: v (root node of a block)

1 function place block(v)
2 if x[v] undefined then
3 x[v] ← 0; initial ← true; w ← v
4 repeat
5 if pos[w] > 0 then
6 n ← pred[w]; u ← root[n]
7 place block(u)
8 if sink[v] = v then sink[v] ← sink[u]
9 if sink[v] �= sink[u] then

10 sc ← x[v] + innerShift[w] − x[u] − innerShift[n] − width[n] − δl
11 shift[sink[u]] ← min(shift[sink[u]], sc)

12 else
13 sb ← x[u] + innerShift[n] + width[n] − innerShift[w] + δl
14 if initial then x[v] ← sb else x[v] ← max(x[v], sb)
15 initial ← false

16 w ← align[w]

17 until w = v

A threshold value can, however, only be determined if the connected block
is already placed. Consider Fig. 5a and the iteration direction down and right.
The algorithm starts by placing block B2, but has to place block B1 before it can
finish B2. Now, when placing node n4, no threshold can be calculated because
node n3 has not been placed yet. In such a case we delay the straightening
of the outgoing edge of n4 until all blocks have been placed. A queue is used
to store such edges. Imagine a further node n4’ connected to n3 and located
between n4 and n2. Just as n4 it will be delayed. To give both edges a chance
to be straightened later, it is important to post-process n4 prior to n4’. Using
a queue allows to do exactly this. When all blocks have been placed we fetch
edge by edge from the queue and check for the involved block how far it can
be moved without exceeding the threshold or overlapping other nodes. This way
the edge becomes either straight or shortens as much as possible (see Fig. 5c for
a final result). Algorithm3 shows the modification of the place block function.
A threshold value is calculated and used as an additional bound for a new block
position sb. We only list code that is added to Algorithm 2 and prefix code lines
by a fractional number, e. g. 2.5 to denote an addition between lines 2 and 3.

As it is now, thresholds are only calculated for edges incident to either the
root or the last node of a block. Note that blocks can consist of a single node in
which case this node is both the root and the last node of the block. To pick an
edge in line 4 of Algorithm3 we use the first edge incident to w that connects to
an already placed node. There are three points by which this procedure might be
improved in the future: (1) check whether edges between nodes that are neither
root nor last in a block can be drawn straight, i. e. calculate thresholds for those
nodes as well (2) when multiple edges incident to a block are candidates to
be drawn straight, choose the one that allows the most compact layout, i. e.
the one with the smallest difference of node and threshold value, and (3) be
more intelligent in picking an edge instead of just using the first one that is

146 U. Rüegg et al.

(a) Without straightening (b) After place block (c) After post process

Fig. 5. Illustration of the procedure to straighten additional edges during the com-
paction step. A threshold value is used to prevent n5 in (b) from compacting “too far”
in order to get an additional straight edge.

encountered. Nevertheless, the described method removes bends on edges that,
to a human, are obvious candidates for straightening. For instance, nodes that
are connected by a single edge to a larger node.

Execution Time. For an LDAGP G′, the original algorithm runs in time linear to
the number of nodes and edge segments, O(|V ′| + |E′|). Algorithm 1 is linear in
the number of edge segments that are involved in blocks. Algorithm2 only adds
constant time operations to the procedure of the original algorithm. Algorithm3
additionally calculates the threshold value which influences which edge will be
picked later. To pick an edge, for every node the incident edge segments are
touched at most once. Adding elements to and removing them from a queue can
be done in constant time and the post processing step is bounded by the number
of nodes and edge segments. Therefore, the overall execution time remains linear
in the number of nodes and edge segments.

5 Evaluation

All drawings seen in Fig. 1 were created using the methods of Schulze et al. [5]
in combination with our extensions. The methods are implemented in the KLay
Layered algorithm and the drawings are created using the KLighD framework,
both of which are part of the KIELER open source project.1

Recall that we present two contributions here: (1) Supporting varying node
sizes and ports, which allows us to draw more diagram types in the first place.
(2) The possibility to further increase the number of straight edges if desired. To
measure the performance of our second contribution, we need to know how many
edges can be drawn straight theoretically for a given graph without violating any
overlap and separation constraints. To obtain such numbers we formulated an
optimization problem and solved it using CPLEX. In 38 out of 9729 layout
executions the solver did not finish within our set time limit of one hour. Never-
theless, we use the reported results since they are always equal to or better than

1 http://www.rtsys.informatik.uni-kiel.de/en/research/kieler

http://www.rtsys.informatik.uni-kiel.de/en/research/kieler

Size- and Port-Aware Horizontal Node Coordinate Assignment 147

Algorithm 3. place block with straightening
Input: v: root node of a block
function place block(v)

2.5: thresh ← −∞
7.5, 15.5 (as else of if in line 5): thresh ← calculate threshold(v, u, thresh)
13: sb ← max(thresh, x[u] + innerShift[n] + width[n] − innerShift[w] + δl)

Input: v (root node of a block); w (current node); ot (current threshold value); Q (queue)
1 function calculate threshold(v, w, ot)
2 thresh ← ot
3 if v = w then
4 (p, q) ← pick incoming edge of w
5 if block of root[π(p)] placed then
6 thresh ← x[root[π(p)]] + innerShift[π(p)] + xp(p) − innerShift[π(q)] − xp(q)
7 else if w has incoming edges then
8 enqueue w to Q

9 if thresh = −∞ and align[w] = v then
10 symmetric to before, this time picking an outgoing edge

11 return thresh

12 // the following method is called after all blocks have been placed
13 function post process()
14 while Q not empty do
15 w ← dequeue from Q
16 (p, q) ← previously picked edge for w (line 4)
17 t1 ← x[root[π(p)]] + innerShift[π(p)] + xp(p)

− x[root[π(q)] − innerShift[π(q)] - xp(q)
18 t2 ← minimum distance between block of w and its neighbors
19 t ← if abs(t1) < abs(t2) then t1 else t2
20 move all nodes v in w’s block by t

the results of the constructive methods discussed above and thus provide reason-
able bounds. As a second metric we use the width of a drawing. It was already
noted by Brandes and Koepf that straightening edges might hamper reducing
the width of a drawing [1]. A drawing with minimum width can be achieved
by placing all nodes of a layers as close to each other as possible and centering
every layer in the drawing. Now, given an optimum number of straight edges and
a minimum width for a certain graph, we can compare the performance of our
extensions, once without straightening (BK) and once with straightening (BKS).
It did not make much sense to try and compare our algorithm to the plain orig-
inal or to other node placement algorithms as they either do not support ports
and variable node sizes or do not try to maximize the number of straight edges,
or both.

We use four different diagram types for the evaluation: (1) randomly gener-
ated graphs with same-sized nodes, (2) data flow diagrams shipping with the aca-
demic Ptolemy project2, (3) data flow diagrams from the commercial interactive
model browsing solution EHANDBOOK3, and (4) SCGs, which are specialized
control flow graphs for sequentially constructive programs [7]. The Ptolemy and

2 http://ptolemy.eecs.berkeley.edu/
3 http://www.etas.com/de/products/ehandbook.php

http://ptolemy.eecs.berkeley.edu/
http://www.etas.com/de/products/ehandbook.php

148 U. Rüegg et al.

Fig. 6. Same diagram as in Fig. 1b, however, now with the bottom right node collapsed.
Note how it is not possible anymore, as opposed to Fig. 1b, to draw the edge of the
Const node straight.

EHANDBOOK diagrams are meant to be navigated using an expand/collapse
mechanism. Figure 6 shows a diagram with both an expanded hierarchical node
and a collapsed one. Scenarios where more than one edge can be drawn straight
are more likely in the presence of expanded nodes as they are wider. We therefore
fully expanded existing diagrams for our evaluation and then extracted each
hierarchical level into a separate diagram. KLay supports hierarchical graphs by
introducing additional ports where an edge crosses a hierarchy boundary, see
for instance Fig. 6. The layout is then performed in a bottom-up fashion and
additional ports are considered to be dummy nodes. After the evaluations we
realized that the aforementioned extraction of subdiagrams kept several edges
from being drawn straight since additional ports were fixed at disadvantageous
positions. We believe the results could be better than reported.

Table 1 summarizes the characteristics of each type of diagram and Fig. 7
shows a scatter plot for each one of them. It can be seen that for diagrams with
same-sized nodes BK finds optimal or near-optimal solutions. The other three
plots indicate that while BK’s overall performance is still very good, there are
diagrams for which the number of straight edges can be improved. This is due
to variable node sizes. BKS performs better here. The overall number of straight
edges increases as well as the number of diagrams for which an optimum solution
is found. For SCGs BKS produces more straight edges for almost every diagram.
The average width of the tested diagrams on the other hand does not increase
notably, which implies that for the tested graphs the additionally straightened
edges did not negatively affect the width.

Execution Time. We measured the execution time of BK and BKS using ran-
domly generated graphs with 40 different node counts between 10 and 1000, 1.5
edges per node, and node widths varying between 20 and 100. For each graph
size, we generated 10 random graphs and ran the algorithm 10 times, using the
average execution time as result. The tests were executed using a 64 bit JVM on
a laptop with an Intel i7 2 GHz CPU and 8 GB memory.

For graphs with up to 100 nodes both strategies finish in under 2.5ms and
require about 62ms for graphs with 1000 nodes. The average difference between
BK and BKS is below 1ms. Therefore, both strategies are fast enough to be used
in interactive modeling and browsing tools.

Size- and Port-Aware Horizontal Node Coordinate Assignment 149

Table 1. Summary of the evaluation data. For each diagram type the number of
diagrams d is listed alongside the average number of nodes n̄ and edges m̄ per diagram.
IE is the percentage increase for BKS compared to BK in the overall sum of all
diagrams’ straight edges. IS indicates the increase of the average diagram size. By
size we mean the width of top-down drawings and the height of left-right drawings.
ID represents the number of diagrams for which BKS found more straight edges than
BK. OBK and OBKS represent the number of diagrams for which BK and BKS found
the optimum number of straight edges.

Type d n̄ m̄ IE(%) IS(%) ID(%) OBK(%) OBKS(%)

Random 106 29.5 46.5 0.1 0.0 4.7 58.5 60.4

SCGs 107 134.4 268.7 3.5 0.0 96.3 2.8 47.7

EHANDBOOK 97 21.6 24.1 3.7 2.1 18.6 58.8 66.0

Ptolemy 1140 10.6 13.7 2.3 0.2 15.4 74.6 87.0

3.4

1

1.5

2

2.5

3

0.92 0.94 0.96 0.98 1

BK
BKS

(a) Random graphs

1

1.1

1.2

1.3

1.4

1.5

0.9 0.925 0.95 0.975 1

BK
BKS

(b) SCGs

1

1.2

1.4

1.6

1.8

0.8 0.9 1

BK
BKS

(c) EHANDBOOK

1

1.2

1.5

1.8

2.1

0.2 0.4 0.6 0.8 1

BK
BKS

(d) Ptolemy

Fig. 7. A scatter plot for each diagram type. The performance in terms of straight
edges (x-axis) is plotted against the diagram size (y-axis). The diagram size is either
the width or the height of the diagram depending on the layout direction. Each data
point represents the performance of BK (or BKS) for a given graph instance relative
to the optimum performance for that graph. Thus, the closer a data point is to the
bottom right corner of the coordinate system (or 1.0) the better.

150 U. Rüegg et al.

6 Final Remarks

We presented extensions to the node placement algorithm presented by Bran-
des and Koepf [1] to support different node sizes and ports. These extensions
make the algorithm usable for a wider range of diagram types, including data
flow diagrams. We evaluated our extensions on randomly generated diagrams
as well as on three sets of real-world diagrams and found that the results often
were near the optimum in terms of straight edges and compactness does not suf-
fer. Performance-wise, the algorithm fares well enough to be used in interactive
applications.

For certain graphs, straightening edges may still lead to less compact dia-
grams. Our intuition is that drawing very few edges in a given diagram non-
straight would often lead to a more compact layout. Future work could go into
confirming or refuting this intuition and developing methods to find such edges.

Acknowledgements. This work was supported by the German Research Foundation
under the project Compact Graph Drawing with Port Constraints (ComDraPor, DFG
HA 4407/8-1).

References

1. Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In: Mutzel,
P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, p. 31. Springer,
Heidelberg (2002)

2. Buchheim, C., Jünger, M., Leipert, S.: A fast layout algorithm for k-level graphs.
In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229–240. Springer, Heidelberg
(2001)

3. Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R.
(ed.) Handbook of Graph Drawing and Visualization, pp. 409–453. CRC Press,
Boca Raton (2013)

4. Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg,
F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447–458. Springer, Heidelberg (1996)

5. Schulze, C.D., Spönemann, M., von Hanxleden, R.: Drawing layered graphs with
port constraints. J. Vis. Lang. Comput. Spec. Issue Diagr. Aesthet. Layout 25(2),
89–106 (2014)

6. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

7. von Hanxleden, R., Mendler, M., Aguado, J., Duderstadt, B., Fuhrmann, I., Motika,
C., Mercer, S., O’Brien, O., Roop, P.: Sequentially Constructive Concurrency–a con-
servative extension of the synchronous model of computation. ACM Trans. Embed.
Comput. Syst. Spec. Issue Appl. Concurrency Syst. Des. 13(4s), 144:1–144:26 (2014)

Area, Bends, Crossings

Small-Area Orthogonal Drawings
of 3-Connected Graphs

Therese Biedl1 and Jens M. Schmidt2(B)

1 David R. Cheriton School of Computer Science,
University of Waterloo, Waterloo, Canada

2 Institute of Mathematics, TU Ilmenau, Ilmenau, Germany
jens.schmidt@tu-ilmenau.de

Abstract. It is well-known that every graph with maximum degree 4
has an orthogonal drawing with area at most 49

64
n2 + O(n) ≈ 0.76n2. In

this paper, we show that if the graph is 3-connected, then the area can
be reduced even further to 9

16
n2 +O(n) ≈ 0.56n2. The drawing uses the

3-canonical order for (not necessarily planar) 3-connected graphs, which
is a special Mondshein sequence and can hence be computed in linear
time. To our knowledge, this is the first application of a Mondshein
sequence in graph drawing.

1 Introduction

An orthogonal drawing of a graph G = (V,E) is an assignment of vertices
to points and edges to polygonal lines connecting their endpoints such that all
edge-segments are horizontal or vertical. Edges are allowed to intersect, but only
in single points that are not bends of the polygonal lines. Such an orthogonal
drawing can exist only if every vertex has degree at most 4; we call such a graph
a 4-graph. It is easy to see that every 4-graph has an orthogonal drawing with
area O(n2), and this is asymptotically optimal [17].

For planar 2-connected graphs, several authors showed independently [10,15]
how to achieve area n×n, and this is optimal [16]. We measure the drawing-size
as follows. Assume (as we do throughout the paper) that all vertices and bends
are at points with integral coordinates. If H rows and W columns of the integer
grid intersect the drawing, then we say that the drawing occupies a W ×H-grid
with width W , height H, half-perimeter H + W and area H · W . Some papers
count as width/height the width/height of the smallest enclosing axis-aligned
box. This is one unit less than with our measure.

For arbitrary graphs (i.e., graphs that are not necessarily planar), improved
bounds on the area of orthogonal drawings were developed much later, decreasing
from 4n2 [11] to n2 [1] to 0.76n2 [9]. (In all these statements, we omit lower-order
terms for ease of notation.)

T. Biedl—Supported by NSERC.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 153–165, 2015.
DOI: 10.1007/978-3-319-27261-0 13

154 T. Biedl and J.M. Schmidt

Our Results: In this paper, we decrease the area-bound for orthogonal drawings
further to 0.56n2 + O(n) under the assumption that the graph is 3-connected.
The approach is similar to the one by Papakostas and Tollis [9]: add vertices
to the drawing in a specific order, and pair some of these vertices so that in
each pair one vertex re-uses a row or column that was used by the other. The
main difference in our paper is that 3-connectivity allows the use of a different,
stronger, vertex order.

It has been known for a long time that any planar 3-connected graph has a
so-called canonical order [7], which is useful for planar graph drawing algorithms.
It was mentioned that such a canonical order also exists in non-planar graphs
(e.g. in [4, Remark on p.113]), but it was not clear how to find it efficiently, and it
has to our knowledge not been used for graph drawing algorithms. Recently, the
second author studied the so-called Mondshein sequence, which is an edge parti-
tion of a 3-connected graph with special properties [8], and showed that it can be
computed in linear time [13]. A Mondshein sequence is the appropriate general-
ization of the canonical order to (not necessarily planar) 3-connected graphs [13]
and is most naturally defined by ear decompositions. However, in order to high-
light its relation to canonical orders, we define a Mondshein sequence here as a
special vertex partition and call it a 3-canonical order.

We use this 3-canonical order to add vertices to the orthogonal drawing.
This almost immediately lowers the resulting area, because vertices with one
incoming edge can only occur in chains. We then mimic the pairing-technique of
Papakostas and Tollis, and pair groups of the 3-canonical order in such a way
that even more rows and columns can be saved, resulting in a half-perimeter of
3
2n + O(1) and the area-bound follows.

No previous algorithms were known that achieve smaller area for 3-connected
4-graphs than for 2-connected 4-graphs. For planar graphs, the orthogonal draw-
ing algorithm by Kant [7] draws 3-connected planar 4-graphs with area (23n)2 +
O(n) [14], while the best-possible area for planar 2-connected graphs is n2 [16].

2 Preliminaries

Let G = (V,E) be a graph with n = |V | vertices and m = |E| edges. The
degree of a vertex v is the number of incident edges. In this paper, all graphs are
assumed to be 4-graphs, i.e., all vertex degrees are at most 4. A graph is called
4-regular if every vertex has degree exactly 4; such a graph has m = 2n edges.

A graph G is called connected if, for any two vertices u, v, there is a path in G
connecting u and v. It is called 3-connected if n > 3 and, for any two vertices
u, v, the graph G − {u, v} is connected.

A loop is an edge (v, v) that connects an endpoint with itself. A multi-edge is
an edge (u, v) for which another copy of edge (u, v) exists. When not otherwise
stated, the graph G that we want to draw is simple, i.e., it has neither loops nor
multi-edges. While modifying G, we will sometimes temporarily add a double
edge, i.e., an edge for which exactly one other copy exists (we refer always to the
added edge as double edge, the copy is not a double edge).

Small-Area Orthogonal Drawings of 3-Connected Graphs 155

2.1 The 3-Canonical Order

Definition 1. Let G be a 3-connected graph. A 3-canonical order (or Mondshein
sequence) is a partition of V into groups V = V1 ∪ · · · ∪ Vk such that

– V1 = {v1, v2}, where (v1, v2) is an edge.
– Vk = {vn}, where (v1, vn) is an edge.
– For any 1 < i < k, one of the following holds:

• Vi = {z}, where z has at least two predecessors and at least one successor.
• Vi = {z1, . . . , z�} for some � ≥ 2, where

– z1, . . . , z� is an induced path in G (i.e. edges z1 − z2 − · · · − z� exist, and
there are no edges (zi, zj) with i < j − 1),

– z1 and z� have exactly one predecessor each, and these predecessors are
different,

– zj for 1 < j < � has no predecessor,
– zj ∈ Vi for 1 ≤ j ≤ � has at least one successor.

Here, a predecessor [successor] of a vertex in Vi is a neighbor that occurs in
a group Vh with h < i [h > i]. See Fig. 1 for a 3-canonical order.

We call a vertex group Vi a singleton if |Vi| = 1, and a chain if |Vi| ≥ 2 and
i ≥ 2. We distinguish chains further into short chains with |Vi| = 2 and long
chains with |Vi| ≥ 3. A 3-canonical order imposes a natural orientation on the
edges of the graph from lower-indexed groups to higher-indexed groups and, for
edges within a chain, from one (arbitrary) end of the path to the other. This
implies in-degree indeg(v) ≥ 2 for any singleton, indeg(v) = 2 for exactly one
vertex of each chain, and indeg(v) = 1 for all other vertices of a chain.

V1

V2

V3

V4

V5

V6
V7

V8

V9

V1

V2

V3
V4

V5

V6

V7

V8

V9

Fig. 1. A 4-regular 3-connected graph with a 3-canonical order, and the drawing cre-
ated with our algorithm. For illustrative purposes, we show the drawing exactly as
created, even though many more grid lines and bends could be saved with straightfor-
ward compaction steps. V2 is a long chain, V4 is a short chain, V5 is a 2-2-singleton,
V3, V6, V7 and V8 are 3-1-singletons.

156 T. Biedl and J.M. Schmidt

Numerous related methods of ordering vertices of 3-connected graphs exist,
e.g. (2,1)-sequences [8], non-separating ear decompositions [2,13], and, limited to
planar graphs, canonical orders for maximal planar graphs [6], canonical orders
for 3-connected planar graphs [7] and orderly spanning trees [3]. A Mondshein
sequence (i.e. a 3-canonical order) of a 3-connected graph implies all these orders,
up to minor subtleties.

The most efficient way known to compute a Mondshein sequence (proving in
particular that one exists) uses non-separating ear decompositions [2,13]. This
is a partition of the edges into ears P1 ∪ · · · ∪Pk = E such that P1 is an induced
cycle, Pi for i > 1 is a non-empty induced path that intersects P1 ∪ · · · ∪ Pi−1

in exactly its endpoints, and G − ⋃i
j=1 Pj is connected for every i < k. Such a

non-separating ear decomposition exists for any 3-connected graph [2], and we
can even fix two edges v1v2 and v2vn and require that v1v2 is in the cycle P1

and that vn is the only vertex in Pk; hence, Pk will be a singleton.
Further, such a non-separating ear decomposition can be computed in linear

time [12,13]. The sets of newly added vertices for each Pi will be the vertex
groups of a 3-canonical order (additionally, P1 is split into the groups V1 :=
{v1, v2} and V2 := V (P1)−{v1, v2}). Although vertices in Vi may have arbitrarily
many incident edges in a non-separating ear decomposition, we can easily get
rid of these extra edges by a simple short-cutting routine in linear time (see
Lemmas 8 and 12 in [12]). This gives a 3-canonical order. Thus, a linear-time
algorithm for computing a 3-canonical order follows immediately from the one
for non-separating ear decompositions.

2.2 Making 3-Connected 4-Graphs 4-Regular

It will greatly simplify the description of the algorithm if we only give it for
4-regular graphs. Thus, we want to modify a 3-connected 4-graph G such that the
resulting graph G′ is 4-regular, draw G′, and then delete added edges to obtain
a drawing of G. However, we must maintain a simple graph since the existence
of 3-canonical orders depends on simplicity. This turns out to be impossible (e.g.
for the graph obtained from the octahedron by subdividing two distinct edges
with a new vertex and joining the new vertices by an edge), but allowing one
double edge is sufficient.

Lemma 2. Let G be a simple 3-connected 4-graph with n ≥ 5. Then we can add
edges to G′ such that the resulting graph G′ is 3-connected, 4-regular, and has
at most one double edge.

Proof. Since G is 3-connected, any vertex has degree 3 or 4. If there are four
or more vertices of degree 3, then they cannot be mutually adjacent (otherwise
G = K4, which contradicts n ≥ 5). Hence, we can add an edge between two
non-adjacent vertices of degree 3; this maintains simplicity and 3-connectivity.

We repeat until only two vertices of degree 3 are left (recall that the number
of vertices of odd degree is even). Now an edge between these two vertices is
added, even if one existed already; this edge is the only one that may become a
double edge. The resulting graph is 4-regular and satisfies all conditions. ��

Small-Area Orthogonal Drawings of 3-Connected Graphs 157

3 Creating Orthogonal Drawings

From now on, let G be a 3-connected 4-regular graph that has no loops and at
most one double edge. Compute a 3-canonical order V = V1 ∪ · · · ∪Vk of G with
Vk = {vn}, choosing v1vn to be the double edge if there is one. Let xshort and
xlong be the number of short and long chains. Let xj-� be the number of vertices
with in-degree j and out-degree �. Since G is 4-regular, we must have j + � = 4.
A j-�-singleton is a vertex z that constitutes a singleton group Vi for 1 < i ≤ k
and that has in-degree j and out-degree �.

Observation 3. Let G be a 4-regular graph with a 3-canonical order. Then

1. x0-4 = x4-0 = 1
2. x1-3 = x3-1

3. Every chain Vi contributes one to x2-2 and |Vi| − 1 to x1-3.

Proof. (1) holds, since every vertex that is different from vn has a successor,
and every vertex that is different from v1 has an incoming edge from either a
predecessor or within its chain. For (2), observe that 2n = m =

∑
v indeg(v) =

x1-3+2x2-2+3x3-1+4x4-0 and n = x0-4+x1-3+x2-2+x3-1+x4-0, and rearrange.
For (3), say Vi = {z1, . . . , z�} is directed from z1 to z�. Then indeg(z�) = 2 and
indeg(zj) = 1 for all j < �. ��

3.1 A Simple Algorithm

As in many previous orthogonal drawing papers [1,7,9], the idea is to draw the
graph Gi induced by V1 ∪ · · · ∪ Vi in such a way that all unfinished edges (edges
with one end in Gi and the other in G − Gi) end in a column that is unused
above the point where the drawing ends.

Embedding the First Two Vertices: If (v1, vn) is a single edge, then v1 and v2
are embedded exactly as in [1]: refer to Fig. 2. If (v1, vn) is a double edge, then
it was added only for the purpose of making the graph 4-regular and need not
be drawn. In that case, we omit one of the outgoing edges of v1 that has a bend.

Embedding a Singleton: If Vi is a singleton {z}, we embed z exactly as in [1]:
refer to Fig. 2. For indeg(z) ∈ {2, 3}, this adds one new row and outdeg(z)− 1 =
3− indeg(z) many new columns. For indeg(z) = 4, z = vn; if (v1, vn) is a double
edge, we omit the edge having two bends.

Embedding Chains: Let Vi be a chain, say Vi = {z1, . . . , z�} with � ≥ 2. For
chains, our algorithm is substantially different from [1]. Only z1 and z� have
predecessors. We place the chain-vertices on a new horizontal row above the
previous drawing, between the edges from the predecessors; see Fig. 3. We add
new columns as needed to have space for new vertices and outgoing edges without
using columns that are in use for other unfinished edges. We also use a second
new row if the chain is a long chain.

158 T. Biedl and J.M. Schmidt

z z z

Fig. 2. Embedding the first two vertices, and a singleton with in-degree 2, 3, 4. Newly
added grid-lines are dotted.

Fig. 3. Embedding short and long chains.

Observation 4. The increase in the half-perimeter is as follows:

– For the first and last vertex-group: O(1)
– For a 3-1-singleton: +1 (we add one row)
– For a 2-2-singleton: +2 (we add one row and one column)
– For a short chain: +3 (we add one row and two columns)
– For a long chain Vi: +2|Vi| (we add two rows and 2|Vi| − 2 columns)

Corollary 5. The half-perimeter is at most 3
2n + 1

2x2-2 − xshort + O(1).

Proof. From Observation 4 and using Observation 3.3 the half-perimeter is at
most x3-1 + 2x2-2 + 2x1-3 − xshort + O(1). By Observation 3.2 this is at most
3
2x3-1 + 2x2-2 + 3

2x1-3 − xshort + O(1), which gives the result. ��
Theorem 6. Every simple 3-connected 4-graph has an orthogonal drawing of
area at most 25

36n2 + O(n) ≈ 0.69n2.

Proof. First, make the graph 4-regular, compute the 3-canonical order, and con-
sider the number x2-2 of 2-2-vertices.

1. If x2-2 ≤ n/3, apply the above algorithm. By Corollary 5, the half-perimeter
is at most 3

2n + 1
6n + O(1) ≤ 5

3n + O(1).
2. If x2-2 ≥ n/3, apply the algorithm from [9]. They state their area bound as

0.76n2 + O(1), but one can observe (see [9, Theorem 3.1, ll.2–5]) that their
half-perimeter is at most 2n − 1

2 (x1-3 + x2-2) + O(1), since they pair at least
x1-3 + x2-2 vertices. Using Observation 3.2 and ignoring O(1) terms, we have
x1-3 +x2-2 = 1

2x1-3 +x2-2 + 1
2x3-1 = 1

2n+ 1
2x2-2. Hence, the half-perimeter of

their algorithm is at most 7
4n− 1

4x2-2+O(1) ≤ (74 − 1
12)n+O(1) = 5

3n+O(1).

In both cases, we get a drawing with half-perimeter 5
3n + O(1). The area of it is

maximal if the two sides are equally large and thus at most (56n + O(1))2. ��

Small-Area Orthogonal Drawings of 3-Connected Graphs 159

3.2 Improvement via Pairing

We already know a bound of 3
2n+ 1

2x2-2−xshort+O(1) on the half-perimeter. This
section improves this further to half-perimeter 3

2n + O(1). The idea is strongly
inspired by the pairing technique of Papakostas and Tollis [9]. They created pairs
of vertices with special properties such that at least 1

2 (x2-2 + x1-3) such pairs
must exist. For each pair, they can save at least one grid-line, compared to the
2n + O(1) grid-lines created with [1].

Our approach is similar, but instead of pairing vertices, we pair groups of the
canonical order by scanning them in backward order as follows:

1. Initialize i := k − 1. (We ignore the last group, which is a 4-0-singleton.)
2. While Vi is a 3-1-singleton and i > 2, set i := i − 1.
3. If i = 2, break. Else, Vi is a chain or a 2-2-singleton and we choose the

partner of Vi as follows: Initialize j := i−1. While Vj is a 3-1-singleton whose
successor is not in Vi, set j := j − 1. Now, pair Vi with Vj . Observe that such
a Vj with j ≥ 2 always exists, since i > 2 and V2 is not a 3-1-singleton.

4. Update i := j − 1 and repeat from Step (2) onwards.

In the small example in Fig. 1, the 2-2-singleton V5 gets paired with the short
chain V4, and all other groups are not paired.

Observe that, with the possible exception of V2, every chain is paired and
every 2-2-vertex is in a paired group (either as 2-2-singleton or as part of a
chain). Hence there are at least 1

2 (x2-2 − 1) pairs. The key observation is the
following:

Lemma 7. Let Vi, Vj be two vertex groups that are paired. Then there exists a
method of drawing Vi and Vj (without affecting the layout of any other vertices)
such that the increase to rows and columns is at most 2|Vi ∪ Vj | − 1.

We defer the (lengthy) proof of Lemma 7 to the next section, and study here
first its consequences. We can draw V1 and Vk using O(1) grid-lines. We can draw
V2 using 2|V2| = 2x2-2

V2
+ 2x1-3

V2
new grid-lines, where x�-k

W denotes the number
of vertices of in-degree � and out-degree k in vertex set W . We can draw any
unpaired 3-1-singleton using one new grid-line. Finally, we can draw each pair
using 2|Vi∪Vj |−1 = 2x2-2

Vi∪Vj
+2x1-3

Vi∪Vj
−1 new grid-lines. This covers all vertices,

since all 2-2-singletons and all chains belong to pairs or are V2, and since there
are no 1-3-singletons.

Putting it all together and using Observation 3.2, the number of grid-lines
hence is 2x1-3 + 2x2-2 + x3-1 − #pairs + O(1) ≤ 2x1-3 + 3

2x2-2 + x3-1 + O(1) =
3
2n + O(1) as desired. Since a drawing with half-perimeter 3

2n has area at most
(34n)2 = 9

16n2, we can conclude:

Theorem 8. Every simple 3-connected 4-graph has an orthogonal drawing of
area at most 9

16n2 + O(n) ≈ 0.56n2.

We briefly discuss the run-time. The 3-canonical order can be found in linear
time. Most steps of the drawing algorithm work in constant time per vertex,

160 T. Biedl and J.M. Schmidt

hence O(n) time total. One difficulty is that to place a group we must know the
relative order of the columns of the edges from the predecessors. As discussed
extensively in [1], we can do this either by storing columns as a balanced binary
search tree (which uses O(log n) time per vertex-addition), or using the data
structure by Dietz and Sleator [5] which allows to find the order in O(1) time
per vertex-addition. Thus, the worst-case run-time to find the drawing is O(n).

4 Proof of Lemma7

Recall that we must show that two paired vertex groups Vi and Vj , with j < i,
can be embedded such that we use at most 2|Vi| + 2|Vj | − 1 new grid-lines. The
proof of this is a massive case analysis, depending on which type of group Vi

and Vj are, and whether there are edges between them or not.1 We first observe
some properties of pairs.

Observation 9. By choice of the pairing, the following holds:

1. For any pair (Vi, Vj) such that j < i, Vi is either a 2-2-singleton or a chain.
2. If Vi is paired with Vj such that j < i, then all predecessors of Vi are in Vj or

occurred in a group before Vj.

The following notation will cut down the number of cases a bit. We say that
groups Vi and Vj are adjacent if there is an edge from a vertex in one to a
vertex in the other group. If two paired groups Vi, Vj are not adjacent, then by
Observation 9.2 all predecessors of Vi occur before group Vj . We hence can safely
draw Vi first, and then draw Vj , thereby effectively exchanging the roles of Vi

and Vj in the pair. Now, we distinguish five cases:

1. At least one of Vi and Vj is a short chain. Say Vi is the short chain, the other
case is similar. Recall that the standard layout for a short chain uses 3 new
grid-lines, but x2-2

Vi
+ x1-3

Vi
= 2. So the layout of a short chain automatically

saves one grid-line. We do not change the algorithm at all in this case; laying
out Vi and Vj exactly as before results in at most 2x2-2

Vi∪Vj
+ 2x1-3

Vi∪Vj
− 1 new

grid-lines. (This is what happens in the example of Fig. 1.)

Vj

Vi

Vj

Vi

Fig. 4. Reusing the column freed by a 3-1-singleton with a later chain or singleton. In
this and the following figures, the re-used grid-line is dotted and red.

1 The constructions we give have been designed as to keep the description simple;
often even more grid-lines could be saved by doing more complicated constructions.

Small-Area Orthogonal Drawings of 3-Connected Graphs 161

Vj

Vi

Vj

Vi

Vj

Vi

Fig. 5. Sharing the extra row between two long chains when there are 0, 1 or 2 prede-
cessors of Vi in Vj .

2. One of Vi and Vj is a 3-1-singleton. By Observation 9, the 3-1-singleton must
be Vj . By the pairing algorithm, the unique outgoing edge of the 3-1-singleton
must lead to Vi. Draw Vj as before. We can then draw Vi such that it re-uses
one of the columns that were freed by Vj ; see Fig. 4.

3. Vi and Vj are both long chains. In this case, both Vi and Vj can use the same
extra row for the “detours” that their middle vertices (by which we mean
vertices that are neither the first nor the last vertex of the chain) use. Since
we can freely choose into which columns these middle vertices are placed, we
can ensure that none of these “detours” overlap and, hence, one row suffices
for both chains. This holds even if one or both of the predecessors of Vi are
in Vj , as these are distinct and the two corresponding incoming edges of Vi

extend the edges that were already drawn for Vj ; see Fig. 5.
4. None of the previous cases applies and Vj is a 2-2-singleton. By Observa-

tion 9.1 and since Case (1) does not apply, Vi is either a 2-2-singleton or
a long chain. There are two columns reserved for edges from predecessors
of Vj . Since predecessors of Vi are distinct, at most one of them can be the
2-2-singleton in Vj . Thus, there also is at least one column reserved for an
edge from a predecessor of Vi not in Vj . We call these three or four columns
the predecessor-columns. We have three sub-cases depending on the relative
location of these columns:
(a) The leftmost predecessor-column leads to Vj . In this case, we save a col-

umn almost exactly as in [9]. Place Vj as before, in the right one of its
predecessor-columns. This leaves the leftmost predecessor-column free to
be reused. Now no matter whether Vi is a 2-2-singleton or a long chain,
or whether Vi is adjacent to Vj or not, we can re-use this leftmost column
for one outgoing edge of Vi with a suitable placement; see Fig. 6.

(b) The rightmost predecessor-column leads to Vj . This case is symmetric to
the previous one.

(c) The leftmost and rightmost predecessor-columns lead to Vi. This implies
that Vi has two predecessors not in Vj . Hence, Vi cannot be adjacent
to Vj . If Vi is a 2-2-singleton, then (as discussed earlier) we can exchange

162 T. Biedl and J.M. Schmidt

the roles of Vi and Vj , which brings us to Case 4(a). If Vi is a long chain,
then place Vj in the standard fashion. We then place the long chain Vi

such that the “detours” of its middle vertices re-use the row of Vj . See
Fig. 7.

5. None of the previous cases applies. Then Vj is a chain, say Vj = {z1, . . . , z�},
and � ≥ 3 since Case (1) does not apply. We assume the naming is such that
the predecessor column of z1 is left of the predecessor column of z�.

Since we are not in a previous case, Vi must be a 2-2-singleton, say z.
If Vi is not adjacent to Vj , then we can again exchange the roles of Vi and
Vj , which brings us to Case (4). Hence, we may assume that there are edges
between Vj and Vi. We distinguish the following sub-cases depending on how
many such edges there are and whether their ends are middle vertices.
(a) z has exactly one neighbor in Vj , and it is either z1 or z�. We rearrange

Vi ∪Vj into two different chains. Let z be adjacent to z1 (the other case is
symmetric). Then {z, z1} forms one chain and {z2, . . . , z�} forms another.
Embed these two chains as usual. Since {z, z1} forms a short chain, this
saves one grid-line; see Fig. 8(left).

(b) z has exactly one neighbor in Vj , and it is zh for some 1 < h < �. Embed
the chain Vj as usual, but omit the new column next to zh. For embedding
z, we place a new row below the rows for the chain. Using this new row, we
can connect the bottom outgoing edge of zh to the horizontal incoming
edge of z; see Fig. 8(right).

(c) z has two neighbors in Vj , and both of them are middle vertices zg, zh for
1 < g < h < �. Embed the chain Vj as usual, but omit the new columns
next to zg and zh. Place a new row between the two rows for the chain
and use it to connect the two bottom outgoing edges of zg and zh to place
z, re-using the row for the detours to place the bottom outgoing edge of
z. This uses an extra column for z, but saved two columns at zg and zh,
so overall one grid-line has been saved; see Fig. 9(top left).

(d) z is adjacent to z1 and z2 (the case of adjacency to z�−1 and z� is sym-
metric). Embed z2, . . . , z� as usual for a chain, then place z1 below z2.
The horizontally outgoing edge of z2 intersects one outgoing edge of z1.
Put z at this place to save a row and a column; see Fig. 9(top right).

(e) z is adjacent to z1 and zh with h > 2 (the case of adjacency to z� and zh

with h < � − 1 is symmetric). Draw the chain Vj with the modification
that zh is below zh−1, but still all middle vertices use the same extra row
for their downward outgoing edges. This uses 3 rows, but now z can be
placed using the two left outgoing edges of z1 and zh, saving a row for z
and a column for the left outgoing edge of zh; see Fig. 9(bottom), both
for h < � and h = �.

This ends the proof of Lemma 7 and hence shows Theorem 8.

Small-Area Orthogonal Drawings of 3-Connected Graphs 163

Vj

Vi

Vj

Vi

Vj

Vi

Vj

Vi

Fig. 6. Reusing the predecessor-column freed by a 2-2-singleton Vj in Case 4(a). Left
two pictures: Vi is not adjacent to Vj . Right two: Vi is adjacent to Vj .

Vj

Vi Vj

Vi

Fig. 7. If the predecessor-columns of Vj are between the ones of Vi, then we can either
revert to Case 4(a) or the long chain Vi can re-use the row of Vj .

zz1

z2 z�

z

z1 z�zh

Fig. 8. Vj is a long chain, Vi is a 2-2-singleton with one predecessor in Vj .

z
z1 z�

zhzg
z

z1

z2

z�

z1

z�

z

zh

zh−1

z� = zh

z
zh−1

z1

Fig. 9. Vj is a long chain, Vi is a 2-2-singleton, and there are exactly two edges between
them. (Top) Cases 5(c) and (d). (Bottom) Case 5(e).

164 T. Biedl and J.M. Schmidt

5 Conclusion

In this paper, we gave an algorithm to create an orthogonal drawing of a
3-connected 4-graph that has area at most 9

16n2+O(n) ≈ 0.56n2. As a main tool,
we used the 3-canonical order / Mondshein sequence for non-planar 3-connected
graphs, whose existence was long known but only recently efficient algorithms for
it were found. To our knowledge, this is the first application of the 3-canonical
order on non-planar graphs in graph-drawing. Among the many remaining open
problems are the following:

– Can we draw 2-connected 4-graphs with area less than 0.76n2? A natural
approach would be to draw each 3-connected component with area 0.56n2

and to merge them suitably, but there are many cases depending on how the
cut-vertices and virtual edges are drawn, and so this is far from trivial.

– Can we draw 3-connected 4-graphs with (2−ε)n bends, for some ε > 0? With
an entirely different algorithm (not given here), we have been able to prove a
bound of 2n − x2-2 + O(1) bends, so an improved bound seems likely.

– Our algorithm was strongly inspired by the one of Kant [7] for 3-connected
planar graphs. Are there other graph drawing algorithms for planar 3-connec-
ted graphs that can be transferred to non-planar 3-connected graphs by using
the 3-canonical order?

Acknowledgments. We wish to thank the anonymous reviewers for their constructive
comments.

References

1. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

2. Cheriyan, J., Maheshwari, S.N.: Finding nonseparating induced cycles and inde-
pendent spanning trees in 3-connected graphs. J. Algorithms 9(4), 507–537 (1988)

3. Chiang, Y.-T., Lin, C.-C., Lu, H.-I.: Orderly spanning trees with applications.
SIAM J. Comput. 34(4), 924–945 (2005)

4. de Fraysseix, H., de Mendez, P.O.: Regular orientations, arboricity and augmenta-
tion. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 111–118.
Springer, Heidelberg (1995)

5. Dietz, P., Sleator, D.: Two algorithms for maintaining order in a list. In: 19th
Annual ACM Symposium on Theory of Computing, pp. 365–372 (1987)

6. de Fraysseix, H., Pollack, R., Pach, J.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

7. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

8. Mondshein, L.F.: Combinatorial ordering and the geometric embedding of graphs.
Ph.D. thesis, M.I.T. Lincoln Laboratory / Harvard University (1971)

9. Papakostas, A., Tollis, I.G.: Algorithms for area-efficient orthogonal drawings.
Comput. Geom. 9(1–2), 83–110 (1998)

Small-Area Orthogonal Drawings of 3-Connected Graphs 165

10. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientation of
planar graphs. Discrete Comput. Geom. 1, 343–353 (1986)

11. Schäffter, M.: Drawing graphs on rectangular grids. Discrete Appl. Math. 63, 75–89
(1995)

12. Schmidt, J.M.: The Mondshein sequence (2013). http://arxiv.org/pdf/1311.0750.
pdf

13. Schmidt, J.M.: The Mondshein sequence. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 967–978. Springer,
Heidelberg (2014)

14. Biedl, T.: Optimal orthogonal drawings of triconnected plane graphs. In: McCune,
W., Padmanabhan, R. (eds.) Automated Deduction in Equational Logic and Cubic
Curves. LNCS, vol. 1095, pp. 333–344. Springer, Heidelberg (1996)

15. Tamassia, R., Tollis, I.: A unified approach to visibility representations of planar-
graphs. Discrete Comput. Geom. 1, 321–341 (1986)

16. Tamassia, R., Tollis, I.G., Vitter, J.S.: Lower bounds for planar orthogonal draw-
ings of graphs. Inf. Process. Lett. 39, 35–40 (1991)

17. Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput.
C–30(2), 135–140 (1981)

http://arxiv.org/pdf/1311.0750.pdf
http://arxiv.org/pdf/1311.0750.pdf

Simultaneous Embeddings with Few Bends
and Crossings

Fabrizio Frati1(B), Michael Hoffmann2, and Vincent Kusters2

1 Dipartimento di Ingegneria, University Roma Tre, Rome, Italy
frati@dia.uniroma3.it

2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
{hoffmann,vincent.kusters}@inf.ethz.ch

Abstract. A simultaneous embedding with fixed edges (Sefe) of two
planar graphs R and B is a pair of plane drawings of R and B that
coincide when restricted to their common vertices and edges. We show
that whenever R and B admit a Sefe, they also admit a Sefe in which
every edge is a polygonal curve with few bends and every pair of edges
has few crossings. Specifically: (1) if R and B are trees then one bend per
edge and four crossings per edge pair suffice, (2) if R is a planar graph
and B is a tree then six bends per edge and eight crossings per edge pair
suffice, and (3) if R and B are planar graphs then six bends per edge
and sixteen crossings per edge pair suffice. This improves on results by
Grilli et al. (GD’14), who prove that nine bends per edge suffice, and by
Chan et al. (GD’14), who prove that twenty-four crossings per edge pair
suffice.

1 Introduction

Let R = (VR, ER) and B = (VB , EB) be two planar graphs sharing a common
graph C = (VR ∩ VB , ER ∩ EB). The vertices and edges of C are common, while
the other vertices and edges are exclusive. We refer to the edges of R, B, and
C as the red, blue, and black edges, respectively. A simultaneous embedding of R
and B is a pair of plane drawings of R and B, respectively, that agree on the
common vertices (see Fig. 1a–b).

Simultaneous graph embeddings have been a central topic of investigation for
the graph drawing community in the last decade, because of their applicability
to the visualization of dynamic graphs and of multiple graphs on the same vertex
set [6,11], and because of the depth and breadth of the theory they have been
found to be related to.

Brass et al. [6] initiated the research on this topic by investigating simultane-
ous geometric embeddings (or Sges), which are simultaneous embeddings where

F. Frati is partially supported by MIUR project AMANDA, prot. 2012C4E3KT 001.
M. Hoffmann and V. Kusters are partially supported by the ESF EUROCORES
programme EuroGIGA, CRP GraDR and the Swiss National Science Foundation,
Project 20GG21-134306.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 166–179, 2015.
DOI: 10.1007/978-3-319-27261-0 14

Simultaneous Embeddings with Few Bends and Crossings 167

c

d h

e

a b

(a)

a

c

d

f

g

e
b

(b)

a

c

d

f

g h

eb

(c)

a

b
c

d

e

f

g h

(d)

a

b
c

d

f

g h

e

(e)

Fig. 1. (a-b) R and B with VC = {a, b, c, d, e} and EC = {(a, b), (b, c), (a, c), (c, d)}. (c)
Simultaneous embedding of R and B. (d) Sge of R and B. (e) Sefe of R and B.

all edges are represented by straight-line segments (see Fig. 1d). This setting
proved to be fairly restrictive: there exist two trees [16] and even a tree and a
path [2] with no Sge. Furthermore, the problem of deciding whether two graphs
admit an Sge is NP-hard [12].

Two relaxations of Sge have been considered in the literature in which edges
are not forced to be straight-line segments. In the first setting, we look for a
simultaneous embedding of two given planar graphs R and B in which every
edge is drawn as a polygonal curve with few bends. Di Giacomo and Liotta [9]
proved that two bends per edge always suffice. If R and B are trees, then one
bend per edge is sufficient [10]. Note that black edges may be represented by
different curves in each drawing. The variant in which the edges of R and B
might only cross at right angles has also been considered [3]. In the second
setting, we look for a simultaneous embedding with fixed edges (or Sefe) of R
and B: a simultaneous embedding in which every common edge is represented
by the same simple curve in the plane (see Fig. 1e). In other words, a Sefe
is a drawing of the union graph (VR ∪ VB, ER ∪ EB) that determines a plane
drawing of R (of B) when restricted to the vertices and edges of R (resp. of B).
While not every two planar graphs admit a Sefe, this setting is less restrictive
than Sge: for example, every tree and every planar graph admit a Sefe [13].
Determining the complexity of deciding whether two given graphs admit a Sefe
is a major open problem in the field of graph drawing. Polynomial-time testing
algorithms are known in many restricted cases, such as when the common graph
C is biconnected [1] or when C is a set of disjoint cycles [5]. We refer to an
excellent survey by Bläsius et al. [4] for many other results.

In this paper we present algorithms to construct Sefes in which edges are
represented by polygonal curves. For the purpose of guaranteeing the readability
of the representation, we aim at minimizing two natural aesthetic criteria: the
number of bends per edge and the number of crossings per edge pair. Both
criteria have been recently considered in relation to the construction of a Sefe.
Namely, Grilli et al. [17] proved that every combinatorial Sefe can be realized
as a Sefe with at most nine bends per edge, a bound which improves to three
bends per edge when the common graph is biconnected. Further, Chan et al. [7]
proved that if R and B admit a Sefe, then they admit a Sefe in which every
red-blue edge pair crosses at most twenty-four times.

Contribution. We improve on the results of Grilli et al. [17] and of Chan
et al. [7] by proving the following results. (1) Any two trees admit a Sefe with
one bend per edge; thus, every two edges cross at most four times. The number

168 F. Frati et al.

of bends is the best possible, since two trees exist with no Sge [16]. (2) Any
planar graph and any tree admit a Sefe with six bends per edge in which every
two edges cross at most eight times. (3) Any two planar graphs that admit a
Sefe also admit a Sefe with six bends per edge in which every two edges cross
at most sixteen times. In all cases, the common edges are straight-line segments.
Because of space limits, we present the result for trees and we just sketch the
ideas for the other results. For the full version of the paper see [14].

2 Preliminaries

A plane drawing of a (multi)graph G determines a circular ordering of the edges
incident to each vertex of G; the set of these orderings is called a rotation system.
Two plane drawings of G are equivalent if they have the same rotation system,
the same containment relationship between cycles, and the same outer face (the
second condition is redundant if G is connected). A planar embedding is an
equivalence class of plane drawings. Analogously, a Sefe of two planar graphs
R and B determines a circular ordering of the edges incident to each vertex
(comprising edges incident to both R and B); the set of these orderings is the
rotation system of the Sefe. Two Sefes of R and B are equivalent if they have
the same rotation system and if their restriction to the vertices and edges of
R (of B) determines two equivalent plane drawings of R (resp. of B). Finally,
a combinatorial Sefe E for two planar graphs R and B is an equivalence class
of Sefes; we denote by E|R (by E|B) the planar embedding of R (resp. of B)
obtained by restricting E to the vertices and edges of R (resp. of B).

A subdivision of a multigraph G is a graph G′ obtained by replacing edges
of G with paths, whose internal vertices are called subdivision vertices. If G′ is
a subdivision of G, the operation of flattening subdivision vertices in G′ returns
G. The contraction of an edge (u, v) in a multigraph G leads to a multigraph G′

by replacing (u, v) with a vertex w incident to all the edges u and v are incident
to in G; k parallel edges (u, v) in G lead to k − 1 self-loops incident to w in G′

(the contracted edge is not in G′). If G has a planar embedding EG, then G′

inherits a planar embedding EG′ as follows. Let a1, . . . , ak, v and b1, . . . , b�, u be
the clockwise orders of the neighbors of u and v in EG, respectively. Then the
clockwise order of the neighbors of w is a1, . . . , ak, b1, . . . , b�. The contraction of
a connected graph is the contraction of all its edges.

The straight-line segment between points p and q is denoted by pq. The angle
of pq is the angle between the ray from p in positive x-direction and the ray from
p through pq. A polygon P is strictly-convex if at every vertex the interior angle
is < π ; also, P is star-shaped if there exists a point p∗ such that pp∗ ⊂ P , for
every vertex p of P ; the kernel of P is the set of all such points p∗.

A 1-page book embedding (1PBE) is a plane drawing where all vertices are
placed on an oriented line � called spine and all edges are curves in the halfplane
to the left of �. A 2-page book embedding (2PBE) is a plane drawing where all
vertices are placed on a spine � and each edge is a curve in one of the two
halfplanes delimited by �.

Simultaneous Embeddings with Few Bends and Crossings 169

3 Two Trees

In this section we describe an algorithm that computes a Sefe of any two trees
R and B with one bend per edge. Let C be the common graph of R and B.

We outline our algorithm. In Step 1, we compute a combinatorial Sefe of R
and B for every vertex the incident black edges are consecutive in the circular
order of incident edges. In Step 2, we contract each component of C, obtaining
trees R′ from R and B′ from B. In Step 3, we independently augment R′ and
B′ to Hamiltonian planar graphs, so as to satisfy topological constraints that
are necessary for the subsequent drawing algorithms. In Step 4, we use the
Hamiltonian augmentations to construct a simultaneous embedding of R′ and
B′ with one bend per edge, similarly to an algorithm of Erten and Kobourov [10].
Finally, in Step 5, we expand the components of C by modifying the simultaneous
embedding of R′ and B′ in a neighborhood of each vertex to make room for the
components of C. We now describe these steps in detail.

Step 1: Combinatorial Sefe. Fix the clockwise order of edges incident to
each vertex as follows: all black edges in any order, then all red edges in any
order, and then all blue edges in any order (each sequence might be empty).
As any rotation system for a tree determines a planar embedding, this results
in a combinatorial Sefe E of R and B (Fig. 2a). We may assume that every
component S of C is incident to at least one red and one blue edge: If S is not
incident to any, say, blue edge, then B = S = C, since B is connected, and any
plane straight-line drawing of R is a Sefe of R and B.

1
2

3

4

5

6
7e1

e2=e3

r(S)

b(S)

(a)

v

r(v)

b(v)

(b)

Fig. 2. (a) A connected component S of C, together with its incident exclusive edges.
(b) Vertex v resulting from the contraction of S.

For every component S of C we pick two incident edges r(S) and b(S) as
follows. In any Sefe equivalent to E let γ be a simple closed curve surrounding
S and close enough to it so that γ has no crossing in its interior. Note that γ
intersects all the exclusive edges incident to S in some clockwise order in which
all the exclusive edges incident to a single vertex of S appear consecutively. Let
r(S) be any red edge not preceded by a red edge in this order and let b(S) be
the first blue edge after r(S). We define a total ordering �S of the vertices of S,
as the order in which their exclusive edges intersect γ (a curve is added incident
to every vertex of S with no incident exclusive edge for this purpose), where the
first vertex of �S is the endvertex of r(S).

Lemma 1. The straight-line drawing of S obtained by placing its vertices on a
strictly-convex curve λ in the order defined by �S is plane.

170 F. Frati et al.

Proof. For every vertex v of S, shrink γ along an exclusive edge incident to v so
that γ passes through v and still every edge of S lies in its interior. Eventually γ
passes through all the vertices of S in the order �S . The planarity of the drawing
of S implies that there are no two edges whose endvertices alternate along γ.
Then placing the vertices of S on λ in the order �S leads to a plane straight-line
drawing of S. �

Step 2: Contractions. Contract each component S of C to a single vertex v.
The resulting trees R′ = (V ′

R, E′
R) and B′ = (V ′

B , E′
B) have planar embeddings

ER′ and EB′ inherited from ER and EB , respectively. Vertex v is common to R′

and B′; let r(v) and b(v) be the edges corresponding to r(S) and b(S) after the
contraction. See Fig. 2b.

Step 3: Hamiltonian Augmentations. We describe this step for R′ only; the
treatment of B′ is analogous and independent. The goal is to find a vertex order
corresponding to a 1PBE of R′. All edges between consecutive vertices along
the spine �, as well as the edge between the first and last vertex along �, can
be added to a 1PBE while maintaining planarity: hence the 1PBE is essentially
a Hamiltonian augmentation of R′. For Step 5 we need to place r(v), for each
common vertex v, as in the following.

Lemma 2. There is a 1PBE for R′ equivalent to ER′ such that, for every com-
mon vertex v, the spine passes through v right before r(v) in clockwise order
around v.

Proof. We construct the embedding recursively. For each exclusive vertex v, let
r(v) be an arbitrary edge incident to v. Arbitrarily choose a vertex s as the root
of R′ and place s on �. Place the other endpoint of r(s) after s on � and all
remaining neighbors of s, if any, in between in the order given by ER′ . Then
process every child v of s (and the subtree below v) recursively as follows (and
ensure that all subtrees stay in pairwise disjoint parts of the spine, for instance,
by assigning a specific region to each).

p vv

(a)

p=v v

(b)

Fig. 3. Embedding the children of v if (a) p �= v′ or (b) p = v′. Parts of the embedding
already constructed are in the shaded regions.

Note that both v and the parent p of v are already embedded. By symmetry
we can assume that p lies before v on the spine. Let v′ be the endvertex of r(v)
different from v. If p �= v′, we place the other endvertex of r(v) right before v.
Both if p �= v′ (see Fig. 3a) and if p = v′ (see Fig. 3b), we place the other children
of v, if any, according to ER′ , in the parts of the spine between p and v′, and

Simultaneous Embeddings with Few Bends and Crossings 171

after v. If v is not a leaf, then all its children are processed recursively in the
same fashion. It is easily checked that the resulting embedding is a 1PBE that
satisfies the stated properties. �

Step 4: Simultaneous Embedding. We now construct a simultaneous embed-
ding of R′ and B′. Let σv be the order of the edges around a vertex v obtained by
sweeping a ray clockwise around v, starting in direction of the negative x-axis.

Lemma 3. For every ε > 0, R′ and B′ admit a simultaneous embedding with
one bend per edge in which:

– all edges of ER′ (EB′) incident to each vertex v in V ′
R (resp. V ′

B) leave v within
an angle of [−ε; +ε] with respect to the positive y-direction (resp. x-direction);

– the drawing restricted to R′ (to B′) is equivalent to ER′ (resp. to EB′); and
– for every common vertex v, the first red (blue) edge in σv is r(v) (resp. b(v)).

Proof. Our algorithm is very similar to algorithms due to Brass et al. [6] and
Erten and Kobourov [10]. These algorithms, however, do not guarantee the con-
struction of a simultaneous embedding in which the order of the edges incident
to each vertex is as stated in the lemma. This order is essential for the upcoming
expansion step.

We assign x-coordinates 1, . . . , |VR′ | (y-coordinates |VB′ |, . . . , 1) to the ver-
tices of R′ (resp. of B′) according to the order in which they occur on the spine
in the 1PBE of R′ (resp. of B′) computed in Lemma 2. This determines the
placement of every common vertex. Set any not-yet-assigned coordinate to 0.

We now draw the edges of R′ (the construction for B′ is symmetric). The
idea is to realize the 1PBE of R′ with its vertices placed as above and its edges
drawn as x-monotone polygonal curves with one bend. We proceed as follows.
The 1PBE of R′ defines a partial order of the edges corresponding to the way
they nest. For example, denoting the vertices by their order along the spine, edge
(3, 4) preceeds (3, 5) and (2, 5), while (1, 2) and (6, 7) are incomparable. We draw
the edges of R′ in any linearization of this partial order. Suppose we have drawn
some edges and let (u, v) be the next edge to be drawn. Assume w.l.o.g. that
the x-coordinate of u is smaller than the one of v. For some εuv > 0, consider
the ray �u emanating from u with an angle of π/2 − εuv (with respect to the
positive x-axis). Similarly, let �v be the ray emanating from v with an angle of
π/2 + εuv. We choose εuv < ε sufficiently small so that:

(1) no vertex in VR′ \{u} lies in the region to the left of the underlying (oriented)
line of �u and to the right of the vertical line through u;

(2) no vertex in VR′ \ {v} lies in the region to the right of the underlying (ori-
ented) line of �v and to the left of the vertical line through v; and

(3) neither �u nor �v intersects any previously drawn edge.

As no two vertices of R′ have the same x-coordinate, we can choose εuv

as claimed. The corresponding rays �u and �v intersect in some point: this is
where we place the bend-point of (u, v). The resulting drawing is equivalent
to the 1PBE of R′ and therefore to ER′ . The remaining claimed properties are
preserved from the 1PBE. �

172 F. Frati et al.

Step 5: Expansion. We now expand the components of C in the drawing
produced by Lemma 3 one by one in any order. Let Γ be the current drawing, v
be a vertex corresponding to a not-yet-expanded component S of C, and p be the
point on which v is placed in Γ . Note that the red and blue edges incident to v
may be incident to different vertices in S. Let σv = (e1, . . . , e�), where e1, . . . , ek

are red and ek+1, . . . , e� are blue. By Lemma 3, r(v) = e1 and b(v) = ek+1. Each
edge incident to v is drawn as a polygonal curve with one bend. Let bi be the
bend-point of ei. The plan is to delete p and segments pbi in Γ to obtain Γ ′.
Then draw S in Γ ′ inside a small disk around p and draw segments from S to
b1, . . . , b�. See Fig. 4. For an ε ≥ 0, let Dε be the disk with radius ε centered at
p. Let ΓR (Γ ′

R) be the restriction of Γ (resp. Γ ′) to the red and black edges. We
state the following propositions only for the red graph; the propositions for the
blue graph are analogous. By continuity, v can be moved around slightly in ΓR

while maintaining a plane drawing for the red graph. This implies the following.

e1 ekek+1

eS
D

· · ·
...

D p

e1 ek· · ·

ek+1

e

...

Fig. 4. Expanding a component S in a small disk Dε around p.

Proposition 1. There exists a δR > 0 with the following property. For every
drawing Γ ∗

R obtained from Γ ′
R by drawing S in DδR , the red segments from S to

b1, . . . , bk do not cross any segment already present in Γ ′
R.

Proposition 2. There exists an εR > 0 with the following property. Let q1, . . . , qk

be any k (not necessarily distinct) points in this clockwise order on the upper semi-
circle of DεR

. Then the segments q1b1, . . . , qkbk do not intersect except at common
endpoints.

Proof. The angles of pb1, . . . , pbk are distinct and strictly decreasing, by Lemma 3
and by the way e1, . . . , ek are labeled. We claim that εR can be chosen sufficiently
small so that the angles of q1b1, . . . , qkbk are also distinct and strictly decreasing.
For a certain ε, let Ii(ε) be the interval of all angles α such that the ray with
angle α from bi intersects Dε. Since the angles of pb1, . . . , pbk are distinct, it
follows that the intervals I1(0), . . . , Ik(0) are disjoint. By continuity, there exists
an εR > 0 for which I1(εR), . . . , Ik(εR) are also disjoint, and the claim follows for
this εR. Finally, two segments qibi and qjbj with i < j and qi �= qj can intersect
only if the angle of qibi is smaller than the angle of qjbj , which does not happen
by the claim. �

Simultaneous Embeddings with Few Bends and Crossings 173

Lemma 4. There exists an ε > 0 with the following property. We can expand S
to obtain a simultaneous embedding Γ ∗ from Γ ′ by drawing the vertices of S on
the boundary of Dε, the edges of S as straight-line segments, and by connecting
S to b1, . . . , b� with straight-line segments.

Proof. Let δR, δB , εR, and εB be the constants given by Propositions 1 and 2
and their analogous formulations for B. Let ε := min{δR, δB , εR, εB}. Place the
vertices of S as distinct points on the boundary of the upper-right quadrant of
Dε in the order �S . By Lemma 1, this placement determines a straight-line plane
drawing of S. Draw straight-line segments from the vertices of S to b1, . . . , b�,
thus completing the drawing of the exclusive edges incident to S. We prove that
the red segments incident to S do not cross any red or black edge; the proof for
the blue segments is analogous. By Proposition 1, the red segments incident to
S do not cross the red and black segments not incident to S. Also, they do not
cross the edges of S, which are internal to Dε. Further, Proposition 2 ensures
that these segments do not cross each other. Namely, the linear order of the
vertices of S defined by the sequence of red edges e1, . . . , ek is a subsequence of
�S , given that the embedding ER′ of R′ is the one inherited from ER, given that
Lemma 3 produces a drawing of R′ respecting ER′ and in which e1 = r(v), and
given that the endvertex of r(S) in S is the first vertex of �S . �

Theorem 1. Let R and B be two trees. There exists a Sefe of R and B in
which every exclusive edge is a polygonal curve with one bend, every common
edge is a straight-line segment, and every two exclusive edges cross at most four
times.

Proof. By Lemma 3, R′ and B′ admit a simultaneous embedding with one bend
per edge. By repeated applications of Lemma 4, the simultaneous embedding of
R′ and B′ can be turned into a Sefe of R and B in which every exclusive edge
has one bend and every common edge is a straight-line segment. Finally, any
two exclusive edges cross at most four times, given that each of them consists of
two straight-line segments. �

4 A Planar Graph and a Tree (sketch)

In this section we sketch an algorithm that computes a Sefe of any planar graph
R and any tree B in which every edge of R has at most six bends and every
edge of B has one bend. The common graph C of R and B is a forest, as it is a
subgraph of B. The algorithm is similar to the one for trees (Sect. 3), however,
it encounters some of the complications one needs to handle when dealing with
pairs of planar graphs (Sect. 5). A detailed description of the algorithm and a
proof of its correctness can be found in [14]. The algorithm consists of several
steps.

Step 1: Antennas. We modify R and B as follows. Each red edge (u, v), with
u and v in C, is replaced by a path (u, ue, ve, v), whose first and third edge
are black, and whose second edge is red; also, each red edge (u, v), with u in

174 F. Frati et al.

C and v not in C, is replaced by a path (u, ue, v), with (u, ue) black and with
(ue, v) red. Denote by R′ and B′ the resulting planar graph and tree. While this
modification costs two extra bends per edge of R in the final Sefe of R and
B (which will be obtained from a Sefe of R′ and B′ by removing vertices and
edges not in R and B), it establishes the property that, for every exclusive edge
e of R′, every common endvertex of e is incident to e, to a common edge, and
to no other edge.

Step 2: Combinatorial Sefe. We construct a combinatorial Sefe E ′ of R′

and B′ such that at each vertex v of the common graph C ′ of R′ and B′, all
the edges of C ′ are consecutive in the circular order of the edges incident to v.
While this is done similarly to the case of tree-tree pairs, the existence of this
combinatorial Sefe here is possible only because of the antennas introduced in
Step 1. Edges r(S) and b(S), ordering �S , and planar embeddings ER′ and EB′

are defined as in Sect. 3.

Step 3: Contractions. We contract each component of C ′ to a vertex in R′

and in B′, determining a planar multigraph R′′ (with loops) and a tree B′′,
respectively. Graphs R′′ and B′′ inherit planar embeddings ER′′ and EB′′ from
ER′ and EB′ , respectively. Let r(v) and b(v) be the edges corresponding to r(S)
and b(S).

Step 4: Hamiltonian Augmentations. A Hamiltonian augmentation of B′′

is computed by Lemma 2. A Hamiltonian augmentation of R′′ might not exist,
thus we subdivide some edges of R′′ and then augment the subdivided R′′ into
a graph R′′′ containing a Hamiltonian cycle C (which we assume to be oriented
counter-clockwise), none of whose edges is part of an original edge of R′′.

The augmentation does not alter the embedding of R′′, that is, it produces a
planar embedding ER′′′ that contains a subdivision of ER′′ ; also, for each common
vertex v of R′′ and B′′, the edge of C entering v is right before r(v) in the
clockwise order of edges incident to v in ER′′′ . Each edge e of R′′ either is also
an edge of R′′′ (as it has not been subdivided) or corresponds to a path with
three edges in R′′′ (as it has been subdivided twice). In the former case, e is to
the left of C; in the latter case, the path corresponding to e starts to the left of
C, then moves to its right, and then ends again to its left.

The augmentation can be computed as follows: let T be a spanning tree of
R′′; draw a closed curve γ in ER′′ around T crossing twice every edge of R′′ not
in T ; replace such crossings with subdivision vertices for the edges of R′′ and
insert dummy vertices on γ; modify γ in a neighborhood of each vertex v of R′′,
so that γ passes through v.

Step 5: Simultaneous Embedding. In order to construct a simultaneous
embedding of R′′ and B′′, we would like to use known algorithms that embed
planar graph pairs simultaneously with two bends per edge [8,9,19]. However,
the existence of self-loops in R′′ prevents us from doing that. Thus, we modify
those algorithms to prove that a simultaneous embedding of R′′ and B′′ exists
in which every edge of R′′ (of B′′) is a polygonal curve with at most four bends
(resp. with one bend) and every two edges cross at most eight times. Further,

Simultaneous Embeddings with Few Bends and Crossings 175

the planar embeddings ER′′ and EB′′ of R′′ and B′′ are respected, the first red
(blue) edge in σv is r(v) (resp. b(v)), where σv is defined as in Sect. 3, and all the
edges of R′′ leave their incident vertices within an angle of [−ε; +ε] with respect
to the positive y-direction (resp. x-direction).

The embedding algorithm is similar to the one in Lemma 3. First, the vertices
of R′′′ (of B′′) are assigned increasing x-coordinates (decreasing y-coordinates),
according to their order along the Hamiltonian cycle in R′′′ (in B′′). The edges
of B′′ and the not subdivided edges of R′′ are drawn as steep 1-bend curves.
Every other edge e of R′′ is a path with three edges in R′′′; drawing each of
these edges as a steep 1-bend curve would result in e having five bends (one per
edge of R′′′ composing e, plus two corresponding to the subdivision vertices for
e); one bend is saved by placing all the subdivision vertices for the edges of R′′

on a strictly-convex curve, so that the edges of R′′′ between them can be drawn
as straight-line segments rather than as 1-bend curves.

Step 6: Expansion. Expand the components of C ′ in the simultaneous embed-
ding of R′′ and B′′, as in Sect. 3; this results in a Sefe of R′ and B′. Remove
vertices and edges not in R and B, obtaining a Sefe of R and B. We get the
following.

Theorem 2. Let R be a planar graph and let B be a tree. There exists a Sefe
of R and B in which every exclusive edge of R is a polygonal curve with at most
six bends, every exclusive edge of B is a polygonal curve with one bend, every
common edge is a straight-line segment, and every two exclusive edges cross at
most eight times.

5 Two Planar Graphs (sketch)

In this section we sketch an algorithm that computes a Sefe of any two planar
graphs R and B in which every edge has at most six bends. A detailed description
of the algorithm and a proof of its correctness can be found in [14].

We assume that a combinatorial Sefe E of R and B is given, that no exclusive
vertex or edge lies in the outer face of C in E , and that R and B are connected.
We make the first assumption since determining the existence of such a Sefe
is a problem of unknown complexity [4]; the last two assumptions can be met
after an initial augmentation. We introduce antennas, as in Sect. 4, turning R
and B into planar graphs R′ and B′ with a common graph C ′; however, here
the modification is performed for both graphs. This costs two extra bends per
edge in the final Sefe of R and B; however, it establishes the property that,
for every exclusive edge e, every common endvertex of e is incident to e, to a
common edge, and to no other edge. A combinatorial Sefe E ′ of R′ and B′ is
derived from E by drawing the antennas as “very small” curves on top of the
edges they partially replace. Let EC′ be the restriction of E ′ to C ′.

We now construct a Sefe of R′ and B′. Similarly to Sects. 3 and 4, we would
like to contract each component S of C ′, construct a simultaneous embedding of
the resulting graphs, and finally expand the components of C ′. However, S is

176 F. Frati et al.

not a tree here, but rather a planar graph containing other components of C ′ in
its internal faces. Hence, the contraction – simultaneous embedding – expansion
process does not happen just once, but rather we proceed from the outside to
the inside of C ′ iteratively, each time applying that process to draw certain
subgraphs of R′ and B′, until R′ and B′ have been entirely drawn. We now
sketch how this is done.

We start by representing the cycle δ∗ delimiting the outer face of C ′ in E ′ as
a strictly-convex polygon Δ∗. Next, assume that a Sefe Γ ′′ of two subgraphs
R′′ of R′ and B′′ of B′ has been constructed. Let C ′′ be the common graph of
R′′ and B′′ and let ER′′ , EB′′ , and EC′′ be the planar embeddings of R′′, B′′, and
C ′′ in E ′, respectively. Assume that the following properties hold for Γ ′′.

– (Bends and crossings): every edge is a polygonal curve with at most four
bends, every common edge is a straight-line segment, and every two exclusive
edges cross at most sixteen times;

– (Embedding): the restrictions of Γ ′′ to R′′, B′′, and C ′′ are equivalent to
ER′′ , EB′′ , and EC′′ , respectively; and

– (Polygons): each not-yet-drawn vertex or edge of R′ or B′ lies in E ′ inside
a simple cycle δf in C ′′ which is represented in Γ ′′ by a star-shaped empty
polygon Δf ; further, if an edge exists in C ′ that lies inside δf in E ′ and
that belongs to the same 2-connected component of C ′ as δf , then Δf is a
strictly-convex polygon.

These properties are initially met with R′′ = B′′ = C ′′ = δ∗ and with
Γ ′′ = Δ∗. It remains to describe how to insert in Γ ′′ vertices and edges of R′

and B′ that are not yet in Γ ′′, while maintaining these properties. Since R′

and B′ are finite graphs, this will eventually lead to a sefe of R′ and B′. We
distinguish two cases.

In Case 1, a 2-connected component Sf of C ′ exists such that: (i) the outer
face of Sf in EC′ is delimited by a simple cycle δf belonging to C ′′ and containing
no vertex or edge of C ′′ in its interior in EC′ ; and (ii) Sf contains edges inside
δf in EC′ , hence by property Polygons, δf is a strictly-convex polygon Δf in
Γ ′′. As observed in [18], a straight-line plane drawing Γf of Sf exists in which
the outer face of Sf is delimited by Δf and every internal face is delimited
by a star-shaped polygon. Plugging Γf in Γ ′′ maintains properties Bends and
crossings, Embedding, and Polygons.

In Case 2, let δf be a simple cycle belonging to C ′′, containing no vertex or
edge of C ′′ in its interior in EC′ , and containing a not-yet-drawn vertex or edge in
its interior in E ′. By property Polygons, δf is a star-shaped polygon Δf in Γ ′′.
Since Case 1 does not apply, δf delimits a face f of EC′ in its interior (possibly
with other cycles of C ′). Let C ′(f) be the subgraph of C ′ composed of the
vertices and edges incident to f in EC′ . Also, let R′(f) (B′(f)) be the subgraph
of R′ (of B′) composed of C ′(f) and of the red (blue) vertices and edges lying in
f in E ′; these are the graphs we draw while maintaining properties Bends and
crossings, Embedding, and Polygons. This proof is the most involved part
of the paper.

Simultaneous Embeddings with Few Bends and Crossings 177

We give an algorithm that draws R′(f) and B′(f) in four steps, with the app-
roach of Sects. 3 and 4: (Step 1) contract each component of C ′(f), obtaining
planar multigraphs R′′(f) and B′′(f); (Step 2) independently compute Hamil-
tonian augmentations of R′′(f) and B′′(f); (Step 3) construct a simultaneous
embedding Γ ′′(f) of R′′(f) and B′′(f), relying on their Hamiltonian augmenta-
tions; and (Step 4) expand each component of C ′(f) in Γ ′′(f), obtaining a Sefe
Γ ′(f) of R′(f) and B′(f).

Differently from the previous sections, a simultaneous embedding has to be
constructed for two planar multigraphs; this is not a big issue though, other
than for the number of bends of B′(f) in Γ ′(f). What is a major complication
is that, in order to extend the Sefe Γ ′′ of R′′ and B′′ by plugging Γ ′(f) into it,
we need to ensure that Γ ′′ and Γ ′(f) coincide along the part they share, which
is polygon Δf . That is, the Sefe Γ ′(f) of R′(f) and B′(f) we construct has to
coincide with Δf when restricted to δf .

The impact of this constraint on the contraction – simultaneous embedding –
expansion process is as follows. The contraction and Hamiltonian augmentation
steps stay unchanged. Denote by u∗ the vertex of R′′(f) and B′′(f) to which
the 2-connected component S∗ of C ′(f) containing δf has been contracted. The
simultaneous embedding step is also very similar to the one in Sect. 4, except
that it ensures that u∗ and its adjacent bends are in certain geometric positions.
The expansion step changes heavily. Namely: (i) we expand the components
S �= S∗ of C ′(f) in Γ ′′

f in the usual way; (ii) we define a region H∗ inside the
kernel of Δf ; (iii) we construct a drawing Γ ∗ of S∗ such that δf is represented
as Δf and all the other vertices and edges of S∗ are inside Δf but outside H∗;
we rotate and scale Γ ′′

f and place it in H∗; and we finally connect Γ ∗ with Γ ′′
f

via straight-line segments, thus obtaining Γ ′
f . We then plug Γ ′

f in Γ ′′, so that
they coincide along Δf , obtaining a drawing satisfying Properties Bends and
crossings, Embedding, and Polygons. We get the following.

Theorem 3. Let R and B be two planar graphs. If there exists a Sefe of R and
B, then there also exists a Sefe of R and B in which every edge is a polygonal
curve with at most six bends, every common edge is a straight-line segment, and
every two exclusive edges cross at most sixteen times.

6 Conclusions

In this paper we proved upper bounds for the number of bends per edge and
the number of crossings per edge pair required to realize a Sefe with polygonal
curves as edges.

While the bound on the number of bends per edge we presented for tree-tree
pairs is tight, there is room for improvement for pairs of planar graphs, as the
best known lower bound [6] only states that one bend per edge might be needed.
We suspect that our upper bound could be improved by designing an algorithm
that constructs a simultaneous embedding of two planar multigraphs with less
than four bends per edge. A related interesting problem is to determine how

178 F. Frati et al.

many bends per edge are needed to construct a simultaneous embedding of pairs
of (simple) planar graphs. The best known upper bound is two [8,9,19] and the
best known lower bound is one [15].

As a final research direction, we mention the problem of constructing Sefes
of pairs of planar graphs in polynomial area, while matching our bounds for the
number of bends per edge and crossings per pair of edges.

Acknowledgments. This research initiated at theWorkshop onGeometry andGraphs,
held at the Bellairs Research Institute in Barbados in March 2015. The authors thank the
other participants for a stimulating atmosphere. Frati also wishes to thank Anna Lubiw
and Marcus Schaefer for insightful ideas they shared during the research for [7].

References

1. Angelini, P., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the
simultaneous embeddability of two graphs whose intersection is a biconnected or
a connected graph. J. Discr. Algorithms 14, 150–172 (2012)

2. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with
no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83
(2012)

3. Bekos, M.A., van Dijk, T.C., Kindermann, P., Wolff, A.: Simultaneous drawing of
planar graphs with right-angle crossings and few bends. In: Rahman, M.S., Tomita,
E. (eds.) WALCOM 2015. LNCS, vol. 8973, pp. 222–233. Springer, Heidelberg
(2015)

4. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embeddings of planar graphs.
In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization, Dis-
crete Mathematics and Its Applications, chapter 11, pp. 349–382. Chapman and
Hall/CRC (2013)

5. Bläsius, T., Rutter, I.: Disconnectivity and relative positions in simultaneous
embeddings. Comp. Geom. 48(6), 459–478 (2015)

6. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D.P.,
Kobourov, S.G., Lubiw, A., Mitchell, J.S.: On simultaneous planar graph embed-
dings. Comput. Geom. Theory Appl. 36(2), 117–130 (2007)

7. Chan, T.M., Frati, F., Gutwenger, C., Lubiw, A., Mutzel, P., Schaefer, M.: Drawing
partially embedded and simultaneously planar graphs. In: Duncan, C., Symvonis,
A. (eds.) GD 2014. LNCS, vol. 8871, pp. 25–39. Springer, Heidelberg (2014)

8. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained draw-
ings of planar graphs. Comput. Geom. Theory Appl. 30(1), 1–23 (2005)

9. Di Giacomo, E., Liotta, G.: Simultaneous embedding of outerplanar graphs, paths,
and cycles. Int. J. Comput. Geom. Appl. 17(2), 139–160 (2007)

10. Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few
bends. J. Graph Algorithms Appl. 9(3), 347–364 (2005)

11. Erten, C., Kobourov, S.G., Le, V., Navabi, A.: Simultaneous graph drawing: layout
algorithms and visualization schemes. J. Graph Algorithms Appl. 9(1), 165–182
(2005)

12. Estrella-Balderrama, A., Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz,
M.: Simultaneous geometric graph embeddings. In: Hong, S.-H., Nishizeki, T.,
Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 280–290. Springer, Heidelberg
(2008)

Simultaneous Embeddings with Few Bends and Crossings 179

13. Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M.,
Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg
(2007)

14. Frati, F., Hoffmann, M., Kusters, V.: Simultaneous embeddings with few bends
and crossings (2015). CoRR abs/1508.07921

15. Frati, F., Kaufmann, M., Kobourov, S.G.: Constrained simultaneous and near-
simultaneous embeddings. J. Graph Algorithms Appl. 13(3), 447–465 (2009)

16. Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when
drawn simultaneously. Discrete Math. 309(7), 1909–1916 (2009)

17. Grilli, L., Hong, S.-H., Kratochv́ıl, J., Rutter, I.: Drawing simultaneously embedded
graphs with few bends. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol.
8871, pp. 40–51. Springer, Heidelberg (2014)

18. Hong, S., Nagamochi, H.: An algorithm for constructing star-shaped drawings of
plane graphs. Comput. Geom. Theory Appl. 43(2), 191–206 (2010)

19. Kammer, F.: Simultaneous embedding with two bends per edge in polynomial
area. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 255–267.
Springer, Heidelberg (2006)

http://arxiv.org/abs/1508.07921

Rook-Drawing for Plane Graphs

David Auber1,2, Nicolas Bonichon1,2, Paul Dorbec1,2,
and Claire Pennarun1,2(B)

1 University of Bordeaux, LaBRI, UMR 5800, 33400 Talence, France
{david.auber,nicolas.bonichon,paul.dorbec,claire.pennarun}@labri.fr

2 CNRS, LaBRI, UMR 5800, 33400 Talence, France

Abstract. Motivated by visualization of large graphs, we introduce a
new type of graph drawing called “rook-drawing”. A rook-drawing of a
graph G is obtained by placing the n nodes of G on the intersections
of a regular grid, such that each row and column of the grid supports
exactly one node. This paper focuses on rook-drawings of planar graphs.
We first give a linear algorithm to compute a planar straight-line rook-
drawing for outerplanar graphs. We then characterize the maximal planar
graphs admitting a planar straight-line rook-drawing, which are unique
for a given order. Finally, we give a linear time algorithm to compute a
polyline planar rook-drawing for plane graphs with at most n − 3 bent
edges.

1 Introduction

Nowadays, large and dynamic graphs are widely used in the context of Big Data,
and their visualization is a classical tool for their analysis. On the one hand, when
representing dynamic graphs, it is necessary to handle easily the addition or
deletion of nodes or edges. On the other hand, when using hierarchical views, the
ability to aggregate or de-aggregate sets of nodes is required [1,8]. When doing
such operations, it is important to preserve the mental map of the graph [3], as
well as to compute the changes in the representation efficiently, both in order to
guarantee a smooth use.

In the following, we define a particular type of graph drawing on a grid, that
we call rook-drawing. In a rook-drawing, we require that the nodes of the graph
lie on the intersections of a (n − 1) × (n − 1) regular grid, in such a way that
each row and column hosts exactly one node. Then, the addition or deletion
of a node impacts only the row and column it lies on, without interfering with
other nodes or other parts of the drawing. In particular, dealing with aggregated
data consists in stretching the grid to create enough room for the new appearing
nodes (see Fig. 1). These operations clearly preserve orthogonal ordering, which
is the first type of mental map defined in [12]. Observe that this technique of

This work has been carried out as part of the “REQUEST” project (PIAO18062-
645401) supported by the French “Investissement d’Avenir” Program (Big Data -
Cloud Computing topic) and has been supported by ANR grant JCJC EGOS ANR-
12-JS02-002-01.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 180–191, 2015.
DOI: 10.1007/978-3-319-27261-0 15

Rook-Drawing for Plane Graphs 181

n

n

n

n

n

n

n

n

(a)

n

n

n

n

n

n

n

:
: :

:

(b)

n

n

n

n

n

n

n

:

:

:

:

(c)

Fig. 1. Expansion of an aggregated node in a rook-drawing of a non-planar graph.

having exactly one node per row and per column is also used by Kornaropoulos
et al. [10,11], who represented edges with overlapping orthogonal polylines.

We here explore the existence of rook-drawings for planar graphs. The first
question that comes to mind is: Does every planar graph admit a planar straight-
line rook-drawing, i.e. a rook-drawing in which each edge is represented by a
segment and no two edges cross? De Fraysseix et al. showed that every planar
graph admits a straight-line drawing on an (n − 2) × (2n − 4) grid [9]. Schnyder
improved this result by proving the existence of such a drawing on an (n − 2) ×
(n − 2)-grid [14]. But in such drawings, some columns and rows contain several
nodes and some others may be empty. Upward-rightward drawings presented
by Di Giacomo et al. [7] are grid drawings in which all nodes have different
y-coordinates, but empty rows and several nodes in a same column are allowed.

Contrasting with these results, we show in Sect. 4 that almost every maxi-
mal planar graph admits no planar rook-drawing. Yet, every outerplanar graph
admits a planar straight-line rook-drawing computable in linear time, as shown
in Sect. 3. We then consider polyline planar rook-drawings, in which edges are
drawn as polylines with bends placed on grid intersections. We show in Sect. 5)
that every planar graph admits a polyline planar rook-drawing. Moreover, this
drawing can be computed in linear time, each edge is bent at most once and the
total number of bends is at most n − 3.

2 Definitions

A drawing of a graph G is a mapping of the nodes of G to points of the plane and
of the edges of G to curves between their endpoints. The drawing is straight-line
if the edges are mapped to line segments. It is polyline if the edges are series of
line segments. A grid drawing is a drawing in which the nodes are mapped to
intersections of a regular grid. In such a drawing, we use positive coordinates
(x(u), y(u)) for each node u. A k × l-grid is a grid of width k and height l.
Recall that a rook-drawing of a graph with n vertices is a (n − 1) × (n − 1)-
grid drawing, i.e. the functions x and y are bijections from the set of vertices
to {1, . . . , n}. For simplicity, throughout this paper, the term “rook-drawing”
denotes a straight-line rook-drawing unless otherwise precised.

182 D. Auber et al.

A planar graph is a graph admitting a planar drawing, i.e. a drawing on the
plane in which no pair of edges crosses. Such a drawing can be characterized
by the collection of circular permutations of incident edges around each node,
called embedding. A connected planar graph together with an embedding is called
a plane graph.

In a plane graph, the edges partition the plane into regions called faces.
A rooted plane graph is a plane graph in which one face (called outer face) and
one node (called root) lying on this face are distinguished. The nodes lying on
the outer face are called outer nodes, all other nodes are inner nodes. Similarly,
outer edges are edges belonging to the outer face, the other edges are called inner
edges. An outerplane graph is a rooted plane graph in which every node is on
the outer face. A maximal plane graph is a plane graph with maximal number
of edges, implying that every face is a triangle if there are at least three nodes.

A tree is a rooted plane graph without cycles. In a tree, a node u is a descen-
dant of a node v (or v is an ancestor of u) if v is on the path from the root to u.
Moreover, if v is connected to u, we say that v is the parent of u (and u is a child
of v). Two nodes are said unrelated if one is neither ancestor nor descendant of
the other. A leaf of a tree is a node of the tree without descendants. The depth
of a tree is the length of the longest path from a leaf to the root in the tree. For
a tree T a node u, the subtree of u, denoted T (u), is the tree induced on u and
all of its descendants.

The clockwise preorder of a tree T is a list of the nodes of T in the order
of a clockwise depth-first search algorithm on T . The clockwise postorder of a
tree T is a list of the nodes of T in the order of their last visit in a clockwise
depth-first search algorithm of T . Counterclockwise preorder and postorder are
defined similarly.

3 Planar Rook-Drawing for Outerplane Graphs

In this section, we prove the following theorem:

Theorem 1. Every outerplane graph admits a planar rook-drawing. This draw-
ing can be computed in linear time.

To prove Theorem 1, we use a partition of the edges of outerplane graphs
introduced by Bonichon et al. [4]:

Theorem 2 ([4]). Let G be an outerplane graph rooted in r. There exists a
unique partition of the edges of G into two sets T and S such that:

– T is a tree rooted in r
– edges of S join a node u to the first node after u in the counterclockwise

postorder of T .

Such a partition can be computed in linear time.

Rook-Drawing for Plane Graphs 183

Denote by y(v) the index of v in a counterclockwise postorder of T . We
consider an orientation of the edges of T and S such that all edges of T are
oriented towards the root r and the edges (uv) of S are oriented from u to v if
y(u) > y(v). If G is maximal, then S is a tree rooted in w with y(w) = 0 that
does not contain the root r of G.

The tree T can be computed by Algorithm 1 due to Bonichon et al. [4].
A call Traversal(G, ∅, r) returns the tree T of G rooted in r, the second parameter
stands for the current set of edges of the tree during the execution.

Algorithm 1. Traversal(G,T, u)
begin

C ← {(u, v) ∈ G | v /∈ T}
T ← T ∪ C
for all edges (u, v) ∈ C taken in the clockwise order around u do

T ← Traversal(H,T, v)
return T

n

n

nn

n

n

n

n

n

n

n

n

n

n

n

n

r

(a)

,
,

,

,

,

,

,
,

,

,
,

,
,

,

,
,

r

(b)

Fig. 2. (a) The decomposition of an outerplane graph G rooted in r into T (solid edges)
and S (dotted edges). (b) A rook-drawing of G showing the induction process of the
proof for Lemma 1.

For each node v of the outerplane graph G, we denote x(v) its index in
counterclockwise preorder of T . Recall that y(v) is its index in counterclockwise
postorder of T .

Lemma 1. Placing each node v of G at coordinates (x(v), y(v)) produces a pla-
nar rook-drawing of G.

Proof. By construction, the drawing D(G) obtained is a rook-drawing. It remains
to show that this drawing is planar.

For v a node of G, let Tv be the subtree of T rooted in v. Let G(v) be the
subgraph of G induced by the nodes of Tv. Let D(G(v)) be the drawing induced

184 D. Auber et al.

by the edges and nodes of G(v). The left branch of v in Tv denotes the path
between v and the first leaf found in a counterclockwise postorder of Tv.

Let u and v be two nodes of G. The following observations are direct conse-
quences of the definition of the x- and y-coordinates:

(i) If u is before v in counterclockwise preorder of T (i.e. x(u) < x(v)) and
they are unrelated, then y(u) < y(v) and for each descendant w of u in T ,
x(w) < x(v) and y(w) < y(v).

(ii) If u is parent of v in T , then x(u) < x(v) and y(u) > y(v).
(iii) Let (uv) be an edge of S with y(u) > y(v). Then v is before u in counter-

clockwise preorder of T (i.e. x(v) < x(u)) and as they are unrelated, v is
also before u in counterclockwise postorder of T (i.e. y(v) < y(u)). Thus
the edges of S are going down and to the left.

(iv) The coordinates of the nodes of the left branch of v are x-increasing and
y-decreasing.

We now want to prove by induction the following proposition : D(G(u)) is
planar and drawn in the subgrid [x(u), x(u) + |Tu| − 1] × [y(u) − |Tu| + 1, y(u)].

When Tu is reduced to a single node, the proposition clearly holds.
Now assume the proposition holds for nodes having a subtree of depth at

most k. Let u be a node with a subtree Tu of depth k + 1. Denote by u1, ..., um

the children of u in clockwise order. Their subtrees in T are denoted Tu1 , ..., Tum
.

By induction hypothesis, the subtrees Tu1 , ..., Tum
are placed in disjoint areas

(see Fig. 2). Then D(G(ui)) and D(G(uj)) with i �= j do not intersect. Thus Tu

is planarly drawn in the sub-grid [x(u), x(u) + |Tu| − 1] × [y(u) − |Tu| + 1, y(u)].
We now prove that the edges of S joining nodes belonging to different subtrees

do not create any crossing in D(G(u)). Let v and w be nodes from different
subtrees linked by an edge of S, and such that x(w) < x(v). Recall that by
definition of S, w is the first node unrelated to v with y(w) < y(v). So v and w
are in consecutive trees, say Tui

and Tui+1 and w = ui+1. Thus all edges of S
joining Ti to Ti+1 have ui+1 as an end: edges of S join nodes of the left branch
of ui to ui+1. Then by remarks (iii) and (iv), the edges of S can not cross each
other or edges of the tree T .

Thus D(G(u)) is planar. This concludes the proof. ��
Remark that as Andrews [2] showed that a strictly convex drawing of a cycle of
n nodes with integer coordinates requires area Ω(n3), whereas a rook-drawing
requires area Ω(n2), our algorithm can not produce strictly convex drawings for
outerplane graphs for large n.

Also note that the existence of n nodes both in rook position and in general
position (i.e. such that no three nodes are colinear [13]) would imply an algo-
rithm for generating a rook drawing of outerplane graphs (from [6]). We do not
know how to prove whether such a configuration exists. Remark though that the
algorithm in [6] is of complexity n log3(n), while the algorithm presented here is
linear.

Rook-Drawing for Plane Graphs 185

4 Existence of a Planar Rook-Drawing

We define the tower plane graph Tn of order n ≥ 3 as the plane join graph
K2 + Pn−2 (i.e. a complete graph K2 and a path on n − 2 nodes Pn−2 together
with all the edges joining nodes from K2 to nodes of Pn−2) drawn in such a way
that the nodes of K2 are on the outer face (see Fig. 3 for a drawing of T6).

n n

n

n

n

n

a b

c

Fig. 3. The tower plane graph T6.

Theorem 3. There exists a unique maximal plane graph on n ≥ 3 nodes admit-
ting a planar rook-drawing, namely the tower plane graph Tn.

Proof. Suppose we have a planar rook-drawing of a maximal plane graph G. We
prove that G is the tower plane graph Tn.

Let a, b, c be the three outer nodes of G. To maintain planarity, the inner
nodes are placed at coordinates inside the area defined by the edges (ab), (bc)
and (ca). Thus the outer nodes must occupy altogether the four borders of the
grid, and one of them has to be placed in a corner. Without loss of generality,
assume that a occupies the bottom-left corner.

Consider the positions of the two other outer nodes of G. Suppose one of
them is in the top-right corner (without loss of generality, say b). If the third
node c is placed below the edge (ab) (see Fig. 4a), then the second column on the
left can not contain a node: the coordinates (k, 2) are outside the area delimited
by the edges (ab), (bc) and (ca) for all k > 2. The point (2, 2) is covered by (ab)
and the point (2, 1) can not contain a node because a is already on the first row.
If c is above (ab), then for similar reasons the column left to b can not contain
a node. Thus b is not in a corner. Without loss of generality, assume b is on the
top row and c on the rightmost column of the grid.

Now consider the positions of the inner nodes of G. Let α be the angle
between the column containing b and the edge (bc) and β be the angle between
the row containing c and the edge (bc) (see Fig. 4b). Consider the row just below
b: the angle between the edge (ab) and the column containing b is less or equal
to 45◦ thus no nodes can be placed at the left of b on the row below it. No node
can be placed on the same column as b either. No node can be placed at the
right of the intersection between the edge (bc) and the row below b. Thus for the
row under b to contain a node we must have α ≥ 45◦. With similar arguments,
for the column on the left of c to contain a node, we must have β ≥ 45◦. We
have thus α = β = 45◦. Thus c is the node placed on the row below b and b is

186 D. Auber et al.

placed on the column left to c and x(b) = y(c) = n − 1. Finally, the inner nodes
must be placed on coordinates (i, i) for 2 ≤ i ≤ n − 2, i.e. along a diagonal of
the grid (see Fig. 4c).

Now the positions of the nodes are determined and there is only one way to
complete the drawing into a maximal plane graph, forming the graph Tn. ��

na

n
b

n
c

(a)

na

n
b

n c

α

β

(b)

:
b

:a

: c

:

:

:

(c)

Fig. 4. (a) and (b) Illustrations of the proof of Theorem 3. (c) A planar rook-drawing
of T6.

5 Polyline Rook-Drawing for Planar Graphs

As we proved that some plane graphs do not admit a planar rook-drawing with
straight lines, we now relax the straight-line constraint and look at planar poly-
line rook-drawings. We first recall the definition of Schnyder woods.

5.1 Properties of Schnyder Woods

Definition 1 (Schnyder [14]). A Schnyder wood of a maximal plane graph G
is a partition of the inner edges of G into three directed trees T0, T1, T2 with the
following properties:

– each tree Ti is rooted on a distinct outer node vi;
– the edges of each tree are directed toward the root;
– each inner node u of G has one parent in each Ti, denoted Pi(u);
– in counterclockwise order around each inner node, the outgoing edges are in

T0 then T1 then T2;
– each ingoing edge belonging to the tree Ti is placed after the outgoing edge

in Ti+1 mod 3 and before the outgoing edge in Ti−1 mod 3 in counterclockwise
order around an inner node.

The orientation of edges around an inner node is shown in Fig. 5, where T0

is drawn solid, T1 is dotted and T2 is dotted-dashed. Throughout the paper, we
call a 0-edge (respectively 1-edge, 2-edge) an edge belonging to the tree T0 (resp.
T1, T2).

Two properties of Schnyder woods follow.

Rook-Drawing for Plane Graphs 187

P2(u)

P0(u)

P1(u)u
2

0

1

0

21

Fig. 5. Orientation around an inner node u in a Schnyder wood.

Proposition 1 (Bonichon et al. [5]). If u is a descendant of v in Ti, then u
is unrelated to v in Tj, j �= i.

Proposition 2. If u is the parent of v in Ti, then u is before v in counterclock-
wise preorder of Ti−1 and after v in counterclockwise preorder of Ti+1.

Proof. Without loss of generality, assume i = 2. In this proof, an i-path denotes
a directed path in the tree Ti. Recall that vi denotes the root of the tree Ti. Let
u be the parent of v in T2 (see Fig. 6).

Suppose that u is after v in the counterclockwise preorder of T1. By orien-
tation around the node v, the 1-path from v to v1 has to cross the 2-path from
u to v2. Let t be the intersection of these two paths. Then t is an ancestor of v
in T2 (it is an ancestor of u and thus of v). But t is also an ancestor of v in T1

because it is on the 1-path from v1 to v. Though this contradicts Proposition 1.
So u is before v in the counterclockwise preorder of T1, as claimed.

A similar argument proves that u is after v in the counterclockwise preorder
of T0. ��

v0

t

u

v

v1

v2

2

2

1
2

1

1

Fig. 6. Illustration of the proof of Proposition 2

5.2 Polyline Rook-Drawing Algorithm

We here describe an algorithm to produce a planar polyline rook-drawing of a
maximal plane graph of order n. The algorithm is inspired by an algorithm for

188 D. Auber et al.

polyline drawings proposed by Bonichon et al. [5]. The original algorithm was
designed to minimize the grid size and thus many rows and columns support
several nodes. This new algorithm shares with the former the edge bending
strategy, but the node placement is different.

Theorem 4. Every maximal plane graph G with n nodes admits a polyline pla-
nar rook-drawing D(G), which can be computed with Algorithm 2 in linear time.
This drawing has n − 3 bends.

Algorithm 2. Planar polyline rook-drawing for a maximal plane graph G

(T0, T1, T2) ← Schnyder wood of G
add the oriented edge (v1v0) to T0

add the oriented edge (v2v0) to T0

add the oriented edge (v2v1) to T1

column order C ← clockwise preorder of T0

row order R ← clockwise postorder of T1

for u node of G do
(x(u), y(u)) = (C(u), R(u))

draw all T2 edges with straight lines
for e = (u, P0(u)) edge of T0 do

if x(u) = x(P0(u)) + 1 then draw e with a straight line else Bend e at
(x(u), y(P0(u)) + 1)

for e = (u, P1(u)) edge of T1 do
v ← ll0(u).
bend e at (x(v), y(u))

In Algorithm 2 and later, ll0(u) denotes the last leaf found in a clockwise
preorder of u in T0. An example of the result of Algorithm 2 on a maximal plane
graph is presented in Fig. 7b.

We first make the following observations on the placement of nodes after
applying Algorithm 2:

– Since the nodes are placed according to their position in a preorder and a
postorder, each row and column contains exactly one node. Thus D(G) is a
rook-drawing.

– When u is a leaf of T0, then ll0(u) = u and this is the only case when the edge
from u to P1(u) is drawn straight.

Number of Bends. Let k be the number of leaves in T0. By construction,
T0 contains n − 1 edges, T1 contains n − 2 edges and T2 contains n − 3 edges.
The edges of T0 are all bent, except one for each non-leaf node in T0. Thus
n − 1 − (n − k) 0-edges are bent. The edges of T1 are all bent, except k. Thus
n − 2 − k 1-edges are bent. Finally, the edges of T2 are never bent. Thus, there
are exactly n − 3 bends in the drawing of G.

Rook-Drawing for Plane Graphs 189

v0

v1v2

A

B

C

D E

F

G

H

I

(a)

n

n

n

n

n

n

n

n

n

n

n

n

v0

v1v2

A B

C

D E

F

G

H

I

(b)

Fig. 7. (a) Schnyder wood of a maximal plane graph G. (b) Result of our polyline
algorithm on G.

Planarity. Most of the proofs for the planarity of the drawing are placed in the
appendix. We describe in the following some structural properties of the drawing
with Lemmas 2, 3 and 4.

Lemma 2. In D(G), for each inner node u:

– x(P0(u)) < x(u) and y(P0(u)) < y(u): P0(u) is left and below u.
– x(P1(u)) > x(u) and y(P1(u)) > y(u): P1(u) is right and above u.
– x(P2(u)) < x(u) and y(P2(u)) > y(u): P2(u) is left and above u.

From Lemma 2 and the coordinates of bends chosen for the edges in Algo-
rithm 2, we observe that the configuration around an inner node follow the
scheme illustrated in Fig. 8.

Sv1
Sv2

Sv3

v

v1

v2

v3
0

0
0

12

0

2

1

Fig. 8. Edges orientation around an inner node v. Svi denotes the area in which the
subtree of vi in T0 is drawn.

This drawing gives a good intuition of why the edges within T0 do not cross.
The detailed proof is not given here, but is based on the following lemmas.

Lemma 3. For every inner node u, every node v such that x(P0(u)) < x(v) <
x(u) is a descendant of P0(u) in T0.

190 D. Auber et al.

Proof. This is a direct consequence of the fact that the x-coordinates are given
by the clockwise preorder of T0. ��
Lemma 4. For every inner node u, every node v such that x(u) < x(v) <
x(P1(u)) (resp. x(P2(u)) < x(v) < x(u)) is either a descendant of u (resp.
P2(u)) in T0 or y(v) < y(u) (resp. y(v) < y(P2(u))) in D(G).

The final step is to explicitly state that the edges drawn do not cross. The
proofs are not given due to space limitation. The idea is the following: we first
show that edges inside each tree T0, T1 and T2 do not cross. Then we prove that
edges from different trees do not cross.

6 Conclusion

In this paper, we observed that all maximal planar graphs but the tower graphs
admit no planar straight-line rook-drawing. On the other hand we showed that
every outerplane graph admits a planar straight-line rook-drawing.Anatural ques-
tion is: are there usual classes of plane graphs that all admit a planar straight-line
rook-drawing? A plane graph that has a triangular outer face and admits a pla-
nar straight-line rook-drawing is necessarily a subgraph of the tower plane graph
we described earlier. However, if we consider plane graphs with an outer face with
at least 4 vertices, it seems that many of them should admit such a drawing. Then,
plane graphs that donot contain non-facial triangles, as, for instance, quadrangula-
tions or 4-connected triangulations with outer face of degree at least 4, are possibly
good candidates for admitting a planar rook drawing.

We also showed that every plane graph admits a planar polyline rook-drawing
with at most n − 3 bent edges. Even if this number of bends is reasonable, one
could ask if a linear number of bends is needed for allowing a planar rook-drawing
of any planar graph.

Another interesting question would be to consider relaxed rook-drawing in
which each row and column contains at most one node (and no longer exactly
one node). Clearly every plane graph admits a planar relaxed rook-drawing: it
suffices to consider a straight-line planar drawing of the plane graph and add
a tiny perturbation to nodes sharing some coordinates. This naive approach
produces drawings with a huge number of empty columns and rows, which is
not suitable in practice. Hence the good question would be: does every plane
graph admits a planar relaxed rook-drawing with a small (i.e. linear or sub-
linear) number of empty rows and columns? There are no evidence yet that even
a constant number of empty rows and columns would not suffice.

References

1. Abello, J., Van Ham, F., Krishnan, N.: ASK-GraphView: a large scale graph visu-
alization system. IEEE Trans. Vis. Comput. Graph. 12(5), 669–676 (2006)

2. Andrews, G.E.: A lower bound for the volume of strictly convex bodies with many
boundary lattice points. Trans. Am. Math. Soc. 106, 270–279 (1963)

Rook-Drawing for Plane Graphs 191

3. Archambault, D., Purchase, H.C.: Mental map preservation helps user orientation
in dynamic graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol.
7704, pp. 475–486. Springer, Heidelberg (2013)

4. Bonichon, N., Gavoille, C., Hanusse, N.: Canonical decomposition of outerplanar
maps and application to enumeration, coding, and generation. J. Graph Algorithms
Appl. 9(2), 185–204 (2005)

5. Bonichon, N., Le Saëc, B., Mosbah, M.: Optimal area algorithm for planar polyline
drawings. In: Kučera, L. (ed.) WG 2002. LNCS, vol. 2573, pp. 35–46. Springer,
Heidelberg (2002)

6. Bose, P.: On embedding an outerplanar graph in a point set. Comput. Geom. 23(3),
303–312 (2002)

7. Di Giacomo, E., Didimo, W., Kaufmann, M., Liotta, G., Montecchiani, F.: Upward-
rightward planar drawings. In: The 5th International Conference on Information,
Intelligence, Systems and Applications, IISA 2014, pp. 145–150. IEEE (2014)

8. Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S.C.
(ed.) GD 1996. LNCS, vol. 1190, pp. 101–112. Springer, Heidelberg (1997)

9. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings of
planar graphs. In: Proceedings of the twentieth annual ACM symposium on Theory
of computing, pp. 426–433. ACM (1988)

10. Kornaropoulos, E.M., Tollis, I.G.: Overloaded orthogonal drawings. In: Speck-
mann, B. (ed.) GD 2011. LNCS, vol. 7034, pp. 242–253. Springer, Heidelberg (2011)

11. Kornaropoulos, E.M., Tollis, I.G.: DAGView: an approach for visualizing large
graphs. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp.
499–510. Springer, Heidelberg (2013)

12. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Visual Lang. Comput. 6(2), 183–210 (1995)

13. Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation
with vertices at specified points. Am. Math. Monthly 98, 165–166 (1991)

14. Schnyder, W.: Embedding planar graphs on the grid. Symp. Discrete Algorithms
90, 138–148 (1990)

On Minimizing Crossings in Storyline
Visualizations

Irina Kostitsyna1, Martin Nöllenburg2, Valentin Polishchuk3, André Schulz4,
and Darren Strash5(B)

1 Department of Mathematics and Computer Science, TU Eindhoven,
Eindhoven, The Netherlands

i.kostitsyna@tue.nl
2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

noellenburg@ac.tuwien.ac.at
3 Communications and Transport Systems, ITN, Linköping University,

Linköping, Sweden
valentin.polishchuk@liu.se

4 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany
andre.schulz@fernuni-hagen.de

5 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany
strash@kit.edu

Abstract. In a storyline visualization, we visualize a collection of inter-
acting characters (e.g., in a movie, play, etc.) by x-monotone curves that
converge for each interaction, and diverge otherwise. Given a storyline
with n characters, we show tight lower and upper bounds on the num-
ber of crossings required in any storyline visualization for a restricted
case. In particular, we show that if (1) each meeting consists of exactly
two characters and (2) the meetings can be modeled as a tree, then we
can always find a storyline visualization with O(n logn) crossings. Fur-
thermore, we show that there exist storylines in this restricted case that
require Ω(n log n) crossings. Lastly, we show that, in the general case,
minimizing the number of crossings in a storyline visualization is fixed-
parameter tractable, when parameterized on the number of characters k.
Our algorithm runs in time O(k!2k log k+k!2m), where m is the number
of meetings.

1 Introduction

Ever since an xkcd comic1 featured storyline visualizations of various popular
films, storyline visualizations have increasingly gained popularity as an area of
research in the information visualization community (although the precursors
of this kind of visualization may date back to Minard’s 1861 visualization of
Napoleon’s Russian campaign of 1812). Informally, a storyline consists of char-
acters (e.g., in a movie, play, etc.) who meet at certain times during a story.

1 http://xkcd.com/657.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 192–198, 2015.
DOI: 10.1007/978-3-319-27261-0 16

http://xkcd.com/657

On Minimizing Crossings in Storyline Visualizations 193

a b

cd

a

b

c

d

Fig. 1. Left: a storyline visualization with characters a, b, c, d. Right: the event graph.

In a storyline visualization, each character is represented as an x-monotone
curve. When characters meet (e.g., appear together in a scene, or interact), their
representative curves should be grouped close together vertically, and otherwise
their curves should be separate (see Fig. 1, left). We assume that every charac-
ter can only be in one meeting group at every point in time. One of the main
goals for producing readable storyline visualizations is to minimize the number
of crossings between character curves. Most previous results for constructing
storyline visualizations are practical, implementing drawing routines that rely
on heuristics or genetic algorithms [5,10]. However, there are only few theoret-
ical results for storyline visualizations. Storyline visualization is tightly related
to layered graph drawing [9], where layers correspond to meeting times in the
storyline, and a permutation of all character curves needs to be computed for
each time point. Minimizing crossings in a storyline visualization is also related
to bounding the ratio of (proper) crossings to touchings for families of monotone
curves [6].

Our Results. While previous results focus on drawing storyline visualizations
in practice using heuristics [5,10], here we investigate the minimum number of
crossings required in any storyline visualization. First, we investigate storyline
visualizations in a restricted case. We show that if (1) each meeting consists of
exactly two characters and (2) the meetings can be modeled as a tree, then we
can always find a storyline visualization with O(n log n) crossings, where n is
the number of characters. Furthermore, we show that there exist storylines in
this restricted case that require Ω(n log n) crossings. Lastly, we show that, in the
general case, minimizing the number of crossings in a storyline visualization is
fixed-parameter tractable, when parameterized on the number of characters k.
Our algorithm runs in time O(k!2k log k + k!2m), where m is the number of
meetings.

Problem Formulation. In the storyline problem, we are given a storyline S =
(C, T , E), that is defined by set of characters C = {1, . . . , n}, that meet during
closed time intervals T ⊂ {[s, t]|s, t ∈ N, s ≤ t}. We call a meeting an event, and
denote the set of events as E ⊂ 2C × T , where each event Ei = (Ci, [si, ti]) ∈ E
(with 1 ≤ i ≤ m) is defined by a subset Ci ⊆ C of characters that meet for
the entire time interval [si, ti] ∈ T (naturally, a character cannot participate
in two overlapping events). The goal then is to produce a 2D drawing of S,
called a storyline visualization, where the x-axis represents time, and characters
are drawn as x-monotone curves placed in some vertical order for each point in
time. During each event Ei = (Ci, [si, ti]), curves representing characters in Ci

194 I. Kostitsyna et al.

should be grouped within some small vertical distance δgroup of each other, and
otherwise the characters should be separated by some larger vertical distance
δseparate > δgroup.

2 Pairwise Single-Meeting Storylines

We focus on a simplified version of the storyline problem, where each event
consists of exactly two characters, and these characters meet exactly once in
E . For this simplified version, we can represent our events as a graph where
every vertex is a character, and every edge is a meeting of the corresponding
characters. We call this graph an event graph (Fig. 1, right).

2.1 O(n logn) Crossings for Tree Event Graphs

Let our event graph be a tree T with n nodes. Then we show that we can
always draw a storyline visualization with O(n log n) crossings. Our result relies
on decomposing T into disjoint subtrees that are drawn in disjoint axis-aligned
rectangles. We reach this bound by using the heavy path decomposition tech-
nique [8].

Definition 1 (heavy path decomposition [8]). Let T be a rooted tree. For
each internal node v in T , we choose a child w with the largest subtree among all
of v’s children. We call the edge (v, w) a heavy edge, and the edges to v’s other
children light edges. We call a maximal path of heavy edges a heavy path, and the
decomposition of T into heavy paths and light edges a heavy path decomposition.

Ri

Ri+1

Ri−1

ti−1tisi si−1

.

Li,j−1

Li,j

vi

[si,j−1, ti,j−1]

[si,j , ti,j]

Ri

Ri+1

Ri−1

ti−1tisi si−1

.

Li,j−1

Li,j

vi

Fig. 2. The curve for vi before (left) and after (right) introducing detours.

We first arbitrarily root T , and compute its heavy path decomposition. Note
that any root-leaf path of the event graph T contains at most �log n� light
edges [8]. Let P be the heavy path beginning at the root of T . We denote the
node on P at depth i in T by vi. For each vi, with li light children, we first lay
out each light subtree Li,j for 1 ≤ j ≤ li. We then order these layouts vertically
in increasing order of meeting start time between vi and the root ri,j of Li,j ,

On Minimizing Crossings in Storyline Visualizations 195

separating each layout by vertical distance δseparate. We denote the rectangle
containing all layouts Li,j by Ri (see Fig. 2). Then, we draw a single x-monotone
curve from the top left to the bottom right of Ri, passing through the layout of
each Li,j , meeting the curve for each root ri,j at time si,j , and leaving at time
ti,j , for each event ({vi, ri,j}, [si,j , ti,j]).

Now for each vi, we have a layout of vi and its light subtrees in a rectangle Ri.
We now show how to draw events between characters that are adjacent via a
heavy edge in P . We first place all Ri vertically in order along the path P
(from R1 to R|P |), separated by distance δgroup. We must have the curves meet
for each event ({vi, vi+1}, [si, ti]). We show how to introduce detours so that the
curve vi joins curve vi+1 at time si. Let ni be the number of curves in the light
subtrees of vi. Before time si, curve vi has intersected some number γ of the
curves from its light subtrees, and has ni−γ curves still to intersect. Just before
time si, we divert the curve so that it intersects the remaining ni−γ curves and
reaches the bottom of rectangle Ri to meet with vi+1 at time si. Then at time
ti, we return the curve back to between curves γ and γ + 1 and allow the curve
to continue as before, passing through the remaining ni−γ curves. For each vi

we must also introduce a similar detour to the top of its rectangle Ri so that it
can meet the curve of vi−1 at time si−1; see Fig. 2 (right).

We introduce at most two such detours for each rectangle Ri, and therefore
increase the number of crossings of each curve vi by a constant factor of at most
five. Therefore, the total number of crossings N(T) in our drawing of T satisfies
N(T) ≤ ∑|P |

i=1

∑li
j=1 N(Li,j) + 5n, with base case N(({v}, ∅)) = 0. Since all Li,j

are disjoint, each iteration of the recurrence contributes at most O(n) crossings.
Further, since there are O(log n) light edges on the simple path from the root to
any leaf in the heavy path decomposition [8], the recurrence reaches the base case
after O(log n) iterations. Therefore, the recurrence solves to N(T) = O(n log n)
crossings.

Theorem 1. Any pairwise single-meeting storyline with a tree event graph has
a storyline visualization with O(n log n) crossings.

2.2 A Lower Bound

t=0

i

v
u

j

t=1

Fig. 3. Event graph on line
t = 0 before and on line t = 1
after swapping u and v.

Consider some storyline visualization V with an
event graph G with n nodes and m edges. Let π0

be the ordering of the characters along a vertical
line t = 0 in V. Assign labels [1, . . . , n] to the
characters according to π0. Then permutation π0

defines an embedding of G on the line t = 0. As
time progresses and character curves intersect,
the corresponding vertices in the embedding of
G are swapped, see Fig. 3.

For every edge e = (i, j) ∈ G define its cost
ct(e) to be the number of characters between i
and j on the vertical line at any given time t.

196 I. Kostitsyna et al.

Then initially c0(e) = |i − j| − 1. So before i and j can meet, their curves
must cross at least |i − j| − 1 curves that were initially between them, which
may be 0.

When two character curves cross, their corresponding vertices u and v swap
in the embedding of G on the vertical line. Notice that, after the swap, the costs
of edges incident to u or v change by ±1, and there is no change for non-incident
edges. Thus, the crossing changes the cost of at most deg(u)+deg(v) edges in G.

Let C0 =
∑

c0(e) be the total initial cost of the edges of G embedded on the
line t = 0. Then C0 is the number of decrements in edge costs needed before all
edges would have had cost 0 at some moment in time. Every crossing of character
curves u and v in V decreases this cost by at most deg(u) + deg(v). Therefore,
there are at least minπ0 C0

2Δ crossings in any storyline visualization V with an event
graph G, where Δ is the maximum degree of G. Notice that minπ0 C0 = L∗ −m,
where L∗ is the total edge length in the optimal linear ordering of graph G (the
numbering of its vertices that minimizes the sum of differences of numbers over
the graph’s edges; see [1] and [3, Problem GT42]).

Theorem 2. Any storyline visualization with an event graphG requiresΩ(L∗−m
2Δ)

crossings, where L∗ is the total edge length of the optimal linear ordering of G, and
Δ is the maximum degree of G.

Corollary 1. There exists a pairwise single-meeting storyline with a tree event
graph whose storyline visualization requires Ω(n log n) crossings.

Proof. Let G be a full binary tree. Chung [2] showed that for any assignment of
unique labels [1, . . . , n] to vertices of a full binary tree, the sum of label differences
|i − j| over all edges (i, j) ∈ G is Ω(n log n) (see also [7]). Therefore, there will
be Ω(Ω(n log n)−n+1

2×3) = Ω(n log n) crossings. 	

3 An FPT Algorithm for the Storyline Problem

We now consider general storylines, where any number of characters may par-
ticipate in an event, and we have no restrictions on the event (hyper)-graph
structure. The general storyline problem is NP-complete, by a straightforward
reduction from Bipartite Crossing Number [4]. However, in real-world sto-
rylines, there may be only a few characters of interest and these characters
participate frequently in events. We therefore are interested in a parameterized
algorithm to better capture the complexity in this scenario. Let k = |C| be the
number of characters in a storyline, and let m = |E| be the number of events. We
show that the storyline problem is fixed-parameter tractable when parameterized
on k. A problem is said to be fixed-parameter tractable if it can be solved in
time f(k)mO(1), where f is some function of k that is independent of m.

Theorem 3. For storylines with k characters and m events, we can solve the
storyline problem in time O(k!2k log k + k!2m).

On Minimizing Crossings in Storyline Visualizations 197

Proof. We show how to reduce the storyline problem to finding shortest path in
a graph. For each time interval [si, ti] in the storyline we take its start time si

and create a vertex for each of the O(k!) possible vertical orderings of the curves
that satisfy the event groupings at si. We denote the vertices for time si by vi,j ,
where 1 ≤ j ≤ k!, and say these vertices are on level i.

Denote the minimum number of crossings to transform one ordering vi,j

at level i to ordering vi+1,l at level i + 1 by I(vi,j , vi+1,l). For all levels, we
connect each vertex vi,j to each vertex vi+1,l by a directed edge with weight
I(vi,j , vi+1,l). We then create source and terminal vertices s and t and connect
them with edges of weight 0 to vertices on levels 1 and m, respectively. Then
the weight of a shortest path from s to t is the minimum number of crossings
in any embedding, and this path specifies the vertical orderings of the curves at
each time step si.

We now compute the number of crossings to transform between vertical order-
ings. First note that we can compute the minimum number of swaps between
two vertical orderings of size k in time O(k log k) by counting inversions with
merge sort. Thus, we can precompute the weights between all pairs of orderings
in time O(k!2k log k), and assign edge weights when building the graph at a cost
of O(k!2) per level.

Now a minimum-weight path from s to t fully specifies a storyline visualiza-
tion. We can lay out each curve by the vertical ordering specified by each vertex
on the path with its time step, swapping curve order between time steps. Then
during each event we group the curves together, otherwise we separate them.

In total there are m levels, each with O(k!) vertices and O(k!2) edges. Thus,
there are O(k!m) vertices and O(k!2m) edges. We can compute a shortest path
from s to t in time linear in the number of vertices and edges, by dynamic
programming: For each level i, we compute the minimum weight for each vertex
v by iterating over all incoming edges from vertices on level i−1 and choosing the
one that minimizes the total weight to v. Thus we can compute a shortest path
from s to t in time O(k!2m). Including the time to precompute edge weights, we
get total time O(k!2k log k) + O(k!2m) = O(k!2k log k + k!2m). 	

Acknowledgments. We thank the anonymous referees for their helpful comments.
This research was initiated at the 2nd International Workshop on Drawing Algorithms
for Networks in Changing Environments (DANCE 2015) in Langbroek, the Nether-
lands, supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 639.023.208. IK is supported in part by the NWO under project no.
639.023.208. VP is supported by grant 2014-03476 from the Sweden’s innovation agency
VINNOVA.

References

1. Adolphson, D., Hu, T.C.: Optimal linear ordering. SIAM J. Appl. Math. 25(3),
403–423 (1973)

2. Chung, F.R.K.: A conjectured minimum valuation tree (I. Cahit). SIAM Rev.
20(3), 601–604 (1978)

198 I. Kostitsyna et al.

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

4. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Disc.
Meth. 4(3), 312–316 (1983)

5. Muelder, C., Crnovrsanin, T., Sallaberry, A., Ma, K.-L.: Egocentric storylines for
visual analysis of large dynamic graphs. In: IEEE Big Data’13, pp. 56–62 (2013)

6. Pach, J., Rubin, N., Tardos, G.: On the Richter-Thomassen conjecture about pair-
wise intersecting closed curves. In: Discrete Algorithms (SODA’15), pp. 1506–1516
(2015)

7. Šĕıdvasser, M.A.: The optimal numbering of the vertices of a tree. Diskret. Analiz
17, 56–74 (1970)

8. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. System
Sci. 26(3), 362–391 (1983)

9. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybernet. 11(2), 109–125 (1981)

10. Tanahashi, Y., Ma, K.-L.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Vis. Comput. Graph. 18(12), 2679–2688 (2012)

Maximizing the Degree of (Geometric)
Thickness-t Regular Graphs

Christian A. Duncan(B)

Department of Mathematics and Computer Science,
Quinnipiac University, Hamden, CT, USA

christian.duncan@acm.org

Abstract. In this paper, we show that there exist (6t−1)-regular graphs
with thickness t, by constructing such an example graph. Since all graphs
of thickness t must have at least one node with degree less than 6t, this
construction is optimal. We also show, by construction, that there exist
5t-regular graphs with geometric thickness at most t. Our construction
for the latter builds off of a relationship between geometric thickness and
the Cartesian product of two graphs.

1 Introduction

A straight-line drawing Γ of a graph G = (V,E) is a mapping of vertices to points
in the plane and edges to curves between the endpoints. A drawing is planar if
and only if the edges only intersect at the endpoints. For convenience, we often
refer to the vertices of a given graph G as V (G) and the edges as E(G). The
order of a graph, |V |, is the number of vertices in the graph. The thickness θ(G)
of a graph G is the minimum number of planar subgraphs whose union forms
G. The edges of these subgraphs form a partitioning of E(G). For convenience,
we identify each partition with a unique color.

The geometric thickness of G, θ̄(G), is the smallest integer t such that there
is a straight-line drawing Γ(G) whose edges can be colored with t colors such
that no two edges with the same color intersect, except at the endpoints. That
is, each coloring (layer) is a planar drawing. We refer to such a drawing, with
associated coloring, as a t-layered planar drawing.

When discussing a drawing Γ(G), it often helps to describe the grid size
h × w of the drawing. We take the convention that the vertices (points) all lie
on integer coordinates. In addition, to count the width and height we use the
number of grid points in the smallest axis aligned bounding box of the drawing.
This convention means that a single vertex has dimension 1, as opposed to 0.
See, for example, Fig. 2a, which has height 5 and width 4.

Generalized by Tutte [8], the thickness problem began as an exploration of
the biplanarity of a graph, where biplanar refers to having thickness two [1,4,7].
Numerous research articles have also explored geometric thickness and its rela-
tionship to thickness, e.g. [2,5]. Since the research in graph thickness is too large
to summarize adequately in this technical note, we refer the interested reader to
a survey by Mutzel et al. [6].
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 199–204, 2015.
DOI: 10.1007/978-3-319-27261-0 17

200 C.A. Duncan

In [3], Durocher et al. explore the relationship between the colorability and
minimum degree of thickness-t graphs and pose several questions. We investigate
the question of finding the largest k for a given t, such that there exist k-regular
graphs of (geometric) thickness t, as this provides a lower bound on the minimum
degree. We provide a construction that shows that there exist (6t − 1)-regular
graphs of thickness t, which is optimal since every graph of thickness t must have
at least one node of degree less than 6t. This observation can be seen by recalling
that the average degree of any planar graph is less than 6. We also show that
there exist 5t-regular graphs of geometric thickness at most t, but do not claim
that 5t is optimal.

2 (6t − 1)-Regular Thickness-t Graphs

To prove that there exist (6t−1)-regular thickness-t graphs, we start by creating
a graph G with 48(t − 1) vertices of degree 6 and 48 vertices of degree 5 and a
larger graph GC composed of several disjoint copies of G. We then create t layers
of GC using the same vertex set but in different permutations to ensure that
every vertex has degree 5 in exactly one layer, leading to the following theorem.

Theorem 1. For any t ∈ Z
+, there exist (6t−1)-regular graphs with thickness t.

Proof. For t = 1, it is well-known that there exist 5-regular planar graphs. (See
for example, Fig. 2d). Therefore, we assume that t > 1.

Our construction starts with a base graph G shown in Fig. 1a. The graph
consists of an outer collection of 24 vertices, a nested sequence of 16(t − 1)
triangles, and an inner collection of 24 vertices, constructed in the same manner
as the outer collection. The outer collection of vertices is formed by taking three
wheel graphs of order 6 and connecting each vertex of the outermost triangle
(with vertices labelled 1− 3) to two adjacent outer vertices of one of the wheels.
The wheel graphs are then connected to each other via two additional nodes to
ensure that every one of the outer vertices has degree 5. The inner collection of
vertices are similarly constructed by connecting to the innermost nested triangle.
Observe that this ensures that every vertex in the nested triangle subgraph has
degree 6. Consequently, G is a planar graph of order 48t containing exactly 48
vertices of degree 5 and 48(t − 1) vertices of degree 6.

Let GC be the graph of order 48tC formed by the union of C = 48t disjoint
copies of G.1 We shall form our (6t − 1)-regular graph G = (V,E) of thickness t
by creating t layers of GC where each layer uses the same vertex set, in a different
permutation. That is, V consists of 48tC vertices, and E is the union of t sets,
E0, E1, . . . , Et−1, with each set representing a different layer (color) of the graph.
For any v ∈ V and 0 ≤ i < t, we refer to πi(v) as the permuted vertex in GC of
the i-th layer. For any two vertices v, w ∈ V , the edge (v, w) is in Ei if and only
if (πi(v), πi(w)) ∈ E(GC), the permuted vertices have an edge in GC . See Fig. 1b
for an illustration using a simpler base graph, two copies of a 4-cycle.
1 Although this means there are (48t)2 vertices in GC , it is more convenient to refer

to C distinctly for now.

Maximizing the Degree of (Geometric) Thickness-t Regular Graphs 201

)b()a(

Fig. 1. (a) The base graph G consisting of 24 outer shaded vertices, the nested triangle
graph of 48(t−1) vertices, and another 24 inner vertices (not shown), symmetric to the
outer vertices. (b) An illustration of merging two layers using different permutations.
The top graph of two 4-cycles represents an example base graph. The middle graph
is the same graph but with the vertices permuted and a different color (and pattern)
shown for the edges. The bottom graph is the resulting 4-regular thickness-two graph.

In our mapping of these vertices of GC , we must ensure two conditions:

1. Every vertex gets mapped to a degree-5 vertex exactly once.
2. If (πi(v), πi(w)) ∈ E(GC) then (πj(v), πj(w)) �∈ E(GC) for all j �= i. That is,

we do not have any duplicate edges.

If we guarantee these two conditions, then we know that the degree of every
vertex in G is exactly 6t − 1 and given the construction we know that the graph
has thickness t, completing the proof.

We refer to a vertex in GC by the notation ρa,�,c where 0 ≤ a < 48, 0 ≤ � < t,
0 ≤ c < C. We conceptually partition the 16(t−1) nested triangles of G into t−1
groups of 16 triangles, called levels. In addition, we refer to level 0 as the group
formed by the outer and inner (degree-5) vertices. The index � corresponds to
vertices within level �. The index c represents one of the C disjoint copies of G.
Consequently, if two vertices share an edge, they must have the same c-index.
For any given level � and copy c, there are exactly 48 vertices of GC . The specific
ordering of these 48 vertices does not particularly matter so long as there is no
edge connecting ρa,�,c and ρa,�′,c. That is, two vertices with the same indices a
and c cannot share an edge. By ensuring that the innermost three vertices of
one level do not share an a-index with the outermost three vertices of the next
level, we can easily construct such an ordering.

For convenience, we label the vertices of G in the same manner such that
π0(va,�,c) = ρa,�,c. We define the permutations as follows:

πi(va,�,c) = ρa,(�+i) mod t,(c+ai) mod C , for 0 ≤ i < t. (1)

202 C.A. Duncan

We now show that our two conditions hold. For condition 1, note that the only
degree-5 vertices are those with � = 0. Since i ranges from 0 to t − 1, the
permutation guarantees that � + i ≡ 0 mod t for exactly one value of i.

Suppose now that condition 2 does not hold. That is, there exist two vertices
v = va,�,c and w = va′,�′,c′ in V (G) and two layers i �= j such that (πi(v), πi(w)) ∈
E(GC) and (πj(v), πj(w)) ∈ E(GC). Assume, without loss of generality, that
i < j. Since two vertices with the same a-index do not share an edge, we know
that a �= a′. In addition, since the c copies are disjoint in GC , we know that
c+ai ≡ c′ +a′i mod C (or else there would be no edge in the i-th permutation).
Similarly, we know that c + aj ≡ c′ + a′j mod C. Subtracting the two values,
we see that a(j − i) ≡ a′(j − i) mod C. However, since 0 ≤ a, a′ < 48 and
0 < j − i < t and because we chose to use C = 48t copies, we know that
0 ≤ a(j − i), a′(j − i) < C. Thus, since a �= a′, the equivalence only holds when
j = i, a contradiction. ��

3 5t-Regular Geometric Thickness-t Graphs

Although we have shown an optimal example for the thickness problem, when
we look at the same problem with the restriction that the graph have geometric
thickness t, the optimal solution appears more challenging. Before we prove
our main theorem for this section, we first discuss a relationship between the
Cartesian product of two graphs, G1�G2, and geometric thickness.

Lemma 1. The Cartesian product of two graphs, G = G1�G2, has geometric
thickness at most t1 + t2 where t1 and t2 are the geometric thicknesses of G1

and G2, respectively. Furthermore, if G1 (resp., G2) can be drawn on an integer
grid of dimension h1 × w1 (resp., h2 × w2) such that each row and column
contains at most one vertex, then G can be drawn on an integer grid of dimension
h1h2 × w1w2 such that each row and column contains at most one vertex.

Proof. Let G1 and G2 be two graphs with geometric thicknesses t1 and t2 respec-
tively. In addition, for i ∈ {1, 2}, let Γi be a ti-layered planar drawing of Gi. We
treat the t1 colors used to partition the edges of Γ1 as distinct from the t2 colors
of Γ2. Note, if the drawings do not have the property that each row and column
contains at most one vertex (that is, if two vertices share the same y-coordinate
or x-coordinate), we can slightly rotate the drawing so that this property holds,
although the grid dimension would increase significantly. Therefore, we assume
that the drawings are given on an integer grid of dimension hi ×wi, for i ∈ {1, 2}
such that no two vertices share the same x-coordinate or y-coordinate.

The construction, illustrated in Fig. 2a–c, begins by (non-uniformly) scaling
Γ1 vertically so that it has height h1h2 and (non-uniformly) scaling Γ2 hor-
izontally so that it has width w1w2. Call the resulting drawings Γ′

1 and Γ′
2,

respectively. We place |V (G1)| copies of Γ′
2, such that the leftmost vertex of

each Γ′
2 lines up with one of the vertices of Γ′

1. We color the edges of the |V (G1)|
copies of Γ′

2 using the t2 colors. We similarly create the |V (G2)| copies of Γ′
1

using the t1 colors, aligning the lowest vertex of each Γ′
1 with each vertex of

Maximizing the Degree of (Geometric) Thickness-t Regular Graphs 203

(a)

(b)

(c) (d)

Fig. 2. (a) A planar drawing Γ1 of an example graph G1. (b) A planar drawing Γ2

of an example graph G2. (c) A 2-layered planar drawing Γ of G = G1�G2 using the
scaled drawings of Γ1 and Γ2. (d) An 18× 18 drawing Γ of a 5-regular planar graph G
of order 12 with each vertex having its own row and column.

the lowest copy of Γ′
2. Let (v1, v2) be a vertex in G1�G2 with v1 ∈ V (G1) and

v2 ∈ V (G2). It is easy to verify that (v1, v2) has a corresponding vertex in the
merged drawing. Thus, we have a drawing Γ of G = G1�G2 using t1 + t2 colors.

We now argue that no two edges in the same layer (with same color) cross.
Suppose for the sake of contradiction that two edges with color c cross. First,
assume that c is one of the t1 colors from Γ1. Since Γ′

1 is a t1-layered planar
drawing, we know that the two crossing edges cannot be from the same copy
of Γ′

1. However, the origins of the Γ′
1 copies are separated by at least w1 units,

because they are placed at vertices of Γ′
2, which have been scaled horizontally

by a factor of w1, and because no two vertices in Γ′
2 share the same column.

Since w1 is the width of Γ′
1, no two copies of Γ′

1 can intersect each other. So, c
cannot be one of the t1 colors. Similarly, c cannot be one of the t2 colors. Since
these are the only colors used, we have a contradiction, and the drawing is a
(t1 + t2)-layered planar drawing. ��
Theorem 2. For any t ∈ Z

+, there exist 5t-regular graphs with geometric thick-
ness at most t.

Proof. Our construction for such a graph starts with any 5-regular graph G. To
use the integer grid property of Lemma 1, we create a drawing Γ of G such that
every vertex has a unique column and row; see Fig. 2d.

We now simply compute G = G�G� · · · �G, applying the Cartesian product
t − 1 times. This results in a 5t-regular graph and by Lemma 1 we know that
G has thickness at most t. Using the example drawing from Fig. 2d, we observe
that the resulting drawing has area 18t × 18t and that G has order 12t. ��

204 C.A. Duncan

4 Conclusion and Open Questions

Ideally, to create a thickness-t regular graph from G, we would simply create
t permutations of the vertex order with each permutation corresponding to a
separate layer to ensure that every vertex is assigned a degree-5 role exactly
once and that two vertices never share an edge in more than one permutation
layer. Although this is certainly plausible, we did not see a simple description for
such a permutation that would not result in a large case analysis. In addition,
our aim was not to construct the smallest order of such a regular graph but
simply to maximize the degree.

Question 1. What is the smallest (6t − 1)-regular graph of thickness t?

Our solution for geometric thickness t is very generalized and has plenty of
room to add extra edges. It seems possible that one might be able to create
regular graphs with larger degree while still maintaining the same thickness.

Question 2. What is the largest k such that there exists a k-regular graph of
geometric thickness t? Or is 5t optimal?

In Lemma 1, we were careful to state that our Cartesian product produced
graphs with geometric thickness at most t1 + t2, because we did not prove that
the geometric thickness was not less than this value. This is clearly possible as
the Cartesian product of two line segments yields a planar graph (a 4-cycle).
Nonetheless, G has geometric thickness exactly t for t < 7.

Question 3. Does the graph G have geometric thickness exactly t for all t ∈ Z
+?

We thank the anonymous reviewers for their helpful comments and suggestions.

References

1. Battle, J., Harary, F., Kodama, Y.: Every planar graph with nine points
has a nonplanar complement. Bull. Amer. Math. Soc. 68(6), 569–571 (1962).
http://dx.doi.org/10.1090/S0002-9904-1962-10850-7

2. Dillencourt, M.B., Eppstein, D., Hirschberg, D.S.: Geometric thickness of complete
graphs. J. Graph Algorithms Appl. 4(3), 5–17 (2000). http://dx.doi.org/10.7155/
jgaa.00023

3. Durocher, S., Gethner, E., Mondal, D.: Thickness and colorability of geometric
graphs. In: Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol.
8165, pp. 237–248. Springer, Heidelberg (2013)

4. Harary, F.: Research problem. Bull. Amer. Math. Soc. 67, 542 (1961)
5. Kainen, P.: Thickness and coarseness of graphs. Abh. aus dem Mathematis-

chen Semin. der Univ. Hamburg 39(1), 88–95 (1973). http://dx.doi.org/10.1007/
BF02992822

6. Mutzel, P., Odenthal, T., Scharbrodt, M.: The thickness of graphs: a survey. Graphs
Comb. 14(1), 59–73 (1998). http://dx.doi.org/10.1007/PL00007219

7. Tutte, W.T.: The non-biplanar character of the complete 9-graph. Can. Math. Bull.
6(3), 319–330 (1963)

8. Tutte, W.T.: The thickness of a graph. Indagationes Math. 25, 567–577 (1963)

http://dx.doi.org/10.1090/S0002-9904-1962-10850-7
http://dx.doi.org/10.7155/jgaa.00023
http://dx.doi.org/10.7155/jgaa.00023
http://dx.doi.org/10.1007/BF02992822
http://dx.doi.org/10.1007/BF02992822
http://dx.doi.org/10.1007/PL00007219

Intersection Representations

On the Zarankiewicz Problem for Intersection
Hypergraphs

Nabil H. Mustafa1(B) and János Pach2

1 Laboratoire d’Informatique Gaspard-Monge, Equipe A3SI, ESIEE Paris,
Université Paris-Est, Paris, France

mustafan@esiee.fr
2 EPFL, Lausanne and Rényi Institute, Budapest, Hungary

pach@cims.nyu.edu

Abstract. Let d and t be fixed positive integers, and let Kd
t,...,t denote

the complete d-partite hypergraph with t vertices in each of its parts,
whose hyperedges are the d-tuples of the vertex set with precisely one
element from each part. According to a fundamental theorem of extremal
hypergraph theory, due to Erdős [7], the number of hyperedges of a
d-uniform hypergraph on n vertices that does not contain Kd

t,...,t as a

subhypergraph, is n
d− 1

td−1 . This bound is not far from being optimal.
We address the same problem restricted to intersection hypergraphs

of (d − 1)-dimensional simplices in R
d. Given an n-element set S of such

simplices, let Hd(S) denote the d-uniform hypergraph whose vertices
are the elements of S, and a d-tuple is a hyperedge if and only if the
corresponding simplices have a point in common. We prove that if Hd(S)
does not contain Kd

t,...,t as a subhypergraph, then its number of edges is
O(n) if d = 2, and O(nd−1+ε) for any ε > 0 if d ≥ 3. This is almost a
factor of n better than Erdős’s above bound. Our result is tight, apart
from the error term ε in the exponent.

In particular, for d = 2, we obtain a theorem of Fox and Pach [8], which
states that every Kt,t-free intersection graph of n segments in the plane
has O(n) edges. The original proof was based on a separator theorem
that does not generalize to higher dimensions. The new proof works in
any dimension and is simpler: it uses size-sensitive cuttings, a variant
of random sampling. We demonstrate the flexibility of this technique by
extending the proof of the planar version of the theorem to intersection
graphs of x-monotone curves.

1 Introduction

Let H be a d-uniform hypergraph on n vertices. One of the fundamental questions
of extremal graph and hypergraph theory goes back to Turán and Zarankiewicz:
What is the largest number exd(n,K) of hyperedges (or, in short, edges) that H

N.H. Mustafa—Supported by the grant ANR SAGA (JCJC-14-CE25-0016-01).
J. Pach—Supported by Swiss National Science Foundation Grants 200020-144531
and 200021-137574.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 207–216, 2015.
DOI: 10.1007/978-3-319-27261-0 18

208 N.H. Mustafa and J. Pach

can have if it contains no subhypergraph isomorphic to fixed d-uniform hyper-
graph K. (See Bollobás [2]). In the most applicable special case, K = Kd(t, . . . , t)
is the complete d-partite hypergraph on the vertex set V1, . . . , Vd with |V1| = . . . =
|Vd| = t, consisting of all d-tuples that contain one point from each Vi. For graphs
(d = 2), it was proved by Erdős (1938) and Kővári-Sós-Turán [14] that

ex2(n,K2
t,t) ≤ n2−1/t.

The order of magnitude of this estimate is known to be best possible only for
t = 2 and 3 (Reiman [18]; Brown [3]). The constructions for which equality is
attained are algebraic.

Erdős (1964) generalized the above statement to d-uniform hypergraphs for
all d ≥ 2. A hypergraph H is said to be K-free if it contains no copy of K as a
(not necessarily induced) subhypergraph.

Theorem A ([7]). The maximum number of hyperedges that a d-uniform,
Kd

t,...,t-free hypergraph of n vertices can have satisfies

exd(n,Kd
t,...,t) ≤ nd− 1

td−1 .

It was further shown in [7] that this bound cannot be substantially improved.
There exists an absolute constant C > 0 (independent of n, t, d) such that

exd(n,Kd
t,...,t) ≥ nd− C

td−1 .

In particular, for every ε > 0, there exist Kd
t,...,t-free d-uniform hypergraphs

with t ≈ (C/ε)1/(d−1), having at least nd−ε edges. The construction uses the
probabilistic method.

In certain geometric scenarios, better bounds are known. For instance, con-
sider a bipartite graph with 2n vertices that correspond to n distinct points and
n distinct lines in the plane, and a vertex representing a point p is connected to a
vertex representing a line � if and only if p is incident to � (i.e., p ∈ �). Obviously,
this graph is K2

2,2-free (in short, K2,2-free). Therefore, by the above result, it has
at most O(n3/2) edges. On the other hand, according to a celebrated theorem of
Szemerédi and Trotter (1983), the number of edges is at most O(n4/3), and the
order of magnitude of this bound cannot be improved. In [15], this result was
generalized to incidence graphs between points and more complicated curves in
the plane.

Given a set S of geometric objects, their intersection graph H(S) is defined
as a graph on the vertex set S, in which two vertices are joined by an edge if
and only if the corresponding elements of S have a point in common. To better
understand the possible intersection patterns of edges of a geometric graph, that
is, of a graph drawn in the plane with possibly crossing straight-line edges, Pach
and Sharir [15] initiated the investigation of the following problem. What is the
maximum number of edges in a Kt,t-free intersection graph of n segments in
the plane? The Kővári-Sós-Turán theorem (Theorem A for d = 2) immediately

On the Zarankiewicz Problem for Intersection Hypergraphs 209

implies the upper bound n2−1/t. Pach and Sharir managed to improve this bound
to O(n) for t = 2 and to O(n log n) for any larger (but fixed) value of t. They
conjectured that here O(n log n) can be replaced by O(n) for every t, which was
proved by Fox and Pach [8]. They later extended their proof to string graphs, that
is, to intersection graphs of arbitrary continuous arcs in the plane [9,10]. Some
weaker results were established by Radoic̆ić and Tóth [17] by the “discharging
method”.

The aim of the present note is to generalize the above results to d-uniform
intersection hypergraphs of (d-1)-dimensional simplices in R

d, for any d ≥ 2. The
arguments used in the above papers are based on planar separator theorems that
do not seem to allow higher dimensional extensions applicable to our problem.

Given an n-element set S of (d−1)-dimensional simplices in general position
in R

d, let Hd(S) denote the d-uniform hypergraph on the vertex set S, consisting
of all unordered d-tuples of elements {S1, . . . , Sd} ⊂ S with S1 ∩ . . . ∩ Sd �= ∅.
We prove the following theorem, providing an upper bound on the number of
hyperedges of a Kd

t,...,t-free intersection hypergraph Hd(S) of (d−1)-dimensional
simplices. This bound is almost a factor of n better than what we obtain using
the abstract combinatorial bound of Erdős (Theorem A), and it does not depend
strongly on t.

Theorem 1. Let d, t ≥ 2 be integers, let S be an n-element set of (d − 1)-
dimensional simplices in R

d, and let Hd(S) denote its d-uniform intersection
hypergraph.

If Hd(S) is Kd
t,...,t-free, then its number of edges is O(nd−1+ε) for any ε > 0.

For d = 2, the number of edges is at most O(n).

To see that this bound is nearly optimal for every d, fix a hyperplane h in
R

d with normal vector v, and pick d − 1 sets P1, . . . , Pd−1, each consisting of
n−1
d−1 parallel (d − 2)-dimensional planes in h, with the property that any d − 1
members of P1 ∪ . . .∪Pd−1 that belong to different Pis have a point in common.
For each i (1 ≤ i ≤ d − 1), replace every plane pi ∈ Pi by a hyperplane hi

parallel to u such that hi∩h = pi. Clearly, the d-uniform intersection hypergraph
of these n hyperplanes, including h, is Kd

2,...,2-free, and its number of edges is
(n−1

d−1)d−1 = Ω(nd−1). In each hyperplane, we can take a large (d−1)-dimensional
simplex so that the intersection pattern of these simplices is precisely the same
as the intersection pattern (i.e., the d-uniform intersection hypergraph) of the
underlying hyperplanes.

The proof of Theorem 1 is based on a partitioning scheme, which was first
formulated by Pellegrini [16]. Given an n-element set S of (d − 1)-dimensional
simplices (or other geometric objects) in R

d, let m denote the number of hyper-
edges in their d-uniform intersection hypergraph, that is, the number of d-tuples
of elements of S having a point in common. For a parameter r ≤ n, a 1

r -cutting
with respect to S is a partition of R

d into simplices such that the interior of
every simplex intersects at most n/r elements of S. The size of a 1

r -cutting is
the number of simplices it consists of. (See Matoušek [13].)

210 N.H. Mustafa and J. Pach

Theorem B ([6,16]). Let d ≥ 2 be an integer, let S be an n-element set of
(d − 1)-dimensional simplices in R

d, and let m denote the number of d-tuples of
simplices in S having a point in common.

Then, for any ε > 0 and any r ≤ n, there is a 1
r -cutting with respect to S of

size at most

C2 · (r +
mr2

n2
) if d = 2, and

Cd,ε · (rd−1+ε +
mrd

nd
) if d ≥ 3.

Here C2 is an absolute constant and Cd,ε depends only on d and ε.

To construct a 1
r -cutting, we have to take a random sample R ⊆ S, where

each element of S is selected with probability r/n. It can be shown that, for
every k > 0, the expected value of the total number of k-dimensional faces of
all cells of the cell decomposition induced by the elements of R is O(rd−1),
while the expected number of vertices (0-dimensional faces) is m(r/n)d. This
cell decomposition can be further subdivided to obtain a partition of R

d into
simplices that meet the requirements. The expected number of elements of S
that intersect a given cell is at most n/r.

Cuttings have been successfully used before, e.g., for an alternative proof
of the Szemerédi-Trotter theorem [5]. In our case, the use of this technique is
somewhat unintuitive, as the size of the cuttings we construct depends on the
number of intersecting d-tuples, that is, on the parameter we want to bound. This
sets up an unusual recurrence relation, where the required parameter appears
on both sides, but nonetheless, whose solution implies Theorem 1.

The use of cuttings is versatile. In particular, we show how this technique can
be applied to establish the generalization of Theorem 1 to x-monotone curves
with a bounded number of pairwise intersections.

Theorem 2. Let S = {S1, . . . , Sn} be a set of n x-monotone curves in R
2, and

where every pair of curves intersect at most a constant number of times. Let
H(S) denote its intersection graph, and t ≥ 2 be an integer. If H(S) is K2

t,t-free,
then its number of edges is O(n).

Fox and Pach [9,10] managed to prove the same result for all continuous
curves in the plane, using separator theorems. The weakness of their method is
that it is inherently planar. As we will see, the weakness of the cutting technique
is that the cell decomposition defined by the randomly selected objects needs to
be further refined. To make sure that the number of cells remains under control
in this step, we have to bound the number of d-wise intersection points between
the objects.

2 Proof of Theorem 1

For any element Sk ∈ S, let suppSk denote the supporting hyperplane of Sk. By
slightly perturbing the arrangements, if necessary, we can assume without loss

On the Zarankiewicz Problem for Intersection Hypergraphs 211

of generality that the supporting hyperplanes of the elements of S are in general
position, that is,

(a) no d − j + 1 of them have a j-dimensional intersection (0 ≤ j ≤ d − 1), and
(b) the intersection of any d of them is empty or a point that lies in the relative

interior of these d elements.

Theorem 1 is an immediate corollary of the following lemma.

Lemma 1. Let d, t ≥ 2 be fixed integers. Let S be an n-element set of (d − 1)-
dimensional simplices in general position in R

d. Assume that their d-uniform
intersection hypergraph Hd(S) has m edges and is Kd

t,...,t-free.
If, for suitable constants C ≥ 1 and u, there exists a 1

r -cutting of size at most
C(ru + mrd

nd) with respect to S, consisting of full-dimensional simplices, then

m ≤ C ′ · nu,

where C ′ is another constant (depending on d, t, C, and u).

Proof. For some value of the parameter r to be specified later, construct a 1
r -

cutting {Δ1, . . . , Δk} with respect to S, where k ≤ C(ru + mrd/nd). Using our
assumption that the elements of S are in general position, we can suppose that
all cells Δi are full-dimensional.

For every i (1 ≤ i ≤ k), let S int
i ⊆ S denote the set of all elements in S

that intersect the interior of Δi. As {Δ1, . . . , Δk} is a cutting with respect to S,
we have |S int

i | ≤ n/r. Let Sbd
i ⊆ S be the set of all elements Sk ∈ S such that

the supporting hyperplane suppSk of Sk contains a j-dimensional face of Δi for
some j (0 ≤ j ≤ d − 1). Set Si = S int

i ∪ Sbd
i .

Using the general position assumption, we obtain that every j-dimensional
face F of Δi is contained in the supporting hyperplanes of at most d − j ≤ d
elements of S (0 ≤ j ≤ d − 1). The total number of proper faces of Δi of all
dimensions is smaller than 2d+1, and each is contained in at most d elements of
S. Therefore, we have

|Si| < |S int
i | + |Sbd

i | ≤ n/r + d2d+1.

Fix an intersection point q = S1 ∩ . . . ∩ Sd, and let S(q) = {S1, . . . , Sd} ⊆ S.
Then either

1. q lies in the interior of some Δi, in which case S(q) ⊆ S int
i ⊆ Si, or

2. q lies at a vertex (0-dimensional face) F or in the interior of a j-dimensional
face F of some Δi, where 1 ≤ j ≤ d − 1. Take any Sk ∈ S(q). If F ⊂ suppSk,
then Sk ∈ Sbd

i ⊆ Si. If F �⊂ suppSk, then Sk intersects the interior of Δi,
and since q lies in the relative interior of Sk, we have that Sk ∈ S int

i ⊆ Si.

In both cases, S(q) ⊆ Si.
This means that if for each i we bound the number of d-wise intersection

points between the elements of Si, and we add up these numbers, we obtain
an upper bound on Hd(S), the number of d-wise intersection points between

212 N.H. Mustafa and J. Pach

the elements of S. Within each Si, we apply the abstract hypergraph-theoretic
bound of Erdős (Theorem A) to conclude that Hd(Si) has at most |Si|d−1/td−1

edges. Hence,

m ≤
k∑

i=1

|Si|d−1/td−1
.

As |Si| ≤ n/r + d2d+1, substituting the bound on k, we get

m ≤ C · (ru +
mrd

nd
) · (d2d+1 +

n

r
)d−1/td−1

≤ 2dC · (ru +
mrd

nd
) · (

n

r
)d−1/td−1

,

provided that n
r ≥ d2d+1. Setting r = n

C0
, where C0 = (2d+1C)td−1

, we obtain

m ≤ 2dC

(
nu

Cu
0

+
m

Cd
0

)
C

d−1/td−1

0

m ≤ Cd−u
0

2
nu +

m

2
,

which implies that m ≤ Cd−u
0 nu, as required.

Now Theorem 1 follows from Theorem B, as one can choose u = 1 if d = 2 and
u = d − 1 + ε if d ≥ 3. This completes the proof.

Remark 1. Every d-uniform hypergraph H has a d-partite subhypergraph H′

that has at least d!
dd times as many hyperedges as H. Therefore, if K is d-partite,

the maximum number of hyperedges that a d-partite K-free hypergraph on n
vertices can have is within a factor of d!

dd from the same quantity over all K-free
hypergraphs on n vertices. If instead of abstract hypergraphs, we restrict our
attention to intersection graphs or hypergraphs of geometric objects, the order
of magnitudes of the two functions may substantially differ. Given two sets of
segments S and T in the plane with |S| = |T | = n, let B(S, T) denote their
bipartite intersection graph, in which the vertices representing S and T form two
independent sets, and a vertex representing a segment in S is joined to a vertex
representing a segment in T are joined by an edge if and only if they intersect.
It was shown in [11] that any K2,2-free bipartite intersection graph of n vertices
has O(n4/3) edges and that this bound is tight. In fact, this result generalizes the
Szemerédi-Trotter theorem mentioned above. On the other hand, if we assume
that the (non-bipartite) intersection graph associated with the set S ∪ T , which
contains the bipartite graph B(S, T), is also K2,2-free, then Theorem 1 implies
that the number of edges drops to linear in n. In the examples where B(S, T)
has a superlinear number of edges, there must be many intersecting pairs of
segments in S or in T .

Remark 2. The key assumption in Lemma 1 is that there exists a 1
r -cutting,

whose size is sensitive to the number of intersecting d-tuples of objects.

On the Zarankiewicz Problem for Intersection Hypergraphs 213

Under these circumstances, in terms of the smallest size of a 1
r -cutting, one

can give an upper bound on the number of edges of Kd
t,...,t-free intersection

hypergraphs with n vertices. For d = 3, we know some stronger bounds on
the size of vertical decompositions of space induced by a set of triangles [6,19],
which imply the existence of 1

r -cuttings of size O(r2α(r) + mr3

n3). Thus, in this
case, we can deduce from Lemma 1 that every 3-uniform K3

t,t,t-free intersection
hypergraph of n triangles has O(n2α(n)) edges. It is an interesting open prob-
lem to establish nearly tight bounds on the maximum number of edges that a
d-uniform Kd

t,...,t-free intersection hypergraph induced by n semialgebraic sets in
R

d can have. Lemma 1 does not apply in this case, because in the best currently
known constructions of cuttings for semialgebraic sets, the exponent u is larger
than d [1].

3 Proof of Theorem 2

Given a set S of curves in R
2, we will assume that no three curves pass through a

common point, and that no two intersection points have the same y-coordinate.
The proof of Theorem 2 follows from an appropriate modification of cuttings

for x-monotone curves. Define a cell to be a closed set in R
2 that is homeomorphic

to a disk. A cell c is induced by S if its boundary is composed of subcurves of
elements of S, and (possibly) line segments. The size of a cell c is the number
of its boundary curves and segments. For a cell c and a set R ⊆ S, define Rint

c

to be the curves in R intersecting the interior of c. A decomposition T of a set
R ⊆ S is a set of interior-disjoint cells induced by R, and covering R

2 such that
Rint

c = ∅ for each cell c ∈ T . The size of a decomposition is its number of cells.
Each cell c will be associated with a unique subset Sbd

c ⊆ S. Given S, the set of
decompositions of every R ⊆ S is called a canonical decomposition scheme if it
satisfies the following two properties (see [13, Section 6.5] for details):

1. for every cell c in all decompositions, the size of Sbd
c can be bounded from

above by a constant, and
2. a cell c belongs to the decomposition of R if and only if Sbd

c ⊆ R and
R ∩ S int

c = ∅.

A (1/r)-cutting Π for S is a partition of R
2 into interior-disjoint cells of

bounded size such that the interior of each cell c ∈ Π is intersected by at most
n/r curves of S. Given a canonical decomposition scheme for a set of objects,
the existence of small-sized cuttings follows from

Theorem C ([6]). Let S be a set of n objects in R
2, and let r ≤ n be a para-

meter. Assume that there exists a (1/a)-cutting for any S ′ ⊆ S and any a > 0,
of size O(aC) where C is some constant. Then there exists a (1/r)-cutting for
S of size O(τ(r)), where τ(r) is the expected number of cells in the canonical
decomposition of a random subset of S where each element of S is picked with
probability r/n.

214 N.H. Mustafa and J. Pach

From here, using standard methods, one can deduce the following theorem,
whose proof is sketched here, for completeness.

Theorem 3 (Cuttings for x-monotone curves). Let S be an n-element set
of x-monotone curves in R

2, such that every pair of curves intersect at most a
constant number of times. Let m be the number of pairs of intersecting curves
in S. Then there exists a (1/r)-cutting for S of size O(r + mr2/n2).

Proof. The canonical decomposition of any S ′ ⊆ S will be the vertical decom-
position of S ′. Recall that the vertical decomposition of S ′ is constructed by
extending, from each endpoint of a curve of S ′ as well as from each intersection
point, a vertical segment above and below until it hits another curve of S ′. It
was verified in [4] that this decomposition is a canonical decomposition scheme.

The vertical decomposition of any S ′ ⊆ S has size O(|S ′| + IS′), where IS′

is the number of intersection points of the curves in S ′. Let mS′ be the number
of edges in the intersection graph of S ′. As each pair of curves can intersect at
most a constant number of times, we have IS′ = O(mS′). Thus, the vertical
decomposition of S ′ has size O(|S ′| + mS′).

Let R ⊆ S be a set formed by picking each curve of S with probability
p = r/n. The expected number of edges in the intersection graph of R is E[mR] =
mp2. Therefore, the expected size of the canonical decomposition of R is O(|S|p+
mp2) = O(r + mr2/n2).

It remains to show that for any a > 0 and for any S ′ ⊆ S, there exists
a (1/a)-cutting for S ′ of size O(aC). Fix a set S ′, and let U be the set of all
cells present in the vertical decomposition of any subset S ′′ of S ′. Construct the
following set-system on S ′:

Φ(S ′) = {S ′ ∩ interior(U) | U ∈ U}
Each boundary vertex of a cell in U is an (i) intersection point of two curves in
S ′, or (ii) the endpoint of a curve in S ′, or (iii) the intersection point of a curve
in S ′ and a vertical line passing through either an endpoint or an intersection
point of two curves in S ′. Since every pair of curves intersect at most a constant
number of times, the total number of such vertices is O(|S ′|3). Each cell in the
vertical decomposition of any subset of S ′ can be uniquely identified by the
sequence of its boundary vertices. As each cell has at most 4 boundary vertices,
we get that |U| = O(|S ′|12). Therefore, |Φ(S ′)| = O(|S ′|12), which implies that
the VC-dimension of Φ(S ′) is bounded by a constant. By the ε-net theorem of
Haussler and Welzl [12], there exists a subset R′ ⊆ S ′ of size O(a log a), such that
S ′′ ∩R′ �= ∅ for any S ′′ ∈ Φ(S ′) of size at least |S ′|/a. The required (1/a)-cutting
is the vertical decomposition of R′, as by property 2 of canonical decompositions,
for any cell c in the vertical decomposition, we have |S ′int

c | < |S ′|/a Finally, note
that the size of the vertical decomposition of R′ is O(a2 log2 a).

Now are in a position to complete the proof of Theorem 2. Construct a (1/r)-
cutting Π for S, of size C3 · (r + mr2/n2), where C3 is a constant. For each cell
c ∈ Π, let Sc = Sbd

c ∪ S int
c . Note that |Sc| ≤ O(1) + n/r for all c. For a point

p ∈ Si ∩ Sj , there are three possibilities:

On the Zarankiewicz Problem for Intersection Hypergraphs 215

1. p lies in the interior of a cell c ∈ Π. Then Si, Sj ∈ S int
c .

2. p lies in the interior of the boundary of a cell c. By the assumption that every
pair of curves of S intersect in at most a constant number of points and no
three pass through a common point, Si ∈ Sbd

c and Sj ∈ S int
c (or vice versa).

3. p lies at a vertex of c. The total number of such intersection points is bounded
by the number of vertices of Π, O(r + mr2/n2).

This implies that

m ≤ O(r +
mr2

n2
) +

∑
c∈Π

|Sc|2−1/t

As in proof of Theorem 1, set r = n/C for a sufficiently large constant C to get
m = O(n).

Remark. Theorem 2 implies that if the intersection graph of n constant-degree
algebraic curves in the plane is Kt,t-free, then it has O(n) edges.

References

1. Agarwal, P.K., Matousek, J., Sharir, M.: On range searching with semialgebraic
sets. II. SIAM J. Comput. 42(6), 2039–2062 (2013)

2. Bollobás, B.: Modern Graph Theory. Springer (1998)
3. Brown, W.G.: On graphs that do not contain a Thomsen graph. Canad. Math.

Bull. 9, 281285 (1966)
4. Chazelle, B., Edelsbrunner, H., Guibas, L.J., Sharir, M., Snoeyink, J.: Computing

a face in an arrangement of line segments and related problems. SIAM J. Comput.
22(6), 1286–1302 (1993)

5. Clarkson, K., Edelsbrunner, H., Guibas, L., Sharir, M., Welzl, E.: Combinator-
ial complexity bounds for arrangements of curves and spheres. Discrete Comput.
Geom. 5, 99–160 (1990)

6. de Berg, M., Schwarzkopf, O.: Cuttings and applications. Int. J. Comput. Geom.
Appl. 5(4), 343–355 (1995)

7. Erdös, P.: On extremal problems of graphs and generalized graphs. Israel J. Math
2, 183–190 (1964)

8. Fox, J., Pach, J.: Separator theorems and Turán-type results for planar intersection
graphs. Adv. Math. 219(3), 1070–1080 (2008)

9. Fox, J., Pach, J.: A separator theorem for string graphs and its applications. Comb.
Probab. Comput. 19(3), 371–390 (2010)

10. Fox, J., Pach, J.: Applications of a new separator theorem for string graphs. Comb.,
Probab. Comput. 23, 66–74 (2014)

11. Fox, J., Pach, J., Sheffer, A., Suk, A., Zahl, J.: A semi-algebraic version of
Zarankiewicz’s problem. ArXiv e-prints (2014)

12. Haussler, D., Welzl, E.: Epsilon-nets and simplex range queries. Discrete Comput.
Geom. 2, 127–151 (1987)

13. Matoušek, J.: Lectures in Discrete Geometry. Springer, New York (2002)
14. Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloquium

Math. 3, 50–57 (1954)
15. Pach, J., Sharir, M.: On planar intersection graphs with forbidden subgraphs. J.

Graph Theory 59(3), 205–214 (2008)

216 N.H. Mustafa and J. Pach

16. Pellegrini, M.: On counting pairs of intersecting segments and off-line triangle range
searching. Algorithmica 17(4), 380–398 (1997)

17. Radoic̆ić, R., Tóth, G.: The discharging method in combinatorial geometry and the
Pach-Sharir conjecture. In: Goodman, J.E., Pach, J., Pollack, J. (eds.) Proceed-
ings of the Joint Summer Research Conference on Discrete and Computational
Geometry, vol. 453, pp. 319–342. Contemporary Mathematics, AMS (2008)

18. Reiman, I.: Uber ein problem von K. Zarankiewicz. Acta Mathematica Academiae
Scientiarum Hungarica 9, 269–273 (1958)

19. Tagansky, B.: A new technique for analyzing substructures in arrangements of
piecewise linear surfaces. Discrete Comput. Geom. 16(4), 455–479 (1996)

Intersection-Link Representations of Graphs

Patrizio Angelini1, Giordano Da Lozzo2, Giuseppe Di Battista2,
Fabrizio Frati2(B), Maurizio Patrignani2, and Ignaz Rutter3

1 Tübingen University, Tübingen, Germany
angelini@informatik.uni-tuebingen.de

2 Roma Tre University, Rome, Italy
{dalozzo,gdb,frati,patrigna}@dia.uniroma3.it

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
rutter@kit.edu

Abstract. We consider drawings of graphs that contain dense sub-
graphs. We introduce intersection-link representations for such graphs,
in which each vertex u is represented by a geometric object R(u) and in
which each edge (u, v) is represented by the intersection between R(u)
and R(v) if it belongs to a dense subgraph or by a curve connecting the
boundaries of R(u) and R(v) otherwise. We study a notion of planarity,
called Clique Planarity, for intersection-link representations of graphs
in which the dense subgraphs are cliques.

1 Introduction

In several applications there is the need to represent graphs that are globally
sparse but contain dense subgraphs. As an example, a social network is often
composed of communities, whose members are closely interlinked, connected by
a network of relationships that are much less dense. The visualization of such
networks poses challenges that are attracting the study of several researchers
(see, e.g., [6,11]). One frequent approach is to rely on clustering techniques to
collapse dense subgraphs and then represent only the links between clusters.
However, this has the drawback of hiding part of the graph structure. Another
approach that has been explored is the use of hybrid drawing standards, where
different conventions are used to represent the dense and the sparse portions
of the graph: In the drawing standard introduced in [4,12] each dense part is
represented by an adjacency matrix while two adjacent dense parts are connected
by a curve.

In this paper we study intersection-link representations, which are hybrid
representations where in the dense parts of the graph the edges are represented
by the intersection of geometric objects (intersection representation) and in the
sparse parts the edges are represented by curves (link representation). More
formally and more specifically, we introduce the following problem. Suppose that

Angelini was partially supported by DFG grant Ka812/17-1. Da Lozzo, Di Battista,
Frati, and Patrignani were partially supported by MIUR project AMANDA, prot.
2012C4E3KT 001. Rutter was partially supported by DFG grant WA 654/21-1.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 217–230, 2015.
DOI: 10.1007/978-3-319-27261-0 19

218 P. Angelini et al.

a pair (G,S) is given where G is a graph and S is a set of cliques that partition
the vertex set of G. In an intersection-link representation, vertices are geometric
objects that are translates of the same rectangle. Consider an edge (u, v) and let
R(u) and R(v) be the rectangles representing u and v, respectively. If (u, v) is
part of a clique (intersection-edge) we represent it by drawing R(u) and R(v) so
that they intersect, else (link-edge) we represent it by a curve connecting R(u)
and R(v); see Fig. 1.

Fig. 1. Intersection-link rep-
resentation of a graph with
five cliques.

We study the Clique Planarity problem
that asks to test whether a pair (G,S) has an
intersection-link representation such that link-edges
do not cross each other and do not traverse any
rectangle. The main challenge of the problem lies
in the interplay between the geometric constraints
imposed by the rectangle arrangements and the
topological constraints imposed by the link edges.

Several problems are related to Clique Pla-
narity; here we mention two notable ones. The
problem of recognizing intersection graphs of translates of the same rectangle is
NP-complete [7]. Note that this does not imply NP-hardness for our problem,
since cliques always have such a representation. Map graphs allow to represent
graphs containing large cliques in a readable way; they are contact graphs of
internally-disjoint connected regions of the plane, where the contact can be even
a single point. The recognition of map graphs has been studied in [8,15]. One
can argue that there are graphs that admit a clique-planar representation, while
not admitting any representation as a map graph, and vice versa.

We now describe our contribution. Our study encountered several interesting
and at a first glance unrelated theoretical problems. In more detail, our results
are as follows.

– In Sect. 3 we show that Clique Planarity is NP-complete even if S con-
tains just one clique with more than one vertex. This result is established
by observing a relationship between Clique Planarity and a natural con-
strained version of the Clustered Planarity problem, in which we ask
whether a path (rather than a tree as in the usual Clustered Planarity
problem) can be added to each cluster to make it connected while preserving
clustered planarity; we prove this problem to be NP-complete, a result which
might be interesting in its own right.

– In Sect. 4, we show how to decide Clique Planarity in linear time in the
case in which each clique has a prescribed geometric representation, via a
reduction to the problem of testing planarity for a graph with a given partial
representation.

– In Sect. 5, we concentrate on instances of Clique Planarity composed of
two cliques. While we are unable to settle the complexity of this case, we show
that the problem becomes equivalent to an interesting variant of the 2-Page
Book Embedding problem, in which the graph is bipartite and the vertex
ordering in the book embedding has to respect the vertex partition of the

Intersection-Link Representations of Graphs 219

graph. This problem is in our opinion worthy of future research efforts. For
now, we use this equivalence to establish a polynomial-time algorithm for the
case in which the link-edges are assigned to the pages of the book embedding.

– In Sect. 6, we study a Sugiyama-style problem where the cliques are arranged
on levels according to a hierarchy. In this practical setting we show that
Clique Planarity is solvable in polynomial time. This is achieved via a
reduction to the T -level planarity problem [3].

Conclusions and open problems are presented in Sect. 7. Because of space
limitations, complete proofs are deferred to the full version of the paper [2].

2 Intersection-Link Model

Let G be a graph and S be a set of cliques inducing a partition of the vertex
set of G. In an intersection-link representation of (G,S): (i) each vertex u is a
translate R(u) of an axis-aligned rectangle R; (ii) R(u) and R(v) intersect if and
only if edge (u, v) is an intersection-edge; and (iii) each link-edge (u, v) is a curve
connecting the boundaries of R(u) and R(v). To avoid degenerate intersections
we assume that no two rectangles have their sides on the same line. The Clique
Planarity problem asks whether an intersection-link representation of a pair
(G,S) exists such that no two curves intersect and no curve intersects the interior
of a rectangle. Such a representation is called clique-planar. A pair (G,S) is
clique-planar if it admits a clique-planar representation. Let Γ be an intersection-
link representation of (Kn, {Kn}). We have the following.

Lemma 1. Traversing the outer boundary B of Γ clockwise, the sequence of
encountered rectangles is a subset of R(u1), R(u2), . . . , R(un), R(un−1), . . . ,
R(u2), for some permutation u1, . . . , un of the vertices of Kn.

Proof sketch: The statement follows from the following claims: (a) the sequence of
encountered rectangles is not of the form . . . , R(u), . . . , R(v), . . . , R(u), . . . , R(v),
for any u, v ∈ Kn; (b) every maximal portion of B belonging to a single rectangle
R(u) contains (at least) one corner of R(u); (c) if two adjacent corners of the
same rectangle R(u) both belong to B, then the entire side of R(u) between
them belongs to B; and (d) any rectangle R(u) does not define three distinct
maximal portions of B. ��
The following lemma allows us to focus, without loss of generality, on special
clique-planar representations, which we call canonical.

Lemma 2. Let (G,S) admit a clique-planar representation Γ . There exists a
clique-planar representation Γ ′ of (G,S) such that: (i) each vertex is represented
by an axis-aligned unit square and (ii) for each clique s ∈ S, all the squares
representing vertices in s have their upper-left corners along a common line with
slope 1.

220 P. Angelini et al.

Proof sketch: Initialize Γ ′ = Γ . Scale Γ ′ so that each rectangle has both sides of
length larger than 2. For any clique s ∈ S, traverse the boundary of the rectangle
arrangement representing s in Γ clockwise. By Lemma 1, the circular sequence
of encountered rectangles is of the form R(u1), . . . , R(u|s|), R(u|s|−1), . . . , R(u2),
for some permutation u1, . . . , u|s| of the vertices of s. Place pairwise-intersecting
unit squares Q(u1), . . . , Q(u|s|) representing u1, . . . , u|s| in the interior of R(u1),
as required by the lemma. Remove R(u1), . . . , R(u|s|) and reroute the curves rep-
resenting link-edges from the border of the rectangle arrangement to the suitable
ending squares. This can be done without introducing any crossings, because the
circular sequence of the squares encountered when traversing the boundary of
the square arrangement clockwise is Q(u1), . . . , Q(u|s|), Q(u|s|−1), . . . , Q(u2). ��

3 Hardness Results on Clique Planarity

In this section we prove that the Clique Planarity problem is not solvable in
polynomial time, unless P=NP. In fact, we have the following.

Theorem 1. It is NP-complete to decide whether a pair (G,S) is clique-planar,
even if S contains just one clique with more than one vertex.

We prove Theorem 1 by showing a reduction from a constrained clustered
planarity problem, which we prove to be NP-complete, to the Clique Pla-
narity problem.

A clustered graph (G,T) is a pair where G is a graph and T is a rooted tree
whose leaves are the vertices of G; the internal nodes of T distinct from the root
correspond to subsets of vertices of G, called clusters. A clustered graph is flat if
every cluster is a child of the root. A c-planar drawing of (G,T) is a planar draw-
ing of G, together with a representation of each cluster μ as a simple region Rμ

of the plane such that: (i) every region Rμ contains all and only the vertices in μ;
(ii) every two regions Rμ and Rν are either disjoint or one contains the other; and
(iii) every edge intersects the boundary of each region Rμ at most once. A graph
is c-planar if it admits a c-planar drawing. The clustered planarity problem
asks whether a given clustered graph is c-planar. Polynomial-time algorithms for
testing c-planarity are known only in special cases, most notably, for c-connected
clustered graphs, in which each cluster induces a connected graph [9,10]. A clus-
tered graph is c-planar if and only if a set of edges can be added to it so that
the resulting graph is c-planar and c-connected [10]. Any such set of edges is a
saturator, and the subset of a saturator composed of the edges between vertices
of the same cluster μ defines a saturator for μ. A saturator is linear if the sat-
urator for each cluster is a path. The Clustered Planarity with Linear
Saturators (cpls) problem asks whether a flat clustered graph such that each
cluster induces an independent set of vertices admits a linear saturator.

Lemma 3. Let (G,T) be an instance of cpls with G = (V,E) and let E� ⊆(
V
2

) \ E be such that in G� = (V,E ∪ E�) every cluster induces a path. Then E�

is a linear saturator for (G,T) if and only if G� is planar.

Intersection-Link Representations of Graphs 221

The following lemma connects the problem Clique Planarity with cpls.

Lemma 4. Given an instance (G,T) of the cpls problem, an equivalent instance
(G′, S) of the Clique Planarity problem can be constructed in linear time.

Proof sketch: Initialize G′ = G. Then, for each cluster μ of (G,T), add a clique
sμ on the vertex set of μ to (G′, S). Clearly, (G′, S) can be constructed in linear
time. We now prove the equivalence between (G,T) and (G′, S).

If (G,T) admits a linear saturator E∗, then there exists a c-planar drawing
Γ � of (G�, T), where G� is obtained by adding E∗ to G. We construct a clique-
planar representation of (G′, S) as follows. For each cluster μ, replace the interior
of the region representing μ in Γ � with a set of |sμ| pairwise-intersecting axis-
aligned unit squares, where the order of such squares is the same as the one of
the corresponding vertices in the linear saturator for μ; complete the drawing of
each link-edge (u, v) of G′ with curves from the squares representing u and v to
the boundaries of the regions representing the clusters containing u and v. The
correspondence between the order of the squares and the order of the vertices in
E∗ guarantees the absence of crossings.

If (G′, S) has a clique-planar representation Γ , which we can assume to be
canonical by Lemma 2, then we define a set E� as follows. For each s ∈ S, we
add to E� the edges of path (u1, . . . , uk) on the vertex set of s, where the unit
squares R(u1), . . . , R(uk) are in this order in their arrangement in Γ . We claim
that E� is a linear saturator for (G,T). By Lemma 3, it suffices to show that
G+E� admits a planar drawing: Starting from Γ , we place each vertex v at the
center of R(v), replace R(v) with straight-line segments from v to the endpoints
of its incident link-edges, and draw the edges of E� as straight-line segments.
This does not produce crossings. In particular, any two straight-line segments
not in E� incident to vertices u and v in the same clique are separated by the
line through the intersection points of the boundaries of R(u) and R(v), as in
Fig. 2(a). Further, any segment (u, v) in E� and any segment not in E� incident
to a vertex w in the same clique as u and v are separated by the line through the
intersection points of the boundaries of R(u) and R(w) or of R(v) and R(w), as
in Fig. 2(b). ��
Next, we prove that the cpls problem is NP-complete.

R(u)

R(v)

u

v

(a)

R(u)

R(v) R(w)

u
vw

(b)

P

(c) (d)

Fig. 2. (a)–(b) Construction of a linear saturator from a clique-planar representation.
(c) A biconnected planar graph G with a Hamiltonian path P . (d) The clustered graph
(G′, T) obtained from G and the linear saturator for (G′, T) corresponding to P .

222 P. Angelini et al.

Theorem 2. The cpls problem is NP-complete, even for instances in which
just one cluster contains more than one vertex.

Proof sketch: The problem clearly lies in NP. We give a polynomial-time reduc-
tion from the Hamiltonian Path problem in biconnected planar graphs [14].
Given an instance G of Hamiltonian Path, we construct an instance (G′, T) of
cpls as follows. Assume G has an associated planar embedding. Initialize G′ = G,
as in Fig. 2(c). Add a vertex vf inside each face f and connect it to all the vertices
incident to f (this results in a triangulated planar graph G′); then subdivide with
a vertex each edge of G′ which is also in G, as in Fig. 2(d). Finally, add a clus-
ter μ to T containing all the vertices of G′ which are also in G and, for each of
the remaining vertices, add to T a cluster containing only that vertex. Now, any
Hamiltonian path P = (v1, . . . , vn) in G can be drawn in G′without crossings by
letting each edge (vi, vi+1) lie in one of the two faces of G′ incident to the dummy
vertex for edge (vi, vi+1). It follows from Lemma 3 that the edge set of P is a linear
saturator for (G′, T). Conversely, any linear saturator for (G′, T) defines a path
on the vertex set of μ, which is a Hamiltonian path in G. ��

4 Clique-Planarity with Given Vertex Representations

In this section we show how to test Clique Planarity in linear time for
instances (G,S) with given vertex representations. That is, a clique-planar rep-
resentation Γ ′ of (G′, S) is given, where G′ is obtained from G by removing
its link-edges, and the goal is to test whether the link-edges of (G,S) can be
drawn in Γ ′ to obtain a clique-planar representation of (G,S). We start with a
linear-time preprocessing in which we verify that every vertex of G incident to
a link-edge is represented in Γ ′ by a rectangle incident to the outer boundary of
the clique it belongs to. If the test fails, the instance is negative. Otherwise, we
proceed as follows.

We show a reduction to the Partial Embedding Planarity problem [1],
which asks whether a planar drawing of a graph H exists extending a given
drawing H′ of a subgraph H ′ of H. First, we define a connected component H ′

s

of H ′ corresponding to a clique s ∈ S and its drawing H′
s. We remark that H ′

s

is a cactus graph, that is a connected graph that admits a planar embedding in
which all the edges are incident to the outer face. Denote by B the boundary of
the representation of s in Γ ′ (see Fig. 3(a)). If s has one or two vertices, then H ′

s

(a) (b) (c)

Fig. 3. (a) An intersection-link representation Γ of (K7, {s = K7}). (b) A simple cycle
with a vertex for each maximal portion of the boundary of Γ belonging to a single
rectangle. (c) Planar drawing H′

s of graph H ′
s corresponding to Γ .

Intersection-Link Representations of Graphs 223

is a vertex or an edge, respectively (and H′
s is any drawing of H ′

s). Otherwise,
initialize H ′

s to a simple cycle containing a vertex for each maximal portion of
B belonging to a single rectangle (see Fig. 3(b)). Let H′

s be any planar drawing
of H ′

s with a suitable orientation. Each rectangle in Γ ′ may correspond to two
vertices of H ′

s, but no more than two by Lemma 1. Insert an edge in H ′
s between

every two vertices representing the same rectangle and draw it in the interior
of H′

s. By Lemma 1, these edges do not alter the planarity of H′
s. Contract the

inserted edges in H ′
s and H′

s (see Fig. 3(c)). This completes the construction of
H ′

s, together with its planar drawing H′
s. Graph H ′ is the union of graphs H ′

s,
over all the cliques s ∈ S; the drawings H′

s of H ′
s are in the outer face of each

other in H′. Note that, because of the preprocessing, the endvertices of each
link-edge of G are vertices of H ′; then we define H as the graph obtained from
H ′ by adding, for each link-edge (u, v) of G, an edge between the vertices of H ′

corresponding to u and v. We have the following:

Lemma 5. There exists a planar drawing of H extending H′ if and only if there
exists a clique-planar representation of (G,S) coinciding with Γ ′ when restricted
to (G′, S).

Proof sketch: Let H be a planar drawing of H extending H′. We construct a
clique-planar representation of (G,S) as follows: (i) for each s ∈ S, enclose
H′

s with a closed polyline Ps; (ii) scale H so that the bounding box of the
representation of s in Γ ′ fits inside Ps; (iii) replace the interior of Ps with a copy
of the representation of s in Γ ′; and (iv) reroute the link-edges from Ps to the
suitable rectangles; this creates no crossing, because vertices along the outer face
of H′

s are in the same order as the corresponding rectangles along the boundary
of the representation of s in Γ ′.

Let Γ be a clique-planar representation of (G,S). We construct a planar
drawing of H extending H′ as follows: (i) for each s ∈ S, enclose the represen-
tation of s in Γ by a closed polyline Ps; (ii) replace the interior of Ps with a
scaled copy of H′

s; and (iii) reroute the curves representing link-edges from Ps to
the suitable endvertices (as in the previous direction, this can be done without
introducing crossings). ��
We get the main theorem of this section.

Theorem 3. Clique Planarity can be decided in linear time for a pair (G,S)
if the rectangle representing each vertex of G is given as part of the input.

Proof. First, we check whether, for each s ∈ S, all the rectangles representing
vertices in s are pairwise intersecting. This can be done in O(|s|) time by com-
puting the maximum x- and y-coordinates xM and yM among all bottom-left
corners, the minimum x- and y-coordinates xm and ym among all top-right cor-
ners, and by checking whether xM<xm and yM<ym. The described reduction to
Partial Embedding Planarity can be performed in linear time by traversing
the boundary B of each clique s ∈ S; namely, as a consequence of Lemma 1, B
has linear complexity. Contracting an edge requires merging the adjacency lists

224 P. Angelini et al.

of its endvertices; this can be done in constant time since these vertices have con-
stant degree, again by Lemma 1. Finally, the Partial Embedding Planarity
problem can be solved in linear time [1]. �

5 Testing Clique Planarity for Graphs Composed of Two
Cliques

In this section we study the Clique Planarity problem for pairs (G,S) such
that |S| = 2. Observe that, if |S| = 1, then the Clique Planarity problem is
trivial, since in this case G is a clique with no link-edge, hence a clique-planar
representation of (G,S) can be easily constructed. The case in which |S| = 2
is already surprisingly non-trivial. Indeed, we could not determine the compu-
tational complexity of Clique Planarity in this case. However, we establish
the equivalence between our problem and a book embedding problem whose
study might be interesting in its own; by means of this equivalence we show
a polynomial-time algorithm for a special version of the Clique Planarity
problem. This book embedding problem is defined as follows.

A 2-page book embedding is a plane drawing of a graph where the vertices
are cyclically arranged along a closed curve �, called the spine, and each edge
is drawn in one of the two regions of the plane delimited by �. The 2-Page
Book Embedding problem asks whether a 2-page book embedding exists for
a given graph. This problem is NP-complete [16]. Now consider a bipartite
graph G(V1 ∪ V2, E). A bipartite 2-page book embedding of G is a 2-page book
embedding such that all vertices in V1 occur consecutively along the spine (and
all vertices in V2 occur consecutively, as well). Finally, we define a bipartite 2-
page book embedding with spine crossings (b2pbesc), as a bipartite 2-page book
embedding in which edges are not restricted to lie in one of the two regions
delimited by �, but each of them might cross � once; these crossings are only
allowed to happen in the two portions of � delimited by a vertex of V1 and a
vertex of V2. We call the corresponding embedding problem Bipartite 2-Page
Book Embedding with Spine Crossings (b2pbesc).

We now prove that b2pbesc is equivalent toClique Planarity for instances
(G,S) such that |S| = 2. Consider any instance (G′, {s1, s2}) of Clique Pla-
narity. We define an instance G(V1 ∪ V2, E) of b2pbesc so that Vi is the vertex
set of si, for i = 1, 2, and E is the set of link-edges of G′. Conversely, given an
instance G(V1 ∪ V2, E) of b2pbesc, an instance (G′, {s1, s2}) of Clique Pla-
narity can be constructed in which si is a clique on Vi, for i = 1, 2, and the set of
link-edges of G′ coincides with E. Since link-edges only connect vertices of differ-
ent cliques and since each edge of E only connects a vertex of V1 to one of V2, each
mapping generates a valid instance for the other problem. Also, these mappings
define a bijection, hence the following lemma establishes the equivalence between
the two problems.

Lemma 6. (G′, {s1, s2}) is clique-planar if and only if G(V1 ∪ V2, E) admits a
b2pbesc.

Intersection-Link Representations of Graphs 225

12
2

pa1

1

pb2

a b c
d a

b

d c

21

pb1
pa2

Fig. 4. Constructing a b2pbesc from a clique-planar representation.

Proof sketch: Starting from a b2pbesc B of G, draw disjoint closed curves λ1 and
λ2 respectively containing the vertices in V1 and V2. Scale B so that a square of
size 2× 2 fits in the interiors of λ1 and λ2. Replace such interiors with canonical
representations of s1 and s2 in which the order of the unit squares corresponds
to the order of the vertices along �. Each link-edge of (G′, S) is then composed
of three curves: one is the portion of the corresponding edge of G outside λ1 and
λ2, and two are curves from the boundaries of λ1 and λ2 to the suitable ending
squares. This can be done without crossings as the unit squares are in the same
order as the vertices along �.

Starting from a clique-planar representation of (G′, {s1, s2}), construct a
b2pbesc B of G as follows. Refer to Fig. 4. By Lemma 1, the rectangles repre-
senting vertices u1, . . . , uk ∈ V1 appear along the boundary B1 of s1 in an order
which is a subsequence of R(u1), . . . , R(uk), . . . , R(u2). Draw a curve �1 between
two points pa

1 ∈ R(u1) ∩ B1 and pb
1 ∈ R(uk) ∩ B1 entering R(u1), . . . , R(uk)

in this order. Place ui at the point where �1 enters R(ui). Define �2, B2, pa
2 and

pb
2, and draw the vertices of V2 analogously. Add to B curves �12 and �21, not

intersecting each other, not intersecting the same link-edge, each intersecting any
link edge at most once, and connecting pa

1 to pb
2, and pa

2 to pb
1, respectively. Let

� = �1 ∪ �2 ∪ �12 ∪ �21. The correspondence between the vertex ordering along �
and the order of the rectangles along B1 and B2 allows us to extend the link-edges
from B1 and B2 to the suitable vertices of G inside them. The vertices of V1 (of V2)
are consecutive along �, since they lie on �1 (on �2); also, each edge e ∈ E crosses
� at most once, either on �12 or on �21. Hence, B is a b2pbesc of G. ��
We now consider a variant of the Clique Planarity problem for two cliques
in which each clique is associated with a 2-partition of the link-edges incident to
it, and the goal is to construct a clique-planar representation in which the link-
edges in different sets of the partition exit the clique on “different sides”. This
constraint corresponds to the variant of the 2-page book embedding problem,
called Partitioned 2-page book embedding problem, in which the vertices
are allowed to be arbitrarily permuted along the spine, while the edges are pre-
assigned to the pages of the book [13].

Let (G,S = {s1, s2}) be an instance of Clique Planarity and let {Ea
i , Eb

i }
be a partition of the link-edges incident to si, with i ∈ {1, 2}. Consider an

226 P. Angelini et al.

intersection-link representation Γi of si with outer boundary Bi, let pi be the
bottom-left corner of the leftmost rectangle in Γi, and let qi be the upper-right
corner of the rightmost rectangle in Γi. Let Ba

i (Bb
i) be the part of Bi from pi to

qi (from qi to pi) in clockwise direction; this is the top side (the bottom side) of
Γi. We aim to construct a clique-planar representation of (G,S) in which all the
link-edges in Ea

i (resp. in Eb
i) intersect the arrangement of rectangles represent-

ing si on its top side (resp. bottom side). We call the problem of determining
whether such a representation exists 2-Partitioned Clique Planarity. We
prove that 2-Partitioned Clique Planarity can be solved in quadratic time.
The algorithm is based on a reduction to equivalent instances of Simultaneous
Embedding with Fixed Edges (sefe) that can be decided in quadratic time.
Given two graphs G1 and G2 on the same vertex set V , the sefe problem asks
to find planar drawings of G1 and G2 that coincide on V and on the common
edges of G1 and G2.

Lemma 7. Let (G, {s1, s2}) and {Ea
1 , Eb

1, E
a
2 , Eb

2} be an instance of 2-
Partitioned Clique Planarity. An equivalent instance 〈G1, G2〉 of sefe
such that G1 = (V,E1) and G2 = (V,E2) are 2-connected and such that the
common graph G∩ = (V,E1 ∩E2) is connected can be constructed in linear time.

Proof sketch: By Lemma 6, we can describe (G, {s1, s2}) by its equivalent
instance G(V1 ∪ V2, E) of b2pbesc, where Vi is the vertex set of si, for i = 1, 2,
and E is the set of link-edges of (G, {s1, s2}); partition {Ea

i , Eb
i } translates to

constraints on the side of the spine � each of these edges has to be incident to.
Namely, for each ui ∈ V1, all the edges in Ea

1 (in Eb
1) incident to ui have to exit

ui from the internal (resp. external) side of �; and analogously for the edges of
Ea

2 and Eb
2. Hence, the edges in Ea

1 ∩ Ea
2 (in Eb

1 ∩ Eb
2) lie in the internal (resp.

external) side of �, while the other edges cross �.

Cq1

t1 t2 t3 t4

w(u),∀u ∈ V1

q2

r1 r2

b

a c

d

w(e),∀e ∈ Ea
1 ∩ Eb

2 w (v),∀v ∈ V2

w (e),∀e ∈ Ea
2 ∩ Eb

1

w1 w2 w3
w4

z (e),∀e ∈ Ea
1 ∩ Eb

2

z (u),∀u ∈ V1

: ∃(u, v) ∈ Ea
1

x(e),∀e ∈ Ea
2 ∩ Eb

1

x (e),∀e ∈ Ea
2 ∩ Eb

1

x(v),∀v ∈ V2

: ∃(u, v) ∈ Ea
2

x (v),∀v ∈ V2

: ∃(u, v) ∈ Eb
2

z(u),∀u ∈ V1

: ∃(u, v) ∈ Eb
1

z(e),∀e ∈ Ea
1 ∩ Eb

2

Fig. 5. The SEFE 〈Γ1, Γ2〉 of 〈G1, G2〉 corresponding to Γ from Fig. 4.

We sketch the construction of 〈G1, G2〉. Refer to Fig. 5. The common graph
G∩ contains a cycle C = (t1, r1, t2, t3, r2, t4, q2, q1) and trees Q1, Q2, R1, R2,

Intersection-Link Representations of Graphs 227

T1, . . . , T4 rooted at q1, q2, r1, r2, t1, . . . , t4, respectively. The leaves of these
trees are associated to the vertices of G and to the edges crossing �, as described
in Fig. 5. Thus, the circular order of the leaves of these trees corresponds to the
order in which the vertices of G and the spine-crossings of the edges of Ea

2 ∩ Eb
1

and Ea
1 ∩ Eb

2 appear along �. In particular, w1, . . . , w4 enforce the consecutivity
of the vertices of V1 (of V2) along �.

Some edges of G1 and G2 are used to enforce the coherence of such ordering
in all stars and trees. Some other edges of G1 and G2 represent the edges of G,
possibly subdivided if they cross �; in particular, (portions of) edges of G that
have to lie on the internal side of � are edges in G1 between the leaves of T2 and
T3, while (portions of) edges of G that have to lie on the external side of � are
edges in G2 between the leaves of R2 and T4. Thus, (portion of) edges on the
same side of � are represented by edges in the same graph, either G1 or G2, so
that they are not allowed to cross in the sefe as well as in the b2pbesc. This
realizes the equivalence between the sefe and the b2pbesc and completes the
sketch of the proof. ��
Theorem 4. 2-Partitioned Clique Planarity can be solved in quadratic
time for instances (G,S) in which |S| = 2.

Proof. Apply Lemma 7 to construct in linear time an instance 〈G1, G2〉 of sefe
that is equivalent to (G,S) such that G1 and G2 are biconnected and their
intersection graph G∩ is connected. The statement follows from the fact that
instances of sefe with this property can be solved in quadratic time [5]. ��

6 Clique Planarity with Given Hierarchy

In this section we study a version of the Clique Planarity problem in which
the cliques are given together with a hierarchical relationship among them.
Namely, let (G,S) be an instance of Clique Planarity and let ψ : S →
{1, . . . , k}, with k ≤ |S|, be an assignment of the cliques in S to k levels such
that, for each link-edge (u, v) of G connecting a vertex u of a clique s′ to a vertex
v of a clique s′′, we have ψ(s′) �= ψ(s′′); an instance is proper if ψ(s′) = ψ(s′′)±1
for each link-edge.

We aim to construct canonical clique-planar representations of (G,S) such
that (Property 1) for each clique s ∈ S, the top side of the bounding box of
the representation of s lies on line y = 2ψ(s), while the bottom side lies above
line y = 2ψ(s) − 2, and (Property 2) each link-edge (u, v), with u ∈ s′, v ∈ s′′,
ψ(s′) < ψ(s′′), is drawn as a y-monotone curve from the top side of R(u) to the
bottom side of R(v). We call the problem of testing whether such a representation
exists Level Clique Planarity.

We show how to test level clique planarity in quadratic time for proper
instances via a linear-time reduction to equivalent proper instances of T-level
Planarity [3].

A T -level graph (V,E, γ, T) consists of (i) a graph G = (V,E), (ii) a function
γ : V → {1, ..., k} such that γ(u) �= γ(v) for each (u, v) ∈ E, where the set

228 P. Angelini et al.

Vi = {v | γ(v) = i} is the i-th level of G, and (iii) a set T = {T1, . . . , Tk} of
rooted trees such that the leaves of Ti are the vertices in Vi. A T -level planar
drawing of (V,E, γ, T) is a planar drawing of G where the edges are y-monotone
curves and the vertices in Vi are placed along line y = i, denoted by �i, according
to an order compatible with Ti, that is, for each internal node μ of Ti, the leaves
of the subtree of Ti rooted at μ are consecutive along �i. T -Level Planarity
asks to test whether a T -level graph is T -level planar.

Lemma 8. Given a proper instance of Level Clique Planarity, an equiva-
lent proper instance of T-level Planarity can be constructed in linear time.

Proof sketch: Given an instance (G(V,E), S, ψ), an instance (V,E′, γ, T) of T-
level Planarity can be constructed as follows. Their vertex sets coincide and
E′ coincides with the set of link-edges in E. For each vertex v in a clique s ∈ S
we have γ(v) = ψ(s). Finally, for i = 1, . . . , k, where k is the number of levels
in (G,S, ψ), tree Ti ∈ T has root ri, a child ws of ri for each s ∈ S, and the
vertices of s as children of ws.

Suppose that (V,E′, γ, T) admits a T -level planar drawing Γ . Construct a
clique-planar representation satisfying Properties 1 and 2 as follows. Construct
a canonical representation of each clique s ∈ S with the top side of the bounding
box on y = 2ψ(s); cliques on the same level are side-by-side. The order along
y = 2i of the cliques s ∈ S with ψ(s) = i and the order of the rectangles in each
of these cliques is dictated by the order of the vertices in Vi along �i. Finally, each
edge (u, v) ∈ E′ consists of three straight-line segments: two segments connect
rectangles R(u) and R(v) to points pu and pv on the bounding boxes of their
cliques and a segment connects pu and pv.

Suppose that (G(V,E), S, ψ) admits a clique-planar representations satisfying
Properties 1 and 2. We construct a T -level planar drawing of (V,E′, γ, T) as
follows. Place each vertex v ∈ Vi at the intersection between the left side of R(v)
and the line �i : y=2i − 1. Each edge (u, v) is a curve composed of three parts:
The middle part coincides with the drawing of the link-edge (u, v) outside R(u)
and R(v), while the other parts connect points on their boundaries to u and v.
The ordering of the vertices of Vi along �i is compatible with Ti since �i intersects
all the rectangles of each clique s with ψ(s) = i, and since rectangles in different
cliques are disjoint. Thus, vertices in the same clique, and hence children of the
same node of Ti, are consecutive along �i.

The construction can be performed in linear time, thus proving the lemma. ��
Theorem 5. Level Clique Planarity is solvable in quadratic time for
proper instances and in quartic time for general instances.

Proof. Any instance (G,S, ψ) of Level Clique Planarity can be made proper
by introducing dummy cliques composed of single vertices to split link-edges
spanning more than one level. This does not alter the level clique planarity
of the instance and might introduce a quadratic number of vertices. Lemma 8
constructs in linear time an equivalent proper instance of T-level Planarity.
The statement follows since T-level Planarity can be solved in quadratic
time [3] for proper instances. �

Intersection-Link Representations of Graphs 229

7 Conclusions and Open Problems

We initiated the study of hybrid representations of graphs in which vertices
are geometric objects and edges are either represented by intersections (if part
of dense subgraphs) or by curves (otherwise). Several intriguing questions arise
from our research. (1) How about considering families of dense graphs richer than
cliques? Other natural families of dense graphs could be considered, say interval
graphs, complete bipartite graphs, or triangle-free graphs. (2) How about using
different geometric objects for representing vertices? Even simple objects like
equilateral triangles or unit circles seem to pose great challenges, as they give
rise to arrangements with a complex combinatorial structure. For example, we
have no counterpart of Lemma 1 in those cases. (3) What is the complexity of
the bipartite 2-page book embedding problem? We remark that, in the version
in which spine crossings are allowed, this problem is equivalent to the clique
planarity problem for instances with two cliques.

References

1. Angelin, P., Di Battista, G., Frati, F., Jelinek, V., Kratochv́ıl, J., Patrignani, M.,
Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms
11(4), 32:1–32:42 (2015). doi:10.1145/2629341

2. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rut-
ter, I.: Intersection-link representations of graphs. CoRR abs/1508.07557 (2015).
http://arxiv.org/abs/1508.07557

3. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance
of being proper (in clustered-level planarity and T-level planarity). Theor. Comp.
Sci. 571, 1–9 (2015)

4. Batagelj, V., Brandenburg, F., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (x, y)-clustering and hybrid visualizations.
IEEE Trans. Vis. Comput. Graph. 17(11), 1587–1598 (2011)

5. Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained
embedding problems. In: Khanna, S. (ed.) SODA 2013, pp. 1030–1043. SIAM
(2013)

6. Brandes, U., Raab, J., Wagner, D.: Exploratory network visualization: Simultane-
ous display of actor status and connections. J. Soc. Struct. 2 (2001)

7. Breu, H.: Algorithmic Aspects of Constrained Unit Disk Graphs. Ph.D. thesis, The
University of British Columbia, Canada (1996)

8. Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138
(2002)

9. Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity
of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225–262 (2008)

10. Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis,
P.G. (ed.) ESA 1995. LNCS, vol. 979, pp. 213–226. Springer, Heidelberg (1995)

11. Heer, J., Boyd, D.: Vizster: Visualizing online social networks. In: Stasko, J.T.,
Ward, M.O. (eds.) InfoVis 2005, 23–25 October 2005, Minneapolis, USA, p. 5.
IEEE Computer Society (2005)

12. Henry, N., Fekete, J., McGuffin, M.J.: Nodetrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

http://dx.doi.org/10.1145/2629341
http://arxiv.org/abs/1508.07557

230 P. Angelini et al.

13. Hong, S.-H., Nagamochi, H.: Simpler algorithms for testing two-page book embed-
ding of partitioned graphs. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.)
COCOON 2014. LNCS, vol. 8591, pp. 477–488. Springer, Heidelberg (2014)

14. Irzhavsky, P.: Information System on Graph Classes and their Inclusions (ISGCI).
http://graphclasses.org/classes/refs1600.html#ref 1660

15. Thorup, M.: Map graphs in polynomial time. In: FOCS 1998, pp. 396–405. IEEE
(1998)

16. Wigderson, A.: The complexity of the Hamiltonian circuit problem for maximal
planar graphs. EECS Department Report 298, Princeton University (1982)

http://graphclasses.org/classes/refs1600.html#ref_1660

Combinatorial Properties of Triangle-Free
Rectangle Arrangements and the Squarability

Problem

Jonathan Klawitter1,2, Martin Nöllenburg3(B), and Torsten Ueckerdt2

1 Institut für Theoretische Informatik, Karlsruhe Institute of Technology,
Karlsruhe, Germany

2 Institut für Algebra und Geometrie, Karlsruhe Institute of Technology,
Karlsruhe, Germany

torsten.ueckerdt@kit.edu
3 Algorithms and Complexity Group, TU Wien, Vienna, Austria

noellenburg@ac.tuwien.ac.at

Abstract. We consider arrangements of axis-aligned rectangles in the
plane. A geometric arrangement specifies the coordinates of all rec-
tangles, while a combinatorial arrangement specifies only the respec-
tive intersection type in which each pair of rectangles intersects. First,
we investigate combinatorial contact arrangements, i.e., arrangements
of interior-disjoint rectangles, with a triangle-free intersection graph.
We show that such rectangle arrangements are in bijection with the 4-
orientations of an underlying planar multigraph and prove that there
is a corresponding geometric rectangle contact arrangement. Using this,
we give a new proof that every triangle-free planar graph is the con-
tact graph of such an arrangement. Secondly, we introduce the question
whether a given rectangle arrangement has a combinatorially equiva-
lent square arrangement. In addition to some necessary conditions and
counterexamples, we show that rectangle arrangements pierced by a hor-
izontal line are squarable under certain sufficient conditions.

1 Introduction

We consider arrangements of axis-aligned rectangles and squares in the plane.
Besides geometric rectangle arrangements, in which all rectangles are given with
coordinates, we are also interested in combinatorial rectangle arrangements, i.e.,
equivalence classes of combinatorially equivalent arrangements. Our contribution
is two-fold.

First we consider maximal (with a maximal number of contacts) combinato-
rial rectangle contact arrangements, in which no three rectangles share a point.
For rectangle arrangements this is equivalent to the contact graph being triangle-
free, unlike, e.g., for triangle contact arrangements. We prove a series of analogues
to the well-known maximal combinatorial triangle contact arrangements and to
Schnyder realizers. The contact graph G of a maximal triangle contact arrange-
ment is a maximal planar graph. A 3-orientation is an orientation of the edges
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 231–244, 2015.
DOI: 10.1007/978-3-319-27261-0 20

232 J. Klawitter et al.

Fig. 1. Left to right: maximal combinatorial contact arrangement with axis-aligned
triangles, no three sharing a point. 3-orientation of G′. Schnyder realizer of G′. Local
coloring rules for Schnyder realizer (Color figure online).

Fig. 2. Left to right: maximal combinatorial contact arrangement with axis-aligned
rectangles, no three sharing a point. 4-orientation of underlying graph. Corner-edge-
labeling of underlying graph. Local coloring rules for corner-edge-labeling (Color figure
online).

of a graph G′, obtained from G by adding six edges (two at each outer vertex),
in which every vertex has exactly three outgoing edges. Each outer vertex has
two outgoing edges that end in the outer face without having an endpoint there.
A Schnyder realizer [10,11] is a 3-orientation of G′ together with a coloring of
its edges with colors 0, 1, 2 such that every vertex has exactly one outgoing edge
in each color and incoming edges are colored in the color of the “opposite” out-
going edge. The three outgoing edges represent the three corners of a triangle
and the color specifies the corner, see Fig. 1. De Fraysseix et al. [3] proved that
the maximal combinatorial triangle contact arrangements of G are in bijection
with the 3-orientations of G′ and the Schnyder realizers of G′. Schnyder proved
that for every maximal planar graph G, G′ admits a Schnyder realizer and hence
G is a triangle contact graph.

In this paper we prove an analogous result, which, roughly speaking, is the
following. We consider maximal triangle-free combinatorial rectangle contact
arrangements. The corresponding contact graph G is planar with all faces of
length 4 or 5. We define an underlying plane multigraph Ḡ, whose vertex set
also includes a vertex for each inner face of the contact graph, and define 4-
orientations of Ḡ. Here, every vertex has exactly four outgoing edges, where
each outer vertex has two edges ending in the outer face. For a 4-orientation we
introduce corner-edge-labelings of Ḡ, which are, similar to Schnyder realizers,
colorings of the outgoing edges at vertices of Ḡ corresponding to rectangles with
colors 0, 1, 2, 3 satisfying certain local rules. Each outgoing edge represents a
corner of a rectangle and the color specifies which corner it is, see Fig. 2. We

Combinatorial Properties of Triangle-Free Rectangle Arrangements 233

then prove that the combinatorial contact arrangements of G are in bijection
with the 4-orientations of Ḡ and the corner-edge-labelings of Ḡ.

Thomassen [12] proved that rectangle contact graphs are precisely the graphs
admitting a planar embedding in which no triangle contains a vertex in its
interior. We also prove here that for every maximal triangle-free planar graph
G, Ḡ admits a 4-orientation, obtaining a new proof that G is a rectangle contact
graph.

Our second result is concerned with the question whether a given geomet-
ric rectangle arrangement can be transformed into a combinatorially equivalent
square arrangement. The similar question whether a pseudocircle arrangement
can be transformed into a combinatorially equivalent circle arrangement has
recently been studied by Kang and Müller [6], who showed that the problem is
NP-hard. We say that a rectangle arrangement can be squared (or is squarable) if
an equivalent square arrangement exists. Obviously, squares are a very restricted
class of rectangles and not every rectangle arrangement can be squared. The nat-
ural open question is to characterize the squarable rectangle arrangements and
to answer the complexity status of the corresponding decision problem. As a first
step towards solving these questions, we show, on the one hand, some general
necessary conditions and, on the other hand, sufficient conditions implying that
certain subclasses of rectangle arrangements are always squarable.

Related Work. Intersection graphs and contact graphs of axis-aligned rectangles
or squares in the plane are a popular, almost classic, topic in discrete mathemat-
ics and theoretical computer science with lots of applications in computational
geometry, graph drawing and VLSI chip design. Most of the research for rectangle
intersection graphs concerns their recognition [14], colorability [1] or the design
of efficient algorithms such as for finding maximum cliques [5]. On the other
hand, rectangle contact graphs are mainly investigated for their combinatorial
and structural properties. Almost all the research here concerns edge-maximal
3-connected rectangle contact graphs, so called rectangular duals. These can be
characterized by the absence of separating triangles [9,13] and the corresponding
representations by touching rectangles can be seen as dissections of a rectangle
into rectangles. Combinatorially equivalent dissections are in bijection with reg-
ular edge labelings [7] and transversal structures [4]. The question whether a
rectangular dual has a rectangle dissection in which all rectangles are squares
has been investigated by Felsner [2].

2 Preliminaries

In this paper a rectangle is an axis-aligned rectangle in the plane, i.e., the cross
product [x1, x2] × [y1, y2] of two bounded closed intervals. A geometric rectangle
arrangement is a finite set R of rectangles; it is a contact arrangement if any
two rectangles have disjoint interiors. In a contact arrangement, any two non-
disjoint rectangles R1, R2 have one of the two contact types side contact and
corner contact, see Fig. 3 (left); we exclude the degenerate case of two rectangles

234 J. Klawitter et al.

side piercing corner
intersection crossing containmentside contact corner

contact

Fig. 3. Contact types (left) and intersection types (right) of rectangles.

sharing only one point. If R is not a contact arrangement, four intersection
types are possible: side piercing, corner intersection, crossing, and containment,
see Fig. 3 (right). Note that side contact and corner contact are degenerate cases
of side piercing and corner intersection, whereas crossing and containment have
no analogues in contact arrangements. If no two rectangles form a crossing, we
say that R is cross-free. Moreover, in each type (except containment) it is further
distinguished which sides of the rectangles touch or intersect.

Two rectangle arrangements R1 and R2 are combinatorially equivalent if R1

can be continuously deformed into R2 such that every intermediate state is a
rectangle arrangement with the same intersection or contact type for every pair
of rectangles. An equivalence class of combinatorially equivalent arrangements is
called a combinatorial rectangle arrangement. So while a geometric arrangement
specifies the coordinates of all rectangles, think of a combinatorial arrangement
as specifying only the way in which any two rectangles touch or intersect. In
particular, a combinatorial rectangle arrangement is defined by (1) for each
rectangle R and each side of R the counterclockwise order of all intersecting
(touching) rectangle edges, labeled by their rectangle R′ and the respective side
of R′ (top, bottom, left, right), (2) for containments the respective component
of the arrangement, in which a rectangle is contained.

In the intersection graph of a rectangle arrangement there is one vertex for
each rectangle and two vertices are adjacent if and only if the corresponding
rectangles intersect. As combinatorially equivalent arrangements have the same
intersection graph, combinatorial arrangements themselves have a well-defined
intersection graph. For rectangle contact arrangements (combinatorial or geo-
metric) the intersection graph is also called the contact graph. Note that such
contact graphs are planar, as we excluded the case of four rectangles meeting in
a corner.

3 Statement of Results

3.1 Maximal Triangle-Free Planar Graphs and Rectangle Contact
Arrangements

We consider so-called MTP-graphs, that is, (M)aximal (T)riangle-free (P)lane
graphs with a quadrangular outer face. Note that each face in such an MTP-
graph is a 4-cycle or 5-cycle, and that every plane triangle-free graph is an
induced subgraph of some MTP-graph. Given an MTP-graph G a rectangle
contact arrangement of G is one whose contact graph is G, where the embedding

Combinatorial Properties of Triangle-Free Rectangle Arrangements 235

01

2 3

2

23

1
2

0

0
3

3

3
v

R(v)

Fig. 4. Local color patterns in corner-edge-labelings of an MTP-graph at a vertex v,
together with the corresponding part in a rectangle contact arrangement (Color figure
online).

inherited from the arrangement is the given embedding of G, and where each
outer rectangle has two corners in the unbounded region1. We define the closure,
4-orientations and corner-edge-labelings:

The closure Ḡ of G is derived from G by replacing each edge of G with a pair
of parallel edges, called an edge pair, and adding into each inner face f of G
a new vertex, also denoted by f , connected by an edge, called a loose edge,
to each vertex incident to that face. At each outer vertex we add two loose
edges pointing into the outer face, although we do not add a vertex for the
outer face. Note that Ḡ inherits a unique plane embedding with each inner
face being a triangle or a 2-gon.

A 4-orientation of Ḡ is an orientation of the edges and half-edges of Ḡ such
that every vertex has outdegree exactly 4. An edge pair is called uni-directed
if it is oriented consistently and bi-directed otherwise.

A corner-edge-labeling of Ḡ is a 4-orientation of Ḡ together with a coloring of
the outgoing edges of Ḡ at each vertex of G with colors 0, 1, 2, 3 (see Fig. 4)
such that
(i) around each vertex v of G we have outgoing edges in color 0, 1, 2, 3 in

this counterclockwise order and
(ii) in the wedge, called incoming wedge, at v counterclockwise between the

outgoing edges of color i and i+1 there are some (possibly none) incoming
edges colored i + 2 or i + 3, i = 0, 1, 2, 3, all indices modulo 4.

In a corner-edge-labeling the four outgoing edges at a vertex of Ḡ corre-
sponding to a face of G are not colored. Further we remark that (i) implies that
uni-directed pairs are colored i and i−1, while (ii) implies that bi-directed pairs
are colored i and i + 2, for some i ∈ {0, 1, 2, 3}, where all indices are considered
modulo 4. The following theorem is proved in Sect. 4.

Theorem 1. Let G be an MTP-graph, then each of the following are in bijection:

– the combinatorial rectangle contact arrangements of G
– the corner-edge-labelings of Ḡ
– the 4-orientations of Ḡ.

1 Other configurations of the outer four rectangles can be easily derived from this.

236 J. Klawitter et al.

Fig. 5. Three cross-free unsquarable rectangle arrangements.

Using the bijection between 4-orientations of Ḡ and combinatorial rectangle
contact arrangements of G given in Theorem 1, we can give a new proof that
every MTP-graph G is a rectangle contact graph, which is the statement of the
next theorem; its proof is given in the full paper [8] and sketched in Sect. 5.

Theorem 2. For every MTP-graph G, Ḡ has a 4-orientation and it can be
computed in linear time. In particular, G has a rectangle contact arrangement.

We remark that our technique in the proof of Theorem1 constructs from a
given 4-orientation of Ḡ in linear time a geometric rectangle contact arrangement
of G in the 2n × 2n square grid, where n is the number of vertices in G. Thus
also the rectangle contact arrangement in Theorem 2 can be computed in linear
time and uses only a linear-size grid.

3.2 Squarability and Line-Pierced Rectangle Arrangements

In the squarability problem, we are given a rectangle arrangement R and want to
decide whether R can be squared. The first observation is that there are obvious
obstructions to the squarability of a rectangle arrangement. If any two rectangles
in R are crossing (see Fig. 3) then there are obviously no two combinatorially
equivalent squares.

But even if we restrict ourselves to cross-free rectangle arrangements, we
can find unsquarable configurations. One such arrangement is depicted in
Fig. 5 (left). To get an unsquarable arrangement with a triangle-free intersection
graph, we can use the fact that two side-piercing rectangles translate immedi-
ately into a smaller-than relation for the corresponding squares: the side length
of the square to pierce into the side of another square needs to be strictly smaller.
Hence any rectangle arrangement that contains a cycle of side-piercing rectangles
cannot be squarable, see Fig. 5 (middle). Moreover, we may even create a coun-
terexample of a rectangle arrangement whose intersection graph is a path and
that causes a geometrically infeasible configuration for squares, see Fig. 5 (right).

Proposition 1. Some cross-free rectangle arrangements are unsquarable, even
if the intersection graph is a path.

Therefore we focus on a non-trivial subclass of rectangle arrangements that
we call line-pierced. A rectangle arrangement R is line-pierced if there exists a
horizontal line � such that � ∩ R �= ∅ for all R ∈ R. The line-piercing strongly
restricts the possible vertical positions of the rectangles in R, which lets us prove
two sufficient conditions for squarability in the following theorem.

Combinatorial Properties of Triangle-Free Rectangle Arrangements 237

Theorem 3. Let R be a cross-free, line-pierced rectangle arrangement.

– If R is triangle-free, then R is squarable.
– If R has only corner intersections, then R is squarable, even using line-pierced

unit squares.

On the other hand, cross-free, line-pierced rectangle arrangements in general
may have forbidden cycles or other geometric obstructions to squarability. We
give two examples in Sect. 6, together with a sketch of the proof of Theorem3.

4 Bijections Between 4-Orientations,
Corner-Edge-Labelings and Rectangle Contact
Arrangements – Proof of Theorem1

Throughout this section let G = (V,E) be a fixed MTP-graph and Ḡ be its
closure. By definition, every corner-edge-labeling of Ḡ induces a 4-orientation of
Ḡ. We prove Theorem 1, i.e., that combinatorial rectangle contact arrangements
of G, 4-orientations of Ḡ and corner-edge-labelings of Ḡ are in bijection, in three
steps:

– Every rectangle contact arrangement of G induces a 4-orientation of Ḡ.
(Lemma 1)

– Every 4-orientation of Ḡ induces a corner-edge-labeling of Ḡ. (Lemma 3)
– Every corner-edge-labeling of Ḡ induces a rectangle contact arrangement of

G. (Lemma 4)

Omitted proofs are provided in the full version of this paper [8].

4.1 From Rectangle Arrangements to 4-Orientations

Lemma 1. Every rectangle contact arrangement of G induces a 4-orientation
of Ḡ.

The proof idea is already given in Fig. 2: For every rectangle draw an outgoing
edge through each of the four corners and for every inner face draw an outgoing
edge through each of the four extremal sides.

We continue with a crucial property of 4-orientations. For a simple cycle C
of G, consider the corresponding cycle C̄ of edge pairs in Ḡ. The interior of C̄ is
the bounded component of R2 incident to all vertices in C after the removal of all
vertices and edges of C̄. In a fixed 4-orientation of Ḡ a directed edge e = (u, v)
points inside C if u ∈ V (C) and e lies in the interior of C̄, i.e., either v lies in
the interior of C, or e is a chord of C̄ in the interior of C̄.

Lemma 2. For every 4-orientation of Ḡ and every simple cycle C of G the
number of edges pointing inside C is exactly |V (C)| − 4.

238 J. Klawitter et al.

LB

LU RU

RB

1
1

1 2

0 1

2
02

0

1
11

1

1
1

1
1

1
1

2 1
1 0

1
01

0

1
2 1

2

graph H

e

right edge

e

succ(e)

left edge

vv

u u

succ(e)

e

?

?

succ(e)

e

?

?

succ(e)

e

?

?

succ(e)

e

?

?

(a) (b) (c)

Fig. 6. (a) The graph H. L, R, U, B stands for left edge, right edge, uni-directed and
bi-directed edge pair, respectively. The number of outgoing edges in the left and right
wedge are shown on the left and right of the corresponding arrow. (b) Illustration of
the definition of succ(e). (c) Summarizing the 16 possible cases for e and succ(e). Edges
connected by a dashed arc may or may not coincide.

v

e1

e2
e3

e0

W2

W1

u

e′
2

e′
1 succ(e′

1)

succ(e′
2)

C�

Ḡ Ḡ′

v

f

f1

f2

v

w u

Fig. 7. Left: Stacking a new vertex w into a 5-face f of G. The orientation of edges
on the boundary of f , as well as outgoing edges at f , f1, f2 is omitted. The directed
edge (v, w) and its successor (w, u) are highlighted. Right: Illustration of the proof of
the Claim in the proof of Lemma 3.

4.2 From 4-Orientations to Corner-Edge-Labelings

Next we shall show how a 4-orientation of Ḡ can be augmented (by choosing
colors for the edges) into a corner-edge-labeling. Fix a 4-orientation. If e is a
directed edge in an edge pair, then e is called a left edge, respectively right edge,
when the 2-gon enclosed by the edge pair lies on the right, respectively on the
left, when going along e in its direction. Thus, a uni-directed edge pair consists
of one left edge and one right edge, while a bi-directed edge pair either consists
of two left edges (clockwise oriented 2-gon) or two right edges (counterclockwise
oriented 2-gon).

If e = (u, v) is an edge in an edge pair, let e2 and e3 be the second and third
outgoing edge at v when going counterclockwise around v starting with e. We
define the successor of e as succ(e) = e2 if e is a right edge, and succ(e) = e3
if e is a left edge, see Fig. 6 (b,c). Note that in a corner-edge-labeling succ(e) is
exactly the outgoing edge at v that has the same color as e, see Fig. 4.

Note that e′ = succ(e) may be a loose edge in Ḡ at the concave vertex
for some 5-face in G. For the sake of shorter proofs below, we shall avoid the
treatment of this case. To do so, we augment G to a supergraph G′ such that

Combinatorial Properties of Triangle-Free Rectangle Arrangements 239

starting with any edge in any edge pair and repeatedly taking the successor, we
never run into a loose edge pointing to an inner face.

The graph G′ is formally obtained from G by stacking a new vertex w into
each 5-face f , with an edge to the incoming neighbor v of f in Ḡ and the vertex u
at f that comes second after v in the clockwise order around f in Ḡ. (Indeed, the
second vertex in counterclockwise order would be equally good for our purposes.)
Let f1 and f2 be the resulting 4-face and 5-face incident to w, respectively. We
obtain a 4-orientation of the closure Ḡ′ of G′ by orienting all edges at f1 as
outgoing, both edges between v and w as right edges (counterclockwise), the
remaining three edges at w as outgoing, and the remaining four edges at f2 as
outgoing. See Fig. 7 (left) for an illustration.

Before we augment the 4-orientation of Ḡ′ into a corner-edge-labeling, we
need one last observation. Let e and succ(e) be two edges in edge pairs of Ḡ′
with common vertex v. Consider the wedges at v between e and succ(e) when
going clockwise (left wedge) and counterclockwise (right wedge) around v. Each
of e, succ(e) can be a left edge or right edge, and in a uni-directed pair or a bi-
directed pair. This gives us four types of edges and 16 possibilities for the types
of e and succ(e). The graph H in Fig. 6(a) shows for each of these 16 possibilities
the number of outgoing edges at v in the left and right wedge at v.

Observation 4. For every directed closed walk on k edges in the graph H in
Fig. 6(a) we have

#edges in left wedges = #edges in right wedges = k.

Proof. It suffices to check each directed cycle on k edges, k = 1, 2, 3, 4. ��
Lemma 3. Every 4-orientation of Ḡ induces a corner-edge-labeling of Ḡ.

A detailed proof of Lemma 3 is given in the full version of this paper [8].

Proof (Sketch). Consider the augmented graph G′, its closure Ḡ′ and 4-
orientation as defined above. For any edge e in an edge pair in Ḡ′ (and hence
every edge of Ḡ outgoing at some vertex of G) consider the directed walk We in
Ḡ′ starting with e by repeatedly taking the successor as long as it exists (namely
the current edge is in an edge pair).

First we show that We is a simple path ending at one of the eight loose edges
in the outer face. Indeed, otherwise We would contain a simple cycle C where
every edge on C, except the first, is the successor of its preceding edge on C.
From the graph H of Fig. 6(a) we see that every wedge of C contains at most two
outgoing edges. With Observation 4 the number of edges pointing inside C is at
least |V (C)| − 2 and at most |V (C)| + 2, which is a contradiction to Lemma 2.

Now let v0, v1, v2, v3 be the outer vertices in this counterclockwise order.
Define the color of e to be i if We ends with the right loose edge at vi or the left
loose edge at vi−1, indices modulo 4. By definition every edge has the same color
as its successor in Ḡ′ (if it exists). Thus this coloring is a corner-edge-labeling
of Ḡ′ if at every vertex v of G the four outgoing edges are colored 0, 1, 2, and 3,
in this counterclockwise order around v.

240 J. Klawitter et al.

Claim. Let e1, e2 be two outgoing edges at v for which We1 ∩ We2 consists of
more than just v. Then e1 and e2 appear consecutively among the outgoing edges
around v, say e1 clockwise after e2.

Moreover, if u �= v is a vertex in We1 ∩ We2 for which the subpaths W1 of
We1 and W2 of We2 between v and u do not share inner vertices, then the last
edge e′

1 of W1 is a right edge and the last edge e′
2 of W2 is a left edge, e′

1 and
e′
2 are part of (possibly the same) uni-directed pairs and these pairs sit in the

same incoming wedge at u.

To prove this claim, we consider the cycle C = W1 ∪ W2, count the edges
pointing inside with the graph H and conclude that neither u nor v may have
edges pointing inside C. See Fig. 7 (right) for an illustration.

The claim implies that the two walks We1 and We2 can neither cross, nor
have an edge in common. Considering the four walks starting in a given vertex,
we can argue (with the second part of the claim) that our coloring is a corner-
edge-labeling of Ḡ′. Finally, we inherit a corner-edge-labeling of Ḡ by reverting
the stacking of artificial vertices in 5-faces. ��

4.3 From Corner-Edge-Labelings to Rectangle Contact
Arrangements

It remains to compute a rectangle arrangement of G based on a given corner-
edge-labeling of Ḡ. That is, we shall prove the following lemma.

Lemma 4. Every corner-edge-labeling of Ḡ induces a rectangle contact arrange-
ment of G.

A detailed proof of Lemma 4 is given in the full version of this paper [8].

Proof (Sketch). Fix a corner-edge-labeling of Ḡ. For every vertex v of G we
introduce two pairs of variables x1(v), x2(v) and y1(v), y2(v) and set up a system
of inequalities and equalities such that any solution defines a rectangle contact
arrangement {R(v) | v ∈ V } of G with R(v) = [x1(v), x2(v)] × [y1(v), y2(v)],
which is compatible with the given corner-edge-labeling.

For every edge vw of G the way in which R(v) and R(w) are supposed to
touch is encoded in the given corner-edge-labeling and this can be described by
the inequalities and equalities in Table 1. Here we list the constraint and the
conditions (color and orientation) of a single directed edge between v and w or
a uni-directed edge pair outgoing at v and incoming at w in Ḡ under which we
have this constraint.

Instead of showing that the system in Table 1 has a solution, we define another
set of constraints implying all constraints in Table 1, for which it is easier to prove
feasibility.

It suffices to define a system Ix for x-coordinates and treat the y-coordinates
analogously. In Ix we have x1(v) < x2(v) for every vertex v together with all
equalities in the left of Table 1, but only those inequalities in the left of Table 1
that arise from edges in bi-directed edge pairs. The inequalities arising from uni-
directed edge pairs are implied by the following set of inequalities. For a vertex

Combinatorial Properties of Triangle-Free Rectangle Arrangements 241

Table 1. Constraints encoding the type of contact between R(v) and R(w), defined
based on the orientation and color(s) of the edge pair between v and w in Ḡ.

v in G let S1(v) = a1, . . . , ak and S2(v) = b1, . . . , b� be the counterclockwise
sequences of neighbors of v in the incoming wedges at v bounded by its outgoing
edges of color 0 and 1, and color 2 and 3, respectively. See the left of Fig. 8. Then
we have in Ix the inequalities

x1(ai) > x2(ai+1) for i = 1, . . . , k − 1 and x2(bi) < x1(bi+1) for i = 1, . . . , � − 1. (1)

If k = 1 we have no constraint for S1(v) and if � = 1 we have no constraint for
S2(v).

We associate the system Ix with a partially oriented graph Ix whose vertex
set is {x1(v), x2(v) | v ∈ V }. For each inequality a > b we have an oriented edge
(a, b) in Ix, while for each equality a = b we have an undirected edge ab in Ix,
see Fig. 8.

We observe that Ix is planar and prove that Ix has no cycle C in which
all directed edges are oriented consistently, which clearly implies that Ix has a
solution. This is done by showing that no inner face is such a cycle, and that for
every inner vertex u, vertex x1(u) has an incident undirected edge or incident
outgoing edge and vertex x2(u) has an incident undirected edge or incident
incoming edge. ��

5 MTP Graphs Are Rectangle Contact Graphs –
Proofsketch of Theorem2

Theorem 2 is formally proven in the full version of this paper [8]. The idea is to
prove by induction on the number of vertices that for an MTP-graph G we find
a 4-orientation of Ḡ. In the inductive step we either have (Case 1) that G has
an inner 4-face, or (Case 2) that one can contract an inner edge e, keeping it an
MTP-graph. Figures 9 and 10 illustrate how to find a 4-orientation in Cases 1
and 2, respectively.

242 J. Klawitter et al.

x1(b1) x2(b2)

1

1

1

2

2

22

2 3

3

3

3
0

0

b1 = b�

a1
a2a3 = ak

v

S1(v)

S2(v)

Fig. 8. Illustrating the definition of Ix around a vertex v. On the right a hypothetical
rectangle contact arrangement is indicated (Color figure online).

u

v

x

G G′ Ḡ′

u

v

u

v

Ḡ

� � � �

Ḡ

x

a b a b a b a b a b
f ff

Fig. 9. Collapsing an inner 4-face and inheriting a 4-orientation when uncollapsing.

6 Line-Pierced Rectangle Arrangements
and Squarability – Proofsketch of Theorem3

Recall that a rectangle arrangement R is line-pierced if there is a horizontal line
� that intersects every rectangle in R. Note that by the line-piercing property
of R the intersection graph remains the same if we project each rectangle R =
[a, b] × [c, d] ∈ R onto the interval [a, b] ⊆ R. In particular, the intersection
graph GR of a line-pierced rectangle arrangement R is an interval graph, i.e.,
intersection graph of intervals on the real line.

Line-pierced rectangle arrangements, however, carry more information than
one-dimensional interval graphs since the vertical positions of intersection points
between rectangles do influence the combinatorial properties of the arrangement.
We obtain two squarability results for line-pierced arrangements in Proposi-
tions 2 and 3, which yield Theorem3.

Proposition 2. Every line-pierced, triangle-free, and cross-free rectangle
arrangement R is squarable.

There are instances, however, that satisfy the conditions of Proposition 2 and
thus have a squaring, but not a line-pierced one. An example is given in Fig. 12.

Proposition 3. Every line-pierced rectangle arrangement R restricted to corner
intersections is squarable. There even exists a corresponding squaring with unit
squares that remains line-pierced.

Combinatorial Properties of Triangle-Free Rectangle Arrangements 243

u

v

x

G G′ Ḡ′

u

v

Ḡ

� � �xe

Fig. 10. Contracting an edge and keeping a 4-orientation when uncontracting.

Fig. 11. Constructing a combinatorially equivalent squaring from a line-pierce,
triangle-free, and cross-free rectangle arrangement.

Fig. 12. Left: A line-pierced, triangle-free rectangle arrangement that has no line-
pierced squaring. Middle: An unsquarable line-pierced rectangle arrangement due to a
forbidden cycle of side-piercing intersections. Right: Squaring the two vertical pairs of
rectangles on the right implies that the central square would need to be wider than tall.

Propositions 2 and 3 are proved in the full version of this paper [8]. The crucial
observation is that the intersection graph of R is a caterpillar in the former
case (Fig. 11) and a unit-interval graph in the latter case. The results can then
be proven by induction on the number of vertices by iteratively removing the
“rightmost” rectangle in the representation.

If we drop the restrictions to corner intersections and triangle-free arrange-
ments, we can immediately find unsquarable instances, either by creating cyclic
“‘smaller than”’ relations or by introducing intersection patterns that become
geometrically infeasible for squares. Two examples are given in Fig. 12.

7 Conclusions

We have introduced corner-edge-labelings, a new combinatorial structure simi-
lar to Schnyder realizers, which captures the combinatorially equivalent maximal
rectangle arrangements with no three rectangles sharing a point. Using this, we
gave a new proof that every triangle-free planar graph is a rectangle contact
graph. We also introduced the squarability problem, which asks for a given rec-
tangle arrangement whether there is a combinatorially equivalent arrangement

244 J. Klawitter et al.

using only squares. We provide some forbidden configuration for the squarability
of an arrangement and show that certain subclasses of line-pierced arrangements
are always squarable. It remains open whether the decision problem for general
arrangements is NP-complete.

Surprisingly, every unsquarable arrangement that we know has a crossing or
a side-piercing. Hence we would like to ask whether every rectangle arrangement
with only corner intersections is squarable. Another natural question is whether
every triangle-free planar graph is a square contact graph.

References

1. Asplund, E., Grünbaum, B.: On a coloring problem. Mathematica Scandinavica 8,
181–188 (1960)

2. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J.
(ed.) Thirty Essays in Geometric Graph Theory, pp. 213–248. Springer, New York
(2012)

3. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs.
Comb. Probab. Comput. 3, 233–246 (1994)

4. Fusy, E.: Transversal structures on triangulations: a combinatorial study and
straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009)

5. Imai, H., Asano, T.: Finding the connected components and a maximum clique
of an intersection graph of rectangles in the plane. J. Algorithms 4(4), 310–323
(1983)

6. Kang, R.J., Müller, T.: Arrangements of pseudocircles and circles. Discrete Com-
put. Geom. 51, 896–925 (2014)

7. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-
cations in graph drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)

8. Klawitter, J., Nöllenburg, M., Ueckerdt, T.: Combinatorial properties of
triangle-free rectangle arrangements and the squarability problem. CoRR,
arXiv:1509.00835, September 2015

9. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15, 145–
157 (1985)

10. Schnyder, W.: Planar graphs and poset dimension. Order 5(4), 323–343 (1989)
11. Schnyder, W.: Embedding planar graphs on the grid. In: 1st ACM-SIAM Sympo-

sium on Discrete Algorithms, SODA 1990, pp. 138–148 (1990)
12. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theor. Ser. B

40(1), 9–20 (1986)
13. Ungar, P.: On diagrams representing graphs. J. London Math. Soc. 28, 336–342

(1953)
14. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.

Algebraic Discrete Methods 3(3), 351–358 (1982)

http://arxiv.org/abs/1509.00835

Applications

Displaying User Behavior in the Collaborative
Graph Visualization System OnGraX

Björn Zimmer(B) and Andreas Kerren

Department of Computer Science, ISOVIS Group, Linnaeus University,
Vejdes Plats 7, 35195 Växjö, Sweden

{bjorn.zimmer,andreas.kerren}@lnu.se

Abstract. The visual analysis of complex networks is a challenging task
in many fields, such as systems biology or social sciences. Often, various
domain experts work together to improve the analysis time or the qual-
ity of the analysis results. Collaborative visualization tools can facilitate
the analysis process in such situations. We propose a new web-based
visualization environment which supports distributed, synchronous and
asynchronous collaboration. In addition to standard collaboration fea-
tures like event tracking or synchronizing, our client/server-based system
provides a rich set of visualization and interaction techniques for better
navigation and overview of the input network. Changes made by specific
analysts or even just visited network elements are highlighted on demand
by heat maps. They enable us to visualize user behavior data without
affecting the original graph visualization. We evaluate the usability of
the heat map approach against two alternatives in a user experiment.

Keywords: Information visualization ·Graph drawing · Network explo-
ration · Interaction · HCI · CSCW · Biological networks · Heat maps

1 Introduction

With the growing size and availability of large and complex data, the coopera-
tive analysis of such data sets is becoming an important new method for many
data analysts as cooperation might improve the quality of the analysis process
[15] and help to analyze data sets efficiently. One crucial observation is that
collaborators—who are often spread across the globe—would like to seamlessly
drop in and out of ongoing work [13]. On the one hand, the collaborative analy-
sis process can take place in a joint online session where everybody is working
simultaneously on one data set, discussing and changing it together in real-time
to create better analysis results. Here, different experts might want to see what
the others are doing, and if there are possibilities to coordinate their efforts and
find a common ground [3,9]. On the other hand, the experts work on the data
set whenever they find the time (i.e., asynchronously) to avoid having to sched-
ule and organize a virtual or physical meeting with a larger group of colleagues.
Both situations cause specific problems that should be handled by tools which

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 247–259, 2015.
DOI: 10.1007/978-3-319-27261-0 21

248 B. Zimmer and A. Kerren

support collaborative work. For instance, while working independently, it would
be helpful to see changes of the data performed by other analysts. Another inter-
esting issue is to see which part of the data set has already been explored by
others. Here, it is also interesting to know who changed the data: was an estab-
lished expert working on a specific part of the data, or a new staff member who
might not have the same experience as the expert?

To tackle the aforementioned problems in the context of collaborative net-
work analyses, we have developed the visualization tool OnGraX [23–25]. Our
system was designed for the distributed asynchronous and synchronous collab-
orative exploration of graphs in a modern web browser. Note that we give a
detailed explanation about the engineering aspects of OnGraX in paper [25]. In
contrast, we here propose interactive visualization techniques that

– help to coordinate work in a collaborative setting for node-link diagrams which
may change their topology during the analysis process (referred to as dynamic
graphs in the following) and

– assist analysts to identify previous activities performed by former users on
these networks.

We exemplify our visualization approaches with the help of the collaborative
analysis of metabolic networks from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) pathway database [1] due to our long lasting research collabora-
tions with biologists/bioinformaticians at several research institutions. Building
such biological networks is often based on complex experiments. In consequence,
biologists of different domains and experience levels want to explore the result-
ing networks and check them for wrong entries or missing data and revise the
networks wherever it is necessary. Usually, they only check parts of a network
that are specific to their own field of expertise or interest. In this case it is impor-
tant to know, what part of the network has already been checked and what part
still needs attention. This can also be used as a kind of quality check: an area
which has been investigated by many different experts is likely to have a higher
quality than an area only investigated by one scientist. OnGraX supports such
analysis tasks by providing methods for data awareness and coordination. Note
that we retain this usage scenario in the rest of the paper except in the heat
map evaluation (cf. Sect. 5) in order to attract a higher number of test subjects.

The remainder of this paper is organized as follows. In the next section, we
discuss related work in collaborative graph visualization. We describe our design
decisions in Sect. 3 and explain OnGraX’ interaction and visualization techniques
for displaying user behavior in Sect. 4. A user experiment to evaluate our heat
map approach for identifying previous user activities is discussed in Sect. 5, and
we conclude our paper in Sect. 6.

2 Related Work

Isenberg et al. [11] give a good overview of definitions, tasks and sample visual-
izations in the field of collaborative visualization. The authors define collabora-
tive visualization as “the shared use of computer-supported, (interactive,) visual

Displaying User Behavior in the Collaborative Graph Visualization System 249

representations of data by more than one person with the common goal of contri-
bution to joint information processing activities”. They also provide an excellent
summary of ongoing challenges in this field. All discussed standard systems incl.
more recent developments (e.g., ManyEyes [20] or Dashiki [17]) are not suitable
for our collaborative analysis problems, since they do not support the interactive
visualization of node-link diagrams in a web browser with real-time interactions
for collaboration. The benefits of collaborative work were also discussed in an
article on social navigation presented by Dieberger et al. [6]. Being able to see
the usage history and annotations of former users might help analysts to filter
and find relevant information more quickly. In order to be able to work together
during a synchronous session, users have to know each other’s interactions and
views on the data set, usually referred to as “common ground” [3,9]. To find a
common ground in node-link visualizations, we apply the techniques from the
work of Gutwin and Greenberg [8]. They used secondary viewports and radar
views to indicate other users’ view areas and mouse cursor positions. We use a
similar approach and show the viewports of other users as rectangles in the back-
ground of the graph visualization. Another work by Isenberg et al. [12] introduced
the concept of collaborative brushing and linking, which “allows users to com-
municate implicitly, by sharing activities and progress between visualizations”.
The authors considered sharing activities during synchronous collaborations on
a tabletop visualization for document collections. We adapt the concept and uti-
lize it in node-link diagrams with the help of a heat map visualization for the
exploration of interaction information in both asynchronous and synchronous,
distributed sessions.

Our tool OnGraX utilizes heat maps to analyze and identify highly frequented
or edited parts of the graph based on user behavior. Patina [16] uses a similar
approach but focuses on visualizing the usage of user interfaces, whereas our tool
facilitates heat maps to visualize interactions of users with the data itself. To the
best of our knowledge, heat map visualizations for representing data in combi-
nation with node-link diagrams are seldomly considered. Usually, they are used
to visualize quantitative data in geovisualizations [19], as cluster heat maps [7],
or for the visualization of eye tracking data to illustrate the quality of web site
designs, user interfaces, or graph layouts [18,21], i.e., for evaluation purposes.
One of the few examples where heat maps are used in node-link diagrams is
PLATO [22] which employs heat maps to visualize gameplay data.

3 Design Decisions

We carefully designed our system in terms of visual representations, interac-
tion techniques, and analysis processes to support biologists/bioinformaticians
in exploring and curating graphs from the KEGG pathway database. We decided
to focus our work on node-link diagrams, since this is still the most accepted
and preferred graph drawing metaphor, and our users are familiar with this kind
of visualization. Our overall goal was to develop a visualization system that
allows analysts spatially spread across multiple research labs or even countries

250 B. Zimmer and A. Kerren

to quickly start an analysis session and to work on large and complex networks
together. A special problem that arises during the distributed analysis of graphs
is that topology and structure of a graph are independent to the layout. Analysts
might change the layout drastically during the analysis process, which compli-
cates the task of keeping track of the graph objects and areas that users were
most interested in. We also want our tool to support tracking and subsequent
visualizing of all actions and graph changes performed by the users. This includes
to keep track of the users’ camera positions and use this data later to assist users
in finding parts of a graph that were interesting to other analysts or have been
edited a lot. The reason behind this is that users in a collaborative working
environment do not always find the time to work together simultaneously. They
would prefer to work on the data set whenever it is convenient for them. And in
such a case, they would like to review changes that have been performed on the
data set by other analysts in the past. Maybe, they also want to find out which
part of the data set another analyst was looking at, since he/she might be an
expert in the underlying application field and has another exploration pattern
compared to less experienced users. Showing this data—the camera and mouse
positions, the logged user views, and changes to specific objects—in the graph
without changing the original node-link visualization was an important require-
ment for our users. Biologists are accustomed to existing layouts and drawing
conventions of graphs from the KEGG pathway database. Thus, changing posi-
tions, color, or the shape of nodes to show the data which is collected during
collaborations is not an option for our analysis tasks.

During their work, analysts would also like to share their thoughts, insights,
and questions about specific nodes, edges or regions with other users. This could
happen during a synchronous session where collaborators want to discuss their
findings, or in an asynchronous session where users would like to share mes-
sages and pointers on specific nodes. Heer and Agrawala discuss these ideas as
“Common Ground and Awareness” and “Reference and Deixis” in their work on
collaborative visual analytics [9]. In case of graphs that change their topology
during the analysis process, single nodes or complete graph regions could be
deleted from a graph, rendering old user annotations useless without the pos-
sibility to view them in their historical context. Thus, analysts need a way to
quickly view the graph in a state when the annotation was originally written.
Based on this discussion, we categorize our requirements as described in the
following.

Collaboration Requirements (C-R)

1. Users should be aware of the position of other users in the same synchronous
session.

2. Users should have possibilities to establish and keep a common ground with
other users. Everyone should be aware of performed changes on the graph
during a session.

3. They should have an option to discuss ongoing work through persistent chat
channels and annotations.

Displaying User Behavior in the Collaborative Graph Visualization System 251

Visualization Requirements (V-R)

1. Annotations should be viewable in their historical context. Thus, it should
be possible for users to review old graph states.

2. Provide an easy and intuitive way for analysts to find out which regions of a
graph where viewed and/or changed by former users.

3. Additionally, the visualization of this data should not interfere with the orig-
inal node-link diagram.

4 Interaction and Visualization Techniques

Figure 1 shows an overview of the tool right after joining an ongoing graph
analysis session. In this case, the user has joined a session where two other
users, Bob and Sue, are already working in. Their viewports are represented as
two dashed rectangles: Bob’s view is shown in blue (bottom left) and Sue’s view
is shown in green (bottom right). All users in a session are listed as small icons
at the left hand side of the screen. By clicking on one of the user icons, the
camera moves to his/her current position in the graph. This feature provides
a quick way to join and discuss another user’s viewing area. Visualizing the
viewports of other users helps us to tackle our first collaboration requirement (cf.
C-R 1). An overview of the graph is rendered in the bottom-right corner of the
screen. Here, the user’s camera position is shown as a blue rectangle. As in many
other standard visualizations that use overview+detail [4], this rectangle can be
dragged to another position in the overview in order to modify the detail view
(the same can be done by simply clicking on the new position in the overview).

We use a standard node-link metaphor to visualize graphs in our system.
The visualization uses tapered edges for directed graphs, as suggested by Holten
and van Wijk [10], since they provide users with a faster way to find connected
nodes as opposed to arrowhead edges. If another user selects one or more nodes,
this will be visible to all other participants of the analysis session. An outline in
the respective user color is added to a selected node; thereby the system adapts
the outline shape to the corresponding node shape. To make graph changes per-
formed by other users during a synchronous session more obvious and to address
the second collaboration requirement (cf. C-R 2), we use short animations on
the affected objects, similarly to the work of Gutwin and Greenberg [8]. For
instance, the outlines for other users’ node selections are animated shortly while
they are added or removed, nodes are slowly moved to new positions instead of
just jumping there after being moved by another user, and deleted nodes slowly
vanish instead of just disappearing.

4.1 Annotations and Chat Links

In order to improve the communication among collaborators, our tool has a per-
sistent chat channel for every graph session and offers the possibility to link chat
messages to a position or a node in the graph. Users can use those chat links to

252 B. Zimmer and A. Kerren

Fig. 1. Overview of our system. The image shows a part of a biochemical network with
1,301 nodes and 1,314 edges. The blue and green dashed rectangles (see (a) and (b))
are the viewing areas (viewports) of two other users who are also exploring this graph
simultaneously. In this concrete case, the underlying heat map highlights those nodes
that were in the viewing area to all users during the last hour. Symbols in the top-right
corner of the screen (c) assist analysts to keep track of recent actions performed by
other users. The timeline (d) is used to temporarily revert the graph to a previous state
and to replay applied changes. Analysts can pin text annotations to nodes and edges
to discuss tasks, insights and questions with each other (e+f) (Color figure online)

move the camera to the linked object or position. A link to an arbitrary position
might become obsolete after changes to the graph layout, but a message linked
to a node or edge will always be valid as long as the object is not deleted. In addi-
tion, users can attach textual annotations directly to nodes or edges (cf. Fig. 1,
(e+f)). These annotations work as pointers from the graph visualization to text
and vice versa. Clicking on an annotation in the graph visualization opens the
annotation dialog and highlights the linked message. A click on an annotation
in the dialog moves the camera to the object’s position in the graph visualiza-
tion. With the chat and annotation features, we address our last collaboration
requirement (cf. C-R 3).

One problem with textual annotations and chat messages linked to objects
is, that the original context in which an annotation or message was initially
written could get lost if the respective graph region—where the link is pointing
to—is changed during the course of a session or if the object with this link is
deleted. We solve this problem by enabling analysts to temporarily revert the
complete graph to an old state (similar to the timeline feature, cf. Sect. 4.3) by
right clicking on a chat link or an annotation, giving them the possibility to view
the graph in a state in which the annotation was originally written. This feature
addresses our first visualization requirement (cf. V-R 1).

Displaying User Behavior in the Collaborative Graph Visualization System 253

4.2 Visualizing User Behavior Data with Heat Maps

In order to provide users with a way to quickly find out which nodes or regions of
a graph were viewed and/or changed by others (cf. V-R 2), we considered several
options. It would be possible to map the corresponding data to the colors or the
size of the nodes. Another option would be to use additional glyphs on/around
the nodes which represent this data. Using glyphs would also allow us to show
both the viewport data and the data for graph changes at the same time, as
small bar charts for instance. The third option is a heat map-based visualization
in the background of the graph visualization. We decided to omit mapping the
data to the size of nodes, as this would interfere too much with the original graph
layout and could introduce too many node overlaps. Additional options would
have been to use contour lines [2] or bubble sets [5], but for our use case the
focus usually lies on finding and marking single nodes instead of bigger regions
in a graph. The remaining three options are exemplified in Fig. 2.

Fig. 2. Heat map visualization (a) and two alternative approaches: glyphs (b) and
node color (c). They are used to indicate which parts of the entire graph were viewed
or changed by other users (Color figure online)

One disadvantage of glyphs in this context is the increased clutter in the
graph visualization. Additionally, depending on the size of the glyphs, it could
be hard to see the actual data values in highly zoomed-out views of the graph.
Changing the color coding of nodes in a graph as alternative is in conflict with
our last visualization requirement (cf. V-R 3), because the color coding can be
already mapped to another attribute. Thus, heat maps could provide a good
alternative to visualize additional data without directly changing the attributes
of objects in a node-link diagram. Users can choose between a colored heat map
and a monochrome heat map in case the colored version interferes too much
with the actual node colors. We performed a user experiment (cf. Sect. 5) to
assess how the heat map approach compares against glyphs and node colors. The
actual values, which are mapped to the glyphs, node colors, or heat map can be
computed based on two different data sources: viewports and graph changes.

Displaying Viewports. In the first case, values are calculated based on the amount
of seconds that nodes have been in the viewing areas of users (visitation rate).
For aggregating this data, OnGraX stores each user’s viewport together with the
time spent on the position whenever the viewport is changed. Additionally, each

254 B. Zimmer and A. Kerren

time a node is moved, the old position is logged. The server correlates all logged
user views and node positions to calculate the values, thus making them robust
against changes in the layout of the graph. Figure 3 illustrates this approach. In
this small example, three stored viewports of one user and two node movements
from another user—whose viewports are ignored here—are taken into account.
The user arrived at position A at exactly 10:00 AM, stayed there for 10 s, moved
his viewport to position B for 5 s and finally stayed 16 s at position C. In viewport
A, node 1 was visible for 10 s, but in viewport C, it was only visible for 12 s,
as the node was only moved into the viewport 4 s after the user arrived at the
position, resulting in a complete viewing time of 22 s for node 1. The viewing
time of node 2 is only 2 s, as it was moved into viewport B 13 s after 10:00 AM,
and the user arrived there at 10 s after 10:00 AM and left 5 s later.

Fig. 3. Illustration for the correlation of all stored viewports with all node move actions
to create a heat map that is robust against layout changes of the graph

For zoomed-out views that show a lot of nodes, it is clear that the user does
not attend to all nodes in such a view. To solve this issue, users can adjust the
settings to filter out these “big views” and only use zoomed-in views to calculate
the heat map. Views are also only tracked if the user is actively working on the
graph: if a user switches to another window or tab, then the tracking is stopped.
It is also stopped if the mouse is not moved for a while (currently 20 s) to avoid
tracking views of inactive users. This approach does still include nodes in the
views that might not have had attention by an active user, but it gives a better
estimate about the viewed graph regions without asking a user to mark every
inspected node manually or asking all users to use an eye tracker during the
analysis process, for instance.

Displaying Graph Changes. In the second case, OnGraX calculates values based on
changes that have been performed on nodes. Seven actions (name changed, shape
changed, node moved, node added, node selected, edge added, edge removed) are
tracked and can be used to calculate the heat map values in this case. A multiplier
is specified in a configuration dialog for each individual action type to give it
more or less weight during the calculation. This enables analysts to highlight
only nodes that were moved and had their names changed, for instance. The
visualization can be configured to only show a specific user or to show the data

Displaying User Behavior in the Collaborative Graph Visualization System 255

for all users together (the selection of user groups would also be possible and
could easily be added to the system). Furthermore, it is possible to select a time
frame, for instance, the last five minutes of the current analysis session, or a
specific start and end date. This enables an analyst to review changes done in
a collaborative session during a specific time frame or to check the work of a
single user.

4.3 Tracking and Replaying User Actions

Actions performed by other users during a synchronous session are shown at the
right corner of the screen (cf. Fig. 1,(c)) together with the name of the user who
initiated the action. A right-click is used to dismiss a recent action and a left-click
moves the camera to the location of the action in the graph. Another left-click
on the same action moves the camera back to its original position. Thus, users
can quickly check what their collaborators are doing and then return to their
own work, without having to navigate to every performed action manually. To
provide our users with the possibility to keep track of all actions that occurred
in a session, we use a scrollable timeline at the bottom border of the screen
that shows the complete action history of the graph session (cf. Fig. 1,(d)). The
mouse tooltip for the symbols in the timeline shows the action time and the
name of the user who performed the action. The timeline can also be used to
revisit old graph states and replay previous actions. If a user clicks on a symbol,
all actions performed since this specific action are replayed in reverse order. The
visualization will show the graph in a state before the action was performed.
Shortly after the graph has been transformed to its old state, the clicked action
is reapplied, animating the graph to the requested point in time. This feature
gives users a tool to revisit old graph states and replay old actions allowing
them to assess what work has been done by other collaborators. Clicking on
the rightmost symbol reverts the graph back to its present state. While viewing
an old graph state, it is not possible to apply any changes to the graph. We
decided against this feature as it would open the possibility to create numerous
new branches of different graph states. This is an interesting aspect and actively
researched [14], but currently not the focus of our work.

5 Heat Map Evaluation

We performed a user experiment to evaluate the usefulness and acceptance of
our heat map approach to visualize user behavior data in comparison to glyphs
and node coloring. We recruited 15 participants (7 undergraduate students, 7
graduate students, and 1 post-graduate; average age = 28; 5 female, 10 male).
Seven participants had a background in computer science and eight a background
in media technology. Eight participants never worked with node-link diagrams
before, but everyone was familiar with them.

All 15 sessions were recorded on video and the participants were instructed
to employ a think-aloud protocol. Before starting the actual tasks, the tool and

256 B. Zimmer and A. Kerren

the three visualization approaches for user behavior data (glyphs, node color,
heat map) and their meaning were introduced by the experimenter and each
participant could explore a sample graph to get accustomed to the tool. Each
session took about 25–30 min, and we asked the participants to solve each task
as quickly as possible, but the time for the tasks was not limited by us. All
participants had to solve two tasks for nine different graphs with the help of the
three visualization approaches. Both tasks were described as follows:

Task 1 – explore graph changes: Find and count all nodes that were moved
by a specific user (9–14 single marked nodes per graph).

Task 2 – explore viewports: Find all regions that a specific user was most
interested in (1–3 marked regions per graph).

The experiment was conducted as a within-participants experiment, and users
were divided into three different groups. Every group explored all graphs in the
same order but with a different sequence of visualization approaches. Six graphs
were generated randomly: the first three graphs consisted of 1,000 nodes/edges
and the following three of 2,000 nodes/edges. For the last three graphs, we used
existing metabolic networks with 1,300 to 1,800 nodes/edges.

(a) Task 1, mean error rate (b) Task 1, mean comple-
tion time in seconds

(c) Task 2, mean comple-
tion time in seconds

Fig. 4. Analysis of the two tasks for the different visualization approaches

Quantitative Results. We started measuring the task time in seconds for each
task as soon as the visualization of the user behavioral data was enabled by the
participants and stopped the time as soon as they reported a number. For Task 1,
we show the number of nodes that were not found by the users (mean error rate).
In Task 2, all participants found all marked regions, regardless of the visualiza-
tion approach. Therefore, we only report the error rate for Task 1. Figure 4 shows
the summarized results for all graphs. Initial Friedman tests showed that both
tasks had statistically significant differences in task completion time. Task 1:
χ2 = 34.881, p < 0.001. Task 2: χ2 = 16.812, p < 0.001. We conducted a post hoc
analysis with Wilcoxon signed-rank tests for our not normally distributed data.
For Task 1, the median interquartile range (IQR) task completion times were
26 (Glyphs), 39 (Node Colors), and 20 (Heat Map). Both, glyphs vs. heat maps
(Z = −3.678, p < 0.001) and node colors vs. heat maps (Z = −5.334, p < 0.001)

Displaying User Behavior in the Collaborative Graph Visualization System 257

had a significant reduction in task completion time. For Task 2, the median (IQR)
task completion times were 19 (Glyphs), 15 (Node Colors), and 13 (Heat Map).
Here, the heat map approach also performed significantly better in comparison
with glyphs (Z = −3.678, p < 0.001) and node colors (Z = −2.406, p = 0.016).

Qualitative Results. We asked all participants which visualization approach they
preferred. Everyone favored the heat map visualization. For them, the heat map
was the easiest to perceive, and it also provided the most convenient way to find
single nodes with high values, even at lower zoom levels. While performing the
second task, four participants mentioned that the glyph approach introduced
too much clutter in the view, especially for the metabolic networks. They said
that glyphs were hard to distinguish from the actual nodes, because both the
nodes and glyphs sometimes had a similar shape.

6 Conclusions

In this paper, we presented a web-based collaborative system for visualizing
graphs with several thousands of nodes and edges. Our tool OnGraX provides
visualization and interaction techniques for analyzing data sets synchronously
and asynchronously in a distributed environment. Additionally, all actions per-
formed during a session as well as the users’ camera positions are tracked and
can be visualized along with the graph data by using heat map representations.
We propose using heat maps to efficiently show additional data without affecting
the original graph visualization. Based on a user experiment, we show that the
heat map-based approach compares better against glyphs or changing the back-
ground color of nodes. As future work, we plan to evaluate the other aspects of
OnGraX—such as those described in Sects. 4.1 and 4.3—and to use the tool in
other contexts. For instance, our collaborators want to use OnGraX for the edu-
cation of their biology students. The idea is to give students existing metabolic
pathways and ask to revise and edit those graphs. Afterwards, the docents could
join the online session and discuss those changes with the students. We will use
this opportunity to test our tool in another authentic environment and perform
a detailed user study during collaborative work in an educational setting. In our
specific use case, graph changes are usually limited to a couple of nodes, thus
the tracking of all actions and visualizing this data is not an issue here. But, it
could become problematic if a graph or a subgraph is changed drastically. In this
case, additional options to set the granularity for tracked events and alternative
visualization techniques would be required incl. a newly designed evaluation.

References

1. KEGG: Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/
kegg/. Accessed 12 August 2015

2. Alper, B.E., Henry Riche, N., Hollerer, T.: Structuring the space: a study on enrich-
ing node-link diagrams with visual references. In: Proceedings of the 32nd Annual
ACM Conference on Human Factors in Computing Systems, CHI 2014, pp. 1825–
1834. ACM, New York (2014)

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/

258 B. Zimmer and A. Kerren

3. Chuah, M., Roth, S.: Visualizing common ground. In: Proceedings of the Inter-
national Conference on Information Visualization (IV 2003), pp. 365–372. IEEE
(2003)

4. Cockburn, A., Karlson, A., Bederson, B.B.: A review of overview+detail, zooming,
and focus+context interfaces. ACM Comput. Surv. 41(1), 2:1–2:31 (2009)

5. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with
isocontours over existing visualizations. IEEE Trans. Visual Comput. Graphics
15(6), 1009–1016 (2009)

6. Dieberger, A., Dourish, P., Höök, K.: Social navigation: techniques for building
more usable systems. Interactions 7(6), 36–45 (2000)

7. Wilkinson, L., Friendly, M.: The history of the cluster heat map. Am. Stat. 63(2),
179–184 (2009). doi:10.1198/tas.2009.0033

8. Gutwin, C., Greenberg, S.: Design for individuals, design for groups: tradeoffs
between power and workspace awareness. In: Proceedings of the 1998 ACM Con-
ference on Computer Supported Cooperative Work, CSCW 1998, pp. 207–216.
ACM, New York (1998)

9. Heer, J., Agrawala, M.: Design considerations for collaborative visual analytics.
Inf. Visual. 7(1), 49–62 (2008)

10. Holten, D., van Wijk, J.J.: A user study on visualizing directed edges in graphs. In:
Proceedings of the 27th International Conference on Human Factors in Computing
Systems, CHI 2009, p. 2299 (2009)

11. Isenberg, P., Elmqvist, N., Cernea, D., Scholtz, J., Ma, K.L., Hagen, H.: Collabo-
rative visualization: definition, challenges, and research agenda. Inf. Visual. 10(4),
310–326 (2011)

12. Isenberg, P., Fisher, D.: Collaborative brushing and linking for co-located visual
analytics of document collections. Comput. Graphics Forum 28(3), 1031–1038
(2009)

13. Isenberg, P., Tang, A., Carpendale, S.: An exploratory study of visual informa-
tion analysis. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI 2008, pp. 1217–1226. ACM, New York (2008)

14. von Landesberger, T., Fiebig, S., Bremm, S., Kuijper, A., Fellner, D.W.: Interaction
taxonomy for tracking of user actions in visual analytics applications. In: Huang,
W. (ed.) Handbook of Human Centric Visualization, pp. 653–670. Springer, New
York (2014)

15. Mark, G., Kobsa, A.: The effects of collaboration and system transparency on cive
usage: an empirical study and model. Presence Teleoper. Virtual Environ. 14(1),
60–80 (2005)

16. Matejka, J., Grossman, T., Fitzmaurice, G.: Patina: dynamic heatmaps for visu-
alizing application usage. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 2013, pp. 3227–3236. ACM, New York (2013)

17. McKeon, M.: Harnessing the information ecosystem with wiki-based visualization
dashboards. IEEE Trans. Vis. Comput. Graph. 15(6), 1081–1088 (2009)

18. Pohl, M., Schmitt, M., Diehl, S.: Comparing the readability of graph layouts using
eyetracking and task-oriented analysis. In: Computational Aesthetics, pp. 49–56
(2009)

19. Slocum, T.A., Mcmaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartog-
raphy and Geovisualization, 3rd edn. Prentice Hall, Upper Saddle River (2008).
(Prentice Hall Series in Geographic Information Science)

20. Viégas, A.B., Wattenberg, M., Ham, F.V., Kriss, J., Mckeon, M.: Many eyes: a
site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 13(6),
1121–1128 (2007)

http://dx.doi.org/10.1198/tas.2009.0033

Displaying User Behavior in the Collaborative Graph Visualization System 259

21. Špakov, O., Miniotas, D.: Visualization of eye gaze data using heat maps. Electron.
Electr. Eng. 2(2), 55–58 (2007)

22. Wallner, G., Kriglstein, S.: Plato: a visual analytics system for gameplay data.
Comput. Graph. 38, 341–356 (2013)

23. Zimmer, B., Kerren, A.: Applying heat maps in a web-based collaborative graph
visualization. In: Poster Abstract, IEEE Information Visualization (InfoVis 2014)
(2014)

24. Zimmer, B., Kerren, A.: Sensemaking and provenance in distributed collaborative
node-link visualizations. In: Abstract Papers, IEEE VIS 2014 Workshop: Prove-
nance for Sensemaking (2014)

25. Zimmer, B., Kerren, A.: Harnessing WebGL and websockets for a web-based col-
laborative graph exploration tool. In: Cimiano, P., Frasincar, F., Houben, G.-J.,
Schwabe, D. (eds.) ICWE 2015. LNCS, vol. 9114, pp. 583–598. Springer, Heidelberg
(2015)

Confluent Orthogonal Drawings
of Syntax Diagrams

Michael J. Bannister(B), David A. Brown, and David Eppstein

Department of Computer Science, University of California, Irvine, USA
mbannist@uci.edu

Abstract. We provide a pipeline for generating syntax diagrams (also
called railroad diagrams) from context free grammars. Syntax diagrams
are a graphical representation of a context free language, which we for-
malize abstractly as a set of mutually recursive nondeterministic finite
automata and draw by combining elements from the confluent draw-
ing, layered drawing, and smooth orthogonal drawing styles. Within our
pipeline we introduce several heuristics that modify the grammar but
preserve the language, improving the aesthetics of the final drawing.

1 Introduction

The languages of computing, such as programming languages and data exchange
formats, are typically specified using a finite set of rules called a grammar, and
these rules are usually given in Backus–Naur Form or one of its extensions.
Backus–Naur Form provides a notation rich enough to express all context-free
grammars, and in turn most grammars of practical interest, while being easily
machine readable. However, being a purely textual representation, it is perhaps
less readable by humans. For this reason, Jensen and Wirth used a graphical
representation of context-free grammars, called syntax diagrams, when defining
the programming language Pascal [1].1 We investigate the problem of generat-
ing syntax diagrams for context-free grammars and provide several heuristics
optimizing the aesthetics of the resulting drawing. Our work provides the first
algorithmic study of this problem and the first system that attempts to opti-
mize the resulting diagram for readability rather than directly translating a given
grammar into a diagram.

Recall that a context-free grammar is defined by four values N,Σ,R, S. In
this 4-tuple, N is a set of nonterminal symbols, Σ is a set of terminal symbols, R
is a set of production rules of the form A → β where A is a nonterminal symbol
and β is a (possibly empty) string of terminal and nonterminal symbols, and S
is a nonterminal symbol designated as the start symbol. A string σ of terminal
symbols belongs to the language defined by the grammar when there exists a

Michael Bannister and David Eppstein were supported in part by NSF grant CCF-
1228639.

1 Jensen and Wirth were not the first to use syntax diagrams [2], but they popularized
them, and these diagrams have been widely used since.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 260–271, 2015.
DOI: 10.1007/978-3-319-27261-0 22

Confluent Orthogonal Drawings of Syntax Diagrams 261

Table 1. A context-free grammar for the language of S-expressions in LISP 1.5 [3]

sequence of rewrite steps starting from S and ending at σ, each of which replaces
a nonterminal symbol A in the current string with a string β such that A → β
is a production rule in the grammar. Table 1 gives an example grammar for the
S-expressions in the programming language LISP 1.5.

A regular grammar is one in which the production rules all have the form
A → b, A → bC or A → ε, where A and C are nonterminals, b is a terminal, and ε
is the empty string. An example of a regular grammar is the part of the LISP 1.5
grammar defining 〈atom part〉. Languages definable by regular grammars are
exactly the regular languages, whose equivalent characterizations include being
recognizable by nondeterministic finite automata (NFAs). For these languages,
we could use graph drawings of an NFA state graph as a graphical representation,
by drawing an st-digraph with edges labeled by terminal symbols. A string σ is
in the language if and only if there is a directed path through the graph from s
to t such that the concatenation of the edge labels is equal to σ. Unfortunately,
such a representation will not work for non-regular languages.

To graphically represent context-free languages we turn to syntax diagrams.
Although other authors used syntax diagrams earlier [2], they were popularized
by the Pascal User Manual and Report by Jensen and Wirth [1]. The style has
been praised for its readability [4] and pedagogical value [5], and has been used
by the Smalltalk-80 Blue Book [6], JSON Data Interchange Standard [7], and the
W3C technical report on CSS [8]. Several software packages have been created
to automate the drawing of syntax diagrams [9–11]. These software packages
provide little to no optimization of the drawing, providing only a one-to-one
translation of the Extended Backus–Naur grammars into syntax diagrams. Until
now, there does not seem to be any algorithmic research involving the generation
and optimization of syntax diagrams.

We introduce a new formalization for syntax diagrams consisting of a collec-
tion of st-digraphs (see e.g., Fig. 3), each representing the possible expansions of
a single nonterminal symbol, with each edge in each graph labeled by either a ter-
minal or a nonterminal symbol. As before a string is in the language if and only
if the string can be represented by a directed path from s to t in the start sym-
bol’s st-digraph. However, when this path would contain a nonterminal symbol,
we recurse into the st-digraph corresponding to that symbol. The concatenation

262 M.J. Bannister et al.

of the terminal symbols in the resulting system of recursively generated paths
should match the sequence of terminal symbols in the given string.

Without further optimization this formalization merely gives a new notation
for writing production rules, but it has two advantages over extended BNF.
Firstly, it gives us additional freedom in our representation: a BNF grammar can
only describe syntax diagrams formed by a collection of disjoint paths between
the two terminals, and extended BNF can still only describe syntax diagrams
in the form of series-parallel graphs, while our diagrams are not restricted in
these ways. Secondly, as we describe below, we can use this notation to directly
represent the junctions and tracks of a confluent drawing style [12], in which
a path through the graph is only valid if it is a smooth path, such as in Fig. 1
(right). It is this drawing style that gives rise to the occasionally used alternative
name “railroad diagrams” for syntax diagrams.

Our drawings will combine confluent drawing with Sugiyama-style layered
drawing [13,14] using smooth orthogonal edge shapes [15]. The combination of
confluent and layered drawing has been studied before [16], but in a different
way. Past work considered confluent drawing as a technique for visualizing a
specific graph, and involved a search for subgraphs that could be more concisely
expressed using confluence. In our application, the graph (NFA) representation
that we work with already encodes the confluent features of the drawing: its
vertices become confluent junctions in the drawing, and its edges become the
boxes and connecting segments of track of the drawing (Fig. 9). Rather than
searching for graph features that can become confluent, our focus is on modify-
ing the underlying NFA to produce a simpler and higher-quality drawing while
preserving the equivalence of the underlying context-free language described by
the drawing.

Fig. 1. A syntax diagram from the CANDE Information Manual (left) and a confluent
syntax diagram from the Pascal User Manual and Report (right).

1.1 Software Pipeline

We describe our method for producing syntax diagrams with the framework of
a generic software pipeline (Fig. 2). In the first step of our pipeline, we convert
the grammar to our internal representation, which we will call the NFA repre-
sentation. This representation consists of a family of st-digraphs, initially one

Confluent Orthogonal Drawings of Syntax Diagrams 263

NFA Conversion Global Optimization NFA Minimization

Layered Drawing Confluent Conversion Syntax Diagram

Grammar

Fig. 2. A flow chart describing our software pipeline.

for each nonterminal symbol, whose edges are labeled by (terminal and non-
terminal) symbols in the grammar or ε (the empty string). To construct the
st-digraph for the nonterminal symbol A we convert each production of the
form A → B0B1 · · · Br−1 into a directed path of length r labeled by the sym-
bols B0, B1, Br−1. Then all of the beginning and ending vertices are respectively
merged together. Finally, we add to the graph two extra ε-labeled edges, one at
the beginning and one at the end. See Fig. 3 for the complete NFA representation
of LISP 1.5.

s t.〈S-expression〉 〈S-expression〉

〈S-expression list〉

〈atomic symbol〉

(

()

)

s 〈S-expression〉 〈S-expression list〉 t

s 〈LETTER〉 〈atom part〉

s

〈LETTER〉 〈atom part〉

t

t〈number〉 〈atom part〉

s A–Z t s 0–9 t

〈S-expression〉

〈S-expression list〉

〈atomic-symbol〉

〈atom part〉

〈LETTER〉 〈number〉

Fig. 3. The initial NFA-representation of S-expressions in the LISP 1.5 grammar.

The second and third steps in the pipeline attempt to reduce the number of
total symbols in the NFA representation, through both global optimizations that
act on the entire system of graphs and local optimizations that act on a single
graph. The local optimization part of the pipeline is a form of the well-studied
problem of NFA minimization. In general exact NFA minimization is PSPACE-
hard [17,18], and furthermore approximating the minimum NFA efficiently to

264 M.J. Bannister et al.

within an o(n) approximation ratio is also PSPACE-hard [19]. However, since the
problem is of practical importance there are many heuristic approaches [20,21].
In this paper, we use simple heuristics motivated by the structure of real-world
grammars and typical simplifications found in hand drawn syntax diagrams,
rather than attempting to implement the more complex heuristics devised for
minimizing NFAs without regard to their appearance as a diagram.

Once the NFA representation is optimized, we draw each of the st-digraphs
in a layered Sugiyama style [13,14], rotated horizontally to direct edges from
left to right. In these graphs, the only directed cycles come from tail recursion
elimination, so rather than searching for a small feedback arc set to determine the
reversed edges in the drawing, we maintain such a set during the process of NFA
minimization and add to it whenever we perform a tail recursion elimination step.
In this way, we can ensure that all the tokens in the drawing are traversed from
left to right. Standard layered drawing optimizations are applicable in this stage,
but were not implemented in our experiments as we were primarily interested in
optimizing the NFA representation. Finally, we convert the layered drawing into
a confluent syntax diagram.

1.2 Contributions

Our contributions in this paper are summarized below.

– We formalize an abstract representation of syntax diagrams as a collection
of mutually recursive NFAs, allowing the application of NFA minimization
heuristics beyond what is possible with EBNF.

– We formulate a software pipeline for producing syntax diagrams, based on
NFA minimization and confluent layered graph drawing.

– We develop a family of fast and simple NFA minimization heuristics, together
with global heuristics that recombine multiple NFAs.

– We describe a geometric layout method based on a horizontal Sugiyama lay-
ered drawing, where we reinterpret the vertices and edges in a layered drawing
of an NFA as the junctions and vertices of a confluent drawing.

– We provide a proof-of-concept implementation that produces human quality
syntax diagrams for real-world context-free languages.

– Finally, we experimentally evaluate the quality of our heuristics.

2 Global Minimization Heuristics

A global minimization heuristic seeks to minimize the total number of labeled
edges in an NFA representation via the modification of two or more of the st-
digraphs in the representation. The only global heuristic that we consider is
nonterminal nesting, in which a single nonterminal edge in one graph is replaced
by the entire graph corresponding to that nonterminal edge. Since the goal is
to reduce the total number of symbols in the NFA representation, we enforce
the following restrictions when nesting a graph H (corresponding to a nonter-
minal A) into another graph G:

Confluent Orthogonal Drawings of Syntax Diagrams 265

– A cannot be the start symbol.
– G and H must be two distinct graphs.
– If H has more than one non-ε edge, then A must occur only once in the whole

system of digraphs, and its occurrence must be in G.
– The number of symbols in the graph produced by nesting H into G must be

less than a predefined threshold k.

The final restriction above is intended to keep the size of each individual
st-digraph to a human-readable level. The nesting heuristic can be seen to have
been used in some hand-drawn syntax diagrams (e.g., the JSON syntax dia-
grams), but it does not appear to be used by previous syntax diagram software.
See Fig. 4 for an example of nesting with the LISP 1.5 grammar.

s t.〈S-expression〉 〈S-expression〉

〈S-expression list〉

(

()

)

〈LETTER〉 〈atom part〉

〈S-expression〉

〈atomic-symbol〉〈atomic-symbol〉

Fig. 4. An example of nesting the 〈atomic symbol〉 st-digraph into the 〈S-expression〉
st-digraph, within the LISP 1.5 grammar.

3 Local Minimization Heuristics

A local minimization heuristic seeks to minimize the total number of labeled
edges in a single st-digraph within the NFA representation. Many of these opti-
mizations can be seen in hand-drawn syntax diagrams.

3.1 Tail Recursion Loop Back

The st-digraphs produced from a grammar, before optimization, are acyclic,
and nesting preserves acyclicity. However, hand-drawn syntax diagrams typically
contain cycles, which we introduce as a replacement for tail-recursive grammars
using the loop back heuristic. If a nonterminal A appears exactly once in its own
st-digraph and the edge on which it appears has t′ (the only incoming neighbor
of t) as its destination, then we change the destination of the A-labeled edge
from t′ to s′ (the only outgoing neighbor of s) and we change its label from A
to ε. Although this does not reduce the number of edges in the st-digraph, it does
reduce the number of labeled edges and improves the readability of the drawing.
In addition, by reducing the number of occurrences of A as a label, it may cause
nesting operations to become possible that were previously forbidden. The edges
that are modified by this heuristic will be the only ones directed backwards in
our eventual drawings. See Fig. 5 for an example of this construction.

266 M.J. Bannister et al.

s 〈S-expression〉 〈S-expression list〉 t〈S-expression list〉

Fig. 5. An example of tail recursion loop back of 〈S-expression list〉 in the LISP 1.5
grammar. The removed edge has been colored gray.

3.2 Parallel State Elimination with Squish Heuristic

The squish forward heuristic is used to reduce the number of nonempty symbols
when there are parallel occurrences of the same symbol. If two edges e1 = (u, v1)
and e2 = (u, v2) are labeled by the same symbol A �= ε, then we replace e1 and
e2 with f = (u, t) labeled A, f1 = (t, v1) labeled ε and f2 = (t, v2) labeled ε. We
similarly define the squish backward heuristic, to be the squish forward heuristic
applied to an st-digraph in which all of the edges have been reversed. See Fig. 6
for an example of this heuristic.

s t.〈S-expression〉 〈S-expression〉

〈S-expression list〉

〈atomic symbol〉

()〈S-expression〉

Fig. 6. An example of the squish heuristics applied to 〈S-expression〉 in the LISP 1.5
grammar. The squish forward combines the open parenthesis and the squish backward
combines the closing parenthesis.

3.3 Epsilon Transition Removal

Our previous optimizations may introduce ε-labeled edges. We attempt to remove
redundant ε-edges using the epsilon removal heuristic. If e = (u, v), with u �= s
and v �= t, is an ε labeled edge, such that e is not a reversed edge (introduced
via the loop back heuristic), and either e is the only outgoing edge of u or the
only incoming edge to v, then the edge e is removed by merging u and v. We
iteratively find and remove such edges until no such edge exists.

3.4 Confluent Pinch

Our final local optimization would not qualify as an NFA optimization, as it
does not attempt to reduce the number of symbols. Instead, the confluent pinch
heuristic attempts to reduce crossings in the final drawing by removing directed
complete bipartite subgraphs (which can be created by the squish heuristic),
replacing each one by a single “crossing” vertex. If a digraph contains a set of
vertices U and a set of vertices V such that there is an ε labeled edge (u, v) for
all u ∈ U and v ∈ V , then we remove all such edges and add ε-labeled edges
(u,w) for all u ∈ U and (w, v) for all v ∈ V (Fig. 7).

Confluent Orthogonal Drawings of Syntax Diagrams 267

s t〈e〉

e

E

+

−

s t

e

E

+

−

Fig. 7. An example of confluent pinch for scientific notation in the JSON grammar.

3.5 Implementing the Heuristics

The application of one heuristic may create new optimization opportunities with
respect to a previously applied heuristic. Therefore, we perform multiple rounds
of optimization, applying all possible heuristics within each round, until no fur-
ther optimizations are possible or a maximum number of rounds have been
completed. In Fig. 8 we see the optimized NFA representation of S-expressions
in LISP 1.5, as produced by our implementation of these heuristics.

s t.〈S-expression〉 〈S-expression〉()〈S-expression〉

〈S-expression〉

A–Z

0–9A–Z

Fig. 8. Optimized NFA representation for S-expressions in LISP 1.5.

4 Sugiyama Layering

Once the NFA representation has been minimized, we give each of the st-digraphs
a Sugiyama-style layered drawing, using the standard layered-drawing pipeline
for layout and crossing minimization. One modification that we make to this
pipeline is that it is neither necessary nor desirable to compute a feedback arc
set of the st-digraphs. Instead, the set of edges introduced during the loop back
heuristic already form a feedback arc set with edges which should loop back into
the drawing. Since we are using an orthogonal drawing style, we add bends to
edges to allow them to shift their vertical positions from one layer to the next,
and use an interval-graph coloring algorithm to place the vertical connectors of
these bent edges into a small number of columns.

In the final step of our algorithm, we reinterpret the vertices and edges in
the resulting orthogonal drawing as the confluent junctions, track segments,
and vertices of a confluent drawing. We place a vertex of the confluent drawing

268 M.J. Bannister et al.

at the middle of each edge of the layered drawing whose label is not ε, with
the confluent vertex being given the same label as the st-digraph edge label.
We place a confluent junction at each vertex of the layered drawing, connected
to a segment of confluent track for each incident edge of the layered drawing.
Additionally, confluent junctions are created by the overlapping of edges with
a common source. The orientation of the track at each confluent junction is
determined by two factors: whether it connects to an earlier or a later layer, and
whether it is a forward or reversed edge in the layered drawing. The result of
this conversion step is our final syntax diagram. See Fig. 9 for an example of this
final conversion step.

s t.〈S-expression〉 〈S-expression〉()

〈S-expression〉

A–Z

0–9

A–Z

.〈S-expression〉 〈S-expression〉()

〈S-expression〉

A–Z

0–9

A–Z

Fig. 9. The final confluent conversion from an orthogonal layered drawing into a syntax
diagram for LISP 1.5 S-expressions.

5 Experimental Results

In order to validate the heuristic optimizations performed by our implementa-
tion, we tested them on a set of eight real-world context-free grammars collected
by Neal Wagner at the web site http://www.cs.utsa.edu/∼wagner/CS3723/gram
mar/examples2.html together with the Lisp 1.5 and JSON grammars. For each
grammar, we measured the area of our drawing (in units of rows and columns),
the number of tokens (boxes) in the drawing, and the total number of con-
nected components, both before and after optimization. The results are shown
in Table 2.

As these results show, our optimizations were not always effective at reducing
the total area of our drawings, and in some cases even increased the area. How-
ever, we typically achieved more significant reductions in the numbers of tokens
and connected components of the drawings, which we believe to be helpful in
reducing their visual clutter. Additionally, it can be seen that our optimizations
are typically more effective on grammars with larger numbers of nonterminals,
and less effective on grammars that have only a very small number of nontermi-
nals, because in those cases no nesting will be possible.

We did not directly compare the results of other available syntax diagram
drawing systems, but the ones we tested all appear to translate the input gram-
mar to a diagram directly, without optimization; therefore, we believe that the
results of testing them would be similar to the unoptimized lines of the table.

http://www.cs.utsa.edu/~wagner/CS3723/grammar/examples2.html
http://www.cs.utsa.edu/~wagner/CS3723/grammar/examples2.html

Confluent Orthogonal Drawings of Syntax Diagrams 269

Table 2. Experimental results

Name Optimized? Area Tokens Components

Canadian post codes unoptimized 17 6 1

(simple) optimized 17 6 1

Canadian post codes unoptimized 693 69 9

(complex) optimized 1121 65 5

Ottawa course codes unoptimized 520 46 15

optimized 570 36 5

Palindromes unoptimized 583 105 2

optimized 583 105 2

Nonempty data files unoptimized 182 22 8

(repetitive) optimized 132 11 3

Nonempty data files unoptimized 143 22 7

(recursive) optimized 130 7 1

Pascal variable declarations unoptimized 156 21 7

optimized 247 12 3

Pascal type declarations unoptimized 475 52 16

optimized 486 30 6

LISP 1.5 unoptimized 165 19 6

optimized 105 9 1

JSON unoptimized 539 90 15

optimized 651 42 5

6 Gallery of Examples

We present in Figs. 10 and 11 two complete examples of syntax diagrams of
real-world grammars drawn by our implementation. For the LISP 1.5 grammar,
our optimizations reduce the entire grammar to a single graph. We also present
our results for the JSON grammar, which we believe (despite its obvious flaws)
compares favorably with the official hand-drawn JSON syntax diagrams. Note in
particular that the JSON 〈number〉 subgraph is not series-parallel, and therefore
could not be represented by EBNF.

Fig. 10. A syntax diagram for S-expressions in LISP 1.5.

270 M.J. Bannister et al.

Fig. 11. A syntax diagram for the complete JSON grammar.

References

1. Jensen, K., Wirth, N.: PASCAL User Manual and Report. Springer, New York
(1974)

2. Burroughs Corporation: Command and Edit (CANDE) Language Information
Manual (1971)

3. McCarthy, J.: LISP 1.5 Programmer’s Manual. MIT Press, Cambridge (1965)
4. Braz, L.M.: Visual syntax diagrams for programming language statements. SIG-

DOC Asterisk J. Comput. Doc. 14, 23–27 (1990)
5. Bell, S., Gilbert, E.J.: Learning recursion with syntax diagrams. SIGCSE Bull. 6,

44–45 (1974)
6. Goldberg, A., Robson, D.: Smalltalk-80: The Language and Its Implementation.

Addison-Wesley Longman Publishing Co., Inc., Boston (1983)
7. Crockford, D.: Introducing JSON (2015). http://json.org. Accessed: 04 June 2015
8. Atkins, Jr., T., Sapin, S.: CSS Syntax Module Level 3 (2015). http://www.w3.org/

TR/css-syntax-3. Accessed: 04 June 2015
9. Dopler, M., Schörgenhumer, S.: EBNF Visualizer (2015). http://dotnet.jku.at/

applications/Visualizer. Accessed: 04 June 2015
10. Thiemann, P.: Ebnf2ps: Peter’s Syntax Diagram Drawing Tool (2015). http://

www2.informatik.uni-freiburg.de/thiemann/haskell/ebnf2ps. Accessed: 04 June
2015

http://json.org
http://www.w3.org/TR/css-syntax-3
http://www.w3.org/TR/css-syntax-3
http://dotnet.jku.at/applications/Visualizer
http://dotnet.jku.at/applications/Visualizer
http://www2.informatik.uni-freiburg.de/thiemann/haskell/ebnf2ps
http://www2.informatik.uni-freiburg.de/thiemann/haskell/ebnf2ps

Confluent Orthogonal Drawings of Syntax Diagrams 271

11. Rademacher, G.: Railroad Diagram Generator (2015). http://bottlecaps.de/rr/ui.
Accessed: 04 June 2015

12. Dickerson, M.T., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
visualizing non-planar diagrams in a planar way. In: Liotta, G. (ed.) GD 2003.
LNCS, vol. 2912, pp. 1–12. Springer, Heidelberg (2004)

13. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Systems Man Cybernet. 11, 109–125 (1981)

14. Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Kaufmann, M.,
Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 87–120. Springer, Hei-
delberg (2001)

15. Bekos, M.A., Kaufmann, M., Kobourov, S.G., Symvonis, A.: Smooth orthogonal
layouts. J. Graph Algorithms Appl. 17, 575–595 (2013)

16. Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In: Pach,
J. (ed.) GD 2004. LNCS, vol. 3383, pp. 184–194. Springer, Heidelberg (2005)

17. Hunt III, H.B., Rosenkrantz, D.J., Szymanski, T.G.: On the equivalence, contain-
ment, and covering problems for the regular and context-free languages. J. Comput.
Syst. Sci. 12, 222–268 (1976)

18. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In:
Proceedings 5th ACM Symposium on Theory of Computing (STOC 1973), pp.
1–9 (1973)

19. Gramlich, G., Schnitger, G.: Minimizing NFA’s and regular expressions. J. Comput.
Syst. Sci. 73, 908–923 (2007)

20. Champarnaud, J.M., Coulon, F.: NFA reduction algorithms by means of regular
inequalities. Theor. Comput. Sci. 327, 241–253 (2004)

21. Han, Y.S., Wood, D.: Obtaining shorter regular expressions from finite-state
automata. Theor. Comput. Sci. 370, 110–120 (2007)

http://bottlecaps.de/rr/ui

Kojaph: Visual Definition and Exploration
of Patterns in Graph Databases

Walter Didimo(B), Francesco Giacchè, and Fabrizio Montecchiani

Università Degli Studi di Perugia, Perugia, Italy
{walter.didimo,fabrizio.montecchiani}@unipg.it, fgiacc@gmail.com

Abstract. We present Kojaph, a new system for the visual definition
and exploration of patterns in graph databases. It offers an expressive
visual language integrated in a simple user interface, to define com-
plex patterns as a combination of topological properties and node/edge
attribute properties. Users can also interact with the query results and
visually explore the graph incrementally, starting from such results. From
the application perspective, Kojaph has been designed to run on top of
every desired graph database management system (GDBMS). As a proof
of concept, we integrated it with Neo4J, the most popular GDBMS.

1 Introduction

Graph databases are of growing interest in the many application domains where
data are conveniently modeled as graphs [1,5]. In contrast to relational data-
bases, a graph database allows users to directly execute graph-like queries, such
as finding pairs of nodes that are connected by a “short” path, finding the com-
mon neighbors of two specific nodes, finding cycles or cliques including a desired
subset of nodes, and so on. On graph-structured data, this approach leads to
a more efficient extraction process, which does not require the expensive join
operations necessary on a relational database. For a survey on query languages
for graph databases see, e.g., [10].

Besides the use of new paradigms for storing graph-structured data and
retrieving information from them, a complementary line of research focuses on
the design of visual languages and systems that allow users to easily define
queries for extracting desired information. These tools are particularly valu-
able when the user wants to look for specific patterns in the data set without
learning the native query language of the database management system. Within
this research line, GRAPHITE is a system that allows users to visually con-
struct graph patterns and to subsequently apply exact or approximate pattern
matching algorithms to extract the results [4]. However, this system has sev-
eral limitations: (i) it is not designed to directly work on top of widely used
graph database technologies; (ii) its visual language is quite simple and does
not allow for the creation of sophisticated patterns; (iii) the interaction of the

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 272–278, 2015.
DOI: 10.1007/978-3-319-27261-0 23

Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 273

user with the presented results is rather limited. Conversely, QGraph is a more
complete visual query language for graphs [3]. It is used in the knowledge discov-
ery system Proximity (https://kdl.cs.umass.edu/display/public/Proximity), which
allows users to easily understand and modify large relational data sets. However,
Proximity has it own data-structures to efficiently store and retrieve relational
data, and it is not conceived to interact with modern and widely used GDBMS,
like Neo4J, Titan, and so on. There are also other technologies in this field,
that are however not conceived for graph-structured data. Among them, the
system Polaris offers a visual query language for describing a wide range of
table-based graphical presentations of data, extracted from multidimensional
relational databases [9]. imMens is a system for real-time visual querying of big
data [8]. System architectures and algorithms that are mainly designed to effi-
ciently interleave visual query formulation and graph query processing are also
described in the literature [2,7].

This paper presents Kojaph, a new system for the visual definition and
exploration of patterns in graph databases. Kojaph has the following main fea-
tures: (a) It offers an expressive visual language integrated in an intuitive user
interface, to define complex patterns as a combination of topological proper-
ties and node/edge attribute properties. (b) Users can interact with the query
results, which can be used as seeds for subsequent incremental explorations of the
graph. (c) It is designed to work with any graph database management system
(GDBMS) and the user can access it with a common Web browser.

Section 2 describes the Kojaph visual language and user interface. Section 3
presents the system architecture and its integration with Neo4J (http://neo4j.

com/). Future work is discussed in Sect. 4. A demo version of Kojaph is available
at: http://mozart.diei.unipg.it:8080/Kojaph/.

2 Visual Language and User Interface

Denote by G the entire graph stored in the graph database. The user can con-
struct a desired pattern to be matched in G, using a graphical interface that inte-
grates all the logical elements of the visual query language. At a high-level view,
a pattern P consists of a pair 〈GP , RP 〉 of specifications, where GP = (VP , EP)
is a graph that defines the topological structure of P , and RP is a set of rules
on the nodes and the edges of GP . An edge e ∈ EP does not necessarily corre-
spond to a single edge of G, but it can also correspond to a path whose length
is within a desired range. This correspondence can be established by a specific
type of rules of RP , which we call path constraints. The other types of rules in
RP are used to describe desired properties for node/edge attributes of GP ; these
properties can then be combined with logical operators AND, OR, NOT to form
a binary tree, called the properties tree.

Structure of the Interface. The first time the user accesses the graphical
interface, the system automatically retrieves from the database all types of node
and edge attributes. The interface is shown in Fig. 1. The left-side panel, called

https://kdl.cs.umass.edu/display/public/Proximity
http://neo4j.com/
http://neo4j.com/
http://mozart.diei.unipg.it:8080/Kojaph/

274 W. Didimo et al.

Fig. 1. The interface of Kojaph for graph pattern definition.

graph-ed panel, is a canvas for editing GP . Similarly to a common graph edi-
tor, it allows users to add, remove, select, or move nodes and edges; multiple
edges and self-loops are allowed and are automatically drawn avoiding overlaps.
A self-loop on a node v can be useful, for instance, to refer to a cycle that
passes through v. Each time a new node is added, it is automatically assigned
a unique label (identifier). The right-side of the interface is used to define the
rules of RP and it is further subdivided into a bottom panel and a top panel.
The bottom panel, called the prop-def panel, is used to define desired properties
of node/edge attributes; the top panel is used to group and combine them, so to
form the properties tree above mentioned. The top panel also reports the path
constraints and user-defined collections of attribute values, which can be used
to construct properties.

Attributes. Each node or edge of GP has an associated list of attributes.
Generic attributes include the type of the element in the database (e.g., in a
movie database, the type of a node can be “movie”, “actor”, “director”, etc.),
its identifier in the database, its degree (in/out-degree or total degree) if the
element is a node, and its direction if the element is an edge. Specific attributes
depend on the data modeled by the graph: for instance, in a movie database, a
node of type “actor” might have attributes like “name”,“birthday”, or “biogra-
phy”; an edge connecting an actor to a movie might have an attribute “acts-in”,
whose value is the character interpreted by the actor in the movie. For any edge
e of GP , there are also additional attributes that are related to path constraints,
which can be used when e corresponds to a path Πe instead of a single edge.
In particular, there are attributes whose values define the minimum/maximum
length of Πe and attributes that refer to the nodes and edges in Πe. For example,
the sub-node properties of e can be used to define rules on all nodes, any node, a

Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 275

single node, or no nodes of Πe. Analogously, the attribute sub-edge properties of
e is used to define rules on all edges, any edge, a single edge, or no edges of Πe.

Property Definition. To define a property the user must switch to the “select”
mode on the graph-ed panel, so to avoid modifications of GP during the definition
process. The property is defined as follows: (i) The user can see the list of
attributes for a node/edge of GP by clicking with the mouse right-button on it.
(ii) A selected attribute is added to the prop-def panel. (iii) Attributes can be
correlated to specific user-input or constant values, or subset of values like the
above mentioned collections; they can also be combined together to form complex
expressions, using a variety of operators, accessible from the list of “symbols”
in the graphical interface. These symbols consist of comparison, inclusion, and
mathematical operators, including parenthesis to define association rules and
arrays. It is also possible to associate an attribute value with a regular expression
(using the ∼= operator). Each time the user adds an element (attribute, value, or
symbol) to the property, it is visually appended to the right of the previous ones;
the user can freely reorder the elements by means of drag-and-drop operations.

Properties Tree. Once a property is defined, the user can add it to the proper-
ties tree. The system will just append a new property at the root level. However,
in a valid tree, each property must be a leaf node. To this aim, the user can add
to the tree a suitable number of internal operator nodes, each corresponding to a
boolean operator, and then he/she can make a property as a child of an operator
node, by means of a drag-and-drop operation. When the user sends the query to
the GDBMS, the system first checks the validity of the tree and, in the positive
case, it translates the query constructed with the visual language into a query
defined with the native language of the GDBMS.

Example. Figure 1 shows a pattern 〈GP , RP 〉 defined on a movie database where
persons (actors, directors, etc.) are connected to movies. The pattern GP consists
of 5 nodes and 4 edges. The properties tree and the path constraints on the right-
hand side describe the set of rules. GP describes an actor, node n4, such that:
(i) n4 acted in a movie together with “Monica Bellucci”, the node n2; this is
expressed by a path constraint that requires that e1 is a path of length 2. (ii) n4
acted in at least one “Comedy” (node n1) and at least one “Horror” or “Action”
(node n3), together with “Tom Cruise”, who is node n5. The rules of RP are
summarized by the following expression:

(e1.Length in [2,2]) AND

(n4.Type=Person.Actor AND

(n2.Type=Person.Actor AND n2.name="Monica Bellucci") AND

(n5.Type=Person.Actor AND n5.name="Tom Cruise"))

AND

((n1.Type=Movie AND n1.genre="Comedy") AND

(n3.Type=Movie AND (n3.genre="Horror" OR n3.genre="Action")))

Presentation and Exploration of the Results. The system shows the results
of the query in a different window. Multiple results that match the pattern are

276 W. Didimo et al.

listed in a pop-up menú and the user can display them one by one. Each result is
viewed as a graph isomorphic to GP , with the same node/edge labels and colors
as in GP , so to preserve the user’s mental map. Edges corresponding to paths are
depicted as dashed segments. An important option is the possibility of displaying
all the results as a unique graph: Kojaph merges all of them without duplicating
elements. Graphs are automatically drawn by the force-directed algorithm of
the D3.js library (http://d3js.org/); a post-processing procedure is applied to
represent multiple edges as non-overlapping curves. Figure 2 shows the results of
the query for the pattern of Fig. 1, drawn as a unique graph.

Fig. 2. The results of the query for the pattern of Fig. 1, shown as a unique graph.

The user can interact with the result in different ways. He/she can change at
any time the kind of information displayed as node and edge labels. In the figure,
actors are labeled with their names and movies with their titles, while edges are
not labeled. A mouse-over interaction on an element will show all attribute values
of that element. Zooming in/out (using the mouse wheel) and node adjustments
are possible. More importantly, the user can explore the displayed result, incre-
mentally enriching it with additional information. Double clicking on a node
v, the system visualizes the neighbors of v not already in the drawing. Double
clicking on a dashed edge e, the system replaces e with its associated path. To
keep clear the original pattern throughout the exploration, new nodes that enter
in the drawing have smaller size than the pattern nodes, and the new edges that
enter in the drawing for a double click on a node v gets the color of v.

3 System Architecture and Integration with Neo4J

Kojaph is a client-server Web application. The user interactive graphical environ-
ment is implemented using JavaScript, JQuery, and AJAX. From the server-side,

http://d3js.org/

Kojaph: Visual Definition and Exploration of Patterns in Graph Databases 277

client requests are handled by a Java servlet. In order to integrate the Kojaph
server with any GDBMS, we defined a Java abstract class, named DBMSInter-
face, that describes few methods to interact with the GDBMS, including methods
for automatically retrieving node/edge attributes and a method to translate any
query constructed with the visual language of Kojaph into a query defined with
the language of the GDBMS. These methods exchange data (input parameters
and output values) in the JSON lightweight data-interchange format. A specific
implementation of DBMSInterface must be provided for each specific GDBMS
to be used.

As a proof of concept, we integrated Kojaph to the popular Neo4J GDBMS.
We implemented the methods of class DBMSInterface using the Neo4J query
language Cypher, and we exploited the REST API of Neo4J for sending the
queries to the GDBMS. The robustness of the integrated system and the cor-
rectness of the query answers have been tested on three databases. One is a
movie/actor network of 63, 042 nodes and 106, 651 edges (http://neo4j.com/develo

per/example-data/); another is a “food network” with approximately the same
number of nodes but many more edges, namely 626, 641 (http://blog.bruggen.

com/2013/12/fascinating-food-networks-in-neo4j.html). The third database is a por-
tion of the co-authorship network in Computer Science extracted from DBLP
(http://dblp.uni-trier.de/); it consists of 198, 830 nodes and 207, 793 edges. The
time required to translate a Kojaph query to the corresponding Cypher query
is negligible; hence the response time of the system to a visual query is mainly
related to the performances of the graph pattern matching algorithms applied
by the GDBMS. Recall that the graph pattern matching problem is NP-hard [6],
but the specification of node/edge attribute properties in addition to topologi-
cal requirements may strongly reduce the search space and consequently greatly
improve the GDBMS performances. Furthermore, path constraints in Kojaph
are translated into a pre-processing filtering of the possible results, which often
leads to a dramatic reduction of the response time. The query in the example of
Fig. 2 took less than 1 s under an Ubuntu Linux OS, within a VMware virtual
machine with a 4 vCPU processor and 16 GB RAM.

4 Future Work

In the near future we plan to: (i) equip Kojaph with more functionalities to
visualize and explore the results; (ii) evaluate the usability of Kojaph versus
similar systems (e.g., Proximity); (iii) testing Kojaph on different GDBMS,
other than Neo4J.

References

1. Angles, R., Gutiérrez, C.: Survey of graph database models. ACM Comput. Surv.
40(1), 1–39 (2008)

2. Bhowmick, S.S., Choi, B., Zhou, S.: VOGUE: towards A visual interaction-aware
graph query processing framework. In: CIDR 2013 (2013)

http://neo4j.com/developer/example-data/
http://neo4j.com/developer/example-data/
http://blog.bruggen.com/2013/12/fascinating-food-networks-in-neo4j.html
http://blog.bruggen.com/2013/12/fascinating-food-networks-in-neo4j.html
http://dblp.uni-trier.de/

278 W. Didimo et al.

3. Blau, H., Immerman, N., Jensen, D.: A visual language for querying and updating
graphs. Technical report UM-CS-2002-037, University of Massachusetts Amherst,
Computer Science Department

4. Chau, D.H., Faloutsos, C., Tong, H., Hong, J.I., Gallagher, B., Eliassi-Rad, T.:
GRAPHITE: a visual query system for large graphs. In: ICDM 2008, pp. 963–966.
IEEE (2008)

5. Dominguez-Sal, D., et al.: Survey of graph database performance on the HPC
scalable graph analysis benchmark. In: Shen, H.T., et al. (eds.) WAIM 2010. LNCS,
vol. 6185, pp. 37–48. Springer, Heidelberg (2010)

6. Gallagher, B.: Matching structure and semantics: a survey on graph-based pattern
matching. Artif. Intell. 6, 45–53 (2006)

7. Hung, H.H., Bhowmick, S.S., Truong, B.Q., Choi, B., Zhou, S.: QUBLE: towards
blending interactive visual subgraph search queries on large networks. VLDB J.
23(3), 401–426 (2014)

8. Liu, Z., Jiang, B., Heer, J.: imMens: Real-time visual querying of big data. Comput.
Graph. Forum 32(3), 421–430 (2013)

9. Stolte, C., Tang, D., Hanrahan, P.: Polaris: a system for query, analysis, and visu-
alization of multidimensional databases. Commun. ACM 51(11), 75–84 (2008)

10. Wood, P.T.: Query languages for graph databases. SIGMOD Record 41(1), 50–60
(2012)

Drawings with Crossings

2-Layer Fan-Planarity: From Caterpillar
to Stegosaurus

Carla Binucci1, Markus Chimani2, Walter Didimo1, Martin Gronemann3,
Karsten Klein4, Jan Kratochv́ıl5, Fabrizio Montecchiani1(B),

and Ioannis G. Tollis6

1 Università Degli Studi di Perugia, Perugia, Italy
{carla.binucci,walter.didimo,fabrizio.montecchiani}@unipg.it

2 Osnabrück University, Osnabrück, Germany
markus.chimani@uni-osnabrueck.de

3 University of Cologne, Cologne, Germany
gronemann@informatik.uni-koeln.de

4 Monash University, Melbourne, Australia
karsten.klein@monash.edu

5 Charles University, Prague, Czech Republic
honza@kam.mff.cuni.cz

6 University of Crete and Institute of Computer Science-FORTH,
Crete, Greece

tollis@csd.uoc.gr

Abstract. In a fan-planar drawing of a graph there is no edge that
crosses two other independent edges. We study 2-layer fan-planar draw-
ings, i.e., fan-planar drawings such that the vertices are assigned to two
distinct horizontal layers and edges are straight-line segments that con-
nect vertices of different layers. We characterize 2-layer fan-planar draw-
able graphs and describe a linear-time testing and embedding algorithm
for biconnected graphs. We also study the relationship between 2-layer
fan-planar graphs and 2-layer right-angle crossing graphs.

1 Introduction

In a 2-layer drawing of a graph, each vertex is drawn as a point of one of two
distinct horizontal layers and each edge is drawn as a straight-line segment that
connects vertices of different layers. Clearly, a graph admits such a drawing if
and only if it is bipartite. The study of 2-layer drawings has a long tradition
in Graph Drawing for two main reasons: (i) 2-layer drawings are a natural way

Research supported in part by the MIUR project AMANDA “Algorithmics for MAs-
sive and Networked DAta”, prot. 2012C4E3KT 001 and by the Australian Research
Council through Discovery Project grant DP140100077. Work by Jan Kratochv́ıl
was supported by the grant no. 14-14179S of the Czech Science Foundation GACR.
The research in this work initiated at the Bertinoro Workshop on Graph Drawing
2015, supported by the European Science Foundation as part of the EuroGIGA
collaborative research program (Graphs in Geometry and Algorithms).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 281–294, 2015.
DOI: 10.1007/978-3-319-27261-0 24

282 C. Binucci et al.

to visually convey bipartite graphs; (ii) algorithms that compute such drawings
represent a building block for the popular Sugiyama’s framework [17,18], used
to draw graphs on multiple horizontal layers.

Since it is commonly accepted that edge crossings negatively affect the read-
ability of a diagram, the study of 2-layer drawings has focused for a long time on
the minimization of edge crossings. Eades et al. proved that a connected bipartite
graph admits a crossing-free 2-layer drawing if and only if it is a caterpillar [9],
i.e., a tree for which the removal of all vertices of degree one produces a path.
Eades and Whitesides proved that the problem of minimizing edge crossings in a
2-layer drawing is NP-hard [11] and, as a consequence, many papers focused on
efficient heuristics or exact exponential techniques for computing 2-layer draw-
ings with minimum number of edge crossings; a very limited list of these papers
includes [10,12,14,16,19].

More recently, a growing attention has been devoted to the study of graph
drawings where edge crossings are allowed under some specific restrictions, which
still guarantee a good readability of the layout. In particular, motivated by
cognitive experiments of Huang et al. [13], several papers investigated right angle
crossing drawings (RAC drawings for short) [7], in which the edges can cross
only at right angles (see [8] for a survey on the subject). Di Giacomo et al.
characterized the class of bipartite graphs that admit a RAC drawing on two
layers, and described a linear-time testing and embedding algorithm for 2-layer
RAC drawable graphs [5]. Heuristics for computing the maximum 2-layer RAC
subgraph of a given graph are also described [6].

In this paper we concentrate on 2-layer fan-planar drawings, i.e., 2-layer
drawings that are also fan-planar. In a fan-planar drawing an edge can only
cross edges having a common end-vertex, thus an edge cannot cross two inde-
pendent edges (see Fig. 1). Fan-planar drawings were introduced by Kaufmann
and Ueckerdt [15], who showed that fan-planar graphs with n vertices have at
most 5n − 10 edges, which is a tight bound. Subsequent papers proved that
recognizing fan-planar graphs is NP-hard and studied restricted classes of fan-
planar graphs in terms of density and recognition algorithms [1,2]. In particular,
it is shown that 2-layer fan-planar drawings have at most 2n − 4 edges (still
a tight bound) [2]. From an application perspective, it has been observed that
fan-planar drawings may be used to create confluent drawings with few edge
crossings per edge [2]. Our contribution is as follows:

(i) We first study biconnected graphs (Sect. 3). We prove that a biconnected
graph is 2-layer fan-planar if and only if it is a spanning subgraph of a snake
graph (Sect. 3.1), which is a chain of complete bipartite graphs K2,h (see
Definition 1). We also describe a linear-time algorithm that tests whether a
biconnected graph admits a 2-layer fan-planar drawing, and that computes
such a drawing if it exists (Sect. 3.2).

(ii) We then give a characterization of the class of graphs that admit a 2-layer
fan-planar drawing (Sect. 4). We prove that a connected graph is 2-layer
fan-planar if and only if it is a subgraph of a stegosaurus graph, a further
generalization of a snake (see Definition 2). Since every 2-layer crossing-free

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 283

drawing is also fan-planar, but not vice versa, caterpillars are a proper
subclass of stegosauruses.

(iii) We explore the relationship between 2-layer fan-planar and 2-layer RAC
drawable graphs (Sect. 5). We prove that, for biconnected graphs the first
class is properly included in the second one, while there is no inclusion
relationships for general graphs.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and planarity [4].
Throughout the paper, a graph with a fixed planar (outerplanar) embedding is
also called a plane (outerplane) graph. Let G be a graph. For each vertex v of G,
the set of edges incident to v is called the fan of v. Each edge (u, v) of G belongs
to the fan of u and to the fan of v at the same time. Two edges that do not
share a vertex are called independent edges, and always belong to distinct fans. A
fan-planar drawing Γ of G is a drawing such that: (a) no edge is crossed by two
independent edges (the forbidden configuration of Fig. 1(a)); (b) there are not
two adjacent edges (u, v), (u,w) that cross an edge e from different “sides” while
moving from u to v and from u to w (the forbidden configuration of Fig. 1(b)).
Two allowed configurations of a fan-planar drawing are in Fig. 1(c) and (d). A
fan-planar graph is a graph that admits a fan-planar drawing. Observe that in
a straight-line drawing, the forbidden case (b) cannot happen. By definition, a
fan-planar drawing does not contain 3 mutually crossing edges.

(a)

u

v

w
e

(b) (c) (d)

Fig. 1. (a)-(b) Forbidden and (c)-(d) allowed configurations of fan-planar drawings.

In a 2-layer drawing of a graph each vertex is drawn as a point on one of two
distinct horizontal lines, called layers, and each edge is drawn as a straight-line
segment that connects vertices of different layers. A 2-layer fan-planar drawing
is a 2-layer drawing that is also fan-planar. A 2-layer fan-planar graph is a
graph that admits a 2-layer fan planar drawing. Clearly, every graph that has
a 2-layer drawing is bipartite. For a given 2-layer drawing of a bipartite graph
G = (V1, V2, E), denote by �i the horizontal line on which the vertices of Vi are
drawn (i = 1, 2). We always assume that �1 is above �2. Two 2-layer drawings of
G are equivalent if they have the same left-to-right order πi of the vertices of Vi

along �i (i = 1, 2). A 2-layer embedding is an equivalence class of 2-layer drawings
and it is described by a pair of linear orderings (i.e., permutations) γ = (π1, π2)

284 C. Binucci et al.

of the vertices in V1 and V2, respectively. Let u and v be two vertices of Vi, we
write u ≺ v if πi(u) < πi(v) (i = 1, 2). Also, the first (last) vertex of π1 and
the first (last) vertex of π2 are the leftmost vertices (rightmost vertices) of γ.
The edge between the leftmost (rightmost) vertices of γ (if it exists) is called
the leftmost edge (the rightmost edge) of γ. If Γ is a drawing within class γ, we
say that γ is the embedding of Γ . If Γ is a 2-layer fan-planar drawing, we also
say that γ is a 2-layer fan-planar embedding.

Since any geometric position of the vertices that respects the two linear
orderings defined by γ yields a 2-layer fan-planar drawing in linear time, we will
concentrate on embeddings in the following. We say that γ is maximal if for any
two vertices u and v that are not adjacent in G, the embedding obtained from
γ by adding the edge (u, v) is no longer 2-layer fan-planar.

3 Biconnected 2-Layer Fan-Planar Graphs

Let G1 and G2 be two graphs. The operation of merging G1 and G2 by identifying
an edge e1 of G1 with an edge e2 of G2 (in one of the two possible ways) is called
an edge merging ; the resulting graph G is called a merger of G1 and G2 with
respect to e1, e2. The end-vertices of the edge obtained by identifying e1 with e2
are merged vertices of G. In Fig. 2(a), the white vertices in the merger graph are
the merged vertices.

Definition 1. A snake is a graph recursively defined as follows: (i) A complete
bipartite graph K2,h (h ≥ 2) is a snake; (ii) A merger of two snakes G1 and G2

with respect to edges e1 of G1 and e2 of G2, with the property that none of the
end-vertices of ei is a merged vertex of Gi (i = 1, 2), is a snake.

Intuitively, a snake is a bipartite planar graph consisting of a chain of com-
plete bipartite graphs K2,h (see Fig. 2(b)). An alternative definition of a snake
can be derived from the definition of ladder, i.e., a maximal bipartite outer-
planar graph consisting of two paths of the same length 〈u1, u2, . . . , un

2
〉 and

〈v1, v2, . . . , vn
2
〉 plus the edges (ui, vi) (i = 1, 2, . . . n

2) (see also [5]); the edges
(u1, v1) and (un

2
, vn

2
) are called the extremal edges of the ladder. A snake is a

planar graph obtained from an outerplane ladder, by adding, inside each internal
face, an arbitrary number (possibly none) of paths of length two connecting a
pair of non-adjacent vertices of the face.

3.1 Characterization

The characterization of the biconnected graphs that admit a 2-layer fan-planar
embedding is given by Theorem 3. The proof is based on the next two lemmas.

Lemma 1. Let G be biconnected graph. If G admits a maximal 2-layer fan-
planar embedding γ then G is a snake.

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 285

G1

G2

e1

e2 G

(a)

K2,6 K2,4

(b)

Fig. 2. (a) Edge merging of two graphs. (b) A snake.

Proof Sketch. Due to maximality, the leftmost and the rightmost edges of γ
always exist, and do not cross any other edge. Therefore, γ contains at least two
uncrossed edges. We prove the statement by induction on the number l ≥ 2 of
uncrossed edges in γ. Recall that, since G is biconnected, it has vertex degree at
least two.

Base Case: l = 2. In this case, we prove that G is a K2,r for some r ≥ 2,
which implies that G is a snake. Note that G cannot be a K1,r, since it has
vertex degree at least two. If G contains only four vertices, then G is a K2,2, as
there are exactly two uncrossed edges. Suppose now that G has more than four
vertices.

Claim 1. Let (u, v) and (w, x) be a pair of crossing edges in γ, such that u ≺ w
on �1 and x ≺ v on �2. Then the edges (u, x) and (w, v) exist.

Claim 2. If G′ is a subgraph of G such that G′ is a K2,r′ (for some r′ > 2) and
G′ contains the leftmost and the rightmost edges of γ, then G is a K2,r (for some
r > r′).

Using Claims 1 and 2, we now prove that G is a K2,r, for some r > 2.
Consider the rightmost vertex w on �1 and the rightmost vertex v on �2 in γ.
Due to maximality, edge (w, v) exists and is uncrossed. Also, since w and v have
degree at least two, they both have one more incident edge, which we denote by
(w, x) and (u, v). Since w and v are the rightmost vertices, (w, x) and (u, v) cross
each other, and thus, by Claim 1, edge (u, x) exists. Let H be the K2,2 subgraph
of G induced by u, v, x, and w. Since we are assuming that G has more than
four vertices, there exists a vertex z other than the vertices of H. Without loss
of generality, assume that z is on layer �2.

If (u, x) is the leftmost edge of γ, then x ≺ z ≺ v, and this implies that z can
be adjacent to u and w only, as otherwise (w, x), (u, v), and an edge incident to z
would form three mutually crossing edges. Also, since z has degree at least two,
z is adjacent to both u and w. Thus subgraph G′ of G induced by {u, v, w, x, z}
is a K2,3 containing the left- and rightmost edges of γ. By Claim 2, G is a K2,r,
with r > 2.

If (u, x) is not the leftmost edge of γ, then (u, x) is crossed in γ, and, as
observed in the proof of Claim 1, it is crossed by an edge having either w or v

286 C. Binucci et al.

as an end-vertex. Without loss of generality, suppose that (u, x) crosses an edge
(w, z). By applying Claim 1 to (u, x) and (w, z), edge (u, z) exists. Hence, again,
the subgraph G′ induced by the vertices of H plus z is a K2,3 graph. If (u, z)
is the leftmost edge of γ, then by Claim 2, G is a K2,r, with r > 2. If (u, z)
is not the leftmost edge, then again it is crossed by an edge having either w
or v as an end-vertex. However, since (u, x) is already crossed by (w, z), (u, z)
can only be crossed by edges having w as an end-vertex. Denoted by (w, y) one
of the edges that cross (u, z), we have that edge (u, y) exists by Claim 1, and
therefore the subgraph induced by the vertices of H plus vertices z and y is
a K2,4 that contains the rightmost edge of γ. By iterating this argument, we
eventually obtain a subgraph K2,r′ (r′ > 2) of G that contains the rightmost
and also the leftmost edge of γ, which by Claim 2 implies that G is a K2,r, with
r > 2.
Inductive Case: l > 2. Consider an uncrossed edge (u, v) different from the
leftmost and the rightmost edge of γ. Let γ1 (resp., γ2) be the embedding induced
by the vertices to the left (resp., right) of (u, v) plus u and v. Clearly, γ1 and γ2
are 2-layer fan-planar. Let Gi be the subgraph of G consisting of the vertices and
edges of γi (i = 1, 2). Since (u, v) is uncrossed in γ, G1 and G2 are biconnected.
Also, each of the two γi contains a number li < l of uncrossed edges, and thus
Gi is a snake by induction. Since G is a merger of G1 and G2 with respect to
(u, v), G is a snake. �

Lemma 2. Every n-vertex snake admits a 2-layer fan-planar embedding, which
can be computed in O(n) time.

Proof Sketch. Let G be a snake. By definition, G is a chain of graphs G1, . . . , Gk,
such that each Gi is a complete bipartite graph K2,hi

that shares a pair of merged
vertices with Gi+1 (i = 1, . . . , k − 1). The idea to construct a 2-layer fan-planar
embedding is to put the vertices of each partite set on the corresponding layer,
such that those of Gi precede those of Gi+1. See Fig. 3 for an illustration. �

1

1 2

2
3

4

5

6

7

3

4

5

6

(a)

1 2

1 2 3 4

3 4

5 6

5 6 7

(b)

Fig. 3. Illustration for the proof of Lemma 2. (a) A snake G; the vertices of each partite
set are ordered (i.e., numbered) according to the rules given in the proof. (b) A 2-layer
fan-planar drawing of G whose embedding reflects the vertex ordering; the uncrossed
edges are in bold.

Theorem 3. A biconnected graph G is 2-layer fan-planar if and only if G is a
spanning subgraph of a snake.

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 287

Proof. Suppose first that G has a 2-layer fan-planar embedding γ. If γ is maxi-
mal, then G is a snake by Lemma 1. Else, there is a maximal 2-layer fan-planar
embedding γ′ of a graph G′ such that: (i) G ⊂ G′, (ii) G′ has the same vertex set
of G, and (iii) the restriction of γ′ to G coincides with γ. Hence, by Lemma 1,
G is a spanning subgraph of a snake. Conversely, let G be a spanning subgraph
of a snake. Since any spanning subgraph of a 2-layer fan-planar graph is also
2-layer fan-planar, G is 2-layer fan-planar by Lemma 2. �

3.2 Testing and Embedding Algorithm

We now describe an algorithm to test whether a given biconnected bipartite
graph G is 2-layer fan-planar. Since every biconnected 2-layer fan-planar graph is
a spanning subgraph of a snake (Theorem 3), the algorithm must check whether
G can be augmented to a snake by only adding a suitable set of edges. In what
follows we assume that the input graph G is not a simple cycle, as otherwise it
is clearly 2-layer fan-planar.

A chain P = 〈u, v1, v2, . . . , vk, v〉 of G is a maximal path of G such that
all its internal vertices vi have degree 2 in G (i = 1, . . . , k). Contracting P is
to transform G into a new graph G′ obtained from G by replacing P with a
single edge eP = (u, v) of weight w(eP) = k. Reversely, we can say that G
is obtained from G′ by expanding eP (P is the expansion of eP). Note that
G′ may have multiple edges that connect u and v. If G is a plane graph, we
assume that the contraction of P preserves the embedding of G. The weighted
contraction of G is the edge-weighted multi-graph C(G) obtained from G by
contracting all inclusion-wise maximal chains of G; all edges of C(G) that are
also in G are assigned weight 0. Figure 4(c) shows the weighted contraction of
the graph in Fig. 4(b). Based on weighted contractions, we can reinterpret the
characterization of 2-layer fan-planar graphs as follows (cf. Fig. 4):

1

8

2 4

7

3 5 6

9 10 11 12

(a)

1

8

2 4

7

3 5 6

9 10 11 12

(b)

8

3 6

9 10 11

1 1 1 1
1 13

2

1

(c)

1

8

2 4

7

3 5 6

9 10 11 12

1 1 1 1
1 1

(d)

Fig. 4. Illustration for Lemma 4. (a) A plane snake G consisting of an outerplane
ladder (black vertices) with arbitrary paths of length two inside each internal face. (b)
A (plane) biconnected spanning subgraph G of G. (c) The (plane) weighted contraction
C(G); only edge weights greater than 0 are shown. (d) The plane multi-graph G∗ of
property (c) in the statement of Lemma 4.

288 C. Binucci et al.

Lemma 4. Let G be a bipartite biconnected graph that is not a simple cycle. G
is a spanning subgraph of a snake if and only if its weighted contraction C(G)
has a planar embedding such that: (a) All vertices of C(G) are on the external
face; (b) All edges eP of C(G) with w(eP) ≥ 2 are on the external face; (c) Let
G∗ be the plane multi-graph obtained from C(G) by expanding all edges eP of the
external face. It is possible to add to G∗ internal edges of weight 0, such that the
resulting graph H∗ is outerplane and the removal of the internal edges of weight
1 from H∗ produces a ladder.

We now give a linear-time algorithm, called Bic2LFPTest, that tests whether
a bipartite biconnected graph G has a 2-layer fan-planar embedding, and that
constructs such an embedding in the positive case. The algorithm checks whether
C(G) admits a planar embedding with the properties (a), (b), and (c) of Lemma 4.
If such an embedding exists, a snake for which G is a spanning subgraph is
obtained by expanding the edges of weight 1 in the multi-graph H∗ of prop-
erty (c); a 2-layer fan-planar embedding of this snake (and hence of G) is obtained
using the construction in the proof of Lemma 2.

Algorithm Bic2LFPTest (G)

Step 1. Compute the weighted contraction C(G) of G, and compute, if any, an
outerplanar embedding of C(G) (i.e. property (a) of Lemma 4). This can be done
in linear time: temporarily add to C(G) a dummy vertex u and a dummy edge
(u, v) for every vertex v of C(G); then run a linear-time planarity testing and
embedding algorithm (e.g. [3]) on it. Note that, since C(G) is still biconnected,
the outerplanar embedding of C(G) is unique (if it exists), except for the per-
mutation of multi-edges. If C(G) is not outerplanar, the whole test is negative
and the algorithm stops, otherwise an outerplanar embedding is found and the
algorithm goes to the next step.

Step 2. Check whether the outerplanar embedding can be modified (if needed)
so that all edges with weight greater than 1 can be put on the external face
(property (b) of Lemma 4), keeping all vertices on the external face. This is
possible if and only if: (i) for every pair of consecutive vertices {u, v} on the
boundary of the external face there is at most one edge e = (u, v) with w(e) ≥ 2
(which can be then put on the external face), and (ii) there is no chord with
weight greater than 1. Both conditions (i) and (ii) can be checked in linear
time. If this checking fails, then the whole test is negative, otherwise the new
outerplanar embedding with the heaviest edges on the external face is computed
and the algorithm goes to the next step.

Step 3. Expand the external edges with weight greater than 0 to get the multi-
graph G∗ in property (c) of Lemma 4; this can be done in linear time if we
suitably store the chain P associated with each edge eP when C(G) is computed
in Step 1. Then, check whether it is possible to add to G∗ a suitable set of internal
edges (chords) connecting vertices of the external face such that the resulting
multi-graph H∗ is still outerplane and becomes a ladder if we subsequently
remove the internal edges of weight 1 (property (c)). This can be done with

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 289

the following procedure. If H∗ already contains a chord of weight 0, then: (i)
temporarily remove the edges with weight 1; (ii) verify whether the resulting
graph can be augmented with extra chords to an outerplane ladder, using the
linear-time algorithm described by Di Giacomo et al. [5]. We remark that, if
such an augmentation exists it is unique under the assumption that H∗ already
contains a chord of weight 0; (iii) check whether the removed edges with weight
1 can be reinserted inside the outerplane ladder without violating the planarity
(which can be done in linear time). If H∗ does not contain a chord with weight
0, then H∗ contains at least one chord e = (u, v) with weight 1 (we assumed
that G is not a simple cycle, hence H∗ contains at least one chord). In this
case, consider the two vertices u1, u2 that are adjacent to u on the boundary
of the external face, and the two vertices v1, v2 that are adjacent to v on the
boundary of the external face (some of these vertices may coincide). It can be
seen that any edge augmentation of H∗ that leads to an outerplane ladder with
the edges of weight 1 inside its internal faces, must include at least one chord
e′ ∈ C = {(u, v1), (u, v2), (v, u1), (v, u2)} (in particular, in the outerplane ladder
either two edges of C are chords or one is a chord and one is an extremal edge of
the ladder). Hence, for each of these (at most four) chords e′, try to add e′ to H∗

and then repeat the substeps (i)−(iii) described above. If the augmentation fails
for all possible choices of e′, the whole test is negative, otherwise it is positive
and a snake that contains G as a spanning subgraph is obtained. A 2-layer fan-
planar embedding of this snake coincides with that of G, and is computed using
the construction of Lemma 2.

Theorem 5. Let G be a bipartite biconnected graph with n vertices. There exists
an O(n)-time algorithm that tests whether G is 2-layer fan-planar, and that
computes a 2-layer fan-planar embedding of G in the positive case.

4 Simply Connected 2-Layer Fan-Planar Graphs

We saw that a biconnected graph is 2-layer fan-planar if and only if it is a
subgraph of a snake. We now show that a (simply) connected graph is 2-layer fan-
planar if and only if it is a subgraph of a stegosaurus. Clearly, a non-connected
graph is 2-layer fan-planar if and only if every connected component is a 2-layer
fan-planar graph.

Recall that snakes are obtained by merging edges of a sequence of several
K2,h (h ≥ 2). We may denote the partite set with more than 2 vertices (if any)
the large side of a K2,h. Given a snake G, a vertex in G is mergeable if it is an
end-vertex of a mergeable edge and belongs to the large side of an original K2,h.
Note that a snake always has at most two mergeable vertices; by definition, a
K2,2 on either end of the snake prohibits a mergable vertex. The graph resulting
from merging two graphs G1 and G2 by identifying a mergeable vertex of G1

with a mergeable vertex of G2 is a vertex merger.

Definition 2. A stegosaurus is either a fan (a trivial stegosaurus) or a graph
recursively defined as follows (Fig. 5(a)): (i) A snake is a stegosaurus, whose

290 C. Binucci et al.

mergeable vertices are the mergeable vertices of the snake. (ii) The vertex merger
of two stegosaurs G1, G2 is a stegosaurus. Its mergeable vertices are those (at
most one per G1, G2) not used in this merging. (iii) Let v be a mergeable vertex of
a stegosaurus G1. Adding a new vertex v′ and an edge (v, v′) gives a stegosaurus
with the same mergeable vertices as G1.

v2

v3

v1 v4G1 G2 G3

(a) (b)

Fig. 5. (a) A stegosaurus composed of three snakes G1, G2, G3 that have been merged
at v2, v3 and several edges have been attached to v1, . . . , v4. (b) The result of merging
snakes G1, G2 using a non-mergeable vertex can be augmented into one snake by adding
the dashed edge.

Observation 6. Consider merging two snakes G1, G2 at vertices v1, v2. Assume
that v1 is an end-vertex of a mergeable edge but not from a large side; v2 may
be chosen as v1 or be a mergeable vertex. Then, the merged graph would be a
subgraph of a snake (Fig. 5(b)). Thus, only vertices from the large side have to
be considered in Definition 2.

In the following, a block of a graph (i.e., a biconnected component) is called
trivial if it consists of a single edge. Let an edge e be a trivial block. If e has
an end-vertex of degree 1, e is a stump, otherwise, it is a bridge. A graph is
called maximal 2-layer fan-planar, if it cannot be augmented by an edge without
losing 2-layer fan-planarity. Observe that, in contrast to the biconnected case,
we have the situation that an embedding (or drawing) of G is maximal 2-layer
fan-planar (i.e., we cannot add an edge within this embedding), but the graph
is not maximal 2-layer fan-planar; it “simply” requires a different 2-layer fan-
planar embedding into which we can add another edge. Figure 6(a),(b) show an
example. By definition and Theorem 3, a biconnected graph is 2-layer fan-planar
if and only if it is the subgraph of a snake, and thus, of a stegosaurus. Also, a
simply connected graph that is a subgraph of a snake is 2-layer fan-planar. We
will first show that stegosaurs are 2-layer fan-planar. Then, we will show that
every 2-layer fan-planar graph is a subgraph of a stegosaurus.

Lemma 7. Every stegosaurus has a 2-layer fan-planar embedding.

Proof. Figure 6(c) outlines the idea. We already know that snakes are 2-layer
fan-planar and how to draw them, and, by definition, that the non-trivial blocks
of a stegosaurus are snakes. Drawing a stegosaurus hence means drawing the
individual snakes and realizing that we can draw additional trivial blocks (arising
from (iii) in the definition) at the left and right “ends” of the stegosaurus, as
well as at its cut vertices. �

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 291

y

x

(a)

y

x

(b)

v2 v3v1

v4

(c)

Fig. 6. (a) A maximal 2-layer fan-planar drawing and (b) a different embedding to
which one may add the edge (x, y). (c) A 2-layer fan-planar drawing of the stegosaurus
from Fig. 5(a).

It should be understood that a trivial stegosaurus is a maximal 2-layer fan-planar
graph. In the following, we only have to consider non-trivial stegosaurs. We start
with proving a property that holds for all 2-layer fan-planar drawings, not only
for maximal ones:

Lemma 8. Let B be a non-trivial block of a 2-layer fan-planar graph G, and e
an independent edge, i.e., none of its end-vertices belongs to B. No edge of B
can be crossed by e in any 2-layer fan-planar embedding of G.

Proof. Assume there is an embedding where some edge b ∈ E(B) is crossed by
e. Since B is a non-trivial block, b is part of a cycle C ⊆ E(B) with |C| ≥ 4.
Hence, by the properties of 2-layer embeddings, e needs to cross another edge
c ∈ C as well. The edges b, c need to be adjacent, as otherwise we would get
pairwise crossings between three independent edges. Embedding a cycle, in our
case C, on two layers, requires a crossing of every edge except for two non-
adjacent edges. Hence either b or c will have a crossing with another edge of C
and the independent edge e, a contradiction. �

From the above lemma, we obtain a simple but useful observation:

Corollary 9. In a 2-layer fan-planar embedding, two non-trivial blocks cannot
cross.

Hence we know that in a 2-layer fan-planar drawing, non-trivial blocks are
“nicely” placed next to each other from left to right without crossings between
them. We now show several properties of maximal 2-layer fan-planar graphs.
Clearly, a maximal 2-layer fan-planar graph will be connected.

Lemma 10. Let G be a maximal 2-layer fan-planar graph. There exists an
embedding γ of G in which no stump is crossed.

Proof Sketch. One may assume that a vertex is incident to at most one stump.
Choosing an embedding γ with the least crossing count between stumps, yields
the result. �

Lemma 11. A maximal 2-layer fan-planar graph G does not contain bridges.

292 C. Binucci et al.

u v

(a)
u

v

(b)

Fig. 7. (a) The tree T3; it is 2-layer RAC but not 2-layer fan-planar. (b) A 2-layer
RAC embedding (not drawing) of T3 In both figures the path connecting u to v has
bold edges.

Proof Sketch. Using the embedding from Lemma 10, one can show that if a
bridge exists, it is not crossed, and one may insert an edge, contradicting maxi-
mality of G. �

Corollary 12. Let G be a maximal 2-layer fan-planar graph. There exists an
embedding in which no two blocks cross. Any cut vertex is either contained in
two non-trivial blocks, or is a left- or rightmost vertex in this embedding.

Hence we have that a maximal 2-layer fan-planar graph allows a drawing
where non-trivial blocks are neither crossed by other non-trivial nor by trivial
blocks. Furthermore, in contrast to the non-biconnected case, if an embedding of
a biconnected graph G is maximal 2-layer fan-planar, then G is maximal 2-layer
fan-planar. We can deduce:

Corollary 13. Let G be a maximal 2-layer fan-planar graph. Its non-trivial
blocks are maximal 2-layer fan-planar biconnected graphs, i.e., snakes.

Lemma 7 and Corollary 13 imply the following.

Theorem 14. A graph is 2-layer fan-planar if and only if it is a subgraph of a
stegosaurus.

5 Relationship with 2-Layer RAC Drawings

It is natural to ask for the relationship between 2-layer fan-planarity and 2-layer
RAC. Di Giacomo et al. proved that a 2-layer embedding γ is RAC (i.e., there
exists a 2-layer RAC drawing w.r.t. γ) if and only if γ has neither 3 mutually
crossing edges nor two adjacent edges crossed by a third one [5]. For example,
the embedding in Fig. 7(b) is 2-layer RAC. They also showed that a biconnected
graph has a 2-layer RAC embedding if and only if it is a subgraph of a ladder.
Since a ladder is a special snake (but not vice versa), we deduce from Theorem 3:

Corollary 15. The biconnected 2-layer RAC graphs are a proper subclass of the
biconnected 2-layer fan-planar graphs.

For general graphs, however, there is no inclusion relationship between those
two concepts. In particular, we exhibit infinitely many trees Tk (k ≥ 3) that
are 2-layer RAC but not 2-layer fan-planar. Tk consists of two vertices u and v
connected by a path of length k ≥ 3, and such that each u and v have further

2-Layer Fan-Planarity: From Caterpillar to Stegosaurus 293

(disjoint) three paths of length k + 1 attached to them. Figure 7(a) depicts T3.
Using the characterization of 2-layer RAC trees [5], one can verify that Tk has
a 2-layer RAC embedding, see Fig. 7(b).

By Theorem 14, we can show that Tk is not 2-layer fan-planar by observing
that it cannot be a subgraph of a stegosaurus. Indeed, suppose that G is some
stegosaurus that contains Tk, and suppose that Γ is a planar drawing of G as
in Fig. 5(a), where all vertices of degree greater than two lie on the external
face and are suitably placed on two distinct horizontal lines. Since u and v have
degree 4 in Tk, they are external vertices of Γ . Denote by Puv the path from u to
v in Γ that corresponds to the path from u to v in Tk. Consider the three paths
of length k+1 attached to u in Tk. Since they only share vertex u, and also share
only vertex u with Puv, one of them, call it Pu, is necessarily “routed towards”
v in Γ , while the other two can be routed away from v. Analogously, one of the
three paths of length k + 1 attached to v, call it Pv, must be routed towards u
in Γ , while the other two can be routed away from u. Since Puv has length k,
it is not difficult to verify that either Pu and Pv must share a vertex or at least
one of them share a vertex with Puv; a contradiction. Thus, G cannot exist.

6 Open Problems

The main open problem of our study is to provide, if any, an efficient 2-layer
fan-planarity testing algorithm for general (i.e., not necessarily biconnected)
graphs, which exploits Theorem 14. Another interesting research line is designing
algorithms that compute 2-layer drawings that are “as fan-planar as possible”,
i.e., whose number of forbidden configurations (two independent edges crossed
by a third one) is minimized.

References

1. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recogni-
tion of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis,
A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014)

2. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–86 (2015)

3. Booth, K., Lueker, G.: Testing for the consecutive ones property, interval graphs
and graph planarity using PQ-trees. J. Comput. Syst. Sci. 13, 335–379 (1976)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice
Hall, Upper Saddle River (1999)

5. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954–997 (2014)

6. Di Giacomo, E., Didimo, W., Grilli, L., Liotta, G., Romeo, S.A.: Heuristics for the
maximum 2-layer RAC subgraph problem. Comput. J. 58(5), 1085–1098 (2015)

7. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

294 C. Binucci et al.

8. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 167–184. Springer, New
York (2012)

9. Eades, P., McKay, B., Wormald, N.: On an edge crossing problem. In: ACSC 1986,
pp. 327–334 (1986)

10. Eades, P., Kelly, D.: Heuristics for drawing 2-layered networks. Ars Comb. 21,
89–98 (1986)

11. Eades, P., Whitesides, S.: Drawing graphs in two layers. Theor. Comput. Sci.
131(2), 361–374 (1994)

12. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(4), 379–403 (1994)

13. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014)

14. Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of
exact and heuristic algorithms. J. Graph Algorithms Appl. 1, 1–25 (1997)

15. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184 (2014). http://arxiv.org/abs/1403.6184

16. Mutzel, P.: An alternative method to crossing minimization on hierarchical graphs.
SIAM J. Optim. 11(4), 1065–1080 (2001)

17. Sugiyama, K.: Graph Drawing and Applications for Software and Knowledge Engi-
neers. World Scientific, Singapore (2002)

18. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)

19. Valls, V., Mart́ı, R., Lino, P.: A branch and bound algorithm for minimizing the
number of crossing arcs in bipartite graphs. Eur. J. Oper. Res. 90(2), 303–319
(1996)

http://arxiv.org/abs/1403.6184

Recognizing and Drawing IC-Planar Graphs

Franz J. Brandenburg1, Walter Didimo2, William S. Evans3,
Philipp Kindermann4(B), Giuseppe Liotta2, and Fabrizio Montecchiani2

1 Universität Passau, Passau, Germany
brandenb@fim.uni-passau.de

2 Università Degli Studi di Perugia, Perugia, Italy
{walter.didimo,giuseppe.liotta,fabrizio.montecchiani}@unipg.it

3 University of British Columbia, Vancouver, Canada
will@cs.ubc.ca

4 Universität Würzburg, Würzburg, Germany
philipp.kindermann@uni-wuerzburg.de

Abstract. IC-planar graphs are those graphs that admit a drawing
where no two crossed edges share an end-vertex and each edge is
crossed at most once. They are a proper subfamily of the 1-planar graphs.
Given an embedded IC-planar graph G with n vertices, we present
an O(n)-time algorithm that computes a straight-line drawing of G in
quadratic area, and an O(n3)-time algorithm that computes a straight-
line drawing of G with right-angle crossings in exponential area. Both
these area requirements are worst-case optimal. We also show that it is
NP-complete to test IC-planarity both in the general case and in the
case in which a rotation system is fixed for the input graph. Further-
more, we describe a polynomial-time algorithm to test whether a set of
matching edges can be added to a triangulated planar graph such that
the resulting graph is IC-planar.

1 Introduction

The study of graphs that are, in some sense, “nearly-planar”, is an emerging
topic in graph theory, graph algorithms, and network visualization. The general
framework is to relax the planarity constraint by allowing edge crossings but still
forbidding those configurations that would affect the readability of the drawing
too much. Different types of forbidden edge-crossing configurations give rise to
different families of nearly-planar graphs. For example, if the number of crossings
per edge is bounded by a constant k, we have the family of k-planar graphs (see,
e.g., [2,23]). The k-quasi-planar graphs admit drawings with no k pairwise cross-
ing edges (see, e.g., [15,20]). RAC (Right Angle Crossing) graphs can be drawn
such that edges cross only at right angles (see, e.g., [17,19]). Generalizations

The research is supported in part by the Deutsche Forschungsgemeinschaft (DFG),
grant Br835/18-1; the MIUR project AMANDA “Algorithmics for MAssive and Net-
worked DAta”, prot. 2012C4E3KT 001; the ESF EuroGIGA project GraDR (DFG
grant Wo 758/5-1).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 295–308, 2015.
DOI: 10.1007/978-3-319-27261-0 25

296 F.J. Brandenburg et al.

of RAC drawings are ACEα and ACLα drawings, where the edges can cross
only at an angle that is exactly α or at least α, respectively, where α ∈ (0, π/2];
see [18] for a survey. Further families of nearly-planar graphs are fan-crossing
free graphs [11] and fan-planar graphs [6,7,24]. Most of the existing literature
on nearly-planar graphs can be classified according to the study of the following
problems (see also [27] for additional references).

Coloring Problem: While the chromatic number of planar graphs is four, it is
rather natural to ask what restrictions on the crossing configurations force the
chromatic number of a graph to be relatively small. For example, Borodin [8]
proves that the chromatic number of 1-planar graphs is six.

Turán-type Problem: The question here is to determine how many edges a
nearly-planar graph can have. In particular, it is known that all the families of
nearly-planar graphs mentioned above are rather sparse (see, e.g., [1,9,17,20,24,
28]).

Recognition Problem: In contrast to planarity testing, recognizing a nearly-
planar graph has often been proved to be NP-hard. This is for example the
case for 1-planar graphs [25], RAC graphs [3], and fan-planar graphs [6,7]. For
some constrained classes of nearly-planar graphs, polynomial-time tests exist
(e.g., [4,22]).

Drawing Algorithms: Some recent papers describe drawing algorithms for dif-
ferent families of nearly-planar graphs; the majority of them focuses on drawings
with straight-line edges and often considers the interplay with other readability
constraints, such as compact area. A limited list of examples includes [2,14,16].

Inclusion/intersection Relationships: Relationships between different
classes of nearly-planar graphs are also proved, as a fundamental step towards
developing a comprehensive theory of graph drawing beyond planarity (see,
e.g., [7,19]).

This paper studies IC-planar graphs, which stands for Independent Crossings
graphs, i.e., graphs that admit a drawing where no two crossed edges share an
end-vertex and each edge is crossed at most once. They are 1-planar graphs with
the additional property that all crossing edges form an independent set. Král and
Stacho [26] exploited this property to show that they have chromatic number at
most five. Zhang and Liu [31] study the Turán-type problem and prove that they
have at most 13n/4−6 edges, which is a tight bound. Zhang [30] studies so-called
plane graphs with near independent crossings (NIC-planar graphs), that is, each
pair of crossing edges shares at most one endpoint, and states the computational
complexity of recognizing IC-planar graphs as an open problem.

We extend the theory on IC-planarity beyond the already studied coloring
and Turán-type problems. We investigate drawing algorithms, the complexity of
the recognition problem, and the interplay between IC-planar graphs and other
families of nearly-planar graphs. Our results are as follows.
(i) We present an O(n)-time algorithm that computes a straight-line drawing
of an embedded IC-planar graph with n vertices in O(n2) area, which is worst-
case optimal (Theorem 1). It may be worth recalling that not all 1-planar graphs

Recognizing and Drawing IC-Planar Graphs 297

(a) (b)

a b

c d
(c)

a

b

c
d

(d)

Fig. 1. (a) An IC-planar drawing. (b) Two different IC-planar embeddings of the same
graph with the same rotation system. (c) An X-configuration. (d) A B-configuration

admit a straight-line drawing [29] and that there are embedded 1-planar graphs
that require Ω(2n) area [23].
(ii) We prove that IC-planarity testing is NP-complete both in the variable
embedding setting (Theorem 2) and when the rotation system of the graph is
fixed (Theorem 3). Note that 1-planarity testing is already known to be NP-
complete in general [25], even if the rotation system is fixed [5]. In addition to
the hardness result, we present a polynomial-time algorithm that tests whether
a set of matching edges can be added to a triangulated plane graph such that
the resulting graph is IC-planar (Theorem 4). We remark that in any IC-planar
drawing the set of crossing edges form a matching.
(iii) We study the interplay between IC-planar graphs and RAC graphs. Namely,
we show that every IC-planar graph is a RAC graph (Theorem 5), which sheds
new light on an open problem about the relationship between 1-planar graphs
and RAC graphs [19]. We also prove that a straight-line RAC drawing of an IC-
planar graph may require Ω(qn) area, for a suitable constant q > 1 (Theorem 6).

2 Preliminaries

We consider simple undirected graphs G. A drawing Γ of G maps the vertices
of G to distinct points in the plane and the edges of G to simple Jordan curves
between their end-points. If the vertices are drawn at integer coordinates, Γ is a
grid drawing. Γ is planar if no edges cross, and 1-planar if each edge is crossed
at most once. Γ is IC-planar if it is 1-planar and there are no crossing edges
that share a vertex (see Fig. 1(a)).

A planar drawing Γ of a graph G induces an embedding, which is the class
of topologically equivalent drawings. In particular, an embedding specifies the
regions of the plane, called faces, whose boundary consists of a cyclic sequence of
edges. The unbounded face is called the outer face. For a 1-planar drawing, we
can still derive an embedding considering that the boundary of a face may consist
also of edge segments from a vertex to a crossing point. A graph with a given pla-
nar (1-planar, IC-planar) embedding is called a plane (1-plane, IC-plane) graph.
A rotation system R(G) of a graph G describes a possible cyclic ordering of the

298 F.J. Brandenburg et al.

edges around the vertices. R(G) is planar (1-planar, IC-planar) if G admits a
planar (1-planar, IC-planar) embedding that preserves R(G). Observe that R(G)
can directly be retrieved from a drawing or an embedding. The converse does
not necessarily hold, as shown in Fig. 1(b).

A kite K is a graph isomorphic to K4 with an embedding such that all the
vertices are on the boundary of the outer face, the four edges on the bound-
ary are planar, and the remaining two edges cross each other; see Fig. 1(c).
Thomassen [29] characterized the possible crossing configurations that occur in
a 1-planar drawing. Applying this characterization to IC-planar drawings gives
rise to the following property, where an X-crossing is of the type described in
Fig. 1(c) (the crossing is “inside” the cycle), and a B-crossing is of the type
described in Fig. 1(d) (without the dotted edge; the crossing is “outside” the
cycle).

Property 1. Every crossing of an IC-planar drawing is either an X- or a
B-crossing.

Let G be a plane (1-plane, IC-plane) graph. G is maximal if no edge can
be added without violating planarity (1-planarity, IC-planarity). A planar (1-
planar, IC-planar) graph G is maximal if every planar (1-planar, IC-planar)
embedding is maximal. If we restrict to 1-plane (IC-plane) graphs, we say that G
is planar-maximal if no edge can be added without creating at least an edge
crossing on the newly added edge (or making the graph not simple). We call
the operation of adding edges to G until it becomes planar-maximal a planar-
maximal augmentation.

3 Straight-Line Drawings of IC-Planar Graphs

We show that every IC-planar graph admits an IC-planar straight-line grid draw-
ing in quadratic area, and this area is worst-case optimal (Theorem1). The result
is based on first using a new technique that possibly augments the input graph
to a maximal IC-plane graph (the resulting embedding might be different from
the original one) with specific properties (Lemma 1), and then suitably applying
a drawing algorithm by Alam et al. for triconnected 1-plane graphs [2] on the
augmented graph. We say that a kite (a, b, c, d) with crossing edges (a, d) and
(b, c) is empty if it contains no other vertices, that is, the edges (a, c), (a, d), and
(a, b) are consecutive in the counterclockwise order around a; see Fig. 2(b). The
condition for the edges around b, c, and d is analogous.

Lemma 1. Let G = (V,E) be an IC-plane graph with n vertices. There exists
an O(n)-time algorithm that computes a planar-maximal IC-plane graph G+ =
(V,E+) with E ⊆ E+ such that the following conditions hold:

(c1) The four endvertices of each pair of crossing edges induce a kite.
(c2) Each kite is empty.

Recognizing and Drawing IC-Planar Graphs 299

a

b
d

c

(a) The kite (drawn bold)
is not empty

a

b
d

c

(b) Rerouting edge (a, b)
to make the kite empty

a

b
d

c

(c) Triangulating the re-
maining faces

Fig. 2. Illustration for the proof of Lemma 1

(c3) Let C be the set of crossing edges in G+. Let C∗ ⊂ C be a subset containing
exactly one edge for each pair of crossing edges. Then G+ \ C∗ is plane
and triangulated.

(c4) The outer face of G+ is a 3-cycle of non-crossed edges.

Proof. Let G be an IC-plane graph; we augment G by adding edges such that
for each pair of crossing edges (a, d) and (b, c) the subgraph induced by vertices
{a, b, c, d} is isomorphic to K4; see the dashed edges in Figs. 1(c) and (d). Next,
we want to make sure that this subgraph forms an X-configuration and the
resulting kite is empty. Since G is IC-planar, it has no two B-configurations
sharing an edge. Thus, we remove a B-configuration with vertices {a, b, c, d}
by rerouting the edge (a, b) to follow the edge (a, d) from vertex a until the
crossing point, then edge (b, c) until vertex b, as shown by the dotted edge in
Fig. 1(d). This is always possible, because edges (a, c) and (b, d) only cross each
other; hence, following their curves, we do not introduce any new crossing. The
resulting IC-plane graph satisfies (c1) (recall that, by Property 1, only X- and
B-configurations are possible). Now, assume that a kite {a, b, c, d} is not empty;
see Fig. 2(a). Following the same argument as above, we can reroute the edges
(a, b), (b, d), (c, d) and (a, d) to follow the crossing edges (a, d) and (b, c); see
Fig. 2(b). The resulting IC-plane graph is denoted by G′ and satisfies (c2).

We now augment G′ to G+, such that (c3) is satisfied. Let C be the set of all
pairs of crossing edges in G′. Let C∗ be a subset constructed from C by keeping
only one (arbitrary) edge for each pair of crossing edges. The graph G′ \ C∗ is
clearly plane. To ensure (c3), graph G+ \ C∗ must be plane and triangulated.
Because G′ satisfies (c2), each removed edge spans two triangular faces in G′\C∗.
Thus, no face incident to a crossing edge has to be triangulated. We internally
triangulate the other faces by picking any vertex on its boundary and connecting
it to all other vertices (avoiding multiple edges) of the boundary; see e.g. Fig. 2(c).
Graph G+ is then obtained by reinserting the edges in C∗ and satisfies (c3). To
satisfy (c4), notice that G+ is IC-plane, hence, it has a face f whose boundary
contains only non-crossed edges. Also, f is a 3-cycle by construction. Thus, we
can re-embed G+ such that f is the outer face. Since IC-planar graphs are
sparse [31], each step can clearly be done in O(n) time. �

300 F.J. Brandenburg et al.

Theorem 1. There is an O(n)-time algorithm that takes an IC-plane graph G
with n vertices as input and constructs an IC-planar straight-line grid drawing
of G in O(n) × O(n) area. This area is worst-case optimal.

Sketch of Proof. Augment G into a planar-maximal IC-plane graph G+ in O(n)
time using Lemma 1. Graph G+ is triconnected, as it contains a triangulated
plane subgraph. Draw G+ with the algorithm by Alam et al. [2] which takes
as input a 1-plane triconnected graph with n vertices and computes a 1-planar
drawing on the (2n−2)×(2n−3) grid in O(n) time; this drawing is straight-line,
but for the outer face, which may contain a bent edge if it has two crossing edges.
By Lemma 1 the outer face of G+ has no crossed edges, so Γ is straight-line and
IC-planar. Dummy edges are then removed from Γ . The proof that the area is
worst-case optimal is given in the full version [10]. �

4 Recognizing IC-Planar Graphs

The IC-planarity testing problem asks if a graph G admits an IC-planar
embedding.

Hardness of the Problem. The next theorem shows that IC-planarity testing
is NP-complete. The full proof is given in the full version of the paper [10].

Theorem 2. IC-planarity testing is NP-complete.

Sketch of Proof. IC-planarity is in NP, as one can guess an embedding and check
whether it is IC-planar [21]. For the hardness proof, the reduction is from the
1-planarity testing problem, which asks whether a given graph is 1-planar or not.
The reduction uses a 3-cycle gadget and exploits the fact that at most one edge
of a 3-cycle is crossed in an IC-planar drawing. We transform an instance G of
1-planarity testing into an instance G∗ of IC-planarity testing, by replacing each
edge (u, v) of G with a graph Guv consisting of two 3-cycles, Tuv and Tvu, with
vertices {u, cuv, auv} and {v, cvu, avu}, respectively, plus edge (auv, avu), called
the attaching edge of u and v; see Fig. 3.

u

v
auv avu

cuv

cvu

Fig. 3. Reduction from 1-
planarity to IC-planarity.
Dummy vertices are unfilled

Let Γ be a 1-planar drawing of G. An IC-planar
drawing Γ ∗ of G∗ can be easily constructed by
replacing each curve representing an edge (u, v) in Γ
with a drawing of Guv where Tuv and Tvu are drawn
planar and sufficiently small, such that the possible
crossing that occurs on the edge (u, v) in Γ occurs
on the attaching edge (auv, avu) in Γ ∗. Hence, since
all the attaching edges are independent, Γ ∗ is IC-
planar.

Let Γ ∗ be an IC-planar drawing of G∗. We show
that it is possible to transform the drawing in such a
way that all crossings occur only between attaching
edges. Once this condition is satisfied, in order to construct a 1-planar drawing Γ
of G, it suffices to remove, for each edge (u, v), the vertices cuv and cvu, and to

Recognizing and Drawing IC-Planar Graphs 301

v

u∗

(a)

v∗

u∗

(b)

u

v

luv ruve1 e2 ei ek

(c)

Fig. 4. (a) A triconnected graph T (solid) and its dual T ∗ (dotted), (b) The extended
graph T ∗ ∪ {u∗, v∗} and the three length-3 paths between u∗ and v∗ (bold). (c) The
ordered routing edges e1, . . . , ek lie inside the quadrangle (u, luv, v, ruv)

replace auv and avu with a bend point. Namely, as already observed, no more
than one edge can be crossed for every gadget Tuv of G∗. If an edge incident to a
dummy vertex is crossed, then we can reroute this edge to remove the crossing. �

Note that this construction does not work for IC-planarity testing with a
given rotation system since the rerouting step changes the rotation system. How-
ever, we show that IC-planarity testing is NP-hard even if the rotation system
of the input graph is fixed. The reduction is from planar-3SAT. We exploit the
membrane technique introduced in [5] for the hardness proof of 1-planarity test-
ing with fixed rotation system. The main issue is to design suitable gadgets for
IC-planar graphs. The proof is given in the full version of the paper [10].

Theorem 3. IC-planarity testing with given rotation system is NP-complete.

Polynomial-time Test for a Triangulated Plane Graph Plus aMatching.
On the positive side, we now describe an O(n3)-time algorithm to test whether a
graph G = (V,ET ∪EM) that consists of a triangulated plane graph T = (V,ET)
and a matching M = (VM , EM) with VM ⊆ V,EM ∩ET = ∅ admits an IC-planar
drawing that preserves the embedding of T . In the positive case the algorithm
also computes an IC-planar drawing. An outline of the algorithm is as follows. (1)
Check for every matching edge if there is a way to draw it such that it crosses
only one edge of T . (2) Split T into subgraphs that form a hierarchical tree struc-
ture. (3) Traverse the 4-block tree bottom-up and solve a 2SAT formula for each
tree node.

In order to check whether there is a valid placement for each matching
edge (u, v) ∈ M , we have to find two adjacent faces, one of which is inci-
dent to u, while the other one is incident to v. To this end, we consider the
dual T ∗ of T that contains a vertex for each face in T that is not incident to
a vertex w ∈ VM \ {u, v}, and an edge for each edge in T that separates two
faces. Further, we add two additional vertices u∗ and v∗ to T ∗ that are con-
nected to all faces that are incident to u and v, respectively. In the resulting
graph T ∗ ∪{u∗, v∗}, we look for all paths of length 3 from u∗ to v∗. These paths
are equivalent to routing (u, v) through two faces that are separated by a single
edge. Note that no path of length 1 or 2 can exist, since (i) by construction u∗

302 F.J. Brandenburg et al.

and v∗ are not connected by an edge and (ii) if there was a path of length 2
between u∗ and v∗, then u and v would lie on a common face in the triangu-
lated graph T ; thus, the edge (u, v) would exist both in ET and in EM , which
is not possible since ET ∩ EM = ∅. See Fig. 4 for an illustration. If there is an
edge that has no valid placement, then G is not IC-planar and the algorithm
stops. Otherwise, we save each path that we found as a possible routing for the
corresponding edge in M .

Now, we make some observations on the structure of the possible routings of
an edge (u, v) ∈ M that we can use to get a hierarchical tree structure of the
graph T . Every routing is uniquely represented by an edge that separates a face
incident to u and a face incident to v and that might be crossed by (u, v). We
call these edges routing edges. Let there be k routing edges for the pair (u, v).
Each of these edges forms a triangular face with u. From the embedding, we can
enumerate the edges by the counterclockwise order of their corresponding faces
at u. This gives an ordering e1, . . . , ek of the routing edges. Let e1 = (luv, l′uv)
and ek = (r′

uv, ruv) such that the edge (u, luv) comes before the edge (u, l′uv), and
the edge (u, r′

uv) comes before (u, ruv) in the counterclockwise order at u. Then,
all edges e1, . . . , ek lie within the routing quadrangle (u, luv, v, ruv); see Fig. 4(c).
Note that there may be more complicated structures between the edges, but they
do not interfere with the ordering. Denote by Quv = (u, luv, v, ruv) the routing
quadrilateral of the matching edge (u, v) ∈ M . We define the interior Iuv =
(Vuv, Euv) as the maximal subgraph of T such that, for every vertex w ∈ Vuv,
each path from w to a vertex on the outer face of T contains u, luv, v, or ruv.
Consequently, Quv ∈ Vuv. The following lemma states that two interiors cannot
overlap. The proof is given in the full version of the paper [10].

Lemma 2. For each pair of interiors Iuv, Iab, exactly one of the following con-
ditions holds: (a) Iuv ∩ Iab = ∅ (b) Iuv ⊂ Iab (c) Iab ⊂ Iuv (d) Iuv ∩ Iab =
Quv ∩ Qab.

By using Lemma 2, we can find a hierarchical structure on the routing quadri-
laterals. We construct a directed graph H = (VH , EH) with VH = {Iuv | (u, v) ∈
M} ∪ {G}. For each pair Iuv, Ixy, EH contains a directed edge (Iuv, Ixy) if and
only if Vuv ⊂ Vxy and there is no matching edge (a, b) with Vuv ⊂ Vab ⊂ Vxy.
Finally, we add an edge from each subgraph that has no outgoing edges to G.
Each vertex but G only has one outgoing edge. Obviously, this graph contains
no (undirected) cycles. Thus, H is a tree.

We will now show how to construct a drawing of G based on H in a bottom-
up fashion. We will first look at the leaves of the graph. Let Iuv be a vertex of H
whose children are all leaves. Let Iuivi

, . . . , Iukvk
be these leaves. Since these

interiors are all leaves in H, we can pick any of their routing edges. However,
the interiors may touch on their boundary, so not every combination of routing
edges can be used. Assume that a matching edge (ui, vi), 1 ≤ i ≤ k has more
than two valid routing edges. Then, we can always pick a middle one, that is,
a routing edge that is not incident to luivi

and ruivi
, since this edge will not

interfere with a routing edge of another matching edge.

Recognizing and Drawing IC-Planar Graphs 303

Now, we can create a 2SAT formula to check whether there is a valid com-
bination of routing edges as follows. For the sake of clarity, we will create sev-
eral redundant variables and formulas. These can easily be removed or substi-
tuted by shorter structures to improve the running time. For each matching
edge (ui, vi), 1 ≤ i ≤ k, we create two binary variables li and ri, such that li
is true if and only if the routing edge incident to luivi

is picked, and ri is
true if and only if the routing edge incident to ruivi

is picked. If (ui, vi) has
only one routing edge, then it is obviously incident to luivi

and ruivi
, so we

set luivi
= ruivi

= true by adding the clauses luivi
∨ false and ruivi

∨ false.
If (ui, vi) has exactly two routing edges, the picked routing edge has to be inci-
dent to either luivi

or ruivi
, so we add the clauses luivi

∨ruivi
and ¬luivi

∨¬ruivi
.

If (ui, vi) has more than two routing edges, we can pick a middle one, so we set
luivi

= ruivi
= false by adding the clauses ¬luivi

∨ false and ¬ruivi
∨ false.

Next, we have to add clauses to forbid pairs of routing edges that can not
be picked simultaneously, i.e., they share a common vertex. Consider a pair
of matching edges (ui, vi), (uj , vj), 1 ≤ i, j ≤ k. If ruivi

=lujvj
, we add the clause

¬ri ∨ ¬lj . For the other three cases, we add an analogue clause.
Now, we use this 2SAT to decide whether the subgraph Iuv is IC-planar, and

which routing edges can be used. For each routing edge (a, b) of Iuv, we solve
the 2SAT formula given above with additional constraints that forbid the use
of routing edges incident to a and b. To that end, add the following additional
clauses: If luivi

= a, add the clause ¬li ∨false. For the other three cases, we add
an analogue clause. If this 2SAT formula has no solution, then the subgraph Iuv

is not IC-planar. Otherwise, there is a solution where you pick the routing edges
corresponding to the binary variables. To decide whether a subgraph Iuv whose
children are not all leaves is IC-planar, we first compute which of their routing
edges can be picked by recursively using the 2SAT formula above. Then, we use
the 2SAT formula for Iuv to determine the valid routing edges of Iuv. Finally, we
can decide whether G is IC-planar and, if yes, get a drawing by solving the 2SAT
formula of all children of G. Hence, we give the following (see the full version of
the paper [10] for the proof of the time complexity).

Theorem 4. Let T = (V,ET) be a triangulated plane graph with n vertices and
let M = (V,EM) be a matching. There exists an O(n3)-time algorithm to test
if G = (V,ET ∪ EM) admits an IC-planar drawing that preserves the embedding
of T . If the test is positive, the algorithm computes a feasible drawing.

5 IC-Planarity and RAC Graphs

It is known that every n-vertex maximally dense RAC graph (i.e., RAC graph
with 4n − 10 edges) is 1-planar, and that there exist both 1-planar graphs that
are not RAC and RAC graphs that are not 1-planar [19]. Here, we further inves-
tigate the intersection between the classes of 1-planar and RAC graphs, showing
that all IC-planar graphs are RAC. To this aim, we describe a polynomial-time
constructive algorithm. The computed drawings may require exponential area,

304 F.J. Brandenburg et al.

which is however worst-case optimal; indeed, we exhibit IC-planar graphs that
require exponential area in any possible IC-planar straight-line RAC drawing.
Our construction extends the linear-time algorithm by de Fraysseix et al. that
computes a planar straight-line grid drawing of a maximal (i.e., triangulated)
plane graph in quadratic area [13]; we call it the dFPP algorithm. We need to
recall the idea behind dFPP before describing our extension.
Algorithm dFPP. Let G be a maximal plane graph with n ≥ 3 vertices. The
dFPP algorithm first computes a suitable linear ordering of the vertices of G,
called a canonical ordering of G, and then incrementally constructs a drawing
of G using a technique called shift method. This method adds one vertex per
time, following the computed canonical ordering and shifting vertices already in
the drawing when needed. Namely, let σ = (v1, v2, . . . , vn) be a linear ordering
of the vertices of G. For each integer k ∈ [3, n], denote by Gk the plane subgraph
of G induced by the k vertices v1, v2, . . . , vk (Gn = G) and by Ck the boundary
of the outer face of Gk, called the contour of Gk. Ordering σ is a canonical
ordering of G if the following conditions hold for each integer k ∈ [3, n]: (i) Gk is
biconnected and internally triangulated; (ii) (v1, v2) is an outer edge of Gk; and
(iii) if k+1 ≤ n, vertex vk+1 is located in the outer face of Gk, and all neighbors
of vk+1 in Gk appear on Ck consecutively.

We call lower neighbors of vk all neighbors vj of vk for which j < k. Following
the canonical ordering σ, the shift method constructs a drawing of G one vertex
per time. The drawing Γk computed at step k is a drawing of Gk. Throughout
the computation, the following invariants are maintained for each Γk, with 3 ≤
k ≤ n: (I1) pv1 = (0, 0) and pv2 = (2k−4, 0); (I2) x(w1) < x(w2) < · · · < x(wt),
where w1 = v1, w2, . . . , wt = v2 are the vertices that appear along Ck, going
from v1 to v2. (I3) Each edge (wi, wi+1) (for i = 1, 2, . . . , t − 1) is drawn with
slope either +1 or −1.

More precisely, Γ3 is constructed placing v1 at (0, 0), v2 at (2, 0), and v3
at (1, 1). The addition of vk+1 to Γk is executed as follows. Let wp, wp+1, . . . , wq

be the lower neighbors of vk+1 ordered from left to right. Denote by μ(wp, wq) the
intersection point between the line with slope +1 passing through wp and the line
with slope −1 passing through wq. Point μ(wp, wq) has integer coordinates and
thus it is a valid placement for vk+1. With this placement, however, (vk+1, wp)
and (vk+1, wq) may overlap with (wp, wp+1) and (wq−1, wq), respectively. To
avoid this, a shift operation is applied: wp+1, wp+2,. . . ,wq−1 are shifted to the
right by 1 unit, and wq, wq+1, . . . , wt are shifted to the right by 2 units. Then vk+1

is placed at point μ(wp, wq) with no overlap. We recall that, to keep planarity,
when the algorithm shifts a vertex wi (p+1 ≤ i ≤ t) of Ck, it also shifts some of
the inner vertices together with it; for more details on this point refer to [12,13].
By Invariants (I1) and (I2), the area of the final drawing is (2n − 4) × (n − 2).

Our Extension. Let G be an IC-plane graph, and assume that G+ is the planar-
maximal IC-plane graph obtained from G by applying the technique of Lemma1.
Our drawing algorithm computes an IC-planar drawing of G+ with right-angle
crossings, by extending algorithm dFPP. It adds to the classical shift operation
move and lift operations to guarantee that one of the crossing edges of a kite

Recognizing and Drawing IC-Planar Graphs 305

is vertical and the other is horizontal. We now give an idea of our technique,
which we call RAC-drawer. Details are given in the proof of Theorem5. Let σ
be a canonical ordering constructed from the underlying maximal plane graph
of G+. Vertices are incrementally added to the drawing, according to σ, following
the same approach as for dFPP. However, suppose that K = (a, b, c, d) is a kite
of G+, and that a and d are the first and the last vertex of σ among the vertices
in K, respectively. Once d has been added to the drawing, the algorithm applies
a suitable combination of move and lift operations to the vertices of the kite
to rearrange their positions so to guarantee a right-angle crossing. Note that,
following the dFPP technique, a was placed at a y-coordinate smaller than the
y-coordinate of d. A move operation is then used to shift d horizontally to the
same x-coordinate as a (i.e., (a, d) becomes a vertical segment in the drawing);
a lift operation is used to vertically shift the lower between b and c, such that
these two vertices get the same y-coordinates. Both operations are applied so
to preserve planarity and to maintain Invariant (I3) of dFPP; however, they do
not maintain Invariant (I1), thus the area can increase more than in the dFPP
algorithm and may be exponential. The application of move/lift operations on
the vertices of two distinct kites do not interfere each other, as the kites do not
share vertices in an IC-plane graph. The main operations of the algorithm are
depicted in Fig. 5.

Theorem 5. There is a O(n3)-time algorithm that takes an IC-plane graph G
with n vertices as input and constructs a straight-line IC-planar RAC grid draw-
ing of G.

Sketch of Proof. Let G+ be the augmented graph constructed from G by using
Lemma 1. Call G′ the subgraph obtained from G+ by removing one edge from
each pair of crossing edges; G′ is a maximal plane graph (see condition (c3) of
Lemma 1). We apply on G′ the shelling procedure used by de Fraysseix et al.
to compute a canonical ordering σ of G′ in O(n) time [13]; it goes backwards,
starting from a vertex on the outer face of G′ and successively removing a vertex
per time from the current contour. However, during this procedure, some edges
of G′ can be replaced with some other edges of G+ that were previously excluded,
although G′ remains maximal planar. Namely, whenever the shelling procedure
encounters the first vertex d of a kite K = (a, b, c, d), it marks d as top(K), and
considers the edge e of K that is missing in G′. If e is incident to d in K, the
procedure reinserts it and removes from G′ the other edge of K that crosses e
in G+. If e is not incident to d, the procedure continues without varying G′. We
say that u ≺ v if σ(u) < σ(v).

We then compute a drawing of G+ by using the RAC-drawer algorithm. Let
vertex v = vk+1 be the next vertex to be placed according to σ. Let U(v) be
the set of lower neighbors of v, and let λ(v) and ρ(v) be the leftmost and the
rightmost vertex in U(v), respectively. Also, denote by Al(v) the vertices to the
top-left of v, and by Ar(v) the vertices to the top-right of v. If v is not top(K)
for some kite K, then v is placed by following the rules of dFPP, that is, at the
intersection of the ±1 diagonals through λ(v) and ρ(v) after applying a suitable

306 F.J. Brandenburg et al.

shift operation. If v = top(K) for some kite K, the algorithm proceeds as follows.
Let K = (a, b, c, d) with v = d = top(K). The remaining three vertices of K are
in Gk and are consecutive along the contour Ck, as they all belong to U(d) (by
construction, G′ contains edge (a, d)). W.l.o.g., assume that they are encountered
in the order {b, a, c} from left to right. Two cases are now possible:
Case 1: a ≺ b and a ≺ c. This implies that a = ρ(b) and a = λ(c). The
edges (a, b) and (a, c) have slope −1 and +1, respectively, as they belong to Ck.
We now aim at having b and c at the same y-coordinate, by applying a lift
operation. Suppose first that r = y(c) − y(b) > 0; see Fig. 5(a). We apply the
following steps: (i) Temporarily undo the placement of b and of all vertices
in Al(b). (ii) Apply the shift operation to ρ(b) = a by 2r units to the right,
which implies that the intersection of the diagonals through λ(b) and ρ(b) is
moved by r units to the right and by r units above their former intersection
point. Hence, b and c are placed at the same y-coordinate; see also Fig. 5(b). (iii)
Reinsert the vertices of Al(b) and modify σ accordingly. Namely, by definition,
each vertex in Al(b) does not belong to U(b) and it is not an inner vertex below b;
therefore, vertices in Al(b) can be safely removed. Hence, σ can be modified such
that b ≺ w for each w ∈ Al(b). If r = y(c) − y(b) < 0, we apply a symmetric
operation: (i) Undo the placement of c and of all vertices in Ar(c). (ii) Apply
the shift operation to ρ(c) by |2r| additional units to the right. (iii) Reinsert the
vertices of Ar(c).

Finally, we place d vertically above a. To this aim, we first apply the shift
operation according to the insertion step of dFPP. After that, we may need to
apply a move operation; see Fig. 5(c). If s = x(d) − x(a) > 0, then we apply
the shift operation to vertex ρ(d) = c by 2s units to the right and then place d
(see Fig. 5(d)). If s = x(d) − x(a) < 0, then we apply the shift operation to
vertex λ(d) = b by 2s units to the left and then place d (clearly, the shift
operation can be used to operate in the left direction with a procedure that is
symmetric to the one that operates in the right direction). Edges (a, d) and (b, c)
are now vertical and horizontal, respectively. In the next steps, their slopes do
not change, as their endvertices are shifted only horizontally (they do not belong
to other kites); also, a is shifted along with d, as it belongs to U(d).
Case 2: b ≺ a ≺ c. The proof for this case is given in the full version of the
paper [10]. Case c ≺ a ≺ b is symmetric to Case 2; case b ≺ c ≺ a is impossible
as K is a kite. The time complexity is also analyzed in the full version. �

b c

a
Al(b)

(a)

b c

a
Al(b)

(b)

b
c
a

d

(c)

b c
a

d

(d)

Fig. 5. (a-b) The lift operation: (a) Vertex b is r units below c. (b) Lifting b. (c-d) The
move operation: (c) Vertex d is s units to the left of b. (d) Moving d

Recognizing and Drawing IC-Planar Graphs 307

Theorem 5 and the fact that there exist n-vertex RAC graphs with 4n − 10
edges [17] while an n-vertex IC-planar graph has at most 13n/4 − 6 edges [31]
imply that IC-planar graphs are a proper subfamily of RAC graphs. The next
result is proved in the full version of the paper [10].

Theorem 6. There exists an infinite family G of graphs such that every IC-
planar straight-line RAC drawing of an n-vertex graph G ∈ G requires area
Ω(qn), for some constant q > 1.

6 Conclusion

We have shown that every IC-planar graph can be drawn straight-line in
quadratic area, although the angle formed by any two crossing edges can be
small. Conversely, straight-line RAC drawings of IC-planar graphs may require
exponential area. It would be interesting to design algorithms that draw IC-
planar graphs in polynomial area and good crossing resolution. Also, although
IC-planar graphs are both 1-planar and RAC, a full characterization of the
intersection between these two classes is still an open problem. For example, are
NIC-planar graphs [30] also RAC graphs?.

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no
four pairwise crossing edges. Discrete Comput. Geom. 41(3), 365–375 (2009)

2. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-
connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol.
8242, pp. 83–94. Springer, Heidelberg (2013)

3. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)

4. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K., Neuwirth,
D., Reislhuber, J.: Recognizing outer 1-planar graphs in linear time. In: Wismath,
S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 107–118. Springer, Heidelberg
(2013)

5. Auer, C., Brandenburg, F.J., Gleiner, A., Reislhuber, J.: 1-planarity of graphs with
a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)

6. Bekos, M.A., Cornelsen, S., Grilli, L., Hong, S.-H., Kaufmann, M.: On the recogni-
tion of fan-planar and maximal outer-fan-planar graphs. In: Duncan, C., Symvonis,
A. (eds.) GD 2014. LNCS, vol. 8871, pp. 198–209. Springer, Heidelberg (2014)

7. Binucci, C., Di Giacomo, E., Didimo, W., Montecchiani, F., Patrignani, M., Symvo-
nis, A., Tollis, I.G.: Fan-planarity: properties and complexity. Theor. Comput. Sci.
589, 76–85 (2015)

8. Borodin, O.V.: Solution of the Ringel problem on vertex-face coloring of planar
graphs and coloring of 1-planar graphs. Metody Diskret Analiz. 41, 12–26 (1984)

9. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reisl-
huber, J.: On the density of maximal 1-planar graphs. In: Didimo, W., Patrignani,
M. (eds.) GD 2012. LNCS, vol. 7704, pp. 327–338. Springer, Heidelberg (2013)

308 F.J. Brandenburg et al.

10. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Mon-
tecchiani, F.: Recognizing and drawing IC-planar graphs. Arxiv report (2015).
Available at http://arxiv.org/abs/1509.00388

11. Cheong, O., Har-Peled, S., Kim, H., Kim, H.-S.: On the number of edges of fan-
crossing free graphs. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Algorithms and
Computation. LNCS, vol. 8283, pp. 163–173. Springer, Heidelberg (2013)

12. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on
a grid. Inf. Process. Lett. 54(4), 241–246 (1995)

13. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

14. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954–997 (2014)

15. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: h-Quasi planar draw-
ings of bounded treewidth graphs in linear area. In: Golumbic, M.C., Stern, M.,
Levy, A., Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 91–102. Springer,
Heidelberg (2012)

16. Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Area requirement of
graph drawings with few crossings per edge. Comput. Geom. 46(8), 909–916 (2013)

17. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theoretical Comput. Sci. 412(39), 5156–5166 (2011)

18. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 167–184. Springer, New
York (2012)

19. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7–8), 961–969 (2013)

20. Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. SIAM J.
Discrete Math. 27(1), 550–561 (2013)

21. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Algebraic
Discrete Methods 4(3), 312–316 (1983)

22. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 46, 1–22 (2014)

23. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol.
7434, pp. 335–346. Springer, Heidelberg (2012)

24. Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. Arxiv report,
(2014). Available at http://arxiv.org/abs/1403.6184

25. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theor. 72(1), 30–71 (2013)

26. Král, D., Stacho, L.: Coloring plane graphs with independent crossings. J. Graph
Theor. 64(3), 184–205 (2010)

27. Liotta, G.: Graph drawing beyond planarity: some results and open problems. In:
Theoretical Computer Science (ICTCS 2014), pp. 3–8 (2014)

28. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

29. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theor. 12(3), 335–341
(1988)

30. Zhang, X.: Drawing complete multipartite graphs on the plane with restrictions
on crossings. Acta Math. Sinica 30(12), 2045–2053 (2014)

31. Zhang, X., Liu, G.: The structure of plane graphs with independent crossings and
its applications to coloring problems. Central Eur. J. Math. 11(2), 308–321 (2013)

http://arxiv.org/abs/1509.00388
http://arxiv.org/abs/1403.6184

Simple Realizability of Complete Abstract
Topological Graphs Simplified

Jan Kynčl1,2(B)

1 Department of Applied Mathematics and Institute for Theoretical Computer
Science, Faculty of Mathematics and Physics, Charles University,

Malostranské nám. 25, 118 00 Praha 1, Czech Republic
kyncl@kam.mff.cuni.cz

2 Chair of Combinatorial Geometry, EPFL-SB-MATHGEOM-DCG,
École Polytechnique Fédérale de Lausanne, Station 8,1015 Lausanne, Switzerland

Abstract. An abstract topological graph (briefly an AT-graph) is a pair
A = (G,X) where G = (V,E) is a graph and X ⊆ (E

2

)
is a set of pairs

of its edges. The AT-graph A is simply realizable if G can be drawn in
the plane so that each pair of edges from X crosses exactly once and
no other pair crosses. We characterize simply realizable complete AT-
graphs by a finite set of forbidden AT-subgraphs, each with at most six
vertices. This implies a straightforward polynomial algorithm for testing
simple realizability of complete AT-graphs, which simplifies a previous
algorithm by the author.

1 Introduction

A topological graph T = (V (T), E(T)) is a drawing of a graph G in the plane
such that the vertices of G are represented by a set V (T) of distinct points
and the edges of G are represented by a set E(T) of simple curves connecting
the corresponding pairs of points. We call the elements of V (T) and E(T) the
vertices and the edges of T , respectively. The drawing has to satisfy the following
general position conditions: (1) the edges pass through no vertices except their
endpoints, (2) every pair of edges has only a finite number of intersection points,
(3) every intersection point of two edges is either a common endpoint or a proper
crossing (“touching” of the edges is not allowed), and (4) no three edges pass
through the same crossing. A topological graph or a drawing is simple if every
pair of edges has at most one common point, which is either a common endpoint
or a crossing. Simple topological graphs appear naturally as crossing-minimal
drawings; it is well known that if two edges in a topological graph have more
than one common point, then a local redrawing decreases the total number of
crossings. A topological graph is complete if it is a drawing of a complete graph.

J. Kynčl—Supported by Swiss National Science Foundation Grants 200021-137574
and 200020-14453, by the ESF Eurogiga project GraDR as GAČR GIG/11/E023,
by the grant no. 14-14179S of the Czech Science Foundation (GAČR) and by the
grant GAUK 1262213 of the Grant Agency of Charles University.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 309–320, 2015.
DOI: 10.1007/978-3-319-27261-0 26

310 J. Kynčl

An abstract topological graph (briefly an AT-graph), a notion introduced by
Kratochv́ıl, Lubiw and Nešetřil [10], is a pair (G,X) where G is a graph and
X ⊆ (

E(G)
2

)
is a set of pairs of its edges. Here we assume that X consists only

of independent (that is, nonadjacent) pairs of edges. For a simple topological
graph T that is a drawing of G, let XT be the set of pairs of edges having
a common crossing. A simple topological graph T is a simple realization of
(G,X) if XT = X . We say that (G,X) is simply realizable if (G,X) has a simple
realization.

An AT-subgraph of an AT-graph (G,X) is an AT-graph (H,Y) such that H

is a subgraph of G and Y = X ∩ (
E(H)

2

)
. Clearly, a simple realization of (G,X)

restricted to the vertices and edges of H is a simple realization of (H,Y).
We are ready to state our main result.

Theorem 1. Every complete AT-graph that is not simply realizable has an AT-
subgraph on at most six vertices that is not simply realizable.

We also show that AT-subgraphs with five vertices are not sufficient to char-
acterize simple realizability.

Theorem 2. There is a complete AT-graph A with six vertices such that all its
induced AT-subgraphs with five vertices are simply realizable, but A itself is not.

Theorem 1 implies a straightforward polynomial algorithm for simple realiz-
ability of complete AT-graphs, running in time O(n6) for graphs with n vertices.
It is likely that this running time can be improved relatively easily. However,
compared to the first polynomial algorithm for simple realizability of complete
AT-graphs [13], the new algorithm may be more suitable for implementation
and for practical applications, such as generating all simply realizable com-
plete AT -graphs of given size or computing the crossing number of the com-
plete graph [5,15]. On the other hand, the new algorithm does not directly
provide the drawing itself, unlike the original algorithm [13]. The explicit list
of realizable AT-graphs on six vertices can be generated using the database of
small simple complete topological graphs created by Ábrego et al. [1].

For general noncomplete graphs, no such finite characterization by forbidden
AT -subgraphs is possible. Indeed, in the special case when X is empty, the
problem of simple realizability is equivalent to planarity, and there are nonplanar
graphs of arbitrarily large girth, such as subdivisions of K5. Moreover, simple
realizability for general AT -graphs is NP-complete [11]. See [13] for an overview
of other similar realizability problems.

The proof of Theorem 1 is based on the polynomial algorithm for simple realiz-
ability of complete AT-graphs from [13]. The main idea is very simple: every time
the algorithm rejects the input, it is due to an obstruction of constant size.

Theorem 1 is an analogue of a similar characterization of simple monotone
drawings of Kn by forbidden 5-tuples, and pseudo linear drawings of Kn by
forbidden 4-tuples [4].

Ábrego et al. [1,2] independently verified that simple complete topological
graphs with up to nine vertices can be characterized by forbidden rotation sys-
tems of five-vertex subgraphs; see Sect. 2 for the definition. They conjectured that

Simple Realizability of Complete Abstract Topological Graphs Simplified 311

the same characterization is true for all simple complete topological graphs [2].
This conjecture now follows by combining their result for six-vertex graphs with
Theorem 1. This gives a finite characterization of realizable abstract rotation sys-
tems defined in [14, Sect. 3.5], where it was also stated that such a characteriza-
tion was not likely [14, p. 739]. The fact that only 5-tuples are sufficient for the
characterization by rotation systems should perhaps not be too surprising, as
rotation systems characterize simple drawings of Kn more economically, using
only O(n2 log n) bits, whereas AT-graphs need Θ(n4) bits.

2 Preliminaries

Topological graphs G and H are weakly isomorphic if they are realizations of
the same abstract topological graph.

The rotation of a vertex v in a topological graph is the clockwise cyclic order
in which the edges incident with v leave the vertex v. The rotation system of a
topological graph is the set of rotations of all its vertices. Similarly we define the
rotation of a crossing x of edges uv and yz as the clockwise order in which the
four parts xu, xv, xy and xz of the edges uv and yz leave the point x. Note that
each crossing has exactly two possible rotations. We will represent the rotation
of a vertex v as an ordered sequence of the endpoints of the edges incident with
v. The extended rotation system of a topological graph is the set of rotations of
all its vertices and crossings.

Assuming that T and T ′ are drawings of the same abstract graph, we say
that their rotation systems are inverse if for each vertex v ∈ V (T), the rotation
of v and the rotation of the corresponding vertex v′ ∈ V (T ′) are inverse cyclic
permutations. If T and T ′ are weakly isomorphic simple topological graphs, we
say that their extended rotation systems are inverse if their rotation systems
are inverse and, in addition, for every crossing x in T , the rotation of x and the
rotation of the corresponding crossing x′ in T ′ are inverse cyclic permutations.
For example, if T ′ is a mirror image of T , then T and T ′ have inverse extended
rotation systems.

We say that two cyclic permutations of sets A,B are compatible if they are
restrictions of a common cyclic permutation of A ∪ B.

Simple complete topological graphs have the following key property.

Proposition 3 [7,13].

(1) If two simple complete topological graphs are weakly isomorphic, then their
extended rotation systems are either the same or inverse.

(2) For every edge e of a simple complete topological graph T and for every
pair of edges f, f ′ ∈ E(T) that have a common endpoint and cross e, the
AT-graph of T determines the order of crossings of e with the edges f, f ′.

By inspecting simple drawings of K4, it can be shown that the converse of
Proposition 3 also holds: the rotation system of a simple complete topological
graph determines which pairs of edges cross [12,16].

312 J. Kynčl

3 Proof of Theorem2

We use the shortcut ij to denote the edge {i, j}. Let A = ((V,E),X) be the
complete AT-graph with vertex set V = {0, 1, 2, 3, 4, 5} and with

X = {{02, 13}, {02, 14}, {02, 15}, {02, 35}, {03, 14}, {03, 15}, {03, 24},

{04, 15}, {04, 25}, {04, 35}, {13, 24}, {24, 35}, {35, 14}, {14, 25}, {25, 13}}.

Every complete AT-subgraph of A with five vertices is simply realizable; see
Fig. 1.

On the other hand, we show that A is not simply realizable. Suppose that T is
a simple realization of A. Without loss of generality, assume that the rotation of
5 in T [{1, 2, 3, 5}] is (1, 2, 3). By Proposition 3 and by the first drawing in Fig. 1,
the rotation of 5 in T [{1, 2, 3, 4, 5}] is (1, 2, 3, 4), since the inverse would not be
compatible with (1, 2, 3). Similarly, by the second drawing in Fig. 1 the rotation
of 5 in T [{0, 2, 3, 4, 5}] is (2, 3, 0, 4), since the inverse would not be compatible
with (1, 2, 3, 4). By the third drawing in Fig. 1, the rotation of 5 in T [{0, 1, 3, 4, 5}]
is (0, 1, 3, 4) or (0, 4, 3, 1), but neither of them is compatible with both (1, 2, 3, 4)
and (2, 3, 0, 4); a contradiction.

1

2

3

4

5 0

1

3

4

5

4

3

2

1

05

4

2

1

0

0

5

4 3

2

5

0

1 2

3

Fig. 1. Simple realizations of all six complete subgraphs of A with five vertices.

4 Proof of Theorem1

Let A = (Kn,X) be a given complete abstract topological graph with vertex set
[n] = {1, 2, . . . , n}. The algorithm from [13] for deciding simple realizability of A
has the following three main steps: computing the rotation system, determining
the homotopy class of every edge with respect to the edges incident with one
chosen vertex v, and computing the number of crossings of every pair of edges in
a crossing-optimal drawing with the rotation system and homotopy class fixed
from the previous steps. We follow the algorithm and analyze each step in detail.

Simple Realizability of Complete Abstract Topological Graphs Simplified 313

Step 1: Computing the Extended Rotation System
This step is based on the proof of Proposition 3; see [13, Proposition 3].

1(a) Realizability of 5-tuples. For every 5-tuple Q of vertices of A, the
algorithm tests whether A[Q] is simply realizable. If not, then the 5-tuple certifies
that A is not simply realizable. If A[Q] is simply realizable, then by Proposition 3,
the algorithm computes a rotation system R(Q) such that the rotation system
of every simple realization of A[Q] is either R(Q) or the inverse of R(Q).

1(b) Orienting 5-tuples. For every 5-tuple Q ⊆ [n], the algorithm selects an
orientation Φ(R(Q)) of R(Q) so that for every pair of 5-tuples Q,Q′ having four
common vertices and for each x ∈ Q ∩ Q′, the rotations of x in Φ(R(Q)) and
Φ(R(Q′)) are compatible. If there is no such orientation map Φ, the AT-graph A
is not simply realizable. We show that in this case there is a set S of six vertices
of A that certifies this.

Let Q1, Q2 be two 5-tuples with four common elements, let R1 be a rotation
system on Q1 and let R2 be a rotation system on Q2. We say that R1 and R2

are compatible if for every x ∈ Q1 ∩ Q2, the rotations of x in R1 and R2 are
compatible.

Let G be the graph with vertex set
(
[n]
5

)
and edge set consisting of those

pairs {Q,Q′} whose intersection has size 4. For every edge {Q,Q′} of G, at most
one orientation of R(Q′) is compatible with R(Q). If no orientation of R(Q′) is
compatible with R(Q), then the 6-tuple S = Q∪Q′ certifies that A is not simply
realizable. We may thus assume that for every edge {Q,Q′} of G, exactly one
orientation of R(Q′) is compatible with R(Q). Let E be the set of those edges
{Q,Q′} of G such that R(Q) and R(Q′) are not compatible.

Call a set W ⊆ (
[n]
5

)
orientable if there is an orientation map Φ assigning

to every rotation system R(Q) with Q ∈ W either R(Q) itself or its inverse
(R(Q))−1, such that for every pair of 5-tuples Q,Q′ ∈ W with |Q ∩ Q′| = 4, the
rotation systems Φ(R(Q)) and Φ(R(Q′)) are compatible.

Lemma 4. If
(
[n]
5

)
is not orientable, then there is a 6-tuple S ⊆ [n] such that

S5 is not orientable.

Proof. Clearly,
(
[n]
5

)
is not orientable if and only if G has a cycle with an odd

number of edges from E . Call such a cycle a nonorientable cycle. We claim that
if G has a nonorientable cycle, then G has a nonorientable triangle. Let C(G) be
the cycle space of G. The parity of the number of edges of E in K ∈ C(G) is a
linear form on C(G). Hence, to prove our claim, it is sufficient to show that C(G)
is generated by triangles.

Suppose that K = F1F2 . . . Fk, with k ≥ 4, is a shortest cycle in G that
is not a sum of triangles in C(G). Then K is an induced cycle in G, that is,
|Fi ∩ Fj | ≤ 3 if 2 ≤ |i − j| ≤ k − 2. Let z ∈ F1 \ F2. Then z ∈ Fk, otherwise
|Fk ∩ F1 ∩ F2| = 4. Let i be the smallest index such that i ≥ 3 and z ∈ Fi.
We have i ≥ 4, otherwise |F1 ∩ F3| = |(F1 ∩ F2 ∩ F3) ∪ {z}| = 4. For every

314 J. Kynčl

j ∈ {2, . . . , i−2}, let F ′
j = (Fj∩Fj+1)∪{z}. Then K is the sum of the closed walk

K′ = F1F
′
2 . . . F ′

i−2Fi . . . Fk and the triangles F1F2F
′
2, Fi−1FiF

′
i−2, FjFj+1F

′
j for

j = 2, . . . , i − 2 and Fj+1F
′
jF

′
j+1 for j = 2, . . . , i − 3; see Fig. 2. Since the length

of K′ is k − 1, we have a contradiction with the choice of K′.
Let Q1Q2Q3 be a nonorientable triangle in G. The 5-tuples Q1, Q2, Q3 have

either three or four common elements. Suppose that |Q1 ∩ Q2 ∩ Q3| = 4 and
let {u, v, w, z} = Q1 ∩ Q2 ∩ Q3. Then we may orient the rotation systems
R(Q1),R(Q2) and R(Q3) so that the rotation of u in each of the orientations
is compatible with (v, w, z). This implies that the rotations of u in the resulting
rotation systems are pairwise compatible. Thus, the resulting rotation systems
are pairwise compatible, a contradiction. Hence, we have |Q1 ∩ Q2 ∩ Q3| = 3,
which implies that |Q1 ∪ Q2 ∪ Q3| = 6. Setting S = Q1 ∪ Q2 ∪ Q3, the set

(
S
5

)
is

not orientable. �	

12345 23456 34567 45678 25678 12568

13456 14567 15678

Fig. 2. Triangulating a cycle in G. The vertices in the first row represent the vertices
F1, . . . , Fi of the original cycle K, the vertices in the second row represent the vertices
F ′
2, . . . , F

′
i−2.

If
(
[n]
5

)
is orientable, there are exactly two possible solutions for the ori-

entation map. We will assume that the rotation of 1 in Φ(R({1, 2, 3, 4, 5})) is
compatible with (2, 3, 4), so that there is at most one solution Φ.

1(c) Computing the Rotations of Vertices. Having oriented the rotation
system of every 5-tuple, the algorithm now computes the rotation of every x ∈
[n], as the cyclic permutation compatible with the rotation of x in every Φ(R(Q))
such that x ∈ Q ∈ (

[n]
5

)
. We show that this is always possible. The following

lemma forms the core of the argument.

Lemma 5. Let k ≥ 4. For every F ∈ (
[k+1]

k

)
, let πF be a cyclic permutation of

F such that for every pair F, F ′ ∈ (
[k+1]

k

)
, the cyclic permutations πF and π′

F

are compatible. Then there is a cyclic permutation π[k+1] of [k + 1] compatible
with all the cyclic permutations πF with F ∈ (

[k+1]
k

)
.

1(d) Computing the Rotations of Crossings. For every pair of edges
{{u, v}, {x, y}} ∈ X , the algorithm determines the rotation of their crossing
from the rotations of the vertices u, v, x, y. This finishes the computation of the
extended rotation system.

Simple Realizability of Complete Abstract Topological Graphs Simplified 315

Step 2: Determining the Homotopy Classes of the Edges
Let v be a fixed vertex of A and let S(v) be a topological star consisting of v
and all the edges incident with v, drawn in the plane so that the rotation of v
agrees with the rotation computed in the previous step. For every edge e = xy
of A not incident with v, the algorithm computes the order of crossings of e
with the subset Ev,e of edges of S(v) that e has to cross. By Proposition 3 (2),
the five-vertex AT-subgraphs of A determine the relative order of crossings of e
with every pair of edges of Ev,e. Define a binary relation ≺x,y on Ev,e so that
vu ≺x,y vw if the crossing of e with vu is closer to x than the crossing of e with
vw. If ≺x,y is acyclic, it defines a total order of crossings of e with the edges of
Ev,e. If ≺x,y has a cycle, then it also has an oriented triangle vu1, vu2, vu3. This
means that the AT-subgraph of A induced by the six vertices v, u1, u2, u3, x, y is
not simply realizable.

We recall that the homotopy class of a curve ϕ in a surface Σ relative to
the boundary of Σ is the set of all curves that can be obtained from ϕ by a
continuous deformation within Σ, keeping the boundary of Σ fixed.

The homotopy class of e is determined by the following combinatorial data:
the set Ev,e, the total order ≺x,y in which the edges of Ev,e cross e, the rotations
of these crossings, and the rotations of the vertices x and y. Consider the star
S(v) drawn on the sphere. Cut circular holes around the points representing all
the vertices except v, and let Σ be the resulting surface with boundary. Let
xe and ye be fixed points on the boundaries of the two holes around x and y,
respectively, so that the orders of these points corresponding to all the edges
of A on the boundaries of the holes agree with the computed rotation system.
Draw a curve ϕe with endpoints xe and ye satisfying all the combinatorial data
of e. Now the homotopy class of e is defined as the homotopy class of ϕe in Σ
relative to the boundary of Σ.

Step 3: Computing the Minimum Crossing Numbers
For every pair of edges e, f , let cr(e, f) be the minimum possible number of
crossings of two curves from the homotopy classes of e and f . Similarly, let cr(e)
be the minimum possible number of self-crossings of a curve from the homo-
topy class of e. The numbers cr(e, f) and cr(e) can be computed in polynomial
time in any 2-dimensional surface with boundary [3,17]. In our special case, the
algorithm is relatively straightforward [13].

We use the key fact that from the homotopy class of every edge, it is possible
to choose a representative such that the crossing numbers cr(e, f) and cr(e) are
all realized simultaneously [13]. This is a consequence of the following facts.

Lemma 6 [9]. Let γ be a curve on an orientable surface S with endpoints on
the boundary of S that has more self-intersections than required by its homotopy
class. Then there is a singular 1-gon or a singular 2-gon bounded by parts of γ.

Here a singular 1-gon of a curve γ : [0, 1] → S is an image γ[α] of an interval
α ⊂ [0, 1] such that γ identifies the endpoints of α and the resulting loop is
contractible in S. A singular 2-gon of γ is an image of two disjoint intervals

316 J. Kynčl

α, β ⊂ [0, 1] such that γ identifies the endpoints of α with the endpoints of β
and the resulting loop is contractible in S.

Lemma 7 [6,9]. Let C1 and C2 be two simple curves on a surface S such that
the endpoints of C1 and C2 lie on the boundary of S. If C1 and C2 have more
intersections than required by their homotopy classes, then there is an innermost
embedded 2-gon between C1 and C2, that is, two subarcs of C1 and C2 bounding
a disc in S whose interior is disjoint with C1 and C2.

Whenever there is a singular 1-gon, a singular 2-gon, or an embedded inner-
most 2-gon in a system of curves on S, it is possible to eliminate the 1-gon
or 2-gon by a homotopy of the corresponding curves, which decreases the total
number of crossings.

For the rest of the proof, we fix a drawing D of A such that its rotation system
is the same as the rotation system computed in Step 1, the edges of S(v) do not
cross each other, every other edge is drawn as a curve in its homotopy class
computed in Step 2, and under these conditions, the total number of crossings
is the minimum possible. Then every edge f of S(v) crosses every other edge e
at most once, and this happens exactly if {e, f} ∈ X . Moreover, for every pair
of edges e1, e2 not incident with v, the corresponding curves in D cross exactly
cr(e1, e2) times, and the curve representing e1 has cr(e1) self-crossings. Hence, A
is simply realizable if and only if all the edges e1, e2 not incident with v satisfy
cr(e1) = 0, cr(e1, e2) ≤ 1, and cr(e1, e2) = 1 ⇔ {e1, e2} ∈ X . Moreover, if A is
simply realizable, then D is a simple realization of A.

We further proceed in four substeps. Due to space limitations, we only include
a short sketch of the substeps 3(b)–3(d).

3(a) Characterization of the Homotopy Classes. Let w1, w2, . . . , wn−1 be
the vertices of A adjacent to v so that the rotation of v is (w1, w2, . . . , wn−1).
Let wawb be an edge such that 1 ≤ a < b ≤ n − 1. Since every AT-subgraph of
A with 4 or 5 vertices is simply realizable, we have the following conditions on
the homotopy class of wawb. Refer to Fig. 3.

Observation 8. Suppose that {wawb, vwc} ∈ X ; that is, vwc ∈ Ev,wawb
. If

a < c < b, then the rotation of the crossing of wawb with vwc is (wa, wc, wb, v).
If c < a or b < c, then the rotation of the crossing is (wb, wc, wa, v). �

Observation 8 implies that the homotopy class of the edge wawb is determined
by a permutation of Ev,wawb

that determines the order in which wawb crosses
the edges in Ev,wawb

. The next observation further restricts this permutation.

Observation 9. Suppose that vwc, vwd ∈ Ev,wawb
. If a < c < d < b, then

vwc ≺wa,wb
vwd. If (c, d, a, b) is compatible with (1, 2, . . . , n − 1) as cyclic per-

mutations, then vwd ≺wa,wb
vwc. �

On the other hand, it is easy to see that every homotopy class satisfying
Observations 8 and 9 has a representative that is a simple curve. Therefore,
cr(wawb) = 0.

Simple Realizability of Complete Abstract Topological Graphs Simplified 317

v

wa wb

Fig. 3. A drawing of a “typical” edge wawb and the star S(v).

3(b) The Parity of the Crossing Numbers. It can be shown that if e1 and
e2 are independent edges not incident with v, then cr(e1, e2) is odd if and only
if {e1, e2} ∈ X . It can also be shown that if e1 and e2 are adjacent edges not
incident with v, then cr(e1, e2) is even. It follows that A is realizable if and only
if every pair of edges in D crosses at most once.

3(c) Multiple Crossings of Adjacent Edges. Next we show that adjacent
edges do not cross in D, otherwise some AT-subgraph of A with five vertices is
not simply realizable. This part is rather straightforward, although the full proof
is not short. Let wawb and wawc be two adjacent edges. By symmetry, we may
assume that a < b < c. We will consider cyclic intervals (a, b), (b, c) and (c, a) =
(c, n − 1] ∪ [1, a). We define the following subsets of Ev,wawb

and Ev,wawc
. For

each of the three cyclic intervals (i, j), let Fb(i, j) = {vwk ∈ Ev,wawb
; k ∈ (i, j)}

and Fc(i, j) = {vwk ∈ Ev,wawc
; k ∈ (i, j)}. We will also write ≺b as a shortcut

for ≺wawb
and ≺c as a shortcut for ≺wawc

. By symmetry, we have two general
cases: (I) wawb does not cross vwc and wawc does not cross vwb, and (II) wawb

does not cross vwc and wawc crosses vwb.
For case (I), one can observe the following conditions; we omit the proofs.

Observation 10.

(1) We have Fb(c, a) ⊆ Fc(c, a) and Fc(a, b) ⊆ Fb(a, b).
(2) The sets Fb(b, c) and Fc(b, c) are disjoint.
(3) If vwd ∈ Fb(b, c) and vwe ∈ Fc(b, c), then d < e.
(4) Let vwd ∈ Fb(a, b) ∩ Fc(a, b) and vwe ∈ Fb(c, a) ∩ Fc(c, a). Then vwd ≺b

vwe ⇔ vwd ≺c vwe.
(5) Let vwd ∈ Fc(a, b) and vwe ∈ Fb(b, c). Then vwd ≺b vwe. Similarly, if

vwd ∈ Fb(c, a) and vwe ∈ Fc(b, c), then vwd ≺c vwe.

We show that Observation 10 implies that cr(wawb, wawc) = 0. Refer to
Fig. 4. Start with drawing the edges wawb and wawc without crossing. Conditions
(2) and (4) imply that there is a total order ≺ on Ev,wawb

∪ Ev,wawc
that is a

common extension of ≺b and ≺c. Let vwi be the ≺-largest element of Fb(c, a) ∪
Fc(a, b). Condition (5) implies that all edges vwj from Fb(b, c) ∪ Fc(b, c) satisfy
vwi ≺ vwj . Condition (1) implies that we can draw the edges vwj with vwj � vwi

like in the figure. Conditions (2), (3) and (5) imply that we can draw the edges
vwj with vwi ≺ vwj like in the figure. The remaining edges of S(v) can be drawn
easily. In this way we obtain a simple drawing with noncrossing representatives
of the homotopy classes of wawb and wawc.

318 J. Kynčl

wa

wb

wc

Fb(a, b)

Fc(c, a)

Fb(b, c)

Fc(b, c)

Fig. 4. A drawing of the edges wawb, wawc and parts of edges of S(v) in case (I), where
wawb and wawc do not cross. The rotation of v is compatible with the counterclockwise
cyclic order of the parts of the edges drawn.

The analysis of case (II) is similar.

3(d) Detecting Multiple Crossings of Independent Edges. Finally, we
show by induction that if two independent edges cross more than once, then
there is a five-vertex AT-subgraph that forces this, possibly for a different pair
of edges. In this part, we strongly rely on the established fact that adjacent
edges do not cross in D. We avoid a tedious case analysis by not continuing in
the approach chosen for adjacent pairs of edges.

Let e = wawb and f = wcwd be two independent edges that cross more
than once in D. In the subgraph of D formed by the two edges e and f , the
vertices wa, wb, wc, wd are incident to a common face, since adjacent edges do
not cross in D and every pair of the four vertices wa, wb, wc, wd is connected by
an edge. We assume without loss of generality that wa, wb, wc, wd are incident
to the outer face. That is, we may draw a simple closed curve γ containing the
vertices wa, wb, wc, wd but no interior points of e or f , such that the relative
interiors of e and f are inside γ.

Suppose that e and f cross an even number of times. The edge e splits the
region inside γ into two regions, R0(e) and R1(e), where R0(e) is the region that
does not contain the endpoints of f on its boundary. Similarly, f splits the region
inside γ into regions R0(f) and R1(f) where R0(f) is the region that does not
contain the endpoints of e on its boundary.

By Lemma 7, there is an innermost embedded 2-gon between e and f . For
brevity, we call an innermost embedded 2-gon shortly a bigon. For a bigon B,
by Bo we denote the open region inside B and we call it the inside of B. There
are four possible types of bigons between e and f , according to the regions Ri(e)
and Rj(f) in which their insides are contained. For i, j ∈ {0, 1}, we call a bigon
B an ij-bigon if Bo ⊆ Ri(e) ∩ Rj(f); see Fig. 5.

Since D is a drawing realizing the crossing number cr(e, f), there is at least
one vertex of D inside every bigon. The graph induced by v, the endpoints of e
and f , and a set of vertices intersecting all bigons, certifies that e and f have at
least cr(e, f) crossings forced by their homotopy classes.

Simple Realizability of Complete Abstract Topological Graphs Simplified 319

wa wb

wcwd

γ

R0(e) e

f

B00

B11
B01

B10

R1(e)

Fig. 5. Four types of bigons between e and f . An ij-bigon is denoted by Bij .

The following lemma quickly solves the case when there is at least one 00-
bigon between e and f .

Lemma 11. If e and f cross evenly and there is a 00-bigon B between e and f
in D, then there is a vertex wi inside B, and the AT-subgraph of A induced by
the 5-tuple Q = {wa, wb, wc, wd, wi} is not simply realizable.

We are left with the case that there is no 00-bigon between e and f .

Observation 12. If e and f cross evenly and at least twice in D, and there is
no 00-bigon between e and f , then there is a 01-bigon and a 10-bigon between e
and f .

For a subset W of vertices of A containing v and the endpoints of two edges g
and f , let crW (g, f) be the minimum possible number of crossings of two curves
from the homotopy classes of g and f determined by A[W], by a procedure
analogous to the one in Step 2.

The following lemma proves the induction step in the case when e and f
cross an even number of times.

Lemma 13. If e and f cross evenly and at least twice in D, and there is no
00-bigon between e and f , then there is a proper subset W of vertices of A and
an edge g independent from f such that crW (g, f) ≥ 2.

If e and f cross an odd number of times, one can easily find another pair of
independent edges crossing evenly and more than once. We omit the details.

Acknowledgements. I thank Martin Balko for his comments on an earlier version of
the manuscript. I also thank all the reviewers for their suggestions for improving the
presentation.

320 J. Kynčl

References

1. Ábrego, B.M., Aichholzer, O., Fernández-Merchant, S., Hackl, T., Pammer, J., Pilz,
A., Ramos, P., Salazar, G., Vogtenhuber, B.: All good drawings of small complete
graphs, EuroCG 2015, Book of abstracts, pp. 57–60 (2015)

2. Aichholzer, O.: Personal communication. 2014
3. Armas-Sanabria, L., González-Acuña, F., Rodŕıguez-Viorato, J.: Self-intersection

numbers of paths in compact surfaces. J. Knot Theor. Ramif. 20(3), 403–410 (2011)
4. Balko, M., Fulek, R., Kynčl, J.: Crossing numbers and combinatorial characteriza-

tion of monotone drawings of Kn. Discrete Comput. Geom. 53(1), 107–143 (2015)
5. Chimani, M.: Facets in the crossing number polytope. SIAM J. Discrete Math.

25(1), 95–111 (2011)
6. Farb, B., Thurston, B.: Homeomorphisms and simple closed curves, unpublished

manuscript
7. Gioan, E.: Complete graph drawings up to triangle mutations. In: Kratsch, D. (ed.)

WG 2005. LNCS, vol. 3787, pp. 139–150. Springer, Heidelberg (2005)
8. Harborth, H., Mengersen, I.: Drawings of the complete graph with maximum num-

ber of crossings, In: Proceedings of the Twenty-third Southeastern International
Conference on Combinatorics, Graph Theory, and Computing, (Boca Raton, FL,
1992), Congressus Numerantium, 88 pp. 225–228 (1992)

9. Hass, J., Scott, P.: Intersections of curves on surfaces. Isr. J. Math. 51(1–2), 90–120
(1985)

10. Kratochv́ıl, J., Lubiw, A., Nešetřil, J.: Noncrossing subgraphs in topological lay-
outs. SIAM J. Discrete Math. 4(2), 223–244 (1991)

11. Kratochv́ıl, J., Matoušek, J.: NP-hardness results for intersection graphs. Com-
mentationes Math. Univ. Carol. 30, 761–773 (1989)

12. Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7),
1676–1685 (2009)

13. Kynčl, J.: Simple realizability of complete abstract topological graphs in P. Discrete
Comput. Geom. 45(3), 383–399 (2011)

14. Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput.
Geom. 50(3), 727–770 (2013)

15. Mutzel, P.: Recent advances in exact crossing minimization (extended abstract).
Electron. Notes Discrete Math. 31, 33–36 (2008)

16. Pach, J., Tóth, G.: How many ways can one draw a graph? Combinatorica 26(5),
559–576 (2006)

17. Schaefer, M., Sedgwick, E., Štefankovič, D.: Computing Dehn twists and geometric
intersection numbers in polynomial time, In: Proceedings of the 20th Canadian
Conference on Computational Geometry, CCCG 2008, pp. 111–114 2008

The Utility of Untangling

Vida Dujmović(B)

School of Computer Science and Electrical Engineering, University of Ottawa,
Ottawa, Canada

vida.dujmovic@uottawa.ca

Abstract. In this paper we show how techniques developed for untan-
gling planar graphs by Bose et al. [Discrete & Computational Geome-
try 42(4): 570–585 (2009)] and Goaoc et al. [Discrete & Computational
Geometry 42(4): 542–569 (2009)] imply new results about some recent
graph drawing models. These include column planarity, universal point
subsets, and partial simultaneous geometric embeddings (with or with-
out mappings). Some of these results answer open problems posed in
previous papers.

1 Introduction

A geometric graph is a graph whose vertex set is a set of distinct points in the
plane and each pair of adjacent vertices {v, w} is connected by a line segment vw
that intersects only the two vertices. A geometric graph is planar if its underlying
combinatorial graph is planar. It is plane if no two edges cross other than in a
common endpoint. A straight-line crossing-free drawing of a planar graph is a
representation of that graph by a plane geometric graph.

Given a geometric planar graph, possibly with many crossings, to untangle
it, means to move some of its vertices to new locations (that is, change their
coordinates) such that the resulting geometric graph is plane. The goal is to
do so by moving as few vertices as possible, or in other words, by keeping the
locations of as many vertices as possible unchanged (that is, fixed). A series of
papers have studied untangling of planar graphs or subclasses of planar graphs
[9,11,14,24,26,28,30]. The best known (lower) bound for general planar graphs is
due to Bose et al. [9] who proved that every n-vertex geometric planar graph can
be untangled while keeping the locations of at least Ω(n1/4) vertices fixed. On
the other hand, Cano et al. [11] showed that for all large enough n, there exists
an n-vertex geometric planar graph that cannot be untangled while keeping the
locations of more than ω(n0.4948) vertices fixed.

The purpose of this paper is to highlight how the techniques developed by
Bose et al. [9] and Goaoc et al. [24] can be used to establish new results on several
recently studied graph drawing problems. Before presenting the new results we
state the two key lemmas that are at the basis of all the results. The statements
of these two lemmas are new, but their proofs are contained in and directly
inferred by the work described in [9,24].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 321–332, 2015.
DOI: 10.1007/978-3-319-27261-0 27

322 V. Dujmović

Let G be a plane triangulation (that is, an embedded simple planar graph
each of whose faces is bounded by a 3-cycle). Canonical orderings of plane trian-
gulations were introduced by de Fraysseix et al. [22]. They proved that G has a
vertex ordering σ = (v1 := x, v2 := y, v3, . . . , vn := z), called a canonical order-
ing, with the following properties. Define Gi to be the embedded subgraph of G
induced by {v1, v2, . . . , vi}. Let Ci be the subgraph of G induced by the edges
on the boundary of the outer face of Gi. Then

– x, y and z are the vertices on the outer face of G.
– For each i ∈ {3, 4, . . . , n}, Ci is a cycle containing xy.
– For each i ∈ {3, 4, . . . , n}, Gi is biconnected and internally 3-connected ; that

is, removing any two interior vertices of Gi does not disconnect it.
– For each i ∈ {3, 4, . . . , n}, vi is a vertex of Ci with at least two neighbours in

Ci−1, and these neighbours are consecutive on Ci−1.

The following structure was defined first in Bose et al. [9]. Using the above
notation, a frame F of G is the oriented subgraph of G with vertex set V (F) :=
V (G), where:

– Edges xy, xv1 and v1y are in E(F) where xy is oriented from x to y, xv1 is
oriented from x to v1 and v1y is oriented from v1 to y.

– For each i ∈ {4, 5 . . . , n} in the canonical ordering σ of G, edges pvi and vip
′

are in E(F), where p and p′ are the first and the last neighbour, respectively,
of vi along the path in Ci−1 from x to y not containing edge xy. Edge pvi is
oriented from p to vi, and edge vip

′ is oriented from vi to p′.

By definition, F is a directed acyclic graph with one source x and one sink y.
F defines a partial order <F on V (F), where v <F w whenever there is a directed
path from v to w in F .

Subsequently, it has been observed that a frame of G can also be obtained
by taking the union of any two trees in Schnyder 3-tree-decompositions where
the orientation of the edges in one of the two trees is reversed. See, for example,
page 13 in Di Giacomo et al. [16] for this alternative formulation.

Recall that a chain (antichain) in a partial order is a subset of its elements
that are pairwise comparable (incomparable). Given a partial order (V,≤) on
a set of vertices V of some graph, we will often refer to a chain V ′ ⊆ V
(or antichain) and by that mean a subset of vertices of V that form a chain
(antichain) in the given partial order (V,≤). We also say that a chain V ′ con-
tains a chain V ′′ if V ′ and V ′′ are both chains in (V,≤) and V ′′ ⊆ V ′.

Consider an n-vertex planar graph G and a set P of k ≤ n points in the
plane together with a bijective mapping from a set Vk of k vertices in G to P .
Let D be a straight-line crossing-free drawing of G. We say that D respects the
given mapping if each vertex of Vk is represented in D by its image point as
determined by the given mapping.

The following two lemmas are implicit in the work of Bose et al. [9] and
Goaoc et al. [24]. Parts (b), (c) and consequently (d), in Lemma1, are due to
Goaoc et al. [24]. Note that, unlike here, the results of Goaoc et al. [24] are not

The Utility of Untangling 323

expressed in terms of a chain in the frame of G but an equivalent structure: a
simple path L in a plane triangulation, connecting two vertices x and y on the
outer face x, y, z with the property that all chords of L lie on one side of L and
z lies on the other.

Consider a graph G, a set S ⊆ V (G) and a set P of |S| points in the plane
together with a bijective mapping from S to P . For a vertex v ∈ S mapped to
a point p ∈ P , let x(v) denote the x-coordinate of p.

Lemma 1. [9,24] Let G be an n-vertex plane triangulation with a partial order
<F associated with a frame F of G. Let C ⊆ V be a chain in <F . Let H be the
graph induced in G by a maximal chain that contains C in <F . The embedding
of H is implied by the embedding of G. Then:

(a) H is a 2-connected outerplane graph, i.e. a 2-connected embedded outerplanar
graph all of whose vertices lie on the cycle bounding the infinite face.

(b) Let I ⊆ V (H) such that if v, w ∈ I and vw ∈ E(H) then vw lies on the outer
face of H. Let P be any set of |I| points in the plane where no two points of
P have the same x-coordinate. Given a bijective mapping from I to P such
that, for every two vertices v, w ∈ I, v <F w if and only if x(v) < x(w),
there exists a straight-line crossing-free drawing of G that respects the given
mapping.

(c) There exists such a set I with at least (V (H) + 1)/2 vertices.
(d) There exists such a set I with at least |C|/3 vertices of C.

While the lower bound in part (c) is stronger than the lower bound in part
(d), part (d) ensures that a fraction of vertices of C are used. That will be critical
for some applications (see Theorem 2 in Sect. 2 and Theorem 6 in Sect. 4.2). Part
(d) follows from (b) as follows. Consider the graph H ′ induced in H by the
vertices of C. By part (a), H ′ is outerplanar. Thus its vertices can be coloured
with three colours such that adjacent vertices in H ′ receive distinct colours. Thus
there exists an independent set I in H ′ that contains at least |C|/3 vertices of
C. The condition imposed on the vertex set I in part (b) are immediate since I
is an independent set in H ′ and H.

Note that, in an interesting recent development, Di Giacomo et al. [17] proved
that every n-vertex plane triangulation has a frame where some chain has size
at least n1/3. Thus by part (a), |V (H)| ≥ n1/3 in that frame and consequently,
every n-vertex plane triangulation has a 2-connected outerplane graph of size at
least n1/3 as an embedded induced subgraph.

The following is the second key lemma.

Lemma 2. [9] Let G be an n-vertex plane triangulation with a partial order
<F associated with a frame F of G and the total order <σ associated with the
corresponding canonical ordering. Let A ⊆ V be an antichain in <F . Let P
be any set of |A| points in the plane where no two points of P have the same
x-coordinate. Given a bijective mapping from A to P such that, for every two
vertices v, w ∈ A, v <σ w if and only if x(v) < x(w), then there exists a straight-
line crossing-free drawing of G that respects the given mapping.

324 V. Dujmović

2 Column Planarity

Given a planar graph G, a set R ⊂ V (G) is column planar in G if the vertices
of R can be assigned x-coordinates such that given any arbitrary assignment of
y-coordinates to R, there exists a straight-line crossing free drawing of G that
respects the implied mapping of vertices of R to the plane.

The column planar sets were first defined by Evans et al. [21]. A slightly
stronger notion1 was used earlier (although not named) in [9] (see Lemma 1 and
Lemma 6 in [9]) where such sets were studied and used to prove Lemma 2 in the
previous section. In particular, define a set R ⊂ V (G) as strongly column planar
if the following holds: there exists a total order μ on R such that

(a) given any set P of |R| points in the plane where no two points have the same
x-coordinate; and,

(b) given a bijective mapping from R to P such that, for every two vertices
v, w ∈ R, v <μ w if and only if x(v) < x(w),

then there exists a straight-line crossing-free drawing of G that respects the
given mapping. Being strongly column planar implies being column planar but
not the converse. We use this slightly stronger notion as it is needed in the later
sections.

Notions similar to column planarity were studied by Estrella-Balderrama
et al. [20] and Di Giacomo et al. [15].

It is implicit in the work of Bose et al. [9] (see the proof of Lemma 2 in
[9]) that every tree has a strongly column planar set of size at least n/2. For
column planar sets, this result is improved to 14n/17 by Evans et al. [21]. Having
a bound greater than n/2 is critical for an application of column planarity to
partial simultaneous geometric embedding with mapping [21]. Barba et al. [6]
prove that every n-vertex outerplanar graph has a column planar set of size at
least n/2.2

Evans et al. [21] pose as an open problem the question of developing any
bound for column planar sets in general planar graphs. We provide here the first
non-trivial (that is, better than constant) bound for this problem.

Theorem 1. For every n, every n-vertex planar graph G has a (strongly)
column planar set of size at least

√
n/2.

Proof. If |V (G)| ≤ 2, the result is trivially true. Thus we may assume that G is a
triangulated plane graph. Let F be a frame of G, let <F be its associated partial
order, and let σ be the associated canonical ordering. Consider a chain in <F of
maximum size. (Hence, the chain starts with x and ends with y). Let H be the
subgraph of G induced by that chain, as defined in Lemma1. Let I ⊆ V (H) be
as defined in Lemma 1(b). Consider any set P of |I| points in the plane where
no two points have the same x-coordinate and consider a bijective mapping from
1 With the roles of x and y coordinates reversed.
2 We suspect that the results and proofs in both [6] and [21] also hold for strongly

column planar sets but we have not verified that.

The Utility of Untangling 325

I to P such that, for every two vertices v, w ∈ I, it holds that v <F w if and
only if x(v) < x(w). By Lemma 1(b), there exists a straight-line crossing-free
drawing of G that respects the given mapping and thus I, as ordered by <F ,
is a strongly column planar set. By Lemma 1(c), |I| ≥ |V (H)|/2. Thus if the
size of the maximum chain in <F is at least

√
2n, and thus |V (H)| ≥ √

2n,
we are done. Otherwise, by Dilworth’s theorem [18], <F has a partition into at
most

√
2n antichains. By the pigeon-hole principle, there is an antichain in that

partition with at least n/
√

2n =
√

n/2 vertices. Let A ⊆ V (G) be the maximum
antichain in <F . Consider any set P of |A| points in the plane where no two
points have the same x-coordinate and consider a bijective mapping from A to
P such that, for every two vertices v, w ∈ A, it holds that v <σ w if and only
if x(v) < x(w). By Lemma 2, there exists a straight-line crossing-free drawing of
G that respects the given mapping and thus A, as ordered by <σ, is a strongly
column planar set. This completes the proof since |A| ≥ √

n/2. �

We conclude this section by proving a slightly stronger statement (with a
slightly weaker bound when S = V) than Theorem 1. This stronger statement
relies on part (d) of Lemma 1, and is a critical strengthening for some applica-
tions, such as partial simultaneous geometric embeddings with mappings (see
Theorem 6 in Sect. 4.2).

Theorem 2. Given any planar graph G and any subset S ⊆ V , there exists
R ⊆ S such that R is a strongly column planar set of G and |R| ≥ √|S|/3.

Proof. If |V (G)| ≤ 2, the result is trivially true. Thus we may assume that G
is a triangulated plane graph. Let F be a frame of G, let <F be its associated
partial order, and let σ be the associated canonical ordering. Assume first that
<F has a chain C such that C ⊆ S and |C| ≥ √

3|S|. Let H be the subgraph of
G induced by a maximal chain that contains C in <F , as defined in Lemma 1.
Let I ⊆ S be as defined in Lemma 1(b) and (d). Consider any set P of |I| points
in the plane where no two points have the same x-coordinate and consider a
bijective mapping from I to P such that, for every two vertices v, w ∈ I, it holds
that v <F w if and only if x(v) < x(w). By Lemma 1(b), there exists a straight-
line crossing-free drawing of G that respects the given mapping and thus I, as
ordered by <F , is a strongly column planar set. By Lemma 1(d), I ⊆ C and
|I| ≥ |C|/3|. Thus if <F has a chain C such that C ⊆ S and |C| ≥ √

3|S|, we
are done. Otherwise, by Dilworth’s theorem [18], <F , when restricted to S, has
a partition into at most

√
3|S| antichains. By the pigeon-hole principle, there

is an antichain A ⊆ S in that partition that has at least |S|/√
3|S| =

√|S|/3
elements. Consider any set P of |A| points in the plane where no two points have
the same x-coordinate and consider a bijective mapping from A to P , such that
for every two vertices v, w ∈ A, v <σ w if and only if x(v) < x(w). By Lemma 2,
there exists a straight-line crossing-free drawing of G that respects the given
mapping and thus A, as ordered by <σ, is a strongly column planar set. This
completes the proof since |A| ≥ √|S|/3 and A ⊆ S. �

326 V. Dujmović

3 Universal Point Subsets

A set of points P is universal for a set of planar graphs if every graph from the
set has a straight-line crossing-free drawing where each of its vertices maps to a
distinct point in P . It is known that, for all large enough n, universal pointsets
of size n do not exist for all n-vertex planar graphs – as first proved by de
Fraysseix et al. [22]. The authors also proved that the O(n) × O(n) integer grid
is universal for all n-vertex planar graphs and thus a universal pointsets of size
O(n2) exists. Currently the best known lower bound on the size of a smallest
universal pointset for n-vertex planar graphs is 1.235n − o(n) [27] and the best
known upper bound is n2/4−O(n) [5]. Closing the gap between Ω(n) and O(n2)
is a major, and likely difficult, graph drawing problem, open since 1988 [22,23].

This motivated the following notion introduced by Angelini et al. [2]. A set
P of k ≤ n points in the plane is a universal point subset for all n-vertex
planar graphs if the following holds: every n-vertex planar graph G has a subset
S ⊆ V (G) of k vertices and a bijective mapping from S to P such that there
exists a straight-line crossing-free drawing of G that respects that mapping.

Angelini et al. [2] proved that for every n there exists a set of points of
size at least

√
n that is a universal point subset for all n-vertex planar graphs.

Di Giacomo et al. [16] continued this study and showed that for every n, every
set P of at most (

√
log2 n − 1)/4 points in the plane is a universal point subset

for all n-vertex planar graphs. They also showed that every one-sided convex
point set P of at most n1/3 points in the plane is a universal point subset for all
n-vertex planar graphs. The following theorem improves all these results.

Theorem 3. Every set P of at most
√

n/2 points in the plane is a universal
point subset for all n-vertex planar graphs.

The proof of this lemma can be derived directly from Lemmas 1 and 2, sim-
ilarly to the proof of Theorem1, but we will instead prove it using Theorem1.

Proof. Rotate P to obtain a new pointset P ′ where no two points of P ′ have the
same x-coordinate. By Theorem 1, every n-vertex planar graph has a strongly
column planar set R of size |P |. Thus, by the definition of strongly column planar
sets, there exists a total order μ on R such that given a bijective mapping from
R to P ′ where for every two vertices v, w ∈ R, v <μ w if and only if x(v) < x(w),
there exists a straight-line crossing-free drawing of G that respects the given
mapping. Such a mapping clearly exists since no two points of P ′ have the same
x-coordinate. Rotating P ′ back to the original pointset completes the proof. �

It is not known if, for all n, there exist a universal point subset of size
n1/2+ε for some ε > 0. Better bounds are only known for outerplanar graphs.
Namely, every pointset of size n in general position is universal for all n-vertex
outerplanar graphs [8,13,25]. Should the results of Barba et al. [6] apply to
strongly column planar sets, then arguments equivalent to those above would
show that every pointset of size n/2 is a universal point subset for all n-vertex
outerplanar graphs.

The Utility of Untangling 327

4 (Partial) Simultaneous Geometric Embeddings

Simultaneous Geometric Embeddings were introduced by Braß et al. [10]. Initially
there were two main variants of this problem, one in which the mapping between
the vertices of the two graphs is given and another in which the mapping is not
given. Since then there has been a plethora of work on the subject for various
variants of the problem – see, for example a survey by Bläsius et al. [7].

4.1 Without Mapping

Whether the following statement, on simultaneous geometric embeddings, is true
is an open question asked by Braß et al. [10] in 2003: For all n and for any two
n-vertex planar graphs there exists a pointset P of size n such that each of the
two graphs has a straight-line crossing-free drawing with its vertices mapped
to distinct points of P . The statement is known not to be true when “two” is
replaced by 7393 and n = 35 [12].

This motivates a study of (partial) geometric simultaneous embeddings –
various versions of which have been proposed and studied in the literature [7].
We start with the following version.

Two graphs G1 and G2, where |V (G1)| ≥ |V (G2)| are said to have a geometric
simultaneous embedding with no mapping if there exists a pointset P of size
|V (G1)| such that each of the two graphs has a straight-line crossing-free drawing
where all of its vertices are mapped to distinct points in P . Angelini et al. [3]
write: “What is the largest k ≤ n such that every n-vertex planar graph and
every k-vertex planar graph admit a geometric simultaneous embedding with no
mapping? Surprisingly, we are not aware of any super-constant lower bound for
the value of k.”

The following theorem answers their questions.

Theorem 4. For every n and every k ≤ √
n/2, every n-vertex planar graph

and every k-vertex planar graph admit a geometric simultaneous embedding with
no mapping.

Proof. Let G1 and G2 be the two given planar graphs with |V (G1)| = n and
|V (G2)| = k. By Fáry’s theorem, G2 has a straight-line crossing-free drawing
on some set, P2, of k points. By Theorem 3, G1 has a straight-line crossing-free
drawing where |P2| vertices of G1 are mapped to distinct points in P2. Consider
now the set of points, P , defined by the vertices in the drawing of G1. This set
is our desired pointset as it is a set of n points such that each of G1 and G2 has
a straight-line crossing-free drawing where all of its vertices are mapped to the
points in P . �

Here is another variant of the (partial) geometric simultaneous embedding
problem. For k ≤ n, two n-vertex planar graphs G1 and G2 are said to have
a k-partial simultaneous geometric embedding with no mapping (k-PSGENM)
if there exists a set P of at least k points in the plane such that each of the
two graphs has a straight-line crossing-free drawing where |P | of its vertices

328 V. Dujmović

are mapped to distinct points of P . Recall that Angelini et al. [2] proved that
for every n there exists a set of points of size at least

√
n that is a universal

point subset for all n-vertex planar graphs. This implies that, for all n, any two
n-vertex planar graphs have an

√
n-partial simultaneous geometric embedding

with no mapping. Note however that this does not imply Theorem4. Namely, if
one starts with a straight-line crossing-free drawing of the smaller graph G2 (say
on

√
n vertices), there is no guarantee with this result that the bigger, n-vertex

graph, G1 can be drawn while using all the points generated by the drawing
of G2.

4.2 With Mapping

The notion of k-partial simultaneous geometric embedding with mapping
(k-PSGE) is the same as k-PSGENM except that a bijective mapping between
V (G1) and V (G2) is given and the two drawings have a further restriction that
if v ∈ V (G1) is mapped to a point in P then the vertex w in V (G2) that v
maps to, has to be mapped to the same point in P . In other words, two n-
vertex planar graphs G1 and G2 on the same vertex set, V , are said to have
a k-partial simultaneous geometric embedding with mapping (k-PSGE) if there
exists a straight-line crossing free drawing D1 of G1 and D2 of G2 such that
there exists a subset V ′ ⊆ V with |V ′| ≥ k and each vertex v ∈ V ′ is represented
by the same point in D1 and D2.

It is known that, for every large enough n, there are pairs of n-vertex planar
graphs that do not have an n-partial simultaneous geometric embedding with
mapping, that is, an n-PSGE [10]. In fact the same is true for simpler families
of planar graphs, for example for a tree and a path [4], for a planar graph and
a matching [4] and for three paths [10].

k-PSGE was introduced by Evans et al. [21] who proved (using their column
planarity result) that any two n-vertex trees have an 11n/17-PSGE. Barba et al.
[6] proved that any two n-vertex outerplanar graphs have an n/4-PGSE. Evans
et al. [21] also observed that the main untangling result by Bose et al. [9] implies
that every pair of n-vertex planar graphs has an Ω(n1/4)-PSGE. Namely, start
with a straight-line crossing-free drawing of G1. Since the vertex sets of G1 and
G2 are the same, the drawing of G1 (or rather the drawing of its vertex set)
defines a straight-line drawing of G2. Untangling G2 such that Ω(n1/4) of its
vertices remain fixed (which is possible by [9]) gives the result.

Theorem 5. [6] Every pair of n-vertex planar graphs has an Ω(n1/4)-partial
simultaneous geometric embedding with mapping, that is, it has an Ω(n1/4)-
PGSE.

However, the above untangling argument fails if we try to apply it one more
time. Namely, consider the following generalization of the k-PGSE problem.
Given any set {G1, . . . , Gp} of p ≥ 2 n-vertex planar graphs on the same vertex
set, V , we say that G1, . . . , Gp have a k-partial simultaneous geometric embedding
with mapping (k-PSGE) if there exists a straight-line crossing-free drawing Di

The Utility of Untangling 329

of each Gi, i ∈ {1, . . . , p} such that there exists a subset V ′ ⊆ V with |V ′| ≥ k
and each vertex v ∈ V ′ is represented by the same point in all drawings Di,
i ∈ {1, . . . , p}.

If we try to mimic the earlier untangling argument that proves Theorem5,
it fails for p = 3 already since we cannot guarantee that when G3 is untangled
the set of its vertices that stays fixed has a non-empty intersection with the set
that remained fixed when untangling G2. It is here that part (d) of Lemma 1 is
needed, or rather the stronger result on column planarity from Theorem2.

Theorem 6. Any set of p ≥ 2 n-vertex planar graphs has an Ω(n1/4(p−1)
)-

partial simultaneous geometric embedding with mapping, that is, it has an
Ω(n1/4(p−1)

)-PGSE.

Proof. Let {G1, . . . , Gp} be the given set of p n-vertex planar graphs. The proof
is by induction on p. The base case, p = 2, is true by Theorem5. Let p ≥ 3 and
assume by induction that the set {G1, . . . , Gp−1} has an Ω(n1/4(p−2)

)-PGSE.
Let V ′ ⊆ V be the set from the definition of k-PSGE and let P ′ be the set of
|V ′| points that V ′ is mapped to in the drawings D1, . . . , Dp−1. Thus |V ′| ∈
Ω(n1/4(p−2)

) by induction. We may assume that no pair of points in P ′ has the
same x-coordinate as otherwise we can just rotate the union of D1, . . . , Dp−1.
By Theorem 2, there exists R ⊆ V ′ that is strongly column planar in Gp and
|R| ≥ √|V ′|/3. Since the vertices of V ′ are bijectively mapped to P ′, that
mapping defines a bijective mapping from R to a subset PR of P ′. Consider
the total order μ of R (the total order from the definition of strongly column
planar sets) and the total order φ of R as defined by the x-coordinates of PR.
By the Erdős–Szekeres theorem [19,31], there exists a subset R′ of R of at least√|R| ≥ (|V ′|/3)1/4 vertices such that the order of R′ in μ is the same or reverse
as the order of R′ in φ. In the second case the union of all the drawings of
D1, . . . , Dp can be mirrored such that the order of R′ in μ is the same as the
order of R′ in φ. Thus in both cases, we can apply Theorem 2. Since the vertices
of R are bijectively mapped to PR, this defines a bijective mapping from R′

to a subset P ′
R of PR. Since R′ is strongly column planar in Gp, we can apply

Theorem 2 to conclude that Gp has a straight-line crossing-free drawing Dp that
respects the mapping from R′ to P ′

R and thus each vertex v ∈ R′ is represented
by the same point in all drawings Di, i ∈ {1, . . . , p}. Since |V ′| ∈ Ω(n1/4(p−2)

),
and |R′| ≥ (|V ′|/3)1/4, the lower bound holds. �

Note that the definition of k-PSGE, as introduced in Evans et al. [21], has
one additional requirement, as compared with the definition used here. Namely,
the additional requirement states that if v, w ∈ V are mapped to a same point in
Di and Dj , then v = w. However this additional requirement can always be met
by the fact that it is possible to perturb any subset of vertices of a geometric
plane graph without introducing crossings. More precisely, for any geometric

330 V. Dujmović

plane graph there exists a value ε > 0 such that each vertex can be moved any
distance of at most ε, and the resulting geometric graph is also crossing-free.3

5 Conclusion

The main purpose of this paper is to draw attention to Lemmas 1 and 2 in the
current form as they seem to have applications to numerous, some seemingly
unrelated, graph drawing problems as evidenced by the results highlighted in
the previous sections. The two lemmas appear in the current form for the first
time here. Their original formulation was tailored towards specific application
(untangling) and not directly applicable to any of the above mentioned problems.

Acknowledgements. Many thanks to Pat Morin and David R. Wood for very helpful
comments on the preliminary version of this article. Similarly, many thanks to the
anonymous referees, especially the one who painstakingly corrected my ever random
selection from {the, a, {}}.

The author is supported by NSERC and Ontario Ministry of Research and
Innovation.

References

1. Abellanas, M., Hurtado, F., Ramos, P.: Tolerancia de arreglos de segmentos. In:
Proceedings of VI Encuentros de Geometŕıa Computacional, pp. 77–84 (1995)

2. Angelini, P., Binucci, C., Evans, W., Hurtado, F., Liotta, G., Mchedlidze, T.,
Meijer, H., Okamoto, Y.: Universal point subsets for planar graphs. In: Chao,
K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 423–432.
Springer, Heidelberg (2012)

3. Angelini, P., Evans, W., Frati, F., Gudmundsson, J.: SEFE with no mapping
via large induced outerplane graphs in plane graphs. In: Cai, L., Cheng, S.-W.,
Lam, T.-W. (eds.) Algorithms and Computation. LNCS, vol. 8283, pp. 185–195.
Springer, Heidelberg (2013)

4. Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with
no geometric simultaneous embedding. J. Graph Algorithms Appl. 16(1), 37–83
(2012)

5. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

6. Barba, L., Hoffmann, M., Kusters, V.: Column planarity and partial simultaneous
geometric embedding for outerplanar graphs. In: Abstracts of the 31st European
Workshop on Computational Geometry (EuroCG), pp. 53–56 (2015)

7. Bläsius, T., Kobourov, S.G., Rutter, I.: Simultaneous embedding of planar graphs.
In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualizationpp, pp. 349–
381. CRC Press, Boca Raton (2013)

3 The maximum value ε for which this property holds is called the tolerance of the
arrangement of segments. This concept, both for the geometric realization and the
combinatorial meaning of the graphs was systematically studied in [1,29].

The Utility of Untangling 331

8. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom.
23(3), 303–312 (2002)

9. Bose, P., Dujmović, V., Hurtado, F., Langerman, S., Morin, P., Wood, D.R.:
A polynomial bound for untangling geometric planar graphs. Discrete Comput.
Geom. 42(4), 570–585 (2009)

10. Brass, P., Cenek, E., Duncan, C.A., Efrat, A., Erten, C., Ismailescu, D., Kobourov,
S.G., Lubiw, A., Mitchell, J.S.B.: On simultaneous planar graph embeddings. In:
Dehne, F., Sack, J.-R., Smid, M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 243–255.
Springer, Heidelberg (2003)

11. Cano, J., Tóth, C.D., Urrutia, J.: Upper bound constructions for untangling planar
geometric graphs. SIAM J. Discrete Math. 28(4), 1935–1943 (2014)

12. Cardinal, J., Hoffmann, M., Kusters, V.: On universal point sets for planar graphs.
In: Akiyama, J., Kano, M., Sakai, T. (eds.) TJJCCGG 2012. LNCS, vol. 8296, pp.
30–41. Springer, Heidelberg (2013)

13. Castañeda, N., Urrutia, J.: Straight line embeddings of planar graphs on point
sets. In: Proceedings of the 8th Canadian Conference on Computational Geometry,
(CCCG), pp. 312–318 (1996)

14. Cibulka, J.: Untangling polygons and graphs. Discrete Comput. Geom. 43(2), 402–
411 (2010)

15. Di Giacomo, E., Didimo, W., van Kreveld, M.J., Liotta, G., Speckmann, B.:
Matched drawings of planar graphs. J. Graph Algorithms Appl. 13(3), 423–445
(2009)

16. Di Giacomo, E., Liotta, G., Mchedlidze, T.: How many vertex locations can be
arbitrarily chosen when drawing planar graphs? CoRR abs/1212.0804 (2012)

17. Di Giacomo, E., Liotta, G., Mchedlidze, T.: Lower and upper bounds for long
induced paths in 3-connected planar graphs. In: Brandstädt, A., Jansen, K.,
Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp. 213–224. Springer, Heidelberg
(2013)

18. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
2(51), 161–166 (1950)

19. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. Compositio Math-
ematica 2, 463–470 (1935)

20. Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: Characterization of unla-
beled level planar trees. Comput. Geom. 42(6–7), 704–721 (2009)

21. Evans, W., Kusters, V., Saumell, M., Speckmann, B.: Column planarity and partial
simultaneous geometric embedding. In: Duncan, C., Symvonis, A. (eds.) GD 2014.
LNCS, vol. 8871, pp. 259–271. Springer, Heidelberg (2014)

22. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

23. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fary embeddings
of planar graphs. In: Proceedings of the Twentieth Annual ACM Symposium on
Theory of Computing, STOC ’88, pp. 426–433 (1988)

24. Goaoc, X., Kratochv́ıl, J., Okamoto, Y., Shin, C., Spillner, A., Wolff, A.: Untangling
a planar graph. Discrete Comput. Geom. 42(4), 542–569 (2009)

25. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation
with vertices at specified points (solution to problem e3341). Am. Math. Monthly
98, 165–166 (1991)

26. Kang, M., Pikhurko, O., Ravsky, A., Schacht, M., Verbitsky, O.: Untangling planar
graphs from a specified vertex position - hard cases. Discrete Appl. Math. 159(8),
789–799 (2011)

332 V. Dujmović

27. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

28. Pach, J., Tardos, G.: Untangling a polygon. Discrete Comput. Geom. 28(4), 585–
592 (2002)

29. Ramos, P.: Tolerancia de estructuras geométricas y combinatorias. Ph.D. thesis,
Universidad Politécnica de Madrid, Madrid, Spain (1995)

30. Ravsky, A., Verbitsky, O.: On collinear sets in straight-line drawings. In:
Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 295–306. Springer,
Heidelberg (2011)

31. Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres.
In: Aldous, D., Diaconis, P., Spencer, J., Steele, J.M. (eds.) Discrete probability
and algorithms, pp. 111–131. Springer, Heidelberg (1995)

Polygons and Convexity

Representing Directed Trees
as Straight Skeletons

Oswin Aichholzer1, Therese Biedl2, Thomas Hackl1, Martin Held3,
Stefan Huber4, Peter Palfrader3(B), and Birgit Vogtenhuber1

1 Institut für Softwaretechnologie, Technische Universität Graz, 8010 Graz, Austria
{oaich,thackl,bvogt}@ist.tugraz.at

2 Cheriton School of Computer Science, University of Waterloo,
Waterloo, ON N2L 1A2, Canada

biedl@uwaterloo.ca
3 FB Computerwissenschaften, Universität Salzburg, 5020 Salzburg, Austria

{held,palfrader}@cosy.sbg.ac.at
4 Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria

stefan.huber@ist.ac.at

Abstract. The straight skeleton of a polygon is the geometric graph
obtained by tracing the vertices during a mitered offsetting process. It
is known that the straight skeleton of a simple polygon is a tree, and
one can naturally derive directions on the edges of the tree from the
propagation of the shrinking process.

In this paper, we ask the reverse question: Given a tree with directed
edges, can it be the straight skeleton of a polygon? And if so, can we
find a suitable simple polygon? We answer these questions for all directed
trees where the order of edges around each node is fixed.

1 Introduction

Many geometric structures on sets of points, line segments, or polygons, e.g.
Delaunay triangulations, Voronoi diagrams, straight skeletons, and rectangle-of-
influence graphs can be represented as graphs. The graph representation problem
(for each of these geometric structures) asks which graphs can be represented
in this way. That is, given a graph G, can we find a suitable input set S of
points, segments, or polygons such that the geometric structure induced by S is
equivalent to G?

Graph representation has been studied for numerous geometric structures in
the past. To name just a few examples: Every planar graph is the intersection
graph of line segments [6], every wheel is a rectangle-of-influence graph [11], and
all 4-connected planar graphs are Delaunay triangulations [8]. See also [7] for
many results on proximity drawability of graphs.

Of particular interest to our paper are two results. First, Liotta and
Meijer [12] studied when a tree can be represented as the Voronoi diagram of

OA and BV supported by Austrian Science Fund (FWF) I 648-N18; TB by NSERC;
TH by FWF P23629-N18; MH and PP by FWF P25816-N15.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 335–347, 2015.
DOI: 10.1007/978-3-319-27261-0 28

336 O. Aichholzer et al.

a set of points, and showed that this is always possible (and the points are in
convex position). Secondly, Aichholzer et al. [4] studied when a tree can be rep-
resented as the straight skeleton of a polygon, and showed that this is always
possible (and the polygon is convex).

1.1 Background

The straight skeleton S(P) of a simple polygon P is defined via a wavefront-
propagation process: Each edge of P emits a wavefront edge moving in a self-
parallel manner at unit speed towards the interior of the polygon.

Initially, at time t = 0, this wavefront is a single polygon that is identical
to P . As the propagation process continues, however, the wavefront will change
due to self-interaction: (i) In edge events, an edge of the wavefront shrinks to
zero length and is removed from the wavefront. (ii) In split events, a vertex of
the wavefront meets the interior of a previously non-incident wavefront edge.
This split partitions the edge and the polygon into two parts that now propa-
gate independently. (iii) If the input is not in general position, more complex
interactions are possible. For example, entire portions of the wavefront collapse
at once when parallel wavefronts that were emanated by parallel polygon edges
meet, or new reflex wavefront vertices are created when multiple reflex vertices
interact in a vertex-event. The propagation process ends once all components of
the wavefront have collapsed. Therefore, the set of wavefront edges at any time
t form one or more polygons, which we call the wavefront and denote by W(t).

Fig. 1. The straight skeleton S(P) of
an input polygon P (bold) is the union
of the traces of wavefront vertices.
Wavefront polygons at different times
are shown in gray.

The straight skeleton S(P), introduced
by Aichholzer et al. [2], is then defined as
the geometric graph whose edges are the
traces of the vertices of W(t) over time; see
Fig. 1. For simple polygons, S(P) always is
a tree [2], with the leaves corresponding to
vertices of P and interior vertices having
degree 3 or more. Several algorithms are
known to construct the straight skeleton
[1,9,10].

We can distinguish between convex and
reflex vertices of P or W(t). A vertex v is
reflex (convex) if the interior angle at v
is greater (less) than π. We call an arc of
S(P) reflex (convex) if it was traced out
by a reflex (convex) vertex of the wavefront. When discussing the wavefront
propagation process, we will often interchangeably refer to wavefront vertices
and straight skeleton arcs.

The roof model [2] represents a convenient means to study the wavefront over
the entire propagation period. It embeds the wavefront in three-space, where the
z-axis represents time: T (P) :=

⋃
t≥0(W(t) × {t}). The inner edges and vertices

of this polytope correspond to arcs and nodes of the straight skeleton S(P), and
the z-coordinate of each element corresponds to the time it was traced out by

Representing Directed Trees as Straight Skeletons 337

the wavefront-propagation process. Reflex arcs correspond to valleys and convex
arcs to ridges.

If we exclude polygons where parallel polygon edges cause entire wavefront
segments to collapse at one time, resulting in horizontal roof edges, then arcs of
S(P) will have been traced out by the wavefront during its propagation process,
and we can assign a natural direction to these arcs: make them point into their
trace direction. This assignment gives rise to the directed straight skeleton, Sd(P).

A directed tree T is a directed graph whose underlying undirected graph is a
tree, i.e., connected and acyclic. A labeled tree T� is a tree with assignments of
labels to its arcs. For most of this paper, trees are ordered, i.e., for every node
there is a fixed circular order in which the arcs appear around this node.

It is customary to refer to the edges and vertices of the straight skeleton
as arcs and nodes, and to reserve edges and vertices for elements of input or
wavefront polygons. We also use arcs and nodes to refer to elements of trees.

1.2 Our Results

Our paper was inspired by the work in [4], which studies undirected trees. How-
ever, the structure of the straight skeleton imposes directions on the arcs, except
in degenerate cases. Hence, the natural question to ask is:

Probelm 1 (Directed straight-skeleton realizability). Given a directed tree T , (i)
is there a polygon P such that Sd(P) shares the structure of T (we denote this
by Sd(P) ∼ T), and (ii) if yes, can we reconstruct such a polygon P from T?

Having directions assigned to the arcs makes the straight-skeleton realizabil-
ity problem significantly harder: For example, one easily sees that in a convex
polygon the straight skeleton is a rooted tree (with exactly one sink), and so
not all directed trees can be represented via convex polygons. Hence, the results
from [4] do not transfer to directed trees.

The directed-straight-skeleton-realizability question can be asked for multiple
meanings of “directed tree”: It could be a geometric tree (nodes are given with
coordinates), an ordered tree (the clockwise order of arcs around each node is
specified) or an unordered tree (we have the nodes and arcs but nothing else). For
a geometric tree, the problem is trivial, since the locations of the leaves specify
the vertices of the only polygon for which this could be the straight skeleton.
(If leaves are not specified as points but only as “being on a ray”, then the
geometric setting is non-trivial, but can be solved in polynomial time [5].)

In this paper, we consider the variant of the problem for ordered trees. In the
case of polygons in general position, we give three obviously necessary conditions
and show that these are also always sufficient. It turns out that the order of
arcs around nodes is not important, so the algorithm also works for unordered
directed trees. We then turn to polygons without restrictions on vertex-positions.
In this case the directed straight skeletons can be significantly more complicated,
and in particular, have arbitrary degrees. Testing whether a directed tree can
be represented as straight skeleton requires deeper insight into the structure of

338 O. Aichholzer et al.

straight skeletons, and we can exploit these to develop such a testing algorithm
and, in case of a positive answer, find a suitable polygon.

2 Trees from Polygons in General Position

In a first step we restrict the problem to polygons in general position. By general
position we mean that no four edges have supporting lines which are tangent to
a common circle. In particular this means that during the wavefront propagation
process only standard edge and split events are observed, resulting in straight
skeletons where all interior nodes are of degree exactly three.

Investigating the structure of such directed straight skeletons enables us to
establish a number of necessary conditions for a directed tree to be a directed
straight skeleton of a polygon in general position.

Necessary Conditions. Let P be a polygon in general position and let T be the
directed tree such that Sd(P) ∼ T .

The leaves of T correspond to the vertices of P . In the roof model, these
vertices have zero z-coordinate, while all other nodes have positive z-coordinates
since they will have been created by an event at some time t > 0. Thus, any arc
incident to a vertex v of P increases in elevation as it moves away from v. As
such, all leaves of T must have in-degree 0 and out-degree 1.

The interior nodes all have degree 3 and are classified by their in- and out-
degrees as follows:

in-degree 3: (peak nodes) A collapse of a wavefront component (of triangular
shape) at the end of its propagation process is witnessed by a local maximum
in the roof. These local maxima correspond to nodes with in-degree three.

in-degree 2: (collapse nodes) Edge events in the propagation process, i.e., col-
lapsed wavefront edges, result in a node with two incoming arcs and one
outgoing arc.

in-degree 1: (split nodes) Split events will cause a node that has only one
incoming arc and two outgoing arcs.

in-degree 0: Since the roof model will have no local minima except at the edges
of P [2], nodes with in-degree zero and out-degree three cannot exist.

Of these, the case of a split event requires some more attention since it
imposes additional restrictions on the incoming arc. Recall that we can distin-
guish between reflex and convex vertices of P , and note that any vertex is either
reflex or convex by the general position assumption. For a split event to occur,
a reflex vertex of the wavefront must crash into a previously non-incident part
of the wavefront.

In the absence of vertex events, which create skeleton-nodes of degree at least
four and therefore do not happen when the polygon is in general position, no
reflex vertex can ever be created by an event. Thus, any reflex vertex that is part
of an event must have been emanating from a reflex vertex of the input polygon

Representing Directed Trees as Straight Skeletons 339

itself. Accordingly, the incoming arc in a split event node must have a leaf at its
other end.

We summarize these conditions in the following lemma.

Lemma 1. Let P be a simple polygon in general position and let T be the
directed tree such that Sd(P) ∼ T . Then in T the following hold:

(G1) the incident arc of each leaf is outgoing,
(G2) every interior node has degree 3 and at most two outgoing arcs,
(G3) if an interior node has out-degree two, then the incoming arc connects

directly from a leaf.

Observations. Let T be a directed tree that satisfies conditions (G1–G3). Classify
the interior nodes as split nodes, collapse nodes and peaks as above. The goal is
to show that any such tree can indeed be realized as a straight skeleton. For this,
we split the tree into multiple subtrees in a particular way (also illustrated in the
example in Fig. 3). We have the following observations. Full proofs of the next
four lemmas can be found in Appendix A in the arXiv-version of this work [3].

Lemma 2. Let T be a directed tree that satisfies conditions (G1–G3). If T has
no split nodes, then T has exactly one peak.

Lemma 3. Let T be a tree that satisfies conditions (G1–G3). Create a forest
F as follows: At any split node s of T , remove s, remove the leaf incident to
the incoming arc of s, and replace the two outgoing arcs of s by two new leaves
that are connected to the other ends of these arcs. Then each component of F
satisfies conditions (G1–G3) and has exactly one peak.

Sufficient Conditions. It remains to be shown that the necessary conditions (G1–
G3) from Lemma 1 are also sufficient. We show this by constructing a simple
polygon P such that Sd(P) ∼ T , given a directed tree T that satisfies (G1–G3).
We start by showing this for trees that have no split nodes.

Lemma 4. For any directed tree T that satisfies (G1–G3) and has no split
nodes, there is a convex polygon P such that Sd(P) ∼ T .

Proof. We show this by constructive induction. Any triangle is a polygon such
that its straight skeleton shares the structure of the peak node of T .

To construct a polygon P for a tree T with k interior nodes, we first construct
a polygon P ′ for a tree T ′ with k − 1 interior nodes. We obtain T ′ by replacing
a node of T and its two adjacent leaves with a single leaf �. (There always is
such a node.) To obtain P , we compute an exterior offset of P ′ and replace the
vertex that corresponds to � with a sufficiently small edge such that it collapses
before the wavefront of P reaches P ′.

This polygon P will then satisfy Sd(P) ∼ T . See Fig. 2 for an illustration. �

Furthermore, it is possible to add a constraint on one interior angle of the poly-
gon:

340 O. Aichholzer et al.

Fig. 3. (a) Given a directed tree we split it into a forest F of subtrees without split
nodes. (b) Recursing on the structure of F , we can create convex polygons for each
element (dotted) and then merge them into ever larger polygons.

Lemma 5. Let T be a directed tree without split nodes and let � be a leaf of T .
Further, let α be an arbitrary angle with 0 < α < π. Then there exists a convex
polygon P such that Sd(P) ∼ T and such that the interior angle at the vertex
that corresponds to � is α.

⇒

Fig. 2. Creating the polygon for a tree
with k+1 interior nodes from a polygon
for a tree with one less.

Now we are ready to consider trees
with split nodes.

Lemma 6. Let T be a directed tree that
satisfies conditions (G1–G3). Then there
exists a polygon P such that Sd(P) ∼ T .

Proof. As in Lemma 3, we split T at split
nodes, also dropping the incoming reflex
arc and its incident leaf. We obtain a for-
est F = {T1, T2, . . . , Tn} where each Ti is a tree without split nodes.

This forest can in turn be considered an undirected tree, where each Ti gives
rise to a node and nodes are connected if and only if the corresponding trees
originally had a split node in common. We pick an arbitrary root for F , say T1,
and construct a convex polygon P1 such that Sd(P1) ∼ T1.

This root T1 is connected to one or more children in F via split nodes. Let
T2 be such a child, and let �1 ∈ T1 and �2 ∈ T2 be the two leaves obtained when
splitting at the split node common to T1 and T2. Let v1 be the vertex in P1

corresponding to �1, and assume it has angle α1 < π.
We construct a convex polygon P2 such that Sd(P2) ∼ T2 and the vertex v2

corresponding to �2 has angle α < π − α1. This enables us to merge P1 and P2

in the following way: We place P2 in the plane such that v1 of P1 and v2 of P2

occupy the same locus. We rotate P2 such that the angle between a pair of edges
of P1 and P2 is exactly π. Which pair of edges is chosen depends on where in
the cyclic order the incident reflex leaf at the split node in T lies. The layout
of P1 and P2 then corresponds to the layout of the wavefront at the split-event
time. If we now compute a small outer offset and designate this to be P , then
the directed straight skeleton of P has the same structure as the subtree of T
that is made up by T1, T2, the split node, and its incident leaf; see Fig. 3.

We then repeat this process for another child of T1 or T2. Note that it may
be necessary to scale the polygon that we add to a sufficiently small size so that

Representing Directed Trees as Straight Skeletons 341

it does not conflict with other parts of the polygon already constructed. This
is always possible since for each vertex of a polygon there exists a disk that
intersects the polygon only in the wedge defined by the vertex.

Once all elements of the forest have been processed, we obtain a polygon P
whose straight skeleton has the same structure as T , i.e., Sd(P) ∼ T . �

Notice that conditions (G1–G3) do not depend on the order of arcs around
nodes; we can construct a polygon for any such order. So in particular if T is an
unordered tree that satisfies (G1–G3), then we can pick an arbitrary order and
the lemma holds. Hence, we get the following theorem:

Theorem 1. An (ordered or unordered) directed tree T is the directed straight
skeleton of a simple polygon P in general position if and only if T satisfies
conditions (G1–G3).

3 Realizing Trees with Labeled Arcs

Recall that an arc of the straight skeleton is called reflex (convex) if it was
traced out by a reflex (convex) vertex of the wavefront. One can easily see that
the construction in Lemma 6 creates a polygon where all arcs of the straight
skeleton are convex, with the exception of arcs from leaves to split nodes.

For later constructions (for trees with higher degrees), it will be important
that we test not only whether an ordered tree can be realized, but additionally
we want to impose onto each arc whether it is reflex or convex in the straight
skeleton. We study this question here first for trees with maximum degree 3.

So assume we have a directed tree T that satisfies (G1–G3). Additionally we
now label each arc of T with either “reflex” or “convex”, and we ask whether
there exists a polygon P that realizes this labeled directed tree in the sense that
Sd(P) ∼ T and the type of skeleton-arc in Sd(P) matches the label of the arc
in T . We denote this by Sd(P) ∼� T .

We observe that a peak node is created when a wavefront of three edges, a
triangle, collapses. Therefore, all incident arcs at a peak node are convex.

For collapse nodes, we know that the outgoing arc is convex. (Recall that
reflex arcs in a straight skeleton are only created in vertex events, which cannot
exist when all interior nodes have degree three.) At least one of the incoming
arcs needs to be convex, as two reflex wavefront vertices meeting in an event will
result in a node of degree at least four.

We have already established that the incoming arc at a split node needs to
be reflex. Furthermore, it is easy to see that the two outgoing arcs of a split
node need to be convex. We summarize the necessary conditions for a labeled
directed tree to correspond to a straight skeleton in the following lemma:

342 O. Aichholzer et al.

Lemma 7. Let P be a simple polygon in general position and let T� be the labeled
directed tree such that Sd(P) ∼� T�. Then

(L1) for peak nodes, all incoming arcs are convex;
(L2) for collapse nodes, at least one incoming arc and the outgoing arc are

convex;
(L3) for split nodes, the incoming arc is reflex and both outgoing arcs are convex.

We will now show that (L1–L3) are also sufficient:

Lemma 8. Any labeled directed tree T� that meets conditions (G1–G3) from
Lemma 1 and (L1–L3) from Lemma 7 is realizable by a simple polygon P .

Proof. Since reflex arcs in T� only originate at leaves and terminate at collapse
or split nodes (interior nodes never have outgoing reflex arcs, and peak nodes
have no incoming reflex arcs), we can create a tree T ′

� by replacing each collapse
node that has an incoming reflex arc with a leaf and dropping the two incident
incoming arcs and their leaves. This resulting tree T ′

� will have no reflex arcs
except for those leading from a leaf to split nodes by (L1), (L3), and (G3). Thus,
we can create a polygon P ′ such that Sd(P ′) ∼� T ′

� by the process described in
the proof of Lemma 6, respecting all labels.

We now obtain P by offsetting P ′ slightly to the outside. Then, we modify P
at each vertex v that corresponds to a leaf in T ′

� that was the result of replacing
a collapse node of T�. Note that each such vertex v is convex since the outgoing
arc of a collapse node is convex by (L2). We insert a small edge in place of v,
replacing it with v1, the edge, and v2. We choose the angles at v1 and v2 such
that one of them is reflex and the other is convex, in order to match the labeling
of T�. Figure 4 illustrates this operation.

By making the new edge sufficiently small, we can ensure that these events
happen before the wavefront becomes identical to P ′, and thus before all remain-
ing events of the wavefront propagation. �

4 Arbitrary Node Degrees

⇒

Fig. 4. Extending a convex vertex
of P such that a leaf in its tree is
replaced by a collapse node where
one incoming arc is reflex and one
is convex.

Once we allow for straight skeletons where
interior nodes can have degrees larger than
three, a number of previous constraints no
longer hold. Most importantly, during the
wavefront propagation vertex events can hap-
pen, resulting in new reflex vertices in the
wavefront after the event. Consequently, for
instance, split nodes no longer need to be
adjacent to leaves. Larger node degrees also
result in more complex variants of split, col-
lapse, and peak nodes. Note that we continue
to restrict polygons from having parallel edges as those might cause skeleton arcs
which have no direction (when they get created as a result of two wavefront edges

Representing Directed Trees as Straight Skeletons 343

crashing into each other) or straight skeleton arcs that are neither reflex nor con-
vex (when two parallel wavefronts moving in the same direction become incident
at an event).

In order to understand what combinations of reflex and convex incoming and
outgoing arcs may exist at a node in a directed straight skeleton, we study the
different shapes that a wavefront may have at an event at locus p and time t.
At a time t − δ immediately prior to the event, the wavefront will consist of a
combination of reflex and convex vertices, tracing out reflex and convex arcs, all
of which will meet at p at time t. We choose δ sufficiently small such that no
event will happen in the interval [t − δ, t).

Consider the wavefront around a locus p at an event, and consider the wedges
that have been already swept by the wavefront. With wedge we mean the area
near p swept over by a continuous portion of the wavefront polygon until time t.

If a single wedge covers the entire area around p, we call it a full wedge. The
interior angles of other wedges might be less than π, greater than π, or exactly
π as illustrated in Fig. 5. We call the first type of wedge reflex and the second
type of wedge convex, after their corresponding wavefront vertices in the simple
case. The third type of wedge we simply call π-wedge.

= π

< π < π

> π

< π

> π

full

Fig. 5. Wavefront wedges at event times are either full wedges or can be classified by
their interior angle. The wedges (already-swept areas) are gray, the remaining white
sectors are covered by the wavefront polygon(s).

A single wedge may have been traced out by just one wavefront edge if a
wedge at an event has an interior angle of exactly π, but in all other cases it is
the area covered by two or more wavefront edges and their incident wavefront
vertices, which have traced out one or more incoming arcs at p. Note that all
but the two outermost edges of this part of the wavefront collapse at time t.

We will establish arc-patterns to describe combinations of arcs at a node.
Such a pattern is a string consisting of the types of arcs: r for an incoming reflex
arc, c for an incoming convex arc, and r̂ and ĉ for their outgoing counterparts.
We will use operators known from language theory, such as parentheses to group
blocks, the asterisk (∗) to indicate the preceding character or group may occur
zero or more times, the plus sign (+) to indicate the preceding block may occur
one or more times, and the question mark (?) to indicate it may exist zero times
or once. When defining patterns we give them variable names in capitals.

We now investigate which combination of arcs may trace out which types of
wedges. For this purpose we first characterize single wedges and provide their

344 O. Aichholzer et al.

describing arc-patterns. Then we examine all possible single wedge combinations
and provide allowed arc-patterns for interior nodes.

Due to lack of space we give here only an overview on the arc-patterns of
single wedges and the arc-patterns for possible combinations of these wedges at
interior nodes. For a detailed analysis please see Appendix B (see footnote 1).

As mentioned, single wedges can be reflex wedges, convex wedges, π-wedges,
and so called full wedges, the latter being traced out by a wavefront that collapses
completely around a locus p. The arc-pattern for a reflex wedge is R := r (cr)∗,
i.e., one reflex vertex, followed by zero or more (convex, reflex) pairs of vertices
and thus arcs. If a reflex wedge is created by a single reflex wavefront vertex
(and its incident edges) then we call it trivial. Otherwise, we call it non-trivial,
with R+ = r (cr)+ specifying the arc-pattern of a non-trivial reflex wedge.

The arc-pattern for a convex wedge is C := r? c (r?c)∗ r?. Like for reflex
wedges we distinguish trivial (traced out by a single convex vertex) and non-
trivial convex wedges, the latter (any pattern matching C and having length at
least two) being denoted by C+.

The case of π-wedges is related to the case of reflex wedges. A π-wedge is
either traced out by exactly one wavefront edge (no incoming arcs), or it has the
same pattern as for a non-trivial reflex wedge. Hence, we have as arc-pattern
P := ∅ | R+. Note that since we have explicitly excluded parallel polygon edges
for this problem setting, only trivial π-wedges can exist. Therefore, we will set
P := ∅ here.

Last, the arc-pattern of a full wedge is F := c (r?c)∗ c (r?c)∗ c (r?c)∗.

(a) (b) (c) (d)

(h)(g)(f)(e)

Fig. 6. All wedge combinations possible at a node.

Analyzing possible combinations of single wedges at interior nodes we get seven
different allowed arc-patterns (see Fig. 6(a–h)): Na := C+ ĉ, Nb := C ĉ (R ĉ)+,
Nd := P ĉ (R ĉ)+, Ne := R+ r̂, Nf := (R ĉ)+R r̂, Ng := (R ĉ)+R ĉ, and

Representing Directed Trees as Straight Skeletons 345

Nh := F . (Note that the pattern from Fig. 6(c) will not result in an event without
parallel polygon edges, which we have excluded.) A simple split node is matched
via Nd, a simple collapse node is handled by Na (with C+ being either cc, rc, or cr),
and a simple peak node is matched by Nh.

Since these are all possible wavefront/wedge combinations, any interior node
of the straight skeleton will have to match N := Na|Nb|Nd|Ne|Nf |Ng|Nh. We
can state the following lemma:

Lemma 9. Let P be a simple polygon and let T� be the labeled directed tree such
that Sd(P) ∼� T�. Then the cyclic order of arcs of any interior node of T� needs
to match the pattern specification N defined above.

After the necessity of the discussed conditions we now prove their sufficiency.

Lemma 10. Let T� be any labeled directed tree for which (i) the cyclic order of
arcs of each interior node matches the pattern specification N defined above and
(ii) each leaf has out-degree one. Then T� is realizable by some simple polygon P ,
that is, Sd(P) ∼� T�.

Proof. We will construct P in a manner similar to the one described in Lemma 6.
We start by identifying maximally connected components C1, C2, . . . , Cn of T�

containing nodes with out-degree either zero or one. These components take the
place of the subtrees of our forest from Lemma 6, and they are connected in T�

via split-nodes, i.e., nodes with out-degree ≥ 2.
We pick an arbitrary component C1 and create a polygon P1 such that

Sd(P1) ∼� C1 as follows. If there are no outgoing arcs from C1, we start at
its unique peak node. Otherwise, there is exactly one outgoing arc, and we begin
at the node it is incident to. Constructing a polygon for this node is straightfor-
ward by applying the concepts learned from considering convex, reflex, and full
wavefront wedges. We proceed by extending this initial polygon step by step like
in Lemma 4, treating each reflex or convex vertex of the polygon as a wavefront
wedge to be constructed, until we have a polygon for the entire component.

Next, we pick one of the split nodes connected to C1. That split node, we call
it n, will have one of the forms from Fig. 6 that have at least two white sectors.
The polygon we just created will cover one of these white sectors. (Depending on
the type of arc connecting C1 to n, the polygon will either have a reflex or convex
vertex for this arc.) We continue by constructing polygons for all remaining white
sectors in the same fashion we used for constructing P1. Note that this process
allows us to force at least one angle, and therefore we can construct polygons
that fit into the white sectors for n.

Now we have the wavefront polygon as it should be when the event at n
happens. We compute a small exterior offset, joining all polygons into one larger
polygon. The new reflex or convex vertices at this point are then further subdi-
vided as required by the incoming arcs for n.

We repeat this process until we have covered all split nodes and thus all
components and have thereby created a polygon whose structure matches T�. �

Please see Appendix C in the arXiv-version of this work [3].

346 O. Aichholzer et al.

Combining Lemmas 9 and 10, we obtain the following theorem:

Theorem 2. An ordered labeled directed tree T� is the directed straight skeleton
of a simple polygon P without parallel edges if and only if (i) the cyclic order
of arcs of each interior node of T� matches the pattern specification N defined
above and (ii) each leaf has out-degree one.

5 Conclusion

In this work we developed a complete characterization of necessary and also
sufficient conditions such that a given directed and labeled ordered tree can be
represented as the straight skeleton of a simple polygon. This extends previous
work on representing trees via related geometric structures [4,12].

We leave the algorithmic question – how efficient suitability of a given input
tree can be tested and, in case of an affirmative answer, a corresponding simple
polygon can be computed – for future research. We conjecture that both is
possible in time linear in the size of the given tree.

References

1. Aichholzer, O., Aurenhammer, F.: Straight skeletons for general polygonal figures
in the plane. In: Samoilenko, A. (ed.) Voronoi’s Impact on Modern Sciences II,
vol. 21, pp. 7–21. Institute of Mathematics of the National Academy of Sciences of
Ukraine, Kiev, Ukraine (1998)

2. Aichholzer, O., Aurenhammer, F., Alberts, D., Gärtner, B.: A novel type of skeleton
for polygons. J. Univ. Comput. Sci. 1(12), 752–761 (1995)

3. Aichholzer, O., Biedl, T., Hackl, T., Held, M., Huber, S., Palfrader, P.,
Vogtenhuber, B.: Representing directed trees as straight skeletons [cs.CG] (2015).
http://arxiv.org/abs/1508.01076

4. Aichholzer, O., Cheng, H., Devadoss, S.L., Hackl, T., Huber, S., Li, B., Risteski, A.:
What makes a tree a straight skeleton? In: Proceedings of the 24th Canadian Con-
ference on Computational Geometry, (CCCG 2012), pp. 253–258. Charlottetown,
PE, Canada (2012)

5. Biedl, T., Held, M., Huber, S.: Recognizing straight skeletons and Voronoi diagrams
and reconstructing their input. In: Gavrilova, M., Vyatkina, K. (eds.) Proceedings
of the 10th International Symposium on Voronoi Diagrams in Science & Engineer-
ing (ISVD 2013), pp. 37–46. IEEE Computer Society, Saint Petersburg, Russia
(2013)

6. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of seg-
ments in the plane (Extended Abstract). In: Proceedings of 41st Annual ACM
Symposium Theory Computing (STOC 2009), pp. 631–638. ACM, Bethesda, MD,
USA (2009)

7. Di Battista, G., Lenhart, W., Liotta, G.: Proximity drawability: a survey. In:
Tamassia, R., Tollis, I.G. (eds.) GD ’94. LNCS, vol. 894, pp. 328–339. Springer,
Princeton, NJ, USA (1995)

8. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and
delaunay realizability. Discrete Math. 161(1–3), 63–77 (1996)

http://arxiv.org/abs/1508.01076

Representing Directed Trees as Straight Skeletons 347

9. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: applica-
tions of a data structure for finding pairwise interactions. Discrete Comput. Geom.
22(4), 569–592 (1999)

10. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motor-
cycle graphs. Int. J. Comput. Geom. Appl. 22(5), 471–498 (2012)

11. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawa-
bility problem. Comput. Geom. 10(1), 1–22 (1998)

12. Liotta, G., Meijer, H.: Voronoi drawings of trees. Comput. Geom. 24(3), 147–178
(2003)

Drawing Graphs with Vertices and Edges
in Convex Position

Ignacio Garćıa-Marco1(B) and Kolja Knauer2

1 LIP, ENS Lyon - CNRS - UCBL - INRIA, Université de Lyon UMR 5668,
Lyon, France

ignacio.garcia-marco@ens-lyon.fr
2 Aix-Marseille Université, CNRS, LIF UMR 7279, Marseille, France

kolja.knauer@lif.univ-mrs.fr

Abstract. A graph has strong convex dimension 2, if it admits a straight-
line drawing in the plane such that its vertices are in convex position
and the midpoints of its edges are also in convex position. Halman, Onn,
and Rothblum conjectured that graphs of strong convex dimension 2
are planar and therefore have at most 3n − 6 edges. We prove that all
such graphs have at most 2n − 3 edges while on the other hand we
present a class of non-planar graphs of strong convex dimension 2. We
also give lower bounds on the maximum number of edges a graph of
strong convex dimension 2 can have and discuss variants of this graph
class. We apply our results to questions about large convexly independent
sets in Minkowski sums of planar point sets, that have been of interest
in recent years.

1 Introduction

A point set X ⊆ R
2 is in (strictly) convex position if all its points are vertices

of their convex hull. A point set X is said to be in weakly convex position if X
lies on the boundary of its convex hull. A drawing of a graph G is an injective
mapping f : V (G) → R

2 such that edges are straight line segments connecting
vertices and neither midpoints of edges, nor vertices, nor midpoints and ver-
tices coincide. Through most of the paper we will not distinguish between (the
elements of) a graph and their drawings.

For i, j ∈ {s, w, a} we define Gj
i as the class of graphs admitting a draw-

ing such that the vertices are in

⎧⎪⎨
⎪⎩

strictly convex if i = s

weakly convex if i = w

arbitrary if i = a

position and the

I. Garćıa-Marco—Supported by ANR project CompA (project number: ANR-13-
BS02-0001-01)
K. Knauer—Supported by ANR EGOS grant ANR-12-JS02-002-01 and PEPS grant
EROS.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 348–359, 2015.
DOI: 10.1007/978-3-319-27261-0 29

Drawing Graphs with Vertices and Edges in Convex Position 349

midpoints of edges are in

⎧⎪⎨
⎪⎩

strictly convex if j = s

weakly convex if j = w

arbitrary if j = a

position. Further, we define

gj
i (n) to be the maximum number of edges an n-vertex graph in Gj

i can have.
Clearly, all Gj

i are closed under taking subgraphs and Ga
s = Ga

w = Ga
a is the

class of all graphs.

Previous Results and Related Problems: Motivated by a special class of
convex optimization problems [4], Halman, Onn, and Rothblum [3] studied draw-
ings of graphs in R

d with similar constraints as described above. In particular,
in their language a graph has convex dimension 2 if and only if it is in Gs

a and
strong convex dimension 2 if and only if it is in Gs

s . They show that all trees
and cycles are in Gs

s , while K4 ∈ Gs
a \ Gs

s and K2,3 /∈ Gs
a. Moreover, they show

that n ≤ gs
s(n) ≤ 5n−8. Finally, they conjecture that all graphs in Gs

s are planar
and thus gs

s(n) ≤ 3n − 6.
The problem of computing gs

a(n) and gs
s(n) was rephrased and generalized

in the setting of convexly independent subsets of Minkowski sums of planar
point sets by Eisenbrand et al. [2] and then regarded as a problem of computa-
tional geometry in its own right. We introduce this setting and give an overview
of known results before explaining its relation to the original graph drawing
problem.

Given two point sets A,B ⊆ R
d their Minkowski sum A + B is defined

as {a+b | a ∈ A, b ∈ B}. Define M(m,n) as the largest cardinality of a convexly
independent set X ⊆ A + B, for A and B planar point sets with |A| = m
and |B| = n. In [2] it was shown that M(m,n) ∈ O(m2/3n2/3+m+n), which was
complemented with an asymptotically matching lower bound by B́ılka et al. [1]
even under the assumption that A itself is in convex position, i.e., M(m,n) ∈
Θ(m2/3n2/3 + m + n). Notably, the lower bound works also for the case A =
B, as shown by Swanepoel and Valtr [5]. In [6] Tiwary gives an upper bound
of O((m + n) log(m + n)) for the largest cardinality of a convexly independent
set X ⊆ A+B, for A and B planar convex point sets with |A| = m and |B| = n.
Determining the asymptotics in this case remains open.

The graph drawing problem of Halman et al. is related to the largest cardi-
nality of a convexly independent set X ⊂ A + A, for A some planar point set.
In fact, from X and A one can deduce a graph G ∈ Gs

a on vertex set A, with
an edge aa′ for all a �= a′ with a + a′ ∈ X. The midpoint of the edge aa′ then
just is 1

2 (a + a′). Conversely, from any G ∈ Gs
a one can construct X and A as

desired. The only trade-off in this translation are the pairs of the form aa, which
are not taken into account by the graph-model, because they correspond to ver-
tices. Hence, they do not play a role from the purely asymptotic point of view.
Thus, the results of [1,2,5] yield gs

a(n) = Θ(n4/3). Conversely, the bounds for
gs

s(n) obtained in [3] give that the largest cardinality of a convexly independent
set X ⊆ A + A, for A a planar convex point set with |A| = n is in Θ(n).

Our Results: In this paper we study the set of graph classes defined in the
introduction. We endow the list of properties of point sets considered in earlier

350 I. Garćıa-Marco and K. Knauer

works with weak convexity. We completely determine the inclusion relations on
the resulting classes. We prove that Gs

s contains non-planar graphs, which dis-
proves a conjecture of Halman et al. [3], and that Gw

s contains cubic graphs,
while we believe this to be false for Gs

s . We give new bounds for the parame-
ters gj

i (n): we show that gw
s (n) = 2n− 3, which is an upper bound for gs

s(n) and
therefore improves the upper bound of 3n − 6 conjectured by Halman et al. [3].
Furthermore we show that � 3

2 (n − 1)	 ≤ gs
s(n).

For the relation with Minkowski sums we show that the largest cardinality of
a weakly convexly independent set X ⊆ A + A, for A some convex planar point
set of |A| = n is 2n and of a strictly convex set is between 3

2n and 2n − 2.

2 Graph Drawings

Given a graph G drawn in the plane with straight line segments as edges, we
denote by PV the convex hull of its vertices and by PE the convex hull of the
midpoints of its edges. Clearly, PE is strictly contained in PV .

2.1 Inclusions of Classes

We show that most of the classes defined in the introduction coincide and deter-
mine the exact set of inclusions among the remaining classes.

Theorem 1. We have Gs
s = Gs

w � Gw
s � Gw

w = Gw
a = Ga

s = Ga
w = Ga

a and
Gs

s � Gs
a � Gw

w . Moreover, there is no inclusion relationship between Gs
a and Gw

s .
See Fig. 1 for an illustration.

Gs
s = Gs

w

Gw
s

Gw
w = Gw

a = Ga
s = Ga

w = Ga
a

Gs
a

Fig. 1. Inclusions and identities among the classes Gj
i .

Proof. Let us begin by proving that Gs
s = Gs

w, the inclusion Gs
s ⊂ Gs

w is obvious.
Take G ∈ Gs

w drawn in the required way. We observe that there exists δ > 0
such that if we move every vertex a distance < δ, then the midpoints of the
edges are still in convex position. Thus, whenever there are vertices z1, . . . , zk

in the interior of the segment connecting two vertices x, y, we do the following
construction. We assume without loss of generality that x is in the point (0, 0), y
is in (1, 0) and that PV is entirely contained in the closed halfplane {(a, b) | b ≤ 0}.

Drawing Graphs with Vertices and Edges in Convex Position 351

We take s1, s2 ∈ R ∪ {±∞} the slopes of the previous and following edge of the
boundary of PV . Now we consider ε : 0 < ε < min{δ, |s1|, |s2|}, we observe
that the set P ′ := PV ∪ {(a, b) | 0 ≤ a ≤ 1 and 0 ≤ b ≤ εa(1 − a)} is convex.
Then, for all i ∈ {1, . . . , k}, if zi is in (λi, 0) with 0 < λi < 1, we translate zi

to the point (λi, ελi(1 − λi)). We observe that the point zi has been moved a
distance < ε/4 < δ and, then, the set of midpoints of the edges is still in convex
position. Moreover, now z1, . . . , zk are in the boundary of P ′. Repeating this
argument when necessary we get that G ∈ Gs

s .
To prove the strict inclusion Gs

s � Gw
s we show that the graph K4−e, i.e., the

graph obtained after removing an edge e from the complete graph K4 belongs
to Gw

s but not to Gs
s . Indeed, if we take x0, x1, x2, x3 the 4 vertices of K4 − e

and assume that e = x2x3, it suffices to draw x0 = (0, 1), x1 = (0, 0), x2 = (1, 0)
and x3 = (1, 2) to get that K4 − e ∈ Gw

s . Let us prove that K4 − e /∈ Gs
s .

Take x0, x1, x2, x3 in convex position, by means of an affine transformation we
may assume that x0 = (0, 1), x1 = (0, 0), x2 = (1, 0) and x3 = (a, b), with a, b > 0
and a+ b > 1. If xixi+1 mod 4 is an edge for all i ∈ {0, 1, 2, 3}, then clearly PE is
not convex because the midpoint of x0x3 is in the convex hull of the midpoints
of the other 4 edges. So, assume that x2x3 is not an edge, so the midpoints
of the edges are in positions m0 = (0, 1/2),m1 = (1/2, 0), m2 = (1/2, 1/2),
m3 = (a/2, b/2), m4 = (a/2, (b+1)/2). If m0,m1,m2,m3 are in convex position,
then we deduce that a < 1 or b < 1 but not both. However, if a < 1, then m3

belongs to the convex hull of {m0,m1,m2,m4}, and if b < 1, then m2 belongs
to the convex hull of {m0,m1,m3,m4}. Hence, we again have that PE is not
convex and we conclude that K4 − e /∈ Gs

s .
The strict inclusion Gw

s � Ga
a comes as a direct consequence of Theorem 2.

Let us see that every graph belongs to Gw
w , for this purpose it suffices to

show that Kn ∈ Gw
w . Indeed, drawing the vertices in the points (0, 0), and (1, 2i)

for i ∈ {1, . . . , n − 1} gives the result. Then, we clearly have that Gw
w = Gw

a =
Ga

s = Ga
w = Ga

a .
The strict inclusions Gs

s � Gs
a � Gw

w come from the facts that gs
a = Θ(n4/3)

and that, gs
s(n) ≤ gw

s (n) ≤ 2n−3 by Theorem 2. This also proves that Gs
a �⊂ Gw

s .
To prove that Gw

s �⊂ Gs
a it suffices to consider the complete bipartite graph K2,3.

Indeed, if {x1, x2, x3}, {y1, y2} is the vertex partition, it suffices to draw x1, x2, x3

in (0, 0), (4, 0), (3, 2), respectively, and y1, y2 in (1, 1), (4, 1), respectively, to get
that K2,3 ∈ Gw

s . Finally, K2,3 /∈ Gs
a was already shown in [3]. �

2.2 Bounds on Numbers of Edges

We show that � 3
2 (n − 1)	 ≤ gs

s(n) ≤ gw
s (n) = 2n − 3.

Whenever PV is weakly convex, for every vertex x, one can order the neigh-
bors of x according to their clockwise appearance around the border of PV

starting at x. If in this order the neighbors of x are y1, . . . , yk, then we say
that xy2, . . . , xyk−1 are the interior edges of x. Non-interior edges of x are called
exterior edges of x. Clearly, any vertex has at most two exterior edges. A vertex v
sees an edge e if the straight-line segment connecting v and the midpoint me

of e does not intersect the interior of PE .

352 I. Garćıa-Marco and K. Knauer

Lemma 1. If G ∈ Gw
s , then no vertex sees its interior edges. In particular, any

vertex sees at most 2 incident edges.

Proof. Assume that there exists a vertex x seeing an interior edge xui. Take
u1, uk such that xu1, xuk are the exterior edges of x. We consider G′ the induced
graph with vertex set V ′ = {v, u1, ui, uk} and denote by E′ its corresponding
edge set. Clearly PV ′ ⊂ PV and PE′ ⊂ PE , so x sees xui in PE′ . Moreover, xui

is still an interior edge of x in G′. Denote by mj the midpoint of the edge vuj ,
for j ∈ {1, i, k}. Since x sees xui, the closed halfplane supported by the line
passing through m1,mk containing x also contains mi.

However, since PV ′ is strictly convex ui and x are separated by the line
passing through u1, uk. This is a contradiction because mj = (uj + x)/2. See
Fig. 2. �

x

u1

ui

uk

m1
mi

mk

Fig. 2. The construction in Lemma 1

Theorem 2. If a graph G ∈ Gw
s has n vertices, then it has at most 2n−3 edges,

i.e., gw
s (n) ≤ 2n − 3.

Proof. Take G ∈ Gw
s . Since the midpoints of the edges are in weakly convex posi-

tion, every edge has to be seen by one of its vertices. Lemma 1 guarantees that
interior edges cannot be seen. Hence, no edge can be interior to both endpoints.
This proves that G has at most 2n edges.

We improve this bound by showing that at least three edges are exterior by
both their endpoints, i.e., are counted twice in the above estimate. During the
proof let us call such edges doubly exterior.

Since deleting leaves only decreases the ratio of vertices and edges, we can
assume that G has no leaves. Clearly, we can also assume that G has at least three
edges. For an edge e, we denote by H+

e and H−
e the open halfplanes supported by

the line containing e. We claim that whenever an edge e = xy is an interior edge
of x, then H+

e ∪{x} and H−
e ∪{x} contain a doubly exterior edge. This follows by

induction on the number of vertices in H+
e ∩PV . Since e is interior to x, there is

an edge f = xz contained in H+
e ∪{x} and exterior of x. If f is doubly exterior we

are done. Otherwise, we set H+
f the halfplane supported by the line containing f

Drawing Graphs with Vertices and Edges in Convex Position 353

and not containing y. We claim that (H+
f ∪{z})∩PV ⊂ (H+

e ∪{x})∩PV . Indeed,
if there is a point v ∈ (H+

f ∪{z})∩PV but not in H+
e ∪{x}, then x is in the interior

of the triangle with vertices v, y, z ∈ PV , a contradiction. Thus, (H+
f ∪{z})∩PV

is contained in (H+
e ∪{x})∩PV and has less vertices of PV , in particular, it does

not contain x. By induction, we can guarantee that (H+
e ∪ {x}) ∩ PV contains a

doubly exterior edge. The same works for H−
e ∪ {x}.

Applying this argument to any edge e which is not doubly exterior gives
already two doubly exterior edges f, g contained in H+

e ∪ {x} and H−
e ∪ {x},

respectively. Choose an endpoint z of f , which is not an endpoint of g. Let h = zw
be the other exterior edge of z. If h is doubly exterior we are done. Otherwise,
none of H+

h ∪ {w} and H−
h ∪ {w} contains f because z /∈ H+

h and z /∈ H−
h ;

moreover one of H+
h ∪ {w} and H−

h ∪ {w} does not contain g. Thus, there must
be a third doubly exterior edge. �

Definition 1. For every n ≥ 2, we denote by Ln the graph consisting of two
paths P = (u1, . . . , u�n

2 �) and Q = (v1, . . . , v�n
2 �) and the edges u1v1 and uivi−1

and vjuj−1 for 1 < i ≤ �n
2 	 and 1 < j ≤ �n

2 �. We observe that Ln has 2n − 3
edges.

Theorem 3. For all n ≥ 2 we have Ln ∈ Gw
s , i.e., gw

s (n) ≥ 2n − 3.

Proof. For every k ≥ 1 we are constructing L4k+2 ∈ Gw
s (the result for other

values of n follows by suppressing degree 2 vertices). We take 0 < ε0 < ε1 < · · · <

ε2k and set δj :=
∑2k

i=j εi for all j ∈ {1, . . . , 2k}. We consider the graph G with
vertices ri = (i, δ2i), r′

i = (i,−δ2i) for i ∈ {0, . . . , k} and �i = (−i, δ2i−1), �′
i =

(−i,−δ2i−1) for i ∈ {1, . . . , k}; and edge set

{r0r
′
0}∪{ri�i, ri�

′
i, r

′
i�i, r

′
i�

′
i | 1 ≤ i ≤ k}∪{ri−1�i, ri−1�

′
i, r

′
i−1�i, r

′
i−1�

′
i | 1 ≤ i ≤ k}.

See Fig. 3 for an illustration of the final drawing. By construction, the midpoints
of the edges never coincide and they lie on the vertical lines x = 0 and x = −1/2;
thus they are in weakly convex position. It is straight-forward to verify that the
constructed graph is L4k+2. �

Definition 2. For every odd n ≥ 3, we denote by Bn the graph consisting of
an isolated C3 and n−3

2 copies of C4 altogether identified along a single edge uv.
We observe that Bn has 3

2 (n−1) edges and deleting a degree 2 vertex from Bn+1

one obtains an n-vertex graph with 3
2 (n − 1) − 1

2 edges.

Theorem 4. For all odd n ≥ 3 we have Bn ∈ Gs
s , i.e., gs

s(n) ≥ � 3
2 (n − 1)	.

Proof. Let n ≥ 3 be such that n − 3 is divisible by 4 (if n − 3 is not divisible
by 4, then Bn is an induced subgraph of Bn+1). We will first draw Bn in an
unfeasible way and then transform it into another one proving Bn ∈ Gs

s .
See Fig. 4 for an illustration of the final drawing.
We draw the C3 = (uvw) as an isosceles triangle with horizontal base uv.

Let u = (−1, 0), v = (1, 0), and w = (0, n−1
2). There are n − 3 remaining points.

354 I. Garćıa-Marco and K. Knauer

0

1

2

r0

r0
1

1

r1

r1

Fig. 3. The graph L6 is in Gw
s .

u v

w

x = 0

p1

p2

p3

p4 pr4

pr3

pr2

pr1

Fig. 4. The graph B11 is in Gs
s .

Draw one half of them on coordinates p�
i = (−1 − i, i) for 1 ≤ i ≤ n−3

2 and the
other half mirrored along the y-axis, i.e., pr

i = (1 + i, i) for 1 ≤ i ≤ n−3
2 .

Now we add all edges p�
iu (left edges), pr

i v (right edges), for 1 ≤ i ≤ n−3
2 and

edges of the form p�
ip

r
n−3
2 +1−i

(diagonal edges) for all 1 ≤ i ≤ n−3
2 .

We observe that the points p�
i and u lie on the line x+ y = −1, the points pr

i

and v lie on the line x − y = 1 and all midpoints of diagonal edges have y-
coordinate n−1

4 . In order to bring PV and PE into strict convex position, we
simultaneously decrease the y-coordinates of points p�

n−3
2 +1−i

, pr
n−3
2 +1−i

by 2iε

for i ∈ {1, . . . , n−3
2 } for a sufficiently small value ε > 0. It suffices to conveniently

decrease the y-coordinate of w to get a drawing witnessing that Bn ∈ Gs
s . �

Drawing Graphs with Vertices and Edges in Convex Position 355

2.3 Further Members of Gs
s and Gw

s

We show that there are non-planar graphs in Gs
s and cubic graphs in Gw

s .

Definition 3. For all k ≥ 2, we denote by Hk the graph consisting of a 2k-
gon with vertices v1, . . . , v2k and a singly subdivided edge from vi to vi+3 mod 2k

for all i even, i.e., there are k degree 2 vertices u1, . . . , uk and edges uiv2i for
all i ∈ {1, . . . , k}, uiv2i+3 for all i ∈ {1, . . . , k−2}, uk−1v1 and ukv3. We observe
that Hk is planar if and only if k is even.

Theorem 5. For every k ≥ 2, Hk ∈ Gs
s . In particular, for every n ≥ 9 there is

a non-planar n-vertex graph in Gs
s .

Proof. We start by drawing C2k as a regular 2k-gon. Take an edge e = xy and
denote by x′, y′ the neighbors of x and y, respectively. For convenience consider e
to be of horizontal slope with the 2k-gon below it. Our goal is to place ve a new
vertex and edges vex

′, vey
′ preserving the convexity of vertices and midpoints of

edges. We consider the upward ray r based at the midpoint me of e and the upward
ray s of points whose x-coordinate is the average between the x-coordinates of
me and x′. We denote by Δ the triangle with vertices the midpoint mx′x of the
edge x′x, the point x and me. Since s ∩ Δ is nonempty, we place ve such that the
midpoint of vex

′ is in s∩Δ. Clearly ve is in r. Hence, the middle point of vey
′ is in

the corresponding triangle Δ′ and the convexity of vertices and midpoints of edges
is preserved. See Fig. 5 for an illustration. Since we only have to add a vertex on
alternating edges of C2k, these choices are independent of each other. It is easy to
verify that the constructed graph is Hk. �

r

mx x

y

x

x

Δ

s

ve

me y
Δ

e

Fig. 5. The construction in Theorem 5

Definition 4. For all k ≥ 3, we denote by Pk the graph consisting of a prism
over a k-cycle. We observe that Pk is a 3-regular graph.

Theorem 6. For every k ≥ 3, Pk ∈ Gw
s . In particular, for every even n ≥ 6

there is a 3-regular n-vertex graph in Gw
s .

356 I. Garćıa-Marco and K. Knauer

Proof. Let k ≥ 3. In order to draw Pk, place 2k vertices v0, . . . , v2k−1 as the
vertices of a 2k-gon in the plane, in which all inner angles are the same and at
most two different side lengths occur in alternating fashion around it. (Apart
from this, these lengths do not matter for the construction.) Add all inner
edges of the form vivi+2 mod 2k for all i and outer edges vivi+1 mod 2k for i even.
Clearly, the midpoints of outer edges are in strictly convex position and their
convex hull is a regular k-gon. Now, consider four vertices say v0, . . . , v3. They
induce two outer edges, v0v1 and v2v3 and two inner edges v0v2 and v1v3. Now,
the triangles v0v1v2 and v1v2v3 share the base segment v1v2. Hence, the seg-
ments mv2v3mv1v3 and mv2v0mv1v0 share the slope of v1v2. Now, since the angle
between v1v2 and v2v3 equals the angle between v1v2 and v0v1 and v0v1 and v2v3
are of equal length, the segment mv2v3mv1v0 also has the same slope. Thus, all
the midpoint lie on a line and all midpoints lie on the boundary of the midpoints
of outer edges. See Fig. 6 for an illustration. �

v0

v1v2

v3

Fig. 6. The construction in Theorem 6

One can show that Pk is not in Gs
s . More generally we believe that:

Conjecture 1. If G ∈ Gs
s then G is 2-degenerate.

2.4 Structural Questions

One can show that adding a leaf at the vertex r1 of L8 (see Definition 1) produces
a graph not in Gw

s . Under some conditions it is possible to add leafs to graphs
in Gs

s . We say that an edge is V -crossing if it intersects the interior of PV .

Proposition 1. Let G ∈ Gs
s be drawn in the required way. If uv is not V -

crossing, then attaching a new vertex w to v yields a graph in Gs
s .

Proof. Let G ∈ Gs
s with at least 3 vertices and let e = uv be the edge of G from

the statement. For convenience consider that uv come in clockwise order on the
boundary of PV . Consider the supporting hyperplane of PE through the midpoint
me of e, whose side containing PE contains v. A new midpoint can go inside the
triangle Δ defined by the two supporting hyperplanes containing me and the addi-
tional supporting hyperplane containing the clockwisely consecutive midpoint m′.
Since PE is contained in PV a part of Δ lies outside PV . Choosing the midpoint of
a new edge attached to v inside this region very close to e preserves strict convexity
of vertices and midpoints. See Fig. 7 for an illustration. �

Drawing Graphs with Vertices and Edges in Convex Position 357

vu
me

e
Δ

m

w

Fig. 7. The construction in Proposition 1

We wonder whether the class Gs
s is closed under adding leafs.

Despite the fact that K2,n /∈ Gs
s , we have found in Theorem 4 a subdivision

of K2,n which belongs to Gs
s. Similarly, Theorem 5 gives that a subdivision

of K3,3 is in Gs
s while K3,3 is not. We have the impression that subdividing

edges facilitates drawings in Gs
s . Even more, we believe that:

Conjecture 2. The edges of every graph can be (multiply) subdivided such that
the resulting graph is in Gs

s .

3 Minkowski Sums

We show that the largest cardinality of a weakly convexly independent set X,
which is a subset of the Minkowski sum of a convex planar n-point set A with
itself is 2n. If X is required to be in strict convex position then its size lies
between 3

2n and 2n − 2.
As mentioned in the introduction there is a slight trade-off when translating

the graph drawing problem to the Minkowski sum problem. Since earlier works
have been considering only asymptotic bounds this was neglected. Here we are
fighting for constants, so we want to deal with it. Recall that a point in x ∈ X ⊆
A + A is not captured by the graph model if x = a + a for some a ∈ A. Thus,
the point x corresponds to a vertex in the drawing of the graph. It is now clear,
that in order to capture the trade-off we define g̃j

i (n) as the maximum of n′ +m,
where m is the number of edges of an n-vertex graph in Gj

i such that n′ of its
vertices can be added to the set of midpoints, such that the resulting set is in⎧⎪⎨
⎪⎩

strictly convex if j = s

weakly convex if j = w

arbitrary if j = a

position.

Lemma 2. Let G ∈ Gw
s be drawn in the required way and v ∈ G. If v can be

added to the drawing of G such that v together with the midpoints of G is in
weakly convex position, then every edge vw ∈ G is seen by w.

Proof. Otherwise the midpoint of vw will be in the convex hull of v together
with parts of PE to the left and to the right of vw, see Fig. 8. �

358 I. Garćıa-Marco and K. Knauer

wv
PE

Fig. 8. The contradiction in Lemma 2

We say that an edge is good if it can be seen by both of its endpoints.

Theorem 7. For every n ≥ 3 we have g̃w
s (n) = 2n. This is, the largest cardi-

nality of a weakly convexly independent set X ⊆ A + A, for A a convex planar
n-point set, is 2n.

Proof. The lower bound comes from drawing Cn as the vertices and edges of a
convex polygon. The set of vertices and midpoints is in weakly convex position.

For the upper bound let G ∈ Gw
s with n vertices and m edges, we denote

by ni the number of vertices of G that see i of its incident edges for i ∈ {0, 1, 2}.
Since every edge is seen by at least one of its endpoints and every vertex sees
at most 2 of its incident edges (Lemma 1), we know that m = n1 + 2n2 − mg,
where mg is the number of good edges.

Let n′ be the number of vertices of G that can be added to the drawing such
that together with the midpoints they are in weakly convex position. Denote
by n′

i the number of these vertices that see i of its incident edges for i ∈ {0, 1, 2}.
By Lemma 2 the edges seen by an added vertex have to be good. Thus, mg ≥
1
2 (n′

1 + 2n′
2). This yields

m + n′ ≤ n1 + 2n2 − 1
2
(n′

1 + 2n′
2) + n′

0 + n′
1 + n′

2 ≤ n0 +
3
2
n1 + 2n2 ≤ 2n. �

Theorem 8. For every n ≥ 3 we have � 3
2n	 ≤ g̃s

s(n) ≤ 2n − 2. This is, the
largest cardinality of a convexly independent set X ⊆ A + A, for A a convex
planar n-point, lies within the above bounds.

Proof. The lower bound comes from drawing Cn as the vertices and edges of
a convex polygon. The set formed by an independent set of vertices and all
midpoints is in convex position.

Take G ∈ Gs
s with n vertices and m edges. The upper bound is very similar

to Theorem 7. Indeed, following the same notations we also get that m = n1 +
2n2 − mg. Again, the edges seen by an added vertex have to be good. Since
now moreover the set of addable vertices has to be independent, we have mg ≥
n′
1 + 2n′

2. This yields

m + n′ ≤ n1 + 2n2 − n′
1 − 2n′

2 + n′
0 + n′

1 + n′
2 ≤ n + n2 − n′

2.

If n+n2−n′
2 > 2n−2 then either n2 = n and n′

2 < 2, or n2 = n−1 and n′
2 = 0.

In both cases we get that n′ ≤ 1. By Theorem 2 we have m ≤ 2n − 3, then it
follows that m + n′ ≤ 2n − 2. �

Drawing Graphs with Vertices and Edges in Convex Position 359

4 Conclusions

We have improved the known bounds on gs
s(n), the number of edges an n-vertex

graph of strong convex dimension can have. Still describing this function exactly
is open. Confirming our conjecture that graphs in Gs

s have degeneracy 2 would not
improve our bounds. Similarly, the exact largest cardinality g̃s

s(n) of a convexly
independent set X ⊆ A + A for A a convex planar n-point set, remains to be
determined. Curiously, in both cases we have shown that the correct answer lies
between 3

2n and 2n. The more general family Gw
s seems to be easier to handle,

in particular we have provided the exact value for both gw
s and g̃w

s .
From a more structural point of view we wonder what graph theoretical

measures can ensure that a graph is in Gs
s or Gw

s . The class Gw
s is not closed

under adding leafs. We do not know if the same holds for Gs
s . Finally, we believe

that subdividing a graph often enough ensures that it can be drawn in Gs
s .

References

1. B́ılka, O., Buchin, K., Fulek, R., Kiyomi, M., Okamoto, Y., Tanigawa, S., Tóth,
C.D.: A tight lower bound for convexly independent subsets of the Minkowski sums
of planar point sets. Electron. J. Combin. 17(1), Note 35, 4 (2010)

2. Eisenbrand, F., Pach, J., Rothvoß, T., Sopher, N.B.: Convexly independent subsets
of the Minkowski sum of planar point sets, Electron. J. Combin. 15(1), Note 8, 4
(2008)

3. Halman, N., Onn, S., Rothblum, U.G.: The convex dimension of a graph. Discrete
Appl. Math. 155(11), 1373–1383 (2007)

4. Onn, S., Rothblum, U.G.: Convex combinatorial optimization. Discrete Comput.
Geom. 32(4), 549–566 (2004)

5. Swanepoel, K.J., Valtr, P.: Large convexly independent subsets of Minkowski sums.
Electron. J. Combin. 17(1) (2010). Research Paper 146, 7

6. Hans Raj Tiwary: On the largest convex subsets in Minkowski sums. Inf. Process.
Lett. 114(8), 405–407 (2014)

Drawing Graphs Using a Small Number
of Obstacles

Martin Balko(B), Josef Cibulka, and Pavel Valtr

Department of Applied Mathematics, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 25, 118 00 Praha 1, Czech Republic

{balko,cibulka}@kam.mff.cuni.cz

Abstract. An obstacle representation of a graph G is a set of points in
the plane representing the vertices of G, together with a set of polygonal
obstacles such that two vertices of G are connected by an edge in G if
and only if the line segment between the corresponding points avoids all
the obstacles. The obstacle number obs(G) of G is the minimum number
of obstacles in an obstacle representation of G.

We provide the first non-trivial general upper bound on the obsta-
cle number of graphs by showing that every n-vertex graph G satisfies
obs(G) ≤ 2n logn. This refutes a conjecture of Mukkamala, Pach, and
Pálvölgyi. For bipartite n-vertex graphs, we improve this bound to n−1.
Both bounds apply even when the obstacles are required to be convex. We
also prove a lower bound 2Ω(hn) on the number of n-vertex graphs with
obstacle number at most h for h < n and an asymptotically matching
lower bound Ω(n4/3M2/3) for the complexity of a collection of M ≥ Ω(n)
faces in an arrangement of n2 line segments with 2n endpoints.

Keywords: Obstacle number · Geometric drawing · Obstacle represen-
tation · Arrangement of line segments

1 Introduction

In a geometric drawing of a graph G, the vertices of G are represented by dis-
tinct points in the plane and each edge e of G is represented by the line segment
between the pair of points that represent the vertices of e. As usual, we iden-
tify the vertices and their images, as well as the edges and the line segments
representing them.

Let P be a finite set of points in the plane in general position, that is, there
are no three collinear points in P . The complete geometric graph KP is the

The first and the third author acknowledge the support of the project CE-ITI (GAČR
P202/12/G061) of the Czech Science Foundation and the grant GAUK 1262213 of
the Grant Agency of Charles University. The first author was also supported by the
grant SVV–2015–260223. Part of the research was conducted during the workshop
Homonolo 2014 supported by the European Science Foundation as a part of the
EuroGIGA collaborative research program (Graphs in Geometry and Algorithms).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 360–372, 2015.
DOI: 10.1007/978-3-319-27261-0 30

Drawing Graphs Using a Small Number of Obstacles 361

geometric drawing of the complete graph K|P | with vertices represented by the
points of P .

An obstacle is a polygon in the plane. An obstacle representation of a graph
G is a geometric drawing D of G together with a set O of obstacles such that
two vertices of G are connected by an edge e if and only if the line segment
representing e in D is disjoint from all obstacles in O. The obstacle number
obs(G) of G is the minimum number of obstacles in an obstacle representation
of G. The convex obstacle number obsc(G) of a graph G is the minimum number
of obstacles in an obstacle representation of G in which all the obstacles are
required to be convex. Clearly, we have obs(G) ≤ obsc(G) for every graph G.

In this paper, we provide the first nontrivial general upper bound on the
obstacle number of graphs (Theorem2). We also show a lower bound for the
number of graphs with small obstacle number (Theorem 3) and a matching
lower bound for the complexity of a collection of faces in an arrangement of line
segments that share endpoints (Theorem 4). All proofs of our results are based
on so-called ε-dilated bipartite drawings of Km,n, which we introduce in Sect. 2.

In the following, we make no serious effort to optimize the constants. All
logarithms in this paper are base 2.

1.1 Bounding the Obstacle Number

The obstacle number of a graph was introduced by Alpert, Koch, and Laison [1]
who showed, among several other results, that for every positive integer h there
is a graph G with obs(G) ≥ h. Using extremal graph theoretic tools, Pach and
Sarıöz [11] proved that the number of labeled n-vertex graphs with obstacle
number at most h is at most 2o(n2) for every fixed integer h. This implies that
there are bipartite graphs with arbitrarily large obstacle number.

Mukkamala, Pach, and Sarıöz [10] established more precise bounds by show-
ing that the number of labeled n-vertex graphs with obstacle number at most h is
at most 2O(hn log2 n) for every fixed positive integer h. It follows that, for every n,
there is a graph G on n vertices with obs(G) ≥ Ω(n/ log2 n). Later, Mukkamala,
Pach, and Pálvölgyi [9] improved the lower bound to obs(G) ≥ Ω(n/ log n).
Currently, the strongest lower bound on the obstacle number is due to
Dujmović and Morin [4] who showed that there is a graph G with n vertices
and obs(G) ≥ Ω(n/(log log n)2) for every n.

Surprisingly, not much has been done for the general upper bound on the
obstacle number. We are only aware of the trivial bound obs(G) ≤ (

n
2

)
for every

graph G on n vertices. This follows easily, as we can consider the complete
geometric graph KP for some point set P of size n and place a small obstacle
Oe on every non-edge e of G such that Oe intersects only e in KP . A non-edge
of a graph G = (V,E) is an element of

(
V
2

) \ E.
Concerning special graph classes, Fulek, Saeedi, and Sarıöz [6] showed that

the convex obstacle number is at most five for every outerplanar graph, and at
most four for every bipartite permutation graph.

Alpert, Koch, and Laison [1] asked whether the obstacle number of every
graph on n vertices can be bounded from above by a linear function of n. We
show that this is true for bipartite graphs, even for the convex obstacle number.

362 M. Balko et al.

Theorem 1. For every pair of positive integers m, n and every bipartite graph
G ⊆ Km,n and its complement G, we have

obsc(G), obsc(G) ≤ m + n − 1.

In contrast, Mukkamala, Pach, and Pálvölgyi [9] conjectured that the maxi-
mum obstacle number of n-vertex graphs is around n2. We refute this conjecture
by showing the first non-trivial general upper bound on the obstacle number of
graphs. In fact, we prove a stronger result that provides a general upper bound
for the convex obstacle number.

Theorem 2. For every positive integer n and every graph G on n vertices, the
convex obstacle number of G satisfies

obsc(G) ≤ 2n log n.

By a more careful approach, which we omit in this paper, the bound in
Theorem 2 can be improved to n�log n�−n+1. The question whether the upper
bound on obs(G) can be improved to O(n) for every n-vertex graph G remains
open.

1.2 Number of Graphs with Small Obstacle Number

For positive integers h and n, let g(h, n) be the number of labeled n-vertex graphs
with obstacle number at most h. The lower bounds on the obstacle number by
Mukkamala, Pach, and Pálvölgyi [9] and by Dujmović and Morin [4] are both
based on the upper bound g(h, n) ≤ 2O(hn log2 n). In fact, any improvement on
the upper bound for g(h, n) will translate into an improved lower bound on the
obstacle number [4]. Dujmović and Morin [4] conjectured g(h, n) ≤ 2f(n)·o(h)

where f(n) ≤ O(n log2 n). We show the following lower bound on g(h, n).

Theorem 3. For every pair of integers n and h satisfying 0 < h < n, we have

g(h, n) ≥ 2Ω(hn).

1.3 Complexity of Faces in Arrangements of Line Segments

An arrangement A of line segments is a finite collection of line segments in the
plane. The line segments of A partition the plane into vertices, edges, and cells.
A vertex is a common point of two or more line segments. Removing the vertices
from the line segments creates a collection of subsegments which are called edges.
The cells are the connected components of the complement of the line segments.
A face of A is a closure of a cell.

Note that every geometric drawing of a graph is an arrangement of line
segments and vice versa. The edges of the graph correspond to the line segments
of the arrangement and the vertices of the graph correspond to the endpoints of
the line segments.

Drawing Graphs Using a Small Number of Obstacles 363

A line segment s of A is incident to a face F of A if s and F share an edge
of A. The complexity of a face F is the number of the line segments of A that
are incident to F . If F is a set of faces of A, then the complexity of F is the
sum of the complexities of F taken over all F ∈ F .

An arrangement of lines is a finite collection of lines in the plane with faces
and their complexity defined analogously.

Edelsbrunner and Welzl [5] constructed an arrangement of m lines having a
set of M faces with complexity Ω(m2/3M2/3+m) for every m and M ≤ (

m
2

)
+1.

Wiernik and Sharir [13] constructed an arrangement of m line segments with a
single face of complexity Ω(mα(m)). These two constructions can be combined
to provide the lower bound Ω(m2/3M2/3 + mα(m)) for the complexity of M
faces in an arrangement of m line segments, where M ≤ (

m
2

)
+1. The best upper

bound for the complexity of M faces in an arrangement of m line segments is
O(m2/3M2/3 + mα(m) + m log M) by Aronov et al. [3].

Arkin et al. [2] studied arrangements whose line segments share endpoints.
That is, they considered the maximum complexity of a face when we bound
the number of endpoints of the line segments instead of the number of the line
segments. They showed that the complexity of a single face in an arrangement of
line segments with n endpoints is at most O(n log n). An Ω(n log n) lower bound
was then proved by Matoušek and Valtr [8].

Arkin et al. [2] posed as an open problem to determine the maximum com-
plexity of a set of M faces in an arrangement of line segments with n endpoints.

Since every arrangement of line segments with n endpoints contains at most(
n
2

)
line segments, the upper bound O(n4/3M2/3 + n2α(n) + n2 log M) can be

deduced from the upper bound of Aronov et al. [3]. We give a lower bound
that, whenever M ≥ n log3/2 n, matches this upper bound up to a multiplicative
factor.

Theorem 4. There is constant C such that for every sufficiently large integer
n, there is an arrangement A of n2 line segments with 2n endpoints such that
for every M satisfying Cn ≤ M ≤ n4/C there is a set of at most M faces of A
with complexity Ω(n4/3M2/3).

Taking only the faces with the highest complexity from the construction from
the proof of Theorem 4 gives the following lower bound for smaller values of M .

Corollary 1. For every sufficiently large integer n, there is an arrangement A
of n2 line segments with 2n endpoints such that for every M satisfying M ≤ O(n)
there is a set of at most M faces of A with complexity Ω(nM).

Consequently, for every value of M , the lower bounds differ from the best
known upper bounds by at most an O(log n) multiplicative factor.

2 Dilated Bipartite Drawings

For a point p ∈ R
2, let x(p) and y(p) denote the x- and the y-coordinate of p,

respectively. An intersection point in a geometric drawing D of a graph G is a
common point of two edges of G that share no vertex.

364 M. Balko et al.

Let m and n be positive integers. We say that a geometric drawing of Km,n is
bipartite if the vertices of the same color class of Km,n lie on a common vertical
line and not all vertices of Km,n lie on the same vertical line. For the rest of this
section, we let D be a bipartite drawing of Km,n and use P := {p1, . . . , pm} and
Q := {q1, . . . , qn} with y(p1) < · · · < y(pm) and y(q1) < · · · < y(qn) to denote
the point sets representing the color classes of Km,n in D. We let �P and �Q be
the vertical lines that contain the points of P and Q, respectively. The width w
of D is |x(q1) − x(p1)|. In the following, we assume that �P is to the left of �Q

and that p1 = (0, 0), q1 = (w, 0). We set di := y(pi+1)−y(pi) for i = 1, . . . , m−1
and hj := y(qj+1) − y(qj) for j = 1, . . . , n − 1. We call d1 the left step of D and
h1 the right step of D.

We say that D is regular if we have d1 = · · · = dm−1 and h1 = · · · = hn−1.
Note that every regular drawing of Km,n is uniquely determined by its width,
left step, and right step. A regularization of a (possibly non-regular) bipartite
drawing D is the regular bipartite drawing of Km,n with the vertices π(pi) :=
(0, (i − 1)d1) and π(qj) := (w, (j − 1)h1) for i = 1, . . . , m and j = 1, . . . , n.

For 1 ≤ k ≤ m + n − 1, the kth level of D is the set of edges piqj with
i + j = k + 1. Note that the levels of D partition the edge set of Km,n and that
the kth level of D contains min{k,m, n,m + n − k} edges. If D is regular, then,
for every 1 < k < m + n − 1, the edges of the kth level of D share a unique
intersection point that lies on the vertical line { d1

d1+h1
w} × R.

For an integer l ≥ 2, an ordered l-tuple (pi1qj1 , . . . , pilqjl) of edges of D
is uniformly crossing if we have 0 < i2 − i1 = · · · = il − il−1 and j2 − j1 =
· · · = jl − jl−1 < 0. In particular, a set of edges forming a level of D, ordered
by their decreasing slopes, is uniformly crossing. Note that if (pi1qj1 , . . . , pilqjl)
is uniformly crossing, then the edges π(pi1)π(qj1), . . . , π(pil)π(qjl) of the regula-
rization of D share a common intersection point, which we call the meeting point
of (pi1qj1 , . . . , pilqjl). In the other direction, if D is regular and (e1, . . . , el) is
a maximal set of edges of D that share a common intersection point and are
ordered by their decreasing slopes, then (e1, . . . , el) is uniformly crossing.

Let ε > 0 be a real number. We say that D is ε-dilated if we have d1 < · · · <
dm−1 < (1 + ε)d1 and h1 < · · · < hn−1 < (1 + ε)h1.

In a geometric drawing D′ of a (not necessarily bipartite) graph, let
(e1, . . . , el) be an ordered l-tuple of edges of D′ such that ei and ei+1 share
an intersection point ri for i = 1, . . . , l − 1. We say that (e1, . . . , el) forms a
cap, if x(r1) < · · · < x(rl−1) and the slopes of e1, . . . , el are strictly decreasing.
A cap C is then the component of the lower envelope of e1∪· · ·∪el that contains
r1, . . . , rl−1. The points ri are vertices of C and e1∩C, . . . , el ∩C are edges of C.
See part a) of Fig. 1. A cap C is good in D′, if the edges of C are incident to the
same bounded face of D′ or if C has only one edge. If D′ is bipartite and the
edges of one of its levels form a cap C, then we call C a level-cap of D′.

The following lemma is crucial in the proofs of all our main results.

Lemma 1. (i) If D satisfies d1 < · · · < dm−1 and h1 < · · · < hn−1, then, for
every l ≥ 2, every uniformly crossing l-tuple of edges of D forms a cap.

Drawing Graphs Using a Small Number of Obstacles 365

(ii) For all w, d1, h1 ∈ R
+ and m,n ∈ N, there is an ε = εm,n(w, d1, h1) > 0

such that if D is an ε-dilated bipartite drawing of Km,n with width w, left
step d1, and right step h1, then for every l ≥ 2 every uniformly crossing
l-tuple of edges of D forms a good cap in D.

Proof. For part (i), let (e1, . . . , el) be a uniformly crossing l-tuple of edges of D
with ek := pikqjk for every k = 1, . . . , l. Consider edges ek, ek+1, ek+2 and let
rk and rk+1 be the points ek ∩ ek+1 and ek+1 ∩ ek+2, respectively. The points rk

and rk+1 exist, as y(pik) < y(pik+1) < y(pik+2) and y(qjk+2) < y(qjk+1) < y(qjk).
Consider the midpoint p of pikpik+2 and the midpoint q of qjkqjk+2 . Since

(e1, . . . , el) is uniformly crossing and d1 < · · · < dm−1 and h1 < · · · < hn−1, we
have y(pik+1) < y(p) and y(qjk+1) < y(q). See part b) of Fig. 1. The edges pq,
ek, and ek+2 share a common point that lies above ek+1. Since rk and rk+1 lie
on ek+1, we obtain x(rk) < x(rk+1). The slopes of ek, ek+1, ek+2 are strictly
decreasing, thus (e1, . . . , el) forms a cap.

p

pik+1

pik+2

qjk+2

qjk+1

q

pik

qjk

rk+1

�P �Q

rk

ek

ek+1

ek+2

a) b)

Fig. 1. (a) An example of a cap with vertices denoted by empty circles and with edges
denoted black. (b) A situation in the proof of Lemma 1.

To show (ii), we use the following claim. For all w, d1, h1, δ ∈ R
+ and m,n ∈

N, there is an ε = εm,n(w, d1, h1, δ) > 0 such that if D is ε-dilated, then the
intersection point between any two edges piqj and pi′qj′ of D lies in distance less
than δ from the intersection point π(pi)π(qj) ∩ π(pi′)π(qj′).

This follows from the fact that for fixed w, d1, h1, all ε′-dilated drawings of
Km,n with width w, left step d1, and right step h1 converge to their common
regularization as ε′ > 0 tends to zero.

Let δm,n(w, d1, h1) = δ > 0 be the half of the minimum distance between
two intersection points of the regular drawing of Km,n with width w, left step
d1, and right step h1. For ε = εm,n(w, d1, h1, δ), let D be an ε-dilated drawing
of Km,n with width w, left step d1, and right step h1. According to (i), every
uniformly crossing l-tuple (e1, . . . , el) of edges of D forms a cap. It follows from
the claim that the vertices of a cap C formed by (e1, . . . , el) are contained in an
open disc B with the center in the meeting point s of (e1, . . . , el) and radius δ.
In particular, there is a connected component K of B \ (e1 ∪ · · · ∪ el) such that
every edge of C is incident to the closure K of K.

Suppose for a contradiction that C is not good in D. Then there is an edge
pq of D that divides K into two parts, each incident to some edge of C and

366 M. Balko et al.

each having an empty intersection with some edge of C. Otherwise all edges
of C are incident to a single face of D, implying that C is good. The edge pq
intersects some edge pikqjk ∩ C of C in a point r ∈ B. By (i), the intersection
point r′ := π(p)π(q) ∩ π(pik)π(qjk) is different from s, since edges of C and the
edge pq do not form a cap. The distance of r and s is less than δ, as r ∈ B. By the
claim, the distance of r and r′ is also less than δ. On the other hand, the distance
of r′ and s is at least 2δ from the choice of δ. This gives us a contradiction with
the triangle inequality. �

3 Proof of Theorem 1

Let G ⊆ Km,n be a bipartite graph and G be its complement. Using Lemma 1,
we can easily show obsc(G) ≤ m + n − 1. Let ε > 0 be chosen as in Lemma 1
for Km,n and w = d1 = h1 = 1. Consider an ε-dilated drawing D of Km,n with
w = d1 = h1 = 1, p1 = (0, 0), and q1 = (1, 0). Since edges of every level of D
are uniformly crossing, part (ii) of Lemma 1 implies that the edges of the kth
level of D form a good level-cap Ck in D for every 1 ≤ k ≤ m + n − 1. That is,
there is a bounded face Fk of D such that each edge of Ck is incident to Fk or
Ck contains only one edge.

For every integer k satisfying 1 ≤ k ≤ m+n−1, we construct a single convex
obstacle Ok. If Ck contains only one edge e, the obstacle Ok is an arbitrary point
of e or an empty set. Otherwise every edge piqk+1−i of the kth level of D shares
a line segment si

k of positive length with Fk. The obstacle Ok is defined as
the convex hull of the midpoints of the line segments si

k where piqk+1−i is not
an edge of G. See part a) of Fig. 2. The levels partition the edge set of Km,n,
therefore we block every non-edge of G. Since every bounded face of D is convex,
we have Ok ⊆ Fk. Therefore no edge of G is blocked and we obtain an obstacle
representation of G. In total, we produce at most m + n − 1 obstacles.

To show obsc(G) ≤ m + n − 1, we proceed analogously as above, except
the vertices of D are suitably perturbed before obstacles Ok are defined, which
allows to add two (long and skinny) convex obstacles OP and OQ blocking all
the edges pipi′ and qjqj′ , respectively. The addition of the obstacles OP and OQ

may be compensated by using a single convex obstacle to block non-edges in the
first and the second level and in the (m + n − 2)th and the (m + n − 1)th level.

4 Proof of Theorem 2

We show that the convex obstacle number of every graph G on n vertices is at
most 2n log n. The high-level overview of the proof is as follows. We partition the
edges of G to edge sets of O(n) induced bipartite subgraphs of G by iteratively
partitioning the vertex set of G into two (almost) equal parts and considering
the corresponding induced bipartite subgraphs of G. For every j = 0, . . .
log n�,
the number of such bipartite subgraphs of size about n/2j is 2j . Then we con-
struct an obstacle representation of G whose restriction to every such bipartite
subgraph resembles the obstacle representation from the proof of Theorem 1.

Drawing Graphs Using a Small Number of Obstacles 367

This is achieved by choosing a variant of the well-known Horton sets [12] as the
underlying vertex set. Since the obstacle representation of every bipartite sub-
graph of size about n/2j uses about n/2j obstacles, we have O(n log n) obstacles
in total.

Let S be a finite set of points on a vertical line. We say that a point p of S
is an odd point of S if p has an odd-numbered position in the ordering of S by
increasing y-coordinates. Otherwise p is said to be an even point of S.

Let N ≥ 2 be the least power of two such that N ≥ n. If N > n, then we add
N −n isolated vertices to G. Clearly, this does not decrease the obstacle number.
Let ε > 0 be chosen as in Lemma 1 for KN,N and w = d1 = h1 = 1. Let D be an
ε-dilated bipartite drawing of KN,N with width, left step, and right step equal
to 1 and with di = hi for every i = 1, . . . , N − 1. We let P := {p1, . . . , pN} and
Q := {q1, . . . , qN} be the color classes of D ordered by increasing y-coordinates
such that p1 = (0, 0) and q1 = (1, 0). By part (ii) of Lemma 1, edges of each
level of D form a good cap in D. For the rest of the proof, the y-coordinates of
all points remain fixed. Let α = α(ε) > 0 be a real number to be determined
later.

First, we let D1 be the drawing obtained from D by removing the even points
from P and the odd points from Q. We use P 1

1 and P 2
1 to denote the left and

the right color class of D1, respectively. We map the vertices of G to the vertices
of D1 arbitrarily. Let C1 be the set of the level-caps of D1. Since every level-cap
in D is good in D, every cap in C1 is good in D1.

The drawing D1 is a first step towards making an obstacle representation
of G. In fact, we can now block a large portion of non-edges of G by placing
obstacles in D1 as in the proof of Theorem 1. Then we take care of the edges
between vertices in the left color class P 1

1 of KN/2,N/2 (edges between vertices
in the right color class P 2

1 of KN/2,N/2 are dealt with analogously). We slightly
shift the even points in P 1

1 horizontally to the right. Only some of the edges of a
copy of KN/4,N/4 between the even and the odd points of P 1

1 belong to G. Hence
we can place convex obstacles along the level-caps of this KN/4,N/4, again, same
as in the bipartite case. To take care of the edges between vertices in the same
color class of KN/4,N/4, and for each of the color classes we proceed similarly as
above.

We now describe this iterative process formally. Having chosen point sets
P 1

j−1, . . . , P
2j−1

j−1 for some 2 ≤ j ≤ log N , we define P 1
j , . . . , P 2j

j as follows. For
1 ≤ k ≤ 2j−1, let P 2k−1

j be the set of odd points of P k
j−1 and let P 2k

j be the
set of even points of P k

j−1. Let εj > 0 be a small real number. If k is odd, we
move the points from P 2k

j to the right by εj . If k is even, we move the points
from P 2k−1

j to the left by εj . We slightly abuse the notation by using Dj−1 and
Cj−1 to denote the modified drawing Dj−1 and the set of modified caps from the
original set Cj−1, respectively.

For 1 ≤ k ≤ 2j−1, we add all edges between points from P 2k−1
j and P 2k

j to
create a bipartite drawing Dk

j of KN/2j ,N/2j . We let Cj be the union of Cj−1

with a set of level-caps of the drawings Dk
j for 1 ≤ k ≤ 2j−1. We also set

Dj := D1
j ∪ · · · ∪ D2j−1

j ∪ Dj−1.

368 M. Balko et al.

We choose εj small enough so that each cap C ∈ Cj−1, which is good in Dj−1,
is good in Dj after the translations by εj . Such εj exists, as every geometric
drawing of a graph is compact and the distance of two points is a continuous
function. We choose εj small enough such that for every edge e of the modified
drawing Dj−1, the portion of e between P 2k−1

j and P 2k
j is contained in the

horizontal strip R × (y(p) − α, y(p) + α) for some endpoint p of e. This can be
done, as the vertical strips between P 2k′−1

j−1 and P 2k′
j−1 for 1 ≤ k′ ≤ 2j−2 do not

change during the translations by εj .
After log N steps, the drawings Dk

log N contain two vertices and the construc-
tion stops. We show that we can add at most 2n log n convex obstacles to the
drawing Dlog N to obtain an obstacle representation of G.

For 2 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1, let fj,k : R2 → R
2 be the affine mapping

fj,k(x, y) := (x/εj −cj,k, y) where cj,k ∈ R is chosen such that the left color class
of fj,k(Dk

j) lies on {0} × R. Note that the drawing fj,k(Dk
j) is contained in the

drawing D and thus edges of the levels of fj,k(Dk
j) form good caps in fj,k(Dk

j).
Since fj,k does not change the edge-face incidences in Dk

j , edges of the levels of
Dk

j form good caps in Dk
j .

Let C be a level-cap formed by edges of a level L of fj,k(Dk
j) and let FC

be the bounded face of fj,k(Dk
j) such that all edges of C are incident to FC .

Edges of L are also edges of a level L′ of D. Since the indices of edges of L have
the same parity, L′ contains an edge piqi for some 1 ≤ i ≤ N . Let �C be the
horizontal line containing piqi. No vertex of the level-cap formed by edges of L′

lies strictly above �C and no edge of C is contained in �C . Thus there is αC > 0
such that every edge of C is incident to FC ∩ (R× (−∞, y(pi)−αC)). See part b)
of Fig. 2. We choose α = α(ε) to be the minimum of αC over all level-caps C
of fj,k(Dk

j) with 2 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1. Since fj,k(Dk
j) is a drawing

contained in D and determined by j and k, we see that α depends only on ε.

Fk

Ok

C

pi qiαC

.

FC

�C

a) b)

Fig. 2. (a) Placing a convex obstacle Ok that blocks three edges of Km,n. (b) All edges
of a cap C are incident to a part of a face FC strictly below piqi.

Since fj,k does not change the y-coordinates, for every level-cap C of Dk
j ,

there is a bounded face FC of Dk
j such that all edges of C are incident to the

part of FC that lies below �fj,k(C) in the vertical distance larger than α.
By induction on j, 1 ≤ j ≤ log N , we show that every cap from Cj is good

in Dj in the jth step of the construction. We already observed that this is true
for j = 1. Suppose for a contradiction that there is a cap C ∈ Cj that is not
good in Dj for j > 1. Using the inductive hypothesis and the choice of εj , C is

Drawing Graphs Using a Small Number of Obstacles 369

not in Cj−1. Therefore there is a drawing Dk
j for 1 ≤ k ≤ 2j−1 such that C is

a level-cap of Dk
j . Since C is good in Dk

j , all edges forming C are incident to a
single bounded face FC of Dk

j . However, C is not good in Dj , thus some edge e

of Dj \ Dk
j divides FC into two parts, each incident to an edge of C and each

having an empty intersection with some edge of C. The drawings D1
j , . . . , D2j−1

j

are contained in pairwise disjoint vertical strips, thus e is an edge of Dj−1. It
follows from the proof of Lemma 1 that all edges of C are incident to FC in a
2δ-neighborhood of �fj,k(C) for some δ = δ(ε) > 0. Therefore e intersects this
2δ-neighborhood. By the choice of εj , the portion of e between P 2k−1

j and P 2k
j

is contained in the horizontal strip R × (y(p) − α, y(p) + α) for an endpoint p
of e. Assuming α and δ are sufficiently small with respect to the left and the
right step of D, say α, δ < 1/8, we see that p lies on �fj,k(C). Thus the portion
of e between P 2k−1

j and P 2k
j lies in the α-neighborhood of �fj,k(C) = R×{y(p)}.

On the other hand, all edges of C are incident to the part of FC that is strictly
below R × {y(p) − α}. Thus e cannot divide FC , a contradiction.

For every (modified) drawing Dk
j , we place the obstacles as in the first part

of the proof of Theorem 1 with respect to the whole drawing Dlog N . Using the
fact that bounded faces of every geometric drawing of KN are convex, it follows
from the construction of Dlog N that we obtain an obstacle representation of G.
For every 1 ≤ j ≤ log N and 1 ≤ k ≤ 2j−1, we place at most N/2j−1 − 1 convex
obstacles in the drawing Dk

j of KN/2j ,N/2j . For every j, we thus use at most
2j−1(N/2j−1 − 1) = N − 2j−1 obstacles. Summing over j, we obtain an obstacle
representation of G with at most

∑log N
j=1 (N − 2j−1) = N(log N − 1) + 1 convex

obstacles. Since N < 2n, we have less than 2n log n + 1 convex obstacles.

5 Proof of Theorem 3

Let h and n be given positive integers with h < n. We show that the number
g(h, n) of labeled n-vertex graphs of obstacle number at most h is at least 2Ω(hn).

For a point set P ⊆ R
2 in general position, let e(h, P) be the maximum

integer for which there is a set F of at most h bounded faces of KP and a set
of e(h, P) edges of KP that are incident to at least one face from F . Let e(h, n)
be the maximum of e(h, P) over all sets P of n points in the plane in general
position.

Claim. We have g(h, n) ≥ 2e(h,n).

To prove the claim, let P be a set of n points in the plane in general position
for which e(h, P) = e(h, n). Let F be the set of at most h bounded faces of KP

such that e(h, n) edges of KP are incident to at least one face from F . For a face
F ∈ F , let EF denote the set of edges of KP that are incident to F . We use G to
denote the graph with the vertex set P and with two vertices connected by an
edge if and only if the corresponding edge of KP is incident to no face F of F .

We show that every subgraph G′ of KP containing G satisfies obs(G′) ≤ h.
The claim then follows, as the number of such subgraphs G′ is 2e(h,n).

370 M. Balko et al.

Let G′ be a subgraph of KP such that G ⊆ G′. For every face F ∈ F , we
define a convex obstacle OF as the convex hull of midpoints of line segments
e ∩ F for every e ∈ EF that represents a non-edge of G′. Note that, since all
bounded faces of KP are convex, the obstacle OF is contained in F and thus OF

blocks only non-edges of G′. Since every non-edge of G′ is contained in EF for
some F ∈ F , we obtain an obstacle representation of G′ with at most h convex
obstacles. This finishes the proof of the claim. �

Since h < n, the following and the previous claim give Theorem 3.

Claim. For n ≥ 3, we have e(h, n) ≥ 2hn−h2−1
4 .

Let ε > 0 be chosen as in Lemma 1 for K�n/2�,�n/2� and w = d1 = h1 = 1.
Let D be an ε-dilated drawing of K�n/2�,�n/2� with w = d1 = h1 = 1, p1 = (0, 0),
and q1 = (1, 0). By part (ii) of Lemma 1, the edges of the kth level of D form a
good cap Ck in D for every k = 1, . . . , n − 1.

We perturb the vertices of D such that the vertex set of the resulting geomet-
ric drawing D′ of K�n/2�,�n/2� is in general position. We let KP be the geometric
drawing of Kn obtained from D′ by adding the missing edges. Note that if the
perturbation is sufficiently small, then every good cap Ck in D corresponds to
a good cap C ′

k in KP .
Let F := {F1, . . . , Fh} be the set of (not necessarily distinct) bounded faces

of KP such that, for i = 1, . . . , h, all edges of the cap C ′
�n/2�−�h/2�+i are incident

to Fi. That is, F1, . . . , Fh are faces incident to edges of h middle caps C ′
k. Since

caps C ′
�n/2�−�h/2�+i are good in KP and n ≥ 3, the faces Fi exist.

Every cap C ′
k is formed by min{k, n − k} edges for every k = 1, . . . , n − 1.

Therefore, for every i = 1, . . . , h, the face Fi is incident to at least min{
n/2� −
�h/2�+ i, �n/2�+ �h/2�− i} edges of KP . Summing over i = 1, . . . , h, we obtain
at least (2hn − h2 − 1)/4 edges of KP incident to at least one face of F . This
implies e(h, n) ≥ (2hn − h2 − 1)/4 and proves the claim. �

6 Proof of Theorem 4

For a sufficiently large constant C and every sufficiently large integer n, we
find a bipartite drawing D of Kn,n such that for every integer M satisfying
Cn ≤ M ≤ n4/C there is a set of at most M faces of D with complexity at least
Ω(n4/3M2/3). Theorem 4 then follows, as D can be treated as an arrangement
of n2 line segments with 2n endpoints.

Let D′ be the regular bipartite drawing of Kn,n with width, left step, and
right step equal to 1, p1 = (0, 0), and q1 = (1, 0). For integers i and k satisfying
1 ≤ i < k ≤ n/2 and gcd(i, k) = 1, every intersection point of a uniformly
crossing l-tuple of edges (pi1qj1 , . . . , pilqjl) of D′ with i2−i1 = i and j2−j1 = i−k
is called a uniform (i, k)-crossing. A point that is a uniform (i, k)-crossing for
some integers i and k is called a uniform crossing.

Note that all uniform (i, k)-crossings lie on the vertical line { i
k}×R and that

no uniform (i, k)-crossing is a uniform (i′, k′)-crossing for any pair (i′, k′) �= (i, k),

Drawing Graphs Using a Small Number of Obstacles 371

as gcd(i, k) = 1. Since the y-coordinate of every uniform (i, k)-crossing equals
j/k for some 0 ≤ j ≤ kn − k, the number of uniform (i, k)-crossings is at most
kn. There is also at least n2 −2in > n2 −2kn edges of D′ that contain a uniform
(i, k)-crossing. This follows easily, as for every edge pi′qj′ of D′ with i < i′ ≤ n−i
and 1 ≤ j′ ≤ n either pi′−iqj′+k−i or pi′+iqj′−k+i is an edge of D′ and forms a
uniform (i, k)-crossing with pi′qj′ . Here we use the fact k ≤ n/2.

We choose ε > 0 as in Lemma 1 for Kn,n and w = d1 = h1 = 1. Let D be an
ε-dilated drawing of Kn,n with width, left step, and right step equal to 1, with
the left lowest point (0, 0), and with the right lowest point (1, 0). By part (ii) of
Lemma 1, every uniformly crossing l-tuple of edges of D forms a good cap in D.
In particular, every uniform crossing c in D′ is the meeting point of edges of D
that form a good cap Cc. Let Fc be a bounded face of D such that all edges
of Cc are incident to Fc. Note that the faces Fc and Fc′ of D are distinct for
distinct uniform crossings c and c′ in D′.

Let K ≤ n/2 be a positive integer whose value we specify later. For integers
i and k satisfying 1 ≤ i < k ≤ K and gcd(i, k) = 1, let Fi,k be the set of faces
Fc where c is a uniform (i, k)-crossing in D′. It follows from our observations
that Fi,k contains at most kn faces and that the complexity of Fi,k is at least
n2 − 2kn. We let F :=

⋃
i,k Fi,k where the union is taken over all integers i and

k satisfying 1 ≤ i < k ≤ K and gcd(i, k) = 1. Then F contains at most

K∑
k=2

k−1∑
i=1

gcd(i,k)=1

kn = n

K∑
k=2

kϕ(k − 1) = n

K−1∑
j=1

(j + 1)ϕ(j) <
nK3

2

faces where ϕ(j) denotes the Euler’s totient function. The last inequality follows
from ϕ(j) < K for every positive integer j < K.

Since the sets Fi,k are pairwise disjoint, the complexity of F is at least

K∑
k=2

k−1∑
i=1

gcd(i,k)=1

(n2 − 2kn) =
K∑

k=2

ϕ(k − 1)(n2 − 2kn) > n2
K−1∑
j=1

ϕ(j) − nK3.

The totient summatory function satisfies
∑m

j=1 ϕ(j) ≥ 3m2

π2 −O(m log m) [7, pp.

268–269]. Thus the complexity of F is at least 3n2K2

π2 − nK3 − O(n2K log K).
Let M be a given integer that satisfies 8n ≤ M ≤ n4/8. We set K :=

(M/n)1/3. We may assume that K is an integer, as it does not affect the
asymptotics. For 8n ≤ M ≤ n4/8, we have 2 ≤ K ≤ n/2. The set F then
contains at most M faces and its complexity is at least 3

π2 n4/3M2/3 − M −
O(M1/3n5/3 log (M/n)), which is Ω(n4/3M2/3) for a sufficiently large absolute
constant C and Cn ≤ M ≤ n4/C.

372 M. Balko et al.

References

1. Alpert, H., Koch, C., Laison, J.D.: Obstacle numbers of graphs. Discrete Comput.
Geom. 44(1), 223–244 (2010)

2. Arkin, E.M., Halperin, D., Kedem, K., Mitchell, J.S.B., Naor, N.: Arrangements of
segments that share endpoints: single face results. Discrete Comput. Geom. 13(1),
257–270 (1995)

3. Aronov, B., Edelsbrunner, H., Guibas, L.J., Sharir, M.: The number of edges of
many faces in a line segment arrangement. Combinatorica 12(3), 261–274 (1992)

4. Dujmović, V., Morin, P.: On obstacle numbers. Electron. J. Combin. 22(3), P3.1
(2015)

5. Edelsbrunner, H., Welzl, E.: On the maximal number of edges of many faces in an
arrangement. J. Combin. Theory Ser. A 41(2), 159–166 (1986)

6. Fulek, R., Saeedi, N., Sarıöz, D.: Convex obstacle numbers of outerplanar graphs
and bipartite permutation graphs. In: Pach, J. (ed.) Thirty Essays on Geometric
Graph Theory, pp. 249–261. Springer, New York (2013)

7. Hardy, G.H., Wright, E.M.: An introduction to the theory of numbers, 5th edn.
Clarendon Press, Oxford (1979)

8. Matoušek, J., Valtr, P.: The complexity of lower envelope of segments with h
endpoints. Intuitive Geom. Bolyai Soc. Math. Stud. 6, 407–411 (1997)

9. Mukkamala, P., Pach, J., Pálvölgyi, D.: Lower bounds on the obstacle number of
graphs. Electron. J. Combin. 19(2), P32 (2012)

10. Mukkamala, P., Pach, J., Sarıöz, D.: Graphs with large obstacle numbers. In: Thi-
likos, D.M. (ed.) WG 2010. LNCS, vol. 6410, pp. 292–303. Springer, Heidelberg
(2010)

11. Pach, J., Sarıöz, D.: On the structure of graphs with low obstacle number. Graphs
Combin. 27(3), 465–473 (2011)

12. Valtr, P.: Convex independent sets and 7-holes in restricted planar point sets.
Discrete Comput. Geom. 7(1), 135–152 (1992)

13. Wiernik, A., Sharir, M.: Planar realizations of nonlinear Davenport-Schinzel
sequences by segments. Discrete Comput. Geom. 3(1), 15–47 (1988)

Vertical Visibility Among Parallel Polygons
in Three Dimensions

Radoslav Fulek1(B) and Rados Radoicic2

1 IST Austria, Am Campus 1, Klosterneuburg 3400, Austria
{radoslav.fulek,radosrr}@gmail.com

2 Baruch College, CUNY, New York City, NY, USA

Abstract. Let C = {C1, . . . , Cn} denote a collection of translates of a
regular convex k-gon in the plane with the stacking order. The collection
C forms a visibility clique if for every i < j the intersection Ci and
Cj is not covered by the elements that are stacked between them, i.e.,
(Ci ∩ Cj) \⋃i<l<j Cl �= ∅.

We show that if C forms a visibility clique its size is bounded from

above by O(k4) thereby improving the upper bound of 22
k

from the

aforementioned paper. We also obtain an upper bound of 22(
k
2)+2 on

the size of a visibility clique for homothetes of a convex (not necessarily
regular) k-gon.

1 Introduction

In a visibility representation of a graph G = (V,E) we identify the vertices of V
with sets in the Euclidean space, and the edge set E is defined according to some
visibility rule. Investigation of visibility graphs, driven mainly by applications
to VLSI wire routing and computer graphics, goes back to the 1980s [12,14].
This also includes a significant interest in three-dimensional visualizations of
graphs [3,4,8,10].

Babilon et al. [1] studied the following three-dimensional visibility represen-
tations of complete graphs. The vertices are represented by translates of a regular
convex polygon lying in distinct planes parallel to the xy-plane and two trans-
lates are joined by an edge if they can see each other, which happens if it is
possible to connect them by a line segment orthogonal to the xy-plane avoiding
all the other translates. They showed that the maximal size f(k) of a clique rep-
resented by regular k-gons satisfies

⌊
k+1
2

⌋
+ 2 ≤ f(k) ≤ 22

k

and that f(3) ≥ 14.
Hence, limk→∞ f(k) = ∞. Fekete et al. [8] proved that f(4) = 7 thereby showing
that f(k) is not monotone in k. Nevertheless, it is plausible that f(k+2) ≥ f(k)
for every k, and surprisingly enough this is stated as an open problem in [1].
Another interesting open problem from the same paper is to decide if the limit

The research leading to these results has received funding from the People
Programme (Marie Curie Actions) of the European Union’s Seventh Framework
Programme (FP7/2007-2013) under REA grant agreement no [291734].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 373–379, 2015.
DOI: 10.1007/978-3-319-27261-0 31

374 R. Fulek and R. Radoicic

limk→∞
f(k)
k exists. In the present note we improve the above upper bound on

f(k) to O(k4)1 and we extend our investigation to families of homothetes of gen-
eral convex polygons. The main tool to obtain the result is Dilworth Theorem [6],
which was also used by Babilon et al. to obtain the doubly exponential bound
in [1]. Roughly speaking, our improvement is achieved by applying Dilworth
Theorem only once whereas Babilon et al. used its k successive applications.

Fekete et al. [8] observed that a clique of arbitrary size can be represented by
translates of a disc. Their construction can be adapted to translates of any convex
set whose boundary is partially smooth, or to translates of possibly rotated copies
of a convex polygon. The same is true for non-convex shapes, see Fig. 1.

Fig. 1. A visibility clique formed by translates of a non-convex 4-gon.

An analogous question was extensively studied for arbitrary, i.e. not necessar-
ily translates or homothetes of, axis parallel rectangles [3,8], see also [11]. Bose
et al. [3] showed that in this case a clique on 22 vertices can be represented. On
the other hand, they showed that a clique of size 57 cannot be represented by
rectangles.

For convenience, we restate the problem of Babilon et al. as follows. Let
C = {C1, . . . , Cn} denote a collection of sets in the plane with the stacking order
given by the indices of the elements in the collection. By a standard perturbation
argument, we assume that the boundaries of no three sets in C pass through a
common point. The collection C forms a visibility clique if for every i and j,
i < j, the intersection Ci and Cj is not covered by the elements that are stacked
between them, i.e., (Ci ∩ Cj) \ ⋃

i<k<j Ck �= ∅. Note that reversing the stacking
order of C does not change the property of C forming a visibility clique. We
are interested in the maximum size of C, if C is a collection of translates and
homothetes, resp., of a convex k-gon. We prove the following.

Theorem 1. If C is a collection of translates of a regular convex k-gon forming
a visibility clique, the size of C is bounded from above by O(k4).

Theorem 2. If C is a collection of homothetes of a convex k-gon forming a
visibility clique, the size of C is bounded from above by 22(

k
2)+2.

The paper is organized as follows. In Sect. 2 we give a proof of Theorem 1. In
Sect. 3 we give a proof of Theorem 2. We conclude with open problems in Sect. 4.
1 After acceptance of the paper the authors became aware of the fact that the upper
bound of O(k4) was previously proven by Štola [13].

Vertical Visibility Among Parallel Polygons in Three Dimensions 375

2 Proof of Theorem1

We let C = {C1, . . . , Cn} denote a collection of translates of a regular convex
k-gon C in the plane with the stacking order given by the indices of the elements
in the collection. Let ci denote the center of gravity of Ci. We assume that C
forms a visibility clique. We label the vertices of C by natural numbers starting
in the clockwise fashion from the topmost vertex, which gets label 1. We label
in the same way the vertices in the copies of C. The proof is carried out by
successively selecting a large and in some sense regular subset of C. Let Wi be
the convex wedge with the apex c1 bounded by the rays orthogonal to the sides
of C1 incident to the vertex with label i. The set C is homogenous if for every
1 ≤ i ≤ k all the vertices of Cj ’s with label i are contained in Wi. We remark
that already in the proof of the following lemma our proof falls apart if C can
be arbitrary or only centrally symmetric convex k-gon.

Lemma 1. If C is a regular k-gon then C contains a homogenous subset of size
at least Ω

(
n
k2

)
.

Let (Ci1 , . . . , Cin) be the order in which the ray bounding Wi orthogonal to
the segment i[(i − 1) mod k] of C1 intersects the boundaries of Cj ’s. The set C
forms an i-staircase if the order (Ci1 , . . . , Cin) is the stacking order. As a direct
consequence of Dilworth Theorem or Erdős–Szekeres Lemma [6,7] we obtain
that if C is homogenous, it contains a subset of size at least

√|C| forming an
i-staircase.

A graph G = ({1, . . . , n}, E) is a permutation graph if there exists a permu-
tation π such that ij ∈ E, where i < j, iff π(i) > π(j). Let Gi = (C′, E) denote
a graph such that C′ is a homogenous subset of C, and two vertices C ′

j and C ′
k of

Gi are joined by an edge if and only if the orders in which the rays bounding Wi

intersect the boundaries of C ′
j and C ′

k are reverse of each other. In other words,
the boundaries of C ′

j and C ′
k intersect inside Wi, see Fig. 2(a). Thus, Gi’s form

a family of permutation graphs sharing the vertex set. Note that every pair of
boundaries of elements in C′ cross exactly twice.

Since for an even k a regular k-gon is centrally symmetric the graphs Gi and
Gi+k/2 mod k are identical. For an odd k, we only have Gi ⊆ Gi+�k/2� mod k ∪
Gi+�k/2	 mod k. The notion of the i-staircase and homogenous set is motivated
by the following simple observation illustrated by Fig. 2(b).

Observation 1. If C′ forms an i-staircase then there do not exist two indices i
and j, i �= j, such that both Gi and Gj contain the same clique of size three.

The following lemma lies at the heart of the proof of Theorem1.

Lemma 2. Suppose that C′ forms an i-staircase, and that there exists a pair of
identical induced subgraphs G′

i ⊆ Gi and G′
j ⊆ Gj, where i �= j, containing a

matching of size two. Then C′ does not form a visibility clique.

Proof. The lemma can be proved by a simple case analysis as follows. There are
basically two cases to consider depending on the stacking order of the elements

376 R. Fulek and R. Radoicic

W1

c1

C11
1 1

1
2

2

2k

k
k k

(a)

c1

W1

(b)

Fig. 2. (a) The wedge W1 containing all the copies of vertex 1. (b) The 1-staircase
giving rise to a clique of size three in G1 and Gj for some j that cannot appear in a
visibility clique.

of C′ supporting the matching M of size two in G′
i. Let u1, v1 and u2, v2, respec-

tively, denote the vertices (or elements of C′) of the first and the second edge in
M , such that u1 is the first one in the stacking order. By symmetry and with-
out loss of generality we assume that the ray R bounding Wi orthogonal to the
segment i[(i−1) mod k] of C1 intersects the boundary of u1 before intersecting
the boundaries of u2, v1 and v2, and the boundary of u2 before v2.

First, we assume that R intersects the boundary of u2 before the boundary
of v1. In the light of Observation 1, u1, v1 and u2 look combinatorially like in the
Fig. 3(a). Then all the possibilities for the position of v2 cause that the first and
last element in the stacking order do not see each other. Otherwise, R intersects
the boundary of v1 before the boundary of u2. In the light of Observation 1, u1, v1
and u2 look combinatorially like in the Fig. 3(b), but then v2 cannot see u1. �

Wj

Wi

v2

v2

R
u2

v1
u1

c1

(a)

c1

u1

u2

v1

Wi

Wj

R
v2

(b)

Fig. 3. The case analysis of possible combinatorial configurations of the boundaries
of u1, v1, u2 and v2, after the first three boundaries were fixed. (a) If R intersects the
boundary of u2 before v1 the first and the last element in the stacking order cannot
see each other. (b) If R intersects the boundary of v1 before u2 then u1 cannot see v2.

Finally, we are in a position to prove Theorem1. We consider two cases
depending on whether k is even or odd. First, we treat the case when k is even
which is easier.

Thus, let C be a regular convex k-gon for an even k. By Lemma 1 and
Dilworth Theorem we obtain a homogenous subset C′ of C of size at least Ω(

√
n
k2)

Vertical Visibility Among Parallel Polygons in Three Dimensions 377

forming a 1-staircase. Note that for C′ the hypothesis of Lemma 2 is satisfied with
i = 1 and j = 1 + k/2. Since C′ forms a visibility clique, the graph G1 does not
contain a matching of size two. Hence, G1 = (C′ = C1, E) contains a dominating
set of vertices C′

1 of size at most two. Let C2 = C1 \ C′
1. Note that C2 forms a

2-staircase and that the hypothesis of Lemma 2 is satisfied with C′ = C2, i = 2
and j = 2 + k/2 mod k. Thus, G2 = (C2, E) contains a dominating set of ver-
tices C′

2 of size at most two. Hence, C3 = C2 \ C′
2 forms a 3-staircase. In general,

Ci = Ci−1 \ C′
i−1 forms an i-staircase and the hypothesis of Lemma 2 is satisfied

with C′ = Ci, i = i and j = i + k/2 mod k. Note that |Ck/2+1| ≤ 1. Thus,
|C′| ≤ k + 1. Consequently, n = O(k4).

In the case when k is odd we proceed analogously as in the case when k was
even except that for C′ as defined above the hypothesis of Lemma 2 might not be
satisfied, since we cannot guarantee that Gi and Gj are identical for some i �= j.
Nevertheless, since the two tangents between a pair of intersecting translates
of a convex k-gon in the plane are parallel we still have Gi ⊆ Gi+� k

2 � mod k ∪
Gi+ k

2 � mod k The previous property will help us to find a pair of identical
induced subgraphs in Gi, and Gi+� k

2 � mod k or Gi+ k
2 � mod k to which Lemma 2

can be applied, if Gi contains a matching M of size c, where c is a sufficiently big
constant determined later. It will follow that Gi does not contain a matching of
size c, and thus, the inductive argument as in the case when k was even applies.
(Details will appear in the full version.)

3 Homothetes

The aim of this section is to prove Theorem 2. Let C denote a convex polygon
in the plane. Let C = {C1, C2, . . . , Cn} denote a finite set of homothetes of C
with the stacking order. Unlike as in previous sections, this time we assume that
the indices correspond to the order of the centers of gravity of Ci’s from left to
right. Let ci denote the center of gravity of Ci. Let x(p) and y(p), resp., denote
x and y-coordinate of p. Thus, we assume that x(c1) < x(c2) < . . . < x(cn)

Suppose that C forms a visibility clique. Similarly as in the previous sections
we label the vertices of C by natural numbers starting in the clockwise fashion
from the topmost vertex, which gets label 1. We label in the same way the
vertices in the copies of C. Consider the poset (C,⊂) and note that it contains
no chain of size five. By Dilworth theorem it contains an anti-chain of size at
least 1

4 |C|. Since we are interested only in the order of magnitude of the size of
the biggest visibility clique, from now on we assume that no pair of elements in
C is contained one in another.

Every pair of elements in C has exactly two common tangents, since every
pair intersect and no two elements are contained one in another. We color the
edges of the clique G = (C,

(C
2

)
) as follows. Each edge CiCj , i < j, is colored by

an ordered pair, in which the first component is an unordered pair of vertices
of G supporting the common tangents of Ci and Cj , and the second pair is an
indicator equal to one if Ci is below Cj in the stacking order, and zero otherwise.

378 R. Fulek and R. Radoicic

Lemma 3. The visibility clique G does not contain a monochromatic path of
length two of the form CiCjCk, i < j < k.

We say that a path P = C1C2 . . . Ck in G is monotone if x(c1) < x(c2) < . . . <
x(ck). It was recently shown [9, Theorem 2.1] that if we color the edges of an
ordered complete graph on 2c + 1 vertices with c colors we obtain a monochro-
matic monotone path of length two. We remark that this result is tight and
generalizes Erdős–Szekeres Lemma [7]. Thus, if G contains more than 22(

k
2)+2

vertices it contains a monochromatic path of length two which is a contradiction
by Lemma 3.

4 Open Problems

Since we could not improve the lower bound from [1] even in the case of homo-
thetes, we conjecture that the polynomial upper bound in k on the size of the
visibility clique holds also for any family of homothetes of an arbitrary convex
k-gon. To prove Theorem2 we used a Ramsey-type theorem [9, Theorem 2.1] for
ordered graphs. We wonder if the recent developments in the Ramsey theory for
ordered graphs [2,5] could shed more light on our problem.

Acknowledgement. We would like to thank Martin Balko for telling us about [9].

References

1. Babilon, R., Nyklová, H., Pangrác, O., Vondrák, J.: Visibility representations of
complete graphs. In: Kratochv́ıl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 333–341.
Springer, Heidelberg (1999)

2. Balko, M., Cibulka, J., Král, K., Kynčl, J.: Ramsey numbers of ordered graphs.
arXiv:1310.7208v3

3. Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik,
K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation
for graphs in three dimensions. J. Graph Algorithm Appl. 2(3), 1–16 (1998)

4. Cohen, R.F., Eades, P., Lin, T., Ruskey, F.: Three-dimensional graph drawing.
Algorithmica 17(2), 199–208 (1997)

5. Conlon, D., Fox, J., Lee, C., Sudakov, B.: Ordered Ramsey numbers.
arXiv:1410.5292v1

6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Ann. Math.
51, 161–166 (1950)

7. Erdős, P., Szekeres, G.: A combinatorial problem in geometry. In: Gessel, I., Rota,
G.-C. (eds.) Classic Papers in Combinatorics. Modern Birkhäuser Classics, pp.
49–56. Birkhäuser Boston, Boston (1987)

8. Fekete, S.P., Houle, M.E., Whitesides, S.: New results on a visibility representation
of graphs in 3D. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 234–
241. Springer, Heidelberg (1996)

9. Milans, K.G., Stolee, D., West, D.B.: Ordered ramsey theory and track
representations of graphs. http://www.math.illinois.edu/stolee/Papers/
MSW12-OrderedRamsey.pdf

http://arxiv.org/abs/1310.7208v3
http://arxiv.org/abs/1410.5292v1
http://www.math.illinois.edu/stolee/Papers/MSW12-OrderedRamsey.pdf
http://www.math.illinois.edu/stolee/Papers/MSW12-OrderedRamsey.pdf

Vertical Visibility Among Parallel Polygons in Three Dimensions 379

10. Robertson, G.G., Mackinlay, J.D., Card, S.K.: Cone trees: animated 3D visual-
izations of hierarchical information. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, CHI 1991, pp. 189–194. ACM, New York,
NY, USA (1991)

11. Romanik, K.: Directed VR-representable graphs have unbounded dimension. In:
Tamassia, R., Tollis, I.G. (eds.) Graph Drawing. LNCS, vol. 894, pp. 177–181.
Springer, Berlin Heidelberg (1995)

12. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar
graphs. Discrete Comput. Geom. 1(1), 321–341 (1986)

13. Štola, J.: 3D visibility representations by regular polygons. In: Eppstein, D.,
Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 323–333. Springer,
Heidelberg (2010)

14. Wismath, S.K.: Characterizing bar line-of-sight graphs. In: Proceedings of the First
Annual Symposium on Computational Geometry, SCG 1885, pp. 147–152. ACM,
New York, NY, USA (1985)

Drawing Graphs on Point Sets

Alternating Paths and Cycles of Minimum
Length

William S. Evans1, Giuseppe Liotta2, Henk Meijer3, and Stephen Wismath4(B)

1 University of British Columbia, Vancouver, Canada
2 Universitá degli Studi di Perugia, Perugia, Italy
3 U. C. Roosevelt, Middelburg, The Netherlands
4 University of Lethbridge, Lethbridge, Canada

wismath@uleth.ca

Abstract. Let R be a set of n red points and B be a set of n blue
points in the Euclidean plane. We study the problem of computing a
planar drawing of a cycle of minimum length that contains vertices at
points R ∪ B and alternates colors. When these points are collinear, we
describe a Θ(n log n)-time algorithm to find such a shortest alternating
cycle where every edge has at most two bends. We extend our approach
to compute shortest alternating paths in O(n2) time with two bends per
edge and to compute shortest alternating cycles on 3-colored point-sets
in O(n2) time with O(n) bends per edge. We also prove that for arbitrary
k-colored point-sets, the problem of computing an alternating shortest
cycle is NP-hard, where k is any positive integer constant.

1 Introduction

A recent paper by Chan et al. [5] studies the problem of computing a planar
drawing of an n-vertex planar graph such that the vertex locations are given as
part of the input and the drawing has minimum total edge length. The problem is
known to be NP-hard [4] in general and Chan et al. describe different polynomial
time approximation algorithms for paths, matchings, and general planar graphs.
They also give a polynomial time exact algorithm for paths on fixed positions
that lie on a line, which computes a planar drawing where all edges are monotone
in a common direction and each edge can be represented by a poly-line having
O(n) bends.

In this paper we consider a variant of the problem by Chan et al. where the
position for each vertex is not fixed, but it can be chosen by the algorithm as
one in a given subset of a point set. To be precise, we are given a k-colored
graph (i.e., a graph where each vertex is one of k different colors) and we want
to compute a planar drawing of the graph on a given k-colored point-set so that
vertices are mapped to distinct points of the same color and the total edge length
is minimized.

The research reported in this paper started at the 2015 Bertinoro workshop, spon-
sored by the EuroGIGA Project. Research also supported by NSERC, and by MIUR
of Italy under project AlgoDEEP prot. 2008TFBWL4.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 383–394, 2015.
DOI: 10.1007/978-3-319-27261-0 32

384 W.S. Evans et al.

We mainly focus on drawing shortest alternating 2-colored (bicolored) paths
and cycles and collinear point-sets. But we also consider the case of more than
two colors and the case that the points are non-collinear. Our main results are:

– Let R be a set of n red points and B be a set of n blue points such that
R ∪ B is a set of distinct and collinear points. We describe a Θ(n log n)-time
sweep-line algorithm to compute a planar drawing of an alternating cycle of
minimum length on R ∪ B such that every edge is a poly-line with at most
two bends.

– We adapt the approach for cycles to the problem of computing a shortest
alternating path on a bicolored set of collinear points. We describe an O(n2)-
time algorithm that solves the problem by computing drawings with at most
two bends per edge.

– We extend the study to 3-colored collinear point-sets and describe an O(n2)-
time algorithm to compute shortest alternating cycles (visiting the colors in
cyclic order) such that every edge has O(n) bends.

– We consider non-collinear point-sets and prove that computing a shortest
alternating cycle is NP-hard in the general case of k-colored point-sets, where
k � 1 is a given constant.

From a technical point of view, our drawing algorithms are based on the
idea of computing an alternating topological book embedding of a path or cycle
such that the number of edges that are intersected by any cut is minimum. This
approach seems to be specific for two and three colors, since we also present an
example with four colors where an alternating cycle of minimum length cannot
match the cut lower bound that we use for fewer than four colors.

1.1 Related Work and Paper Organization

The problem of computing a planar alternating path or a planar alternating cycle
on R ∪ B has a long tradition in graph drawing and computational geometry.
While the interested reader may refer to the survey by Kaneko and Kano [11]
for a list of early references, we briefly recall here some of the milestone results.
Akiyama and Urrutia [2] study straight-line alternating paths when R ∪ B is
in convex position; they exhibit a set of sixteen points for which a straight-
line alternating path does not exist and present an O(n2)-time algorithm to
test when a straight-line alternating path on points in convex position exists.
Abellanas et al. [1] show that if either the convex hull of R∪B consists of all red
points and no blue points or there exists a line that separates all blue points from
red ones, then a straight-line alternating path always exists. Kaneko, Kano, and
Suzuki [12] characterize those point sets in general position for which a straight-
line alternating path always exists: If R∪B consists of at most twelve points or if
it consists of exactly fourteen points, then a straight-line alternating path always
exists; for all other cases, there exist configurations of red and blue points for
which a straight-line alternating path does not exist. These early results about
straight-line alternating paths have motivated further research on computing

Alternating Paths and Cycles of Minimum Length 385

alternating paths and cycles when the edges can bend. Di Giacomo et al. [8]
proved that every point set admits an alternating path and an alternating cycle
with at most one bend per edge; the result is based on projecting the points
on a horizontal line and then computing a book embedding on this line before
mapping the edges back to the original points.

The results above have motivated further research where either bicolored
graph families other than paths or cycles have been studied or more than two
colors have been considered, or both. For graph families other than paths or
cycles, the input is a bicolored planar graph G together with a bicolored set of
points in the plane and the goal is to compute a planar drawing of G such that
every red vertex is mapped to a red point and every blue vertex is mapped to
a blue point and either each edge is a straight-line segment or it has a constant
number of bends. See, for example, [6,9,10,13,14]. For more than two colors
(see, e.g., [7,8]), the input is k point sets each with the same cardinality and the
goal is to compute an alternating path/cycle on the entire set of points; that is,
a planar drawing of a path/cycle containing the given points and such that the
ith point on the cycle comes from the (i mod k)th set. In the extreme case, one
is given n colors modeled as n numbers from 1 to n and the goal is to compute
a planar drawing of a path or cycle that touches the vertices in increasing order.
In other words, the n-colored version of the problem is the same as asking for a
planar drawing of a graph where the location of the vertices is specified as part
of the input. A seminal result in this context is due to Pach and Wenger [15]
who prove that linearly many bends per edge are always sufficient and sometimes
necessary for n-colored paths and n-colored point-sets in convex position. Their
drawing technique applies to general n-colored planar graphs and the number of
bends per edge was improved by Badent et al. [3].

The remainder of the paper is organized as follows. An overview of our
algorithmic approach is presented in Sect. 2. Section 3 describes the algorithm
for shortest alternating cycles on collinear red-blue points. Shortest alternating
paths on collinear red-blue points are studied in Sect. 4. Shortest alternating
cycles on more than two colors and the proof of hardness for general k-colored
point-sets is in Sect. 5. Finally, open problems are listed in Sect. 6. For reasons
of space, some proofs have been sketched and will be available in the full version
of the paper.

2 Overview of the Algorithmic Approach

Let R be a set of n distinct red points and B be a set of n distinct blue points in
the Euclidean plane. An alternating cycle (alternating path) is a drawing of a cycle
(path) such that the vertex set of the drawing is the set R ∪ B and such that no
two vertices having the same color are adjacent. The drawing is planar if no two
edges cross. The length of the cycle (path) is the sum of the lengths of its edges.
A shortest alternating cycle (path) is one of minimum length. In this paper we
are interested in computing shortest planar alternating cycles (paths). Since the
problem is NP-hard for general point sets (Sect. 5), we focus on collinear point-sets
and assume that the line through the point set, called the spine, is horizontal.

386 W.S. Evans et al.

A set of n blue points and n red points on a line define 2n + 1 intervals, two
of which are infinite. Assume we have a (not necessarily optimal) planar drawing
of an alternating cycle (path). Consider a vertical line in any interval and count
how many edges of the cycle (path) are intersected by the line. If we multiply
the length of each finite interval by the number of edges that are intersected by a
vertical line through the interval and then sum up all the obtained numbers, we
obtain a lower bound on the length of the cycle. Therefore, we aim at computing
an alternating cycle (path) C such that for any vertical line �, the number of edges
of C cut by � is the minimum over all alternating cycles (paths). In addition, no
two edges of C cross and every edge is a poly-line consisting of at most three
segments (i.e., it has at most two bends). For brevity, in what follows we will
often say alternating cycle (path) to mean planar alternating cycle (path).

Based on the observation above, the problem turns into the computation of
a special type of topological book embedding, such that every edge can cross the
spine at most once and such that the number of edges that span any interval
between two consecutive points along the spine is minimum. Every edge of such
a topological book embedding can be represented as a poly-line with at most
two bends. We recall that a topological book embedding is a planar drawing of
a graph such that all vertices are points of a line called the spine and the edges
are simple Jordan arcs.

It is worth remarking that we are interested in solving the combinatorial
problem of finding an order in which a shortest alternating cycle (path) visits
the colored points, and the embedding of its edges. Once this is found, a planar
alternating cycle (path) of minimum length can be computed by making the
edges “as flat as possible” around the spine, that is by making the distance
between each edge and the spine tend to zero. Hence when we say that we
“compute the shortest cycle (path)”, we mean that we compute an ordering and
embedding for which such a cycle (path) exists.

3 Shortest Alternating Cycle on Collinear Red-Blue
Points

Following the approach of Sect. 2, we start by giving a lower bound on the number
of edges of any alternating cycle intersected by a vertical line. Next, we present a
sweep-line algorithm to compute a topological book embedding such that every
interval is spanned by the minimum number of edges and such that every edge
crosses the spine at most once.

A Lower Bound Lemma. The following lemma establishes the lower bound
that will be used to prove the optimality of the alternating cycles.

Lemma 1. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and lie on the x-axis. Let � be a vertical line that
intersects the x-axis between two points of R ∪ B. If there are r red points and b
blue points to the left of �, then any alternating cycle on R ∪B crosses � at least
2max{1, |r − b|} times.

Alternating Paths and Cycles of Minimum Length 387

Proof. Let C be an alternating cycle on R∪B and �− be the halfplane to the left
of �. In each component of C ∩ �−, the number of points of one color can be at
most one more than the number of points of another color. Thus, the minimum
number of components of C to the left of � is |r − b|. If the line � lies between
two vertices of C (i.e. it is not to the left of the leftmost vertex of C and it is
not to the right of the rightmost vertex of C), then the number of components
to the left of � is also at least one, and the number of edges of C that intersect
� is twice the number of components in C ∩ �−. �

A Sweep-Line Algorithm. We now describe a sweep-line algorithm that com-
putes the shortest alternating cycle of a set of n red points and n blue points lying
on the horizontal line y = 0, called the spine. We call our algorithm Spine-Sweep.

Spine-Sweep first orders the points by increasing x-coordinate and then it
sweeps a vertical cut line � across the points. The algorithm maintains a set of
disjoint curves to the left of �, each of which has both endpoints, called terminals,
on �. These curves are the connected components of the intersection of some
shortest alternating cycle with the halfplane, �−, to the left of �. The terminals
are colored red or blue depending on the color of the closest colored point on
the curve. Terminals above the spine are positive and those below are negative;
this is called the sign of the terminal. If both terminals of a component have
the same sign, then this is the sign of the component, otherwise the component
straddles the spine. The distance of a component to the spine is the minimum
number of terminals between one of its terminals and the spine. Two terminals
are adjacent if the segment connecting them contains no other terminals. Note
that these definitions are with respect to the current sweep-line �; the distance
of a component to the spine, for example, may change as the line � moves.

During the sweep, components are created or merged when � encounters a
colored point. By carefully selecting which components to create and merge and
how to merge them, the algorithm maintains the following invariants:

P1. If there is exactly one component and its terminals have different colors,
then its terminals have different signs.

P2. If there are more than two terminals, then they all have the same color.
P3. The two closest components to the spine do not have the same sign.

When the algorithm encounters a colored point, p, it either forks a new
component, if p’s color matches the color of all terminals (or there are no ter-
minals), otherwise it merges p with one or two existing components creating a
single new component. We describe these two cases under the assumption that
the encountered point p is blue. Symmetric operations hold if p is red. In the
next two figures, the terminals are drawn as squares; also, light/dark vertices
are red/blue.

Fork. If there are no red terminals, we create a new component containing (blue)
p that straddles the spine and has adjacent (blue) terminals. See Fig. 1(a).

388 W.S. Evans et al.

� �

�′

(a) (c1) (c2)(b)

�′

�

�′

�

�′ �′

(d1)

p p p p

(d2)

�′

Fig. 1. The top row shows the initial configurations (the symmetric versions of (b) and
(d) are not shown). The bottom row shows the possible configurations after merging.
(a) Fork. One component is shown in the initial configuration but there may be many
or none as long as all terminals are blue. The two new terminals are closest to the
spine. (b-d) Merge with one component. All components are shown. Cases (c2) and
(d2) only occur when p is the last colored point (Color figure online)

Merge. If there are red terminals, we create a new component that contains
(blue) p. If there is only one component, we add p to that component by extend-
ing the edge from the closest red terminal to p. If p is not the last colored point,
we add a new edge from p to a new (blue) terminal so that the new component
straddles the spine. If p is the last colored point, we extend the edge from the
other (red) terminal to p. See Fig. 1.

If there are at least two components, then by property P2 all their terminals
are red. Let K and J be the two closest components to the spine. We extend
the edges from a terminal from K and a terminal from J to p. We choose the
terminals and route the edges from all terminals to ensure that our invariant
properties remain true.

By property P3 and the fact that components do not intersect, the config-
uration of the two closest components to the spine is one of the four shown
schematically in the top row of Fig. 2. For two of these configurations, (c) and
(d) in Fig. 2, we extend the edges from the closest terminals to the spine from
K and J to p, and extend all other terminals horizontally. In the other two con-
figurations, we choose how to merge based on the sign of the closest component
to the spine after the merge that is not the newly merged component. If this
component is negative, we merge to form configuration (a1) or (b1) in Fig. 2.
Otherwise, we merge to form configuration (a2) or (b2) in Fig. 2. This is used to
preserve property P3.

Notice that forming configuration (b1) in Fig. 2 causes an edge of the alter-
nating cycle (shown in bold) to cross the spine. We ensure that this edge is not
forced to cross the spine again which implies that each edge of the alternating
cycle produced by the algorithm can be drawn with at most two bends.

Main Theorem. We prove that Spine-Sweep computes an alternating cycle C
such that each edge crosses the spine at most once and no two edges cross each

Alternating Paths and Cycles of Minimum Length 389

� � � �

�′

(a1) (b1) (c) (d)

�′ �′ �′ �′

(a2) (b2)

�′

K

J

p pp p

Fig. 2. Merge with two components. The top row shows the four basic configurations
(the symmetric versions of (b) and (d) are not shown). The bottom row shows the
possible configurations after merging (Color figure online).

other. Also, any vertical line � that intersects C, does so exactly 2max{1, |r−b|}
times, where r and b denote the number of red and blue points to the left of
�. Therefore, by using Lemma 1 and the observations that: (i) each fork/merge
operation can be executed in constant time (for example by using a stack to
maintain the components sorted according to their distance from the spine);
and (ii) the red and blue points must be sorted in increasing x-order, we obtain
the following.

Theorem 1. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and collinear. There exists an optimal Θ(n log n)-
time algorithm that computes a planar alternating cycle of minimum length with
at most two bends per edge.

Note that the time complexity of Theorem 1 is worst-case optimal. Namely,
if the red and blue points alternate along the spine, computing a shortest alter-
nating cycle is equivalent to computing a circular sorting of the point set.

4 Shortest Alternating Paths on Collinear Red-Blue
Points

We can also obtain a shortest alternating path on a set of n red and n blue points
that are all distinct and collinear, provided we are given the endpoints. The
approach is the same as in the cycle case: we prove a lower bound on the number
of times any alternating path with these endpoints intersects a vertical line � and
use essentially the same algorithm to find an alternating path that matches the
bound. The lower bound is complicated slightly by the path endpoints.

Lemma 2. Let R be a set of n red points and let B be a set of n blue points
such that all points are distinct and lie on the x-axis. Let � be a vertical line that
intersects the x-axis between two points of R ∪ B. If there are r red points and

390 W.S. Evans et al.

b blue points to the left of �, then the number of times any alternating path on
R ∪ B crosses � is at least:

2max{1, |r − b|} if both path endpoints are on the same side of �,

1 + 2max{b − r, r − b − 1} if only the red path endpoint is left of �,

1 + 2max{r − b, b − r − 1} if only the blue path endpoint is left of �.

Proof. If both path endpoints are on the same side of �, the proof is the same as
in the cycle case. If only the red path endpoint is left of �, then its component
can have at most one more red point than blue points, and at most zero more
blue points than red points. Thus, if r > b this component can account for one
of the excess r − b red points, while if b � r, it cannot account for any of the
excess b − r blue points. This component crosses � once; all others cross twice.
If only the blue path endpoint is left of �, a symmetric argument applies. �

To find a shortest alternating path between two given endpoints, we can use
a modification of Spine-Sweep. More precisely, a fork operation on a vertex
of degree one gives rise to a component with only one terminal and a merge
operation on a vertex of degree one joins the closest terminal of the closest
component. The main difference with the approach described in the previous
section is that we may have an odd number of terminals during some steps of
the sweep-line procedure, which however does not change the reasoning behind
either the proof of correctness or the time complexity.

Lemma 3. Given a set R of n red points and a set B of n blue points such that
all points are distinct and collinear, and given u ∈ R and v ∈ B, there exists a
Θ(n log n)-time algorithm that computes a planar alternating path of minimum
length with at most two bends per edge that starts at u and ends at v.

Suppose we want to find the shortest alternating path but it may start and
end at any pair of points. While one might think that a shortest alternating path
always starts at the leftmost red (blue) point and always ends at the rightmost
blue (red) point, this is not always the case. For example, the point set of Fig. 3
has an alternating path in Fig. 3(a) whose length is minimal if it is required that
both endpoints are extremal but it is not as short as the one in Fig. 3(b).

To find the best endpoints, we may use the fact that our algorithm matches
the lower bound described in Lemma 2. Let ri and bi be the number of red and
blue points, respectively, among the first (leftmost) i colored points in R ∪ B.
(Note: ri+bi = i.) Let ci = 2max{1, |ri−bi|}, si = 1+2max{bi−ri, ri−bi−1},
and ti = 1+2max{ri−bi, bi−ri−1}. Let di be the distance between the ith and
(i+1)st colored points. If the path starts at the jth and ends at the kth colored
point, then its minimum length is the sum of the lower bounds from Lemma 2
weighted by the distance between adjacent colored points:

P [j, k] =

{∑j−1
i=1dici +

∑k−1
i=j disi +

∑n−1
i=k dici if j th point is red∑j−1

i=1dici +
∑k−1

i=j diti +
∑n−1

i=k dici if j th point is blue
.

Alternating Paths and Cycles of Minimum Length 391

(a) path of length 8

(b) path of length 7

Fig. 3. Alternating paths. (Note the scale – fractional units are used) (Color figure
online)

We can find the indices of different colored points 1 � j < k � n that minimize
P [j, k] in O(n2) time by calculating ci, si, ti, and di for all i in linear time;
tabulating the partial sums

∑j−1
i=1 dici (for all j) and

∑n−1
i=k dici (for all k) in

linear time; and tabulating
∑k−1

i=j disi and
∑k−1

i=j diti (for all pairs 1 � j < k � n)
in quadratic time. Once we know the endpoints of the shortest alternating path,
we can find the actual path using Lemma 3.

Theorem 2. Given a set R of n red points and a set B of n blue points such
that all points are distinct and collinear, there exists an O(n2)-time algorithm
that computes a planar alternating path of minimum length such that no two
edges cross and each edge has at most two bends.

5 Extensions and Generalizations

In this section we discuss how to extend the described approaches to more than
two colors and we consider the case where the points are not collinear.

Shortest Alternating Paths and Cycles with More Than Two Colors.
Consider 3-colored collinear point-sets. We use the colors red, green and blue,
denoted by r, g and b. An alternating cycle is a cycle that connects points in
the order rgbrgbr etc. For ease of presentation we consider the cycle oriented
in this direction. The following lemma and theorems are the 3-color version of
Lemma 1 and of the approaches illustrated in the previous sections for 2-colored
point-sets. Proofs are omitted.

Lemma 4. Let R, G and B be sets of n red, n green and n blue points that are
all distinct and lie on the x-axis. Any alternating cycle C on R∪G∪B, crosses a
vertical line, �, between two colored points at least 2max{1, |r−g|, |g− b|, |b−r|}
times, when there are r red, g green and b blue points to the left of �.

Theorem 3. Let R, G and B be sets of n red, n green and n blue points such
that all points are distinct and lie on the x-axis. A shortest planar alternating
path (cycle) having O(n) bends per edge can be computed in O(n2) time.

392 W.S. Evans et al.

It is natural to ask whether one can construct alternating shortest paths and
cycles for collinear point-sets having more than three colors with an approach
that computes drawings which satisfy generalizations of Lemmas 1 and 4. It is
not hard to see that this is not the case even for 4-colored point-sets.

Assume that we have eight points and that we want to embed an alternating
cycle with four colors. Figure 4 shows that for any sweep-line there is a solution
that crosses this sweep-line exactly twice. So all lower-bounds are 2. However
it is not hard to see that there is no embedding that satisfies all lower-bounds
simultaneously.

a b c d b a c d

a b c d b a c d

Fig. 4. 4-colored cycles on a set of eight points.

Non-collinear Point Sets. We show that finding the shortest alternating cycle
is NP-hard by showing that deciding if there is a shortest alternating cycle of
length less than L is NP-hard. Our reduction is from the EXACT COVER
problem: Given a family F of subsets of a finite set U , is there a subfamily F ′

of F , consisting of disjoint sets, such that
⋃

S∈F ′ S = U .

Theorem 4. Given a k-colored point-set for constant k � 1, it is NP-hard to
find the shortest planar alternating cycle.

Proof. If k = 1, shortest planar alternating cycle is Euclidean TSP, which is
NP-hard [16]. If k = 2, we describe a polynomial time reduction from EXACT
COVER that is a slight modification of the reduction by Papadimitriou [16]
showing that Euclidean TSP is NP-hard. Let P be the point set obtained from
Papadimitriou’s reduction from the EXACT COVER instance, rotated slightly
so that no points share the same x- or y-coordinate. If the EXACT COVER
instance is solvable, the shortest tour of P has length L (see [16]), while if
it is not solvable, the shortest tour of P has length at least L +

√
a2 + 1 − a

where a = 20. Choose 0 < ε � (
√

a2 + 1 − a)/(10(n + 1)) to be smaller than
half the smallest difference between the x- or y-coordinates of points in P . Let
R = (P + (−ε,−ε)) ∪ (P + (ε, ε)) and B = (P + (−ε, ε)) ∪ (P + (ε,−ε)) (where
P + (x, y) = {(px + x, py + y)|p ∈ P}). That is, each point p ∈ P becomes a
cluster of four points (two red and two blue) forming the corners of a square
S(p) of side-length 2ε centered at p.

If the EXACT COVER instance is solvable, there is a planar alternating tour
of R ∪ B of length at most L + 10εn < L +

√
a2 + 1 − a. The alternating tour

follows the shortest tour of P from cluster to cluster. Within the cluster for p, it

Alternating Paths and Cycles of Minimum Length 393

follows three of the four sides of S(p), leaving one side whose endpoints connect
to the two neighbors of the cluster. It is not hard to verify that one may choose
such a side for each cluster so that the resulting alternating tour is planar. Its
length is at most L + (6 +

√
2)εn < L + 10εn < L +

√
a2 + 1 − a. If the instance

is not solvable, any alternating tour of R ∪ B is at least as long as the shortest
tour of R = P , which has length at least L +

√
a2 + 1 − a. Thus R ∪ B has an

alternating tour of length at most L +
√

a2 + 1 − a if and only if the EXACT
COVER instance is solvable.

If k > 2, the reduction is the same except that inside each square are 2(k−2)
points (two of each color other than red and blue). These points lie on the
diagonal that connects the red corners of the square, with one point of color i at
distance iε/(k − 2) from each corner, for i = 1, 2, . . . , k − 2. (Red is color 0 and
blue is color k − 1.) The resulting alternating tour, which uses paths of diagonal
points in place of the two red-to-blue sides in each square, has length at most
L + (5

√
2 + 2)εn < L +

√
a2 + 1 − a. �

6 Open Problems

The research in this paper suggests several open problems. We conclude the
paper by listing some of those that in our opinion are among the most inter-
esting. (1) Can the time complexity of Theorem 2 be improved? (2) Can the
bend-complexity of Theorem 3 be improved? (3) The problem of computing
shortest alternating cycles on collinear k-colored point-sets is open for k > 3.
(4) Study the problem of drawing not necessarily alternating shortest bicolored
cycles/paths on collinear bicolored point-sets. That is, we are given a cycle/path
where any blue (red) vertex may have a neighbor of its same color and we want
to draw the cycle/path using the points of R∪B such that the total edge length
is minimized.

References

1. Abellanas, M., Garcia-Lopez, J., Hernández-Peñalver, G., Noy, M., Ramos, P.A.:
Bipartite embeddings of trees in the plane. Discr. Appl. Math. 93(2–3), 141–148
(1999)

2. Akiyama, J., Urrutia, J.: Simple alternating path problem. Discr. Math. 84, 101–
103 (1990)

3. Badent, M., Di Giacomo, E., Liotta, G.: Drawing colored graphs on colored points.
Theor. Comput. Sci. 408(2–3), 129–142 (2008)

4. Bastert, O., Fekete, S.P.: Geometrische Verdrahtungsprobleme. Technical Report
96–247, Universität zu Köln (1996)

5. Chan, T.M., Hoffmann, H.-F., Kiazyk, S., Lubiw, A.: Minimum length embedding
of planar graphs at fixed vertex locations. In: Wismath, S., Wolff, A. (eds.) GD
2013. LNCS, vol. 8242, pp. 376–387. Springer, Heidelberg (2013)

6. Frati, F., Glisse, M., Lenhart, W.J., Liotta, G., Mchedlidze, T., Nishat, R.I.: Point-
set embeddability of 2-colored trees. In: Didimo, W., Patrignani, M. (eds.) GD
2012. LNCS, vol. 7704, pp. 291–302. Springer, Heidelberg (2013)

394 W.S. Evans et al.

7. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H., Trotta, F., Wismath, S.K.:
k-colored point-set embeddability of outerplanar graphs. J. Graph Alg. and Appl.
12(1), 29–49 (2008)

8. Di Giacomo, E., Liotta, G., Trotta, F.: Drawing colored graphs with constrained
vertex positions and few bends per edge. Algorithmica 57(4), 796–818 (2010)

9. Kaneko, A., Kano, M.: Straight-line embeddings of two rooted trees in the plane.
Disc. Comp. Geometry 21(4), 603–613 (1999)

10. Kaneko, A., Kano, M.: Straight line embeddings of rooted star forests in the plane.
Discr. Appl. Math. 101, 167–175 (2000)

11. Kaneko, A., Kano, M.: Discrete geometry on red and blue points in the plane
- a survey-. In: Aronov, B., Basu, S., Pach, J., Sharir, M. (eds.) Discrete and
Computational Geometry. Algorithms and Combinatorics, vol. 25. Springer, New
York (2003)

12. Kaneko, A., Kano, M., Suzuki, K.: Path coverings of two sets of points in the
plane. In: Pach, J. (ed.) Towards a Theory of Geometric Graph, vol. 342. American
Mathematical Society, Providence (2004)

13. Kaneko, A., Kano, M., Tokunaga, S.: Straight-line embeddings of three rooted trees
in the plane. In: Canadian Conference on Computational Geometry, CCCG 1998
(1998)

14. Kaneko, A., Kano, M., Yoshimoto, K.: Alternating hamilton cycles with minimum
number of crossing in the plane. Int. J. Comp. Geometry Appl. 10, 73–78 (2000)

15. Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs
Comb. 17, 717–728 (2001)

16. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete.
Theor. Comp. Sci. 4, 237–244 (1977)

On Embeddability of Buses in Point Sets

Till Bruckdorfer1(B), Michael Kaufmann1, Stephen G. Kobourov2,
and Sergey Pupyrev2,3

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{bruckdor,mk}@informatik.uni-tuebingen.de
2 Department for Computer Science, University of Arizona, Tucson, USA

kobourov@cs.arizona.edu
3 Institute of Mathematics and Computer Science, Ural Federal University,

Yekaterinburg, Russia
spupyrev@gmail.com

Abstract. Set membership of points in the plane can be visualized by
connecting corresponding points via graphical features, like paths, trees,
polygons, ellipses. In this paper we study the bus embeddability problem
(BEP): given a set of colored points we ask whether there exists a planar
realization with one horizontal straight-line segment per color, called
bus, such that all points with the same color are connected with vertical
line segments to their bus. We present an ILP and an FPT algorithm
for the general problem. For restricted versions of this problem, such
as when the relative order of buses is predefined, or when a bus must
be placed above all its points, we provide efficient algorithms. We show
that another restricted version of the problem can be solved using 2-stack
pushall sorting. On the negative side we prove the NP-completeness of a
special case of BEP.

1 Introduction

Visualization of sets is an important topic in graph drawing and information
visualization and the traditional approach relies on representing overlapping sets
via Venn diagrams and Euler diagrams [28]. When more than a handful sets are
present, however, such diagrams become difficult to interpret and alternative
approaches, such as compact rectangular Euler diagrams are needed [27].

Often the geometric position of the elements of the sets are prescribed as
points in the plane. The task is to emphasize the sets where the elements belong
to. In visualization approaches for set memberships of items on maps, this is done
by connecting points from the same set by corresponding lines (LineSets [2]),
tree structures (KelpFusion [24]), and enclosing polygons (BubbleSet [11] or
MapSets [13]).

We consider a unified version of the tree-structure approach using a model
that has been applied before for drawing orthogonal buses known from VLSI

An extended version including all missing proofs can be found in [7].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 395–408, 2015.
DOI: 10.1007/978-3-319-27261-0 33

396 T. Bruckdorfer et al.

(a) (b) (c) (d)

Fig. 1. (a) Fixed positions of points, where points with the same color belong to the
same set. (b) A planar bus realization for this setting, while (c) is a non-planar bus
realization. (d) A point set without any planar bus realization (Color figure online).

design [22]. Our goal is a membership visualization of points in sets by a tree-
structure that consists of a single horizontal segment, called bus, to which all the
points from the same set are connected by vertical segments, called connections ;
see Fig. 1 for planar and non-planar versions. We assume the sets to be given by
single-colored points, such that in the final visualization, called bus realization,
every point of the same color is connected to exactly one bus associated with
this color. The objective is to find a position for each bus, such that crossings of
buses with connections are avoided, called planar bus realization. We call this
the bus embeddability problem (BEP). Such a simple visualization scheme makes
it very easy to recognize the sets and label them, by placing a label inside each
bus (if the bus is drawn thick enough), or directly above/next to the bus.

Related Work. Buses have been used, in a more general form, for visualizing
degree-restricted hypergraphs. Ada et al. [1] used horizontal and vertical buses
in bus realizations, where the points (representing hypervertices contained in at
most four hyperedges) were not predefined in the plane. They asked whether a
given hypergraph admits a non-planar bus realizations (allowing connections to
cross each other) and showed that the problem is NP-complete. In contrast, if
a planar embedding is given, a planar bus realization can be constructed on a
O(n) × O(n) grid in O(n3/2

) time [6]. These types of problems also have con-
nections to rectangular drawings, rectangular duals and visibility graphs, since
the edges of the incidence graph of a hypergraph enforce visibility constraints in
the bus realizations [29].

Another related approach is visualization based on graph supports of hyper-
graphs. Here the goal is to connect the vertices in such a way that each hyper-
edge induces a connected subgraph [8,20]. Supported hypergraph visualizations
inspired edge-bundling and confluent layouts as alternative visualizations for
cliques [12,14].

A solution to the BEP problem can be viewed as planar tree support for
hypergraphs, and this problem is related to Steiner trees, where the goal is to
connect a set of points in the plane while minimizing the sum of edge lengths in
the resulting tree; this is a classic NP-complete problem [15]. Hurtado et al. [18]

On Embeddability of Buses in Point Sets 397

considered planar supports for hypergraphs with two hyperedges such that the
induced subgraph for every hyperedge and the intersection is a Steiner tree.
Their objective was to minimize the sum of edge lengths, while allowing degree
one or two for the hypervertices. BEP is even more closely related to rectilinear
Steiner trees, where the Euclidean distance is replaced by the rectilinear distance;
constructing rectilinear Steiner trees is also NP-complete [16]. A single trunk
Steiner tree [10] is a path which contains all vertices of degree greater than one.
This is a variant that is solvable in linear time. BEP for a single set is the single
trunk rectilinear Steiner tree problem, where we ignore the minimization of the
sum of the edge lengths. Thus BEP can be seen as a simultaneous single-trunk
rectilinear Steiner tree problem. The fact that a bus placement influences the
placement of other buses makes the problem hard.

Consider the input to BEP along with a box that encloses all the points. If in
BEP the buses extend to the right boundary of this box, or both to the left and
right boundary of this box, then this problem corresponds to backbone boundary
labeling and can be efficiently solved [4]. In backbone boundary labeling, the prob-
lem is to orthogonally connect points by a horizontal backbone segment leading
to a label placed at the boundary. In this setting it is always possible to split the
problem into two independent subproblems, which is impossible in our case.

BEP is also related to the classical point set embeddability problem, where
given a set of points along with a planar graph, we need to determine whether
there exists a mapping of vertices to points such that the resulting straight-line
drawing is planar. The general decision problem is NP-hard [9]. In the variant of
orthogeodesic point set embedding, Katz et al. proved that deciding whether a
planar graph can be embedded using only orthogonal edge routing is NP-hard [19].

Our Results. In Sect. 2 we solve BEP when the relative order of the buses is pre-
scribed; we also show that BEP is fixed-parameter tractable (FPT) with respect
to the number of colors. In Sect. 3 we formulate an integer linear programming
(ILP) formulation for BEP and show some experimental results. In Sect. 4 we
restrict BEP (when a bus must be above all its points, or a bus must be either
at its topmost or bottommost point) and describe efficient algorithms for these
settings. Another restricted version of the problem is shown to be equivalent to
the problem of sorting a permutation, which is called 2-stack pushall sorting.
Finally we prove that BEP is NP-complete, even for just two points per color, if
points may not lie on buses.

2 Preliminaries

We begin with some definitions. Suppose we are given a set of points P =
{p1, . . . , pn} and colors C = {c1, . . . , ck} together with a function f ∶ P �→
C, f(p) = c. For simplicity, we assume that no two points share a coordinate
in the input point set, although in some illustrations the input points might
violate this assumption. The bus embeddability problem (BEP) asks, whether
there is a planar bus realization with one horizontal bus per color. BEP is a

398 T. Bruckdorfer et al.

decision problem, but in our descriptions whenever the answer is affirmative we
also compute a drawing. We refer to such a drawing as a solution of BEP. In
the negative case, we say that BEP has no solution.

A point p has x-coordinate x(p), y-coordinate y(p), and color f(p). In a bus
realization we have connections only between a point p and a bus c of the same
color, that is, c = f(p). We denote by f−1(c) the set of points with color c. Bus
c naturally extends from the x-coordinate xl(c) = min{x(p)∣p ∈ f−1(c)} of the
leftmost point to the x-coordinate xr(c) =max{x(p)∣p ∈ f−1(c)} of the rightmost
point of f−1(c). We call [xl(c), xr(c)] the span of c, which is predefined by the
input points. The y-coordinate of a bus c is denoted by y(c), which is the only
parameter to be determined for a solution for BEP.

Note that BEP is trivial when there are at most two colors: it is always
possible to place one bus at the top and the other (if exists) at the bottom of
the drawing. Thus in the following we assume k > 2. For more than two colors,
the relative order of the buses is important; see Fig. 1. Suppose the y-order of
the buses is prescribed. The next lemma shows that one can check an existence
of a solution for BEP respecting the order.

Lemma 1. There is a O(n logn)-time algorithm that, given an order of buses,
tests whether there exists a solution for BEP respecting the order.

Proof. Suppose we are given an order c1 < ⋅ ⋅ ⋅ < ck of the buses from bottom to
top. We use discrete values for the y-coordinates increasing from bottom to top,
where a unit is 1/n of the y-distance of two consecutive points. We first present
a simpler O(n2

)-time algorithm, and then describe how to speed it up.
Recall that the span of every bus is defined by an input point set; hence, we

only show how to choose y-coordinates of the buses. The first bus, c1, is placed
at y-coordinate y(c1) = 0, and all the points of color c1 are connected to the bus.
Assume that bus ci−1 is placed at y-coordinate y(ci−1) and is connected to all
its points. We place ci at y(ci) = y(ci−1) + 1 unit and check if the bus crosses a
previously drawn (vertical) segment. If it does cross a segment, then we shift ci

one unit upwards by increasing y(ci) and repeat the procedure. Once the bus
is placed without crossings, we connect it to the corresponding points. Consider
the vertical segment of a point p of color ci. It is easy to see that if y(p) ≥ y(ci),
then the segment cannot cross a previously placed bus cj for j < i. If y(p) < y(ci)

and the vertical segment crosses a bus, then such a crossing is unavoidable in any
solution respecting the given order. Hence, we may stop the algorithm reporting
that no solution exists. Otherwise, we proceed with the next color.

The above algorithm can easily be implemented in quadratic time. However,
we can do better using the following observation: Every bus is placed at its bot-
tommost “valid” y-coordinate, that is, the one that does not produce crossings
with previously placed buses. To find such a y-coordinate efficiently for each
color, we store all points of the already processed colors in a data structure
D that supports the range operation such as “extracting minimum/maximum
on a given range”. For every color ci, we extract a point with the maximum y-
coordinate in the range corresponding to the span of ci. The bus of ci is placed at

On Embeddability of Buses in Point Sets 399

the maximum of the extracted y-coordinate and the y-coordinate of bus y(ci−1).
Then all the points of color ci are added to D. A balanced tree (e.g., a seg-
ment tree) providing logarithmic complexity for insert and extract operations is
sufficient for our needs. ⊓⊔

In general the correct order of the buses for a planar bus realization is not
known. One can apply Lemma 1 for each of the k! possible bus orders, which
yields an Õ(k!)-time1 algorithm for BEP. Next, we improve the running time
with an algorithm providing deeper insight into the structure of the problem.

Lemma 2. There is a Õ(2k
)-time algorithm for BEP.

Proof. We solve a given instance of BEP using dynamic programming. Let us
call a state a pair (h,B), where 0 ≤ h ≤ n + 1 is an integer and B is a subset
of C = {c1, . . . , ck}. By a solution for a state (h,B) we mean a (planar) bus
realization consisting of buses for every color c ∈ B such that the topmost bus has
y-coordinate h. If such a solution exists, we write F (h,B) = true, and otherwise
F (h,B) = false. It is easy to see that a solution for the original BEP problem
exists if and only if F (h,C) = true for some 0 ≤ h ≤ n + 1.

We reduce the problem to solving it for “smaller” states, that are the states
with fewer elements in B. As a base case, we set F (h,B) = true for all 0 ≤ h ≤ n+1
and ∣B∣ = 1. To compute a value for a state F (h,B) with ∣B∣ > 1, we consider
a color c∗ ∈ B. Let h∗ = max{y(p)∣f(p) ∈ B ∖ {c∗} and xl(c

∗
) ≤ x(p) ≤ xr(c

∗
)},

that is, the largest (topmost) y-coordinate of a point of color B ∖ {c∗} laying in
the span of c∗. It follows from the proof of Lemma 1 that the bus for c∗ should
be placed at y-coordinate h∗. Thus, F (h,B) is set to true if (a) h ≥ h∗ and
(b) there exists a solution for a state (h′,B ∖ {c∗}) for some h′ < h. We stress
here that in order to compute F (h,B), one needs to consider every color of B
as a potential c∗. There are n2k different states, and a computation for a single
state clearly takes a polynomial number of steps. ⊓⊔

The above result shows that the BEP problem is fixed-parameter tractable
with respect to k, that is, it can be efficiently solved for a small number of buses.
Note that in Sect. 5 we prove that BEP is NP-complete; hence, it is unlikely that
a polynomial-time (in terms of k) algorithm exists.

3 An ILP for BEP

In this section we present an integer linear programming (ILP) formulation for
BEP that produces a planar bus realization if one exists. The ILP also minimizes
the amount of ink in a solution, that is, the sum of all segment lengths.

Lemma 3. A solution for BEP can be computed by an ILP.

1
̃O hides polynomial factors.

400 T. Bruckdorfer et al.

Proof. In a preprocessing step we compute the span of every bus c ∈ C. As
mentioned earlier, it remains to compute the y-coordinate variable y(c) of every
bus c. To this end, we introduce a planarity constraint for every point p ∈ P
within the span of bus c having a different color. The pairs (p, c), c ≠ f(p) are
called conflicting. Conflicting pairs (p, c) are stored in a matrix J and induce the
constraint (y(p) < y(c) and y(f(p)) < y(c)) or (y(p) > y(c) and y(f(p)) > y(c)).
The matrix J can be computed in O(kn) time, where n=∣P∣ and k=∣C∣. In order
to minimize the amount of ink, we sum up the lengths of all connections and
ignore the lengths of buses, as those are determined by the input.

min ∑
c∈C

∑

f(p)=c

∣y(c) − y(p)∣

s.t. (y(p) < y(c) ∨ y(f(p)) > y(c)) ∧ (y(p) > y(c) ∨ y(f(p)) < y(c)) ∀(p, c) ∈ J

0 ≤ y(c) ≤max
p∈P
{y(p)} + 1

Since absolute value (resp. “or”) needs one more variable and 3 constraints
for every point (resp. for every conflicting pair)2, the final ILP has n+k+2∣J ∣
variables and 3n+k+6∣J ∣ constraints. ⊓⊔

Fig. 2. The percentage of solutions for BEP for a random point set of size n = kl with
l = 2,3,4 points per color out of k = 3, . . . , 20 colors (Color figure online).

In order to get a feeling about the probability that a point set admits a
solution of BEP, we ran an experiment with the ILP, implemented with the
Gurobi solver [17]. We considered point sets with k = 3, . . . ,20 colors and with
l = 2,3,4 points per color. We randomly placed the points on a 1024 × 768 area.
2 min

∑
∣a− b∣ ⇔min

∑
e, e ≥ a− b, e ≥ b− a, e ≥ 0; (a < b) ∨ (c < d) ⇔ a− b < eM, c− d <

(1 − e)M,e ∈ {0,1},M = ∞.

On Embeddability of Buses in Point Sets 401

For each pair (l, k) we counted the number of BEP solutions out of 100 instances;
see Fig. 2. The remaining instances were infeasible. For a fixed number of points,
l, the number of solutions for BEP decreases with increasing the number of colors,
k. It decreases faster the higher l is. On the other hand for a fixed number of
colors, k, the number of solutions for BEP also decreases with increasing number
of points, l. Hence, studying two points per color promises to be sufficiently
interesting. Thus, as the base case for further analysis, we initially consider two
points per color, before dealing with the general case, where in real instances
solutions rarely exist. It is possible that much more solutions exist if we allow
only few crossings, but all non-planar settings are left as open problems.

4 Efficiently Solvable BEP Variants

In this section we consider three variants of BEP, which can be solved in poly-
nomial time. A bus c is called top (resp., bottom) if all of its points are below
(resp., above) the bus, that is, y(c) ≥ y(p) (resp., y(c) ≤ y(p)) for all p ∈ f−1(c).
We distinguish between buses that are above (below) of their points and buses
that pass through one of their points. A top-bus is a ⊓-bus if y(c) > y(p) for
all p ∈ f−1(c) (Fig. 3(a)), while it is a ⌜-bus if y(c) = y(p) for a point p with
y(p) = max{y(q)∣q ∈ f−1(c)} (Fig. 3(c)). Similarly we define a ⊔-bus and a ⌞-
bus; see Fig. 3(b) and (d). A bus, whose type is none of the four types from
above, is called a center-bus. The variant of BEP where only buses of the types
in S ⊆ {⊓,⊔,⌜,⌞} are allowed to use is denoted by S-BEP.

(a) (b) (c) (d)

Fig. 3. Illustration of (a) ⊓-bus, (b) ⊔-bus, (c) ⌜-bus, and (d) ⌞-bus.

In Sect. 4.1 we study ⊓-buses and provide an algorithm for ⊓-BEP. The same
algorithm obviously solves the ⊔-BEP variant. Next we consider ⌜-buses and ⌞-
buses. Note that ⌜-BEP and ⌞-BEP are trivial, since every ⌜-bus (resp., ⌞-bus)
is uniquely defined by its span and the topmost (bottommost) point. Hence, we
investigate and design an efficient algorithm for the (⌜,⌞)-BEP variant. Finally
in Sect. 4.3, we examine the general BEP for a specific point set, where all points
lie on a diagonal. We show that the variant of the problem is equivalent to a
longstanding open problem (resolved very recently) of sorting a permutation
with a series of two stacks.

402 T. Bruckdorfer et al.

4.1 ⊓-BEP

Here, we present an algorithm that decides in polynomial time whether a drawing
with ⊓-buses exists for a given input, and constructs such a drawing if one exists.

Theorem 1. There exists an O(n logn)-time algorithm for ⊓-BEP.

Proof. For ease of presentation, we first assume that the input consists of two
points per color, that is, k = n/2, and provide a simple quadratic-time imple-
mentation. Later we generalize the algorithm and improve the running time.
Intuitively, the algorithm sweeps a line from bottom to top and processes the
points in increasing order of y-coordinates. At every step, we keep all the vertical
segments of the “active” colors (the ones without a bus) in the correct left-to-
right order. If two vertical segments of the same color are adjacent in the order,
then we can draw the corresponding bus and remove the color and its vertical
segments. Otherwise, all the active vertical segments have to be “grown” until
we reach the next point. It is easy to see that a solution exists if and only if the
set of active colors is empty after processing all the points.

More formally, the points are processed one-by-one in increasing order of their
y-coordinates. The points are stored in an array sorted by x-coordinate, that is,
we have (p1, . . . , pn) with x(p1) < ⋅ ⋅ ⋅ < x(pn). At each iteration, a new point is
inserted into the array in the position determined by its x-coordinate. Then the
array is modified (or simplified) so that the pairs of points of the same color
that are adjacent in the array are removed. That is, if f(pi) = f(pi+1) for some
1 ≤ i < n, then we get a new array (p1, . . . , pi−1, pi+2, . . . , pn). The simplification
is performed as long as the array contains monochromatic adjacent points. After
this step the algorithm proceeds with the next point. For every color c, we keep
the value y∗(c), which is equal to the y-coordinate y(p), p ∈ f−1(c′) of the point
of color c′, whose insertion into the array induced the removal of points f−1(c)
from the array. If the algorithm ends up with a non-empty array, then we report
that no solution exists. Otherwise, the y-coordinate of the resulting bus of color
c is y∗(c) + ε, where ε > 0 is sufficiently small to avoid overlaps between the
buses. An example of the algorithm is illustrated in Fig. 4.

1
2
3
4
5
6

R
RG
RGR
RBGR
RBGGR
RBWR

RBR

RBBWR RWR
RWRW

7
8

Array:Steps:

Fig. 4. Running the algorithm from Lemma 1 on a given point set with red (R), green
(G), blue (B), and white (W) pairs of points. Since the resulting array is not empty,
there is no solution for the instance. Notice that removing any of the colors yields an
instance with a solution (Color figure online).

On Embeddability of Buses in Point Sets 403

Correctness. The correctness follows from the observation that the algorithm
chooses the lowest “available” y-coordinate for every bus, that is, the one that
does not induce a crossing between the bus and vertical segments of other colors.
Indeed, if at any step of the algorithm we get a color pattern R, . . . ,B, . . . ,R in
the array formed by red (R) and blue (B) points and the second blue point p has
not been processed yet, then clearly in any solution the red vertical segments
reach the y-coordinate of p. Hence, it is safe to “grow” the segments. On the
other hand, if processed points form a color pattern RR (that is, two consecutive
points of the same color), then there is a solution connecting the corresponding
vertical segments at the current y-coordinate. The two points can be removed
from consideration, as they cannot create crossings with the subsequent buses.
It is also easy to see that the algorithm minimizes ink of the resulting drawing.
Running Time. At every iteration of the algorithm, we need to insert a new point
into the sorted array and then run the simplification procedure. Point insertion
takes O(n) time and removal of a pair of points from the array can also be done
in O(n) time. Since every pair is removed only once, the total running time is
O(n2

).
To get down to O(n logn) time, we use a balanced binary tree instead of

an array to store the points. The tree is sorted by the x-coordinates of the
points; hence, insertion/removal of a point takes O(logn) time. Note that after
inserting/removing a point, the only potential candidate pairs for simplification
are the point’s neighbors that can be found in O(logn) time. Again, every point
is inserted/removed only once; thus, the total running time is O(n logn).

Finally, we observe that the algorithm can be generalized to handle multiple
points per color. To this end, we change the simplification step so that the
points are removed only if they form a contiguous subsequence in the array
(tree), containing all points of this color. Hence we need to know the number of
points for each color, which can be done with a linear-time scan of the input. It
is easy to see that the proof of correctness can be appropriately modified and
the running time remains the same. ⊓⊔

4.2 (⌜,⌞)-BEP

We present an algorithm that decides in polynomial time whether (⌜,⌞)-BEP
has a solution for a given input, and constructs a drawing if one exists.

Theorem 2. There exists an O(n2
)-time algorithm for (⌜,⌞)-BEP.

Proof. The span of every bus is predefined by the input, while the y-coordinate
has precisely two options. We show that (⌜,⌞)-BEP can be modeled by 2-SAT,
and thus is efficiently solvable. For ease of presentation, we first assume that
the input consists of two points per color and describe a simple quadratic-time
algorithm.

The algorithm creates a variable xc for every color c ∈ C. The value of xc is
true if c is a ⌜-bus, and it is false if c is a ⌞-bus. Then for every pair of colors c, c′,
the algorithm creates a clause for the 2-SAT instance when the corresponding

404 T. Bruckdorfer et al.

buses induce a crossing. Building the clauses with respect to the relative position
of points is a straight-forward procedure; 3 examples are illustrated in Fig. 5. We
can generalize this idea in a straight-forward manner to the case of more points
per color. In the general case the y-coordinate of a bus still has precisely two
options. In contrast to the case with two points per color we check several points
(not only the leftmost or rightmost point) of color c′ for their position with
respect to the points of color c, since points lie not necessarily in corners of the
enclosing rectangle.

Correctness. The correctness follows from the complete case analysis.

xc = true xc∨̇xc xc ⇒ xc

Fig. 5. Three examples for creating clauses for two colors black and white.

Running Time. We remark that for the n2
/4 pairs of colors, we create O(n2

)

clauses, each clause in constant time by a case analysis. This results in a 2-SAT
instance with k variables xc, c ∈ C and O(n2

) clauses. We solve this instance in
linear time [3] and the solution determines the drawing: c is drawn as a ⌜-bus,
if the value of xc is true, otherwise c is drawn as a ⌞-bus. ⊓⊔

4.3 Diagonal BEP

Here we consider a diagonal point set in which all points lie on a single diagonal
line and there are two points per color. We assume that the point set is separable,
that is, there is a straight line separating every pair of points having the same
color; see Fig. 6. This specific arrangement can be naturally described in terms
of permutations. Assuming that the colors are numbered from 1 to k in the order
along the diagonal from bottom to top, the input is described by a permutation
π = [π(1), . . . , π(k)] on {1, . . . , k}. Such an instance is called diagonal π-BEP.

It turns out that this variant of BEP is closely related to the well-studied topic
of sorting a permutation with stacks introduced by Knuth in the 1960’s [21]. We
next show that diagonal π-BEP has a solution if and only if π can be sorted with
2 stacks in series. The problem of deciding whether a permutation is sortable with
2 stacks in series is a longstanding open problem and it has been conjectured to
be NP-complete several times [5]. Only very recently a polynomial-time algorithm
has been developed [25,26]. It is an indication that even the restricted variant
of BEP is highly non-trivial. Next we prove the equivalence.

First observe that for a diagonal point set with 2 points per color, a top-bus
(bottom-bus) can be transformed to a center-bus. For every color c, there are no
points of different color within the span of c above the topmost point of c. Hence,
we may only consider center-buses in the variant of BEP. For the 2-stack sorting

On Embeddability of Buses in Point Sets 405

problem, given a permutation π, we want to sort the numbers to the identity
permutation [1, . . . , k] with two stacks SI , SII using the following operations:

● αi ∶ read the next element i from input π and push it on the first stack SI ;
● βi ∶ pop the topmost element i from SI and push it on SII ;
● γi ∶ pop the topmost element i from SII and print it to the output.

σ

id

3

2

1

4

1

2

3

4

α3

α2

α1

α4

γ1

γ2
β3

γ3

γ4

β1

β2

β4

3

2

1

4

1

2

3

4

Fig. 6. A diagonal point set with a solution for BEP and the regarding sorting sequence
(Color figure online).

To make the equivalence between 2-stack sorting and bus embeddability, we
note that the first operation, αi, corresponds to the left vertical segment of color
i, the second one, βi, is the bus of i, while γi corresponds to the right vertical
segment of the color; see Fig. 6. A crossing in the drawing correspond to an
“invalid” sorting operation in which either a non-topmost element is moved from
SI to SII (a crossing to the “left” of the diagonal), or a non-topmost element is
moved from SII to the output (a crossing to the “right” of the diagonal). Hence,
sorting sequences of the operations for π are in one-to-one correspondence with
planar bus realization for the point set. Since the point set is separable, all the
elements of π will be pushed to SI before any of the elements is popped to the
output. This is called 2-stack pushall sorting, see [25] for more details.

Theorem 3. Diagonal π-BEP has a solution if and only if π is 2-stack pushall
sortable. This can be checked in O(n2

) time.

5 Hardness of BEP

We sketch the idea behind the proof that BEPε for 2 points per color is NP-
complete, where BEPε is BEP with minimum distance ε of points to their bus
as additional input.

We can easily verify a possible solution using Lemma 1; thus BEPε is in the
class NP. To prove the hardness of BEPε, we reduce from planar 3-SAT [23], which
is 3-SAT, where an instance is represented by a graph whose vertices represent
variables and clauses and whose edges represent containment of variables in

406 T. Bruckdorfer et al.

clauses. We replace the vertices and edges by gadgets. We first restrict ourselves
to (⊓,⊔)-BEP and drop the “no points share a coordinate” restriction. Details
can be found in [7].

The most important module of the construction is a chain link, which is also a
gadget for replacing variables. It consists of two points on a common horizontal
line that will be connected by a bus. We replace the edges of the graph by
chains consisting of nested chain links and replace the clause vertices by a big
construction of points, that allows two specific points to be connected via a bus
using only one of three choices. We use the input ε to be able to block some
choices for this bus. We finally transform the construction into the “no points
share a coordinate” setting and allow also center-buses.

Theorem 4. BEPε for 2 points per color is NP-complete.

6 Conclusion and Future Work

We studied bus embeddability, where a set of colored points is covered by a set
of horizontal buses, one per color and without crossings. We described an ILP
and an FPT algorithm for the general problem and presented polynomial-time
algorithms for several restricted versions. The general problem is shown to be
NP-complete even for two points per color when points may not lie on buses.

It is still open to determine the complexity of BEP in the following cases:

● BEP using only center-buses;
● (⊓,⊔)-BEP, that is, BEP without center-buses;
● diagonal BEP with more than 2 points per color;
● general BEP (in our construction, we use an extra ε as a parameter).

A natural generalization would be to allow both horizontal and vertical buses,
as in [1,6]. Another variant might be to consider multi-colored points, where a
point has to be connected either to all the buses of its corresponding colors,
or to at least one of them. For point sets that have no solution for BEP with
only one bus per color, we may allow more than one bus or bound the number of
crossings. Possible objectives in these scenarios are to minimize the total number
of buses over all colors, to minimize the total number of buses, or to minimize
the total number of buses if each tree can connect ≤ k unicolored points. These
objectives are even interesting if a solution to BEP exists.

References

1. Ada, A., Coggan, M., Marco, P.D., Doyon, A., Flookes, L., Heilala, S., Kim, E.,
Wing, J.L.O., Préville-Ratelle, L.F., Whitesides, S., Yu, N.: On bus graph realiz-
ability. In: Canadian Conference on Computational Geometry, pp. 229–232 (2007)

2. Alper, B., Riche, N.H., Ramos, G., Czerwinski, M.: Design study of LineSets, a
novel set visualization technique. IEEE Trans. Visual. Comput. Graph. 17(12),
2259–2267 (2011)

On Embeddability of Buses in Point Sets 407

3. Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth
of certain quantified Boolean formulas. Inform. Process. Lett. 8(3), 121–123 (1979)

4. Bekos, M.A., Cornelsen, S., Fink, M., Hong, S.-H., Kaufmann, M., Nöllenburg,
M., Rutter, I., Symvonis, A.: Many-to-one boundary labeling with backbones. In:
Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 244–255. Springer,
Heidelberg (2013)

5. Bóna, M.: A survey of stack-sorting disciplines. Electron. J. Comb. 9(2), 16 (2003)
6. Bruckdorfer, T., Felsner, S., Kaufmann, M.: On the characterization of plane bus

graphs. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 73–84.
Springer, Heidelberg (2013)

7. Bruckdorfer, T., Kaufmann, M., Kobourov, S., Pupyrev, S.: On embeddability of
buses in point sets. CoRR abs/1508.06760 (2015)

8. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar
supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)

9. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)

10. Chen, H., Qiao, C., Zhou, F., Cheng, C.K.: Refined single trunk tree: A rectilinear
Steiner tree generator for interconnect prediction. In: SLIP, pp. 85–89. ACM (2002)

11. Collins, C., Penn, G., Carpendale, T.: Bubble Sets: Revealing set relations with iso-
contours over existing visualizations. IEEE Trans. Visual. Comput. Graph. 15(6),
1009–1016 (2009)

12. Dickerson, M., Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent drawings:
Visualizing non-planar diagrams in a planar way. J. Graph Algorithms Appl. 9(1),
31–52 (2005)

13. Efrat, A., Hu, Y., Kobourov, S.G., Pupyrev, S.: MapSets: visualizing embedded
and clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol.
8871, pp. 452–463. Springer, Heidelberg (2014)

14. Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)

15. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner
minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)

16. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

17. Gurobi Optimization, I.: Gurobi optimizer reference manual (2015). www.gurobi.
com

18. Hurtado, F., Korman, M., van Kreveld, M., Löffler, M., Sacristán, V., Silveira,
R.I., Speckmann, B.: Colored spanning graphs for set visualization. In: Wismath,
S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 280–291. Springer, Heidelberg
(2013)

19. Katz, B., Krug, M., Rutter, I., Wolff, A.: Manhattan-geodesic embedding of planar
graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 207–
218. Springer, Heidelberg (2010)

20. Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hyper-
graphs and low-concurrency euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT
2014. LNCS, vol. 8503, pp. 265–276. Springer, Heidelberg (2014)

21. Knuth, D.E.: The Art of Computer Programming, Volume 1. Fundamental Algo-
rithms, 3rd edn. Addison Wesley Longman Publishing Co., Inc., Redwood (1997)

22. Lengauer, T.: VLSI theory. In: van Leeuwen, J. (ed.) Handbook of Theoreti-
cal Computer Science, Volume A: Algorithms and Complexity (A), pp. 835–868.
Elsevier, Amsterdam (1990)

http://arxiv.org/abs/1508.06760
www.gurobi.com
www.gurobi.com

408 T. Bruckdorfer et al.

23. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

24. Meulemans, W., Riche, N.H., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: A
hybrid set visualization technique. IEEE Trans. Visual. Comput. Graph. 19(11),
1846–1858 (2013)

25. Pierrot, A., Rossin, D.: 2-stack pushall sortable permutations. CoRR
abs/1303.4376 (2013)

26. Pierrot, A., Rossin, D.: 2-stack sorting is polynomial. In: Mayr, E.W., Portier, N.
(eds.) Symposium on Theoretical Aspects of Computer Science. LIPIcs, vol. 25,
pp. 614–626. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2014)

27. Riche, N.H., Dwyer, T.: Untangling Euler diagrams. IEEE Trans. Visual. Comput.
Graph. 16(6), 1090–1099 (2010)

28. Simonetto, P., Auber, D., Archambault, D.: Fully automatic visualisation of over-
lapping sets. Comput. Graph. Forum 28(3), 967–974 (2009)

29. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar
graphs. Discrete Comput. Geom. 1, 321–341 (1986)

http://arxiv.org/abs/1303.4376

A Universal Point Set for 2-Outerplanar Graphs

Patrizio Angelini1, Till Bruckdorfer1(B), Michael Kaufmann1,
and Tamara Mchedlidze2

1 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

{angelini,bruckdor,mk}@informatik.uni-tuebingen.de
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,

Karlsruhe, Germany
mched@iti.uka.de

Abstract. A point set S ⊆ R
2 is universal for a class G if every graph

of G has a planar straight-line embedding on S. It is well-known that
the integer grid is a quadratic-size universal point set for planar graphs,
while the existence of a sub-quadratic universal point set for them is one
of the most fascinating open problems in Graph Drawing. Motivated by
the fact that outerplanarity is a key property for the existence of small
universal point sets, we study 2-outerplanar graphs and provide for them
a universal point set of size O(n logn).

1 Introduction

Let S be a set of m points on the plane. A planar straight-line embedding of an
n-vertex planar graph G, with n ≤ m, on S is a mapping of each vertex of G to
a distinct point of S so that, if the edges are drawn straight-line, no two edges
cross. Point set S is universal for a class G of graphs if every graph G ∈ G has
a planar straight-line embedding on S. Asymptotically, the smallest universal
point set for general planar graphs is known to have size at least 1.235n [11],
while the upper bound is O(n2) [3,8,12]. All the upper bounds are based on
drawing the graphs on an integer grid, except for the one by Bannister et al. [3],
who use super-patterns to obtain a universal point set of size n2/4 − Θ(n) –
currently the best result for planar graphs. Closing the gap between the lower
and the upper bounds is a challenging open problem [6–8].

A subclass of planar graphs for which the “smallest possible” universal point
set is known is the class of outerplanar graphs – the graphs that admit a straight-
line planar drawing in which all vertices are incident to the outer face. Namely,
Gritzmann et al. [10] and Bose [5] proved that any size-n point set in general
position is universal for n-vertex outerplanar graphs. Motivated by this result,
we consider the class of k-outerplanar graphs, with k ≥ 2, which is a general-
ization of outerplanar graphs. A planar drawing of a graph is k-outerplanar if

This work has been supported by DFG grant Ka812/17-1. The full version of the
paper, including all the missing proofs, can be found in [2].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 409–422, 2015.
DOI: 10.1007/978-3-319-27261-0 34

410 P. Angelini et al.

removing the vertices of the outer face, called k-th level, produces a (k − 1)-
outerplanar drawing, where 1-outerplanar stands for outerplanar. A graph is
k-outerplanar if it admits a k-outerplanar drawing. Note that every planar graph
is a k-outerplanar graph, for some value of k ∈ O(n). Hence, in order to tackle a
meaningful subproblem of the general one, it makes sense to study the existence
of subquadratic universal point sets when the value of k is bounded by a con-
stant or a sublinear function. However, while the case k = 1 is trivially solved
by selecting any n points in general position, as observed above [5,10], the case
k = 2 already eluded several attempts of solution and turned out to be far from
trivial. In this paper, we finally solve the case k = 2 by providing a universal
point set for 2-outerplanar graphs of size O(n log n).

A subclass of k-outerplanar graphs, in which the value of k is unbounded,
but every level is restricted to be a chordless simple cycle, was known to have
a universal point set of size O(n(log n

log log n)2) [1], which was subsequently reduced
to O(n log n) [3]. It is also known that planar 3-trees – graphs not defined in
terms of k-outerplanarity – have a universal point set of size O(n5/3) [9]. Note
that planar 3-trees have treewidth equal to 3, while 2-outerplanar graphs have
treewidth at most 5.

Structure of the Paper: After some preliminaries and definitions in Sect. 2,
we consider 2-outerplanar graphs in Sect. 3 where the inner level is a forest and
all the internal faces are triangles. We prove that this class of graphs admits
a universal point set of size O(n3/2). We then extend the result in Sect. 4 to
2-outerplanar graphs in which the inner level is still a forest but the faces are
allowed to have larger size. Finally, in Sect. 5, we outline how the result of Sect. 4
can be extended to general 2-outerplanar graphs. We also explain how to apply
the methods in [3] to reduce the size of the point set to O(n log n). We conclude
with open problems in Sect. 6.

2 Preliminaries and Definitions

A straight-line segment with endpoints p and q is denoted by s(pq). A circular arc
with endpoints p and q (clockwise) is denoted by a(pq). We assume familiarity
with the concepts of planar graphs, straight-line planar drawings and their faces.
A straight-line planar drawing Γ of a graph G determines a clockwise ordering
of the edges incident to each vertex u of G, called rotation at u. The rotation
scheme of G in Γ is the set of the rotations at all the vertices of G determined
by Γ . Observe that, if G is connected, in all the straight-line planar drawings of
G determining the same rotation scheme, the faces of the drawing are delimited
by the same edges.

Let [G,H] be a 2-outerplanar graph, where the outer level is an outerplanar
graph G and the inner level is a set H = {G1, . . . , Gk} of outerplanar graphs. We
assume that [G,H] is given together with a rotation scheme, and the goal is to
construct a planar straight-line embedding of [G,H] on a point set determining
this rotation scheme. Since [G,H] can be assumed to be connected (as otherwise

A Universal Point Set for 2-Outerplanar Graphs 411

pN = pn+√
np1

O
pj+1

pj−1
pj

pNj

p+j

p−
j

pCj
p2j

p1j
xl

πj

π

(a) (b)

Fig. 1. (a) Illustration of S, focused on Sj of pj . (b) A cycle-tree graph and its
embedding.

we can add a minimal set of dummy edges to make it connected), this is equiv-
alent to assuming that a straight-line planar drawing Γ of [G,H] is given. We
rename the faces of Γ as F1, . . . , Fk in such a way that each graph Gh, which
can also be assumed connected, lies inside face Fh. Note that, for each face Fh of
G, the graph [Fh, Gh] is again a 2-outerplanar graph; however, its outer level Fh

is a simple chordless cycle and its inner level Gh consists of only one connected
component. In the special case in which Gh is a tree we say that graph [Fh, Gh]
is a cycle-tree graph. We say that a 2-outerplanar graph is inner-triangulated if
all the internal faces are 3-cycles. Note that not every cycle-tree graph can be
augmented to be inner-triangulated without introducing multiple edges.

3 Inner-Triangulated 2-Outerplanar Graphs with Forest

In this section we prove that there exists a universal point set S of size O(n3/2)
for the class of n-vertex inner-triangulated 2-outerplanar graphs [G,H] where H
is a forest.

3.1 Construction of the Universal Point Set

In the following we describe S (Fig. 1(a)). Let π be a half circle with center O
and let N := n +

√
n. Uniformly distribute points in SM = {p1, . . . , pN} on π.

The points in SD = {pi
√

n+i : 1 ≤ i ≤ √
n} are called dense, while the remaining

points in SM \ SD are sparse1. For j = 2, . . . , N − 1, place a circle πj with its
center pC

j on s(pjO), so that it lies completely inside the triangle �pj−1pjpj+1

and inside the triangle �p1pjpN . Note that the angles ∠pjp
C
j pN and ∠pjp

C
j p1

are smaller than 180◦. Let pN
j be the intersection point between s(pjO) and πj

that is closer to O. Also, let p1j (resp. p2j) be the intersection point of s(pC
j pj+1)

(resp. s(pC
j pj−1)) with πj . Finally, let p3j (resp. p4j) be the intersection point of

1 The distribution of the points into dense and sparse portions of the point set is
inspired by [1].

412 P. Angelini et al.

πj with its diameter orthogonal to s(pjO), such that a(p3jp
4
j) does not contain

pN
j . Now, choose a point p+j on the arc a(p1jp

3
j), and a point p−

j on the arc
a(p4jp

2
j). To complete the construction of S, evenly distribute n − 1 points on

each of the three segments sN
j := s(pC

j pN
j), s+j := s(pC

j p+j), and s−
j := s(pC

j p−
j),

where n = n if pj is dense and n =
√

n if it is sparse. We refer to the points
on sN , s+, s−, including the points pN

j , pC
j , p+j , p−

j , as the point set of pj , and we
denote it by Sj . Vertex pC

j is the center vertex of Sj . The described construction
uses O(n3/2) points and ensures the following property.

Property 1. For each j = 1, . . . , N , the following visibility properties hold:

(A) The straight-line segments connecting point pj to: point p−
j , to the points

on s−
j , to pC

j , to the points on s+j , and to p+j appear in this clockwise order
around pj .

(B) For all l < j, consider any point xl ∈ {pl}∪Sl (see Fig. 1); then, the straight-
line segments connecting xl to: pN

j , to the points on sN
j , to pC

j , to the points on
s−

j , to p−
j , and to pj appear in this clockwise order around xl. Also, consider the

line passing through xl and any point in {pj}∪Sj ; then, every point in {pq}∪Sq,
with l < q < j, lies in the half-plane delimited by this line that does not contain
the center O of π.

(C) For all l > j, consider any point xl ∈ {pl} ∪ Sl; then, the straight-line
segments connecting xl to: pN

j , to the points on sN
j , to pC

j , to the points on s+j ,
to p+j , and to pj appear in this counterclockwise order around xl. Also, consider
the line passing through xl and any point in {pj} ∪ Sj ; then, every point in
{pq} ∪ Sq, with j < q < l, lies in the half-plane delimited by this line that does
not contain O.

3.2 Labeling the Graph

Let [G,H] be an inner-triangulated 2-outerplanar graph where G is an outer-
planar graph and H = {T1, . . . , Tk} is a forest such that tree Th lies inside face
Fh of G, for each 1 ≤ h ≤ k. The idea behind the labeling is the following: in
our embedding strategy, G will be embedded on the half-circle π of the point
set S, while the tree Th ∈ H lying inside each face Fh of G will be embedded
on the point sets Sj of some of the points pj on which vertices of Fh are placed.
Note that, since π is a half-circle, the drawing of Fh will always be a convex
polygon in which two vertices have small (acute) internal angles, while all the
other vertices have large (obtuse) internal angles. In particular, the vertices with
the small angle are the first and the last vertices of Fh in the order in which they
appear along the outer face of Γ . Since, by construction, a point pj of Fh has
its point set Sj in the interior of Fh if and only if it has a large angle, we aim at
assigning each vertex of Th to a vertex of Fh that is neither the first nor the last.
We will describe this assignment by means of a labeling � : [G,H] → 1, . . . , |G|;
namely, we will assign a distinct label �(v) to each vertex v ∈ G and then assign

A Universal Point Set for 2-Outerplanar Graphs 413

to each vertex of Th the same label as one of the vertices of Fh that is neither
the first or the last. Then, the number of vertices with the same label as a vertex
of G will determine whether this vertex will be placed on a sparse or a dense
point. We formalize this idea in the following.

We rename the vertices of G as v1, . . . , v|G| in the order in which they appear
along the outer face of Γ , and label them with �(vi) = i for i = 1, . . . , |G|. Next,
we label the vertices of each tree Th ∈ H. Since trees Th and Th′ are disjoint
for h 	= h′, we focus on the cycle-tree graph [F, T] composed of a single face
F = Fh of G and of the tree T = Th ∈ H inside it. Rename the vertices of F
as w1, . . . , wm in such a way that for any two vertices wx = vp and wx+1 = vq,
where p, q ∈ {1, . . . , |G|}, it holds that p < q. As a result, w1 and wm are the
only vertices of F with small internal angles. A vertex of T is a fork vertex
if it is adjacent to more than two vertices of F (square vertices in Fig. 1(b)),
otherwise it is a non-fork vertex (cross vertices in Fig. 1(b)). Since [F, T] is
inner-triangulated, every vertex of T is adjacent to at least two vertices of F ,
and hence non-fork vertices are adjacent to exactly two vertices of F . We label
the vertices of T starting from its fork vertices. To this end, we construct a tree
T ′ composed only of the fork vertices, as follows. Initialize T ′=T . Then, as long
as there exists a non-fork vertex of degree 3 (namely, with 2 neighbors in F and
1 in T ′), remove it and its incident edges from T ′. The vertices removed in this
step are called foliage (small crosses in Fig. 1(b)). All the remaining non-fork
vertices have degree 4 (namely 2 in F and 2 in T ′); for each of them, remove it
and its incident edges from T ′ and add an edge between the two vertices of T ′

that were connected to it before its removal. The vertices removed in this step
are branch vertices (large crosses in Fig. 1(b)). A vertex wx ∈ F is called free
if so far no vertex of T ′ has label �(wx). To perform the labeling, we traverse
T ′ bottom-up with respect to a root r that is the vertex of T ′ adjacent to both
w1 and wm. Since [F, T] is inner-triangulated, this vertex is unique. During the
traversal of T ′, we maintain the invariant that vertices of T ′ are incident to only
free vertices of F . Initially the invariant is satisfied since all the vertices of F are
free. Let a be the fork vertex considered in a step of the traversal of T ′, and let
wa1 , . . . , wak

be the vertices of F adjacent to a, with 1 ≤ a1 < · · · < ak ≤ m and
k ≥ 3. By the invariant, wa1 , . . . , wak

are free. Choose any vertex wai
such that

2 ≤ i ≤ k−1, and set �(a) = �(wai
). For example, the red fork vertex in Fig. 1(b)

adjacent to w3, w4, and w5 in F gets label �(w4). Since vertices wa2 , . . . , wak−1

cannot be adjacent to any vertex of T ′ that is visited after a in the bottom-up
traversal, the invariant is maintained at the end of each step. When finally a=r,
then wa1 = w1 and wak

= wm are both free.
Now we label the non-fork vertices of T based on the labeling of T ′. Let b

be a non-fork vertex. If b is a branch vertex, then consider the first fork vertex
a encountered on a path from b to a leaf of T ; set �(b) = �(a). Otherwise, b is
a foliage vertex. In this case, consider the first fork vertex a′ encountered on a
path from b to the root r of T . Let v, w ∈ F be the two vertices of F adjacent to
b; assume �(v) < �(w). If �(a′) ≤ �(v), then set �(b) = �(v); if �(a′) ≥ �(w), then
set �(b) = �(w); and if �(v) < �(a′) < �(w), then set �(b) = �(a′) (the latter case
only happens when a′ is the root and b is adjacent to w1 and wm). Note that

414 P. Angelini et al.

the described algorithm ensures that adjacent non-fork vertices have the same
label. We perform the labeling procedure for every Th ∈ H and obtain a labeling
for [G,H]. We say that the subgraph of H induced by all the vertices of H with
label i is the restricted subgraph Hi of H for all i = 1, . . . , |G| (see Fig. 1(b)).

Lemma 1. Each restricted subgraph Hi of H, 1 ≤ i ≤ |G|, is a tree all of whose
vertices have degree at most 2, except for one vertex that may have degree 3.

Proof Sketch. First, Hi has at most one fork vertex a, which is hence the only
one with degree larger than 2. Further, a is incident to at most one path (to no
path, if a = r) of branch vertices, namely the one connecting it to its parent
fork vertex. Finally, a is incident to at most two (if a 	= r) or at most three (if
a = r) paths of foliage vertices, namely the ones whose vertices are incident to
the vertex w ∈ F such that �(w) = i. �

3.3 Embedding on the Point Set

We describe an embedding algorithm consisting of three steps (see Fig. 1(b)).

Step a: Let ω : G → N be a weight function with ω(vi)=|{v ∈ [G,H] | �(v) = i}|
for every vi ∈ G. Note that

∑
vi∈G ω(vi) = n. We categorize each vertex vi ∈ G

as sparse if 1 ≤ ω(vi) ≤ √
n, and dense if ω(vi) >

√
n. There are at most

√
n

dense vertices.

Step b: We draw the vertices v1, . . . , v|G| of G on the N := n +
√

n points of
π in the same order as they appear along the outer face of Γ , in such a way
that dense (resp. sparse) vertices are placed on dense (resp. sparse) points. The
resulting embedding Γ̃ of G is planar since Γ is planar. The construction of Γ̃
implies the following.

Property 2. Let Q = {pj1 , . . . , pjm} ⊆ π, ji < ji+1, be the polygon representing
a face of G. Polygon Q contains in its interior all the point sets Sj2 , . . . , Sjm−1 .

Step c: Finally, we consider forest H = {T1, . . . , Tk}. We describe the embedding
algorithm for a single cycle-tree graph [F, T], where F = w1, . . . , wm is a face of
G and T ∈ H is the tree lying inside F . We show how to embed the restricted
subgraph Hi, for each vertex wx of F with label �(wx) = i, on the point set
Sj of the point pj where wx is placed. We remark that the labeling procedure
ensures that |Hi|+1 = ω(wx) ≤ |Sj |; also, by Property 2, point set Sj lies inside
the polygon representing F , except for the two points where vertices w1 and wm

have been placed.
By Lemma 1, Hi has at most one (fork-)vertex a of degree 3, while all other

vertices have smaller degree. We place a, if any, on the center point pC
j of pj .

The at most three paths of non-fork vertices are placed on segments s+j , s−
j , sN

j

starting from pC
j ; namely, the unique path of branch vertices is placed on sN

j ,
while the two paths of foliage vertices are placed on s+j or s−

j based on whether

A Universal Point Set for 2-Outerplanar Graphs 415

pq pj

aa
a∗

pq pj

a
a

a∗

(a)

p−
j p+j

pNj

pCj

pj−1 pj+1

p1j

p3jp4j

p2j
l(pNz) r(pNz)

r(p+z)

l(p+z)r(p−
z)

l(p−
z)

(b)

pj

pCj

pj+1

pN

s+

r(p+1)r(p+2)

q2q1

p+j

π+
r

p+1 p+2
l(p+1) l(p+2)

(c)

Fig. 2. (a)(top) P contains a′ �= a, (a)(bottom) a′ is a leaf of T . (b)–(c) Dark-gray
triangles are used for construction of petal points r(p+

z) while light-gray triangles for
l(p+

z).

the vertex of G different from wx they are incident to is wx+1 or wx−1, respec-
tively. If a = r, then the path of foliage vertices incident to w1 and wm is placed
on sN

j .
We show that this results in a planar drawing of T . First, for every two fork

vertices a ∈ Hp and a′ ∈ Hq, with p < q, all the leaves of the subtree of T rooted
at a have smaller label than all the leaves of the subtree of T rooted at a′. Then,
for each wx ∈ F , with �(wx) = i, consider the fork vertex a ∈ Hi, which lies on
pC

j . Let P be any path connecting a to a leaf of T and let a∗ be the neighbor of a
in P . If P contains a fork vertex other than a (Fig. 2(a)), then let a′ be the fork
vertex in P that is closest to a (possibly a′=a∗) and let pC

q be the point where
a′ has been placed. Assume q < j, the case q > j is analogous. By definition, the
non-fork vertices in the path from a to a′ (if any) are branch vertices, and hence
lie on sN

q . Then, Property 1 ensures that the straight-line edge (a, a∗) separates
all the point sets Sp with q < p < j from the center of π. Since the vertices on
Sp are only connected either to each other or to the vertices on s−

j and s+q , edge
(a, a∗) is not involved in any crossing. If P does not contain any fork vertex other
than a (Fig. 2(a)), then all the vertices of P other than a are foliage vertices and
are placed on a segment s+q or s−

q , for some q. In particular, if q < j, then they
are on s−

q ; if q > j, then they are on s+q ; while if q = j, then they are either on
s+q or on s−

q . In all the cases, Property 1 ensures that edge (a, a∗) does not cross
any edge.

Finally, observe that any path of T containing only non-fork vertices is placed
on the same segment of the point set, and hence its edges do not cross. As for
the edges connecting vertices in one of these paths to the two leaves of T they
are connected to, note that by item (A) of Property 1 the edges between each
of these leaves and these vertices appear in the rotation at the leaf in the same
order as they appear in the path.

Lemma 2. There exists a universal point set of size O(n3/2) for the class of
n-vertex inner-triangulated 2-outerplanar graphs [G,H] where H is a forest.

416 P. Angelini et al.

b1bl

v

. . .

(a)

b1bl . . .

v1 vl. . .

(b)

b1bl . . .

v1 vl. . .

f

v2

(c)

v2v1

f
g e

b1

bl

(d)

. . .

ch

w1 wq=v1 v2

b1

e
fg

c1=bl

(e)

Fig. 3. (a)–(c): Insertion of triangulation edges in (a) a petal face, (b) a non-protected
big face, and (c) a big face protected by vertex b1. (d)–(e) Illustration of the two cases
for removing bad faces. Face g is petal in (d) and big in (e). Dummy edges are dashed,
the removed edge e is red (Color figure online).

4 2-Outerplanar Graphs with Forest

In this section we consider 2-outerplanar graphs [G,H] where H is a forest. Con-
trary to the previous section, we do not assume [G,H] to be inner-triangulated.
As observed before, augmenting it might be not possible without introducing
multiple edges. The main idea to overcome this problem is to first identify the
parts of [G,H] not allowing for the augmentation, remove them, and augment
the resulting graph with dummy edges to inner-triangulated (Sect. 4.2); then,
apply Lemma 2 to embed the inner-triangulated graph on the point set S; and
finally remove the dummy edges and embed the parts of the graph that had been
previously removed on the remaining points (Sect. 4.3). To do so, we first need
to extend the point set S with some additional points.

4.1 Extending the Universal Point Set

We construct a point set S∗ with O(n3/2) points from S by adding petal points to
segments s+j , sN

j , s−
j of the point sets Sj , for every j=2, . . . , N −1. For simplicity

of notation, we skip the subscript j whenever possible. We denote by pσ
z the z-th

point on segment sσ, with σ ∈ {+,−, N} and z=1, . . . , n (where n=
√

n or n=n,
depending on whether pj is sparse or dense), so that pσ

1 is the point following
pC along sσ and pσ

n = pσ
j . For each point pσ

z we add two petal points l(pσ
z) and

r(pσ
z) to S∗.
We first describe the procedure for s+, see Fig. 2(c). For each z=1, . . . , n,

consider the intersection point qz between segments s(p+z−1pj+1) and s(p+z pN),
where p+z−1 = pC

j when z = 1. By construction, all triangles �p+z−1p
+
z qz have two

corners on s+, have the other corner in the same half-plane delimited by the line
through s+, and do not intersect each other except at common corners. Hence,
there exists a convex arc π+

r passing through pC
j and p+n = p+j , and intersecting

the interior of every triangle. For each z = 1, . . . , n, we place the petal point
r(p+z) on the arc of π+

r lying inside triangle �p+z−1p
+
z qz. For the other petal point

l(p+z) we use the same procedure by considering triangles �p+z−1p
+
z pj instead of

�p+z−1p
+
z qz. Symmetrically we place the petal points for s−, using points pj−1

A Universal Point Set for 2-Outerplanar Graphs 417

and p1 to place l(p−
z) and point pj to place r(p−

z), and for sN , using points pj−1

and p1 to place l(pN
z) and points pj+1 and pN to place r(pN

z).

4.2 Modifying and Labeling the Graph

We now aim at modifying [G,H] to obtain an inner-triangulated graph that can
be embedded on the original point set S (Part A and Part B); in Sect. 4.3
we describe how to exploit this embedding on S to obtain an embedding of the
original graph [G,H] on the extended point set S∗ (Part C). We describe the
procedure just for a cycle-tree graph [F, T] composed of a face F of G and of
the tree T inside it.

Part A: We categorize each face f of [F, T] based on the number of vertices of
F and of T that are incident to it. Since T is a tree, f has at least a vertex of
F and a vertex of T incident to it. If f contains exactly one vertex of F , then
it is a petal face. If f contains exactly one vertex of T , then it is a small face.
Otherwise, it is a big face. Let b1, . . . , bl be the occurrences of the vertices of T in
a clockwise order walk along the boundary of a big face f . If either b1 or bl, say
b1, has more than one adjacent vertex in F (namely one in f and at least one
not in f), then f is protected by b1. If f is a big face with exactly two vertices
incident to F and is not protected, then f is a bad face.

The next lemma gives sufficient conditions to triangulate G without introduc-
ing multiple edges; we will later use this lemma to identify the “tree components”
of T whose removal allows for a triangulation.

Lemma 3. Let [F, T] be a biconnected simple cycle-tree graph, such that (1)
each vertex of F has degree at most four, and (2) there exists no bad face in
[F, T]. It is possible to augment [F, T] to an inner-triangulated simple cycle-tree
graph.

Proof Sketch. Each petal (small, respectively) face f can be triangulated by
adding vertices between the only vertex of F (of T) incident to f and all the
other vertices of f . Multiple edges are not created since [F, T] is biconnected
and there exists no two petal faces incident to the same vertex v of F , as v has
degree at most 4; see Fig. 3(a).

Consider a big face f , with vertex occurrences v1, ..., vl′ , b1, ..., bl (with l,
l′ > 1), where v1, ..., vl′ ∈ F and b1, ..., bl ∈ T . If f is protected by a vertex,
say b1, then it is triangulated by adding an edge between bl and every vertex of
F , and an edge between vl′ and every vertex of T ; see Fig. 3(b). The absence of
multiple edges is due to the edge connecting b1 to a vertex of F not incident to
f , which implies that vl′ is not connected to any vertex of T incident to f other
than b1. Finally, if f is not protected by any vertex, we make it protected by
adding an edge (bl, v2) and apply the previous case; see Fig. 3(c). Since f is not
a bad face, we have l′ > 2, and hence v2 is not connected to any vertex of T ,
which implies that (bl, v2) is not a multiple edge. �

We now describe a procedure to transform cycle-tree graph [F, T] into another
one [F, T ′′] that is biconnected and satisfies the conditions of Lemma 3. We do

418 P. Angelini et al.

this in two steps: first, we remove some edges connecting a vertex of F and a
vertex of T to transform [F, T] into a cycle-tree graph [F, T ′=T] that is not
biconnected but that satisfies the two conditions; then, we remove the “tree
components” of T ′ that are not connected to vertices of F in order to obtain a
cycle-tree graph [F, T ′′ ⊆ T ′] that is also biconnected.

To satisfy condition (1) of Lemma 3, we merge all the petal faces incident to
the same vertex of F into a single one by repeatedly removing an edge shared by
two adjacent petal faces. We refer to these removed edges as petal edges, denoted
by EP .

To satisfy condition (2) of Lemma 3, we consider each bad face f = v1, v2,
b1, . . . , bl, where v1, v2 ∈ F and b1, . . . , bl ∈ T . Let g be the face incident to v1
sharing edge e = (v1, bl) with f . We remove e, hence merging f and g into a
single face f ′, that we split again by adding dummy edges, based on the type
of face g, in such a way that no new bad face is created. Since f is a bad face,
it is not protected by bl, and hence g is not a small face. If g is a petal face,
then f ′ is still a big face with two vertices of F incident to it, namely v1 and
v2; see Fig. 3(d). We add edge (v1, b1), splitting f ′ into a petal face v1, b1, . . . , bl

and a triangular face v1, v2, b1. If g is a big face, then f ′ is a big face; see
Fig. 3(e). Let g = w1, . . . , wq, c1, . . . , ch, where w1, . . . , wq ∈ F , with wq = v1,
and c1, . . . , ch ∈ T , with c1 = bl. We add two dummy edges (v1, ch) and (v1, b1),
splitting f ′ into a small face w1, . . . , wq, ch, a petal face v1, b1, . . . , bl = c1, . . . , ch,
and a triangular face v1, v2, b1. The edges removed in this step are big face edges,
denoted by EB , and the added edges are triangulation edges.

In order to make [F, T ′] biconnected, note that [F, T ′] consists of a bicon-
nected component which contains F , called block-component, and a set TB of
subtrees of T ′, called tree components, each sharing a cut-vertex with the block
component. We remove the tree components TB from [F, T ′] and obtain an
instance [F, T ′′ ⊆ T ′], that is actually the block component of [F, T ′]. Since
the removal of TB does not change the degree of the vertices of F and does not
create any bad face, [F, T ′′] is indeed a biconnected instance satisfying the two
conditions of Lemma 3. Thus, by adding further triangulation edges we augment
it to an inner-triangulated instance [F, TΔ = T ′′].

Lemma 4. Let e=(b, v) be an edge of EP ∪ EB, where b ∈ T and v ∈ F . Then,
either e is a triangulation edge in [F, TΔ] or b belongs to a tree component Tc of
TB sharing a cut-vertex c with [F, T ′′]. In the latter case, (v, c) is a triangulation
edge in [F, TΔ].

Lemma 5. Let Tc ∈ TB be a tree component such that there exists at least an
edge (b, v) ∈ EP ∪ EB, with b ∈ Tc and v ∈ F . Then, for each edge in EP ∪ EB

with an endvertex belonging to Tc, the other endvertex is v.

Performing the above operations for every cycle-tree graph [F, T] yields an
inner-triangulated 2-outerplanar graph [G,HΔ] as outcome of Part A. We then
label [G,HΔ] with the algorithm from Sect. 3.2 and describe next how to extend
this labeling to TB.

A Universal Point Set for 2-Outerplanar Graphs 419

w

a

b

v

(a)

v

a
b

w

(b)

v

a
b

w

(c)

w

a

b

v

(d)

v

a
b

w

(e)

Fig. 4. (a)–(c) Inserting dummy vertices for a tree-component in a face (a, b, v) with
v ∈ F and a, b ∈ T Δ, when (a) �(a) = �(b), (b) �(a) �= �(b) and �(w) < �(v), and
(c) �(a) �= �(b) and �(w) > �(v). (d)–(e) Moving dummy vertices to petal points if
�(a) = �(b) and if �(a) �= �(b) (Color figure online).

Part B: We consider the tree components Tc ∈ TB for each face F of G; let
[F, TΔ] be the corresponding inner-triangulated cycle-tree graph. We label the
vertices of Tc and simultaneously augment [F, TΔ] with dummy vertices and
edges, so that [F, TΔ] remains inner-triangulated (and hence can be embedded,
by Lemma 2) and the vertices of Tc can be later placed on the petal points
of the points where dummy vertices are placed. The face of [F, T ′′] to which Tc

belongs might have been split into several faces of [F, TΔ] by triangulation edges.
We assign Tc to any of such faces f that is incident to the root c of Tc. Then,
we label Tc based on the type of f ; we distinguish two cases.

Suppose f is a triangular face (c, v, w) with v, w ∈ F and c ∈ TΔ; assume
�(v) < �(w). We create a path Pc containing |Tc|−1 dummy vertices and append
Pc at c. Then, we connect every dummy vertex of Pc with both v and w. If
�(c) ≤ �(v), then we label the vertices of Pc with �(Pc) = �(v). If �(c) ≥ �(w),
then we label �(Pc) = �(w).

Suppose f is a triangular face (a, b, v) with v ∈ F and a, b ∈ TΔ, refer to
Fig. 4; assume �(a) ≤ �(b). Replace edge (a, b) with a path Pc between a and b
with |Tc| − 1 internal dummy vertices, and connect each of them to v and to
w, where w is the other vertex of F adjacent to both a and b. For each dummy
vertex x of Pc, we assign �(x) = �(a) if �(v) ≤ �(a); we assign �(x) = �(b) if
�(v) ≥ �(b); and we assign �(x) = �(v) if �(a) < �(v) < �(b). The existence of
edge (a, b) ∈ TΔ implies that either a is the parent of b in TΔ or vice versa.
Suppose the former, the other case is analogous. Then, v and w are the extremal
neighbors of b in F , and thus either �(v) ≤ �(b) ≤ �(w) or �(w) ≤ �(b) ≤ �(v).
Also, if �(a) 	= �(b), then �(a) does not lie strictly between �(v) and �(w). In fact,
this can only happen if �(b) strictly lies between �(v) and �(w), and �(a) = �(b)
(which happens only if a is a non-fork vertex). Since �(a) ≤ �(b), by assumption,
this implies that �(a) ≤ �(v), �(w). The two observations before can be combined
to conclude that, if �(a) = �(b), then all the tree components lying inside faces
(a, b, v) and (a, b, w) have the same label as a and b (Fig. 4(a)). Otherwise, either
the tree components inside (a, b, v) have label �(b) and those inside (a, b, w)
have label �(w) (Fig. 4(b)), or the tree components inside (a, b, v) have label �(v)
and those inside (a, b, w) have label �(b) (Fig. 4(c)). All added edges are again
triangulation edges.

420 P. Angelini et al.

We apply Part B to every cycle-tree graph of [G,HΔ], hence creating an
inner-triangulated 2-outerplanar graph [G,HA] where HA is a forest. Since all
the dummy vertices of Pc are connected to two vertices v, w ∈ F , they become
non-fork vertices. Note that the labeling of the dummy vertices coincides with
the one obtained by the algorithm in Sect. 3.2, except for the case when f is a
triangular face (a, b, v) with v ∈ F and a, b ∈ TΔ, and �(a) < �(v) < �(b). In
this case the algorithm would have labeled either �(Pc) = �(a) or �(Pc) = �(b),
depending on whether b is the parent of a or vice versa. However, since �(a) <
�(v) < �(b) holds in [F, TΔ], and since (a, b, v) is a triangular face of [F, TΔ], no
vertex of [F, TΔ] different from v has the same label as v. Hence, graph Hi, for
each i, is a tree with at most one vertex of degree 3. We thus apply Lemma 2 to
obtain a planar embedding ΓA of [G,HA] on S.

4.3 Transformation of the Embedding

We remove the all the triangulation edges added in the construction, and then
restore each tree component Tc, which is represented by path Pc. Since the
vertices of Pc are non-fork vertices and have the same label i, by construction,
they are placed on the same segment s ∈ {s+, sN , s−} of Sj , where pj is the
point vertex vi is placed on.

We remove all the internal edges of Pc and move each vertex x of Pc from
the point p of s it lies on to one of the corresponding petal points, either l(p)
or r(p), as follows. Let v be a vertex of G connected to a vertex of Tc by an
edge in EP ∪ EB , if any; recall that, by Lemma 5, all the edges of EP ∪ EB

connecting Tc to G are incident to v. If �(x) < �(v), then move x to r(p); tree
components connected to w in Fig. 4(d) and (e). If �(x) > �(v), then move x to
l(p); tree component connected to v in Fig. 4(e). Otherwise, �(x) = �(v); in this
case s 	= sN , by construction, and hence we have to distinguish the following two
cases: If s = s+, then move x to l(p), otherwise move x to r(p) (tree components
attached to a and b, respectively, and connected to v in Fig. 4(e)). If no vertex
v ∈ G is connected to Tc, then move x to r(p) if �(c) < �(x) (tree component
attached to a in Fig. 4(e)), and to l(p) otherwise.

We prove that this operations maintain planarity. The internal edges of Tc

do not cross since the petal points, together with the point where c lies, form
a convex point set, on which it is possible to construct a planar embedding of
every tree [4]. As for the edges connecting vertices of Tc to v, by Lemma 4, v has
visibility to the root c of Tc, since (v, c) is a triangulation edge; by Property 1,
this visibility from v extends to all the segment s where Pc had been placed on;
and by the construction of S∗, to all the corresponding petal points. The proof
for the edges (a, b) that had been subdivided when merging tree component Tc

(green edges in Fig. 4(d) and (e)) is in [2].

Claim 1. Reinserting every edge (a, b) such that there existed a path Pc between
a and b does not introduce any crossing.

To complete the transformation it remains to insert the edges of EP ∪ EB

which were not inserted in the previous step. Since by Lemma 4 all of these edges
were also triangulation edges, their insertion does not produce any crossing.

A Universal Point Set for 2-Outerplanar Graphs 421

Lemma 6. There exists a universal point set of size O(n3/2) for the class of
n-vertex 2-outerplanar graphs [G,H] where H is a forest.

5 General 2-Outerplanar Graphs

In this section we give a high-level idea of how to extend the result of Lemma 6
to any arbitrary 2-outerplanar graph [G,H]. The complete description can be
found in [2].

The idea is to convert every graph Gh ∈ H into a tree Th; embed the resulting
graph on S∗; and finally revert the conversion from each Th to Gh. Each tree Th

is created by substituting each biconnected block B of Gh by a star, centered
at a dummy vertex and with a leaf for each vertex of B, where leaves shared by
more stars are identified. This results in a 2-outerplanar graph whose inner level
is a forest.

The embedding of this graph on S∗ is performed similarly as in Lemma 6,
with some slight modifications to the labeling algorithm, especially for the ver-
tices of Th corresponding to cut-vertices of Gh, and to the procedure for merging
the tree components. These modifications allow us to ensure that the vertices of
each block of Gh lie on a convex portion of S∗, where they can thus be drawn
without crossings [5,10].

We finally reduce the size of S∗ to O(n log n) by using the super-pattern
sequence ξ from [3], which is a sequence of integers ξj , with

∑
j=1,...,n ξj =

O(n log n). Sequence ξ majorizes every sequence of integers that sum up to n.
We hence assign the size of each point set Sj based on this sequence, instead of
using dense or sparse point sets.

Theorem 1. There exists a universal point set of size O(n log n) for the class
of n-vertex 2-outerplanar graphs.

6 Conclusions

We provided a universal point set of size O(n log n) for 2-outerplanar graphs. A
natural question is whether our techniques can be extended to other meaningful
classes of planar graphs, such as 3-outerplanar graphs. We also find interesting
the question about the required area of universal point sets. In fact, while the
integer grid is a universal point set for planar graphs with O(n2) points and
O(n2) area, all known point sets of smaller size, even for subclasses of planar
graphs, require a larger area. We thus ask whether universal point sets of sub-
quadratic size require polynomial or exponential area.

References

1. Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V.,
Squarcella, C.: Small point sets for simply-nested planar graphs. In: Speckmann,
B. (ed.) GD 2011. LNCS, vol. 7034, pp. 75–85. Springer, Heidelberg (2011)

422 P. Angelini et al.

2. Angelini, P., Bruckdorfer, T., Kaufmann, M., Mchedlidze, T.: A universal point
set for 2-outerplanar graphs (2015). CoRR abs/1508.05784

3. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

4. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F.,
Kobourov, S., Liotta, G.: Upward straight-line embeddings of directed graphs into
point sets. CGTA 43, 219–232 (2010)

5. Bose, P.: On embedding an outer-planar graph in a point set. CGTA 23(3), 303–
312 (2002)

6. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set
is NP-hard. J. Graph Algorithms Appl. 10(2), 353–366 (2006)

7. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting fáry embeddings of
planar graphs. In: Simon, J. (ed.) STOC ’88, pp. 426–433. ACM (1988)

8. Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Com-
binatorica 10, 41–51 (1990)

9. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algo-
rithms 30, 101–112 (2015)

10. Gritzmann, P., Pach, B.M.J., Pollack, R.: Embedding a planar triangulation with
vertices at specified positions. Am. Math. Monthly 98, 165–166 (1991)

11. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

12. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) SODA
’90, pp. 138–148. SIAM (1990)

http://arxiv.org/abs/1508.05784

Linear-Size Universal Point Sets for One-Bend
Drawings

Maarten Löffler1 and Csaba D. Tóth2(B)

1 Department of Information and Computing Sciences, Utrecht University,
Utrecht, The Netherlands

m.loffler@uu.nl
2 Department of Mathematics, California State University Northridge,

Los Angeles, CA, USA
csaba.toth@csun.edu

Abstract. For every integer n ≥ 4, we construct a planar point set Sn

of size 6n − 10 such that every n-vertex planar graph G admits a plane
embedding in which the vertices are mapped to points in Sn, and every
edge is either a line segment or a polyline with one bend, where the bend
point is also in Sn.

1 Introduction

An embedding of a graph G = (V,E) into the Euclidean plane R
2 maps the

vertices in V into distinct points in R
2, and the edges in E into interior-disjoint

arcs between corresponding vertices. In a straight-line embedding, the edges in E
are mapped to line segments, and so the embedding of the edges is determined by
that of the vertices. It is well known [9] that every planar graph admits a plane
straight-line embedding. Finding a compact representation for the straight-line
embeddings of planar graphs is a central question in graph drawing.

A point set P ∈ R
2 is called n-universal if every planar graph G = (V,E)

with n vertices admits a plane straight-line embedding such that all vertices
are mapped to points in P . The quest for finding small n-universal point sets
started in the 1990s. De Fraysseix et al. [4] and Schnyder [15] independently
showed that there are n-universal sets of size O(n2). In fact, an (n− 1)× (n− 1)
section of the integer lattice is n-universal [3,15] for every n ≥ 3. The current
best lower and upper bounds on the minimum size of an n-universal point set
are (1.235 − o(1))n by Kurowski [14] and n2/4 − Θ(n) by Bannister et al. [1].

In a polyline embedding of a graph G = (V,E), the edges are represented by
pairwise noncrossing polygonal paths. Everett et al. [8] showed that there is a set
Sn of n points in the plane, for every n ∈ N, such that every n-vertex planar graph
has a polyline embedding in which all vertices are mapped into Sn and every edge
is a polyline with at most one bend. However, as noted by Dujmović et al. [7],
the bend points require a set of size Θ(n3) when implementing the embedding
method in [8]. By refining this method, Dujmović et al. [7] constructed a point
set S′

n of size O(n2/ log n) for all n ∈ N such that every n-vertex planar graph

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 423–429, 2015.
DOI: 10.1007/978-3-319-27261-0 35

424 M. Löffler and C.D. Tóth

has a polyline embedding with at most one bend per edge in which all vertices
and all bend points along the edges are mapped to S′

n. They also show [7] that if
two (resp., three) bends per edge are allowed, a point set of size O(n log n) (resp.,
O(n)) can accommodate all vertices and bend points in a polyline embedding of
every planar graph with n vertices. The main result of this paper is the following.

Theorem 1. For every integer n ≥ 4, there exist a set Sn of 6n−10 points in the
plane such that every planar graph with n vertices admits a polyline embedding
with one bend per edge such that all vertices and bend points are mapped into Sn.

Both Everett et al. [8] and Dujmović et al. [7] rely on a topological book
embedding on 2 pages. Di Giacomo et al. [12,13] proved that every planar graph
admits an embedding in the plane such that the vertices are distinct points on
the x-axis, and every edge either (i) lies in a closed halfplane above or below the
x-axis, or (ii) crosses the x-axis precisely once such that the crossing is on the
straight-line segment between the two endpoints so that the half-edge between
the left endpoint and the crossing lies below the x-axis and the other half-edge
lies above the x-axis; see Fig. 1(left). The edges that lie in a closed halfplane
above or below the x-axis are called arcs, and the edges that cross the x-axis
biarcs. Cardinal et al. [2] recently showed that at most n − 4 biarcs suffice.

D1 D2

Fig. 1. A biarc diagram D1. Each arc above the x-axis is deformed into a biarc in D2.

Proof Technique. If the x-axis is replaced by a convex arc γ, then every edge and
half-edge on the convex side of γ can be embedded as a straight-line segment,
and every edge and half-edge on the concave side can be embedded as a polyline
with one bend. As a first approach, an edge that crossed the x-axis precisely
once requires two bend points: one on the concave side of γ and one on the curve
γ. Everett et al. [8] carefully arranged n points on a convex curve γ such that the
bend points on γ could be eliminated for the embedding of any n-vertex planar
graph. Dujmović et al. [7] refined the construction to ensure that the bend points
can be chosen from a set of Θ(n2/ log n) points on the concave side of γ. We
build on the same ideas, but use only Θ(n) carefully arranged bend points on
the concave side of γ.

Fractional Variants. We introduce a new concept here. We say that a point
set P is (n, �)-bend universal , for n ∈ N and 0 ≤ � ≤ 1, if every planar graph
G = (V,E) with n vertices admits a polyline embedding with one bend per edge

Linear-Size Universal Point Sets for One-Bend Drawings 425

such that the vertices are mapped into P and at least �|E| edges are mapped
to straight-line segments. There are two variants: the bend points are either
required to be in P as well, or they can be chosen freely. In the first case, the
problem is equivalent to subdividing at most (1−�)|E| edges to obtain a straight-
line embedding. Our proof technique of Theorem 1 can also ensure that at least
� = 1

3 fraction of the edges are mapped to straight-line segments, and we obtain
the following.

Theorem 2. For every n ≥ 4, there exists an (n, 1
3)-bend universal set of 10n−8

points in the plane.

Related Previous Work. The quadratic upper bound for universal point sets is
the best possible if the point set is restricted to sections of the integer lattice:
Frati and Patrignani [11] showed (based on earlier work by Dolev et al. [6]) that
if a rectangular section of the integer lattice is n-universal, then it must contain
at least n2/9 + Ω(n) points.

Grid drawings have been studied intensively due to their versatile applications.
It is known that sections of the integer lattice with o(n2) points are n-universal
for certain classes of graphs. For example, Di Battista and Frati [5] proved that an
O(n1.48) size integer grid is n-universal for outerplanar graphs. Frati [10] showed
that 2-trees on n vertices require a grid of size at least Ω(n2

√
logn).

2 Construction of a Point Set

For every k ∈ N, we define a point set Tk together with a partition Tk = Ak∪Bk,
where |Ak| = |Bk| = k. We label the points by Ak = {a1, . . . , ak} and Bk =
{b1, . . . , bk}. Their coordinates are defined by:

x(ai) = −x(bi) = (1 +
√

2)k−i

y(ai) = y(bi) = i

Observe that the points ai, ai+1, and bi+2 (and symmetrically bi, bi+1, and ai+2)
are equidistant and collinear. Figure 2 illustrates the construction.

a7b7

a6

a5

a4

a1

a2

a3

b6

b5

b4

b3

b2

b1

Fig. 2. Illustration of T7. The figure is scaled horizontally to better fit on this page.

From this construction, we perturb Tk to a new point set T̃k to satisfy the
following essential property:

426 M. Löffler and C.D. Tóth

Property 1. For every three indices h < i < j, the segment ahbj passes to the
left of ai, and the segment bhaj passes to the right of bi.

Clearly, this property may be satisfied by an arbitrarily small perturbation
of Tk.

Lemma 1. The polygonal chain α = (a1, . . . , ak) is on the convex hull of Ak in
counter-clockwise order.

Proof. Property 1 ensures that

0 > slope(a1a2) > slope(a2a3) > . . . > slope(ak−1ak),

consequently α = (a1, . . . , ak) is on the convex hull of Ak in clockwise order. �

Lemma 2. Consider six indices h, i, j, h′, i′, and j′, where 1 ≤ h < i ≤ j ≤ k,
1 ≤ h′ < i′ ≤ j′ ≤ k, i �∈ {h′, i′, j′}, and i′ �∈ {h, i, j}. If the segments ahai

and ah′ai′ do not cross and the segments aiaj and ai′aj′ do not cross, then the
polygonal paths (ah, bi, aj) and (ah′ , bi′ , aj′) do not cross.

Proof. Since the polygonal chain α = (a1, . . . , ak) is in convex position by
Lemma 1, the noncrossing conditions exclude the “interleaving” orders h < h′ <
i < i′, h′ < h < i′ < i, i < i′ < j < j′, and i′ < i < j′ < j. By Property 1,
the segment ahbi passes left of ah+1, . . . , ai−1 for all 0 ≤ h < i. Since the x-
coordinates of ai, . . . , ak are larger than that of bi, the segment biaj passes left
of ai, . . . , aj−1 for all i < j ≤ k.

By construction, the polygonal paths (ah, bi, aj) and (a′
h, b′

i, a
′
j) are

y-monotone. Consequently, if the open intervals (h, j) and (h′, j′) are disjoint,
then the two paths cannot cross. Assume now that (h, j) and (h′, j′) intersect.
We distinguish two cases:

Case 1: intervals (h, j) and (h′, j′) are nested. Without loss of general-
ity, assume (h′, j′) ⊂ (h, j). The noncrossing conditions imply that we have
either (h′, j′) ⊂ (h, i) or (h′, j′) ⊂ (i, j). If (h′, j′) ⊂ (h, i), then the entire path
(ah′ , bi′ , aj′) lies left of segment ahai−1, hence left of ahbi. If (h′, j′) ⊂ (i, j), then
the entire path (ah′ , bi′ , aj′) lies right of segment biaj by Property 1.

Case 2: intervals (h, j) and (h′, j′) cross. Without loss of generality, assume
h ≤ h′ ≤ j ≤ j′. The constraints on the six indices imply

1 ≤ h ≤ h′ < i′ < i < j ≤ j′ ≤ k.

Since both (ah, bi, aj) and (ah′ , bi′ , aj′) are y-monotone, the only possible inter-
section is between ahbi and bi′aj′ . However, i′ < i implies x(bi′) < x(bi), and
Property 1 implies that bi′aj′ passes left of ah. Consequently, (ah, bi, aj) and
(ah′ , bi′ , aj′) do not cross, as claimed. �

Linear-Size Universal Point Sets for One-Bend Drawings 427

3 Embedding Algorithm

Let G = (V,E) be a triangulation on n vertices, where n ≥ 4. Construct a
topological book embedding D1 on 2 pages of Cardinal et al. [2] with at most
n − 4 biarcs in O(n) time. Assume, without loss of generality, that at most half
of the arcs lie above the x-axis (rotate by 180◦ otherwise).

Modify the embedding D1 and deform each edge lying above the x-axis into
a biarc; refer to Fig. 1 (right). Specifically, for each vertex v ∈ V , let Ev ⊆ E
denote the set of edges vw such that v is the left endpoint of vw and vw is an
arc lying above the x-axis in the embedding D1. Apply a homeomorphism in
a small neighborhood of v such that all edges in Ev dip below the x-axis, and
become biarcs. Let D2 be the resulting topological book embedding of G. Note
that it has at most (n − 4) + [(3n − 6) − (n − 4)]/2 = 2n − 5 biarcs, and at least
(3n − 6) − (2n − 5) = n − 1 arcs.

Consider the set of all vertices and edge-crossings along the x-axis, and denote
them by p1, . . . , pm, where m ≤ n+(2n−5) = 3n−5. We define a new embedding
D3 into the point set T̃3n−5 such that the vertices are mapped into Ã3n−5 and
the bend points into B̃3n−5. For every vertex v ∈ V , if D2 maps v to point pi,
then let D3 map it to point ai. For every edge uv ∈ E, if uv is a biarc that
crosses the x-axis at pi in D2, then embed uv as a polyline with one bend at bi;
otherwise uv is an arc below the x-axis in D2, and we embed uv as a straight-line
segment. Figure 3 shows the resulting embedding for a small example graph.

Proof of Theorem 1. We set Sn = T̃3n−5, which contains 6n − 10 points. By
Lemma 2, the above embedding algorithm is correct, that is, no two edges cross
each other, as required. �

Fig. 3. An example of an embedding produced by our algorithm.

Proof of Theorem 2. Let G = (V,E) be a planar graph on n ≥ 4 vertices, and
let G′ be a triangulation of G. Recall that every triangulation admits a Schnyder
decomposition into three trees of equal size [15]. Let R be a Schnyder tree of
G′ that contains at least |E|/3 edges from E. Using the embedding algorithm of
Di Giacomo et al. [12,13], we obtain a topological book embedding of G′ on 2
pages such that all edges of R are mapped to arcs below the x-axis (cf. [2]). This
embedding consists of at least n − 2 arcs and at most 4n − 4 biarcs. Similarly to

428 M. Löffler and C.D. Tóth

the proof of Theorem 1, we can embed G′ on Ã5n−4 such that all edges in R are
mapped to straight-line segments, and the remaining edges each have one bend
in B̃5n−4. �

We conclude with an observation on the size requirement of our construction.

Lemma 3. Sn fits on a O((1 +
√

2)3n) by O(n) integer grid.

Proof. We defined T̃k to be an arbitrarily small perturbation of Tk. Alter-
natively, we can ensure all coordinates are integer by setting x(bk) = 1 and
iteratively setting x(bi) =
(1 +

√
2)x(bi+1)�. We observe that the resulting

coordinates are upper-bounded by the recurrence ξ(bk) = 1; ξ(bi) = 1 + (1 +√
2)ξ(bi+1), which solves to

ξ(bi) =
k∑

j=i

(1 +
√

2)j =
1
2

√
2(1 +

√
2)k−i − 1

2

√
2 ∈ O((1 +

√
2)k−i).

Choosing k = 3n − 10 and i = 1, the bound on the x-coordinates follows. The
y-coordinates are integers ranging from 1 to 3n − 10. �

Acknowledgements. Research by Tóth was supported in part by the NSF awards
CCF-1422311 and CCF-1423615. Research by Löffler was supported in part by the
NWO grant 639.021.123.

References

1. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and uni-
versal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

2. Cardinal, J., Hoffmann, M., Kusters, V., Tóth, C.D., Wettstein, M.: Arc diagrams,
flip distances, and Hamiltonian triangulations. In: Mayr, E.W., Ollinger, N. (eds.)
Proceedings of 32nd STACS. LiPIcs, vol. 30, pp. 197–210. Leibniz-Zentrum für
Informatik, Dagstuhl (2015)

3. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Inter-
nat. J. Comput. Geom. Appl. 7, 211–223 (1997)

4. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

5. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica
54(1), 25–53 (2009)

6. Dolev, D., Leighton, F.T., Trickey, H.: Planar embedding of planar graphs. In:
Preparata, F. (ed.) Advances in Computing Research, vol. 2, pp. 147–161. JAI
Press Inc., London (1984)

7. Dujmović, V., Evans, W., Lazard, S., Lenhart, W., Liotta, G., Rappaport, D.,
Wismath, S.: On point-sets that support planar graphs. Comput. Geom. Theory
Appl. 46(1), 29–50 (2013)

8. Everett, H., Lazard, S., Liotta, G., Wismath, S.: Universal sets of n points for one-
bend drawings of planar graphs with n vertices. Discrete Comput. Geom. 43(2),
272–288 (2010)

9. Fáry, I.: On straight lines representation of plane graphs. Acta Scientiarum Math-
ematicarum (Szeged) 11, 229–233 (1948)

Linear-Size Universal Point Sets for One-Bend Drawings 429

10. Frati, F.: Lower bounds on the area requirements of series-parallel graphs. Discrete
Math. Theoret. Comput. Sci. 12(5), 139–174 (2010)

11. Frati, F., Patrignani, M.: A note on minimum-area straight-line drawings of planar
graphs. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875,
pp. 339–344. Springer, Heidelberg (2008)

12. Di Giacomo, E., Didimo, W., Liotta, G., Wismath, S.K.: Curve-constrained draw-
ings of planar graphs. Comput. Geom. Theory Appl. 30(1), 1–23 (2005)

13. Di Giacomo, E., Didimo, W., Liotta, G.: Spine and radial drawings. In: Tamassia,
R. (ed.) Handbook of Graph Drawing and Visualization, Chap. 8, pp. 247–284.
CRC Press, Boca Raton (2013)

14. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all
n-vertex planar graphs. Inf. Process. Lett. 92, 95–98 (2004)

15. Schnyder, W.: Embedding planar graphs in the grid. In: Proceedings of the 1st
Symposium on Discrete Algorithms, pp. 138–147. ACM Press, New York, NY
(1990)

Contact Representations

Recognizing Weighted Disk Contact Graphs

Boris Klemz1, Martin Nöllenburg2(B), and Roman Prutkin3

1 Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
klemz@inf.fu-berlin.de

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at

3 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany

roman.prutkin@kit.edu

Abstract. Disk contact representations realize graphs by mapping ver-
tices bijectively to interior-disjoint disks in the plane such that two disks
touch each other if and only if the corresponding vertices are adjacent
in the graph. Deciding whether a vertex-weighted planar graph can be
realized such that the disks’ radii coincide with the vertex weights is
known to be NP-hard. In this work, we reduce the gap between hardness
and tractability by analyzing the problem for special graph classes. We
show that it remains NP-hard for outerplanar graphs with unit weights
and for stars with arbitrary weights, strengthening the previous hardness
results. On the positive side, we present constructive linear-time recogni-
tion algorithms for caterpillars with unit weights and for embedded stars
with arbitrary weights.

1 Introduction

A set of disks in the plane is a disk intersection representation of a graph G =
(V,E) if there is a bijection between V and the set of disks such that two disks
intersect if and only if they are adjacent in G. Disk intersection graphs are graphs
that have a disk intersection representation; a subclass are disk contact graphs
(also known as coin graphs), that is, graphs that have a disk intersection repre-
sentation with interior-disjoint disks. This is also called a disk contact represen-
tation (DCR) or, if connected, a circle packing. It is easy to see that every disk
contact graph is planar and the famous Koebe-Andreev-Thurston circle packing
theorem [13] dating back to 1936 (see Stephenson [17] for its history) states that
the converse is also true, that is, every planar graph is a disk contact graph.

Application areas for disk intersection/contact graphs include modeling phys-
ical problems like wireless communication networks [9], covering problems like
geometric facility location [16,18], visual representation problems like area car-
tograms [7] and many more (various examples are given by Clark et al. [4]).
Efficient numerical construction of DCRs has been studied in the past [5,15].
Often, however, one is interested in recognizing disk graphs or generating repre-
sentations that do not only realize the input graph, but also satisfy additional
requirements. For example, Alam et al. [1] recently obtained several positive

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 433–446, 2015.
DOI: 10.1007/978-3-319-27261-0 36

434 B. Klemz et al.

and negative results on the existence of balanced DCRs, in which the ratio of
the largest disk radius to the smallest is polynomial in the number of disks.
Furthermore, it might be desirable to generate a disk representation that real-
izes a vertex-weighted graph such that the disks’ radii or areas are proportional
to the corresponding vertex weights, for example, for value-by-area circle car-
tograms [10]. Clearly, there exist vertex-weighted planar graphs that cannot be
realized as disk contact representations, and the corresponding recognition prob-
lem for planar graphs is NP-hard, even if all vertices are weighted uniformly [3].
The complexity of recognizing weighted disk contact graphs for many interest-
ing subclasses of planar graphs remained open. Note that graphs realizable as
DCRs with unit disks correspond to 1-ply graphs. This was stated by Di Giacomo
et al. [6] who recently introduced and studied the ply number concept for graphs.
They showed that internally triangulated biconnected planar graphs admitting
a DCR with unit disks can be recognized in O(n log n) time.

In this paper we extend the results of Breu and Kirkpatrick [3] and show
that it remains NP-hard to decide whether a DCR with unit disks exists even if
the input graph is outerplanar. Our result holds both for the case that arbitrary
embeddings are allowed and the case that a fixed combinatorial embedding is
specified. The result for the latter case is also implied by a very recent result by
Bowen et al. [2] stating that for fixed embeddings the problem is NP-hard even for
trees. However, the recognition of trees with a unit disk contact representation
remains an interesting open problem if arbitrary embeddings are allowed. For
caterpillar-trees we solve this problem in linear time. For vertex weights that
are not necessarily uniform we show that the recognition problem is strongly
NP-hard even for stars if no embedding is specified. However, for embedded
stars we solve the problem in linear time. Some of our algorithms use the Real
RAM model, which assumes that a set of basic arithmetic operations (including
trigonometric functions and square roots) can be performed in constant time.

2 Unit Disk Contact Graphs

In this section we are concerned with the problem of deciding whether a given
graph is a unit disk contact graph (UDC graph), that is, whether it has a DCR
with unit disks. For a UDC graph we also say that it is UDC-realizable or simply
realizable. It is known since 1998 that recognizing UDC graphs is generally NP-
hard for planar graphs [3], but it remained open for which subclasses of planar
graphs it can be solved efficiently and for which subclasses NP-hardness still
holds. We show that we can recognize caterpillars that are UDC graphs in linear
time and construct a representation if it exists (Sect. 2.1), whereas the problem
remains NP-hard for outerplanar graphs (Sect. 2.2).

2.1 Recognizing Caterpillars with a Unit Disk Contact
Representation

Let G = (V,E) be a caterpillar graph, that is, a tree for which a path remains
after removing all leaves. Let P = (v1, . . . , vk) be this so-called inner path of G.

Recognizing Weighted Disk Contact Graphs 435

On the one hand, it is well known that six unit disks can be tightly packed around
one central unit disk, but then any two consecutive outer disks necessarily touch
and form a triangle with the central disk. This is not permitted in a caterpillar
and thus we obtain that in any realizable caterpillar the maximum degree Δ ≤ 5.
On the other hand, it is easy to see that all caterpillars with Δ ≤ 4 are UDC
graphs as shown by the construction in Fig. 1a.

(a)

4 3
3 5

4
3

5 2

(b)

Fig. 1. (a) For Δ ≤ 4 any caterpillar can be realized. (b) Incremental construction of
a DCR. Narrow disks are dark gray and indicated by an outgoing arrow, wide disks
are light gray.

However, not all caterpillars with Δ = 5 can be realized. For example, two
degree-5 vertices on P separated by zero or more degree-4 vertices cannot be
realized, as they would again require tightly packed disks inducing cycles in the
contact graph. In fact, we get the following characterization.

Lemma 1. A caterpillar G with Δ = 5 is a UDC graph if and only if there is
at least one vertex of degree at most 3 between any two degree-5 vertices on the
inner path P .

Proof. Consider an arbitrary UDC representation of G and let Di be the disk
representing vertex vi of the inner path P . Let �i be the tangent line between
two adjacent disks Di−1 and Di on P . We say that P is narrow at vi if some
leaf disk attached to Di−1 intersects �i; otherwise P is wide at vi. Let vi and vj

(i < j) be two degree-5 vertices on P with no other degree 5 vertices between
them. The path P must be narrow at the next vertex vi+1, since one of the four
mutually disjoint neighbor disks of Di−1 except Di necessarily intersects �i. If
there is no vertex vk (i < k < j) with deg(vk) ≤ 3 between vi and vj we claim
that P is still narrow at vj . If j = i + 1 this is obviously true. Otherwise all
vertices between vi and vj have degree 4. But since the line �i+1 was intersected
by a neighbor of vi, this property is inherited for the line �i+2 and a neighbor
of vi+1 if deg(vi+1) = 4. An inductive argument applies. Since P is still narrow
at the degree-5 vertex vj , it is impossible to place four mutually disjoint disks
touching Dj for the neighbors of vj except vj−1.

We now construct a UDC representation for a caterpillar in which any two
degree-5 vertices of P are separated by a vertex of degree ≤ 3. We place a disk
D1 for v1 at the origin and attach its leaf disks leftmost, that is, symmetrically
pushed to the left with a sufficiently small distance between them. In each sub-
sequent step, we place the next disk Di for vi on the bisector of the free space,

436 B. Klemz et al.

which we define as the maximum cone with origin in Di−1’s center containing no
previously inserted neighbors of Di−1 or Di−2. Again, we attach the leaves of Di

in a leftmost and balanced way, see Fig. 1b. For odd-degree vertices this leads
to a change in direction of P , but by alternating upward and downward bends
for subsequent odd-degree vertices we can maintain a horizontal monotonicity,
which ensures that leaves of Di can only collide with leaves of Di−1 or Di−2. In
this construction P is wide until the first degree-5 vertex is placed, after which it
gets and stays narrow as long as degree-4 vertices are encountered. But as soon
as a vertex of degree ≤ 3 is placed, P gets (and remains) wide again until the
next degree-5 vertex is placed. Placing a degree-5 vertex at which P is wide can
always be done. �

Lemma 1 and the immediate observations for caterpillars with Δ �= 5 yield
the following theorem. We note that the decision is only based on the vertex
degrees in G, whereas the construction uses a Real RAM model.

Theorem 1. For a caterpillar G it can be decided in linear time whether G is
a UDC graph if arbitrary embeddings are allowed. A UDC representation (if one
exists) can be constructed in linear time.

2.2 Hardness for Outerplanar Graphs

A planar 3SAT formula ϕ is a Boolean 3SAT formula with a set U of variables
and a set C of clauses such that its variable-clause-graph Gϕ = (U ∪ C, E) is
planar. The set E contains for each clause c ∈ C the edge (c, x) if a literal
of variable x occurs in c. Deciding the satisfiability of a planar 3SAT formula
is NP-complete [14] and there exists a planar drawing Gϕ of Gϕ on a grid of
polynomial size such that the variable vertices are placed on a horizontal line
and the clauses are connected in a comb-shaped rectangular fashion from above
or below that line [12], see Fig. 2a. A planar 3SAT formula ϕ is monotone if

MM

MM

x1 x̄1 x2 x̄2 x3 x̄3

horizontal wire

vertical wire

eriwgnigremecafreppurenrocthgir-ot-mottob

variable

empty tunnel

clause

M

lower face merging wire

upper spiral

x1 x2 x3

x̄1 ∨ x̄2 ∨ x̄3

x1 ∨ x2 ∨ x3

x1 ∨ x2

(b)(a)

T-shaped wire

lower spiral

Fig. 2. Sketch of the grid layout Gϕ (a) and high-level structure of the construction of
G′

ϕ (b) for the PM3SAT formula ϕ = (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3).

Recognizing Weighted Disk Contact Graphs 437

each clause contains either only positive or only negative literals and if Gϕ has
a planar drawing as described before with all clauses of positive literals on one
side and all clauses of negative variables on the other side. The 3SAT problem
remains NP-complete for planar monotone formulae [14] and is called Planar
Monotone 3-Satisfiability (PM3SAT).

We perform a polynomial reduction from PM3SAT to show NP-hardness of
recognizing outerplanar UDC graphs. A graph is outerplanar if it has a planar
drawing in which all vertices lie on the unbounded outer face. We say that a
planar graph G is (combinatorially) embedded if we are given for each vertex the
circular order of all incident edges as well as the outer face such that a planar
drawing respecting this embedding exists. For the reduction we create, based on
the planar drawing Gϕ, an outerplanar graph G′

ϕ that has a UDC representation
if and only if the formula ϕ is satisfiable.

Arguing about UDC representations of certain subgraphs of G′
ϕ becomes a

lot easier, if there is a single unique geometric representation (up to rotation,
translation and mirroring). We call graphs with such a representation rigid. Using
an inductive argument (see full version [11]), we state the following sufficient
condition for rigid UDC structures. All subgraphs of G′

ϕ that we refer to as rigid
satisfy this condition.

Lemma 2. Let G = (V,E) be a biconnected graph realizable as a UDC represen-
tation that induces an internally triangulated outerplane embedding of G. Then,
G is rigid.

Fig. 3. Variable gadget in
state false with a positive
(left) and a negative literal
(right).

The main building block of the reduction is a
wire gadget in G′

ϕ that comes in different varia-
tions but always consists of a rigid tunnel struc-
ture containing a rigid bar that can be flipped into
different tunnels around its centrally located artic-
ulation vertex. Each wire gadget occupies a square
tile of fixed dimensions so that different tiles can
be flexibly put together in a grid-like fashion. The
bars stick out of the tiles in order to transfer infor-
mation to the neighboring tiles. Variable gadgets
consist of special tiles containing tunnels without
bars or with very long bars. Adjacent variable gad-
gets are connected by narrow tunnels without bars.
Face merging wires work essentially like normal hor-
izontal wires but their low-level construction differs
in order to assert that G′

ϕ is outerplanar and con-
nected. Figure 2b shows a schematic view of how the
gadget tiles are arranged to mimic the layout Gϕ of
Fig. 2a. The wires connect the positive (negative)
clauses to the left (right) halves of the respective variable gadgets. Furthermore,
we place a face merging wire (marked by ‘M’) in the top/bottom left corner of
each inner face followed by an upper (lower) spiral, which is a fixed 3×4 pattern

438 B. Klemz et al.

of wire gadgets. These structures ensure that G′
ϕ is outerplanar and they limit

relative displacements.
The main idea behind the reduction is as follows. Each variable gadget con-

tains one thin, long horizontal bar that is either flipped to the left (false) or to
the right (true), see Fig. 3. If the bar is in its left (right) position, this blocks
the lower (upper) bar position of the first wire gadget of each positive (negative)
literal. Consequently, each wire gadget that is part of the connection between
a variable gadget and a clause gadget must flip its entire chain of bars towards
the clause if the literal is false. The design of the clause gadget depends on its
number of literals. Figure 4a illustrates the most important case of a clause with
three literals containing a T-shaped wire gadget. The bar of the T-shaped wire
needs to be placed in one of the three incident tunnels. This is possible if and
only if at least one of the literals evaluates to true. A similar statement holds
true for clauses with two or one literals; their construction is much simpler: just
a horizontal wire gadget or a dead end suffice as clause tile.

(a)

width of the bar

(b)

Fig. 4. (a) Clause gadget with two false inputs (left and right) and one true input. (b)
Detailed view of a horizontal wire gadget with a rigid bar (black disks) inside a tunnel
(dark gray disks).

All gadgets are realized by combining several rigid UDC subgraphs. As an
example, Fig. 4b shows a close-up of the left side of a horizontal wire gadget.
Both the black and the dark gray disks form rigid components whose UDC
graphs satisfy the precondition of Lemma 2. The black disks implement the bar,
the dark gray disks constitute the tunnel. Note how the bar can be flipped or
mirrored to the left or the right around the articulation disk (marked ‘x’) due
to the two light gray disks (called chain disks) that do not belong to a rigid
structure. The width of each bar is chosen such that it differs from the supposed
inner width of a tunnel by at most twice the disk diameter, thus admitting some
slack. However, we can choose the width of the tunnels/bars (and the gadget
tile dimensions) as a large polynomial in the input such that this “wiggle room”
does not affect the combinatorial properties of our construction. The description
of the face merging wire below discusses this aspect in more detail. Further, we
choose the lengths of the bars such that the bars of two adjacent wire gadgets
collide if their bars are oriented towards each other. Unlike the bars of wire
gadgets, the bars of variable gadgets are not designed to transmit information
from tile to tile. Instead they are simply designed to prevent the adjacent vertical

Recognizing Weighted Disk Contact Graphs 439

wires on either the left or the right side of the variable gadget to be oriented
towards it. For this reason, we can choose the width of the variable bars to be
very small (e.g., just 2 disks), in order to obtain an overall tighter construction.

M

M M

MM

Fig. 5. Schematic of G′
ϕ if face merg-

ing wires (marked ‘M’) replace some
regular wires. Inner faces of Gϕ in
dark gray, the face ‘inside the tunnels’
in light gray, the outer face in white
and the face boundaries in black

Now that we have established how
the gadgets work and how they are con-
structed, consider the properties of the
corresponding graph G′

ϕ that encodes
the entire structure. If we would use only
the regular wire gadgets as in Fig. 4b for the
entire construction, G′

ϕ would neither be
outerplanar nor connected. As illustrated
in Fig. 5, for each of the inner faces of Gϕ we
would obtain a single rigid structure, which
we call face boundary, with several bars
attached to it. These face boundaries, how-
ever, would not be connected to each other.
Furthermore, the subgraphs that realize
the face boundaries would not be outerpla-
nar. This is why we replace some horizontal wire gadgets in the upper (positive)
and lower (negative) part of our construction by upper and lower face merging
wires respectively, which have two purposes. Horizontal wires contain a tunnel
that is formed by two face boundaries, called the upper and lower face boundary
of the corresponding gadget tile. These face boundaries are not connected, see
Fig. 4b. In a face merging wire, however, the respective face boundaries are con-
nected. Furthermore, a gap is introduced (by removing two disks) to the lower
(upper) face boundary in an upper (lower) face merging wire so that the lower
(upper) face boundary now becomes outerplanar. Since the face merging wire is
supposed to transfer information just like a horizontal wire we cannot connect
the two face boundaries rigidly. Instead we create three bars connected to each
other with chain disks, see Fig. 6a. The width of the top and the bottom bars are
chosen such that they fit tightly inside the narrow cavity in the middle of the tile
if placed perpendicularly to the left or right of the respective articulation disk.
The third bar ensures that all three bars together are placed either to the left
(Fig. 6b) or to the right (Fig. 6a), which allows the desired information transfer.

Together with the incident spiral, a face merging wire ensures that the disks
of the lower face boundary deviate from their intended locations relative to
the upper face boundary only by up to a small constant distance since (1) the
design and the asymmetrical placement of the spirals and the face merging wires
preserve the orientations of the respective upper and lower face boundaries, i.e.,
the left/right/top/bottom sides of these structures are facing as intended in any
realization and (2) the width of the tunnels is at most twice the disk diameter
larger than the width of the bars and there is at least one bar located in any
of the cardinal directions of each spiral. This effect can cascade since the face
boundaries might be connected to further face boundaries. However, according
to Euler’s formula the number of faces in Gϕ is linear in the number of clauses

440 B. Klemz et al.

gap

upper face

lower face

(a)

boundary

boundary

gap

upper face

lower face

(b)

boundary

boundary

Fig. 6. Upper face merging wire gadget oriented to the right (a) / left (b). It connects
the lower and upper face boundaries. The gap causes the faces inside the tunnel and
the lower face to collapse.

and variables and, therefore, the total distance by which a disk can deviate from
its intended ideal position is also linear in this number. By accordingly adjusting
the tile dimensions and bar widths, we can therefore ensure that the wiggle room
in our construction does not affect the intended combinatorial properties while
keeping the size of G′

ϕ polynomial. The introduction of face merging wires causes
G′

ϕ to be connected and it causes all inner faces and the face ’inside the tunnels’
to collapse. Finally, by introducing a single gap in the outermost rigid structure,
G′

ϕ becomes outerplanar, which concludes our reduction.
This concludes our construction for the case with arbitrary embeddings. Note,

however, that the gadgets are designed such that flipping the bars does not
require altering the combinatorial embedding of the graph. This holds true even
for the face merging wire. Therefore, we can furthermore provide a combinatorial
embedding such that G′

ϕ can be realized with respect to said embedding if and
only if ϕ is satisfiable. Thus, we obtain the following theorem with the remaining
arguments of its proof found in [11].

Theorem 2. For outerplanar graphs the UDC recognition problem is NP-hard.
This remains true for outerplanar graphs with a specified combinatorial
embedding.

3 Weighted Disk Contact Graphs

In this section, we assume that a positive weight w(v) is assigned to each vertex
v of the graph G = (V,E). The task is to decide whether G has a DCR, in
which each disk Dv representing a vertex v ∈ V has radius proportional to
w(v). A DCR with this property is called a weighted disk contact representation
(WDC representation) and a graph that has a WDC representation is called a
weighted disk contact graph (WDC graph). Obviously, recognizing WDC graphs
is at least as hard as the UDC graph recognition problem from Sect. 2 by setting

Recognizing Weighted Disk Contact Graphs 441

w(v) = 1 for every vertex v ∈ V . Accordingly, we first show that recognizing
WDC graphs is NP-hard even for stars (Sect. 3.1), however, embedded stars with
a WDC representation can still be recognized (and one can be constructed if it
exists) in linear time (Sect. 3.2).

3.1 Hardness for Stars

We perform a polynomial reduction from the well-known 3-Partition problem.
Given a bound B ∈ N and a multiset of positive integers A = {a1, . . . , a3n} such
that B

4 < ai < B
2 for all i = 1, . . . , 3n, deciding whether A can be partitioned

into n triples of sum B each is known to be strongly NP-complete [8]. Let (A, B)
be a 3-Partition instance. We construct a star S = (V,E) and a radius assignment
r : V → R

+ such that S has a WDC representation respecting r if and only if
(A, B) is a yes-instance.

r(ai)

ro

Dc

Fig. 7. Reducing from 3-Partition to
prove Theorem 3. Input disks (dark)
are distributed between gaps. Hatched
disks are separators.

We create a central disk Dc of radius rc

corresponding to the central vertex vc of S
as well as a fixed number of outer disks
with uniform radius ro chosen appropri-
ately such that these disks have to be
placed close together around Dc without
touching, creating funnel-shaped gaps of
roughly equal size; see Fig. 7. Then, a
WDC representation of S exists only if all
remaining disks can be distributed among
the gaps, and the choice of the gap will
induce a partition of the integers ai ∈ A.
We shall represent each ai by a single disk called an input disk and encode ai in
its radius. Each of the gaps is supposed to be large enough for the input disks
that represent a feasible triple, i.e., with sum B, to fit inside it, however, the
gaps must be too small to contain an infeasible triple’s disk representation, i.e.,
a triple with sum > B.

While the principle idea of the reduction is simple, the main challenge is
finding a radius assignment satisfying the above property and taking into account
numerous additional, nontrivial geometric considerations that are required to
make the construction work. For example, we require that the lower boundary
of each gap is sufficiently flat. We achieve this by creating additional dummy gaps
and ensure that they can not be used to realize a previously infeasible instance.
Next, we make sure that additional separator disks must be placed in each gap’s
corners to prevent left and right gap boundaries from interfering with the input
disks. Finally, all our constructions are required to tolerate a certain amount of
“wiggle room”, since, firstly, the outer disks do not touch and, secondly, some
radii cannot be computed precisely in polynomial time.

Since S is supposed to be a star, the only adjacencies in our construction
are the ones with Dc. However, several of the disks adjacent to Dc are required
to be placed very close together without actually touching. We shall, whenever
we need to calculate distances, handle these barely not touching disks as if

442 B. Klemz et al.

Dc d chord

bow
separator

outer disk

ro

12
ro

ro ro

6 + rmin

(a) original scenario

ro ro

ro ro

base

separator
12

(b) simplified scenario

Fig. 8. A gap, bounded in (a) by two outer disks and a bow; in (b) the gap’s base
replaces its bow. The distance between the separators is 12 in both scenarios.

they were actually touching. We will describe how to compute these distances
approximately; see Lemma 8. During this step the radius of the central disk
increases by a suitably small amount such that no unanticipated embeddings
can be created.

Let B > 12 and n > 6, and let m ≥ n be the number of gaps in our construc-
tion. In the original scenario described above, a gap’s boundary belonging to the
central disk Dc, which we call the gap’s bow, is curved as illustrated in Fig. 8a.
We will, however, first consider a simplified scenario in which a gap is created
by placing two disks of radius ro right next to each other on a straight line as
depicted in Fig. 8a. We refer to this gap’s straight boundary as the base of the
gap. We call a point’s vertical distance from the base its height. We also utilize the
terms left and right in an obvious manner. Assume for now that we can place two
separator disks in the gap’s left and right corner, touching the base and such that
the distance between the rightmost point pl of the left separator and the leftmost
point pr of the right separator is exactly 12 units. We can assume B ≡ 0 mod 4;
see Lemma 3. Thus, we know that a ∈ {B/4 + 1, . . . , B/2 − 1} for any a ∈ A.
Due to space restrictions, the proofs of the following lemmas are only available
in the full version [11].

Lemma 3. For each m ≥ n, there exists a 3-Partition instance (A′, B′) equiv-
alent to (A, B) with |A′| = 3m and B′ = 180B.

Our first goal is to find a function r : {B/4, B/4 + 1, . . . , B/2} → R
+ that

assigns a disk radius to each input integer as well as to the values B/4 and B/2
such that a disk triple t together with two separator disks can be placed on the
base of a gap without intersecting each other or the outer disks if and only if t
is feasible. In the following, we show that r(x) = 2 − (4 − 12x/B)/B will satisfy
our needs. We choose the radius of the separators to be rmin = r(B/4 + 1) =
2 − (1 − 12/B)/B, the smallest possible input disk radius. The largest possible
input disk has radius rmax = r(B/2 − 1) = 2 + (2 − 12/B)/B. Note that r is
linear and increasing.

Next, we show for both scenarios that separators placed in each gap’s corners
prevent the left and right gap boundaries from interfering with the input disks.

Recognizing Weighted Disk Contact Graphs 443

Lemma 4. For any a ∈ A it is not possible that a disk with radius r(a) intersects
one of the outer disks that bound the gap when placed between the two separators.

For our further construction, we need to prove the following property.

Property 1. Each feasible triple fits inside a gap containing two separators and
no infeasible triple does.

It can be easily verified that for x1,x2,x3,
∑3

i=1 xi ≤ B, it is 2
∑3

i=1 r(xi) ≤
12, implying the first part of Property 1. We define si = 2rmin +
2
√

(rmax + rmin)2 − (rmax − rmin)2. In the proof of Lemma 5, we will see that si

is the horizontal space required for the triple (rmin, rmax, rmin), which is the
narrowest infeasible triple. Next, let d(ε, x) =

√
(r(x) − ε/2)2 + (r(x) − rmin)2

for ε > 0 and x ∈ {B/4 + 1, . . . , B/2 − 1}. We will see that d(ε, x) is an upper
bound for the distance between the center of a disk D(x) with radius r(x) and
the rightmost (leftmost) point of the left (right) separator disk, if the overlap of
their horizontal projections is at least ε/2 .

Lemma 5. There exist ε > 0 and ε1, ε2, φ ≥ 0 with ε = ε1 + ε2 which satisfy
the two conditions: (I) 12 + ε ≤ si and (II) d(ε1, x) ≤ r(x) − φ∀x ∈ {B/4 +
1, . . . , B/2 − 1}. These conditions imply the second part of Property 1 for the
simplified scenario.

So far we assumed that the separators are always placed in the corners of the
gap. But in fact, separators could be placed in a different location, moreover,
there could even be gaps with multiple separators and gaps with zero or one
separator. Since the radius of the separators is rmin, which is the radius of the
smallest possible input disk, it seems natural to place them in the gaps’ cor-
ners to efficiently utilize the horizontal space. However, all feasible disk triples
(except (B/3, B/3, B/3)) require less than 12 units of horizontal space. It might
therefore be possible to place a feasible disk triple inside a gap together with two
disks that are not necessarily separators but input disks with a radius greater
than rmin. To account for this problem, we prove the following property.

Property 2. A feasible disk triple can be placed in the gap together with two
other disks only if those two disks are separators.

We define sf = 2r(B/4) + 2
√

(r(B/2) + r(B/4))2 − (r(B/2) − r(B/4))2. In
the proof of Lemma 6, we will see that sf is a lower bound for the horizontal
space consumption of any feasible triple.

Lemma 6. There exist ξ > 0 and ξ1, ξ2, ψ ≥ 0 with ξ = ξ1 + ξ2 satisfying
the following two conditions: (III) 12 − 24/B2 + ξ ≤ sf and (IV) d(ξ1, x) ≤
r(x)−ψ ∀x ∈ {B/4+1, . . . , B/2−1}. These conditions imply Property 2 for the
simplified scenario.

We verify in the proofs of Lemmas 5 and 6 in the full version [11] that choos-
ing ε1, ξ1 = 16/B2 and ε2, φ, ξ2, ψ = 1/B2 satisfies our four conditions.

444 B. Klemz et al.

Intuitively, Conditions (I)–(IV) have the following meaning. By (I), the hor-
izontal space consumption of any infeasible triple is greater than 12 by some
fixed buffer. By (III), the horizontal space consumption of any feasible triple
is very close to 12. Conditions (II) and (IV) imply that if the overlap of the
horizontal projections of a separator and an input disk is large enough, the two
disks intersect, implying that triples with sufficiently large space consumption
can indeed not be placed between two separators.

In the original scenario, consider a straight line directly below the two sep-
arators. We call this straight line the gap’s chord, see Fig. 8a. The gap’s chord
has a function similar to the base in the simplified scenario. We still want sep-
arators to be placed in the gap’s corners. The distance between the rightmost
point pl of the left separator and the leftmost point pr of the right separator is
now allowed to be slightly more than 12. The horizontal space consumption of a
disk triple placed on the bow is lower compared to the disk triple being placed
on the chord. Moreover, the overlap of the horizontal projections of a separator
and an input disk can now be bigger without causing an intersection. However,
we show that if the maximum distance d between a gap’s bow and its chord is
small enough, the original scenario is sufficiently close to the simplified one, and
the four conditions still hold, implying the desired properties.

Lemma 7. In the original scenario, let d ≤ 1/4B2, and let the amount of free
horizontal space in each gap after inserting the two separators in each corner be
between 12 and 12 + 1/4B2. Then, Properties 1 and 2 still hold.

In order to conclude the hardness proof, it therefore remains to describe how
to choose the radii for the central and outer disks and how to create the gaps
such that d ≤ 1/4B2.

Recall that we have a central disk Dc with radius rc and m outer disks
with radius ro which are tightly packed around Dc such that m equal-sized gaps
are created. With basic trigonometry we see that rc + ro = ro/ sin(π/m) and,
therefore, rc = ro/ sin(π/m) − ro. Clearly, there always exists a value ro such
that the two separator disks can be placed in each gap’s corners and such that
the distance between each pair of separators is exactly 12 units. Let r̄o be this
value. Moreover, the maximum distance d between a gap’s bow and its chord
is of particular importance, see Fig. 8a. Using the Pythagorean Theorem, it can
be calculated to be d = rc − (

√
(rc + rmin)2 − (6 + rmin)2 − rmin). The crucial

observation is that we do not necessarily need to choose m = n. Instead we may
choose any m ≥ n and thereby decrease d, as long as we make sure that m is
still a polynomial in the size of the input or numeric values and that the m − n
additional gaps cannot be used to solve an instance which should be infeasible.

Lemma 8. There exist constants c1, c3, c4, such that for m = Bc1 , ε3 = 1/Bc3

and ε4 = 1/Bc4 , there exist values r̃o for ro and r̃c for rc, for which it holds
r̄o < r̃o ≤ r̄o + ε3 and r̄c < r̃c ≤ r̄c + ε4 for r̄c = r̃o/ sin(π/m) − r̃o. The
constants can be chosen such that d ≤ 1/4B2 and such that the amount of free
horizontal space in each gap is between 12 and 12 + 1/4B2. Finally, r̃o and r̃c

can be computed in polynomial time.

Recognizing Weighted Disk Contact Graphs 445

Lemma 3 already showed how to construct an equivalent 3-Partition instance
with 3m ≥ 3n input integers. We can now prove the main result of this section,
see [11] for details. Lemmas 3 and 8 show that the construction can be performed
in polynomial time. Properties 1 and 2 let us show that a valid distribution of the
input and separator disks among the gaps induces a solution of the 3-Partition
instance and vice versa.

Theorem 3. The WDC graph recognition problem is (strongly) NP-hard even
for stars if an arbitrary embedding is allowed.

3.2 Recognizing Embedded Stars with a Weighted Disk Contact
Representation

If, however, the order of the leaves around the central vertex of the star is fixed,
the existence of a WDC representation can be decided by iteratively placing the
outer disks D1, . . . , Dn−1 tightly around the central disk Dc. A naive approach
tests for collisions with all previously added disks and yields a total runtime of
O(n2). However, this can be improved to O(n) by maintaining a list containing
only disks that might be relevant in the future. For more details see the full
version [11].

Theorem 4. On a Real RAM, for an embedded, vertex-weighted star S it can
be decided in linear time whether S is a WDC graph. A WDC representation
respecting the embedding (if one exists) can be constructed in linear time.

References

1. Alam, M.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Pupyrev, S.: Balanced
circle packings for planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014.
LNCS, vol. 8871, pp. 125–136. Springer, Heidelberg (2014)

2. Bowen, C., Durocher, S., Löffler, M., Rounds, A., Schulz, A., Tóth, C.D.: Realiza-
tion of simply connected polygonal linkages and recognition of unit disk contact
trees. In: Di Giacomo, E., Lubiw, A. (eds.) Graph Drawing (GD’15). LNCS, vol.
9411, pp. 447–459. Springer, Heidelberg (2015)

3. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognitionis NP-hard. Comput.
Geom. 9(1–2), 3–24 (1998)

4. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–
3), 165–177 (1990)

5. Collins, C.R., Stephenson, K.: A circle packing algorithm. Comput. Geom. 25(3),
233–256 (2003)

6. Di Giacomo, E., Didimo, W., Hong, S.H., Kaufmann, M., Kobourov, S., Liotta,
G., Misue, K., Symvonis, A., Yen, H.C.: Low ply graph drawing. In: IISA 2015.
IEEE (to appear, 2015)

7. Dorling, D.: Area cartograms: Their use and creation. In: Concepts and tech-
niques in modern geography. University of East Anglia: Environmental Publica-
tions (1996)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP -Completeness. W. H. Freeman & Co., New York (1990)

446 B. Klemz et al.

9. Hale, W.: Frequency assignment: theory and applications. Proc. IEEE 68(12),
1497–1514 (1980)

10. Inoue, R.: A new construction method for circle cartograms. Cartography Geogr.
Inf. Sci. 38(2), 146–152 (2011)

11. Klemz, B., Nöllenburg, M., Prutkin, R.: Recognizing weighted disk contact graphs,
September 2015. CoRR arXiv:1509.0072

12. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992)

13. Koebe, P.: Kontaktprobleme der konformen Abbildung. In: Ber. Sächs. Akad. Wiss.
Leipzig, Math.-Phys. Klasse, vol. 88, pp. 141–164 (1936)

14. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

15. Mohar, B.: A polynomial time circle packing algorithm. Discrete Math. 117(1),
257–263 (1993)

16. Robert, J.M., Toussaint, G.: Computational geometry and facility location. In:
Operations Research and Management Science, pp. 11–15 (1990)

17. Stephenson, K.: Circle packing: a mathematical tale. Not. AMS 50(11), 1376–1388
(2003)

18. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: Maurer, H. (ed.)
New Results and New Trends in Computer Science. LNCS, vol. 555, pp. 359–370.
Springer, Heidelberg (1991)

http://arxiv.org/abs/1509.0072

Realization of Simply Connected Polygonal
Linkages and Recognition of Unit

Disk Contact Trees

Clinton Bowen1, Stephane Durocher2, Maarten Löffler3, Anika Rounds4,
André Schulz5, and Csaba D. Tóth1,4(B)

1 Department of Mathematics, California State University Northridge,
Los Angeles, CA, USA

clinton.bowen@my.csun.edu, csaba.toth@csun.edu
2 Department of Computer Science, University of Manitoba, Winnipeg, MB, Canada

durocher@cs.umanitoba.ca
3 Department of Information and Computing Sciences, Utrecht University,

Utrecht, The Netherlands
m.loffler@uu.nl

4 Department of Computer Science, Tufts University, Medford, MA, USA
anika.rounds@tufts.edu, cdtoth@cs.tufts.edu

5 Theoretical Computer Science, University of Hagen, Hagen, Germany
andre.schulz@fernuni-hagen.de

Abstract. We wish to decide whether a simply connected flexible polyg-
onal structure can be realized in Euclidean space. Two models are consid-
ered: polygonal linkages (body-and-joint framework) and contact graphs
of unit disks in the plane. (1) We show that it is strongly NP-hard
to decide whether a given polygonal linkage is realizable in the plane
when the bodies are convex polygons and their contact graph is a tree;
the problem is weakly NP-hard already for a chain of rectangles, but
efficiently decidable for a chain of triangles hinged at distinct vertices.
(2) We also show that it is strongly NP-hard to decide whether a given
tree is the contact graph of interior-disjoint unit disks in the plane.

1 Introduction

In this paper, we study the realizability of complex structures that are specified
by their local geometry. The complex structures are represented as graphs with
constraints on the separation between their vertices, and we ask if these graphs
can be embedded in the plane subject to the constraints. We consider two models
in the plane; refer to Fig. 1.

1. A polygonal linkage is a set P of convex polygons, and a set H of hinges,
where each hinge h ∈ H corresponds to two or more points on the bound-
aries of distinct polygons in P. A realization of a polygonal linkage is an
interior-disjoint placement of congruent copies of the polygons in P such that
the points corresponding to each hinge are identified. A realization with

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 447–459, 2015.
DOI: 10.1007/978-3-319-27261-0 37

448 C. Bowen et al.

orientation uses only translated or rotated copies of the polygons in P (no
reflections) and for each hinge, the cyclic order of incident polygons is given.
The topology of a polygonal linkage can be represented by the hinge graph,
a bipartite graph where the vertices correspond to polygons in P and the
hinges in H, and edges represent the polygon-hinge incidences.

2. An (abstract) graph is a coin graph if it is the intersection graph of a set
of interior-disjoint unit disks in the plane (where the vertices correspond to
disks and two vertices are adjacent if and only if the corresponding disks are
in contact). A coin graph with embedding is a coin graph together with
a cyclic order of the neighbors for each vertex (i.e., each disk).

a
a

b

b

c
c

d

d

a

b
c

d

1

2
3 4

5 6 7 8

G

(a) (b () c () d)

1

3

4
8

2

5

6 7

Fig. 1. (a) A set of convex polygons and hinges. (b) A realization of the polygonal
linkage (with fixed orientation). (c) A graph G with 8 vertices. (d) An arrangement of
interior-disjoint unit disks whose contact graph is G.

The Polygonal Linkage Realizability (PLR) problem asks whether a
given polygonal linkage admits a realization; and PLR with fixed orienta-
tion asks whether it admits a realization with a given orientation. The Coin
Graph Recognition (CGR) problem asks whether a given (abstract) graph G
is the contact graph of interior-disjoint unit disks in the plane; and CGR with
fixed embedding asks whether a given plane graph G is the contact graph of
interior-disjoint unit disks in the plane with the same counterclockwise order of
neighbors at each vertex.

These problems, in general, are known to be NP-hard (see details below).
However, the hardness reductions crucially rely on graphs with a large number
of cycles. We revisit these problems for simply connected topologies, where the
hinge graph and the coin graph are trees.

Summary of Results. Our main result is that the realizability problem remains
NP-hard for simply connected polygonal linkages, the only exceptions are chains
of triangles or rectangles hinged at distinct vertices. In an attempt to identify
the most general problem that is not NP-hard, we considered several variants.
Some variants are always realizable, some have easy hardness reductions, and
some reductions required substantial new machinery. Our most demanding result
is the NP-hardness of the recognition of coin trees with fixed embedding. We
summarize the results here.

Realization of Simply Connected Polygonal Linkages 449

1. We start with chains of polygons, that is, polygonal linkages in which the
hinge graph is a path (Sect. 2). It is easy to see that every chain of triangles
or rectangles hinged together at distinct vertices is realizable and a realization
can be computed efficiently. However, the problem becomes weakly NP-hard
for chains of convex quadrilaterals hinged at distinct vertices or for chains of
triangles where one hinge may be at anywhere on the boundary. Our reduction
uses Partition.

2. We show that PLR (with arbitrary orientation) is strongly NP-hard when
the hinge graph is a tree, using an easy reduction from 3SAT with the classic
logic engine method (the proof is available in the full paper). The reduction
crucially depends on possible reflections of the polygons.

3. We show that PLR with fixed orientation is also strongly NP-hard when the
hinge graph is a tree (Sect. 3), using a significantly more involved reduction
from Planar3SAT. We carefully design gadgets for variables, clauses and a
planar graph to simulate Planar3SAT.

4. We reduce the recognition of coin trees with fixed embedding to the previous
problem (PLR with fixed orientation), by simulating suitable polygons with
an arrangement of unit disks (Sect. 4). It would be easy to model a polygon by
a rigid coin graph (e.g., a section of the triangular grid), but all rigid graphs
induce cycles. The main technical difficulty is that when the coin graph is a
tree, any realization with unit disks is highly flexible, and simulating a rigid
object becomes a challenge. We construct coin trees with “stable” realizations,
which may be of independent interest.

Related Previous Work. Previous research has established NP-hardness in sev-
eral easy cases, but realizability for simply connected structures remained open.
Polygonal linkages (or body-and-joint frameworks) are a generalization of clas-
sical linkages (bar-and-joint frameworks) in rigidity theory. A linkage is a graph
G = (V,E) with given edge lengths. A realization of a linkage is a (crossing-free)
straight-line embedding of G in the plane. Based on ideas developed by Bhatt
and Cosmadakis [4], who proved that the realizability of linkages is NP-complete
on the integer grid, the logic engine method [14,15,17,20] has become a stan-
dard tool for proving NP-hardness in graph drawing. The logic engine is a graph
composed of rigid 2-connected components, where two possible realizations of a
2-connected component encode a binary variable.

However, the logic engine method is not applicable to problems with fixed
embedding or orientation, where the circular order of the neighbors of each
vertex is part of the input. Cabello et al. [7,16] used a significantly more elabo-
rate reduction to show that the realizability of 3-connected linkages (where the
orientation is unique by Whitney’s theorem [25]) is NP-hard. This problem is
efficiently decidable, though, for near-triangulations [7,13].

Note that every tree linkage can be realized in R
2 with almost collinear

edges. According to the celebrated Carpenter’s Rule Theorem [10,24], every
realization of a path (or a cycle) linkage can be continuously moved (without
self-intersection) to any other realization. In other words, the realization space
of such a linkage is always connected. However, there are trees of maximum

450 C. Bowen et al.

degree 3 with as few as 8 edges whose realization space is disconnected [2]; and
deciding whether the realization space of a tree linkage is connected is PSPACE-
complete [1]. (Earlier, Reif [22] showed that it is PSPACE-complete to decide
whether a polygonal linkage can be moved from one realization to another among
polygonal obstacles in R

3.) Cheong et al. [8] consider the “inverse” problems of
introducing the minimum number of point obstacles to reduce the configuration
space of a polygonal linkage to a unique realization.

Connelly et al. [11] showed that the Carpenter’s Rule Theorem generalizes to
certain polygonal linkages obtained by replacing the edges of a path linkage with
special polygons (called slender adornments). Our Theorem 3 indicates that if
we are allowed to replace the edges of a linkage with arbitrary convex polygons,
then deciding whether the realization space is empty or not is already NP-hard.

Recognition problems for intersection graphs of various geometric object have
a rich history [20]. Breu and Kirkpatrick [6] proved that it is NP-hard to decide
whether a graph G is the contact graph of unit disks in the plane, i.e., recognizing
coin graphs is NP-hard; see also [14]. Recognizing outerplanar coin graphs is
already NP-hard, but decidable in linear time for caterpillars [21]. It is also NP-
hard to recognize the contact graphs of pseudo-disks [20] and disks of bounded
radii [5] in the plane, and unit disks in higher dimensions [19,20]. All these
hardness reductions produce graphs with a large number of cycles, and do not
apply to trees. Note that the contact graphs of disks of arbitrary radii are exactly
the planar graphs (by Koebe’s circle packing theorem), and planarity testing is
polynomial. Consequently, every tree is the contact graph of disks of some radii
in the plane. However, deciding whether a given star is realizable as a contact
graph of disks of given radii but arbitrary embedding is already NP-hard [21].

Eades and Wormald [16] showed that it is NP-hard to decide whether a given
tree is a subgraph of a coin graph. Schaefer [23] proved that deciding whether a
graph with given edge lengths can be realized by a straight-line drawing (possibly
with crossing edges) has the same complexity as the existential theory of the
reals. Both reductions crucially rely on a large number of cycles. Our work is
the first to simulate rigid polygons with truly flexible combinatorial structures
that have simply connected topology.

2 Chains of Polygons

In this section, we consider polygonal linkages whose hinge graph is a path. We
call such a linkage a chain of polygons, given by a sequence of convex polygons
(P1, . . . , Pn), and n − 1 hinges, where the ith hinge corresponds to a pair of
points on the boundaries of Pi and Pi+1, for i = 1, . . . , n − 1. Generalizing an
observation by Demaine et al. [12][Lemma 2], we formulate a simple sufficient
condition for the realizability of a chain of polygons.

Proposition 1. Consider a chain of convex polygons (P1, . . . , Pn) with n − 1
hinges. If Pi admits parallel tangent lines through both of its hinges for i =
2, . . . , n − 1, then the chain of polygons is realizable with fixed orientation. Fur-
thermore, a realization can be computed in O(n) time.

Realization of Simply Connected Polygonal Linkages 451

It follows that every chain of triangles (resp., rectangles) hinged at distinct ver-
tices is realizable with fixed orientation. Surprisingly, the realizability of a chain
of arbitrary polygons is already NP-hard, even if the polygons are convex quadri-
laterals hinged at vertices, or triangles hinged at arbitrary boundary points. We
reduce the problem from Partition, which is weakly NP-hard (i.e., NP-hard
when the input is a sequence of n integers between 1 and 2n). We give two NP-
hardness proofs for the problem: an easier reduction for the case where reflections
of polygons are allowed, and, as an extension, a more technical proof for the case
when the orientation of the polygons is fixed. The main idea behind both proofs
is that any realization of the chain enforces a bounded rectangular region (frame)
in which the remaining polygons have to be fitted. The width of the remaining
polygons encode the integers given by the Partition instance. Simply speaking,
the joint of the first and the last polygon inside the frame have to be vertically
aligned to get the last big polygon in. This is possible if and only if we have a
yes-instance for Partition. See Fig. 2 for an example of the reduction, further
details are given in the full paper.

(a)

r1

r2

r3

r4

f1

f2

f3

f4

R

(b)

r1

r4f1

f2

f3

f4

R

r2

r3

q1

q2

Fig. 2. (a) A chain of 8 rectangles encode Partition for 3 integers (a1, a2, a3). Rec-
tangles f1, . . . , f4 form a frame around a rectangle R in any realization. (b) A chain of
16 polygons encode Partition for 3 integers (a1, a2, a3).

For the second proof we first reduce to instances in which the chained poly-
gons are either triangles, rectangles, or hexagons that are formed by rectangles
of height 2 from which an isosceles triangle of side lengths 1 is cut off on every
corner. We then replace these polygons by a subchain of triangles whose unique
realization redefines these shapes (Fig. 3 depicts this idea).

)b()a(

Fig. 3. (a) A rectangle with two hinges on opposite sides is split into a chain of 8
triangles, which has a unique realization (even with reflections). (b) A hexagon with
two hinges at opposite vertices is split into a chain of 8 triangles, which has a unique
realization with fixed orientation.

452 C. Bowen et al.

Theorem 1. It is weakly NP-hard to decide whether a chain of rectangles is
realizable.

Theorem 2. It is weakly NP-hard to decide whether a chain of convex polygons
is realizable with fixed orientation. This is already true if the chain of polygons
is formed by triangles whose hinges are not restricted to vertices.

3 Realizability of Polygonal Linkages with Fixed
Orientation

Theorem 3. It is strongly NP-hard to decide whether a polygonal linkage whose
hinge graph is a tree can be realized with fixed orientation.

Our proof for Theorem 3 is a reduction from Planar-3-SAT (P3SAT):
decide whether a given Boolean formula in 3-CNF with a planar associated
graph is satisfiable. The graph associated to a Boolean formula in 3-CNF is a
bipartite graph where the two vertex classes correspond to the variables and to
the clauses, respectively; there is an edge between a variable x and a clause C
iff x or ¬x appears in C. See Fig. 4(left).

x1 x3 x4 x5

C1

C2

C4

x2

C3

C5

x1 x3 x4 x5

C1

C2

C4

C3

C5

x2

Fig. 4. Left: the associated graph A(Φ) for a Boolean formula Φ. Right: the schematic
layout of the variable, clause, and transmitter gadgets in our construction.

The Big Picture. Given an instance Φ of P3SAT with n variables and m clauses,
we construct a simply connected polygonal linkage (P,H), of polynomial size
in n and m, such that Φ is satisfiable iff (P,H) admits a realization with fixed
orientation. We construct a polygonal linkage in two main steps: First, we con-
struct an auxiliary structure where some of the polygons have fixed position in
the plane (called obstacles), while other polygons are flexible, and each flexible
polygon is hinged to an obstacle. Second, we modify the auxiliary construction
into a polygonal linkage by allowing the obstacles to move freely, and by adding
new polygons and hinges as well as an exterior frame that holds the obstacle
polygons in place. All polygons in our constructions are regular hexagons or long
and skinny rhombi because these are the polygons that we can “simulate” with
coin graphs in Sect. 4.

We start with embedding the graph A(Φ) associated to Φ into a hexagonal
tiling, and then replace the vertices by variable and clause gadgets, and the edges

Realization of Simply Connected Polygonal Linkages 453

by transmitter gadgets (to be described below). A variable gadget corresponds
to a cycle in the hexagonal tiling, a clause gadget to single vertex incident to
three hexagons, and a transmitted gadget to a path along a sequence of edges
and vertices of the tiling. Refer to Fig. 4(right).

The main idea for the auxiliary construction is the following. We thicken
the edges of the hexagonal tiling into corridors of uniform width, and the ver-
tices of the tiling into regular triangles, which form junctions between three
corridors. The boundaries of the corridors form regular hexagons, which will
be the obstacle polygons in our auxiliary construction. In each corridor, we
insert flexible hexagons, with one corner hinged to the boundary of the corri-
dor. Each flexible hexagon has two possible realizations (say, left and right) that
can encode a binary variable: all flexible polygons turn in the same direction
along a cycle (clockwise or counterclockwise) with suitable spacing between the
hexagons (Fig. 5(a) and (b) and with a small flexible polygon at each junction
(Fig. 5(c)). Similarly, the value of a binary variable is transmitted via a chain of
corridors and junctions. A clause of Φ is simulated by a single junction (Fig. 7),
where a small flexible polygon ensures that hexagons from at most two adjacent
corridors enter the junction (i.e., at most two literals are false).

Auxiliary Construction: Flexible Hexagons in a Rigid Frame. Let Φ be a Boolean
formula in 3CNF with variables x1, . . . , xn and clauses C1, . . . , Cm, and let A(Φ)
be the associated planar graph. We modify A(Φ) to obtain a plane graph Ã(Φ)
of maximum degree 3 as follows: Replace each variable vertex v by a cycle whose
length equals the degree of v, and distribute the edges incident to v among the
vertices of the cycle.

Embed Ã(Φ) into the section of a hexagonal tiling (Fig. 4), contained in a
regular hexagon of side length N , where N is a polynomial of n and m [3].
Let t = 2N3 + 1 (t will be the number of flexible hexagons in a corridor).
Scale the grid such that the cells become regular hexagons of side length (5t −
1)/2 +

√
3, and then scale each cell independently from its center to a hexagon

of side length (5t − 1)/2. These large hexagons are considered fixed obstacles in
our auxiliary construction. Between two adjacent obstacle hexagons, there is a
5t−1
2 × √

3 rectangle, which we call a corridor. Three adjacent corridors meet at
a regular triangle, which we call a junction. We next describe variable, clause,
and transmitter gadgets.

The basic building block of both variable and transmitter gadgets consists of
t regular hexagons of side length 1 (unit hexagons, for short) attached to a wall
of a corridor such that the hinges divide the wall into t + 1 intervals of length
(1, 2.5, . . . , 2.5, 1) as shown in Fig. 5(a) and (b) for t = 3. Since the height of
the corridor is

√
3, each hexagon has exactly two possible realizations: it can lie

either left or right of the hinge in a horizontal corridor. For simplicity, we use
the same notation (R and L) in nonhorizontal corridors, too. Hence, the state of
each flexible hexagon in a realization is either L or R. The following observation
describes the key mechanism of a corridor.

454 C. Bowen et al.

(b)

2.5 11

√ 3

(a)

2.5 2.5 11 2.5 xi = T

(c)

Fig. 5. (a) A corridor when all unit hexagons are in state R. (b) A corridor where all
unit hexagons are in state L. (c) A junction where a small hexagon between two cor-
ridors ensures that at most one unit hexagon enters the junction from those corridors.

Observation 1

(1) If the leftmost hexagon is in state R, then all t hexagons are in state R, and
the rightmost hexagon enters the junction on the right of the corridor.

(2) Similarly, if the rightmost hexagon is in state L, then all t hexagons are
in state L, and the leftmost hexagon enters the junction on the left of the
corridor.

Each junction is a regular triangle, adjacent to three corridors. In some of
the junctions, we attach a small hexagon of side length 1

3 to one or two corners
of the junction (see Fig. 5(c) and Fig. 6). Importantly, if such a small hexagon is
attached to a vertex between two corridors, then a unit hexagon can enter the
junction from at most one of those corridors.

The variable gadget for variable xi is constructed as follows. Recall that
variable xi corresponds to a cycle in the associated graph Ã(Φ), which has been
embedded as a cycle in the hexagonal tiling, with corridors and junctions. In
each junction along this cycle, attach a small hexagon in the common boundary
of the two corridors in the cycle. Observation 1 and the small hexagons ensure
that the state of any unit hexagon along the cycle determines the state of all
other unit hexagons in the cycle. This property defines the binary variable xi:
If xi = T , then all unit hexagons in the top horizontal corridors are in state R;
and if xi = F , they are all in state L.

xi = T xi = T xi = F

)c()b()a(

Fig. 6. The common junction of a variable gadget and a transmitter gadget. (a) When
xi = T , a hexagon of the transmitter may enter the junction of the variable gadget.
(b) When xi = T , the transmitter gadget has several possible realizations. (c) When
xi = F , no hexagon from the transmitter enters a junction of the variable gadget.

Realization of Simply Connected Polygonal Linkages 455

A transmitter gadget is constructed for each edge (xi, Cj) of the graph
A(Φ). It connects a junction of the variable gadget xi with the junction represent-
ing the clause gadget Cj . The gadget consists of a path of corridors and junctions:
at each interior junction, attach a small hexagon in the common boundary of
the two corridors in the path (similarly to the variable gadget). At the common
junction with the variable gadget xi, we attach one additional small hexagon
to one of the vertices (refer to Fig. 6). If the literal xi (resp., xi) appears in Cj ,
then we attach a small hexagon to the corner of this junction such that if xi = F
(resp., xi = F), then the unit hexagon of the transmitter gadget cannot enter
this junction. This ensures that false literals are always correctly transmitted to
the clause junctions (and true literals can always transmit correctly).

The clause gadget lies at a junction adjacent to three transmitter gadgets
(see Fig. 7). At such a junction, we attach a unit line segment to an arbitrary
vertex of the junction, and a small hexagon of side length 1

3 to the other end of
the segment. If unit hexagons enter the junction from all three corridors (i.e.,
all three literals are false), then there is no space left for the small hexagon. But
if at most two unit hexagons enter the junction (i.e., one of the literals is true),
then the unit segment and the small hexagon are realizable.

The following lemma summarizes our result about the auxiliary construction.

Lemma 1. For every instance Φ of P3SAT, the above polygonal linkage with
flexible and obstacle polygons has the following properties: (1) it has polynomial
size; (2) its hinge graph is a forest; (3) it admits a realization such that the
obstacle polygons remain fixed if and only if Φ is satisfiable.

The remaining details of our construction can be found in the full paper.

xk = T

xi = Fxi = F

xk = F

xj = F

xi = F

xk = F

xi = Fxi = T

)c()b()a(

Fig. 7. (a-b) A clause gadget (xi ∨xj ∨xk) is realizable when at least one of the literals
is True. (c) The clause gadget cannot be realized when all three literals are False.

4 Recognition of Coin Trees with Fixed Embedding

In this section, we reduce recognition of coin trees with fixed embedding from
the realizability of polygonal linkages with cycle-free hinge graphs, which was
shown to be strongly NP-hard in Sect. 3.

Theorem 4. It is NP-hard to decide whether a given plane tree is a coin graph
with fixed embedding.

456 C. Bowen et al.

It is enough to show that the polygons and the hinges used in Sect. 3 can be
simulated by disks whose contact graphs are trees. For a constant λ > 0, we say
that a coin graph G with embedding is a λ-stable approximation of a polygon P
if in every realization of G as the contact graph of interior-disjoint unit disks, the
Hausdorff distance between the union of disks and a congruent copy of P is at
most λ. In the remainder of this section, we design plane trees that approximate
(i) a long and skinny rhombus, and (ii) a regular hexagon. We use these trees
and suitable hinges to prove Theorem 4.

Let |ab| denote the Euclidean distance between points a and b in the plane,
and note that the distance between the centers of two kissing unit disks is pre-
cisely 2. Let ∠abc ∈ [0, 2π) denote the counterclockwise angle that rotates ray

−→
ba

to
−→
bc. The following lemma about four unit disks is the key idea for our stability

arguments.

Lemma 2. Let (a, b, c, d) be a polygonal path in the plane such that |ab| = |bc| =
|cd| = 2 and the unit disks centered at a, b, c, and d are interior-disjoint. Then
the sum of angles at the interior vertices on the left (resp., right) of the chain is
greater than π.

Proof. Without loss of generality, consider the two angles on the left side at
the two interior vertices, ∠abc and ∠bcd. We have |ab| = |bc| = |cd| = 2, since
the coin graph of the unit disks is P4. If (a, b, c, d) is a rhombus, then |ad| = 2
and ∠abc + ∠bcd = π. Hence |ad| > 2 implies ∠abc + ∠bcd > π. �

We construct a caterpillar graph on n = 8 + 4k vertices, for any k ≥ 0,
and show that it is a 2-stable approximation of a long and skinny rectangle.
Recall that a caterpillar is a tree in which all vertices are either on or adjacent
to a central path. For k ≥ 0, let Tk be a plane caterpillar with central path
C = (a−k, . . . , a−1, a0, a1, . . . , ak) such that the sequence of vertex degrees along
the path is

1, 3, . . . , 3︸ ︷︷ ︸
k−2

, 4, 5, 4, 3, . . . , 3︸ ︷︷ ︸
k−2

, 1, (1)

and all leaves are attached to the left side of C. Figure 8(left) shows that Tk

can be embedded as a subgraph of a triangular grid. This embedding can be
perturbed into a coin graph (such that the distance between any two leaves is
strictly more than 2).

Lemma 3. For every integer k ≥ 0, the plane tree Tk in Fig. 8(left) is a 2-stable
approximation of a rhombus of width 2k + 3 and height 2 + 4

√
3.

The proof of the lemma boils down to a careful estimation of the realizable
distances of the tree Tk. With the help of Lemma 2 we can show that for every
j ≥ 1 the centers of aj and a−j lie at distance at most 2 from their “canonical”
position as indicated in Fig. 8(left). The proof goes via induction on j and can
be found in the full paper.

We can now extend the tree Tk to a larger tree T ′
k with Θ(k2) vertices as

shown in Fig. 9 that is a 2-stable approximation of a regular hexagon.

Realization of Simply Connected Polygonal Linkages 457

a0

a1 a2 a3 a4 a5 a6 a7

a−1 a−2 a−3 a−4 a−5 a−6 a−7

b1 b2 b3 b4 b5 b6

b−1 b−2 b−3 b−4 b−5 b−6

c0

c1

c2

c−1

c−2

a0

a1 a2 a3 a4 a5 a6 a7
a−1 a−2 a−3 a−4 a−5 a−6 a−7

b1 b2 b3 b4 b5 b6

b−1 b−2 b−3 b−4 b−5 b−6

c0

c1

c2

c−1 c−2

0

Fig. 8. This caterpillar T6 consists of two oppositely oriented chains, each of which can
only bend towards the other.

NF

M

L

K

E

D

C

B

A

JI

H

G

O

Fig. 9. The embedded tree T ′
6 approximates a regular hexagon.

Lemma 4. For every integer k ≥ 3, the plane tree T ′
k is a 2-stable approxima-

tion of a regular hexagon of side length 2k.

Proof (Sketch). Let k ≥ 0 be an arbitrary integer. To construct T ′
k, consider five

3-regular caterpillars, each of length k, joined in sequence at vertices of degree
four (except one joint vertex of degree five) such that the leaf vertices lie on
the outside. See Fig. 9. The joint vertices force five bends, each with a turn of
more than π/3, resulting in a hexagonal shape. The interior of the hexagon is
filled with pairs of 3-regular caterpillars aligned symmetrically across the x-axis,
similar to the realizations of Tk. Since Tk is a subgraph of T ′

k, the vertices in the
subgraph are 2-stable by Lemma 3 (c.f., the branches C and D in Fig. 9).

By arguments analogous to those in the proof of Lemma 3, additional hori-
zontal branches are similarly constrained and, therefore, also 2-stable (i.e., the
branches A, B, E, and J in Fig. 9). Similarly, the five branches forming the
hexagons boundary (i.e., the branches F , H, J , L, and N in Fig. 9) can only
move towards the interior of the hexagon. The empty space between any two
disks is strictly less than one disk diameter, and the result follows. �

We now have everything ready to give the reduction for Theorem 4. Roughly
speaking, we replace the polygons used in the reduction that is presented in
Sect. 3 by stable approximations. The details of the proof of Theorem 4 are
given in the full paper.

458 C. Bowen et al.

5 Conclusions

We have shown that deciding whether a simply connected polygonal linkage
is realizable in the plane (with or without fixed orientation) is strongly NP-
hard. The realizability of a chain of hinged polygons is weakly NP-hard (with or
without fixed orientation); and it remains an open problem whether it is strongly
NP-hard.

Our hardness proof for the recognition of coin graphs with fixed embedding
used subgraphs that “approximate” a regular hexagon. It remains an open prob-
lem whether a similar approximation is possible for coin graphs with arbitrary
embedding. We believe it is, but it would require an approximation of a “dense”
packing of unit disks whose contact graph is a tree: this leads to a challenging
problem in discrete geometry.

Acknowledgements. Our results in Sect. 4 were developed at the First International
Workshop on Drawing Algorithms for Networks of Changing Entities (DANCE 2014),
held in Langbroek, the Netherlands, and supported by the NWO project 639.023.208.
Research by Rounds and Tóth was supported in part by the NSF awards CCF-1422311
and CCF-1423615. Research by Durocher was supported in part by NSERC.

References

1. Alt, H., Knauer, C., Rote, G., Whitesides, S.: On the complexity of the linkage
reconfiguration problem. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs,
vol. 342, Contemporary Mathematics, pp. 1–14. AMS, Providence (2004)

2. Ballinger, B., Charlton, D., Demaine, E.D., Demaine, M.L., Iacono, J., Liu, C.-H.,
Poon, S.-H.: Minimal locked trees. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth,
C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 61–73. Springer, Heidelberg (2009)

3. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159–180 (1998)

4. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inform. Process. Lett. 25(4), 263–267 (1987)

5. Breu, H., Kirkpatrick, D.G.: On the complexity of recognizing intersection and
touching graphs of discs. In: Brandenburd, F.J. (ed.) GD 1995. LNCS, vol. 1027,
pp. 88–98. Spinger, Heidelberg (1996)

6. Breu, H., Kirkpatrick, D.G.: Unit disk graph recognition is NP-hard. Comput.
Geom. 9, 3–24 (1998)

7. Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified
edge lengths. J. Graph Alg. Appl. 11(1), 259–276 (2007)

8. Cheong, J.-S., van der Stappen, A.F., Goldberg, K., Overmars, M.H., Rimon, E.:
Immobilizing hinged polygons. Int. J. Comput. Geom. Appl. 17(1), 45–70 (2007)

9. Connelly, R., Demaine, E.D.: Geometry and topology of polygonal linkages. In:
Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational
Geometry, ch. 9, pp. 197–218. CRC, Boca Raton (2004)

10. Connelly, R., Demaine, E.D., Rote, G.: Straightening polygonal arcs and convexi-
fying polygonal cycles. Discrete Comput. Geom. 30(2), 205–239 (2003)

Realization of Simply Connected Polygonal Linkages 459

11. Connelly, R., Demaine, E.D., Demaine, M.L., Fekete, S.P., Langerman, S., Mitchell,
J.S.B., Ribó, A., Rote, G.: Locked and unlocked chains of planar shapes. Discrete
Comput. Geom. 44(2), 439–462 (2010)

12. Demaine, E.D., Eppstein, D., Erickson, J., Hart, G.W., O’Rourke, J.: Vertex-
unfoldings of simplicial manifolds. In: 18th Sympos. on Comput. Geom., pp. 237–
243. ACM Press, New York (2002)

13. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete
Math. 9(3), 349–359 (1996)

14. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

15. Eades, P., Whitesides, S.: The realization problem for Euclidean minimum span-
ning trees is NP-hard. Algorithmica 16(1), 60–82 (1996)

16. Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Discrete
Appl. Math. 28, 111–134 (1990)

17. Fekete, S.P., Houle, M.E., Whitesides, S.: The wobbly logic engine: Proving hard-
ness of non-rigid geometric graph representation problems. In: Di Battista, G. (ed.)
GD 1997. LNCS, vol. 1353, pp. 272–283. Springer, Heidelberg (1997)

18. Gregori, A.: Unit-length embedding of binary trees on a square grid. Inform.
Process. Lett. 31, 167–173 (1989)

19. Hliněný, P.: Touching graphs of unit balls. In: Di Battista, G. (ed.) GD 1997.
LNCS, vol. 1353, pp. 350–358. Springer, Heidelberg (1997)

20. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Math. 229(1–3), 101–124 (2001)

21. Klemz, B., Nöllenburg, M., Prutkin, R.: Recognizing weighted disk contact graphs.
In: Di Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 433–446.
LNCS, Spinger, Heidelberg (2015)

22. Reif, J.H.: Complexity of the mover’s problem and generalizations. In: 20th FoCS,
pp. 421–427. IEEE, New York (1979)

23. Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays
on Geometric Graph Theory, pp. 461–482. Springer, Heidelberg (2013)

24. Streinu, I.: Pseudo-triangulations, rigidity and motion planning. Discrete Comput.
Geom. 34(4), 587–635 (2005)

25. Whitney, H.: Congruent graphs and the connectivity of graphs. Amer. J. Math.
54, 150–168 (1932)

Towards Characterizing Graphs with a Sliceable
Rectangular Dual

Vincent Kusters1(B) and Bettina Speckmann2

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
vincent.kusters@inf.ethz.ch

2 Department of Computer Science, TU Eindhoven, Eindhoven, The Netherlands
b.speckmann@tue.nl

Abstract. Let G be a plane triangulated graph. A rectangular dual of G
is a partition of a rectangle R into a set R of interior-disjoint rectangles,
one for each vertex, such that two regions are adjacent if and only if the
corresponding vertices are connected by an edge. A rectangular dual is
sliceable if it can be recursively subdivided along horizontal or vertical
lines. A graph is rectangular if it has a rectangular dual and sliceable if
it has a sliceable rectangular dual. There is a clear characterization of
rectangular graphs. However, a full characterization of sliceable graphs
is still lacking. The currently best result (Yeap and Sarrafzadeh, 1995)
proves that all rectangular graphs without a separating 4-cycle are slice-
able. In this paper we introduce a recursively defined class of graphs
and prove that these graphs are precisely the nonsliceable graphs with
exactly one separating 4-cycle.

1 Introduction

Let G be a plane triangulated graph. A rectangular dual of G is a rectangular
partition R such that (i) no four rectangles meet in the same point, (ii) there is
a one-to-one correspondence between the rectangles in R and the vertices of G,
and (iii) two rectangles in R share a common boundary segment if and only if
the corresponding vertices of G are connected. A graph can have exponentially
many rectangular duals [6], but might not even have a single one. Rectangular
duals have a variety of applications, for example, as rectangular cartograms in
cartography or as floorplans in architecture and VLSI design.

There are several types of rectangular duals that are of particular interest.
Often it is desirable to assign certain areas to each rectangle. A recent paper
by Eppstein et al. [8] studies area-universal rectangular duals, which have the
property that any assignment of areas to rectangles can be realized by a com-
binatorially equivalent rectangular dual. A rectangular dual is sliceable if it can
be recursively subdivided along horizontal or vertical lines (such duals are also

V. Kusters is partially supported by the ESF EUROCORES programme EuroGIGA,
CRP GraDR and the Swiss National Science Foundation, SNF Project 20GG21-
134306.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 460–471, 2015.
DOI: 10.1007/978-3-319-27261-0 38

Towards Characterizing Graphs 461

Fig. 1. A graph (a) with rectangular duals (b)-(d) and a rectangular dual of a different
graph (e): (b) is not sliceable and not area-universal, (c) is sliceable and not area-
universal, (d) is sliceable and area-universal, and (e) is area-universal and not sliceable.

called guillotine floorplans and can be constructed by glass cuts). While it is gen-
erally difficult to determine if an area assignment is feasible and to compute the
corresponding layout of the rectangles, it is very easy to do so for sliceable duals.
Furthermore, sliceable duals more easily facilitate certain layout steps in VLSI
layout. Sliceability does not imply area-universality or vice versa (see Fig. 1).

A graph is rectangular if it has a rectangular dual and sliceable if it has a
sliceable rectangular dual. Ungar [20], Bhasker and Sahni [4], and Koźmiński and
Kinnen [12] independently gave equivalent characterizations of the rectangular
graphs. Eppstein et al. [8] characterized the area-universal rectangular duals.
However, despite an active interest in sliceable rectangular duals, a full charac-
terization of sliceable graphs is still lacking. The currently best result by Yeap
and Sarrafzadeh [22] from 1995 proves that all rectangular graphs without a sep-
arating 4-cycle are sliceable. Dasgupta and Sur-Kolay [7] modified the approach
of Yeap and Sarrafzadeh and claimed two sufficient conditions for sliceability.
However, Mumford [15] discovered a critical flaw that invalidates their results.1

Related Work. Rectangular duals have been studied extensively by the VLSI
community. Sliceable layouts more easily facilitate certain steps in the layout
process [16]. For instance, the problem of minimizing the perimeter or area of
modules in a rectangular layout according to a given measure can be solved in
polynomial time for sliceable layouts, but is NP-complete in general [17]. Several
papers focus on restricted classes of sliceable and nonsliceable graphs [5,18].

Rectangular duals are also studied in the context of rectangular cartograms,
which represent geographic regions by rectangles. The positioning and adjacen-
cies of these rectangles are chosen to suggest their geographic locations and their
areas correspond to the numeric values that the cartogram communicates. Van
Kreveld and Speckmann [13] gave the first algorithms to compute rectangular
cartograms. Eppstein et al. [8] present a numerical algorithm for area-universal
rectangular duals which computes a cartogram with approximately the correct
areas. For sliceable rectangular duals one can easily compute a combinatorially
equivalent rectangular dual with exactly the specified area assignment, if such a
rectangular dual exists. Several papers consider rectilinear duals: a generaliza-
tion of rectangular duals which uses simple (axis-aligned) rectilinear polygons
instead of rectangles. Every triangulated graph has a rectilinear dual where every

1 Confirmed by Dasgupta and Sur-Kolay, personal communication, 2011-2013.

462 V. Kusters and B. Speckmann

polygon has eight sides, and eight sides are sometimes necessary [10,14,23]. A
series of papers studies the question of how many sides are required to respect
all adjacencies and area requirements in general. De Berg, Mumford and Speck-
mann [3] gave the first bound by showing that forty sides per polygon is always
sufficient. After several intermediate results, Alam et al. [2] finally closed the
gap by proving that eight sides per polygon is always sufficient.

Sliceable rectangular duals are also called guillotine partitions or guillotine
layouts. In this context a different notion of equivalence is used, which is not
based on a dual graph. Specifically, two guillotine partitions are equivalent if
they have the same structure tree [19]. Yao et al. [21] show that the asymptotic
number of guillotine partitions is the nth Schröder number. Ackerman et al. [1]
derive the asymptotic number of guillotine partitions in higher dimensions.
Results and Organization. It is comparatively easy to see that the class of
sliceable graphs is not closed under minors. Hence we need to explore different
approaches to characterize them. In Sect. 3 we introduce a recursively defined
class of graphs, so-called rotating pyramids, which contain exactly one separating
4-cycle. We conjecture that configurations of rotating pyramids determine if a
graph is sliceable. We verify our conjecture for the graphs that contain exactly
one separating 4-cycle. The nonsliceable graphs in this class are exactly the
graphs that reduce to rotating windmills: rotating pyramids with a specific corner
assignment. In Sect. 4 we prove that rotating windmills are not sliceable and in
Sect. 5 we argue that all other graphs with exactly one separating 4-cycle are
sliceable.

2 Preliminaries

Fig. 2. An extended graph E(G) and
the corresponding rectangular dual.

An extended graph E(G) of a plane graph
G is an extension of G with four vertices
in such a way that the four vertices form
the outer face of E(G). These vertices are
labeled t(G), r(G), b(G) and l(G) in clock-
wise order and are called the poles of
E(G). The vertices of the original graph
G are called the interior vertices. Since
choosing the extended graph fixes the ver-
tices that correspond to the four corners
(and hence the vertices along the four
sides) of the rectangular dual, extended
graphs are also called corner assignments (Fig. 2).

A separating k-cycle of an extended graph E(G) is a k-cycle with vertices
both inside and outside the cycle. A triangle is a 3-cycle. The outer cycle of a
plane graph is the cycle formed by the edges incident to the unbounded face.
An irreducible triangulation is a plane graph without separating triangles and
where all interior faces are triangles and the outer face is a quadrangle. A graph

Towards Characterizing Graphs 463

Fig. 3. The windmill, the generalized windmill (the hatched shape is an arbitrary
graph), and a rectangular dual of the generalized windmill.

G has a rectangular dual if and only if G has an extended graph which is an
irreducible triangulation [4,12,20].
Sliceable Graphs. A rectangular partition is sliceable if it can be recursively
subdivided along horizontal or vertical lines. An extended graph E(G) is sliceable
if and only if it has a sliceable rectangular dual. A graph G is sliceable if and only
if it has a sliceable extended graph. Since a graph has only polynomially many
corner assignments, we consider only extended graphs from now on. The smallest
nonsliceable extended graph is the windmill depicted in Fig. 3. This extended
graph can be generalized to a generalized windmill by replacing the center vertex
with an arbitrary graph. All generalized windmills are nonsliceable.

A cut is a partition of the vertices of a graph in two disjoint subsets. The
cut-set of the cut is the set of edges whose endpoints are in different subsets
of the partition. A cut of G with cut-set S is vertical if the edges dual to S
form a path from an interior face incident to t(G) to an interior face incident
to b(G). Order the edges in the cut-set e1, . . . , em, according to the order in
which they are traversed by the dual path. The left vertex of ei is the endpoint
of ei that is in the same component as l(G) in the graph obtained by delet-
ing t(G), b(G), and S from E(G). The right vertex is defined analogously. Let
the left boundary walk W� = t(G), u1, . . . , u�, b(G) be the sequence of left end-
points of e1, . . . , em (removing consecutive duplicates), and let the right boundary
walk Wr = t(G), v1, . . . , vr, b(G) be the sequence of right endpoints of e1, . . . , em

(removing consecutive duplicates). A walk is a path if it visits every vertex at
most once. A path v1, . . . , vk is chordless if and only if vi and vj are not adja-
cent for each 1 ≤ i < j − 1 ≤ k. A vertical cut is a vertical slice if its boundary
walks are chordless paths (Fig. 4). A vertical slice divides G into Gl and Gr. Hor-
izontal cuts, top and bottom boundary walks and horizontal slices are defined
analogously.
Regular Edge Labelings. The equivalence classes of the
rectangular duals of an irreducible triangulation E(G) cor-
respond one-to-one to the regular edge labelings of E(G).
A regular edge labeling of an extended graph E(G) is a
partition of the interior edges of E(G) into two subsets
of red (dashed) and blue (solid) directed edges such that:
(i) around each inner vertex in clockwise order we have
four contiguous nonempty sets of incoming blue edges, out-
going red edges, outgoing blue edges, and incoming red

464 V. Kusters and B. Speckmann

Fig. 4. An extended graph E(G) with a vertical slice indicated by a dash-dotted line and
the corresponding E(G�) and E(Gr). The edges of the cut-set are bold. The boundary
paths are t(G), 1, 2, 3, b(G) and t(G), 4, 5, 6, 7, b(G). Both boundary paths are chordless.
Figure based on [22].

edges and; (ii) l(G) has only outgoing blue edges, t(G) has only incom-
ing red edges, r(G) has only incoming blue edges and b(G) has only
outgoing red edges.

Fig. 5. A regular edge labeling and corre-
sponding rectangular dual. Letters indicate
the slices.

A regular edge labeling is slice-
able if its corresponding rectangu-
lar dual is sliceable. One can find
a regular edge labeling and con-
struct the corresponding rectangu-
lar dual in linear time [11]. A regular
edge coloring is a regular edge label-
ing, without the edge directions.
A regular edge coloring uniquely
determines a regular edge labeling
[9, Proposition 2]. A monochromatic
triangle is a triangle where all edges
have the same color. A regular edge
labeling (of an irreducible triangula-
tion) induces no monochromatic tri-
angles [9, Lemma 1].

Let R be a rectangular dual of E(G) and let L be the regular edge labeling
that corresponds to R. Any vertical slice in R has a blue cut-set and red bound-
ary paths in L. Any horizontal slice in R has a red cut-set and blue boundary
paths (see Fig. 5). A slice is a first slice of E(G) if it starts and ends at poles of
E(G). Slice a is the only first slice in Fig. 5.
k-pyramid Extended Graphs. A pyramid is a 4-cycle with exactly one vertex
in its interior. A k-pyramid extended graph is an irreducible triangulation E(G)
such that G has no cut-vertices, G has exactly k separating 4-cycles, and all
separating 4-cycles in E(G) are pyramids. We argue that it is sufficient for our
investigation of sliceability to consider only k-pyramid extended graphs with
k ≥ 1. Firstly, we may assume G has no cut-vertex (all omitted proofs are in the
full version of the paper):

Towards Characterizing Graphs 465

Lemma 1. Let E(G) be an extended graph such that G has a cut-vertex v. Then
v is adjacent to two opposite poles, say t(G) and b(G). Slice immediately left and
immediately right of v. Then E(G) is sliceable if and only if the three extended
graphs that result from the two slices are sliceable.

Secondly, Mumford [15] showed that it is sufficient to consider extended graphs
E(G) such that all separating 4-cycles in G are pyramids. Her proof directly
extends to separating 4-cycles in E(G) instead of G, which immediately proves
that generalized windmills (Fig. 3) are nonsliceable. Finally, 0-pyramid extended
graphs are always sliceable [22].
Yeap and Sarrafzadeh’s algorithm. In Sect. 5, we explicitly construct slices
in a manner which is based on the algorithm by Yeap and Sarrafzadeh [22]. In
Theorem 1 below we give a stronger version of their result and also add a missing
case which was overlooked in their original analysis. A cycle C in E(G) splits
the plane into two parts: a bounded region and an unbounded region. We say
that vertices in the bounded region including C are enclosed by C.

Theorem 1. Let E(G) be a k-pyramid extended graph (k ≥ 0). Then there exists
a vertical cut S such that (i) the left boundary walk P� of S is a chordless path
that contains only vertices with distance 2 to r(G) in E(G) \ {t(G), l(G), b(G)}
and (ii) if the cycle Cr := 〈r(G), P�, r(G)〉 does not enclose a pyramid, then S is
a vertical slice. Analogous statements hold for t(G), l(G) and b(G). Consequently,
E(G) is sliceable if k = 0.

The following corollary of Lemma 1 gives a final simplification of our problem.

Lemma 2. Let E(G) be an extended graph with pole p such that p has only one
neighbour v in G. Let E(G′) be the extended graph obtained by deleting v from G
and connecting the neighbours of v in G to p. Then E(G) is sliceable if and only
if E(G′) is sliceable.

Exhaustively applying Lemma 2 to an extended graph E(G) reduces E(G) to an
extended graph E(G′). We say that E(G′) is reduced. The extended graphs E(G�)
and E(Gr) resulting from a slice in E(G) might not be reduced even if E(G) is.
In this sense, Lemma 2 is different from Lemma 1 and Mumford’s observation.
In the following we focus on the 1-pyramid extended graphs, among which are
both sliceable and nonsliceable extended graphs. The smallest nonsliceable one
is the windmill in Fig. 3.

3 Rotating Pyramids and Windmills

The graph on the right is the big pyramid graph. Rotating wind-
mills are recursively defined as follows. The windmill (see Fig. 3) is
a rotating windmill. Furthermore, the extended graphs depicted in
Fig. 6 are base rotating windmills: they are four corner assignments
of the big pyramid graph. If E(G) is a rotating windmill other than
the windmill, then we can construct another rotating windmill by replacing the

466 V. Kusters and B. Speckmann

(a) (b) (c) (d)

Fig. 6. The four base rotating windmills.

pyramid in E(G) with a big pyramid using one of three construction steps,
labeled , and , each depicted in Fig. 7.

Intuitively, extends the rotating windmill in the same direction as the pre-
vious extension, rotates the direction 90◦ counterclockwise and rotates the
direction 90◦ clockwise. Note that the construction steps are not allowed to per-
form a rotation of 180◦. We can uniquely identify a rotating windmill by its
construction sequence. The construction sequence of the windmill is . The con-
struction sequences of the base rotating windmills are , , and . If we apply
a construction step sk+1 ∈ { , , } to a rotating windmill bs1 · · · sk where k ≥ 0,
b ∈ { , , , }, and s1, . . . , sk ∈ { , , }, then the resulting rotating windmill
has construction sequence bs1 · · · sksk+1. Figure 8 shows three examples. If E(G)
is a rotating windmill, then we call G a rotating pyramid. For a given rotating
pyramid G, which is not the pyramid, the inner graph G′ is defined as the largest
strict subgraph of G such that G′ is a rotating pyramid.
Drawing Conventions. We draw the edges of the outer cycle of a rotating
pyramid G as a square. The top side of G is the path from the topleft vertex of G
to the topright vertex (including both). The definitions of right side, bottom side
and left side are analogous. Every rotating windmill has two consecutive sides
with exactly two vertices, and two consecutive sides with at least two vertices.

Fig. 7. On the left: the big pyramid in a rotating windmill, along with two of its
neighbors in gray. On the right: the results of applying the three construction steps.

Towards Characterizing Graphs 467

Fig. 8. Three rotating windmills.

Consider the graph G on the right. The partially drawn
edges incident to the vertices on the outer cycle of G rep-
resent connections to vertices not shown in the figure. The
inner graph G′ of G is represented by only its outer cycle;
its interior vertices (if any) are not shown. The lines along
the top, right, bottom and left sides of G′ contain the · · · -
symbol in their center to indicate that there may be zero
or more extra vertices on the side. The edges whose color is
not uniquely determined are gray (dotted). The start of a slice is denoted with
∗, and the end of a slice is denoted with × (not shown). Every vertex on the top
side of G′ is connected to the topleft vertex in the figure, and every vertex on the
right side of G′ is connected to the bottomright vertex in the figure. Since G′ is a
rotating pyramid, a maximum of two sides of G′ (and they must be consecutive)
can have extra vertices.

4 Rotating Windmills are not Sliceable

Before we can prove the main result of this section, we need the following lemma:

Lemma 3. Let E(G) be an extended graph with a sliceable regular edge label-
ing L. Let G′ be a subgraph of G such that the outer cycle of G′ under L has in
clockwise order (i) a nonempty path of red edges followed by a nonempty path of
blue edges oriented clockwise, and (ii) a nonempty path of red edges followed by a
nonempty path of blue edges oriented counterclockwise. Let E(G′) be the extended
graph with labeling L′ induced by coloring the edges of G′ according to L. The
labeling L′ is a sliceable labeling for E(G′).

Proof. The figure shows an example of the labeling of the
outer cycle of G′, the induced corner assignment E(G′) and the
labeling of E(G′). Observe that the slices in L′ are exactly the
slices in L that cut through edges of G′. Since L is a sliceable
labeling of E(G′), the labeling L′ must also be sliceable. �	
Theorem 2. Extended graphs that reduce to rotating wind-
mills are not sliceable.

468 V. Kusters and B. Speckmann

Proof. Since the reduction operation preserves sliceability, it is sufficient to con-
sider rotating windmills. We will prove the theorem by structural induction on
rotating windmills. Our base case is the windmill, which is not sliceable.

Fig. 9. Graph G.

Let E(G) be a rotating windmill and assume that all
rotating windmills with fewer vertices are nonsliceable.
Assume without loss of generality that the construction
sequence of E(G) starts with . For the sake of deriv-
ing a contradiction, suppose that E(G) is sliceable and
consider a sliceable regular edge labeling. We assume
wlog that the first slice in E(G) is a vertical slice from
t(G) to b(G). We show that any first slice either (i) can-
not reach b(G) or (ii) cuts E(G) in such a way that a
smaller graph is forced into a corner assignment that is
a rotating windmill. Both cases result in a contradiction.

See Fig. 9. The vertices along the outer cycle of G are connected to the poles
in E(G). Since t(G) has only incoming red edges, the edges along the top side of
G must be blue. A similar reasoning forces the coloring of all edges on the outer
cycle of G. Let G′ be the inner graph of G. We distinguish four cases.

Fig. 10. Case 1.

Case 1. The first slice does not cut through an edge in
the top side of G′, see Fig. 10. As noted previously, the
colors of the edges along the outer cycle of G are forced
by the corner assignment. The choice of the slice forces
the colors of all dotted edges in Fig. 9. The induced
corner assignment of G′ is a rotating windmill E(G′)
which is smaller than E(G). By the induction hypothe-
sis, E(G′) is not sliceable. Hence, E(G) is also not slice-
able. Contradiction.
Case 2. The top side of G′ has at least two edges and the
first slice cuts through the rightmost one, as depicted
in Fig. 11(a). The induced corner assignment of G′ is not a rotating windmill, so
we cannot immediately conclude that E(G) is not sliceable. Let us consider the
structure of G′. Note that the top side of G′ has more than two vertices. This
means that the construction sequence of E(G) must start with .

The slice that enters G′ in Fig. 11(a) continues at the ∗ in Fig. 11(b). Let G′′

be the inner graph of G′. Note that the slice must enter G′′: if it did not, we
would be in Case 1 again. It follows that the slice must enter G′′ through some
edge on the right side of G′′. This forces the colors of all dotted edges in the
figure. The slice cannot leave G′′ through an edge on the top or bottom side of
G′′, since the slice cannot continue to b(G) from there. Since the first slice does
not reach b(G), it cannot be the first slice. Contradiction.
Case 3. The top side of G′ has at least two edges and the first slice does not cut
through the rightmost one, see Fig. 11(c). Hence, the construction sequence of
E(G) must start with . The first slice continues at ∗ in Fig. 11(d). Let G′′ be
the inner graph of G′. All edges in G′ incident to the topright vertex in G′ must

Towards Characterizing Graphs 469

Fig. 11. (a-b) Graphs G and G′ in Case 2. (c-d) Graphs G and G′ in Case 3.

Fig. 12. Case 4: graph G and two cases for G′: graphs G1 and G2.

be red. This forces the coloring of all remaining edges. So the first slice cannot
continue to b(G) after leaving G′′: hence it cannot be the first slice. Contradiction.
Case 4. The top side of G′ has exactly one edge e and the first slice cuts through
e, see Fig. 12(a). Since G′ has only two vertices on its top side, the construction
sequence of E(G) must start with (G′ = G1) or (G′ = G2). See Fig. 12(b) for
G′ = G1 and Fig. 12(c) for G′ = G2. The only difference between G1 and G (Fig. 9)
is that the topright vertex of G1 has an extra blue edge. Suppose that E(G) is
sliceable for G′ = G1 (the case G′ = G2 is similar). Let LG be a sliceable regular
edge labeling of E(G) and let LG [G1] be the restriction of LG to G1. All edges
along the top side and bottom side of G1 in LG [G1] are blue and all the edges
along the left side and right side are red. Let E(G1) be the corner assignment
of G1 such that E(G1) is a rotating windmill. Coloring the edges of G1 inside
E(G1) according to LG [G1] yields a sliceable regular edge labeling for E(G1) by
Lemma 3. But since E(G1) is a smaller rotating windmill than E(G), it is not
sliceable by the induction hypothesis. Contradiction. �	

5 Sliceability of 1-pyramid Extended Graphs

In this section we prove that all reduced 1-pyramid extended graphs other than
rotating windmills are sliceable. Given a 1-pyramid extended graph E(G), let Cp

be the cycle defined in Theorem 1 for each pole p ∈ {l(G), b(G), r(G), t(G)}.

470 V. Kusters and B. Speckmann

Lemma 4. Let E(G) be a reduced 1-pyramid extended graph. Suppose that there
exists a slice S that splits E(G) into E(G�) and E(Gr), such that E(G�) (or
E(Gr)) can be reduced to a rotating windmill. Then we can construct a reduced
1-pyramid extended graph E(G′) such that E(G′) is not a rotating windmill, G′

is a strict subgraph of G and E(G) is sliceable if E(G′) is sliceable.

Proof (sketch). One can argue that that E(G�) (or E(Gr)) is already be a rotating
windmill and then locally change S to a slice that does not induce a rotating
windmill in the left or right graph. �	
Lemma 5. Let E(G) be a reduced 1-pyramid extended graph. If Cp encloses the
pyramid of G for all poles p, then E(G) is the windmill.

Proof (sketch). First, the proof argues that since C� and Cr both enclose the
pyramid, there is a cycle C formed by vertices L from P� and R from Pr that
encloses the pyramid. Since l(G) (r(G)) has a path of length two to every vertex
on P� (Pr), one can show that every vertex in L \ R must have an edge to a
vertex in R. It follows that C is a 4-cycle and since it encloses the pyramid in the
1-pyramid extended graph E(G), the pyramid must be equal to C. Hence, P� and
Pr contain an edge of the outer cycle of the pyramid. By a symmetric argument,
Pt and Pb contain an edge of the outer cycle of the pyramid. Next, one can show
that every edge of the outer cycle of the pyramid is on a different boundary path.
Finally, we can use this property to show that every vertex on the outer cycle
of the pyramid is connected to two adjacent poles. It follows that E(G) contains
the edges of the windmill. Since E(G) is an irreducible triangulation, no other
vertices can be present, which concludes the proof. �	
The following algorithm computes a sliceable labeling of a reduced 1-pyramid
extended graph that is not a rotating windmill.

1. If G is a single vertex, we are done.
2. Since E(G) is not a rotating windmill, by Lemma 5, there is a pole p for which

Cp does not enclose the pyramid. Use Theorem 1 to compute a slice from p.
This slice splits E(G) into E(G�) and E(Gr). One of these, say G�, contains the
pyramid of G. By Theorem 1, E(Gr) is sliceable. If E(G�) can be reduced to
a rotating windmill, then proceed to Step 1 with the reduced extended graph
E(G′) guaranteed by Lemma 4. Otherwise, reduce E(G�) using Lemma 2 and
go to Step 1 with E(G�).

The algorithm maintains the invariant that E(G) is a reduced 1-pyramid
extended graph that is not a rotating windmill at line 1. Combined with
Theorem 2, this concludes the proof of our main result:

Theorem 3. A 1-pyramid extended graph is sliceable if and only if it cannot be
reduced to a rotating windmill.

Towards Characterizing Graphs 471

References

1. Ackerman, E., Barequet, G., Pinter, R.Y., Romik, D.: The number of guillotine
partitions in d dimensions. Inf. Proces. Letters 98(4), 162–167 (2006)

2. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.:
Computing cartograms with optimal complexity. In: SOCG 2012, pp. 21–30 (2012)

3. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted
plane graphs. Disc. Math. 309(7), 1794–1812 (2009)

4. Bhasker, J., Sahni, S.: A linear time algorithm to check for the existence of a
rectangular dual of a planar triangulated graph. Networks 17(3), 307–317 (1987)

5. Bhattacharya, B., Sur-Kolay, S.: On the family of inherently nonslicible floorplans
in VLSI layout design. In: ISCAS 1991, pp. 2850–2853. IEEE (1991)

6. Buchin, K., Speckmann, B., Verdonschot, S.: Optimizing regular edge labelings. In:
Brandes, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 117–128. Springer,
Heidelberg (2011)

7. Dasgupta, P., Sur-Kolay, S.: Slicible rectangular graphs and their optimal floor-
plans. ACM Trans. Design Automation of Electronic Systems 6(4), 447–470 (2001)

8. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangu-
lar layouts. In: SOCG 2009, pp. 267–276 (2009)

9. Fusy, É.: Transversal structures on triangulations: A combinatorial study and
straight-line drawings. Disc. Math. 309(7), 1870–1894 (2009)

10. He, X.: On floor-plan of plane graphs. SIAM J. Comp. 28(6), 2150–2167 (1999)
11. Kant, G., He, X.: Two algorithms for finding rectangular duals of planar graphs. In:

van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 396–410. Springer, Heidelberg
(1994)

12. Koźmiński, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 15(2),
145–157 (1985)

13. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comp. Geom. 37(3),
175–187 (2007)

14. Liao, C.C., Lu, H.I., Yen, H.C.: Compact floor-planning via orderly spanning trees.
J. Algorithms 48(2), 441–451 (2003)

15. Mumford, E.: Drawing Graphs for Cartographic Applications. Ph.D. thesis, TU
Eindhoven (2008). http://repository.tue.nl/636963

16. Otten, R.: Efficient floorplan optimization. In: ICCAD’83. vol. 83, pp. 499–502
(1983)

17. Stockmeyer, L.: Optimal orientations of cells in slicing floorplan designs. Inf. Con-
trol 57(2), 91–101 (1983)

18. Sur-Kolay, S., Bhattacharya, B.: Inherent nonslicibility of rectangular duals in
VLSI floorplanning. In: Kumar, S., Nori, K.V. (eds.) FSTTCS 1988. LNCS, vol.
338, pp. 88–107. Springer, Heidelberg (1988)

19. Szepieniec, A.A., Otten, R.H.: The genealogical approach to the layout problem.
In: Proceedings of the 17th Conference on Design Automation, pp. 535–542. IEEE
(1980)

20. Ungar, P.: On diagrams representing maps. J. L. Math. Soc. 1(3), 336–342 (1953)
21. Yao, B., Chen, H., Cheng, C.K., Graham, R.: Floorplan representations: Complex-

ity and connections. ACM Trans. Design Auto. of Elec. Sys. 8(1), 55–80 (2003)
22. Yeap, G., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J.

Disc. Math. 8(2), 258–280 (1995)
23. Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rec-

tilinear modules. SIAM J. Comp. 22(3), 500–526 (1993)

http://repository.tue.nl/636963

Pixel and Voxel Representations of Graphs

Md. Jawaherul Alam1, Thomas Bläsius2, Ignaz Rutter2, Torsten Ueckerdt2,
and Alexander Wolff3(B)

1 University of Arizona, Tucson, USA
2 Karlsruhe Institute of Technology, Karlsruhe, Germany

3 Universität Würzburg, Würzburg, Germany
alexander.wolff@uni-wuerzburg.de

http://www1.informatik.uni-wuerzburg.de/wolff

Abstract. We study contact representations for graphs, which we call
pixel representations in 2D and voxel representations in 3D. Our repre-
sentations are based on the unit square grid whose cells we call pixels in
2D and voxels in 3D. Two pixels are adjacent if they share an edge, two
voxels if they share a face. We call a connected set of pixels or voxels a
blob. Given a graph, we represent its vertices by disjoint blobs such that
two blobs contain adjacent pixels or voxels if and only if the correspond-
ing vertices are adjacent. We are interested in the size of a representation,
which is the number of pixels or voxels it consists of.

We first show that finding minimum-size representations is NP-
complete. Then, we bound representation sizes needed for certain graph
classes. In 2D, we show that, for k-outerplanar graphs with n vertices,
Θ(kn) pixels are always sufficient and sometimes necessary. In particular,
outerplanar graphs can be represented with a linear number of pixels,
whereas general planar graphs sometimes need a quadratic number. In
3D, Θ(n2) voxels are always sufficient and sometimes necessary for any n-
vertex graph. We improve this bound to Θ(n·τ) for graphs of treewidth τ
and to O((g + 1)2n log2 n) for graphs of genus g. In particular, planar
graphs admit representations with O(n log2 n) voxels.

1 Introduction

In Tutte’s landmark paper “How to draw a graph”, he introduces barycentric
coordinates as a tool to draw triconnected planar graphs. Given the positions of
the vertices on the outer face (which must be in convex position), the positions
of the remaining vertices are determined as the solutions of a set of equations.
While the solutions can be approximated numerically, and symmetries tend to
be reflected nicely in the resulting drawings, the ratio between the lengths of the
longest edge and the shortest edge is exponential in many cases. This deficiency

This work was started at the 2014 Bertinoro Workshop on Graph Drawing. We
thank the organizers for creating an inspiring atmosphere and Sue Whitesides for
suggesting the problem. A.W. acknowledges support by the ESF EuroGIGA project
GraDR (DFG grant Wo 758/5-1).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 472–486, 2015.
DOI: 10.1007/978-3-319-27261-0 39

Pixel and Voxel Representations of Graphs 473

triggered research directed towards drawing graphs on grids of small size in both
2D and 3D for different graph drawing paradigms; Brandenburg et al. [12] listed
this as an important open problem. In straight-line grid drawings, the vertices
are at integer grid points and the edges are drawn as straight-line segments.
Both Schnyder [36] and de Fraysseix et al. [30], gave algorithms for drawing any
n-vertex planar graph on a grid of size O(n)×O(n). There has also been research
towards drawing subclasses of planar graphs on small-area grids. For example,
any n-vertex outerplanar graph can be drawn in area O(n1.48) [19]. Similar
research has also been done for other graph drawing problems, such as polyline
drawings, where edges can have bends [9], orthogonal drawings, where edges are
polylines consisting of only axis-aligned segments [9,17], and for drawing graphs
in 3D [21,34,35].

A bar visibility representation [37] draws a graph in a different way: the ver-
tices are horizontal segments and the edges are realized by vertical line-of-sights
between corresponding segments. Improving earlier results, Fan et al. [24] showed
that anyplanar graphadmits a visibility representation of size (�4n/3�−2)×(n−1).
Generalized visibility representations for non-planar graphs have been considered
in 2D [13,23], and in 3D [11]. In all these and many subsequent papers, the size of
a drawing is measured as the area or volume of the bounding box.

Yet another approach to drawing graphs are the so-called contact repre-
sentations, where vertices are interior-disjoint geometric objects such as lines,
curves, circles, polygons, polyhedra, etc. and edges correspond to pairs of objects
touching in some specified way. An early work by Koebe [32] represents planar
graphs with touching disks in 2D. Any planar graph can also be represented
by contacts of triangles [29], by side-to-side contacts of hexagons [22] and of
axis-aligned T-shape polygons [2,29]. 2D-contact representations of graphs with
line segments [28], L-shapes [18], homothetic triangles [4], squares and rectan-
gles [15,25] have also been studied. Of particular interest are the so-called VCPG-
representations introduced by Aerts and Felsner [1]. In such a representation,
vertices are represented by interior-disjoint paths in the plane square grid and
an edge is a contact between an endpoint of one path and an interior point of
another. Aerts and Felsner showed that for certain subclasses of planar graphs,
the maximum number of bends per path can be bounded by a small constant.

Contact representations in 3D allow us to visualize non-planar graphs, but
little is known about contact representations in 3D: Any planar graph can be
represented by contacts of cubes [26], and by face-to-face contact of boxes [14,38].
Contact representations of complete graphs and complete bipartite graphs in 3D
have been studied using spheres [6,31], cylinders [5], and tetrahedra [39]. In 3D
as well as in 2D, the complexity of a contact representation is usually measured
in terms of the polygonal complexity (i.e., the number of corners) of the objects
used in the representation.

In this paper, in contrast, we are interested in “building” graphs, and so we
aim at minimizing the cost of the building material—think of unit-size Lego-
like blocks that can be connected to each other face-to-face. We represent each

474 M.J. Alam et al.

vertex by a connected set of building blocks, which we call a blob. If two vertices
are adjacent, the blob of one vertex contains a block that is connected (face-to-
face) to a block in the blob of the other. The blobs of two non-adjacent vertices
are not connected. We call the building blocks pixels in 2D and voxels in 3D.
Accordingly, the 2D and 3D variants of such representations are called pixel
and voxel representations, respectively. We define the size of a pixel or voxel
representation to be the total number of boxes it consists of. (We use box to
denote either pixel or voxel when the dimension is not important.)

The same representation was introduced very recently and independently by
Cano et al. [16] under the name mosaic drawings for interior-triangulated planar
graphs and triangular, square, or hexagonal pixels. They want each blob to use
a given number of pixels (to represent statistical data, such as population) and
to imitate the shapes of given geometric objects (such as countries).

Although pixel representations can be seen as generalizations of VCPG-
representations where grid subgraphs instead of grid paths are used, minimizing
or bounding the size of such representations has so far been studied neither in
2D nor in 3D.

Our Contribution. We first investigate the complexity of our problem: finding
minimum-size representations turns out to be NP-complete (Sect. 2). Then, we
give lower and upper bounds for the sizes of 2D- and 3D-representations for
certain graph classes:

In 2D, we show that, for k-outerplanar graphs with n vertices, Θ(kn) pixels
are always sufficient and sometimes necessary (see Sect. 3). In particular, outer-
planar graphs can be represented with a linear number of pixels, whereas general
planar graphs sometimes need a quadratic number.

In 3D, Θ(n2) voxels are always sufficient and sometimes necessary for any
n-vertex graph (see Sect. 4). We improve this bound to Θ(n · τ) for graphs of
treewidth τ and to O((g + 1)2n log2 n) for graphs of genus g. In particular, n-
vertex planar graphs admit voxel representations with O(n log2 n) voxels.

2 Complexity

First, we show that it is NP-hard to compute minimum-size pixel representations.
We reduce from the problem of deciding whether a planar graph of maximum
degree 4 has a grid drawing with edges of length 1. This problem is known to be
NP-hard [7]. The hardness proof still works if the angles between adjacent edges
are specified. Note that specifying the angles also prescribes the circular order
of edges around vertices (up to reversal). We can only sketch the hardness proof
here, details are in the full paper [3].

Theorem 1. It is NP-complete to minimize the size of a pixel representation of
a planar graph.

Pixel and Voxel Representations of Graphs 475

Fig. 1. A graph G drawn with length-
1 edges and prescribed angles between
adjacent edges, and the resulting
graph H drawn with length-1 edges
and pixel representation (in gray).

Proof Sketch. Clearly the decision prob-
lem is in NP. Let G be a planar graph of
maximum degree 4 with prescribed angles
between edges. Construct a graph H by
replacing each vertex by a five-vertex
wheel so that the angles between the
edges are respected, and subdividing each
edge except the ones incident to the wheel
centers. Then G has a grid drawing with
edge length 1 if and only if H has a rep-
resentation where each vertex is a pixel.
Indeed, from a grid drawing of G one can
obtain a drawing of H where two vertices
have distance 1 if and only if they are adjacent; see Fig. 1. Represent each
vertex v of H by a pixel with v at its center. Conversely, if H has a representation
where each vertex is a pixel, then for each vertex v of G, the subdivided wheel
is a 3 × 3 square. Placing each vertex v at the center of the square and scaling
by 1/4 yields the grid drawing of G. ��

Next, we reduce computing minimum-size pixel representations to comput-
ing minimum-size voxel representations. In our reduction [3], we build a rigid
structure around the given graph that forces the given graph to be drawn in a
single plane.

Theorem 2. It is NP-complete to minimize the size of a voxel representation
of a graph.

3 Lower and Upper Bounds in 2D

Here we only consider planar graphs since only planar graphs admit pixel repre-
sentations. Let G be a planar graph with fixed plane embedding E . The embed-
ding E is 1-outerplane (or simply outerplane) if all vertices are on the outer
face. It is k-outerplane if removing all vertices on the outer face yields a (k − 1)-
outerplane embedding. A graph G is k-outerplanar if it admits a k-outerplane
embedding but no k′-outerplane embedding for k′ < k. Note that k ∈ O(n),
where n is the number of vertices of G.

In Sect. 3.1, we show that pixel representations of an n-vertex k-outerplanar
graph sometimes requires Ω(kn) pixels. As the number of pixels is a lower bound
for the area consumption, this strengthens a result by Dolev et al. [20] that says
that orthogonal drawings of planar graphs of maximum degree 4 and width w
sometimes require Ω(wn) area. As we will see later, width and k-outerplanarity
are very similar concepts.

In Sect. 3.2, we show that O(kn) area and thus using O(kn) pixels is also
sufficient. We use a result by Dolev et al. [20] who proved that any n-vertex
planar graph of maximum degree 4 and width w admits a planar orthogonal
drawing of area O(wn). The main difficulty is to extend their result to general
planar graphs.

476 M.J. Alam et al.

3.1 Lower Bound

Let G be a k-outerplanar graph with a pixel representation Γ . Note that a
pixel representation Γ induces an embedding of G. Let Γ induce a k-outerplane
embedding of G, which we call a k-outerplane pixel representation for short. We
claim that the width and the height of Γ are at least 2k − 1. For k = 1 this
is trivial as every (non-empty) graph requires width and height at least 1. For
k ≥ 2, let Vext = {v1, . . . , v�} be the set of vertices incident to the outer face of Γ .
Removing Vext from G yields a (k − 1)-outerplane graph G′ with corresponding
pixel representation Γ ′. By induction, Γ ′ requires width and height 2(k −1)−1.
As the representation of Vext in Γ encloses the whole representation Γ ′ in its
interior, the width and the height of Γ are at least two units larger than the
width and the height of Γ ′, respectively.

Clearly, the number of pixels required by the vertices in Vext is at least the
perimeter of Γ (twice the width plus twice the height minus 4 for the corners,
which are shared) and thus at least 8k − 8. After removing the vertices in Vext,
the new vertices on the outer face require 8(k − 1) − 8 pixels, and so on. Thus,
the representation Γ requires overall at least

∑k
i=1(8i − 8) = 4k2 − 4k pixels,

which gives the following lemma.

Lemma 1. Any k-outerplane pixel representation has size at least 4k2 − 4k.

There are k-outerplanar graphs with n vertices such that k ∈ Θ(n). For
example, the nested triangle graph with 2k triangles (see Fig. 2) has n = 6k
vertices and is k-outerplanar for k ≥ 2. Let G be a graph with c connected
components each of which is k-outerplanar and has Θ(k) vertices. Then each
connected component requires 4k2 − 4k pixels (due to Lemma 1) and thus we
need at least (4k2 − 4k)c pixels in total. As G has n = Θ(kc) vertices, we get
(4k2 − 4k)c ∈ Θ(kn), which proves the following.

Theorem 3. Some k-outerplanar graphs require Ω(kn)-size pixel representa-
tions.

3.2 Upper Bound

In the following two lemmas, we first show how to construct a pixel representa-
tion from a given orthogonal drawing and that taking minors does not heavily
increase the number of pixels we need. Both lemmas aim at extending a result of
Dolev et al. [20] on orthogonal drawings of planar graphs with maximum degree 4
to pixel representations of general planar graphs. As we re-use both lemmas in
the 3D case (Sect. 4), we state them in the general d-dimensional setting.

Lemma 2. Let G be a graph with n vertices, m edges, and an orthogonal drawing
of total edge length � in d-dimensional space. Then G admits a d-dimensional
representation of size 2� + n − m.

Pixel and Voxel Representations of Graphs 477

Fig. 2. A nested triangle gra-
ph of outerplanarity Ω(n).

Fig. 3. Constructing a representation of a minor with
asymptotically the same number of blocks.

Proof. We first scale the given drawing Γ of G by a factor of 2 and subdivide
the edges of G such that every edge has length 1. Denote the resulting graph
by G′ and its drawing by Γ ′. An edge e of length �e in Γ is represented by a path
with 2�e − 1 internal vertices (the subdivision vertices). Thus, the total number
of subdivision vertices is 2� − m. Due to the scaling, non-adjacent vertices in
G′ have distance greater than 1 in Γ ′ (adjacent vertices have distance 1). Thus,
representing every vertex v by the box having v as center yields a representation
of G′ with 2� + n − m boxes (one box per vertex of G′). If we assign the boxes
representing subdivision vertices to one of the endpoints of the corresponding
edge, we get a representation of G with 2� + n − m boxes. ��

Lemma 3. Let G be a graph that has a d-dimensional representation of size b.
Every minor of G admits a d-dimensional representation of size at most 3db.

Proof. Let H be a minor obtained from G by first deleting some edges, then
deleting isolated vertices, and finally contracting edges. We start with the rep-
resentation Γ of G using b boxes and scale it by a factor of 3. This yields a
representation 3Γ using 3db boxes. Then we modify 3Γ , without adding boxes,
to represent the minor H. For convenience, we consider the 2D case; the case
d > 2 works analogously.

Let uv be an edge in G that is deleted. In 3Γ we delete every pixel in the
representation of u that touches a pixel of the representation of v. We claim that
this neither destroys the contact of u with any other vertex nor does it disconnect
the shape representing u. Consider a single pixel B in Γ . In 3Γ it is represented by
a square of 3×3 pixels belonging to B. If B is in contact to another pixel A in Γ ,
then there is a pair of pixels A′ and B′ in 3Γ such that A′ and B′ are in contact,
while all other pixels that touch A′ and B′ belong to A and B, respectively; see
Fig. 3a and b. Assume that we remove in 3Γ all pixels belonging to B that are
in contact to pixels belonging to another pixel C touching B in Γ ; see Fig. 3c.
Obviously, this does not effect the contact between A′ and B′. Moreover, the
remaining pixels belonging to B form a connected blob. The above claim follows
immediately.

Removing isolated vertices can be done by simply removing their representa-
tion. Moreover, contracting an edge uv into a vertex w can be done by merging

478 M.J. Alam et al.

the blobs representing u and v into a single blob representing w. This blob is
obviously connected and touches the blob of another vertex if and only if either
u or v touch this vertex. ��

Now let G be a k-outerplanar graph. Applying the algorithm of Dolev et al. [20]
yields an orthogonal drawing of total length O(wn), where w is thewidth of G. The
width w of G is the maximum number of vertices contained in a shortest path
from an arbitrary vertex of G to a vertex on the outer face. Given the orthogonal
drawing, Lemma 2 gives us a pixel representation of G. There are, however, two
issues. First, k and w are not the same (e.g., subdividing edges increases w but
not k). Second, G does not have maximum degree 4, thus we cannot simply apply
the algorithm of Dolev et al. [20].

Concerning the first issue, we note that the algorithm of Dolev et al. exploits
that G has width w only to find a special type of separator [20, Theorem 1]. For
this, it is sufficient that G is a subgraph of a graph of width w (not necessarily
with maximum degree 4; in fact Dolev et al. triangulate the graph before finding
the separator).

Lemma 4. Every k-outerplanar graph has a planar supergraph of width w = k.

Proof. Let G be a graph with a k-outerplane embedding. Iteratively deleting
the vertices on the outer face gives us a sequence of deletion phases. For each
vertex v, let kv be the phase in which v is deleted. Note that the maximum over
all values of kv is exactly k. For any vertex v, either kv = 1 or there is a vertex u
with ku = kv − 1 such that u and v are incident to a common face. Thus, there
is a sequence v1, . . . , vkv

of kv vertices such that (i) v1 = v, (ii) vkv
lies on the

outer face, and (iii) vi, vi+1 are incident to a common face. If the graph G was
triangulated, this would yield a path containing kv vertices from v to a vertex
on the outer face. Thus, triangulated k-outerplanar graphs have width w = k.

It remains to show that G can be triangulated without increasing kv for any
vertex v. Consider a face f and let u be the vertex incident to f for which ku

is minimal. Let v �= u be any other vertex incident to f . Adding the edge uv
clearly does not increase the value kx for any vertex x. We add edges in this way
until the graph is triangulated. Alternatively, we can use a result of Biedl [8]
to triangulate G. Note that we do not need to triangulate the outer face of G.
Hence, we do not increase the outerplanarity. ��

To solve the second issue (the k-outerplanar graph G not having maximum
degree 4), we construct a graph G′ such that G is a minor of G′, G′ is k-
outerplanar, and G′ has maximum degree 4. Then, (due to Lemma 4) we can
apply the algorithm of Dolev et al. [20] to G′. Next, we apply Lemma 2 to the
resulting drawing to get a representation of G′ with O(kn) pixels. As G is a
minor of G′, Lemma 3 yields a representation of G that, too, requires O(kn)
pixels.

Theorem 4. Every k-outerplanar n-vertex graph has a size O(kn) pixel
representation.

Pixel and Voxel Representations of Graphs 479

Proof. Let G be a k-outerplanar graph. After the above considerations, it remains
to construct a k-outerplanar graph G′ with maximum degree 4 such that G is
a minor of G′. Let u be a vertex with deg(u) > 4. We replace u with a path of
length deg(u) and connect each neighbor of u to a unique vertex of this path.
This can be done maintaining a plane embedding. We now show that the result-
ing graph remains k-outerplanar.

Fig. 4. Replacement of high-degree vertices while preserving k-outerplanarity.

Consider a vertex u on the outer face with neighbors v1, . . . , v�. Assume the
neighbors appear in that order around u such that v1 is the counter-clockwise
successor of u on the outer face; see Fig. 4. We replace u with the path u1, . . . , u�

and connect ui to vi for 1 ≤ i ≤ �. Call the resulting graph Gu. Note that all ui

in Gu are incident to the outer face. Thus, if G was k-outerplanar, Gu is also k-
outerplanar. Moreover, the degrees of the new vertices do not exceed 4 (actually
not even 3), and G is a minor of Gu—one can simply contract the inserted path
to obtain G.

We can basically apply the same replacement if u is not incident to the outer
face. Assume that we delete u in phase ku if we iteratively delete vertices incident
to the outer face. When replacing u with the vertices u1, . . . , u�, we have to make
sure that all these vertices get deleted in phase ku. Let f be a face incident to u
that is merged with the outer face after ku −1 deletion phases (such a face must
exist, otherwise u is not deleted in phase ku). We apply the same replacement
as for the case where u was incident to the outer face, but this time we ensure
that the new vertices ui are incident to the face f . Thus, after ku − 1 deletion
phases they are all incident to the outer face and thus they are deleted in phase
ku. Hence, the resulting graph Gu is k-outerplanar. Again the new vertices have
degree at most 3 and G is obviously a minor of Gu. Iteratively applying this kind
of replacement for every vertex u with deg(u) > 4 yields the claimed graph G′.

The corresponding drawing can then be obtained as follows. Since G′ has a
supergraph of width w = k by Lemma 4, and G′ has maximum degree 4, we use
the algorithm of Dolev et al. [20] to obtain a drawing of G′ with area (and hence
total edge length) O(nk). By Lemma 2, we thus obtain a representation of G′

with O(nk) pixels. Since G is a minor of G′, Lemma 3 yields a representation of
G with O(nk) pixels. ��

480 M.J. Alam et al.

4 Representations in 3D

In this section, we consider voxel representations. We start with some basic
considerations showing that every n-vertex graph admits a representation with
O(n2) voxels. Note that Ω(n2) is obviously necessary for Kn as every edge corre-
sponds to a face-to-face contact and every voxel has at most 6 such contacts. We
improve on this simple general result in two ways. First, we show that n-vertex
graphs with treewidth at most τ admit voxel representations of size O(n · τ)
(see Sect. 4.1). Second, for n-vertex graphs with genus at most g, we obtain
representations with O(g2n log2 n) voxels (see Sect. 4.2).

Theorem 5. Any n-vertex graph admits a voxel representation of size O(n2).

Proof. Let G be a graph with vertices v1, . . . , vn. Vertex vi (i = 1, . . . , n) is
represented by three cuboids (see Fig. 5a), namely a vertical cuboid consisting
of the voxels centered at the points (2i, 2, 0), (2i, 3, 0), . . . , (2i, 2n, 0), a horizontal
cuboid consisting of the voxels centered at (2, 2i, 2), (3, 2i, 2), . . . , (2n, 2i, 2), and
the voxel centered at (2i, 2i, 1). This yields a representation where every vertex
is a connected blob and no two blobs are in contact. Moreover, for every pair
of vertices vi and vj , there is a voxel of vi at (2i, 2j, 0) and a voxel of vj at
(2i, 2j, 2) and no voxel between them at (2i, 2j, 1). Thus, one can easily represent
an arbitrary edge (vi, vj) by extending the representation of vi to also contain
(2i, 2j, 1); see Fig. 5b. Clearly, this representation consists of O(n2) voxels. ��

Fig. 5. (a) The basic contact representation without any contacts between vertices.
(b) If v1 and v4 are adjacent, it suffices to add a single voxel to the representation of v1
(or to that of v4).

4.1 Graphs of Bounded Treewidth

Let G = (V,E) be a graph. A tree decomposition of G is a tree T where each
node μ in T is associated with a bag Xμ ⊆ V such that: (i) for each v ∈ V , the
nodes of T whose bags contain v form a connected subtree, and (ii) for each edge
uv ∈ E, T contains a node μ such that u, v ∈ Xμ.

Note that we use (lower case) Greek letters for the nodes of T to distinguish
them from the vertices of G. The width of the tree decomposition is the maxi-
mum bag size minus 1. The treewidth of G is the minimum width over all tree
decompositions of G. A tree decomposition is nice if T is a rooted binary tree,
where for every node μ:

Pixel and Voxel Representations of Graphs 481

– μ is a leaf and |Xμ| = 1 (leaf node), or
– μ has a single child η with Xμ ⊆ Xη and |Xμ| = |Xη| − 1 (forget node), or
– μ has a single child η with Xη ⊆ Xμ and |Xμ| = |Xη| + 1 (introduce node), or
– μ has two children η and κ with Xμ = Xη = Xκ (join node).

Any tree decomposition can be transformed (without increasing its width) into a
nice tree decomposition such that the resulting tree T has O(n) nodes, where n is
the number of vertices of G [10]. This transformation can be done in linear time.
Thus, we can assume any tree decomposition to be a nice tree decomposition
with a tree of size O(n).

Lemma 5. Let T be a nice tree decomposition of a graph G. The edges of G can
be mapped to the nodes of T such that every edge uv of G is mapped to a node
μ with u, v ∈ Xμ and the edges mapped to each node μ form a star.

Proof. We say that a node μ represents the edge uv if uv is mapped to μ. Con-
sider a node μ during a bottom-up traversal of T . We want to maintain the
invariant that, after processing μ, all edges between vertices in Xμ are repre-
sented by μ or by a descendant of μ. This ensures that every edge is represented
by at least one node. Every edge can then be mapped to one of the nodes rep-
resenting it.

If μ is a leaf, it cannot represent an edge as |Xμ| = 1. If μ is a forget node,
it has a child η with Xμ ⊆ Xη. Thus, by induction, all edges between vertices
in Xμ are already represented by descendants of μ. If μ is an introduce node, it
has a child η and Xμ = Xη ∪ {u} for a vertex u of G. By induction, all edges
between nodes in Xη are already represented by descendants of μ. Thus, μ only
needs to represent the edges between the new node u and other nodes in Xμ.
Note that these edges form a star with center u. Finally, if μ is a join node, no
edge needs to be represented by μ (by the same argument as for forget nodes).
This concludes the proof. ��

We obtain a small voxel representation of G from a nice tree decomposition T
of G of treewidth τ roughly as follows. We start with a “2D” voxel representation
of the tree T , that is, all voxel centers lie in the x–y plane. We take τ +1 copies of
this representation and place them in different layers in 3D space. We then assign
to each vertex v of G a piece of this layered representation such that its piece
contains all nodes of T that include v in their bags. For an edge uv, let μ be the
node to which uv is mapped by Lemma 5. By construction, the representation
of μ occurs multiple times representing u and v in different layers. To represent
uv, we only have to connect the representations of u and v. As it suffices to
represent a star for each node μ in this way, the number of voxels additionally
used for these connections is small.

Theorem 6. Any n-vertex graph of treewidth τ has a voxel representation of
size O(nτ).

482 M.J. Alam et al.

Proof. Let G be an n-vertex graph of treewidth τ . During our construction, we
will get some contacts between the blobs of vertices that are actually not adjacent
in G. As G is a minor of the graph that we represent this way, we can use Lemma 3
to get a representation of G. Let T be a nice tree decomposition of G. As a tree,
T is outerplanar and, hence, admits a pixel representation Γ with O(n) pixels
(by Theorem 4). Let Γ1, . . . , Γk be voxel representations corresponding to Γ with
z-coordinates 1, . . . , k = τ + 1.

For a vertex v of G, we denote by Γi(v) the sub-representation of Γi induced
by the nodes of T whose bags contain v. Now let c : V → {1, . . . , k} be a k-
coloring of G with color set {1, . . . , k} such that no two vertices sharing a bag
have the same color. Such a coloring can be computed by traversing T bottom
up, assigning in every introduce node μ a color to the new vertex that is not
already used by any other vertex in Xμ. As a basis for our construction, we
represent each vertex v of G by the sub-representation Γc(v)(v).

So far, we did not represent any edge of G. Our construction, however, has
the following properties: (i) it uses O(nk) voxels. (ii) every vertex is a connected
set of voxels. (iii) for every node μ of T , there is a position (xμ, yμ) in the plane
such that, for every vertex v ∈ Xμ, the voxel at (xμ, yμ, c(v)) belongs to the
representation of v. Scaling the representation by a factor of 2 ensures that this
is not the only voxel for v and that v is not disconnected if this voxel is removed
(or reassigned to another vertex).

By Lemma 5 it suffices to represent for every node μ edges between vertices
in Xμ that form a star. Let u be the center of this star. We simply assign
the voxels centered at (xμ, yμ, 1), . . . , (xμ, yμ, k) to the blob of u. This creates a
contact between u and every other vertex v ∈ Xμ (by the above property that
the voxel (xμ, yμ, c(v)) belonged to v before). Finally, we apply Lemma 3 to get
rid of unwanted contacts. The resulting representation uses O(nk) voxels, which
concludes the proof. ��

Note that cliques of size k require Ω(k2) voxels. Taking the disjoint union
of n/k such cliques yields graphs with n vertices requiring Ω(nk) voxels. Note
that these graphs have treewidth τ = k − 1. Thus, the bound of Theorem 6 is
asymptotically tight.

Theorem 7. Some n-vertex graphs of treewidth τ require Ω(nτ) voxels.

4.2 Graphs of Bounded Genus

Since planar graphs (genus 0) have treewidth O(
√

n) [27], we can obtain a voxel
representation of size O(n1.5) for any planar graph, from Theorem 6. Next, we
improve this bound to O(n log2 n) by proving a more general result for graphs
of bounded genus. Recall that we used known results on orthogonal drawings
with small area to obtain small pixel representations in Sect. 3.2. Here we follow
a similar approach (re-using Lemmas 2 and 3), now allowing the orthogonal
drawing we start with to be non-planar.

We obtain small voxel representations by first showing that it is sufficient
to consider graphs of maximum degree 4: we replace higher-degree vertices by

Pixel and Voxel Representations of Graphs 483

connected subgraphs as in the proof of Theorem 4. Then we use a result of
Leiserson [33] who showed that any graph of genus g and maximum degree 4
admits a 2D orthogonal drawing of area O((g + 1)2n log2 n), possibly with edge
crossings. The area of an orthogonal drawing is clearly an upper bound for
its total edge length. Finally we turn the pixels into voxels and use the third
dimension to get rid of the crossings without using too many additional voxels.

Theorem 8. Every n-vertex graph of genus g admits a voxel representation of
size O((g + 1)2n log2 n).

Proof. Let G be an n-vertex graph, and let u be a vertex of degree � > 4.
Assume G to be embedded on a surface of genus g, and let v1, . . . , v� be the
neighbors of u appearing in that order around u (with respect to the embedding).
We replace u with the cycle u1, . . . , u� and connect ui to vi for 1 ≤ i ≤ �; see
Fig. 6a. Clearly, the new vertices have degree 3 and the genus of the graph has
not increased. Applying this modification to every vertex of degree at least 5
yields a graph G4 of maximum degree 4 and genus g. Moreover, G is a minor of
G4 as one can undo the cycle replacements by contracting all edges in the cycles.
Thus, we can transform a voxel representation of G4 into a voxel representation
of G by applying Lemma 3.

We claim that the number n4 of vertices in G4 is linear in n. Indeed, if m
denotes the number of edges in G, then we have n4 ≤ n+2m. Moreover, we can
assume without loss of generality that g ∈ O(n) (otherwise Theorem 5 already
gives a better bound). This implies that m ∈ O(n) and hence, n4 ∈ O(n), as we
claimed.

We thus assume that G has maximum degree 4. Then G has a (possibly
non-planar) orthogonal drawing Γ of total edge length O(g2n log2 n) [33]. We
modify G and Γ as follows. For every bend on an edge e in Γ , we subdivide
the edge e once yielding a partition of the edges of the subdivided graph into
horizontal and vertical edges. We obtain a graph G′ from this subdivision of G
by replacing every vertex v by two adjacent vertices v1 and v2, and connecting
v1 and w1 (respectively v2 and w2) by an edge if v and w are connected by a
horizontal (respectively vertical edge); see Fig. 6b.

We draw G′ in 3D space by using the drawing Γ and setting for every vertex
v the z-coordinate of v1 and v2 to 0 and 1, respectively. The x- and y-coordinates
of vertices and edges are the same as in Γ ; see Fig. 6b. Note that G is a minor
of G′: we obtain G from G′ by contracting (i) the edge v0v1 for every vertex v
and (ii) any subdivision vertex. Asymptotically, the total edge length of Γ ′ is
the same as that of Γ , that is, O((g +1)2n log2 n). By Lemma 2, we turn Γ ′ into
a voxel representation of G′ and, by Lemma 3, into a voxel representation of G
with size O((g + 1)2n log2 n). ��

5 Conclusion

In this paper, we have studied pixel representations and voxel representations of
graphs, where vertices are represented by disjoint blobs (that is, connected sets

484 M.J. Alam et al.

Fig. 6. Constructing voxel representations for bounded-genus graphs: (a) replacing
high-degree vertices while preserving the genus, (b) subdividing and decomposing a
graph according to a non-planar orthogonal drawing with small area, and (c) con-
structing a 3D drawing with small total edge length from the decomposition in (b).

of grid cells) and edges correspond to pairs of blobs with face-to-face contact. We
have shown that it is NP-complete to minimize the number of pixels or voxels
in such representations. Does this problem admit an approximation algorithm?

We have shown that O((g +1)2n log2 n) voxels suffice for any n-vertex graph
of genus g. It remains open to improve this upper bound or to give a non-trivial
lower bound. We believe that any planar graph admits a voxel representation of
linear size.

References

1. Aerts, N., Felsner, S.: Vertex contact graphs of paths on a grid. In: Kratsch, D.,
Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 56–68. Springer, Heidelberg
(2014)

2. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S., Ueckerdt, T.:
Computing cartograms with optimal complexity. Discrete Comput. Geom. 50(3),
784–810 (2013)

3. Alam, M.J., Bläsius, T., Rutter, I., Ueckerdt, T., Wolff, A.: Pixel and voxel repre-
sentations of graphs. Arxiv report (2015). arxiv.org/abs/1507.01450

4. Badent, M., Binucci, C., Di Giacomo, E., Didimo, W., Felsner, S., Giordano, F.,
Kratochv́ıl, J., Palladino, P., Patrignani, M., Trotta, F.: Homothetic triangle con-
tact representations of planar graphs. In: Canadian Conference on Computational
Geometry (CCCG 2007), pp. 233–236 (2007)

5. Bezdek, A.: On the number of mutually touching cylinders. Comb. Comput. Geom.
52, 121–127 (2005)

6. Bezdek, K., Reid, S.: Contact graphs of unit sphere packings revisited. J. Geom.
104(1), 57–83 (2013)

7. Bhatt, S.N., Cosmadakis, S.S.: The complexity of minimizing wire lengths in VLSI
layouts. Inform. Process. Lett. 25(4), 263–267 (1987)

8. Biedl, T.: On triangulating k-outerplanar graphs. Discrete Appl. Math. 181, 275–
279 (2015). arxiv.org/abs/1310.1845

http://arxiv.org/abs/1507.01450
http://arxiv.org/abs/1310.1845

Pixel and Voxel Representations of Graphs 485

9. Biedl, T.C.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

10. Bodlaender, H.L.: Treewidth: algorithmic techniques and results. In: Pŕıvara, I.,
Ružička, P. (eds.) MFCS 1997. LNCS, vol. 1295, pp. 19–36. Springer, Heidelberg
(1997)

11. Bose, P., Everett, H., Fekete, S.P., Houle, M.E., Lubiw, A., Meijer, H., Romanik,
K., Rote, G., Shermer, T.C., Whitesides, S., Zelle, C.: A visibility representation
for graphs in three dimensions. J. Graph Algorithms Appl. 2(3), 1–16 (1998)

12. Brandenburg, F.J., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Liotta, G.,
Mutzel, P.: Selected open problems in graph drawing. In: Liotta, G. (ed.) GD
2003. LNCS, vol. 2912, pp. 515–539. Springer, Heidelberg (2004)

13. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

14. Bremner, D., et al.: On representing graphs by touching cuboids. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 187–198. Springer, Heidelberg
(2013)

15. Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rec-
tangular layouts and contact graphs. ACM Trans. Algorithms 4(1), 8–28 (2008)

16. Cano, R., Buchin, K., Castermans, T., Pieterse, A., Sonke, W., Speckmann, B.:
Mosaic drawings and cartograms. Comput. Graph. Forum 34(3), 361–370 (2015)

17. Chan, T.M., Goodrich, M.T., Kosaraju, S.R., Tamassia, R.: Optimizing area and
aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. Theory
Appl. 23(2), 153–162 (2002)

18. Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs. In:
Brandstädt, A., Jansen, K., Reischuk, R. (eds.) WG 2013. LNCS, vol. 8165, pp.
139–151. Springer, Heidelberg (2013)

19. Di Battista, G., Frati, F.: Small area drawings of outerplanar graphs. Algorithmica
54(1), 25–53 (2009)

20. Dolev, D., Leighton, T., Trickey, H.: Planar embedding of planar graphs. Adv.
Comput. Res. 2, 147–161 (1984)

21. Dujmović, V., Morin, P., Wood, D.: Layered separators for queue layouts, 3d graph
drawing and nonrepetitive coloring. In: Foundations of Computer Science (FOCS
2013), pp. 280–289. IEEE (2013)

22. Duncan, C.A., Gansner, E.R., Hu, Y.F., Kaufmann, M., Kobourov, S.G.: Optimal
polygonal representation of planar graphs. Algorithmica 63(3), 672–691 (2012)

23. Evans, W., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.: Bar
1-visibility graphs and their relation to other nearly planar graphs. J. Graph Algo-
rithms Appl. 18(5), 721–739 (2014)

24. Fan, J.-H., Lin, C.-C., Lu, H.-I., Yen, H.-C.: Width-optimal visibility representa-
tions of plane graphs. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835, pp.
160–171. Springer, Heidelberg (2007)

25. Felsner, S.: Rectangle and square representations of planar graphs. Thirty Essays
on Geometric Graph Theory, pp. 213–248 (2013)

26. Felsner, S., Francis, M.C.: Contact representations of planar graphs with cubes. In:
Symposium on Computational Geometry (SoCG 2011), pp. 315–320. ACM (2011)

27. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar
graphs. J. Graph Theory 51(1), 53–81 (2006)

28. de Fraysseix, H., de Mendez, P.O.: Representations by contact and intersection of
segments. Algorithmica 47(4), 453–463 (2007)

29. de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs.
Comb. Prob. Comput. 3, 233–246 (1994)

486 M.J. Alam et al.

30. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

31. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls (a survey of
recognition-complexity results). Discrete Math. 229(1–3), 101–124 (2001)

32. Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhand-
lungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math. Phy. Kla.
88, 141–164 (1936)

33. Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: Foundations of Com-
puter Science (FOCS 1980), pp. 270–281. IEEE (1980)

34. Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In:
Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 47–51. Springer, Heidelberg
(1997)

35. Patrignani, M.: Complexity results for three-dimensional orthogonal graph draw-
ing. J. Discrete Algorithms 6(1), 140–161 (2008)

36. Schnyder, W.: Embedding planar graphs on the grid. In: Symposium on Discrete
Algorithms (SODA 1990), pp. 138–148. ACM-SIAM (1990)

37. Tamassia, R., Tollis, I.G.: A unified approach a visibility representation of planar
graphs. Discrete Comput. Geom. 1, 321–341 (1986)

38. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory B
40(1), 9–20 (1986)

39. Zong, C.: The kissing numbers of tetrahedra. Discrete Comput. Geom. 15(3), 239–
252 (1996)

User Studies

A Tale of Two Communities: Assessing
Homophily in Node-Link Diagrams

Wouter Meulemans1(B) and André Schulz2(B)

1 giCentre, City University London, London, UK
wouter.meulemans@city.ac.uk

2 LG Theoretische Informatik, FernUniversität in Hagen, Hagen, Germany
andre.schulz@fernuni-hagen.de

Abstract. Homophily is a concept in social network analysis that states
that in a network a link is more probable, if the two individuals have a
common characteristic. We study the question if an observer can assess
homophily by looking at the node-link diagram of the network. We design
an experiment that investigates three different layout algorithms and asks
the users to estimate the degree of homophily in the displayed network.
One of the layout algorithms is a classical force-directed method, the
other two are designed to improve node distinction based on the com-
mon characteristic. We study how each of the three layout algorithms
helps to get a fair estimate, and whether there is a tendency to over or
underestimate the degree of homophily. The stimuli in our experiments
use different network sizes and different proportions of the cluster sizes.

1 Introduction

Networks do not exist without a surrounding context. An object in a network
is typically equipped with a set of characteristics (e.g., age, race, or gender
in a social network). These characteristics have an influence on the network
structure; often, nodes of a network are partitioned into clusters, based on (some)
characteristics. Detecting, measuring and understanding network structures and
dependencies is an important task in network analysis. In social networks one of
these effects is homophily. Simply speaking, homophily is a principle that asserts
that individuals are more likely to have relationships with similar individuals [10].
There are two main mechanisms behind homophily: (i) individuals with the
same characteristics might have a stronger tendency to form relationships (this
principle is known as selection), (ii) individuals change their behavior to align
with their friends (this is known as socialization) [3, Sect. 4.2].

Whether homophily is present in a certain network (and to what extent) can
be detected by comparing the number of links between nodes of the same cluster
(same-cluster) with the number of links between nodes of different clusters (cross-
cluster); see Sect. 1.1 for details. This yields a simple formula for the degree of
homophily in a network. In this work we study the following questions.

This work was funded by the German Research Foundation (grant SCHU 2458/4-1).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 489–501, 2015.
DOI: 10.1007/978-3-319-27261-0 40

490 W. Meulemans and A. Schulz

Question 1. Can an observer detect the degree of homophily in a node-link dia-
gram of a network? Is there a tendency for overestimation or underestimation?

There exist many layout algorithms for node-link diagrams. We expect that
the drawing style has a big impact on answering Question 1. Hence, a natural
subsequent question is:

Question 2. Which node-link diagram layout is best suitable for detecting
homophily? Are there general design principles to improve homophily detection?

We deliberately set the scope to node-link diagrams, since they are probably
the most popular style for visualizing networks. Tasks like path tracing can be
performed well on node-link diagrams and many users are familiar with their
methodology. Other methods for displaying networks (e.g., matrix views, hive
plots [9], NodeTrix [6]) or summarizing them (e.g., histograms) may be more
effective for enabling homophily assessment, but are out of scope for our study.

For a fair evaluation of the layout methods we include one additional task
in our experiments. In particular, we ask for participants to answer shortest-
path questions, to detect whether a better homophily assessment diminishes the
versatility of the layout and makes other (path-tracing) tasks harder.

Homophily can also occur when there are more than two clusters. More clus-
ters make it harder to detect homophily, simply because there is more informa-
tion. Moreover, the notion of homophily can be extended to more clusters in
slightly different ways. Due to these considerations we decided to restrict our
investigations to the most basic case with only two clusters.

Our studies are not necessarily tied to social networks. Clusters exist in all
kind of networks and it is a natural question to ask whether there exists a bias
for cross-cluster or same-cluster links.

1.1 Homophily

Homophily is a natural phenomenon, but it is not always present in (social)
networks. In fact, opposite effects might occur, that is, individuals favor to form
bonds with individuals that have different characteristics. To understand net-
works within their surrounding context, we need methods to detect and to mea-
sure the effect of homophily with respect to a certain characteristic. We follow
the presentation of Easley and Kleinberg [3] to derive such a framework.

Suppose we study a social network in which the individuals are either female
or male. We want to decide whether there exists homophily with respect to
gender. Assume that a fraction p of the population is male and a fraction q = 1−p
is female. In a network without homophily we expect that a random link is
male-male with a probability of p2, female-female with a probability of q2, and
cross-gender with a probability of 2pq. As a consequence there is evidence for
homophily, if the fraction of cross-gender links is considerably less than 2pq (and
“heterophily” if the fraction is considerably more). We use this “homophily test”
to derive a measure for the degree of homophily of a network as follows:

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 491

Definition 1. Given a network with two clusters (one with a fraction p of the
nodes and the other with a fraction q = 1 − p). We say that the degree of
homophily is 0 if there are only cross-cluster links, it is 1 if there are no cross-
cluster links, and it is 1/2 if there is no homophily, that is we have 2pq cross-
cluster links. For all other situations we linearly interpolate between these values.

1.2 Network Visualization

There exists a vast literature on various methods for network visualization and
analysis with clusters, hierarchies or other auxiliary data, e.g. [2,7,12]. Though
an extensive review is out of scope, we briefly review a number of methods and
describe those we used for our user study.

Force-Directed. The force-directed layout (see for example [4]) has been a popu-
lar network visualization method since its inception. The core idea of this method
is to mimick a physical system in which nodes repel each other and links behave
like springs, pulling their ends together. We include this in our study, providing
a good baseline visualization method to which to compare. We use the imple-
mentation provided by the javascript library D3.js1.

Polarized. It is straightforward to modify the classical force-directed method to
pull the nodes of the two clusters apart. We modified the D3.js layout algorithm
by adding a force that moves the nodes left or right, depending on the cluster.
We refer to this as the polarized layout. This tends to pull the clusters apart,
though a clear separation is not guaranteed.

Bipartite. As an extreme form of separating the clusters (bipartite layout) we
place all vertices of one cluster equidistantly on a vertical line on the left, the
other vertices on a vertical line on the right. Cross-cluster links are drawn as
straight-line segments forming a 2-layer bipartite drawing of this subnetwork.
Same-cluster links are drawn as semi-circles as in an arc diagram. After obtaining
an initial ordering of the vertices from a barycentric layout, we use the method
of Baur and Brandes [1] to reduce the number of crossings, within one round
applying sifts to all nodes of one cluster before the other. We remark that this
layout style can also be found as an unchosen design alternative in the interactive
visualization system described by Ghani et al. [5]. Their reason for not using this
design is that they aim to support many clusters: the same-cluster links drawn
as arcs would lead to severe clutter.

Other Methods. Many other methods exist for visualizing (clustered) networks.
An example of a method we also considered is by Jusufi et al. [8]. Though
potentially useful for assessing homophily, the resulting layouts appear suitable
mostly for high-level overview tasks; path tracing is likely to be difficult due to
the bundling of the edges. Hence, we did not include this method in our study.

1 http://www.d3js.org/

http://www.d3js.org/

492 W. Meulemans and A. Schulz

2 Experimental Design

2.1 Hypotheses

With this user study, we wish to investigate the following three hypotheses:

H1 Homophily assessment is easiest with Bipartite layouts, followed by Polarized
layouts and hardest with Force-Directed layouts.

H2 It is harder to assess homophily in networks with differently sized clusters.
H3 Finding a shortest path between two nodes is easiest with Force-Directed

layouts, followed by Polarized layouts and hardest with Bipartite layouts.

Underlying our main hypothesis (H1), driving the design of this experiment,
is the idea that visually separating the node clusters makes it easier to assess
homophily. By pulling the nodes apart, we separate the same-cluster and cross-
cluster links, thus potentially making it easier to assess the ratio between them.
Cluster separation is stronger for the Bipartite layout than for the Polarized
layout; it is not taken into account for Force-Directed layouts at all.

Whether there is homophily, depends not only on the ratio between same-
and cross-cluster links, but also on the relative size of the two clusters. We
hypothesize that it is easier to assess homophily when the two clusters are of
equal size: we may then simply assess whether there are more or less same-cluster
links in comparison to cross-cluster links.

Cluster separation may have a negative effect on tasks that are not influenced
by the clusters, such as path-tracing tasks. We instantiate this by considering
the task of finding the shortest path between two highlighted nodes. The cluster
separation may pull neighboring nodes apart, causing longer links in the visu-
alization. Such links become harder to follow. Moreover, switch-backs between
the two clusters may be counterintuitive to the idea of a “shortest” path.

2.2 Method

Tasks. We used two Tasks: Bias and Path. The Bias task is targeted at Hypothe-
ses H1 and H2, asking participants to assess the homophily of a network. How-
ever, we avoided the use of the term homophily and used an informal descrip-
tion of “Bias” to avoid different behavior between people that knew homophily
beforehand and those that did not. In this paper, we shall use Bias to refer to
a participant’s assessment and homophily for calculated values. For answering
Bias trials, participants were given a slider that internally allowed specifying a
value between 0% (only cross-cluster links) and 100% (only same-cluster links),
though no numbers were shown. The aim of the task was for participants to
estimate bias, without precisely counting nodes and links; they were instructed
accordingly. However, no time limit was given.

The Path task targets Hypothesis H3, asking participants to find the length
of a shortest path between two nodes in a given network. To provide their answer,
participants were given 5 radio buttons (for 2 to 6 steps). They were instructed

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 493

Fig. 1. Three stimuli used, all with Size 1, Balance B and Homophily 50 %. From left
to right: force-directed (FD), polarized (P) and bipartite (B). The highlighted nodes
were not highlighted for the Bias task.

to balance between answering correctly and answering quickly, ideally within
20 s. But it was mentioned explicitly that the time limit was not enforced.

The two tasks give rise to two sections in the study. To counter learning
effects, the order of the sections was determined randomly per participant. Each
section was preceded by a page explaining the task and an example question.

Stimuli. We have the following four independent variables for the stimuli:

– Size. Four different sizes: (1) 20 nodes, 40 links; (2) 20 nodes, 50 links; (3) 28
nodes, 60 links; (4) 40 nodes, 70 links;2

– Balance. Two ways to split into two clusters: (B) Balanced, an even split;
(U) Unbalanced, one cluster contains 75% of the nodes.

– Homophily. Five levels of degrees of homophily: 25%; 37.5%, 50%; 62.5%;
75%;

– Layout. Three different layout algorithms (see Sect. 1.2 and Fig. 1): (FD)
Force-Directed; (P) Polarized; (B) Bipartite.

To construct a network, we developed a simple random generator that takes
as input the number of nodes for each cluster, the total number of links and
the desired homophily. The desired homophily gives the fraction of links that
should be cross-cluster; the remaining links were divided between the two clusters
based on relative cluster sizes. The actual links added to the network were taken
randomly (without replacement) from all possible links.

In each network, we also marked two arbitrary nodes (always one in each
cluster) for the shortest-path task, controlling for the length of the shortest path.
As we did not wish to introduce varying levels of difficultly for the shortest-path
task, we need the stimuli to be of comparable difficulty, without always having
the same number of steps as answer. We are mainly interested in the effects of
Layout on task difficulty; using the same pair for each layout of the same network
structure results in perfect balance. Nonetheless, we attempted to balance the
2 Though small for social networks, we purposefully restricted to these sizes to ensure

short trials and that path-tracing tasks would not become too difficult.

494 W. Meulemans and A. Schulz

lengths across different levels of homophily and cluster balance to account for
their possible effects on difficulty.

As a result, we have 4 × 2 × 5 = 40 network structures. To each, we applied
three Layouts; the resulting drawings were fitted to an SVG canvas, to allow for
arbitrary resizing. The two node clusters were drawn using red circles and blue
squares, the shade of the color chosen according to ColorBrewer3. Links were
drawn in black with a small halo to increase separability between crossing links.

Mixed Design. With two tasks and 120 stimuli per task, we would need to give
our participants 240 trials for a within-subjects design. This is far beyond what
is reasonable for an online study, assuming 20 to 30 s per trial.

B
ia
s

Homophily
0% 50% 100%

0%

50%

100%

Fig. 2. Bias versus Homophily
for two fictive participants.
The monotonicity of each line
indicates per-participant consis-
tency of bias assessments.

A between-subjects design is also not suit-
able, as we expect performance to be highly
dependent on the participant’s experience.
Moreover, even if different people assess bias dif-
ferently, it is possible that they are individually
consistent: they perceive the homophily levels
correctly, but assess the bias strength differently
(see Fig. 2). To account for this Layout, Bal-
ance and Homophily are unsuitable as between-
subjects factors.

Since network size is not directly of interest
for our hypotheses and likely to be an obvious
overall factor in increasing difficulty, we decided
to use this as a between-subjects measure.

We now have 60 trials per participant. We
aimed for a time investment of 20 to 25 min. A
pilot study showed that with 60 trials, the actual completion time was around
30 min. Also, one of the pilot participants commented about the monotony of the
questions, mentioning that less effort was put into the later trials for each task.
We therefore decided to reduce the number of levels in Homophily-Balance inter-
action. We maintained the five levels of Homophily for the Balanced networks,
but reduced it to three levels for Unbalanced networks. Maintaining five levels
of Homophily for the Balanced networks provides a good baseline for investigat-
ing our main hypothesis on cluster separation and allows us to investigate for
individual consistency. This reduced the number of trials to 48 (24 per Task). A
second pilot study showed a completion time between 20 and 25 min as desired.

Again, to counter learning effects, the order of the 24 trials for each Task was
randomized for each participant. Before each trial the participant was given a
pause screen to reduce memory effects and at the same time allow them to pace
themselves and reduce the possible impact of interruptions.

Apparatus. We developed our online user study, using a PHP webserver and
a MySQL database. As is typical for online studies, we cannot control many
aspects of the experimental environment (browser, OS, device, screen size,

3 http://www.colorbrewer2.org/.

http://www.colorbrewer2.org/

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 495

interruptions, etc.). We requested participants to use a laptop or desktop, instead
of a tablet or phone. They were also asked to avoid or minimize interruptions and
indicate at the end of the study any that did occur. To ensure that the browser
is appropriate for the user study, we gave them a simple test (setting a slider
to a number indicated in a figure) before they could start the actual questions.
Some background and preference information was asked after completing the
two tasks, though this remained optional for what may be perceived as sensitive
information (age, gender, country of residence).

We could not control the screen size, resolution or distance of the participant
to his screen. Hence, participants were provided some simple controls to scale
the webpage to be comfortably readable and fitting on their screen. Moreover,
they were asked to use full-screen mode to reduce distractions.

Recruiting Participants. We recruited volunteers to participate using a mix of
mailing lists, social networks and social media. Because we did not know how
many people would participate in our study and we have a mixed design, we
decided on the following procedure. The four levels of Size were to be filled up to
35 participants, in the following order: 2, 3, 1, 4. Any participants in excess of
4 · 35 = 140 would be divided equally over Size. If we would fall short of 140
participants, the participants would work on the same or a similar network size.

3 Results

The data set for analysis as well as all stimuli have been made available online4.

Participants. In total, 105 people volunteered and completed the online ques-
tionnaire, which was open for participation for four weeks. We kept close watch
at the number of participants and at the end of the second week, we were just
in excess of 70 participants and thus decided to disable the last Size group (4).

After two weeks and continuously thereafter, we also inspected all comments
left by participants. We excluded from analysis any participants for whom com-
ments or timing indicated a serious interruption, distraction or technical dif-
ficulty during a trial, i.e., not during a pause screen or in between sections.
Participants were explicitly asked to indicate their effort needed to distinguish
nodes from different clusters and finding highlighted nodes; those who indicated
having a hard time with this were excluded from analysis. In doing this exclusion
while the study was open for participation, our online system assigned new vol-
unteers to fill up the three remaining Size groups evenly. This resulted in three
Size groups with 30 participants each.

58 participants are male, 28 are female and 4 did not specify a gender. The
men/women ratio was even for Size 1, but the other Sizes have a ratio of approx-
imately 3: 1. Our participants are skewed towards male mathematicians and
computer scientists. The average age of our participants is 35.9. Participants
with Size 1 where older on average (39.1) and younger with Size 3 (33.9). In
terms of country of residence, a majority of the participants live in Europe (61)
4 http://ivv5web01.uni-muenster.de:8013/studyresults.html.

http://ivv5web01.uni-muenster.de:8013/studyresults.html

496 W. Meulemans and A. Schulz

Homophily Homophily Homophily

B
ia
s

0% 50% 100%
0%

50%

100%

A
ll

S
izes

0% 50% 100%
0%

50%

100%

0% 50% 100%
0%

50%

100%

Force-Directed Polarized Bipartite

Fig. 3. Bias-Homophily charts. Thick lines indicate the average Bias; shaded blue (Bal-
anced) and hashured red areas (Unbalanced) indicate the 25- and 75-percentile.

with a strong emphasis on Germany (27) and the Netherlands (22). Nine par-
ticipants live in North America, three in Asia and one in South America; 16
participants did not provide a country of residence.

Hypothesis H1. The results of the bias estimation are summarized in Fig. 3.
Each chart shows how the response Bias is correlated to the calculated degree of
homophily. It suggests that the Bipartite layout leads to a stronger perception
of Bias, with greater agreement (less variability) between the participants. For
the Balanced case, the line is close to the diagonal, indicating that the aver-
age answer lies close to the calculated homophily. Notably, the Polarized layout
and Unbalanced networks have greater variability; Polarized and Unbalanced-
Bipartite lead to overestimating homophily (same-cluster links). The results
for Balanced-Bipartite are centered on the diagonal, whereas the results for
Balanced-Force-Directed are above the diagonal for Homophily below 50% and
below the diagonal for Homophily above 50%. This suggests that the distinction
between different levels of Homophily is clearer for the Bipartite layout.

We cannot simply classify answers as “correct” or “incorrect” as the partici-
pants were asked to give an estimation of Bias, without providing them a precise
formula of how to determine it. Hence, we score each answer of Bias b for a stim-
ulus with degree of homophily h with a deviation b−h. A positive value indicates
an overestimation of cross-cluster links, whereas a negative value indicates an
overestimation of same-cluster links. The deviation and response times for this
task are summarized in Fig. 4. We performed RM-ANOVA on the deviation, to
see if there are significant5 differences of bias estimation for different layouts.
The analysis showed a significant effect of Layout on deviation (p < 0.001).
It also indicated an interaction effect of Layout and Size (p < 0.001). A post-
hoc Tukey HSD test with Bonferroni adjustment showed a significant difference
between Layout FD and P (p < 0.001) and between Layout P and B (p < 0.001).
However, no significant difference between Layout FD and B was found.
5 Significance is reported using a p-value: it indicates the probability that our obser-

vation is incorrect, i.e., occurring by chance rather than the different conditions. For
an accessible introduction to HCI experimental design and analysis, we refer to [11].

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 497

Deviation Response time
15%

0%

All Size 1 Size 2 Size 3

20s

0s
All Size 1 Size 2 Size 3

−15%

B

P

FD

Fig. 4. Average deviation (left) and response time (right) for the Bias task, per Layout
and Size. Error bars indicate 95 %-confidence intervals.

Homophily Homophily

B
ia
s

Homophily

S
ize

3

0% 50% 100%
0%

50%

100%

0% 50% 100%
0%

50%

100%

0% 50% 100%
0%

50%

100%

Force-Directed Polarized Bipartite

Fig. 5. Bias-Homophily charts for each Layout for Size 3, for the Balanced cases. Each
line represents a participant. Monotonicity defects are colored dark purple.

A significant effect of Layout on response time (p < 0.001) was found, with
the post-hoc test indicating a faster response time for the Bipartite layout.

We may thus partially accept Hypothesis H1: the Bipartite layout indeed
outperforms the Polarized layout. However, because the Force-Directed layout
outperforms the Polarized layout, it may be that our underlying argument for
this hypothesis, i.e., cluster separation, is not the main effect in this difference.

The above focuses on the difference between Bias and Homophily and
response time as an indicator of bias assessment. However, this does not readily
mean that it is easier for a single participant to consistently assess bias. Let
us now briefly turn towards an informal investigation of individual consistency
(see also Sect. 2.2). If we chart each participant as a line in a Bias-Homophily
plot, we would ideally see only monotonically increasing lines. The reality is of
course different: Fig. 5 shows such a plot for Size 3. We observe that there are
a lot less defects (decreasing parts of a line) from monotonicity for Layout B
than for Layout FD and P. Over all Sizes, there are 90 defects for Layout FD,
113 for P and 60 for B; 24.4% of the participants had no defect for Layout FD,
10% for Layout P and 44.4% for Layout B. This suggests a better homophily
perception for the Bipartite layout, but the percentage of people without defects
remains rather low. This may in part be explained by the lack of repetitions and

498 W. Meulemans and A. Schulz

training tasks in our study. Unfortunately, this was unavoidable to keep a low
time investment of the volunteers.

Hypothesis H2. To investigate the effects of Balance, we again refer to Fig. 3. We
observe an increased variability for the Unbalanced cases. For Bipartite layout,
we also observe a skew towards overestimating same-cluster links.

For the analysis, we filtered the 25% and 75% answers from the data set,
as these levels were not used in the Unbalanced case. RM-ANOVA with the
resulting data revealed a significant effect of Balance on deviation (p < 0.05)
and response time (p < 0.001). We accept Hypothesis H2.

Hypothesis H3. The performance for the Path task is summarized in Fig. 6.
Not surprisingly, RM-ANOVA revealed a significant effect of Size on error rate
(p < 0.001). To investigate the effects of Layout, we therefore split the data
into three subsets, one of each Size. Subsequent analysis of these sets revealed a
significant effect of Layout on error rate (p < 0.001). The post-hoc test showed
that the difference in error rate is significant between the Force-Directed layout
and the Bipartite layout for each level of Size (p < 0.01). The Force-Directed
layout also has a lower error rate for Size 2 (p < 0.05) and Size 3 (p < 0.001)
compared to the Polarized layout. The Bipartite layout has a higher error rate
than the Polarized layout for Size 1 (p < 0.001) and Size 2 (p < 0.05); a hint of
a lower error rate was found in Size 3 (p < 0.1).

Further investigating this higher error rate, we found that four out of eight
stimuli for P in Size 3 had an error rate of 80% or more (i.e., worse than
expected with random answers), suggesting a misleading visualization. After
manual inspection of these stimuli, we attribute this to ambiguity of links that
pass close by or even through unrelated nodes (see also Sect. 4).

Size does not have a significant effect on response time, but Layout does (p <
0.001). The post-hoc test showed a significant difference between the Bipartite
layout and the others (both p < 0.001) as well as difference between the Force-
Directed and Polarized layout (p < 0.05).

Combining the results of error rate and response time, we may accept H3:
Force-Directed outperforms Polarized, which in turn outperforms Bipartite.

Error rate Response time
100%

0%
All Size 1 Size 2 Size 3

20s

0s
All Size 1 Size 2 Size 3

B

P

FD

Fig. 6. Average error rate (left) and response time (right) for the Path task, per Layout
and Size. Error bars indicate 95 %-confidence intervals.

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 499

Preferences. After completing the tasks, we asked the participants to indicate
how hard they found it to perform the tasks with each type of network. However,
the pilot study indicated that the distinction between the Force-Directed and
Polarized layout was not clear while performing the tasks and thus hard to assess
afterwards. As we did not want to introduce the three layouts beforehand, we
opted to ask participants to rate (1–5) the Force-Directed layout and Bipartite
layout only. The overall preference corresponds to the overall performance. For
assessing bias, respondents clearly preferred the Bipartite layouts (mean μ = 3.5,
standard deviation σ = 0.1) over the Force-Directed and Polarized ones (μ = 2.0,
σ = 0.1). For finding shortest paths, this was reversed (Bipartite: μ = 2.4,
σ = 0.1; Force-Directed/Polarized: μ = 3.8, σ = 0.1).

4 Discussion and Conclusion

Our results indicate that we may answer Question 1 positively: observers can
indeed assess homophily, but this is affected by the layout and some layouts
may in particular lead to an overestimation of homophily. We remark that indi-
vidual consistency was not very strong, but this was leveled out by taking the
average over all participants; see also the discussion below on training and rep-
etition. To answer Question 2, the Bipartite layout performs best, followed by
the classic force-directed method. The improved performance of the Bipartite
layout, however, must be weighed against a loss in performance for other tasks.

Our results indicate that cluster separation by itself is not a general design
principle to improve homophily perception. Future work may investigate such
design principles in the context of homophily as well as further explore homophily
with multiple clusters and defining a per-cluster homophily degree.

As with any user study, no experiment is flawless. We conclude our paper by
discussing some aspects that may undermine our findings.

Bias Estimation. Explaining the Bias task was a difficult thing to do, without
making the description overly long. In particular, we chose to go with a simple
explanation of bias and not attempt to explain (degree of) homophily in detail.
A participant’s interpretation of Bias may thus inherently deviate from what is
computed with our degree of homophily.

That the Bias task was rather difficult as a result, was also evidenced by some
of the participants’ comments. In particular, a few participants commented that
the Unbalanced condition was hard to assess, further supporting Hypothesis H2.

Visual Representation. By using both color and shape, we tried to make the
distinction between the clusters very clear. This supports the Bias task, but
may in fact be detrimental for the Path task: participants may have had a
tendency to look for connections between same colored nodes before looking
at different colored nodes or vice versa. We think that this effect is mitigated
by always selecting two nodes of different clusters. Also, network visualizations
may simply need to display the different clusters for a variety of possible reasons,
while still supporting the task of following paths well.

500 W. Meulemans and A. Schulz

Whereas the Force-Directed and Polarized layouts use only line segments,
the Bipartite layout uses circular arcs for same-cluster links. This difference in
graphic encoding likely has a strong effect on distinguishing same-cluster from
cross-cluster links, but this is in a large part already done by the clear cluster
separation of the layout. However, it may also affect how easily participants can
estimate the number of such links and hence affect the bias estimation. Moreover,
it is likely to influence how easy it is to follow links for the Path task. As a result,
it may be difficult to ascribe the results to the effect of cluster separation alone.
This in particular affects for Hypothesis H1, but also means that for the other
hypothesis, the effects may be in large part due to the layout as a whole, rather
than any single aspect of it.

Training and Repetition. Due to our short intended time investment, there
was little time for training the participants. They were given only one example
question, before the trials started and each condition was presented only once.
As a result, responses to earlier trials may be less accurate (or in case of bias
assessment, less consistent). This is countered to some degree by randomizing
the order of the trials for each participant. However, as indicated, it undermines
evaluating an individual’s responses. This is particularly the case for consistency
of bias assessment, which is therefore done only informally and treated as an
indication. However, plotting the deviation of bias assessment over time did not
reveal clear learning effects.

Acknowledgments. The authors would like to thank all anonymous volunteers who
participated in the presented user study.

References

1. Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J.,
Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer,
Heidelberg (2004)

2. Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. Algorithmica 44, 1–32 (2006)

3. Easley, D., Kleinberg, J.: Networks, Crowds and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, New York (2010)

4. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

5. Ghani, S., Kwon, B.C., Lee, S., Yi, J.S., Elmqvist, N.: Visual analytics for multi-
modal social network analysis: a design study with social scientists. IEEE TVCG
19(12), 2032–2041 (2013)

6. Henry, N., Fekete, J.-D., McGuffin, M.J.: Node trix: a hybrid visualization of social
networks. IEEE TVCG 13(6), 1302–1309 (2007)

7. Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE TVCG 12(5), 741–748 (2006)

8. Jusufi, I., Kerren, A., Liu, J., Zimmer, B.: Visual exploration of relationships
between document clusters. In: Proceedings of International Conference on Infor-
mation Visualization Theory and Applications, pp. 195–203 (2014)

A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams 501

9. Krzywinski, M., Birol, I., Jones, S.J.M., Marra, M.A.: Hive plots–rational approach
to visualizing networks. Briefings Bioinf. 13, 627–644 (2011)

10. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of feather: homophily in social
networks. Ann. Rev. Sociol. 27, 415–444 (2001)

11. Purchase, H.C.: Experimental Human-Computer Interaction: A Practical Guide
with Visual Examples. Cambridge University Press, New York (2012)

12. van den Elzen, S., van Wijk, J.J.: Multivariate network exploration and presenta-
tion: from detail to overview via selections and aggregations. IEEE TVCG 20(12),
2310–2319 (2014)

Shape-Based Quality Metrics
for Large Graph Visualization

Peter Eades1(B), Seok-Hee Hong1, Karsten Klein2, and An Nguyen1

1 University of Sydney, Sydney, Australia
{peter.eades,seokhee.hong}@sydney.edu.au, angu5603@uni.sydney.edu.au

2 Monash University, Melbourne, Australia
karsten.klein@monash.edu

Abstract. We propose a new family of quality metrics for graph draw-
ing; in particular, we concentrate on larger graphs. We illustrate these
metrics with examples and apply the metrics to data from previous exper-
iments, leading to the suggestion that the new metrics are effective.

1 Introduction

Several of the earliest papers on Graph Drawing (for example, [21–23]) discussed
requirements for a “good” visualization of a graph. For example, Tamassia et al.
[22] state:

Aesthetics: We use the term aesthetics to denote the criteria that con-
cern certain aspects of readability. A well-admitted aesthetics, valid inde-
pendently from the graphic standard, is the minimisation of crossings
between edges. Also, in order to avoid unnecessary waste of space, it is
usual to keep the area occupied by the drawing reasonably small. When
the grid standard is adopted, it is meaningful to minimize the number of
bends (turns) along the edges, as well as their total length.

We prefer the term quality metric rather than “aesthetics”. The underlying and
often unstated assumption that these geometric properties of layout measure
the “goodness” of a graph drawing was unchallenged until the experiments of
Purchase [20]. These experiments showed that task performance is correlated
with some of the previously defined quality metrics. A conclusive result was
that human task times and error rates were both correlated with the number of
edge crossings. Subsequent experiments have confirmed and refined these initial
results [11,17–19,25]. All these early experiments used relatively small graphs
as stimuli; human experiments with larger graphs began recently [13,14]. In
particular it has been pointed out that edges and vertices become “blobs” in
large graph drawings such as the biological network in Fig. 1; almost all the edge
crossings are hidden in the blobs. Any causal relationship between readability
and the number of edge crossings seems unlikely. In this paper we propose a
quality metric for large drawings such as Fig. 1.

Supported by Australian Research Council grants LP110100519 and DP140100077,
and by Tom Sawyer Software and NewtonGreen Technologies.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 502–514, 2015.
DOI: 10.1007/978-3-319-27261-0 41

Shape-Based Quality Metrics for Large Graph Visualization 503

Fig. 1. Crossings can be hidden in a drawing of a large graph.

Although it is seldom explicitly stated as a quality metric for graph drawing,
stress is often used as such. There are various measures of stress (for example,
see [5,6,8,10]); the most commonly used is to define the stress in a drawing D

of a connected graph G = (V,E) as
∑

u,v∈V wuv (dG(u, v) − d�2(D(u),D(v)))2,
where dG(u, v) is the graph theoretic distance between u and v, d�2(D(u),D(v))
is the Euclidean distance between the locations D(u) and D(v) of u and v, and
wuv is a constant. Stress appears to measure the faithfulness of a graph draw-
ing [15] rather than its readability. For example, a low value of the stress in a
drawing indicates that the Euclidean distances between vertices are (approxi-
mately) proportional to the graph-theoretic distances in the graph.

Quality metrics are significant simply because they measure success or failure
of a graph drawing method. Most importantly, they are used as optimisation
goals in graph drawing algorithms. Methods that aim to draw graphs with a small
number of crossings are well established in the literature. Stress minimization
algorithms, in one form or another, are by far the most popular methods for
drawing undirected graphs.

This paper proposes a new family of quality metrics for graph visualization,
especially for large graph drawings. Here, by “large”, we mean that the graphs
are large enough to make “blobs” such as in Fig. 1 inevitable. This includes dense
graphs with at least a few hundred vertices and well as sparse graphs with at
least a few thousand vertices.

The proposed metrics are based on the notion of the “shape” of a set of
points in �2. Our proposal is that a drawing is good if the shape of the set of
vertex positions is similar to the original graph.

In Sect. 2, we describe this notion more precisely and illustrate with examples.
In Sect. 3 we give some empirical indication that the metrics are valid, based
on data sets from previous experiments [1,14]. Section 4 concludes with open
problems.

504 P. Eades et al.

2 Shape-Based Metrics

Figure 2 summarises our proposal. The quality of a drawing D of a graph G is
the similarity between G and the “shape” of the set of vertex locations of D. The
“shape” is expressed as a graph, called a “shape graph”. To make these notions
more precise, we need to examine the notion of the shape of a set of points, and
the notion of similarity between two graphs.

Original graph Graph drawing

Point set

Forget edges

Shape graph

The quality of the drawing is
the similarity between and

Draw

Construct shape graph

Fig. 2. Shape-based quality metrics.

2.1 Shape as a Graph

Informally, a shape graph for a set of points P is a geometric graph G = (P,E)
that captures the “shape” of P . The classical example of a shape graph is the α
-shape [3]; however, α-shapes capture the shape of the boundary of P , and not
the internal structure of P . Another kind of shape graph is a “proximity graph”:
an edge is placed between two points p, q ∈ P if p is “close to” q in some sense.
There are many kinds of proximity graphs (see [24]); some examples are below.

– The k-nearest neighbours graph has a (directed) edge from point p ∈ P to
point q ∈ P if the number of points r ∈ P with d(p, r) < d(p, q) is at most
k − 1.

– The Delaunay triangulation: the dual of the Voronoi diagram on P .
– The Gabriel graph (GG) has an edge between distinct points p, q ∈ P if the

closed disc which has the line segment pq as a diameter contains no other
elements of P .

– The relative neighbourhood graph (RNG) has an edge between distinct points
p, q ∈ P if there is no point r ∈ P such that d(p, r) ≤ d(p, q) and d(q, r) ≤
d(p, q).

– A Euclidean minimum spanning tree (EMST) is a minimum spanning tree of
P where the weight of the edge between each pair of points is the Euclidean
distance.

Each of these shape graphs can be computed in O(n log n) time using standard
methods [16]. In Sect. 3 below, we examine quality metrics based on the Euclid-
ean minimum spanning tree, the Gabriel graph, and the relative neighborhood
graph respectively. However, our remarks apply in principle to any shape graph.

Shape-Based Quality Metrics for Large Graph Visualization 505

2.2 Graph Similarity

Suppose that G1 = (V,E1) and G2 = (V,E2) are two graphs with the same
vertex set. A simple measure for the similarity of G1 and G2 is the Jaccard sum
similarity :

JSS(G1, G2) =
∑
u∈V

|N1(u) ∩ N2(u)|
|N1(u) ∪ N2(u)| , (1)

where Ni(u) is the set of neighbors of u in Gi for i = 1, 2. It is straight-forward
to compute the Jaccard sum similarity in linear time.

More complex measures for graph similarity include graph edit distance [7],
and measures based on the notion that the similarity of two vertices u and u′

depends on the similarity of their neighbours (see, for example, [12]). However,
these metrics are computationally expensive and do not scale beyond a few
thousand vertices; we have found that the Jaccard sum similarity is adequate
for our purposes.

2.3 The Metrics

We can now define our proposed metrics. Suppose that D is a drawing of a
graph G; we want to measure the quality of D. Let P denote the set of vertex
locations of D, and suppose that μ is a shape graph function (that is, μ takes
a set of points and produces a shape graph on this set of points). Further, let η
be a graph similarity function, that is, η takes two graphs as input and returns
a positive real number that indicates the similarity between these two graphs.
Then we define the quality metric Qμ,η by Qμ,η(D) = η(G,μ(P)).

These metrics are, in spirit, related to the “graph theoretic scagnostics” app-
roach to scatterplots (see [26]).

The “neighborhood inconsistency” [6] and “neighborhood preservation pre-
cision” [5,6] metrics used by Gansner et al. are also related, especially when the
shape graph μ is a kind of nearest neighbor graph. These two metrics have a dif-
ferent motivation to ours: rather than measure the general notion of shape, they
attempt to measure whether neighbours in the layout coincide with neighbours in
the graph. Nevertheless, we can regard the “neighborhood inconsistency” as an
example of a shape-based metric when the shape graph μ is a k-nearest neigh-
bor graph, and the similarity function η is based on the “stochastic neighbor
embedding” of Hinton and Roweis [9].

Throughout this paper we use the Jaccard sum similarity for graph similarity,
and so we abbreviate Qμ,η to Qμ. The time to compute Qμ depends on the choice
of μ; for all such choices μ described in this paper, Qμ can be computed in time
O(n log n).

2.4 An Example

Although our proposal is aimed at large graphs, this example uses a smaller
graph so that it is easier to understand. Consider the graph drawing D0 in

506 P. Eades et al.

Fig. 3. (a) A graph drawing D0. (b) The set P0 of vertex locations of D0. (c) A
Euclidean minimum spanning tree T0 on P0.

Fig. 3(a). The set P0 of vertex locations of D0 is shown in Fig. 3(b). A Euclidean
minimum spanning tree T0 on P0 is shown in Fig. 3(c).

Our proposal is that the quality QEMST (D0) of the graph drawing D0 can
be measured as the similarity between the (combinatorial) graphs in Fig. 3(a)
and (c). Using the Jaccard sum similarity in Eq. (1), we can calculate the value
QEMST (D0) as 0.61. The comparatively high value of QEMST (D0) expresses

Fig. 4. The drawing Dδ in the second column is formed from the drawing D0 in Fig. 3
by moving each vertex in a random direction by a random distance in the range [0, δ].
The graph Tδ in the third column is a Euclidean minimum spanning tree of the vertex
locations of Dδ.

Shape-Based Quality Metrics for Large Graph Visualization 507

the fact that for each vertex u the neighbors of u in the shape graph T0 overlap
considerably with the neighbors of u in G. Intuitively, the graph drawing D0 is
a reasonably faithful representation of the graph G, in that the “shape” of D0

is similar to G.
Next we examine what happens when we make the drawing progressively

bad. Suppose that Dδ is formed from D0 by moving each vertex in a random
direction by a random distance in the range [0, δs], where s is the size of the
screen. Drawings Dδ for δ = 0.1, 0.2, and 0.5 are shown in Fig. 4. For δ = 0.1,
the shape of the drawing is fairly close to the graph, the minimum spanning
tree Tδ shares quite a few edges with Dδ, and the value QEMST (D0.1) = 0.42
is reasonably high. As δ increases, the minimum spanning tree Tδ shares fewer
edges with Dδ, and the values of QEMST (Dδ) fall. For δ = 0.5 the shape of the
drawing shows no resemblance to the graph, and QEMST (Dδ) is low. Intuitively,
as the drawing becomes worse, the shape of the set of points differs more and
more from the graph.

Larger examples are shown in Fig. 5, from the data set described in Sect. 3.1.
Here the graph drawing (a) has 1160 vertices and 6424 edges, and (b) is a
Euclidean minimum spanning tree of (a); the graph drawing (c) has 1749 vertices
and 13957 edges, and (d) is a Euclidean minimum spanning tree of (c). In both

Fig. 5. Two graph drawings from the data set described in Sect. 3.1, and Euclidean
minimum spanning trees of the vertex locations.

508 P. Eades et al.

cases, the Euclidean minimum spanning tree shares many edges with the graph,
and expresses the shape of the graph drawing well.

2.5 Remarks

We should point out that the metrics that we have defined above are not nor-
malised across graphs. If D and D′ are two drawings of the same graph, then
Qμ(D) > Qμ(D′) whenever D is a better drawing than D′. However, we make
no such claim for two drawings D and D′ of two different graphs.

Further, note that the Gabriel graph contains the relative neighborhood
graph, which in turn contains the Euclidean minimum spanning tree [24]. We
expect the Gabriel graph to model the shape of a set of points more precisely
than a Euclidean minimum spanning tree.

3 The Experiments

In this section, we describe how the shape-based quality metrics perform on two
specific data sets from previous experiments [1,14].

3.1 The “Untangling” Data Set

Marner et al. [14] introduced a newmethod calledGION for supporting interaction
with graph drawings on large displays. The user study of [14] focussed on the task
of untangling a graph drawing: subjects were presented with a graph drawing (a
Fruchterman-Reingold layout [4]), and were simply asked to untangle the layout.
Eight RNA sequence graphs were used, ranging from 1159 to 7885 vertices; there
were 16 subjects. The experimental system captured, for each subject and each
graph, a snapshot drawing every 5 seconds; the snapshot at time t is denoted by
Dt. Two such snapshot graph drawings are shown in Fig. 5(a) and (c). The main
result of the experiment was that the GION method is better in several ways than
more traditional interaction methods. For more details, see [14].

The experiment gave a large data set of graph drawings (8 graphs × 16 users
× 24 snapshot drawings) that we can use to check our shape-based quality met-
rics. For each snapshot Dt, we computed the number χ(Dt) of edge crossings, the
(scaled) stress σ(Dt), and the metrics QEMST (Dt), QGG(Dt), and QRND(Dt),
respectively based on Euclidean minimum spanning tree, Gabriel graphs, and
relative neighborhood graphs.

Commonly-held graph drawing wisdom is that χ(Dt) and σ(Dt) decrease
with the quality of the graph drawing. We expect that quality increases as the
graph is untangled, and so we expect that χ(Dt) and σ(Dt) decrease with t. In
contrast, the proposed quality metrics QEMST (Dt), QGG(Dt), and QRND(Dt)
are expected to increase with t. To make the comparison between these met-
rics easier, we place them on a comparable scale by inverting and normalising
crossings and stress, as follows. We define

Q̄χ(Dt) =
Mχ − χ(Dt)

Mχ
, Q̄σ(Dt) =

Mσ − σ(Dt)
Mσ

,

Shape-Based Quality Metrics for Large Graph Visualization 509

where Mχ = maxt χ(Dt) and Mσ = maxt σ(Dt). Note that Q̄χ(Dt) (respec-
tively Q̄σ(Dt)) increases from 0 to 1 as the number of crossings (respectively
stress) increases from 0 to the maximum. For the shape-based metrics, we sim-
ply linearly normalise QEMST (respectively QGG and QRND) to give Q̄EMST

(respectively Q̄GG and Q̄RND) so that it increases from 0 to 1 as the quality of
the drawing increases.

It is reasonable to assume that the drawing improves in quality as the untan-
gling proceeds. However, the results reported in [14] were counterintuitive in
terms of crossings and stress: as the subjects untangled the graph drawings,
there was a tendency to increase both crossings and stress (that is, both Q̄χ and
Q̄σ decreased).

In contrast, we found that Q̄EMST , Q̄GG, and Q̄RND all increased as the
subjects untangled the drawings. The charts in Fig. 6 show Q̄χ, Q̄σ, Q̄EMST ,
Q̄GG, and Q̄RND, averaged over all subjects, for the first 3 of the 8 graphs. The
horizontal axis is time t; the vertical axis shows the values of the metrics. For
graphs #1 and #2, both crossings and stress increase with t (that is, Q̄χ(Dt) and
Q̄σ(Dt) decrease). In contrast, Q̄EMST , Q̄GG, and Q̄RND increase. Graphs #4,
#5, #6, #7, and #8 showed very similar patterns to graphs #1 and #2. Graph
#3 was a little different in that crossings decrease (and thus Q̄χ increases), albeit
chaotically.

Fig. 6. Metrics against untangling.

Overall, the data from the untangling experiment shows that both crossings
and stress metrics became worse as the subjects untangled the graphs, but the
shape-based metrics became better. With some provisos (see Sect. 3.3 below),
this suggests that the shape-based metrics are better than crossings and stress
for measuring untangling.

3.2 The “Preference” Data Set

Chimani et al. [1] report an experiment at the University of Osnabrueck aimed at
determining whether human preferences in graph drawing correlates with cross-
ings and stress. There were two follow-up experiments, at the Graph Drawing

510 P. Eades et al.

conference in 2014, and at the University of Sydney. The design and results of
all three experiments were similar; see [1]. Here we investigate the data from
the University of Sydney experiment, aiming to determine whether shape-based
metrics are correlated with preference.

This experiment had 40 subjects. Each subject was presented with 20
“instances”. Each instance displayed a pair of drawings of the same graph, as in
the screenshot in Fig. 7. There is a slider bar at the bottom of the screen, and
the subject indicates which of the pair of drawings he/she prefers by sliding to
the left or right. The slider bar has a scale on the left from 5 to 1 and on the
right from 1 to 5, with zero in the middle. The slider bar is used to give a score
to the drawing that the subject prefers, indicating how much the subject prefers
it. A score of 5 on the left indicates a strong preference for the drawing on the
left, and a score of 5 on the right indicates a strong preference for the drawing
on the right.

Fig. 7. Example of a typical “instance” (a graph pair shown to participants).

A total of 118 graphs, ranging in size from small (25 vertices and 29 edges) to
moderately large (8000 vertices and 15580 edges), were used. Five drawings for
each graph were generated, and the instances were chosen randomly. For details,
see [1].

The results for a particular quality metric Q are expressed in terms of the
“Q-ratio”, defined as follows. Consider an instance consisting of two drawings
Dleft and Dright of a graph G, such as in Fig. 7. Let Q(Dleft) (respectively
Q(Dright)) be the value of the Q metric for Dleft (respectively for Dright). We
define the Q-ratio for this instance as

max(Q(Dleft), Q(Dright))
min(Q(Dleft), Q(Dright))

.

If the Q-ratio is significantly larger than 1, then we expect that most subjects
prefer the drawing with the higher quality (according to the quality metric Q).
Further, as the Q-ratio increases, we expect that more and more subjects prefer

Shape-Based Quality Metrics for Large Graph Visualization 511

the drawing with higher quality. To make this precise, we need to define some
further terms.

For each quality metric Q and each instance I we compute a score SQ(I) as
follows. Suppose that for this instance, the subject gives a score of x (0 ≤ x ≤ 5).
If the subject chose the drawing with a higher value of the quality metric Q, then
SQ(I) = x; otherwise SQ(I) = −x. The expectation that most subjects prefer the
drawing with the higher quality becomes an expectation that in most instances,
SQ(I) is positive.

For each metric Q, we chart the median of SQ(I) over all instances I against
the Q-ratio in Fig. 8. The charts for crossings and stress are shown in Fig. 8(a),
and for EMST, GG, and RNG in Fig. 8(b). For both crossing and stress, there
is adequate data for ratios from 1 to 5; however, the data for ratios larger than
4.5 is small (less than 20 instances) and the results at this end of the spectrum
must be treated with caution.

Fig. 8. Stress and crossing ratios, shape graph ratios, and preferences.

Crossings. Overall, there is a slight preference for fewer crossings (median over
all instances is +1). As the crossing ratio increases, the median preference
for the drawing with fewer crossings increases. When the crossing ratio is
above 2.5 the median preference for the drawing with fewer crossings is +3,
and stays steady at +3 as the crossing ratio increases beyond 2.5.

Stress. Overall, there is a preference for lower stress (median over all instances
is +2). As the stress ratio increases, the median preference for lower stress
rises; it hovers between +3 and +4 when the stress ratio is above 4.

For EMST, GG, and RNG, there is adequate data for ratios from 1 to 1.5; but
the data for ratios larger than 1.45 is small (less than 20 instances) and the
results at this end of the spectrum must be treated with caution.

512 P. Eades et al.

EMST. The median preference for the drawing with higher value of Q̄EMST

is chaotic when the EMST-ratio is less than 1.2. The preference rises to
+4 when the EMST-ratio rises from 1.2 to 1.3, and remains at +4 as the
EMST-ratio increases beyond 1.3.

GG. Overall, there is a preference for drawings with a higher value of Q̄GG

(median over all instances is +2). The preference for the drawing with higher
value of Q̄GG rises smoothly with GG-ratio. When the GG-ratio is above 1.2
the median preference for the drawing with higher value of Q̄GG is +4, and
remains at +4 as the GG-ratio increases beyond 1.2.

RNG. Overall, there is a preference for drawings with a higher value of Q̄RNG

(median over all instances is +1). The preference for the drawing with higher
value of Q̄RNG rises smoothly with RNG-ratio. When the RNG-ratio is above
1.2 the median preference for the drawing with higher value of Q̄RNG is +4,
and remains at +4 as the RNG-ratio increases beyond 1.2.

One can conclude that people prefer drawings with fewer crossings, lower
stress, and higher values for the shape-based metrics Q̄EMST , Q̄GG, and Q̄RND.
Note that the preference for better GG and RNG based metrics appears to be
a little stronger than the preference for fewer crossings and lower stress. The
overall preference for EMST-based metrics seems unreliable when the EMST-
ratio is small.

3.3 Remarks on the Experiments

The data from both the “untangling” experiment and the “preference” experi-
ment support the proposal that the shape-based metrics are good measures of
the quality of a graph drawing; there is some indication that the shape-based
metrics are better than crossings and stress. However, this support has some
limitations:

– Both experiments were designed for other purposes. Neither experiment was
designed to test the shape-based metrics. To completely validate the new
metrics, further study is needed.

– The “untangling” experiment used a very specific kind of graph: RNA
sequence graphs, which are locally dense with a global “tree-like” structure.
For more general classes of graphs, further experimentation would be useful.

– The experiments use the notions of “untangledness” and “preference” as prox-
ies for ground truth quality. It would be useful to test the metrics in a task-
oriented experiment.

4 Conclusion and Open Problems

This paper proposes a new family of metrics, aimed at measuring the quality
of large graph drawings. We have some evidence from data in two previous
experiments that these metrics are effective.

Our proposal raises several open problems:

Shape-Based Quality Metrics for Large Graph Visualization 513

– Design experiments to fully validate shape-based metrics. In particular, it
would be interesting to know whether time and error of tasks on large graphs
(see [13]) is related to shape-based metric values.

– Design algorithms to produce layouts that optimise the metrics. Note that
(as with most graph layout problems) optimisation problems of this kind
are typically NP-hard (see, for example, [2]), and thus heuristic approaches
are in order. In particular, it would be interesting to know whether a stress
minimisation algorithm gives a reasonable approximation.

References

1. Chimani, M., et al.: Graph drawings with less stress and fewer crossings are prefer-
able. In: Duncan, C., Symvonis, A. (eds.) GD2014. LNCS, vol. 8871, pp. 523–524.
Springer, Heidelberg (2014)

2. Eades, P., Whitesides, S.: The realization problem for euclidean minimum spanning
trees in NP-hard. Algorithmica 16(1), 60–82 (1996)

3. Edelsbrunner, H., Kirkpatrick, D.G., Seidel, R.: On the shape of a set of points in
the plane. IEEE Trans. Inf. Theory 29(4), 551–558 (1983)

4. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exp. 21(11), 1129–1164 (1991)

5. Gansner, E.R., Hu, Y., Krishnan, S.: COAST: a convex optimization approach to
stress-based embedding. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol.
8242, pp. 268–279. Springer, Heidelberg (2013)

6. Gansner, E.R., Yifan, H., North, S.C.: A maxent-stress model for graph layout.
IEEE Trans. Vis. Comput. Graph. 19(6), 927–940 (2013)

7. Gao, X., Xiao, B., Tao, D., Li, X.: A survey of graph edit distance. Pattern Anal.
Appl. 13(1), 113–129 (2010)

8. Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer,
Heidelberg (2005)

9. Hinton, G.E., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS 2002, pp.
833–840 (2002)

10. Hu, Y., Koren, Y.: Extending the spring-electrical model to overcome warping
effects. In: Eades, P., Ertl, T., Shen, H.-W. (eds.) PacificVis2009, pp. 129–136.
IEEE (2009)

11. Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Fujishiro, I., Li,
H., Ma, K. L. (eds.) IEEE PacificVis2008, pp. 41–46 (2008)

12. Jeh, G., Widom, J.: Simrank: a measure of structural-context similarity. In:
KDD2002, pp. 538–543. ACM (2002)

13. Kobourov, S.G., Pupyrev, S., Saket, B.: Are crossings important for drawing large
graphs? In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 234–
245. Springer, Heidelberg (2014)

14. Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.-H.:
GION: interactively untangling large graphs on wall-sized displays. In: Duncan, C.,
Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 113–124. Springer, Heidelberg
(2014)

15. Nguyen, Q.H., Eades, P., Hong, S.-H.: On the faithfulness of graph visualizations.
In: Carpendale, S., Chen, W., Hong, S. (eds.) PacificVis2013, pp. 209–216. IEEE
(2013)

514 P. Eades et al.

16. Preparata, F., Shamos, M.: Computational Geometry - An Introduction. Springer,
New York (1985)

17. Purchase, H.C.: Which aesthetic has the greatest effect on human understand-
ing? In: Di Battista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

18. Purchase, H.C., Allder, J.-A., Carrington, D.A.: Graph layout aesthetics in uml
diagrams: user preferences. J. Graph Algorithms Appl. 6(3), 255–279 (2002)

19. Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-
based graph layout. Empirical Softw. Eng. 7(3), 233–255 (2002)

20. Purchase, H.C., Cohen, R.F., James, M.I.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer,
Heidelberg (1996)

21. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man. Cybern. 11(2), 109–125 (1981)

22. Tamassia, R., Batini, C., Di Battista, G.: Automatic graph drawing and readability
of diagrams. Technical Report, Universita di Roma La Sapienza, Dipartimento do
Informatica e Sistemistica, 01.87 (1987)

23. Tamassia, R., Batini, C., Talamo, M.: An algorithm for automatic layout of entity-
relationship diagrams. In: Davis, C.G., Jajodia, S., Ng, P.A., Yeh, R.T. (eds.)
ER83, pp. 421–439. North-Holland (1983)

24. Toussaint, G.: Computational Morphology. North Holland, Amsterdam (1988)
25. Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of

graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)
26. Wilkinson, L., Anand, A., Grossman, R.L.: Graph-theoretic scagnostics. In: Stasko,

J., Ward, M.O. (eds.) InfoVis2005, p. 21. IEEE (2005)

On the Readability of Boundary Labeling

Lukas Barth1, Andreas Gemsa1, Benjamin Niedermann1(B),
and Martin Nöllenburg2

1 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany
niedermann@kit.edu

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria

Abstract. Boundary labeling deals with annotating features in images
such that labels are placed outside of the image and are connected by
curves (so-called leaders) to the corresponding features. While boundary
labeling has been extensively investigated from an algorithmic perspec-
tive, the research on its readability has been neglected. In this paper
we present the first formal user study on the readability of boundary
labeling. We consider the four most studied leader types with respect to
their performance, i.e., whether and how fast a viewer can assign a fea-
ture to its label and vice versa. We give a detailed analysis of the results
regarding the readability of the four models and discuss their aesthetic
qualities based on the users’ preference judgments and interviews.

1 Introduction

Creating complex, but comprehensible figures such as maps, scientific illustra-
tions, and information graphics is a challenging task comprising multiple design
and layout steps. One of these steps is labeling the content of the figure appropri-
ately. A good labeling conveys information about the figure without distracting
the viewer. It is unintrusive and does not destroy the figure’s aesthetics. At
the same time it enables the viewer to quickly and correctly obtain additional
information that is not inherently contained in the figure. Typically multiple
features are labeled by a set of (textual) descriptions called labels. Morrison [15]
estimates the time needed for labeling a map to be over 50 % of the total time
when creating a map by hand. Hence, a lot of research efforts have been made
to design algorithms that automate the process of label placement.

To obtain a clear relation between a feature and its label, the label is often
placed closely to it. However, in some applications this internal labeling is not
sufficient, because either features are densely distributed and there are too many
labels to be placed or any extensive occlusion of the figure’s details should be
avoided. While in the first case one may exclude less important labels, in the sec-
ond case even a small number of labels may destroy the readability of the figure.
In either case graphic designers often choose to place the labels outside of the
figure and connect the features with their labels by thin curves, so called lead-
ers. This kind of labeling is commonly found in highly detailed scientific figures
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 515–527, 2015.
DOI: 10.1007/978-3-319-27261-0 42

516 L. Barth et al.

(c) do-leader

Label

(d) opo-leader(b) po-leader(a) s-leader

SRRRR

LabelLabelLabel

s

λ �

s
λ

�

s

λ �

s

λ

�

Fig. 1. Illustration of leader types. Type-opo leaders use a track routing area S.

as they are used for example in atlases of human anatomy. In the graph draw-
ing community this kind of external labeling became well known as boundary
labeling. Since Bekos et al. [6] have introduced boundary labeling to the graph
drawing community, a variety of boundary labeling models have been considered
algorithmically. However, they have not been studied concerning their readabil-
ity from a user’s perspective. Here we present the first formal user study on the
readability of the four most common boundary labeling models.

Models of Boundary Labeling. The problem of boundary labeling is formalized
as follows (refer to Fig. 1). We are given a rectangle R of height h and width w
and a finite set P of points in R, which we call sites. Each site s is assigned to
a text that describes the site. Following traditional map labeling, not the text
itself is considered, but its shape is approximated by its axis-aligned bounding
box �. We call � the label of the site s. The set of all labels is denoted by L.

The boundary labeling problem then asks for the placement of labels such
that (1) each label � ∈ L lies outside of R and touches the boundary of R, no two
labels overlap, and for each site s and its label � there is a self-intersection-free
curve λ in R that starts at s and ends on the boundary of �. We call the curve λ
the leader of the site s and its label �. The end point of λ that touches � is
called the port of �. Typically, four main parameters, in which the models differ,
are distinguished. The label position specifies on which sides of R the labels are
placed. The label size may be uniform or individually defined for each label. The
port type specifies whether fixed ports or sliding ports are used, i.e., whether
the position of a port on its label is pre-defined or flexible. Finally, the leader
type restricts the shape of the leaders. As the leader type is the most distinctive
feature of the different boundary labeling models in the literature, we examine
how this parameter influences the readability. Regarding the other parameters
we restrict our attention to one-sided instances whose labels have unit height,
lie on the right side of R and have fixed ports. In the following we list the leader
types that are most commonly found in the literature.

Let λ be a leader connecting a site s ∈ P with a label � ∈ L, and let r be
the side of R that is touched by �. An s-leader consists of a single straight (s)
line segment; see Fig. 1(a). A po-leader consists of two line segments, the first,
starting at s, is parallel (p) to r and the second segment is orthogonal (o) to r;
see Fig. 1(b). A do-leader consists of two line segments, the first, starting at s,
is diagonal (d) at some angle α (typically α = 45◦) relative to r and the second
segment is orthogonal (o) to r; see Fig. 1(c). An opo-leader consists of three line

On the Readability of Boundary Labeling 517

segments, the first, starting at s, is orthogonal (o) to r, the second is parallel (p)
to r, and the third segment is orthogonal (o) to r; see Fig. 1(d). In case that opo-
leaders are considered, each leader has its two bends in a strip S next to r whose
width is large enough to accommodate all leaders with a minimum pairwise
distance of the p-segments. The strip S is called the track-routing area of R. In
the remainder of this paper, we call a labeling based on s/po/do/opo-leaders an
s/po/do/opo-labeling.

Following Tufte’s minimum-ink principle [17], the most common objective in
boundary labeling is to minimize the total leader length, which means minimizing
the total overlay of leaders with the given figure. Further, to increase readability
of the labelings, all models usually require that no two leaders cross each other.

Related Work. The algorithmic problem of boundary labeling was introduced at
GD 2004 by Bekos et al. [6]. They presented efficient algorithms for models based
on po-, opo- and s-leaders. As objective functions they considered minimizing the
number of bends and the total leader length. While for opo-leaders the labels
may lie on one, two, or four sides of R, the labels for po-leaders may lie only on
one or on two opposite sides of R. In 2005 based on a manual analysis of hand-
drawn illustrations (e.g., anatomic atlases), Ali et al. [1] introduced criteria for
boundary labeling concerning readability, ambiguity and aesthetics. Based on
these they presented force-based heuristics for labeling figures using s-leaders and
po-leaders. In 2006 Bekos et al. considered opo-labelings such that labels appear
in multiple stacks besides R [4]. Boundary labeling using do-leaders has been
introduced by Benkert et al. [7] in 2009. They investigated algorithms minimizing
a general badness function on do- and po-leaders and, furthermore, gave more
efficient algorithms for the case that the total leader length is minimized. In 2010
Bekos et al. [3] presented further algorithms for do-leaders and similarly shaped
leaders. Further, Bekos et al. [5] considered opo-labelings such that the sites
may float within predefined polygons in R. Nöllenburg et al. [16] considered
po-labelings for a setting that supports interactive zooming and panning. In
2011 Gemsa et al. [9] studied the labeling of panorama images using vertical s-
leaders. Leaders based on Beziér curves and s-leaders are further considered in
the context of labeling focus regions by Fink et al. [8] (2012). Further, in 2013
Kindermann et al. [11] considered po-labelings for the cases that the labels lie
on two adjacent sides, or on more than two sides. In 2014 Huang et al. [10]
investigated opo-labelings with flexible label positions.

Boundary labeling has also been combined in a mixed model with internal
labels, i.e., labels that are placed next to the sites; e.g., see [14]. Many-to-one
boundary labeling is a further variant, where each label may connect to multiple
sites; e.g., see [13]. Finally, boundary labeling has also been considered in the
context of text annotations; e.g., see [12]. For a more detailed discussion see [2].
In total we found three papers studying do-leaders, nine studying opo-leaders,
nine studying po-leaders, and five papers studying s-leaders.

Our Contribution. While boundary labeling has been extensively investigated
algorithmically, the research on the readability of the introduced models has been

518 L. Barth et al.

neglected. There exist several user studies on the readability and aesthetics of
graph drawings. For example Ware et al. [19] studied how people perceive links
in node-links diagrams. However, to the best of our knowledge, there are no
studies on the readability of any boundary labeling models. In this paper we
present the first user study on readability aspects of boundary labeling. When
reading a boundary labeling the viewer typically wants to find for a given site its
corresponding label, or vice versa. Hence, a well readable labeling must facilitate
this basic two-way task such that it can be performed fast and correctly. We
call this the assignment task. In this paper we investigate the assignment task
with respect to the four most established models, namely models using s-, po-,
opo- and do-leaders, respectively. To keep the number of parameters small, we
refrained from considering other types of leaders. We conducted a controlled user
study with 31 subjects. Further, we interviewed eight participants about their
personal assessment of the leader types. We obtained the following main results.

– Type-opo leaders lag behind the other leader types in all considered aspects.
– In the assignment task, do-, po- and s-leaders have similar error rates, but

po-leaders have significantly faster response times than do- and s-leaders.
– The participants prefer the leader types in the order do, po, s and opo.

2 Research Questions

As argued before, a well readable boundary labeling must allow the viewer to
quickly and correctly assign a label to its site and vice versa. More specifically, the
leader λ connecting the label with its site must be easily traceable by a human.
We hypothesize that both the response time and the error rate of the assignment
task significantly depend on other leaders running close to and parallel to λ in
the following sense. The more parallel segments closely surround λ, the more
the response time and the error rate of the assignment task increase.

However, we did not directly investigate this hypothesis, but we derived from
it two more concrete hypotheses that are based on the four leader types. These
were then investigated in the user study. To that end, we additionally observe,
that in medical figures the density of the sites varies. Both may occur, figures
containing a dense set of sites, where the sites are placed closely to each other,
and figures containing a sparse set of sites, where the sites are dispersed. We
now motivate the hypothesis as follows.

By definition of the models, the number of parallel leader segments in do-,
po- and opo-labelings is quadratic in the number of labels, because each pair of
leaders has at least one pair of parallel segments. For opo-labelings each pair of
leaders even has up to three pairs of parallel segments. Additionally, the spacing
of the first orthogonal segments of opo-leaders is determined by the y-coordinates
of the sites rather than by the (more regularly spaced) y-coordinates of the label
ports as in po- and do-labelings. In contrast, in an s-labeling the leaders typically
have different slopes, so that (almost) no parallel line segments occur. In fact,
it is known that the human eye can distinguish angular differences as small as
10′′ ≈ 0.003◦ [18]. Hence, leaders of do-, po- and opo-labelings, in particular for a

On the Readability of Boundary Labeling 519

dense set of sites, are closely surrounded by parallel segments, while s-leaders for
such a set have very different slopes. We therefore propose the next hypothesis.

(H1) For instances containing a dense set of sites,
(a) the assignment task on s-labelings has a significantly smaller response

time and error rate than on do-, po-, and opo-labelings.
(b) the assignment task on do- and po-labelings has a significantly smaller

response time and error rate than on opo-labelings.

Considering a sparse set of sites, do- and po-labelings still have many parallel
line segments, but this time they are more dispersed. This is normally not true for
opo-leaders because the actual routing of those leaders occurs in a thin routing
area at the boundary of R. Hence, we propose the next hypothesis.

(H2) For instances containing a sparse set of sites, the assignment task on opo-
labelings has a significantly greater response time and error rate than on do-,
po-, and s-labelings.

In summary, we expect that opo-labelings perform worse than the other three,
that do-and po-labelings perform similar, and that s-labelings perform best.

3 Design of the Experiment

This section presents the tasks, the stimuli, and the experimental procedure that
we used to conduct the user study.

Tasks. In order to test our hypotheses we presented instances of boundary label-
ing to the participants and asked them to perform the following two tasks.

1. Label-Site-Assignment (TS): In an instance containing a highlighted label
select the related site.

2. Site-Label-Assignment (TL): In an instance containing a highlighted site
select the related label.

Stimuli. We now describe the presented stimuli; for a more detailed description
see full version [2]. The stimuli are automatically generated boundary labelings,
each using the same basic drawing style. In order to remove confounding effects
between background image and leaders we use a plain light blue background.
Points, leaders and label texts are drawn in the same style and in black color.
Highlighted points are drawn as slightly larger yellow-filled squares with black
boundary rather than small black disks. Highlighted labels are shown as white
text on a dark gray background. Figure 2 shows four example stimuli.

For all instances we defined R to be a rectangle of 500 × 750 pixels. In
addition to the four leader types as the main factor of interest, we identified
three secondary factors that may have an impact on the resulting labelings. This
yields four parameters to classify an instance. The first parameter is the number
N = {15, 30}, which allows us to model small instances (15 sites) and large

520 L. Barth et al.

po-leader do-leaders-leader opo-leader

Fig. 2. Examples of stimuli for both tasks and all four leader types.

instances (30 sites). The second parameter is the distribution D = {DU,D3,D10}
that is used for randomly placing the sites in R. We define DU to be a uniform
distribution, which yields dispersed sites. Dense and sparse sets of sites are
modeled by normal distributions with mean μ = (250, 375) at the center of R,
and variance σ = 3000 and σ = 10000 in both directions, respectively. The
third parameter is the applied leader type T = {do, opo, po, s} as defined above.
Finally, the fourth parameter R = {0.3, 0.6, 0.9} can be seen as a difficulty level.
The parameter r ∈ R selects the leader λ whose ink score is the r-quantile
among the ink scores of all leaders in the instance, where the ink score of a
leader specifies how much ink of other leaders is close to it in the drawing.

The parameter space N ×D ×T ×R gives us the possibility to cover a large
variety of different instances. For each of the 72 possible choices of parameters
(n, d, t, r) ∈ N × D × T × R we have generated two valid boundary labelings I1
and I2, one for each task, by minimizing the total leader length via integer
linear programming. In each instance each label is randomly chosen from a set
of animal names. For opo-labelings, the track routing area and the routing of the
leaders is chosen such that the p-segments of any two leaders have horizontal
distance of at least 10 pixels from each other. For examples see full version [2].

It will occur in the instances that leaders lie closely together, e.g., see opo-
labeling in Fig. 2. However, we do not enforce minimum spacing between leaders
because neither any of the studied models nor any of the discussed algorithms
enforce minimum spacing explicitly. In fact, a fixed minimum leader spacing may
even lead to infeasible instances for certain leader types.

Procedure. The study was run as a within-subject experiment. Four experimental
sessions were held in our computer lab at controlled lighting with 12 identical
machines and screens using a digital questionnaire in German language. After
agreeing to a consent form, each participant first completed a tutorial explaining
him or her the tasks TS and TL on four instances, each containing one of the four
labeling types. Participants were instructed to answer the questions as quickly
and as accurately as possible. Afterwards, the actual study started presenting
the 144 stimuli to the participant one at a time. Each stimulus was revealed to
the participant, after he or she clicked a button in the center of the screen using
the mouse. Hence, at the beginning of each task the mouse pointer was always
located at the same position. Then he or she performed the task by selecting a
label or site using the mouse.

On the Readability of Boundary Labeling 521

The stimuli were divided into 12 blocks consisting of 12 stimuli each. Each
block either contained stimuli only for TS or only for TL. For each participant the
stimuli were in random order, but in alternating blocks, i.e., after completing a
block for TS a block for TL was presented, and vice versa. Between two successive
blocks a pause screen stated the task for the next block and participants were
asked to take a break of at least 15 seconds before continuing.

Especially for professional printings, e.g., for anatomy atlases, not only the
figure’s readability, but also its aesthetics is of great importance. Further, assign-
ing a label to its site (or vice versa), the viewer should be able to assess whether
he or she has done this correctly. We therefore asked all participants about their
personal assessment of the aesthetics and readability of the leader types after
completing the 144 performance trials. We presented the same four selected
instances of the four leader types to each participant. To that end, we selected
an instance for each leader type t ∈ T based on the 144 instances generated
for the tasks TS and TL. We score each instance by the sum of its leaders’ ink
scores. Among all instances with leader type t ∈ T and 15 sites, we selected the
median instance I with respect to the instance scores of that subset. Hence, for
each type of leader we obtain a moderate instance with respect to our difficulty
measure. Each participant was asked to rate the different leader types using Ger-
man school grades on a scale from 1 (excellent) to 6 (insufficient), where grades
5 and 6 are both fail-grades, by answering the following questions.

Q1. How do you rate the appearance of the leader types?
Q2. For a highlighted site, how easy is it for you to find the corresponding label?
Q3. For a highlighted label, how easy is it for you to find the corresponding site?

We further conducted interviews with eight participants after the experiment,
in which they justified their grading.

4 Results

In total 31 students of computer science aged between 20 and 30 years completed
the experiment, six of them were female and 25 were male. We also asked whether
they have fundamental knowledge about labeling figures and maps, which was
affirmed by only two participants.

4.1 Performance Analysis

For each of the 144 trials we recorded both the response time and the correctness
of the answer, which allows for analyzing two separate quantitative performance
measures1. Response times were measured from the time a stimulus was revealed
until the participant clicks to give the answer. Response times are normalized
per participant by his/her median response time to compensate for different
reaction times among participants. We split the data into four groups by leader
type, and call them DO, PO, S and OPO, respectively.
1 Raw data at http://i11www.iti.uni-karlsruhe.de/projects/bl-userstudy.

http://i11www.iti.uni-karlsruhe.de/projects/bl-userstudy

522 L. Barth et al.

We applied repeated-measures Friedman tests with post-hoc Dunn-Bonfer-
roni pairwise comparisons in SPSS2 between the four groups to find significant
differences in the performance data at a significance level of p = 0.05. We chose
a non-parametric test since our data are not normally distributed. We now sum-
marize the main findings, while the detailed test results are found in [2].

Response Times. Figure 3a shows the normalized response times broken down
into the three considered distributions D3, D10 and DU, which yield dense, sparse
and uniform sets of sites; the corresponding mean and absolute times are found
in the full version of this paper [2]. We obtained the following results. Among all
leader types, opo-leaders have the highest response time. In particular for dense
and sparse sets of sites the mean response time is up to a factor 1.8 worse than
for the others. For uniform sets we obtain a factor of up to 1.5. Further, for any
distribution the measured differences are significant. Comparing the response
times of the remaining leader types we obtain the order po < s < do with
respect to increasing mean response time. For uniform sets we did not measure
any pairwise significant difference between do, po and s leaders. However, for
dense and sparse sets we obtained the significant differences as shown in Fig. 3a.
We emphasize that for po- and s-leaders significant differences are measured
for sparse, but not for dense sets of sites. In contrast do- and s-leaders have
significant differences for dense sets, but not for sparse sets. Further, po- and
do-leaders have significant differences in both dense and sparse sets. Altogether,
this justifies the ranking po < s < do w.r.t. increasing mean response time.

Comparing the instances in terms of TS and TL, the mean response time of
TL is slightly lower than that of TS. Filtering out incorrectly processed tasks
does not change the mean response time much and similar results are obtained.
The mean response times of large instances (any instance with 30 sites and
dense, sparse or uniform distribution) are similar to those of dense sets, and the
mean response times of small instances (any instance with 15 sites and dense,
sparse or uniform distribution) are similar to those of uniform sets.

Accuracy. We computed for each leader type and each participant the proportion
of instances of that type that the participant solved correctly; see full version
for detailed results and figures [2]. For dense and sparse sets of sites we observe
that OPO has success rates around 86%, while the other groups have success
rates greater than 93%. In particular the differences between success rates of
opo-leaders and the remaining types are up to 11% and 13% for dense and
sparse sets, respectively. Any of these differences is significant, while between
PO, DO and S no significant accuracy differences were measured. For uniform
sets of sites, however, no significant differences were measured and any group
has a success rate greater than 95%. Hence, it appears that uniform sets of sites
produce well readable labelings with any leader type – unlike dense and sparse
instances.

Considering large and small instances separately, the group OPO has a
decreased success rate (81%), while the other groups remain almost unchanged
2 http://www-01.ibm.com/software/analytics/spss/.

http://www-01.ibm.com/software/analytics/spss/

On the Readability of Boundary Labeling 523

Dense

DO PO S OPO

101

100

10−1

DO PO S OPO

Sparse Uniform Large

DO PO S OPO DO PO S OPO

(a) Normalized response times (logarithmic scale, smaller is better).

Dense

DO PO S OPO DO PO S OPO

Sparse Uniform Large

DO PO S OPO DO PO S OPO
0.6

0.7

0.8

0.9

1.0

(b) Success rates (higher is better).

Fig. 3. Performance results broken down to dense, sparse and uniform sets as well as
to large instances (30 sites). Mean values are indicated by ‘x’. Arcs at the bottom show
significant differences that were found (p = 0.05).

(> 93%), which yields for PO and OPO a difference of 16%. For small instances
no significant differences were measured. Comparing the instances by tasks TS

and TL, the success rate of TS is slightly better than that of TL except for OPO.
For the mean response times the contrary is observed.

4.2 Preference Data

Table 1. Average grades given by
the participants with respect to
questions Q1–Q3 (smaller is better).

do opo po s

Q1 1.8 4.6 2.3 3.3
Q2 2.0 4.6 2.1 2.4
Q3 1.7 4.3 2.3 2.4

Table 1 shows the average grades given by
the participants with respect to the three
questions Q1–Q3. Concerning the general
aesthetic appeal (question Q1) leaders of
type do received the best grades (1.8),
followed by po-leaders (grade 2.3). The
participants did not particularly like the
appearance of s-leaders (grade 3.3) and gen-
erally disliked opo-leaders (grade 4.6). In the
full version [2] we list the detailed percentages of participants who graded a par-
ticular leader type better, equally, or worse than another type. In addition to the
general impression from the average grades it is worth mentioning that between
the two most preferred leader types do and po 48.4 % preferred do over po and

524 L. Barth et al.

38.7 % gave the same grades to both leader types. Compared to the s-leaders, a
great majority (> 80 %) strictly prefers both do- and po-leaders. In the interviews
seven out of eight participants stated that opo-leaders are “confusing, because
leaders closely pass by each other”. They disliked the long parallel segments
of opo-leaders. Further, some participants remarked that opo-leaders “consist of
too many bends”. For six participants s-leaders were “chaotic and unstructured”,
unlike do- and po-leaders. Five participants said that they liked the flat bend of
do-leaders more than the sharp bend of po-leaders. One participant stated that
“po-leaders seem to be more abstract than do-leaders”. Further, it was said that
“the ratio of the segments’ lengths is less balanced for po- than do-leaders.”

For question Q2 (site-to-label) do- and po-leaders were ranked best (see
Table 1), followed by s and more than two grades behind by opo, whereas for
question Q3 (label-to-site) do-leaders are further ahead of po- and s-leaders,
both of which received similar grades, and are again about two grades ahead
of opo-leaders. For questions Q2 and Q3 the most striking observation is that
type-s leaders received much better results (almost a full grade point better)
than for Q1. This is in strong contrast to the other three leader types, which
received grades in the same range as for Q1. This indicates that the participants
perceived straight leaders as being well readable during the experiment, but still
did not produce very appealing labelings. In the interviews participants stated
that “opo-leaders are hard to read because of leaders lying close to each other.”
They negatively observed that opo-leaders “may not be clearly distinguished”,
but assessed the “simple shape of s-leaders to be easily legible.” Further, they
positively noted that “the distances between do-leaders seem to be greater than
for other types” and that “po-leaders are easier to follow than other types”.

It is remarkable that the participants rated do-leaders best, while they ranked
third in our performance test. We conjecture that the participants overestimate
the performance of do-leaders, because they like their aesthetics. For s-leaders the
reverse is true. In contrast, their assessment on po- and opo-leaders corresponds
more closely with the result of our performance test.

In summary, do-leaders obtained the best subjective ratings. The regularly
shaped po- and do-leaders both scored better than the irregular and less restricted
s-leaders. For any of the three questions opo-leaders were rated a lot worse than
the others, which is, according to the interviews, mostly due to the frequent
occurrence of many nearby leaders running closely together.

5 Discussion

In Sect. 2 we hypothesized that labelings with many parallel leaders lying close to
each other have a significant negative effect on response times and accuracy. Our
results from Sect. 4.1 indeed support hypotheses (H1b) and (H2), which said that
the assignment task has a significantly smaller response time and error rate for
do- and po-labelings than for opo-labelings in dense (H1b) and also sparse sets of
sites (H2). Hypothesis (H2) was claimed to also hold for s-labelings versus opo-
labelings, which is confirmed by the experiment as well. While greater response

On the Readability of Boundary Labeling 525

times may still be acceptable in some cases, the significantly lower accuracy
clearly restricts the usability of opo-leaders. Only for small numbers of sites and
uniform distributions opo-leaders have comparable success rates to the other
leader types. This judgment is strengthened further by the preference ratings. On
average the participants graded opo-leaders between 4 (sufficient) and 5 (poor)
in all concerns. The main reason given in the interviews was that opo-labelings
are confusing due to many leaders closely passing by each other.

However, our results falsified hypothesis (H1a), which claimed that for dense
instances type-s leaders perform significantly better than the other three leader
types. Rather we gained unexpected insights into the readability of boundary
labeling. While we had expected that due to their simple shape and easily distin-
guishable slopes s-leaders will perform better than all other types of leaders, we
could not measure significant differences between po-leaders and s-leaders. Inter-
estingly, on average, the participants graded po-leaders better than s-leaders in
all examined concerns, in particular with respect to their aesthetics (Q1). This
is emphasized by the statements given by the participants that po-labelings
appear structured while s-labelings were perceived as chaotic. Comparing do- and
s-leaders we measured some evidence for (H1a), namely that the assignment task
has significantly smaller response times for s- than for do-leaders. However, the
success rates did not differ significantly.

We summarize our main findings regarding the four leader types as follows:

(1) do-leaders perform best in the preference rankings, but concerning the assign-
ment tasks they perform slightly worse than po- and s-leaders.

(2) opo-leaders perform worst, both in the assignment tasks and the preference
rankings. They are applicable only for small instances or for uniformly dis-
tributed sites.

(3) po-leaders perform best in the assignment tasks, and received good grades
in the preference rankings.

(4) s-leaders perform well in the assignment tasks, but not in the preference
rankings. The participants dislike their unstructured appearance.

We can generally recommend po-leaders as the best compromise between
measured task performance and subjective preference ratings. For aesthetic rea-
sons, it may also be advisable to use do-leaders instead as they have only slightly
lower readability scores but are considered the most appealing leader type.

An interesting question is why type-s leaders (which showed good task per-
formance) are frequently used by professional graphic designers, e.g., in anatom-
ical drawings, although they were not perceived as aesthetically pleasing in our
experiment. One explanation may be that our experiment judged all leader types
on an empty background, where the leaders receive the entire visual attention of
a viewer. In reality, the labeled figure itself is the main visual element and the
leaders should be as unobtrusive as possible and not interfere with the figure. It
would be necessary to conduct further experiments to assess the influence and
interplay of image and leaders on more complex readability tasks.

526 L. Barth et al.

Another interesting follow-up question is whether the chosen objective func-
tion produces actually the most aesthetic and most readable labelings. Despite
being the predominant objective function in the literature on boundary label-
ing, simply minimizing the total leader length most certainly does not capture
all relevant quality criteria.

Acknowledgments. We thank Helen Purchase and Janet Siegmund for their advice
on the statistical data analysis.

References

1. Ali, K., Hartmann, K., Strothotte, T.: Label layout for interactive 3D illustrations.
J. WSCG 13(1), 1–8 (2005)

2. Barth, L., Gemsa, A., Niedermann, B., Nöllenburg, M.: On the Readability of
Boundary Labeling. CoRR, abs/1509.00379 (2015)

3. Bekos, M.A., Kaufmann, M., Nöllenburg, M., Symvonis, A.: Boundary labeling
with octilinear leaders. Algorithmica 57(3), 436–461 (2010)

4. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Multi-stack boundary label-
ing problems. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337,
pp. 81–92. Springer, Heidelberg (2006)

5. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Area-feature boundary
labeling. Comput. J. 53(6), 827–841 (2010)

6. Bekos, M.A., Kaufmann, M., Symvonis, A., Wolff, A.: Boundary labeling: models
and efficient algorithms for rectangular maps. Comput. Geom. Theory Appl. 36(3),
215–236 (2007)

7. Benkert, M., Haverkort, H.J., Kroll, M., Nöllenburg, M.: Algorithms for multi-
criteria boundary labeling. J. Graph Algorithms Appl. 13(3), 289–317 (2009)

8. Fink, M., Haunert, J.-H., Schulz, A., Spoerhase, J., Wolff, A.: Algorithms for label-
ing focus regions. IEEE Trans. Vis. Comput. Graph. 18(12), 2583–2592 (2012)

9. Gemsa, A., Haunert, J.-H., Nöllenburg, M.: Boundary-labeling algorithms for
panorama images. In: ACM GIS 2011, New York, USA, pp. 289–298 (2011)

10. Huang, Z.-D., Poon, S.-H., Lin, C.-C.: Boundary labeling with flexible label posi-
tions. In: Pal, S.P., Sadakane, K. (eds.) WALCOM 2014. LNCS, vol. 8344, pp.
44–55. Springer, Heidelberg (2014)

11. Kindermann, P., Niedermann, B., Rutter, I., Schaefer, M., Schulz, A., Wolff, A.:
Two-sided boundary labeling with adjacent sides. In: Dehne, F., Solis-Oba, R.,
Sack, J.-R. (eds.) WADS 2013. LNCS, vol. 8037, pp. 463–474. Springer, Heidelberg
(2013)

12. Lin, C., Wu, H., Yen, H.: Boundary labeling in text annotation. In: Banissi, E.,
et al., (ed.) IV 2009, pp. 110–115. IEEE (2009)

13. Lin, C.-C., Kao, H.-J., Yen, H.-C.: Many-to-one boundary labeling. J. Graph Algo-
rithms Appl. 12(3), 319–356 (2008)

14. Löffler, M., Nöllenburg, M.: Shooting bricks with orthogonal laser beams: a first
step towards internal/external map labeling. CCCG 2010, 203–206 (2010)

15. Morrison, J.L.: Computer technology and cartographic change. In: Taylor, D. (ed.)
The Computer in Contemporary Cartography. Johns Hopkins University Press,
Baltimore (1980)

16. Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary label-
ing. In: ACM-GIS 2010, pp. 310–319 (2010)

On the Readability of Boundary Labeling 527

17. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press,
Cheshire (2001)

18. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kauf-
mann, San Francisco (2012)

19. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Inf. Vis. 1(2), 103–110 (2002)

Graph Drawing Contest

Graph Drawing Contest Report

Philipp Kindermann1(B), Maarten Löffler2, Lev Nachmanson3,
and Ignaz Rutter4

1 Fern Universität in Hagen, Hagen, Germany
philipp.kindermann@fernuni-hagen.de

2 Utrecht University, Utrecht, The Netherlands
m.loffler@uu.nl

3 Microsoft, New York, USA
levnach@microsoft.com

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
rutter@kit.edu

Abstract. This report describes the 22nd Annual Graph Drawing Con-
test, held in conjunction with the 23rd International Symposium on
Graph Drawing (GD’15) in Los Angeles, California, United States of
America. The purpose of the contest is to monitor and challenge the
current state of graph-drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into two parts: the creative
topics and the live challenge.

The creative topics had two graphs: the first one was a graph of inclusion rela-
tions between different graph classes, and the second one was a state-transition
graph for the game Tic-Tac-Toe. The data sets for the creative topics were pub-
lished months in advance, and contestants could solve and submit their results
before the conference started. The submitted drawings were evaluated according
to aesthetic appearance, domain-specific requirements, and how well the data
was visually represented.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to minimize the number of crossings in book layouts with a fixed
number of pages.

Overall, we received 25 submissions: 13 submissions for the creative topics
and 12 submissions for the live challenge.

2 Creative Topics

The two creative topics for this year were a graph of graph classes, and a tic-tac-toe
state graph. The goal was to visualize each graph with complete artistic freedom,
and with the aim of communicating the data in the graph as well as possible.
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 531–537, 2015.
DOI: 10.1007/978-3-319-27261-0 43

532 P. Kindermann et al.

We received 6 submissions for the first topic, and 7 for the second. For each
topic, we selected three contenders for the prize, which were printed on large
poster boards and presented at the Graph Drawing Symposium. Finally, out of
those three, we selected the winning submission. We will now review the top
three submissions for each topic (for a complete list of submissions, refer to
http://www.graphdrawing.de/contest2015/results.html).

2.1 Graph Classes

The Information System on Graph Classes and their Inclusions (ISGCI)1 is an
initiative to provide a large database of graph classes and their relations, as well
as the complexity of several problems that are hard on general graphs. So far,
data of 1,511 graph classes and 179,111 inclusions has been collected.

For the first creative topic, participants needed to draw the graph of the graph
classes provided by the ISGCI database that are planar. Each node represents a
graph class, and each (directed) edge represents an inclusion. For example, the
edge from “outerplanar” to “cactus” says that every cactus is outerplanar.

The graph has 65 vertices and 101 edges. The graph is presented in the
GraphML File Format2.

The resulting layout of the graph should contain the label of the vertices,
provided as the description of the nodes, and should give a good overview on
the hierarchy of the graph classes.

Runner-Up: Evmorfia Argyriou, Michael Baur, Anne Eberle, and
Martin Siebenhaller (yWorks). The committee liked the use of edge group-
ing for nodes with many outgoing edges (such as the “planar” node and the use

1 http://graphclasses.org.
2 http://graphml.graphdrawing.org/.

http://www.graphdrawing.de/contest2015/results.html
http://graphclasses.org
http://graphml.graphdrawing.org/

Graph Drawing Contest Report 533

of visual bridges to reduce the visual ambiguity at crossings. Also, the drawing
makes good use of the available space and uses color as an additional cue to
encode distance from the root.

Runner-Up: Megah Fadhillah (University of Sydney). The committee
really liked the idea of having a large ”planar” node at the top, which acts as a
title for the drawing and immediately explains what is being shown. The drawing
uses color to show clusters of nodes and size to encode distance from the root.

Winner: Tamara Mchedlidze (Karlsruhe Institute of Technology). The
committee likes the visual appeal of the drawing. The use of circular arcs for
edges makes it easy to follow each individual edge, even when they pass behind

534 P. Kindermann et al.

vertices (something which is traditionally considered bad practice in graph draw-
ing). The drawing uses color to single out three meaningful groups of nodes: tree
classes, bounded degree classes, and grid-like classes. The author also put a lot
of thought into abbreviating node labels to increase the readability of the final
drawing.

2.2 Tic-Tac-Toe

Tic-Tac-Toe3 is a tactical two-player game in which two players take turns enter-
ing symbols (X or O) into cells of a three-by-three grid, with the objective of
creating a row, column, or diagonal of equal symbols. The game is famous for
its relative simplicity.

For the second creative topic, participants were asked to draw the graph of all
possible Tic-Tac-Toe game states, in a way that shows as much of the structure
and hidden information in the graph as possible. Each node represents a class
of symmetric board positions, and there is an edge between two nodes u and v
if a board position from v can be reached from a board position from u.

Runner-Up: Remus Zelina, Sebastian Bota, Siebren Houtman, and
Radu Balaban (Meurs). The committee really liked visual appeal of the full
drawing, which clusters the individual node into groups based on the ply (num-
ber of moves played) and the current winner after optimal play. This way, the
drawing clearly shows a much smaller meta-graph (25 nodes and 39 edges) with

3 http://en.wikipedia.org/wiki/Tic-tac-toe.

http://en.wikipedia.org/wiki/Tic-tac-toe

Graph Drawing Contest Report 535

colors encoding the game state and “size” of clusters encoding the number of
actual board positions that belong to that state. This drawing nicely communi-
cates the global structure of the game.

Runner-Up: Evmorfia Argyriou, Michael Baur, Anne Eberle, and
Martin Siebenhaller (yWorks). The second runner-up submitted an inter-
active visualization of the graph4. The committee liked the idea of using an
interactive tool to explore the state graph. Using the tool, you can really see the
impact of each move, making it very useful for understanding the game. The
tool will dynamically show the local neighborhood (all possible paths to get to
the situation, and all possible continuations) for any board position. Using small
colored disks, the winner after optimal play is visualized for individual nodes.

Winner: Jennifer Hood and Pat Morin (Carleton University). The
committee was impressed by the way this drawing manages to illustrate the
global structure of the graph while still making it possible to follow individual
paths and board positions. The global structure is nicely visualized by present-
ing the nodes in three columns, indicating which player will win upon optimal
play, and nine rows, indicating the ply of the positions. Edge colors distinguish
between move types (optimal or non-optimal, which player made the move, and
which player wins). The committee especially liked the use of variable node
sizes, making them small where necessary without affecting other parts of the

4 http://live.yworks.com/gd2015-contest/TicTacToe/.

http://live.yworks.com/gd2015-contest/TicTacToe/

536 P. Kindermann et al.

drawing. Similarly, the committee liked the use of solid edges for the (relatively)
small set of optimal-play edges and more faded colors for the non-optimal-play
edges. Presenting the optimal-play edges (straight) in a different style than the
non-optimal-play edges (orthogonal) further enhances their visual distinction.

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to solve the graphs using a supplied
tool), or in the automatic category (in which they could use their own software
to solve the graphs). At the same time, remote participants could also take part
in the automatic category.

The challenge focused on minimizing the number of crossings in a book
embedding with k pages. The input graphs are arbitrary undirected graphs and
a maximum number of pages that may be used.

A book with k pages consists of k half-spaces, the pages, that share a single
line, the spine of the book. A k-page book embedding of a graph is an embedding
of a graph into a book with k pages such that all the vertices lie at distinct
positions of the spine and every edge is drawn in one of the pages such that only
its endpoints touch the spine.

Note that edges may only cross if they are assigned to the same page. We
are looking for drawings that minimize the number of crossings. The results are
judged solely with respect to the number of crossings; other aesthetic criteria are
not taken into account. This allows an objective way to qualitatively evaluate a
given drawing.

3.1 Manual Category

In the manual category, participants were presented with five graphs. These were
arranged from small to large and chosen to highlight different types of graphs
and graph structures. For illustration, we include the first graph in its initial
state and the best manual solution we received (by team snowman). For the
complete set of graphs and submissions, refer to the contest website.

We are happy to present the full list of scores for all teams. The numbers listed
are the number of crossings in each graph; the horizontal bars visualize the
corresponding scores.

Graph Drawing Contest Report 537

The winning team is team snowman, consisting of Boris Klemz, Ulf Rüegg, and
Fabian Lipp!

3.2 Automatic Category

In the automatic category, participants had to solve the same five graphs as in
the manual category, and in addition another five—much larger—graphs. Again,
the graphs were constructed to have different structure.

Once more, for illustration, we include the first large graph as it looks in the
tool. The graphs themselves can be found on the contest website.

The winning team is team Pepa, consisting of Josef Cibulka!

Acknowledgments. The contest committee would like to thank the generous spon-
sors of the symposium, Dennis van der Wals for programming most of the tool for the
manual category, and all the contestants for their participation. Further details includ-
ing all submitted drawings and challenge graphs can be found at the contest website:
http://www.graphdrawing.de/contest2015/results.html.

http://www.graphdrawing.de/contest2015/results.html

Graduate Workshop Report

Graduate Workshop Recent Trends in Graph
Drawing: Curves, Graphs, and Intersections

Bernardo M. Ábrego, Silvia Fernández-Merchant, and Csaba D. Tóth(B)

Department of Mathematics, California State University Northridge,
18111 Nordhoff street, Los Angeles, CA 91330, USA

{Bernardo.Abrego,Silvia.Fernandez,Csaba.Toth}@csun.edu

The Organizing Committee of GD 2015 hosted a gradate workshop, continuing
the tradition of previous Symposia, focusing on open problems in graph drawing.
The workshop Recent Trends in Graph Drawing: Curves, Graphs, and Intersec-
tions was held at the California State University Northridge, Los Angeles, CA,
September 21–22, 2015, with six invited speakers and 20 registered participants
(including 10 students from Cal State Northridge). The following invited talks
formed the core of the program:

David Eppstein: Realizing Graphs as Polyhedra
Marc van Kreveld: Quality Ratios in Graph Drawing
Maarten Löffler: Drawing What You Do Not Know
Bettina Speckmann: Algorithmic Geo-visualization
Torsten Ueckerdt: Three Ways to Draw a Graph
Alexander Wolff: Simultaneous Drawings with Few Bends

Each morning, three speakers presented recent results in graph drawing, with
an emphasis on open problems. These presentations laid down the groundwork
for research in small groups in the afternoons. The participants and the speakers
discussed new ideas and observations at the end of each day.

We thank the California State University Northridge, the College of Science
and Mathematics, and the Department of Mathematics for their support. In
particular, we thank Yen K. Duong and Rebecca E. Say for their invaluable
help with hosting the Workshop on campus. We also thank all speakers and all
participants for their contributions, and look forward to seeing the results of the
collaboration initiated at the Workshop.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, p. 541, 2015.
DOI: 10.1007/978-3-319-27261-0 44

Posters

L-Visibility Drawings of IC-Planar Graphs

Giuseppe Liotta and Fabrizio Montecchiani(B)

Università degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

A visibility drawing Γ of a planar graph G maps the vertices into non-overlapping
horizontal segments (bars), and the edges into vertical segments (visibilities),
each connecting the two bars corresponding to its two end-vertices. Visibilities
intersect bars only at their extreme points. In a strong visibility drawing, there
exists a visibility between two bars if and only if there exists an edge in G
between the corresponding vertices. Conversely, in a weak visibility drawing, a
visibility may not correspond to an edge of the graph. Every planar graph admits
a weak visibility drawing [9].

The problem of extending visibility drawings to non-planar graphs has been
first addressed by Dean et al. [3]. They introduce bar k-visibility drawings, which
are visibility drawings where each bar can see through at most k distinct bars. In
other words, each visibility segment can intersect at most k bars, while each bar
can be intersected by arbitrary many visibility segments. The graphs that admit
a bar 1-visibility drawing are called 1-visibile. Brandenburg and independently
Evans et al. prove that 1-planar graphs, i.e., those graphs that can be drawn
with at most one crossing per edge, are 1-visible [1,5]. They focus on a weak
model, where there is a visibility through at most k bars if there is an edge,
while the converse may not be true. In terms of readability, a clear benefit
of bar k-visibility drawings is that the crossings form right angles. Right-angle
crossing (RAC) drawings and their advantages in terms of readability have been
extensively studied in the graph drawing literature (see, e.g., [4]). However, in a
bar k-visibility drawing crossings involve bars and visibilities, i.e., vertices and
edges. These crossings are arguably less intuitive than crossings between edges.

Evans et al. introduce a new model of visibility drawings, called L-visibility
drawings [6]. Their aim is to simultaneously represent two plane st-graphs Gr

and Gb (whose union might be non-planar). Each vertex is represented by a
horizontal bar and a vertical bar that share an extreme point, i.e. it is an L-
shape in the set . They assume a strong model, where two L-shapes
are connected by a vertical (horizontal) visibility segment if and only if there
exists an edge in Gr (Gb) between the corresponding vertices. Also, no two L-
shapes cross one another, and visibilities intersect bars only at their extreme
points. The only crossings are between vertical and horizontal visibilites, i.e.,
between edges of the graph. These crossings form right angles.

In this poster we present results on weak L-visibility drawings of non-planar
graphs. We focus on IC-planar graphs, which are those graphs that admit a
drawing where each edge is crossed at most once, and no two crossed edges share
an end-vertex (see , e.g., Fig. 1(a)). Their chromatic number is at most five [7],

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 545–547, 2015.
DOI: 10.1007/978-3-319-27261-0 45

546 G. Liotta and F. Montecchiani

1

2
3

45

6 7

8
9

1011

12
13

(a)
1

2 3

4

5

13

6

7
8

9

10
11
12

(b)

1
2 3

4
5

13

6

7
8

9

10
11

12

(c)

Fig. 1. (a) An IC-plane graph G. (b) An L-visibility drawing of G. (c) A RAC drawing
of G.

and they have at most13n/4− 6 edges, which is a tight bound [10]. Recognizing
IC-planar graphs is NP-hard [2].

Our main contribution is summarized by the following theorem. See Fig. 1(b)
for an example of a L-visibility drawing computed by using Theorem1.

Theorem 1. Every n-vertex IC-plane graph G admits an L-visibility drawing
in O(n2) area, which can be computed in O(n) time.

Theorem1 contributes to the rapidly growing literature devoted to the prob-
lem of drawing “nearly planar” graphs, where only some types of edge crossings
are allowed. Brandenburg et al. recently described a cubic-time algorithm that
computes straight-line RAC drawings of IC-planar graphs. These drawings may
require exponential area, which is worst-case optimal [2]. They leave as an open
problem to study techniques that compute IC-planar drawings in polynomial
area and with good crossing resolution [2]. As a byproduct of Theorem1, we
obtain the following corollary (see Fig. 1(c)).

Corollary 1. Every n-vertex IC-plane graph G admits a RAC drawing with at
most two bends per edge in O(n2) area, which can be computed in O(n) time.

For complete proofs of the presented results the reader can refer to [8].

References

1. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

2. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-
chiani, F.: Recognizing and drawing IC-planar graphs. In: Di Giacomo, E., Lubiw,
A. (eds.) GD 2015. LNCS, vol. 9411, pp. 295–308. Springer, Heidelberg (2015)

3. Dean, A.M., Evans, W.S., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.:
Bar k-visibility graphs. J. Graph Algorithms Appl. 11(1), 45–59 (2007)

4. Didimo, W., Liotta, G.: The crossing angle resolution in graph drawing. In: Pach,
J. (ed.) Thirty Essays on Geometric Graph Theory. Springer, New York (2012)

5. Evans, W.S., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.K.: Bar 1-
visibility graphs vs. other nearly planar graphs. J. Graph Algorithms Appl. 18(5),
721–739 (2014)

L-Visibility Drawings of IC-Planar Graphs 547

6. Evans, W.S., Liotta, G., Montecchiani, F.: Simultaneous visibility representations
of plane st-graphs using L-shapes. In: Mayr, E.W., (ed.) WG 2015. LNCS. Springer
(2015, to appear)

7. Král, D., Stacho, L.: Coloring plane graphs with independent crossings. J. Graph
Theory 64(3), 184–205 (2010)

8. Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. arXiv,
(2015) http://arxiv.org/abs/1507.08879

9. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar
graphs. Discr. Comput. Geom. 1(1), 321–341 (1986)

10. Zhang, X., Liu, G.: The structure of plane graphs with independent crossings
and its applications to coloring problems. Central Europ. J. Math. 11(2), 308–321
(2013)

http://arxiv.org/abs/1507.08879

On the Relationship Between Map Graphs
and Clique Planar Graphs

Patrizio Angelini1(B), Giordano Da Lozzo2(B), Giuseppe Di Battista2(B),
Fabrizio Frati2(B), Maurizio Patrignani2(B), and Ignaz Rutter3(B)

1 Tübingen University, Tübingen, Germany
angelini@informatik.uni-tuebingen.de

2 Roma Tre University, Rome, Italy
{dalozzo,gdb,frati,patrigna}@dia.uniroma3.it

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
rutter@kit.edu

A map graph is a contact graph of internally-disjoint regions of the plane, where
the contact can be even a point. Namely, each vertex is represented by a simple
connected region and two vertices are connected by an edge iff the corresponding
regions touch. Map graphs are introduced in [2] to allow the representation of
graphs containing large cliques in a readable way.

A clique planar graph is a graph G = (V,E) that admits a representation
where each vertex u ∈ V is represented by an axis-parallel unit square R(u) and
where, for some partition of V into vertex-disjoint cliques S = {c1, . . . , ck}, each
edge (u, v) is represented by the intersection between R(u) and R(v) if u and
v belong to the same clique (intersection edges) or by a non-intersected curve
connecting the boundaries of R(u) and R(v) otherwise (link edges); see Fig. 1(c).
Clique planar graphs are introduced in [1], where it is mainly addressed the case
where the clique partition S is given.

Figure 2 provides an example of a graph that is both a map graph and a
clique planar graph. In [1] it is argued that there are graphs that admit a clique-
planar representation while not admitting any representation as a map graph,
and vice versa. In this poster we exhibit such counterexamples, establishing that
neither of the classes of map graphs and of clique planar graphs is contained in
the other.

Lemma 1. There exists a clique planar graph that is not a map graph.

Proof. Consider the graph G of Fig. 2(a). Observe that G is not planar since
vertices 1, 3, 4, 5, and 6 (filled red in Fig. 2(a)) form a K5 subdvision. However,
graph G is clique planar (see Fig. 2(b)). If G were also a map graph, some edges
could be represented by regions sharing a point. Since only the two triangles
1, 2, 3 and 4, 5, 6 could be represented in such a way, this would imply the pla-
narity of a graph G′ obtained from G by possibly augmenting one or both of
such triangles to wheels, which is not planar as G′ ⊆ G (see Fig. 2(a) and (c)). ��

Work partially supported by MIUR project AMANDA, prot. 2012C4E3KT 001, by
DFG grant Ka812/17-1, and by DFG grant WA 654/21-1.

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 548–550, 2015.
DOI: 10.1007/978-3-319-27261-0 46

On the Relationship Between Map Graphs and Clique Planar Graphs 549

C

H

E

I

A

B

D

G

F

L

K

J

M

N

(a)

C

H

E

I

A

B

D

GF

L

K

J

M

N

(b)

A

B C

D

E

F G

H

I
J

L

K
M

N

(c)

Fig. 1. A graph (a) that is both a map graph (b) and a clique planar graph (c) (Color
figure online).

4

5

6

1

2

3

7
8

9 10

11

12
13

14

(a)

4
5

6

7
8

9

10

11

12

13

14

3
2

1

(b)

4

5
6

1

2

3

7 8
9

10

11

12

13

14

(c)

Fig. 2. A graph (a) that is clique planar (b) but not a map graph (c) (Color figure
online).

Lemma 2. There exists a map graph that is not a clique planar graph.

Fig. 3. A map graph that is
not clique planar.

Proof. Consider a graph Gh = (V,E) composed by
three sets V1, V2, and V3 of h vertices each, where
the graph induced by V1 ∪ V2 is a clique and the
graph induced by V2 ∪V3 is a clique. Figure 3 shows
that Gh is a map graph. Observe that in any par-
tition S of V into vertex-disjoint cliques there are
at least h/2 vertices in V2 that do not fall into the
same clique with the vertices of V1 or V3. The link
edges among such vertices induce a Kh

2 ,h
. Hence,

for h = 6 the clique planarity of G6 would imply
the planarity of K3,3. ��
By Lemmas 1 and 2 we have the following.

Theorem 1. Map Graphs �⊆ Clique Planar Graphs ∧ Clique Planar Graphs �⊆
Map Graphs.

550 P. Angelini et al.

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. In: Di Giacomo, E., Lubiw, A. (eds.)
GD 2015. LNCS, vol. 9411, pp. 217–230. Springer, Heidelberg (2015)

2. Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138
(2002)

PED User Study

Till Bruckdorfer(B), Michael Kaufmann, and Simon Leibßle

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen,
Tübingen, Germany

tillbruck@googlemail.com

Partial edge drawing (PED) is a model for a straight-line drawing of a graph,
where edges are subdivided into three parts in order to drop the middle part.
The remaining parts are called stubs and may not cross. While Burch et al. [1]
investigated the usefulness of this model for directed graphs, we focused on
undirected graphs and considered PEDs where every stub length is 1/4 of the
length of the corresponding edge, so-called 1/4-SHPEDs [2,3]. In particular we
investigated 1/4-nSHPEDs, i.e., 1/4-SHPEDs where stubs may cross and thus
always exist. We developed a controlled on-line user study and claimed that the
1/4-nSHPED model is more readable and understandable than the traditional
straight-line model in terms of completion time (CT) and error rate (ER) for
tasks testing adjacency and accessibility of vertices.

Design: In our study, we chose graphs randomly ensuring a specific vertex con-
nectivity [4]. We generated small graphs with 18 vertices and 30 edges and
midsize graphs with 25 vertices and 47 edges. Using a force-directed layout algo-
rithm [6] we produced drawings in the traditional straight-line model (TRA),
and in the 1/4-nSHPED model (PED). Tasks were taken from [5] for evaluating
the “adjacency” and “accessibility” of a vertex: 1. Which vertex is the farthest
Euclidean distance neighbour of v? 2. Do vertices v and w have graph distance
2? To reduce cognitive load each task was considered in a separate block. We
randomly chose vertices s.t. (1) the solution of the task is unique, (2) v and w
are not on the convex hull, and (3) deg(v) ≈ 5 for Task 1, while deg(v) ≥ 3 and
deg(w) ≥ 2 for Task 2. We supported the search for vertices by marking them
fat. Participants have been introduced to the model, the intuition behind and
introductory examples. The continue-on-demand design allowed users to adjust
themselves on the next task. The participants classified themselves into an expe-
rience level between 1 and 6. Since almost all participants had some experience
with graphs, we evaluated only the levels 4 to 6 to get comprehensive results.
Our four study variables were the drawing model ∈ {PED,TRA}, the graph
size ∈ {18, 25}, the task ∈ {1, 2} and the level of experience ∈ {1, ..., 6}. By
repeated-measures design we tested every configuration twice, which resulted in
8 randomly permuted trials per block.

Results: From the 85 participants we averaged ER and CT over the number
of participants in each level, see scatterplot in Fig. 1. ER and CT is smaller
for most of the results in Task 2 w.r.t. Task 1. We observed that in Task 1
the CT is smallest for midsize TRA and highest for midsize PED. Also ER is
smallest for small PEDs and highest for midsize TRAs, similar as midsize PEDs.
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 551–553, 2015.
DOI: 10.1007/978-3-319-27261-0 47

552 T. Bruckdorfer et al.

Fig. 1. The scatterplot shows the averaged results w. r. t. the variables (model, task,
size, level) in different attributes of graphical visualization (shape, orientation, size,
color).

In Task 2 CT was smallest for all TRAs, and midsize PEDs required significantly
the highest time, while the ER was small for all but midsize TRAs. Surprisingly
in Task 1 TRA supports midsize graphs and PED the small ones. Conclusively
the results do not falsify or significantly strengthen our hypothesis.

Discussion: Due to the small study size, we had to trust the self classification
of participants and “breaks” between two trials were impossible (otherwise we
could have used the same graph in both models). Thus we took graphs with
comparable statistical properties, but we did not prevent the possibility to acci-
dentally pick two graphs with significantly different difficulty. Also distractions
from environment, handling problems or no unifying screen resolution may have
influenced the task completion times. Since most of the participants were used
to TRA, it performed sometimes better than expected. In future work we want
to compare these TRA layouts with layouts supporting 1/4-SHPEDs. We also
like to investigate further graph sizes and stub sizes, as well as to control the
error rate with presenting drawings for a fixed number of seconds.

References

1. Burch, M., Vehlow, C., Konevtsova, N., Weiskopf, D.: Evaluating partially drawn
links for directed graph edges. In: Speckmann, B. (ed.) GD 2011. LNCS, vol. 7034,
pp. 226–237. Springer, Heidelberg (2011)

2. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. In: Didimo, W.,
Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 67–78. Springer, Heidelberg
(2013)

PED User Study 553

3. Bruckdorfer, T., Kaufmann, M.: Mad at edge crossings? break the edges!. In:
Kranakis, E., Krizanc, D., Luccio, F. (eds.) FUN 2012. LNCS, vol. 7288, pp. 40–50.
Springer, Heidelberg (2012)

4. Barabasi, A.-L., Albert, R.: Emergence of scaling in random networks. Sci.
286(5439), 509–512 (1999)

5. Lee, B., Plaisant, C., Parr, C.S., Fekete, J.-D., Henry, N.: Task taxonomy for graph
visualization. In: BELIV 2006, pp. 1–5. ACM (2006)

6. yWorks GmbH, yFiles graph library. http://www.yworks.com. Accessed February
2015

http://www.yworks.com

SVEN: An Alternative Storyline Framework
for Dynamic Graph Visualization

Dustin L. Arendt(B)

Pacific Northwest National Laboratory, Richland, USA
dustin.arendt@pnnl.gov

1 Poster Abstract

The world is a dynamic place, so when we use graphs to help understand real
world problems the structure of such graphs inevitably changes over time. Under-
standing this change is important, but often challenging. Techniques for gen-
eral purpose dynamic graph visualizations generally fall into one of two broad
categories: animation or timeline based techniques [2]. Simple approaches using
animation or small multiples experience challenges with change blindness and
“preserving the user’s mental map” [1]. Storyline visualization techniques [5,7]
hold promise, though these techniques were not originally designed as general
purpose solutions for dynamic graph visualization.

There are well established criteria for drawing aesthetically pleasing story-
lines, which are to minimize (1) line crossings, (2) line wiggles, and (3) white
space [5]. Past work has approached this problem by using evolutionary or
quadratic [3,6] optimization techniques, developing complex ad-hoc solutions [5],
or not addressing all of the established aesthetic criteria [7]. Our contribution
is a framework that divides the overall storyline drawing problem (including
addressing the three aesthetic criteria mentioned above) into relatively simple
sub-problems having well-known solutions. We refer to this framework as “Sto-
ryline Visualization of Events on a Network” (SVEN).

Input for SVEN can take the form of a contact sequence, which is a list of edges
and associated time stamps. Edges in a contact sequence are assumed to represent
instantaneous interactions and can repeat at different times. This data is trans-
formed into “interaction sessions” [5] by discretizing time into several windows
and finding communities that partitions the nodes into densely connected groups
for each time window, similar to [7]. These groups are represented as nodes in a
directed acyclic graph whose edges represent the flow of nodes between communi-
ties in adjacent time windows. We employ Graphviz’s “dot” algorithm, a directed
graph layout technique, to determine an ordering for all groups of storylines that
has few crossings. Determining which lines will be straightened (without chang-
ing the order of groups) is framed as a maximum weighted independent set prob-
lem and solved using a simple greedy algorithm [4]. Effective use of whitespace is
found by defining the previous ordering and straightening properties as inequality
and equality constraints in a linear program. The linear program’s objective is to
minimize the sum total distance between groups and an optimal solution is found
quickly using an off the shelf solver.
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 554–555, 2015.
DOI: 10.1007/978-3-319-27261-0 48

SVEN: An Alternative Storyline Framework 555

To date, we have demonstrated SVEN by generating visualizations of several
benchmark movie datasets: Star Wars, Inception, The Matrix (see [6]). A com-
parison of the runtime performance of our framework against previous work will
be important to evaluate the efficiency of the proposed framework. We note that
the available literature on storyline visualization leaves much room for further
evaluation of the scalability of the algorithms and techniques for storyline visu-
alization, both in terms of usability and runtime performance. For future work,
we could employ random dynamic network models to thoroughly evaluate our
proposed method.

We believe that scalability challenges inherent to storyline visualizations can
be mitigated partially through established interactive visualization patterns such
as effective overviews, zooming (temporal), and degree of interest filtering of
nodes. Along these lines, we are currently building a standalone web-based appli-
cation around SVEN that includes capabilities to zoom in on an arbitrary time
window, filter out uninteresting nodes, and obtain details about a particular
node’s interactions over time. The interface also provides alternate views of the
data which include node-link and adjacency matrix representations of the inter-
actions within a given time window. We also plan to extend this framework for
visualizing many other types of data that can be described simply as “changing
group membership.”

References

1. Archambault, D., Purchase, H., Pinaud, B.: Animation, small multiples, and the
effect of mental map preservation in dynamic graphs. IEEE Trans. Visual. Comput.
Graph. 17(4), 539–552 (2011)

2. Beck, F., Burch, M., Diehl, S., Weiskopf, D.: The State of the Art in Visualizing
Dynamic Graphs. EuroVis, STAR (2014)

3. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: StoryFlow: tracking the evolution of
stories. IEEE Trans. Visual. Comput. Graph. 19(12), 2436–2445 (2013)

4. Sakai, S., Togasaki, M., Yamazaki, K.: A note on greedy algorithms for the maximum
weighted independent set problem. Discrete Appl. Math. 126, 313–322 (2003)

5. Tanahashi, Y., Hsueh, C.H., Ma, K.L.: An efficient framework for generating story-
line visualizations from streaming data. IEEE Trans. Visual. Comput. Graph. 6(1),
1–1 (2015)

6. Tanahashi, Y., Ma, K.L.: Design considerations for optimizing storyline visualiza-
tions. IEEE Trans. Visual. Comput. Graph. 18(12), 2679–2688 (2012)

7. Vehlow, C., Beck, F., Auwärter, P., Weiskopf, D.: Visualizing the evolution of com-
munities in dynamic graphs. Comput. Graph. Forum 34, 277–288 (2015)

Knuthian Drawings of Series-Parallel Flowcharts

Michael T. Goodrich(B), Timothy Johnson, and Manuel Torres

Department of Computer Science, University of California, Irvine, CA, USA
goodrich@acm.org, {tujohnso,mrtorres}@uci.edu

Introduction. In 1963, Knuth published the first paper on a computer algo-
rithm for a graph drawing problem, entitled “Computer-drawn Flowcharts” [8].
In this paper, Knuth describes an algorithm that takes as input an n-vertex
directed graph G that represents a flowchart and, using the modern language
of graph drawing, produces an orthogonal drawing of G. In Knuth’s algorithm,
every vertex is given the same x-coordinate and every edge has at most O(1)
bends, so that drawings produced using his algorithm can be output line-by-line
on an (old-style) ASCII line printer and have worst-case area at most O(n2).
Some drawbacks of his approach are that his drawings can be highly non-planar,
even if the graph G is planar, and his drawings can have very poor aspect ratios,
since every vertex is drawn along a vertical line. Nevertheless, his drawings pos-
sess an additional desirable property that has not been specifically addressed
since the time of his seminal paper, which we revisit in the present work.

Specifically, inspired by his drawing convention, we say that a directed
orthogonal graph drawing is Knuthian if there is no vertex having an incident
edge locally pointing upwards unless that vertex is a junction node, that is, a ver-
tex having in-degree strictly greater than its out-degree. This property (rotated
180 degrees) is related to previously-studied concepts known as “upward” or
“quasi-upward” drawing conventions [3–5], where all edges must locally enter a
vertex from below and leave going up.

Our Results. In this poster, we announce efficient algorithms for producing
Knuthian drawings of degree-three acyclic series-parallel directed graphs, that
is, directed orthogonal drawings where vertices are represented as small rec-
tangles or squares and edges are directed paths of horizontal and vertical seg-
ments. These are equivalent to the flowcharts of loop-free algorithms. We provide
a recursive linear-time algorithm for producing such drawings of degree-three
acyclic series-parallel digraphs and we show that such a graph with n vertices
has a Knuthian drawing with width O(n) and height O(log n). We then show
how to “wrap” this drawing, while still maintaining it to be Knuthian, to fit
within a fixed width, so that the area is O(n log n) and the aspect ratio is con-
stant. Our drawings strive to achieve few edge bends, both in the aggregate and
per edge. Our drawing approach contrasts with previous approaches to drawing
series-parallel graphs, including the standard recursive split-join-and-compose
method and Knuth’s original method [8], as well as more recent methods for
drawing series-parallel graphs (e.g., see [1,2,7]). For details, please see the full
version of this paper [6].

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 556–557, 2015.
DOI: 10.1007/978-3-319-27261-0 49

Knuthian Drawings of Series-Parallel Flowcharts 557

Knuthian Drawings of Series-Parallel Flowcharts with O(n log n) Area.
We show that any n-vertex degree-three series-parallel graph has a Knuthian
drawing with O(n log n) area.

Theorem 1. A degree-three series-parallel graph with n vertices has a Knuthian
drawing with width O(n) and height O(log n), such that each edge has at most
two bends and the total number of bends is at most 1.25n.

Fixed-Width Drawings. We show how to adapt our O(n log n)-area drawings,
which admittedly have poor aspect ratios, so that they achieve constant aspect
ratios, proving the following theorem.

Theorem 2. A degree-three series-parallel graph with n nodes has a Knuthian
drawing that can be produced in linear time to have width O(A+log n) and height
O((n/A) log n), for any given A ≥ log n; hence, the area is O(n log n). The total
number of bends is at most 3.5n + o(n).

Experimental Results. We tested our Knuth drawing algorithm algorithm on
some sample degree-three series-parallel graphs, based on two distributions used
to create random binary series-parallel decomposition trees.

Acknowledgments. This work was supported in part by the NSF under grants
1011840 and 1228639 and DARPA under agreement no. AFRL FA8750-15-2-0092. The
views expressed are those of the authors and do not reflect the official policy or position
of the Department of Defense or the U.S. Government.

References

1. Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to draw
a series-parallel digraph. Int. J. Comput. Geom. Appl. 04(04), 385–402 (1994)

2. Biedl, T.: Small drawings of outerplanar graphs, series-parallel graphs, and other
planar graphs. Discrete Comput. Geom. 45(1), 141–160 (2011)

3. Chan, T.M., Goodrich, M.T., Kosaraju, S., Tamassia, R.: Optimizing area and
aspect ratio in straight-line orthogonal tree drawings. Comput. Geom. 23(2), 153–
162 (2002)

4. Di Battista, G., Didimo, W., Patrignani, M., Pizzonia, M.: Orthogonal and quasi-
upward drawings with vertices of prescribed size. In: Kratochv́ıl, J. (ed.) GD 1999.
LNCS, vol. 1731, pp. 297–310. Springer, Heidelberg (1999)

5. Garg, A., Goodrich, M.T., Tamassia, R.: Planar upward tree drawings with optimal
area. Int. J. Comput. Geom. Appl. 06(03), 333–356 (1996)

6. Goodrich, M.T., Johnson, T., Torres, M.: Knuthian drawings of series-parallel flow-
charts. ArXiv ePrint, (2015). http://arxiv.org/abs/1508.03931

7. Hong, S.-H., Eades, P., Lee, S.-H.: Drawing series parallel digraphs symmetrically.
Comput. Geom. 17(34), 165–188 (2000)

8. Knuth, D.E.: Computer-drawn flowcharts. Commun. ACM 6(9), 555–563 (1963)

http://arxiv.org/abs/1508.03931

Gestalt Principles in Graph Drawing

Stephen G. Kobourov1, Tamara Mchedlidze2(B), and Laura Vonessen1

1 Department of Computer Science, University of Arizona, Tucson, USA
2 Institute of Theoretical Informatics, Karlsruhe Institute of Technology,

Karlsruhe, Germany
mched@iti.uka.de

1 Introduction

Gestalt principles are rules for the organization of perceptual scenes. They were
introduced in the context of philosophy and psychology in the 19th century and
were used to define principles of human perception in the early 20th century.
The Gestalt (form, in German) principles include, among others: proximity, the
grouping of closely positioned objects; similarity, the grouping of objects of sim-
ilar shape or color; continuation, the grouping of objects that form a continuous
pattern; and symmetry, the grouping of objects that form symmetric patterns.
Gestalt principles have been extensively applied in user interface design, graphic
design, and information visualization.

2 Gestalt Principles in Graph Drawing

Several graph drawing conventions and aesthetics seem to rely on Gestalt princi-
ples [1,4,6,8]. In this poster we describe various such relationships; correspond-
ing illustrations can be found in the poster. We believe that such relationships
should be further explored and experimentally tested.

Continuation. The principle of continuation suggests that we find it easier to
perceive smooth and continuous outlines between points over lines with sudden or
irregular changes in direction. That is, we perceive elements as a group when they
form a continuous pattern. Moreover, such a pattern will be assumed to continue
even if some parts of it are hidden. The principle of continuation appears often in
node-link diagrams and is mainly relevant to the drawing and interpretation of
edges and paths. The edges of node-link diagrams are often drawn as polylines,
using bend points. The principle of continuation suggests that an edge can be
more easily followed by the eye when it has few bends which are not sharp. This
idea is exploited in slanted orthogonal drawings, which are orthogonal drawings
where 90◦ bends are replaced by diagonal segments.

The continuation principle also seems to be at play in graph drawings with
smooth curves, which can be followed by the eye easier than a polyline edge.
These curvilinear edges can also be joined together to form edge bundles. Edge
bundled drawings and confluent drawings, which represent each (non) edge as
a (non) smooth curve, exploit the continuity principle as a human preference
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 558–560, 2015.
DOI: 10.1007/978-3-319-27261-0 50

Gestalt Principles in Graph Drawing 559

of smooth curves over curves with abrupt changes of direction. The principle of
continuation also allows us to omit parts of a straight-line edge, relying on our
perception to “fill in” the missing parts. Such partially drawn edges have been
proposed several times as a way to avoid edge crossings [3].

When searching for a path between two nodes, people prefer geodesic paths
as these paths are more “continuous” than non-geodesic ones [2]. This notion
of geodesic paths underlies greedy, monotone, self-approaching and increasing-
chord drawings. The preference of geodesic paths seems to be responsible for
the confusion caused by crossings that form small angles. Such crossings trigger
extra back-and-forth eye movements [2]. Thus when searching a path from a
source to a target node, our eyes try to follow a path towards the target node,
and if a crossing edge points towards a potential target it is possible to deviate
from the correct path, before reaching the next vertex of the path.

Proximity. The principle of proximity suggests that elements close to each
other are perceived as a group. In a node-link diagram this results in nodes
which are close to each other being perceived as groups forming clusters. Most
of the algorithms to visualize clustered graphs in the form of a node-link diagram
rely on this intuition [7]. The principle of proximity is also used by force-directed
algorithms, which require that adjacent nodes are close (attractive forces), and
that non-adjacent nodes are far apart (repulsive forces). Finally, the proximity
principle is at the base of proximity drawings.

Similarity. The similarity principle suggests that objects of similar shape or
color are perceived as groups. Nodes in a node-link diagram are often given
the same color to indicate they belong to the same cluster. They are given the
same size to indicate their equal importance. The same shape implies similar
properties. The desire to obtain uniform edge lengths for unweighted graphs
seems also to capture the notion of equal importance of the relationships between
adjacent nodes. Finally, directed upward drawings indicate similar hierarchical
relations between the corresponding pairs of nodes.

Symmetry. The symmetry principle suggests that symmetrical components
tend to be grouped together. As a property of node-link diagrams, it is highly
preferred by humans [5,6]. However, it is difficult to formalize symmetry of a
node-link diagram and to provide a computable measure for it. It has been
suggested that straight-line drawings of graphs can become more aesthetically
pleasing if the number of edge slopes is relatively small. This kind of aesthetic
could be explained by the local symmetries that are created by the similarity of
incident edges’ slopes around their respective nodes.

References

1. Bennett, C., Ryall, J., Spalteholz, L., Gooch, A.: The aesthetics of graph visualiza-
tion. In: Computational Aesthetics 2007, pp. 57–64 (2007)

2. Huang, W., Eades, P., Hong, S.-H.: Beyond time and error: a cognitive approach to
the evaluation of graph drawings. In: BELIV 2008, pp. 3:1–3:8 (2008)

560 S.G. Kobourov et al.

3. Rusu, A., Fabian, A., Jianu, R., Rusu, A.: Using the Gestalt principle of closure to
alleviate the edge crossing problem in graph drawings. In: IV 2011, pp. 488–493,
July 2011

4. Sun, D., Wong, K.: On evaluating the layout of UML class diagrams for program
comprehension. In: IWPC 2005, pp. 317–326, May 2005

5. Eades, P., Hong, S.-H.: Symmetric graph drawing. In: Tamassia, R. (ed.) Handbook
of Graph Drawing and Visualization. Discrete Mathematics and Its Applications.
Chapman & Hall/CRC, Boca Raton (2007). ISBN 1584884126

6. van Ham, F., Rogowitz, B.: Perceptual organization in user-generated graph layouts.
IEEE Trans. Visual. Comput. Graph. 14(6), 1333–1339 (2008)

7. Vehlow, C., Beck, F., Weiskopf, D.: The state of the art in visualizing group struc-
tures in graphs. In: Eurographics Conference on Visualization (EuroVis) - STARs
(2015)

8. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph
aesthetics. Inf. Visual. 1(2), 103–110 (2002)

Drawing Graphs Using Body Gestures

Yeganeh Bahoo(B), Andrea Bunt, Stephane Durocher,
and Sahar Mehrpour

Department of Computer Science, University of Manitoba, Winnipeg, Canada
{bahoo,bunt,durocher,mehrpour}@cs.umanitoba.ca

Abstract. We introduce a new gesture-based user interface for drawing
graphs that recognizes specific body gestures using the Microsoft Kinect
sensor. Our preliminary user study demonstrates the potential for using
gesture-based interfaces in graph drawing.

Traditional input devices for manual data entry of graphs include mice, key-
boards, and touch screens. Humans naturally communicate using body gestures.
Recent research explores body or mid-air gestures as a form of interaction, par-
ticularly when using traditional input devices may be unintuitive or undesir-
able. Inspired by advances in gesture-based input technologies, we investigate
the application of mid-air gestures to graph drawing. We created a prototype
system called KiDGraD (using Kinect to Detect skeletons for Graph Drawing),
which uses a Microsoft Kinect to recognize a limited set of body gestures designed
to allow the user to manipulate a graph’s nodes and edges. We conducted a pre-
liminary user evaluation examining the perceived naturalness of our proposed
gesture set and users’ attitudes towards our general approach. Feedback from
this initial user study suggests that gesture-based graph drawing has a number
of potential applications, motivating future research into improved recognition
capabilities as well as effective and expressive gesture sets.

Prior research on gesture-based interactions has focused on both gestures
on digital surfaces (e.g., multi-touch gestures on digital tables [3]) and on mid-
air gestures, where sensors and cameras are used to detect body movements
(e.g., [2]). While a number of systems exist for inputting and editing graphs
(e.g., [1]), there is limited prior research examining the use of non-traditional
user interfaces for drawing or editing graphs from human input. To the authors’
knowledge, this work is the first to examine a mid-air gesture-based user interface
for graph drawing.

The KiDGraD user interface includes a drawing area, consisting of a grid
illustrating the graph and overlayed with a sketch of the user’s detected skeleton,
a sidebar to access commands, and a header that displays the active command.
The system implements five operations: adding nodes, deleting nodes, adding
edges, deleting edges, and reset. A user can activate commands in one of two
ways: performing the corresponding gesture (see Fig. 1) or using the sidebar.

This research was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 561–562, 2015.
DOI: 10.1007/978-3-319-27261-0 51

562 Y. Bahoo et al.

(a) (b) (c) (d)

Fig. 1. The Add Node, Add Edge, Delete Node, and Delete Edge gestures.

As a first proof-of-concept exploration of our gesture-based approach to graph
drawing, we conducted an informal usability study with ten participants. The
goals of the study were to gain initial insight into the intuitiveness and ease of the
gestures, as well as to elicit feedback from users on the potential strengths and
limitations of this approach. We asked participants to interact with KiDGraD by
drawing a number of sample graphs, after which we solicited feedback on both
the system concept and the gesture set.

Participants responded quite enthusiastically to the system and the idea of
using gestures to draw graphs. With mean responses of 4.0 or greater on a 5-point
Likert scale, participants appeared to find the system fun, simple to use, and
relatively efficient. Responses for comfort and the system working as participants
expected were slightly less positive, and participants suggested a number of
potential improvements to both the gesture set and the drawing interface. The
post-session interviews revealed that almost all participants felt that the idea
of using gestures to draw graphs is interesting, and they were excited to move
away from using mice or keyboards.

Once the gesture set and recognition technologies are refined, there are a
number of interesting directions to explore in terms of applications. In partic-
ular, our participants thought that mid-air graph drawing might be beneficial
in educational settings, where the system could be used as an engaging way to
teach children about graphs.

References

1. Fröhlich, M., Werner, M.: Demonstration of the interactive graph visualization sys-
tem da Vinci. In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp.
266–269. Springer, Heidelberg (1995)

2. Jang, S., Elmqvist, N., Ramani, K.: GestureAnalyzer: visual analytics for pattern
analysis of mid-air hand gestures. In: Proceedings of SUI, pp. 30–39 (2014)

3. Pfeuffer, K., Alexander, J., Chong, M.K., Gellersen, H.: Gaze-touch: combining gaze
with multi-touch for interaction on the same surface. In: Proceedings of UIST, pp.
509–518 (2014)

Augmenting Planar Straight Line
Graphs to 2-Edge-Connectivity

Hugo Alves Akitaya1, Jonathan Castello2, Yauheniya Lahoda2(B),
Anika Rounds1, and Csaba D. Tóth1,2

1 Tufts University, Medford, MA, USA
{hugo.alves akitaya,anika.rounds}@tufts.edu, cdtoth@acm.org

2 California State University Northridge, Los Angeles, CA, USA
{jonathan.castello.652,yauheniya.lahoda.428}@my.csun.edu

Abstract. We show that every planar straight line graph (PSLG) with n
vertices can be augmented to a 2-edge-connected PSLG with the addition
of at most �(4n − 4)/3� new edges. This bound is the best possible.

Edge-connectivity augmentation is a classic problem in combinatorial optimiza-
tion motivated by applications in fault-tolerant network design. Given an undi-
rected graph G = (V,E) and a number τ ∈ IN, we want to find a set F of new
edges of minimum cardinality such that G′ = (V,E ∪ F) is τ -edge-connected. In
this note, we consider edge-connectivity augmentation for planar straight line
graphs (PSLG) with n vertices in general position (no three collinear vertices).

Every graph with t ∈ IN components can be augmented into a connected
graph with the addition of t − 1 new edges. Every PSLG with n vertices can
be augmented to a connected PSLG (encompassing graph) with at most n − 1
new edges. Every connected PSLG on n vertices can be augmented to a 2-edge-
connected PSLG with at most �(2n − 2)/3� new edges [3]. Both bounds are the
best possible. The combination of the two bounds implies that every PSLG on
n vertices can be augmented to 2-edge-connectivity with the addition of at most
�5(n − 1)/3� new edges. However, this bound is not tight. We derive a better
bound and show the following.

Theorem 1. Every PSLG with n ≥ 3 vertices can be augmented to a 2-edge-
connected PSLG with the addition of at most �(4n−4)/3� new edges. This bound
is the best possible.

The upper bound in Theorem 1 is attained for a triangulation on k ≥ 3
vertices, with an isolated vertex placed in each of the 2k − 5 bounded faces
and 3 vertices in the outer face that pairwise do not see each other (that is,
n = k + (2k − 5) + 3 = 3k − 2). The proof of the upper bound is constructive
and distinguishes between two cases depending on the number of components in
the graph. Due to space limitation, we give an outline of the proof here.

Let G be a PSLG on n ≥ 3 vertices in general position. Let c be the number
of components in G. In the first case c ≤ �(2n + 1)/3�, and we augment G to a
2-edge-connected PSLG as follows: first use c−1 new edges to obtain a connected
c© Springer International Publishing Switzerland 2015
E. Di Giacomo and A. Lubiw (Eds.): GD 2015, LNCS 9411, pp. 563–564, 2015.
DOI: 10.1007/978-3-319-27261-0 52

564 H.A. Akitaya et al.

PSLG, and then use �(2n − 2)/3� edges to make it 2-edge-connected [3]. The
total number of new edges is at most

(c − 1) +
⌊
2n − 2

3

⌋
≤

⌊
2n + 1

3

⌋
− 1 +

⌊
2n − 2

3

⌋
≤

⌊
4n − 4

3

⌋
. (1)

In the second case, when c ≥ �(2n+1)/3�+1 = �(2n+4)/3�, we develop an
augmentation algorithm that uses a convex subdivision of G. A convex subdivi-
sion H is obtained from G by successively shooting rays from the reflex vertices
of all nonsingleton components of G, similar to [2]. The isolated vertices of G
lie in the interiors of the convex cells of H. For every convex subdivision H
constructed in this way, we derive an upper bound for the number of cells h.

Lemma 1. Let G be a PSLG with n vertices, b bridges, and c components. Then
every convex subdivision of G has at most h ≤ 2n − 2c − b + 1 cells.

We augment G successively with new edges, and we always denote by G′

the current graph. Graph G′ is a planar straight line multigraph (PSLMG). Let
T ⊆ G′ denote the set of nonsingleton connected components in G′.

Our augmentation algorithm works as follows:

1. Construct a convex subdivision H of G. Let C = {Ci : i = 1 . . . h} be the set
of convex cells. Compute T .

2. For each cell Ci ∈ C: (a) for each nonsingleton component adjacent to Ci

select an arbitrary vertex incident to Ci; (b) connect the selected vertices
and singleton vertices in the cell Ci into a simple polygon; (c) recompute T .

3. Replace each bridge of G′ by a double edge.
4. Transform the multigraph G′ into a simple graph.

In step 2 we add c + h − 1 edges. Since we do not create any new bridges
in step 2, we add b edges in step 3. The total number of new edges e′ added is
e′ ≤ c + h − 1 + b. By Lemma1, since c ≥ �(2n + 4)/3�, we obtain:

e′ ≤ c + h − 1 + b ≤ 2n − c ≤ 2n −
⌊
2n + 4

3

⌋
≤

⌊
4n − 4

3

⌋
. (2)

In step 4 we can transform the 2-edge-connected multigraph G′ into a 2-edge-
connected simple graph without increasing the number of edges by Lemma2.

Lemma 2. [1] Let G′ be a 2-edge-connected PSLMG and let e be a double edge
in G′. Then we can obtain a 2-edge-connected PSLMG from G′ by decrementing
the multiplicity of e by one and adding at most one new edge of multiplicity 1.

References

1. Abellanas, M., Garćıa, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the con-
nectivity of geometric graphs. Comput. Geom. 40(3), 220–230 (2008)

2. Bose, P., Houle, M.E., Toussaint, G.T.: Every set of disjoint line segments admits
a binary tree. Discrete Comput. Geom. 26, 387–410 (2001)

3. Tóth, C.D.: Connectivity augmentation in planar straight line graphs. European J.
Combin. 33(3), 408–425 (2012)

Author Index

Ábrego, Bernardo M. 541
Aichholzer, Oswin 335
Akitaya, Hugo Alves 563
Alam, Md. Jawaherul 472
Angelini, Patrizio 217, 409, 548
Arendt, Dustin L. 554
Arleo, Alessio 44
Auber, David 180

Bahoo, Yeganeh 561
Balko, Martin 360
Bannister, Michael J. 260
Barth, Lukas 515
Bekos, Michael A. 125
Biedl, Therese 153, 335
Binucci, Carla 281
Bläsius, Thomas 472
Bokal, Drago 75
Bonichon, Nicolas 180
Bowen, Clinton 447
Bračič, Mojca 75
Brandenburg, Franz J. 295
Brown, David A. 260
Bruckdorfer, Till 395, 409, 551
Bunt, Andrea 561

Carstens, John Julian 139
Castello, Jonathan 563
Chen, Xiaoji 3
Chimani, Markus 281
Chu, Jacqueline 16
Cibulka, Josef 360
Crnovrsanin, Tarik 16

Da Lozzo, Giordano 217, 548
Derňár, Marek 75
Di Battista, Giuseppe 217, 548
Didimo, Walter 44, 272, 281, 295
Dorbec, Paul 180
Dujmović, Vida 87, 321
Duncan, Christian A. 199
Durocher, Stephane 447, 561

Eades, Peter 502
Eppstein, David 87, 260
Evans, William S. 295, 383

Fernández-Merchant, Silvia 541
Frati, Fabrizio 166, 217, 548
Fulek, Radoslav 99, 373

García-Marco, Ignacio 348
Gemsa, Andreas 515
Giacchè, Francesco 272
Goodrich, Michael T. 556
Gronemann, Martin 281

Hackl, Thomas 335
Held, Martin 335
Hliněný, Petr 75
Hoffmann, Michael 166
Holroyd, Alexander E. 3
Hong, Seok-Hee 502
Huber, Stefan 335

Igamberdiev, Alexander 113

Johnson, Timothy 556

Kaufmann, Michael 125, 395, 409, 551
Kerren, Andreas 247
Kindermann, Philipp 295, 531
Klawitter, Jonathan 231
Klein, Karsten 281, 502
Klemz, Boris 433
Knauer, Kolja 348
Kobourov, Stephen G. 395, 558
Kostitsyna, Irina 192
Kratochvíl, Jan 281
Kusters, Vincent 166, 460
Kynčl, Jan 309

Lahoda, Yauheniya 563
Lee, Bongshin 3

Leibßle, Simon 551
Liotta, Giuseppe 44, 295, 383, 545
Lipp, Fabian 52
Löffler, Maarten 423, 447, 531

Ma, Kwan-Liu 16
Mchedlidze, Tamara 409, 558
Mehrpour, Sahar 561
Meijer, Henk 383
Meulemans, Wouter 113, 489
Meyerhenke, Henning 30
Montecchiani, Fabrizio 44, 272, 281, 295,

545
Mustafa, Nabil H. 207

Nachmanson, Lev 3, 531
Nguyen, An 502
Niedermann, Benjamin 515
Nöllenburg, Martin 30, 192, 231, 433, 515

Pach, János 207
Palfrader, Peter 335
Patrignani, Maurizio 217, 548
Pelsmajer, Michael 99
Pennarun, Claire 180
Polishchuk, Valentin 192
Prutkin, Roman 3, 433
Pupyrev, Sergey 395

Radoicic, Rados 373
Riche, Nathalie Henry 3
Rounds, Anika 447, 563

Rüegg, Ulf 139
Rutter, Ignaz 217, 472, 531, 548

Schaefer, Marcus 63, 99
Schmidt, Jens M. 153
Schulz, André 113, 192, 447, 489
Schulz, Christian 30
Schulze, Christoph Daniel 139
Speckmann, Bettina 460
Štefankovič, Daniel 63
Strash, Darren 192

Tollis, Ioannis G. 281
Torres, Manuel 556
Tóth, Csaba D. 423, 447, 541, 563

Ueckerdt, Torsten 231, 472

Valtr, Pavel 360
Vogtenhuber, Birgit 335
von Hanxleden, Reinhard 139
Vonessen, Laura 558

Wismath, Stephen 383
Wolff, Alexander 52, 472
Wood, David R. 87

Zielke, Christian 125
Zimmer, Björn 247
Zink, Johannes 52

566 Author Index

	Preface
	Organization
	Invited Talks
	Shape, Homology, Persistence, and Stability
	Emerging Topics in Network Visualization

	Contents
	Large and Dynamic Graphs
	GraphMaps: Browsing Large Graphs as Interactive Maps
	1 Introduction
	2 Method Description
	3 Experiments
	4 Discussion
	References

	An Incremental Layout Method for Visualizing Online Dynamic Graphs
	1 Introduction
	2 Related Work
	3 An Incremental Algorithm
	3.1 Refinement Method

	4 Evaluation
	4.1 Layout Methods
	4.2 Data Sets
	4.3 Metrics
	4.4 Analysis of Our Layout Method

	5 Conclusion
	References

	Drawing Large Graphs by Multilevel Maxent-Stress Optimization
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts
	2.2 Related Work
	2.3 Maxent-Stress Optimization

	3 Multilevel Maxent-Stress Optimization
	3.1 Coarsening and Initial Layout
	3.2 Uncoarsening and Local Improvement

	4 Experimental Evaluation
	4.1 Influence of Coarse Graph Approximation and Scalability
	4.2 Comparison to Other Drawing Algorithms
	4.3 Dynamic Networks

	5 Conclusions
	References

	A Million Edge Drawing for a Fistful of Dollars
	1 Introduction
	2 A Vertex Centric Spring Embedder
	3 Experiments
	4 Conclusions and Future Research
	References

	Faster Force-Directed Graph Drawing with the Well-Separated Pair Decomposition
	1 Introduction
	2 Algorithm
	3 Experimental Results
	References

	Crossing Numbers
	The Degenerate Crossing Number and Higher-Genus Embeddings
	1 Introduction
	1.1 Known Results

	2 Tools
	3 Removing Self-Crossings
	4 Separating dcr and gcr with Embedding Schemes
	5 Nice Embeddings of Higher Genus Graphs
	6 Open Questions
	References

	On Degree Properties of Crossing-Critical Families of Graphs
	1 Introduction
	2 Preliminaries
	3 Crossing-Critical Families with High Odd Degrees
	4 Families with Prescribed Frequent Degrees
	5 Families with Prescribed Average Degree
	6 Final Remarks
	References

	Genus, Treewidth, and Local Crossing Number
	1 Introduction
	2 Background
	3 k-Planar Graphs
	4 (g,k)-Planar Graphs
	5 Drawings with Few Crossings per Edge
	References

	Hanani-Tutte for Radial Planarity
	1 Introduction
	2 Terminology
	3 Weak Hanani-Tutte for Radial Drawings
	3.1 Working with Even Radial Drawings
	3.2 Proof of Theorem 2

	4 Algorithm
	References

	Experiments
	Drawing Planar Cubic 3-Connected Graphs with Few Segments: Algorithms and Experiments
	1 Introduction
	2 The Deconstruction Algorithm
	3 The Windmill Algorithm
	4 The Mondal Algorithm
	5 Experiments
	5.1 Graphs
	5.2 Measures
	5.3 Algorithm Comparison

	6 Conclusions
	References

	The Book Embedding Problem from a SAT-Solving Perspective
	1 Introduction
	2 SAT Formulation
	2.1 A First Variant to check Hypothesis 3
	2.2 A Second Variant to Check Hypothesis 4
	2.3 A Third Variant to Check Hypothesis 5

	3 Experiments
	4 Conclusions and Discussion
	References

	Size- and Port-Aware Horizontal Node Coordinate Assignment
	1 Introduction
	2 Preliminaries
	3 The Original Algorithm
	4 Size- and Port-Aware Node Coordinate Assignment
	5 Evaluation
	6 Final Remarks
	References

	Area, Bends, Crossings
	Small-Area Orthogonal Drawings of 3-Connected Graphs
	1 Introduction
	2 Preliminaries
	2.1 The 3-Canonical Order
	2.2 Making 3-Connected 4-Graphs 4-Regular

	3 Creating Orthogonal Drawings
	3.1 A Simple Algorithm
	3.2 Improvement via Pairing

	4 Proof of Lemma7
	5 Conclusion
	References

	Simultaneous Embeddings with Few Bends and Crossings
	1 Introduction
	2 Preliminaries
	3 Two Trees
	4 A Planar Graph and a Tree (sketch)
	5 Two Planar Graphs (sketch)
	6 Conclusions
	References

	Rook-Drawing for Plane Graphs
	1 Introduction
	2 Definitions
	3 Planar Rook-Drawing for Outerplane Graphs
	4 Existence of a Planar Rook-Drawing
	5 Polyline Rook-Drawing for Planar Graphs
	5.1 Properties of Schnyder Woods
	5.2 Polyline Rook-Drawing Algorithm

	6 Conclusion
	References

	On Minimizing Crossings in Storyline Visualizations
	1 Introduction
	2 Pairwise Single-Meeting Storylines
	2.1 O(n logn) Crossings for Tree Event Graphs
	2.2 A Lower Bound

	3 An FPT Algorithm for the Storyline Problem
	References

	Maximizing the Degree of (Geometric) Thickness-t Regular Graphs
	1 Introduction
	2 (6t-1)-Regular Thickness-t Graphs
	3 5t-Regular Geometric Thickness-t Graphs
	4 Conclusion and Open Questions
	References

	Intersection Representations
	On the Zarankiewicz Problem for Intersection Hypergraphs
	1 Introduction
	2 Proof of Theorem 1
	3 Proof of Theorem 2
	References

	Intersection-Link Representations of Graphs
	1 Introduction
	2 Intersection-Link Model
	3 Hardness Results on Clique Planarity
	4 Clique-Planarity with Given Vertex Representations
	5 Testing Clique Planarity for Graphs Composed of Two Cliques
	6 Clique Planarity with Given Hierarchy
	7 Conclusions and Open Problems
	References

	Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem
	1 Introduction
	2 Preliminaries
	3 Statement of Results
	3.1 Maximal Triangle-Free Planar Graphs and Rectangle Contact Arrangements
	3.2 Squarability and Line-Pierced Rectangle Arrangements

	4 Bijections Between 4-Orientations, Corner-Edge-Labelings and Rectangle Contact Arrangements -- Proof of Theorem1
	4.1 From Rectangle Arrangements to 4-Orientations
	4.2 From 4-Orientations to Corner-Edge-Labelings
	4.3 From Corner-Edge-Labelings to Rectangle Contact Arrangements

	5 MTP Graphs Are Rectangle Contact Graphs -- Proofsketch of Theorem2
	6 Line-Pierced Rectangle Arrangements and Squarability -- Proofsketch of Theorem3
	7 Conclusions
	References

	Applications
	Displaying User Behavior in the Collaborative Graph Visualization System OnGraX
	1 Introduction
	2 Related Work
	3 Design Decisions
	4 Interaction and Visualization Techniques
	4.1 Annotations and Chat Links
	4.2 Visualizing User Behavior Data with Heat Maps
	4.3 Tracking and Replaying User Actions

	5 Heat Map Evaluation
	6 Conclusions
	References

	Confluent Orthogonal Drawings of Syntax Diagrams
	1 Introduction
	1.1 Software Pipeline
	1.2 Contributions

	2 Global Minimization Heuristics
	3 Local Minimization Heuristics
	3.1 Tail Recursion Loop Back
	3.2 Parallel State Elimination with Squish Heuristic
	3.3 Epsilon Transition Removal
	3.4 Confluent Pinch
	3.5 Implementing the Heuristics

	4 Sugiyama Layering
	5 Experimental Results
	6 Gallery of Examples
	References

	Kojaph: Visual Definition and Exploration of Patterns in Graph Databases
	1 Introduction
	2 Visual Language and User Interface
	3 System Architecture and Integration with Neo4J
	4 Future Work
	References

	Drawings with Crossings
	2-Layer Fan-Planarity: From Caterpillar to Stegosaurus
	1 Introduction
	2 Preliminaries
	3 Biconnected 2-Layer Fan-Planar Graphs
	3.1 Characterization
	3.2 Testing and Embedding Algorithm

	4 Simply Connected 2-Layer Fan-Planar Graphs
	5 Relationship with 2-Layer RAC Drawings
	6 Open Problems
	References

	Recognizing and Drawing IC-Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Straight-Line Drawings of IC-Planar Graphs
	4 Recognizing IC-Planar Graphs
	5 IC-Planarity and RAC Graphs
	6 Conclusion
	References

	Simple Realizability of Complete Abstract Topological Graphs Simplified
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 2
	4 Proof of Theorem 1
	References

	The Utility of Untangling
	1 Introduction
	2 Column Planarity
	3 Universal Point Subsets
	4 (Partial) Simultaneous Geometric Embeddings
	4.1 Without Mapping
	4.2 With Mapping

	5 Conclusion
	References

	Polygons and Convexity
	Representing Directed Trees as Straight Skeletons
	1 Introduction
	1.1 Background
	1.2 Our Results

	2 Trees from Polygons in General Position
	3 Realizing Trees with Labeled Arcs
	4 Arbitrary Node Degrees
	5 Conclusion
	References

	Drawing Graphs with Vertices and Edges in Convex Position
	1 Introduction
	2 Graph Drawings
	2.1 Inclusions of Classes
	2.2 Bounds on Numbers of Edges
	2.3 Further Members of Gss and Gsw
	2.4 Structural Questions

	3 Minkowski Sums
	4 Conclusions
	References

	Drawing Graphs Using a Small Number of Obstacles
	1 Introduction
	1.1 Bounding the Obstacle Number
	1.2 Number of Graphs with Small Obstacle Number
	1.3 Complexity of Faces in Arrangements of Line Segments

	2 Dilated Bipartite Drawings
	3 Proof of Theorem 1
	4 Proof of Theorem 2
	5 Proof of Theorem 3
	6 Proof of Theorem 4
	References

	Vertical Visibility Among Parallel Polygons in Three Dimensions
	1 Introduction
	2 Proof of Theorem 1
	3 Homothetes
	4 Open Problems
	References

	Drawing Graphs on Point Sets
	Alternating Paths and Cycles of Minimum Length
	1 Introduction
	1.1 Related Work and Paper Organization

	2 Overview of the Algorithmic Approach
	3 Shortest Alternating Cycle on Collinear Red-Blue Points
	4 Shortest Alternating Paths on Collinear Red-Blue Points
	5 Extensions and Generalizations
	6 Open Problems
	References

	On Embeddability of Buses in Point Sets
	1 Introduction
	2 Preliminaries
	3 An ILP for BEP
	4 Efficiently Solvable BEP Variants
	4.1 -BEP
	4.2 (,)-BEP
	4.3 Diagonal BEP

	5 Hardness of BEP
	6 Conclusion and Future Work
	References

	A Universal Point Set for 2-Outerplanar Graphs
	1 Introduction
	2 Preliminaries and Definitions
	3 Inner-Triangulated 2-Outerplanar Graphs with Forest
	3.1 Construction of the Universal Point Set
	3.2 Labeling the Graph
	3.3 Embedding on the Point Set

	4 2-Outerplanar Graphs with Forest
	4.1 Extending the Universal Point Set
	4.2 Modifying and Labeling the Graph
	4.3 Transformation of the Embedding

	5 General 2-Outerplanar Graphs
	6 Conclusions
	References

	Linear-Size Universal Point Sets for One-Bend Drawings
	1 Introduction
	2 Construction of a Point Set
	3 Embedding Algorithm
	References

	Contact Representations
	Recognizing Weighted Disk Contact Graphs
	1 Introduction
	2 Unit Disk Contact Graphs
	2.1 Recognizing Caterpillars with a Unit Disk Contact Representation
	2.2 Hardness for Outerplanar Graphs

	3 Weighted Disk Contact Graphs
	3.1 Hardness for Stars
	3.2 Recognizing Embedded Stars with a Weighted Disk Contact Representation

	References

	Realization of Simply Connected Polygonal Linkages and Recognition of Unit Disk Contact Trees
	1 Introduction
	2 Chains of Polygons
	3 Realizability of Polygonal Linkages with Fixed Orientation
	4 Recognition of Coin Trees with Fixed Embedding
	5 Conclusions
	References

	Towards Characterizing Graphs with a Sliceable Rectangular Dual
	1 Introduction
	2 Preliminaries
	3 Rotating Pyramids and Windmills
	4 Rotating Windmills are not Sliceable
	5 Sliceability of 1-pyramid Extended Graphs
	References

	Pixel and Voxel Representations of Graphs
	1 Introduction
	2 Complexity
	3 Lower and Upper Bounds in 2D
	3.1 Lower Bound
	3.2 Upper Bound

	4 Representations in 3D
	4.1 Graphs of Bounded Treewidth
	4.2 Graphs of Bounded Genus

	5 Conclusion
	References

	User Studies
	A Tale of Two Communities: Assessing Homophily in Node-Link Diagrams
	1 Introduction
	1.1 Homophily
	1.2 Network Visualization

	2 Experimental Design
	2.1 Hypotheses
	2.2 Method

	3 Results
	4 Discussion and Conclusion
	References

	Shape-Based Quality Metrics for Large Graph Visualization
	1 Introduction
	2 Shape-Based Metrics
	2.1 Shape as a Graph
	2.2 Graph Similarity
	2.3 The Metrics
	2.4 An Example
	2.5 Remarks

	3 The Experiments
	3.1 The ``Untangling'' Data Set
	3.2 The ``Preference'' Data Set
	3.3 Remarks on the Experiments

	4 Conclusion and Open Problems
	References

	On the Readability of Boundary Labeling
	1 Introduction
	2 Research Questions
	3 Design of the Experiment
	4 Results
	4.1 Performance Analysis
	4.2 Preference Data

	5 Discussion
	References

	Graph Drawing Contest
	Graph Drawing Contest Report
	1 Introduction
	2 Creative Topics
	2.1 Graph Classes
	2.2 Tic-Tac-Toe

	3 Live Challenge
	3.1 Manual Category
	3.2 Automatic Category

	Graduate Workshop Report
	Graduate Workshop Recent Trends in Graph Drawing: Curves, Graphs, and Intersections

	Posters
	L-Visibility Drawings of IC-Planar Graphs
	References

	On the Relationship Between Map Graphs and Clique Planar Graphs
	References

	PED User Study
	References

	SVEN: An Alternative Storyline Framework for Dynamic Graph Visualization
	1 Poster Abstract
	References

	Knuthian Drawings of Series-Parallel Flowcharts
	References

	Gestalt Principles in Graph Drawing
	1 Introduction
	2 Gestalt Principles in Graph Drawing
	References

	Drawing Graphs Using Body Gestures
	References

	Augmenting Planar Straight Line Graphs to 2-Edge-Connectivity
	References

	Author Index

