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Preface

The rapid growth of organizational and business process managed via information
systems made available a big variety of data that as a consequence created a high
demand for making available data analysis techniques more effective and valuable. The
fourth edition of the International Symposium on Data-Driven Process Discovery and
Analysis (SIMPDA 2014) was conceived to offer a forum where researchers from
different communities and the industry can share their insights in this hot new field. The
symposium featured a number of advanced keynotes illustrating new approaches as
well as presentations on recent research. The goal is to foster exchanges between
academic researchers, industry, and a wider audience interested in process discovery
and analysis. The event is organized by the IFIP WG 2.6. This year, the symposium
was held in Milan, the city of Expo 2015.

The submissions cover theoretical issues related to process representation, discovery,
and analysis or provide practical and operational experiences in process discovery and
analysis. To improve the quality of the contributions, the symposium fostered discussion
during the presentations, giving authors the opportunity to improve their work extending
the results presented. For this reason, authors of accepted papers and keynote speakers
were invited to submit extended articles to this proceedings volume in the LNBIP series.
There were 21 submissions and five papers were accepted for publication.

During this edition the presentations and the discussions frequently focused on the
implementation of process-mining algorithms in contexts where the analytical process
is fed by data streams. The current selection of papers underlines the most relevant
challenges that were identified and proposes novel solutions and approaches facing
these challenges.

In the first paper “Discovery of Frequent Episodes in Event Logs,” Maikel Leemans
and Wil M.P. van der Aalst present an approach to detect frequently occurring epi-
sodes, i.e., a partially ordered collection of events, in an event log. Moreover, this work
uses comparison with existing discovery algorithms to demonstrate that episode mining
benefits from exploiting parameters that are encoding the process behavior.

The second paper by Bart Hompes et al., “Finding Suitable Activity Clusters for
Decomposed Process Discovery,” focused on decomposition as a strategy for the
parallelization of process-mining algorithms. Analysis shows that although the
decomposition step takes a relatively small amount of time, it is of key importance in
finding a high-quality process model and for the computation time required to discover
the individual parts. Moreover, the authors propose three metrics that can be used to
assess the quality of a decomposition, before using it to discover a model or check
conformance.

The third paper by Mahdi Alizadeh, Massimiliano de Leoni, and Nicola Zannone,
“History-Based Construction of Alignments for Conformance Checking: Formalization
and Implementation?”, proposes an approach to automatically define the cost function
for alignment-based conformance-checking techniques. Based on the information



extracted from the past process executions, the cost function is derived relying on
objective factors and thus enabling the construction of probable alignments, i.e.,
alignments that provide probable explanations of nonconformity.

The fourth paper, by David Redlich et al., “Dynamic Constructs Competition
Miner – Occurrence vs. Time-Based Ageing,” extends a divide-and-conquer algorithm
for discovering block-structured processes from event logs possibly consisting of
exceptional behavior. In particular, this paper proposes a set of modifications to enable
dynamic business process discovery at run-time from a stream of events.

The fifth paper by Marco Anisetti et al., “Trustworthy Cloud Certification: A
Model-Based Approach,” discusses the problem of tracking and assessing the behavior
of cloud services/processes. One of the main limitations of existing approaches is the
uncertainty introduced by the cloud on the validity and correctness of existing cer-
tificates. The authors present a trustworthy cloud certification approach by continuously
verifying the correctness of the service model at the basis of certification activities
against real and synthetic service execution traces.

We gratefully acknowledge the strong research community that gathered around the
research problems related to process data analysis and the high quality of their research
work, which is hopefully reflected in the papers of this volume. We would also like to
express our deep appreciation for the reviewers hard work and dedication. Above all,
thanks are due the authors for submitting the best results of their work to the Sym-
posium on Data-Driven Process Discovery and Analysis.

We are very grateful to the Università degli Studi di Milano and to IFIP for their
financial support, and to the University of Freiburg and the Free University of
Bozen/Bolzano.

October 2015 Paolo Ceravolo
Rafael Accorsi
Barbara Russo
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Discovery of Frequent Episodes in Event Logs

Maikel Leemans(B) and Wil M.P. van der Aalst

Eindhoven University of Technology, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
{m.leemans,w.m.p.v.d.aalst}@tue.nl

Abstract. Lion’s share of process mining research focuses on the discov-
ery of end-to-end process models describing the characteristic behavior of
observed cases. The notion of a process instance (i.e., the case) plays an
important role in process mining. Pattern mining techniques (such as tra-
ditional episode mining, i.e., mining collections of partially ordered events)
do not consider process instances. In this paper, we present a new technique
(and corresponding implementation) that discovers frequently occurring
episodes in event logs, thereby exploiting the fact that events are associated
with cases. Hence, the work can be positioned in-between process mining
and pattern mining. Episode Discovery has its applications in, amongst
others, discovering local patterns in complex processes and conformance
checking based on partial orders. We also discover episode rules to pre-
dict behavior and discover correlated behaviors in processes, and apply
our technique to other perspectives present in event logs. We have devel-
oped a ProM plug-in that exploits efficient algorithms for the discovery of
frequent episodes and episode rules. Experimental results based on real-life
event logs demonstrate the feasibility and usefulness of the approach.

Keywords: Episode discovery · Partial order discovery · Process
discovery

1 Introduction

Process mining provides a powerful way to analyze operational processes based
on event data. Unlike classical purely model-based approaches (e.g., simulation
and verification), process mining is driven by “raw” observed behavior instead of
assumptions or aggregate data. Unlike classical data-driven approaches, process
mining is truly process-oriented and relates events to high-level end-to-end
process models [1].

In this paper, we use ideas from episode mining [2] and apply these to the
discovery of partially ordered sets of activities in event logs. Event logs serve as
the starting point for process mining. An event log can be viewed as a multiset
of traces [1]. Each trace describes the life-cycle of a particular case (i.e., a process
instance) in terms of the activities executed. Often event logs store additional
information about events, e.g., the resource (i.e., the person or device) executing
or initiating the activity, the timestamp of the event, or data elements (e.g., cost
or involved products) recorded with the event.
c© IFIP International Federation for Information Processing 2015
P. Ceravolo et al. (Eds.): SIMPDA 2014, LNBIP 237, pp. 1–31, 2015.
DOI: 10.1007/978-3-319-27243-6 1



2 M. Leemans and W.M.P. van der Aalst

Each trace in the event log describes the life-cycle of a case from start to
completion. Hence, process discovery techniques aim to transform these event
logs into end-to-end process models. Often the overall end-to-end process model
is rather complicated because of the variability of real life processes. This results
in “Spaghetti-like” diagrams. Therefore, it is interesting to also search for more
local patterns in the event log – using episode discovery – while still exploiting
the notion of process instances. Another useful application of episode discovery
is discovering patterns while using other perspectives also present the event log.
Lastly, we can use episode discovery as a starting point for conformance checking
based on partial orders [3].

Since the seminal papers related to the Apriori algorithm [4–6], many
pattern mining techniques have been proposed. These techniques do not con-
sider the ordering of events [4] or assume an unbounded stream of events [5,6]
without considering process instances. Mannila et al. [2] proposed an extension
of sequence mining [5,6] allowing for partially ordered events. An episode is a
partially ordered set of activities and it is frequent if it is “embedded” in many
sliding time windows. Unlike in [2], our episode discovery technique does not
use an arbitrary sized sliding window. Instead, we exploit the notion of process
instances. Although the idea is fairly straightforward, as far as we know, this
notion of frequent episodes was never applied to event logs.

Numerous applications of process mining to real-life event logs illustrate that
concurrency is a key notion in process discovery [1,7,8]. One should avoid show-
ing all observed interleavings in a process model. First of all, the model gets too
complex (think of the classical “state-explosion problem”). Second, the result-
ing model will be overfitting (typically one sees only a fraction of the possible
interleavings). This makes the idea of episode mining particularly attractive.

The remainder of this paper is organized as follows. Section 2 positions the
work in existing literature. The novel notion of episodes and the corresponding
rules are defined in Sect. 3. Section 4 describes the algorithms and corresponding
implementation in the process mining framework ProM, available through the
Episode Miner package [9]. The approach and implementation are evaluated in
Sect. 5 using several publicly available event logs. Section 6 concludes the paper.

2 Related Work

The notion of frequent episode mining was first defined by Mannila et al. [2].
In their paper, they applied the notion of frequent episodes to (large) event
sequences. The basic pruning technique employed in [2] is based on the frequency
of episodes in an event sequence. Mannila et al. considered the mining of serial
and parallel episodes separately, each discovered by a distinct algorithm. Laxman
and Sastry improved on the episode discovery algorithm of Mannila by employing
new frequency calculation and pruning techniques [10]. Experiments suggest that
the improvement of Laxman and Sastry yields a 7 times speedup factor on both
real and synthetic datasets.

Related to the discovery of episodes or partial orders is the discovery of end-to-
end process models able to capture concurrency explicitly. The α algorithm [11]
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Table 1. Feature comparison of discussed discovery algorithms
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Agrawal, Sequence mining [4] - - - n.a. + - - - -
Manilla, Episode mining [2] - - + n.a. + - + - -
Leemans M., Episode Discovery + - + n.a. + - + - +
Maggi, DECLARE Miner [23, 24, 25] + +/- - n.a. + + + - +
Van der Aalst, α-algorithm [11] + + - - + + + - -
Weijters, Heuristics mining [14] + + - - + + + - -
De Medeiros, Genetic mining [15, 16] + + - - + + + + +
Solé, State Regions [17, 18] + + - - + + + - -
Bergenthum, Language Regions [19, 20] + + - - + + + - -

]12[gninimyzzuF,rehtnüG + + - n.a. + +/- +/- - -
Leemans S.J.J., Inductive [22] + + - + + + + + -

was the first process discovery algorithm adequately handling concurrency. Sev-
eral variants of the α algorithm have been proposed [12,13]. Many other discov-
ery techniques followed, e.g., heuristic mining [14] able to deal with noise and
low-frequent behavior. The HeuristicsMiner is based on the notion of causal nets
(C-nets). Moreover, completely different approaches have been proposed, e.g.,
the different types of genetic process mining [15,16], techniques based on state-
based regions [17,18], and techniques based on language-based regions [19,20].
A frequency-based approach is used in the fuzzy mining technique, which pro-
duces a precedence-relation-based process map [21]. Frequencies are used to fil-
ter out infrequent paths and nodes. Another, more recent, approach is inductive
process mining where the event log is split recursively [22]. The latter technique
always produces a block-structured and sound process model. All the discovery
techniques mentioned are able to uncover concurrency based on example behav-
ior in the log. Additional feature comparisons are summarized in Table 1. Based
on the above discussion we conclude that Episode Discovery is the only technique
whose results focus on local behavior while exploiting process instances.

The discovery of Declarative Process Models, as presented in [23–25], aims
to discover patterns to describe an overall process model. The underlying model
is the DECLARE declarative language. This language uses LTL templates that
can be used to express rules related to the ordering and presence of activities.
This discovery technique requires the user to limit the constraint search-space by
selecting rule templates to search for. That is, the user selects a subset of pattern
types (e.g., succession, not-coexists, etc.) to search for. However, the underly-
ing discovery technique is pattern-agnostic, and simply generates all pattern
instantiations (using apriori-based optimization techniques), followed by LTL
evaluations. The major downside of this approach is a relatively bad runtime
performance, and we will also observe this in Sect. 5.4.
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The discovery of patterns in the resource perspective has been partly tack-
led by techniques for organizational mining [26]. These techniques can be used
to discover organizational models and social networks. A social network is a
graph/network in which the vertices represent resources (i.e., a person or device),
and the edges denote the relationship between resources. A typical example is
the handover of work metric. This metric captures that, if there are two subse-
quent events in a trace, which are completed by resource a and b respectively,
then it is likely that there is a handover of work from a to b. In essence, the
discovery of handover of work network yields the “end-to-end” resource model,
related to the discovery of episodes or partial orders on the resource perspective.

The episode mining technique presented in this paper is based on the discov-
ery of frequent item sets. A well-known algorithm for mining frequent item sets
and association rules is the Apriori algorithm by Agrawal and Srikant [4]. One
of the pitfalls in association rule mining is the huge number of solutions. One
way of dealing with this problem is the notion of representative association rules,
as described by Kryszkiewicz [27]. This notion uses user specified constraints to
reduce the number of ‘similar’ results. Both sequence mining [5,6] and episode
mining [2] can be viewed as extensions of frequent item set mining.

3 Definitions: Event Logs, Episodes, and Episode Rules

This section defines basic notions such as event logs, episodes and rules. Note
that our notion of episodes is different from the notion in [2] which does not
consider process instances.

3.1 Preliminaries

Multisets. Multisets are used to describe event logs where the same trace may
appear multiple times.

We denote the set of all multisets over some set A as B(A). We define B(a)
for some multiset B ∈ B(A) as the number of times element a ∈ A appears in
multiset B. For example, given A = {x, y, z}, a possible multiset B ∈ B(A) is
B = [x, x, y]. For this example, we have B(x) = 2, B(y) = 1 and B(z) = 0. The
size |B| of a multiset B ∈ B(A) is the sum of appearances of all elements in the
multiset, i.e.: |B| = Σa∈AB(a).

Note that the ordering of elements in a multiset is irrelevant.

Sequences. Sequences are used to represent traces in an event log.
Given a set X, a sequence over X of length n is denoted as σ =

〈a1, a2, . . . , an〉 ∈ X∗. We denote the empty sequence as 〈〉.
Note that the ordering of elements in a sequence is relevant.

Functions. Given sets X and Y , we write f : X �→ Y for the function with
domain dom f ⊆ X and range ran f = { f(x) | x ∈ X } ⊆ Y . In this context,
the �→ symbol is used to denote a specific function.
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As an example, the function f : N �→ N can be defined as f =
{ x �→ x + 1 | x ∈ N }. For this f we have, amongst others, f(0) = 1 and f(1) = 2
(i.e., this f defines a succession relation on N).

3.2 Event Logs

Activities and Traces. Let A ⊆ UA be the alphabet of activities occurring in the
event log. A trace is a sequence σ = 〈a1, a2, . . . , an〉 ∈ A∗ of activities ai ∈ A
occurring at time index i relative to the other activities in σ.

Event Log. An event log L ∈ B(A∗) is a multiset of traces. Note that the
same trace may appear multiple times in an event log. Each trace corresponds
to an execution of a process, i.e., a case or process instance. In this simple
definition of an event log, an event refers to just an activity. Often event logs
store additional information about events, such as the resource (i.e., the person
or device) executing or initiating the activity, and the timestamp of the event.

Note that, in this paper, we assumed simple event logs using the default
activity classifier, yielding partial orders on activities. It should be noted that
the technique discussed in this paper is classifier-agnostic. As a result, using
alternative classifiers, partial orders on other perspectives can be obtained. An
example is the flow of work between persons by discovering partial orders using
a resource classifier on the event log.

3.3 Episodes

Episode. An episode is a partially ordered collection of events. A partial order
is a binary relation which is reflexive, antisymmetric and transitive. Episodes
are depicted using the transitive reduction of directed acyclic graphs, where the
nodes represent events, and the edges imply the partial order on events. Note
that the presence of an edge implies serial behavior. Figure 1 shows the transitive
reduction of an example episode.

Formally, an episode α = (V,≤, g) is a triple, where V is a set of events
(nodes), ≤ is a partial order on V , and g : V �→ A is a left-total function
from events to activities, thereby labeling the nodes/events [2]. For two vertices
u, v ∈ V we have u < v iff u ≤ v and u 	= v.

Note that if |V | ≤ 1, then we got a singleton or empty episode. For the rest
of this paper, we ignore empty episodes. We call an episode parallel when there
are two or more vertices, and no edges.

Subepisode and Equality. An episode β = (V ′,≤′, g′) is a subepisode of α =
(V,≤, g), denoted β 
 α, iff there is an injective mapping f : V ′ �→ V such that:

(∀v ∈ V ′ : g′(v) = g(f(v))) All vertices in β are also in α

∧ (∀v, w ∈ V ′ ∧ v ≤′ w : f(v) ≤ f(w)) All edges in β are also in α

An episode β equals episode α, denoted β ≡ α iff β 
 α ∧ α 
 β. An episode β
is a strict subepisode of α, denoted β ≺ α, iff β 
 α ∧ β 	≡ α.
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Fig. 1. Shown is the transitive reduction of the partial order for an example episode.
The circles represent nodes (events), with the activity labeling imposed by g inside the
circles, and an event ID beneath the nodes in parenthesis. In this example, events A1

and B can happen in parallel (as can A2 and D). However, event C can only happen
after both an A1 and a B have occurred, and A2 and D can only happen after an C
has occurred.

Episode Construction. Two episodes α = (V,≤, g) and β = (V ′,≤′, g′) can be
‘merged’ to construct a new episode γ = (V ′′,≤′′, g′′). α⊕β is a smallest γ (i.e.,
smallest sets V ′′ and ≤′′) such that α 
 γ and β 
 γ.

The smallest sets criterion implies that every event v ∈ V ′′ and ordered pair
v, w ∈ V ′′ ∧ v ≤′′ w must be represented in α and/or β (i.e., have a witness, see
also the formulae below). Formally, an episode γ = α⊕β iff there exists injective
mappings f : V �→ V ′′ and f ′ : V ′ �→ V ′′ such that:

γ = (V ′′, ≤′′, g′′)

≤′′= { (f(v), f(w)) | (v, w) ∈ ≤ }
∪ { (f ′(v), f ′(w)) | (v, w) ∈ ≤′ } order witness

g′′ : (∀v ∈ V : g(v) = g′′(f(v))) ∧ (∀v′ ∈ V ′ : g′(v′) = g′′(f ′(v′))) correct mapping

V ′′ : ∀v′′ ∈ V ′′ : (∃v ∈ V : f(v) = v′′) ∨ (∃v′ ∈ V ′ : f ′(v′) = v′′) node witness

Observe that “order witness” and “correct mapping” are based on α 
 γ and
β 
 γ. Note that via “note witness” it is ensured that every vertex in V ′′ is
mapped to a vertex in either V or V ′. Every vertex in V and V ′ should be
mapped to a vertex in V ′′. This is ensured via “correct mapping”.

Occurrence. An episode α = (V,≤, g) occurs in an event trace σ = 〈a1, a2, . . . ,
an〉, denoted α � σ, iff there exists an injective mapping h : V �→ {1, .., n} such
that:

(∀v ∈ V : g(v) = ah(v) ∈ σ) All vertices are mapped correctly
∧ (∀v, w ∈ V ∧ v ≤ w : h(v) ≤ h(w)) The partial order ≤ is respected

In Fig. 2 an example of an “event to trace map” h for occurrence checking is
given. Note that multiple mappings might exists. Intuitively, if we have a trace
t and an episode with u ≤ v, then the activity g(u) must occur before activity
g(v) in t.
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Fig. 2. Shown are two possible mappings h (the dotted arrows) for checking occurrence
of the example episode in a trace. The shown graphs are the transitive reduction of
the partial order of the example episode. Note that with the left mapping (Mapping 1 )
also an episode with the partial order A1 < B occurs in the given trace, in the right
mapping (Mapping 2 ) the same holds for an episode with the partial order B < A1.

Frequency. The frequency freq(α) of an episode α in an event log L ∈ B(A∗) is
defined as:

freq(α) =
| [ σ ∈ L | α � σ ] |

|L|
Given a frequency threshold minFreq , an episode α is frequent iff freq(α) ≥

minFreq . During the actual episode discovery, we use the contrapositive of the
fact given in Lemma 1. That is, we use the observation that if not all subepisodes
β are frequent, then the episode α is also not frequent.

Lemma 1 (Frequency and subepisodes). If an episode α is frequent in an
event log L, then all subepisodes β with β 
 α are also frequent in L. Formally,
we have for a given α:

(∀β 
 α : freq(β) ≥ freq(α))

3.4 Episode and Event Log Measurements

Activity Frequency. The activity frequency ActFreq(a) of an activity a ∈ A in
an event log L ∈ B(A∗) is defined as:

ActFreq(a) =
| [ σ ∈ L | a ∈ σ ] |

|L|
Given a frequency threshold minActFreq , an activity a is frequent iff
ActFreq(a) ≥ minActFreq .

Trace Distance. Given episode α = (V,≤, g) occurring in an event trace σ =
〈a1, a2, . . . , an〉, as indicated by an event to trace map h : V �→ {1, .., n}. Then
the trace distance traceDist(α, h) is defined as:

traceDist(α, h) = max { h(v) | v ∈ V } − min { h(v) | v ∈ V }
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In Fig. 2, the left mapping h1 yields traceDist(α, h1) = 6 − 1 = 5, and the right
mapping h2 yields traceDist(α, h2) = 6 − 2 = 4.

Given a trace distance interval [minTraceDist ,maxTraceDist ], an episode α
is accepted in trace σ with respect to the trace distance interval iff there exists
a mapping h such that minTraceDist ≤ traceDist(α, h) ≤ maxTraceDist .

Informally, the conceptual idea behind a trace distance interval is that we
are interested in a partial order on events occurring relatively close in time.

Eventually-follows Relation. The eventually-follows relation �L for an event log
L and two activities a, b ∈ A is defined as:

a �L b =
∣
∣
{

σ ∈ L | ∃0≤i<j<|σ| : σ(i) = a ∧ σ(j) = b
}∣
∣

Informally, the eventually-follows valuation for a �L b equals the amount
of traces in which a happens (at timestamp i), and is followed by b at a later
moment (at timestamp j with i < j).

If we evaluate the eventually-follows relation for every a, b ∈ A, we obtain
the eventually-follows matrix. In Table 2 the eventually-follows matrix is given
for an example event log.

Lemma 2 (Eventually-follows Relation and Episode Frequency). The
eventually-follows valuation g(u) �L g(v) for any two vertices u, v ∈ V with
u ≤ v is an upper bound for the frequency of the episode α = (V,≤, g) in event
log L. Formally:

(∀u, v ∈ V ∧ u ≤ v :
g(u) �L g(v)

|L| ≥ freq(α))

Consequently, if an episode α = (V,≤, g) is frequent in an event log L, then
for any two vertices u, v ∈ V with u ≤ v also the eventually follows valuation
for g(u) �L g(v) is frequent.

Based on Lemma 2, the eventually-follows relation can be used as a fast
approximation of early occurrence checking. Concretely, by contraposition, we
know that if there exists u, v ∈ V with u ≤ v for which g(u)�Lg(v)

|L| < minFreq,
then the episode α cannot be frequent. We use this fact as an optimization
technique in the realization of our Episode Discovery technique.

Table 2. The eventually-follows matrix for the following example event log: L =
[〈a, b, a, c, a, d〉, 〈a, b, a, d〉, 〈b, d〉]. Each cell gives the valuation for row �L column,
where row is the activity shown to the left, and column is the activity shown on the
top of the table.

�L a b c d

a 2 2 1 2

b 2 0 1 3

c 1 0 0 1

d 0 0 0 0
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3.5 Episode Rules

Episode Rule. An episode rule is an association rule β ⇒ α with β ≺ α stating
that after seeing β, then likely the larger episode α will occur as well.

The confidence of the episode rule β ⇒ α is given by:

conf (β ⇒ α) =
freq(α)
freq(β)

Given a confidence threshold minConf , an episode rule β ⇒ α is valid iff
conf (β ⇒ α) ≥ minConf . During the actual episode rule discovery, we use
Lemma 3.

Lemma 3 (Confidence and subepisodes). If an episode rule β ⇒ α is valid
in an event log L, then for all episodes β′ with β ≺ β′ ≺ α the event rule β′ ⇒ α
is also valid in L. Formally:

(∀β ≺ β′ ≺ α : conf (β ⇒ α) ≤ conf (β′ ⇒ α))

Episode Rule Magnitude. Let the graph size size(α) of an episode α be denoted
as the sum of the nodes and edges in the transitive reduction of the episode. The
magnitude of an episode rule is defined as:

mag(β ⇒ α) =
size(β)
size(α)

Intuitively, the magnitude of an episode rule β ⇒ α represents how much
episode α ‘adds to’ or ‘magnifies’ episode β. The magnitude of an episode rule
allows smart filtering on generated rules. Typically, an extremely low (approach-
ing zero) or high (approaching one) magnitude indicates a trivial episode rule.

4 Realization

The definitions and insights provided in the previous section have been used to
implement an episode (rule) discovery plug-in in the process mining framework
ProM, available through the Episode Miner package [9]. To be able to analyze
real-life event logs, we need efficient algorithms. These are described next.

4.1 Notation in Realization

In the listed algorithms, we will reference to the elements of an episode α =
(V,≤, g) as α.V , α.≤ and α.g.

For the implementation, we rely on ordered sets, i.e., lists of unique elements.
The order of a set is determined by the order in which elements are added to the
sets, which is leveraged to make the algorithms efficient. We assume individual
elements can be accessed via an index, with indexing starting at zero. We use
the following operations and notations in the algorithms to come:
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A ={x, y, z} with x < y < z Note: n = |A| = 3
A[0] =x Access the first element

A[n − 1] =z Access the last element
(A ∪ {v}) ={x, y, z, v} with x < y < z < v Adding new elements to a set
(A ∪ {x}) =A Every element is unique

(A ∪ {v})[n] =v Access the new last element
A[0..n − 2] ={x, y} with x < y Access a subset of a set

4.2 Frequent Episode Discovery

Discovering frequent episodes is done in two phases. The first phase discovers
parallel episodes (i.e., nodes only); the second phase discovers partial orders (i.e.,
adding the edges). The main routine for discovering frequent episodes is given
in Algorithm 1.

Algorithm 1. Episode Discovery
Input: An event log L, an activity alphabet A, a frequency threshold minFreq.
Output: A set of frequent episodes Γ
Description: Two-phase episode discovery. Each phase alternates between
recognizing frequent candidates in the event log (Fl), and generating new can-
didate episodes (Cl).
Proof of termination: Note that candidate episode generation with Fl = ∅
will yield Cl = ∅. Since each iteration the generated episodes become strictly
larger (in terms of V and ≤), eventually the generated episodes cannot occur
in any trace. Therefore, always eventually Fl = ∅, and thus we will always
terminate.
EpisodeDiscovery(L, A,minFreq)
(1) Γ = ∅
(2) // Phase 1: discover parallel episodes
(3) l = 1 // Tracks the number of nodes
(4) // Initialize: create a candidate episode for every activity in A
(5) Cl = { (V, ≤, g) | |V | = 1, ≤ = ∅, g = {v 	→ a}, v ∈ V, a ∈ A }
(6) // Step: recognize and construct larger episodes from smaller

episodes
(7) while Cl �= ∅
(8) Fl = RecognizeFrequentEpisodes(L, Cl,minFreq)
(9) Γ = Γ ∪ Fl

(10) Cl = GenerateCandidateParallel(l, Fl)
(11) l = l + 1
(12) // Phase 2: discover partial orders
(13) l = 1 // Tracks the number of edges
(14) // Initialize: create candidate episodes based on results from

Phase 1
(15) Cl = { (γ.V, ≤, γ.g) | γ ∈ Γ, ≤ = {(v, w)}, v, w ∈ γ.V, v �= w }
(16) // Step: recognize and construct larger episodes from smaller

episodes
(17) while Cl �= ∅
(18) Fl = RecognizeFrequentEpisodes(L, Cl,minFreq)
(19) Γ = Γ ∪ Fl

(20) Cl = GenerateCandidateOrder(l, Fl)
(21) l = l + 1
(22) return Γ
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4.3 Episode Candidate Generation

The generation of candidate episodes for each phase is an adaptation of the well-
known Apriori algorithm over an event log. Given a set of frequent episodes Fl,
we can construct a candidate episode γ by combining two partially overlapping
episodes α and β from Fl. Note that this implements the episode construction
operation γ = α ⊕ β.

For phase 1, we have Fl contains frequent episodes with l nodes and no edges.
A candidate episode γ will have l+1 nodes, resulting from episodes α and β that
overlap on the first l − 1 nodes. This generation is implemented by Algorithm 2.

For phase 2, we have Fl contains frequent episodes with l edges. A candidate
episode γ will have l+1 edges, resulting from episodes α and β that overlap on the

Algorithm 2. Candidate episode generation – Parallel
Input: A set of frequent episodes Fl with l nodes.
Output: A set of candidate episodes Cl+1 with l + 1 nodes.
Description: Generates candidate episodes γ by merging overlapping
episodes α and β (i.e., γ = α ⊕ β). For parallel episodes, overlapping means:
sharing l − 1 nodes.
GenerateCandidateParallel(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) // Check if α and β overlap (see also description, index

start at 0)
(7) if ∀0 ≤ i ≤ l − 2 : α.g(α.V [i]) = β.g(β.V [i])
(8) // Create candidate γ = α ⊕ β
(9) γ = (V, ≤, g) where V = (α.V [0..l−1]∪β.V [l−1]), ≤ =

∅, g = α.g ∪ β.g
(10) Cl+1 = Cl+1 ∪ {γ}
(11) else
(12) break
(13) return Cl+1

Algorithm 3. Candidate episode generation – Partial order
Input: A set of frequent episodes Fl with l edges.
Output: A set of candidate episodes Cl+1 with l + 1 edges.
Description: Generates candidate episodes γ by merging overlapping
episodes α and β (i.e., γ = α ⊕ β). For partial order episodes, overlapping
means: sharing all nodes and l − 1 edges.
GenerateCandidateOrder(l, Fl)
(1) Cl+1 = ∅
(2) for i = 0 to |Fl| − 1
(3) for j = i + 1 to |Fl| − 1
(4) α = Fl[i]
(5) β = Fl[j]
(6) // Check if α and β overlap (see also description, index

start at 0)
(7) sharingAllNodes = (α.V = β.V ∧ α.g = β.g)
(8) overlappingEdges = (α.≤[0..l − 2] = β.≤[0..l − 2])
(9) if sharingAllNodes ∧ overlappingEdges
(10) // Create candidate γ = α ⊕ β
(11) γ = (α.V, ≤, α.g) where ≤ = (α.E[0..l − 1] ∪ β.E[l − 1])
(12) Cl+1 = Cl+1 ∪ {γ}
(13) else
(14) break
(15) return Cl+1
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first l − 1 edges and have the same set of nodes. This generation is implemented
by Algorithm 3. Note that, formally, the partial order ≤ is the transitive closure
of the set of edges being constructed.

4.4 Frequent Episode Recognition

In order to check if a candidate episode α is frequent, we check if freq(α) ≥
minFreq . The computation of freq(α) boils down to counting the number of
traces σ with α � σ. Algorithm 4 recognizes all frequent episodes from a set
of candidate episodes using the above described approach. Note that for both
parallel and partial order episodes we can use the same recognition algorithm.

Recall that an event log is a multiset of traces. Based on this observation,
we note that particular trace variants typically occur more than once in an
event log. We use this fact to reduce the number of iterations in Algorithm 4,
and consequently the number of occurrence checks performed (i.e., Occurs()
invocations). Instead of iterating over all the process instances on line 2 of the
algorithm, we consider each trace variant σ only once. For the support count we
use the L(σ) multiset operation to get the correct number of process instances.

Algorithm 4. Recognize frequent episodes
Input: An event log L, a set of candidate episodes Cl, a frequency thresh-
old minFreq.
Output: A set of frequent episodes Fl

Description: Recognizes frequent episodes, by filtering out candidate episodes
that do not occur frequently in the log.
Note: If Fl = ∅, then Cl = ∅.
RecognizeFrequentEpisodes(L, Cl,minFreq)
(1) support = [0, . . . , 0] with |support| = |Cl|
(2) foreach σ ∈ L
(3) for i = 0 to |Cl| − 1
(4) if Occurs(Cl[i], σ) then support[i] = support[i] + L(σ)
(5) Fl = ∅
(6) for i = 0 to |Cl| − 1

(7) if
support[i]

|L| ≥ minFreq then Fl = Fl ∪ {Cl[i]}
(8) return Fl

Checking whether an episode α occurs in a trace σ = 〈a1, a2, . . . , an〉 is done
via checking the existence of the mapping h : α.V �→ {1, .., n}. This results
in checking the two propositions shown below. Algorithm 5 implements these
checks.

– Checking whether each node v ∈ α.V has a unique witness in trace σ.
– Checking whether the (injective) mapping h respects the partial order indi-

cated by α.≤.
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Algorithm 5. Occurrence checking for an episode
Input: An episode α, a trace σ.
Output: True iff α � σ
Description: Implements occurrence checking based on finding an occurrence
proof in the form of a mapping h : α.V 	→ {1, .., n}.
Occurs(α = (V, ≤, g), σ)
(1) // H indicates for each activity a all the indices i at which a = ai ∈ σ
(2) H = { a 	→ { i | a = ai ∈ σ } | a ∈ A }
(3) h = ∅
(4) return checkModel(α, H, h)

Algorithm 6. This algorithm implements occurrence checking via
recursive discovery of the injective mapping h as per the occurrence
definition.
Input: An episode α, a class of mappings H : A 	→ P(N), and an intermediate
mapping h : α.V 	→ {1, .., n}.
Output: True iff there is a mapping h, as per the occurrence definition, deriv-
able from H
Description: Recursive implementation for finding h based on induction to the
number of mapped vertices:
Base case (if -part): Every v ∈ V is mapped (v ∈ dom h).
Step case (else-part): (IH) n vertices are mapped, step by adding a mapping
for a vertex v /∈ dom h.
checkModel(α = (V, ≤, g), H, h)
(1) if ∀v ∈ V : v ∈ dom h
(2) // Every v ∈ V is mapped, check the edge relation
(3) return (∀(v, w) ∈ ≤ : h(v) ≤ h(w))
(4) else
(5) // Choose a mapping for a vertex v /∈ dom h
(6) pick v ∈ V with v /∈ dom h
(7) // Compute ∃i ∈ H(g(v)) : checkModel(v mapped to i)
(8) exists = False
(9) foreach i ∈ H(g(v)) do exists ∨ checkModel(α, H[g(v) 	→

H(g(v)) \ {i}], h[v 	→ i])
(10) return exists

For the discovery of an injective mapping h for a specific episode α and trace σ
we use the following recipe. First, we declare the class of models H : A �→ P(N)
such that for each activity a ∈ A we get the set of indices i at which a = ai ∈ σ.
Next, we try all possible models derivable from H. A model h : α.V �→ {1, .., n}
is derived from H by choosing an index i ∈ H(f(v)) for each node v ∈ α.V . With
such a model h, we can perform the actual partial order check against α.≤.

4.5 Time Complexity Analysis

The theoretical time complexity of the provided algorithms is dominated by two
aspects: (1) the Apriori-style iterations in Algorithm 1, and (2) the occurrence
checking in Algorithm 6. For the worst case time complexity we will first investi-
gate the occurrence checking, and then briefly display the total time complexity.

Analysis of Occurence Checking (Algorithm 6). Consider trace σ =
[a1, a2, . . . , an] and episode with V = {v1, v2, . . . , vm}. Worst case, m = n.
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Finding mapping h is done by, for each vi find a aj such that the order
condition holds. Checking the order condition takes O(|≤|). Worst case, we check
mappings in ascending order (v1 → a1, . . . v1 → an) where only the last mapping
is valid. Hence, we need n! attempts, resulting in worst case complexity O(n!·|≤|).

Total Time Complexity of Algorithm 1. The total worst case running time
consists of O(Phase1 ) + O(Phase2 ), and is given by:

O(TL
2 · |A|TL+1 ·

(

|A|TL+1 + |L| · ΣTL

l=1(l − 1)!
)

+ TL
5 · Σ

1
2TL

2− 1
2TL

l=1

(
TL · (TL − 1)

l

)

·
((

TL · (TL − 1)
l

)

+ |L| · (TL − 1)!
)

)

where: TL = max { |σ| | σ ∈ L } is the max trace size in log, |L| is the size of
event log (# trace variants), and |A| is the size of alphabet (# event classes).

Note that, despite the theoretical worst case time complexity, our episode
discovery algorithm is very fast in practice. See also the evaluation in Sect. 5.

4.6 Pruning

Using the pruning techniques described below, we reduce the number of gener-
ated episodes (and thereby computation time and memory requirements) and fil-
ter out uninteresting results. These techniques eliminate less interesting episodes
by ignoring infrequent activities and skipping partial orders on events not occur-
ring relatively close in time. In addition, for pruning based on the antisymmetry
of ≤ and the Eventually-follows Relation, we leverage the fact that it is cheaper
to prune candidates during generation than to eliminate them via occurrence
checking.

Activity Pruning. Based on the frequency of an activity, uninteresting
episodes can be pruned in an early stage. This is achieved by replacing the activ-
ity alphabet A with the largest set A′ ⊆ A satisfying (∀a ∈ A′ : ActFreq(a) ≥
minActFreq), on line 5 in Algorithm 1. This pruning technique allows the episode
discovery algorithm to be more resistant to logs with many infrequent activities,
which are indicative of exceptions or noise. Note that, if minActFreq is set too
high, we can end up with A′ = ∅. In this case, no episodes are discovered.

Trace Distance Pruning. The pruning of episodes based on a trace distance
interval can be achieved by adding the trace distance interval check to line 3
of Algorithm 6. Note that if there are two or more interpretations for h, with
one passing and one rejected by the interval check, then we will find the correct
interpretation thanks to the ∃ on line 7.
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Pruning Based on the Antisymmetry of ≤. During candidate generation in
Algorithm 3 we can leverage the antisymmetry of ≤. Recall that in Algorithm 3
we generate candidate episodes γ from merging episodes α and β overlapping
on the first l − 1 edges. If we extend the predicate on line 9 with the check
reverse(β.≤[l−1]) /∈ α.≤ we ensure that we don’t generate candidate episodes γ
that violate the antisymmetry of ≤. (Note: reverse((a, b)) = (b, a).)

Pruning Based on the Eventually-Follows Relation. During seeding the
partial order candidates in Algorithm 1 on line 15 we can utilize the eventually-
follows relation as a fast approximation of early occurrence checking. Using this
relation, we can extend the predicate on line 15 with the check a�Lb

|L| ≥ minFreq ,
where a = g(v) ∧ b = g(w).

In practice, we pre-calculate the eventually-follows matrix, having a space-
complexity of |A|2, where |A| the number of unique activities in the event log.
This allows us to compute the eventually-follows values only once in a linear
scan over the log, and reuse values, accessing them in constant time.

4.7 Episode Rule Discovery

The discovery of episode rules is done after discovering all the frequent episodes.
For all frequent episodes α, we consider all frequent subepisodes β with β ≺ α
for the episode rule β ⇒ α.

For efficiently finding potential frequent subepisodes β, we use the notion of
“discovery tree”, based on episode construction. Each time we recognize a fre-
quent episode β created from combining frequent episodes γ and ε, we recognize
β as a child of γ and ε. Similarly, γ and ε are the parents of β. See Fig. 3 for an
example of a discovery tree.

Using the discovery tree we can walk from an episode α along the discovery
parents of α. Each time we find a parent β with β ≺ α, we can consider the
parents and children of β. As a result of Lemma 3, we cannot apply pruning in
either direction of the parent-child relation based on the confidence conf (β ⇒ α).
This is easy to see for the child direction. For the parent direction, observe the
discovery tree in Fig. 3 and δ ≺ α. If for episode α we would stop before visiting
the parents of β, we would never consider δ (which has δ ≺ α).

This principle of traversing the discovery tree is implemented by Algorithm 7.
This implementation uses a discovery front queue for traversing the discovery
tree, similar to the queue used in the Breadth-first search algorithm. The dis-
covery tree is traversed for each discovered episode (each α ∈ Γ ). Hence, we
consider the discovery tree as a partial order on the set Γ , and use that struc-
ture to efficiently find sets of subsets.
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Algorithm 7. Discovering episode rules
Input: A list of episodes Γ , a confidence threshold minConf and a magnitude
interval specified by minMag and maxMag.
Output: A set of valid episode rules R
Description: Episode rule discovery. For each discovered episode (each α ∈ Γ ),
the discovery tree is traversed in a Breadth-first search style, searching for
candidate β episodes yielding episode rules β ⇒ α.
RuleDiscovery(Γ, minConf, minMag, maxMag)
(1) R = ∅
(2) foreach α ∈ Γ
(3) discovered = ∅
(4) Let front be an empty FIFO queue
(5) foreach parent ∈ α.parents
(6) discovered = discovered ∪ {parent}
(7) front.enque(parent)
(8) while front �= ∅
(9) β = front.deque()
(10) foreach parent ∈ β.parents
(11) discovered = discovered ∪ {parent}
(12) front.enque(parent)
(13) if β � α
(14) // prune siblings of α
(15) if β /∈ α.parents
(16) foreach child ∈ β.children ∧ child /∈ discovered
(17) discovered = discovered ∪ {child}
(18) front.enque(child)
(19) if conf (β ⇒ α) ≥ minConf ∧minMag ≤ mag(β ⇒ α) ≤

maxMag
(20) R = R ∪ {β ⇒ α}

Fig. 3. Part of an example discovery tree. Each block denotes an episode. The dashed
arrows between blocks denote a parent-child relationship. In this example we have,
amongst others: β ≺ α, ε ≺ β, ε ≺ δ and δ ≺ α (not shown as a parent-child relation).

4.8 Implementation Consideration

We implemented the episode discovery algorithm as a ProM 6 plug-in (see also
Fig. 7), written in Java. Since the Occurs() Algorithm 5 is the biggest bottle-
neck, this part of the implementation was considerably optimized.
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5 Evaluation

This section reviews the feasibility of the approach using both synthetic and
real-life event data.

5.1 Methodology

We used three different event logs for our experiment. The first event log, bigger-
example.xes, is an artificial event log from Chap. 5 of [1] and available via http://
www.processmining.org/event logs and models used in book. The second and
third event logs,BPI Challenge 2012.xes andBPI Challenge 2013.xes, are real life
event logs available via doi:10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
and doi:10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee respectively. The
experiment consists of two parts: first a series of tests focused on performance
and the number of discovered episodes, and second, a case study focused on com-
paring our technique with existing discovery techniques. For these experiments
we used a laptop with a Core i7-4700MQ CPU (2.40 GHz), Java SE Runtime
Environment 1.7.0 67 (64 bit) with 4 GB RAM.

5.2 Performance and Number of Discovered Episodes

In Table 3 some key characteristics of the event logs are given. We examined the
effects of the parameters minFreq , minActFreq and maxTraceDist on the run-
ning time, the discovered number of episodes (number of results), and the total
number of intermediate candidate episodes. In Fig. 7 an indication (screenshots)
of the ProM plugin output is given.

In Figs. 4, 5, and 6 the results of the experiments are given.
The metric “# Episodes (result)” indicates the size of the end result. This

metric is given by |Γ | in Algorithm 1. The metric “# Candidate episodes” indi-
cates the size of the intermediate results, after episode construction and pruning,
but before occurrence checking. This metric is calculated by summing |Cl| across
iterations in both discovery phases in Algorithm 1. The “runtime”, indicates the
average running time of the algorithm, and its associated 95 % confidence inter-
val. Note that the scale of the runtime is in milliseconds.

Table 3. Metadata for the used event logs.

events / trace

# traces # variants # activities avg. min. max.

bigger-example.xes 1,391 21 8 5.42 5 17

BPI Challenge 2012.xes
(BPIC 2012)

13,087 4,366 36 20.05 3 175

BPI Challenge 2013.xes
(BPIC 2013)

7,554 2,278 13 8.68 1 123

http://www.processmining.org/event_logs_and_models_used_in_book
http://www.processmining.org/event_logs_and_models_used_in_book
http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
http://dx.doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee
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As can be seen in the experimental results, we see that the running time is
strongly related to the discovered number of episodes. Note that if some para-
meters are poorly chosen, like high minFreq in Fig. 4(b), then a relatively large
class of episodes seems to become frequent, thus increasing the running time
dramatically.

For a reasonably low number of frequent episodes (<500, more will a human
not inspect), the algorithm turns out to be quite fast (under one second). We
noted a virtual nonexistent contribution of the parallel episode mining phase to
the total running time. This can be explained by a simple combinatorial argu-
ment: there are far more partial orders to be considered than there are parallel
episodes. Also note the increasing number of candidate episodes in Fig. 5(b),
which consists solely of parallel episodes, but there is no significant change in
the runtime.

An analysis of the effects of changing the minFreq parameter (Fig. 4(a), (b),
and (c)) shows that a poorly chosen value results in many episodes. In addition,
the minFreq parameter gives us fine-grained control of the number of results.
It gradually increases the total number of episodes for lower values. Note that,
especially for the BPIC 2012 event log, low values for minFreq can dramatically
increase the running time. This is due to the large number of (candidate) episodes
being generated.

Secondly, note that for the minActFreq parameter (Fig. 5(a), (b), and (c)),
there seems to be a cutoff point that separates frequent from infrequent activi-
ties. Small changes around this cutoff point may have a noticeable effect on the
number of episodes discovered.

Finally, for the maxTraceDist parameter (Fig. 6(a), (b), and (c)), we see that
this parameter seems to have a sweet-spot where a low – but not too low –
number of episodes are discovered. Chosen a value for maxTraceDist just after
this sweet-spot yields a large number of episodes.

When comparing the artificial and real life event logs, we see a remarkable
pattern. The artificial event log (bigger-example.xes), shown in Fig. 4(a) appears
to be far more fine-grained than the real life event log (BPIC 2012 ) shown in
Fig. 4(b) and (c). In the real life event log there appears to be a clear distinction
between frequent and infrequent episodes. In the artificial event log a more fine-
grained pattern occurs. Most of the increase in frequent episodes, for decreasing
minFreq, is again in the partial order discovery phase.

5.3 Case Study – Pattern Discovery Compared with Existing
Algorithms

As noted in the introduction, often the overall end-to-end process models are
rather complicated. Therefore, the search for local patterns (i.e., episodes) is
interesting. In this section we perform a short case study using the BPI Challenge
2012, an event log of a loan application process. We explored this event log using:
the α-algorithm [11], Heuristics miner [14], Inductive miner [22], DECLARE
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Fig. 4. Effects of the parameter minFreq on the number of results and candidate
episodes. Observe that the minFreq parameter gives us fine-grained control of the
number of results. Note that for less than 500 result episodes, the runtime is less than
one second.
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Fig. 5. Effects of the parameter minActFreq on the number of results and candidate
episodes. Observe that there seems to be a cutoff point that separates frequent from
infrequent activities. Note that the runtime is never greater than a third of a second.
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Fig. 6. Effects of the parameter maxTraceDist on the number of results and candidate
episodes. Observe that maxTraceDist seems to have a sweet-spot where a low – but not
too low – number of episodes are discovered. Note that the runtime is never greater
than a third of a second.
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Table 4. Case Study results – Comparison of discovered sub-patterns per discovery
algorithm. In the top part of this table, an x in two consecutive rows a and b indicate
a sub-pattern a ≤ b. In the bottom part of this table, a + indicates the corresponding
patterns was revealed by the corresponding discovery algorithm output.

Activities
and pattern

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

A SUBMITTED+COMPLETE x
A PARTLYSUBMITTED+COMPLETE x x x
A PREACCEPTED+COMPLETE x x
W Complementeren aanvraag+SCHEDULE x x
W Complementeren aanvraag+START x
A DECLINED+COMPLETE x

Discovery
algorithms

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Episode Discovery + + + + +a

α-algorithm [11] +
Heuristics miner [14] + + +
Inductive miner [22] + +b +b + +b

DECLARE miner [23] + +c + + +c

a Indicates the pattern was revealed, but only after increasing maxTraceDist.
b Indicates the pattern was revealed, but obfuscated by choice constructs.
c Due to the aggregated overview of the DECLARE model, it is not immediately clear
that these patterns are disjoint.

Miner [23], and our Episode Discovery technique. For this case study, we assume
no prior knowledge about this event log. Instead, we want to get initial insight
into the recorded behavior, and are interested in the most important patterns.
For all the algorithms we use the default parameter settings and the “Activity
classifier” defined in the event log (the default values are provided in the foot-
notes). The observations made below are summarized in Table 4. Experiments
show that only the Episode Discovery was able to unobfuscated and unambigu-
ously discover all the mentioned patterns.

Episode Discovery. With our Episode Discovery technique we get a small
overview of twelve frequent episodes (Fig. 7(a)). Inspecting these episodes more
closely, we find two frequent patterns: the order A SUBMITTED+COMPLETE ≤
A PARTLYSUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE, and the order
A PREACCEPTED+COMPLETE ≤ W Complementeren aanvraag+SCHEDULE ≤
W Complementeren aanvraag+START (Fig. 7(b)). The interpretation of these pat-
terns is twofold. One, frequently whenever a loan application is submitted it
either preaccepted or declined. And two, frequently whenever a loan applica-
tion is preaccepted, additional information is requested (“Complementeren aan-
vraag”). Clearly, we found a simple overview of the most important patterns in
the event log. After increasing the maxTraceDist parameter to fifty (50), we also
discover the patternA PARTLYSUBMITTED+COMPLETE ≤ A DECLINED+COMPLETE
(see Fig. 7(c)). In the remaining paragraph, we focus on finding patterns using
other discovery techniques, and we are particularly interested in finding similar
patterns.
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Fig. 7. Algorithm: Episode Discovery. Result in ProM for the BPIC 2012 event log.

α-algorithm.1 Figure 8(a) shows the overall Petri net model produced by the
α-algorithm [11]. Closer inspection of the bottom-left part (Fig. 8(b)) reveals
the sub-pattern A SUBMITTED+COMPLETE ≤ A PARTLYSUBMITTED+COMPLETE. The
remaining of the previously discovered frequent patterns are not clearly visible
in this model. No other patterns were discovered.

Heurisitcs miner.2 The heuristics net in Fig. 9(a) is produced by the Heuristics
miner [14]. Closer inspection of this net (Fig. 9(b)) reveals two sub-patterns:
the order A SUBMITTED+COMPLETE ≤ A PARTLYSUBMITTED+COMPLETE, and the
order A PREACCEPTED+COMPLETE ≤ W Complementeren aanvraag+SCHEDULE
≤ W Complementeren aanvraag+START. However, the sub-pattern A PARTLY

1
Plugin action: “Mine for a Petri Net using Alpha-algorithm”.
Parameters: n/a.

2
Plugin action: “Mine for a Heuristics Net using Heuristics Miner”.
Parameters: Activity classifier, Relative-to-best = 5.0, Dependency = 90.0, Length-one-loops =
90.0, Length-two-loops = 90.0, Long distance = 90.0, All tasks connected = On, Long distance
dependency = Off, Ignore loop dependency tresholds = On.
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Fig. 8. Algorithm: α-algorithm [11]. Result in ProM for the BPIC 2012 event log.

SUBMITTED+ COMPLETE ≤ A PREACCEPTED+COMPLETE and A PARTLYSUBMITTED+
COMPLETE ≤ A DECLINED+COMPLETE were not clearly visible in this model. No
other patterns were discovered.

Fig. 9. Algorithm: Heuristics miner [14]. Result in ProM for the BPIC 2012 event log.

Inductive miner.3 Fig. 10(a) shows the overall process model (a process tree)
produced by the Inductive miner [22]. All frequent patterns can be found in this
model. However, as can be seen in the close-up in Fig. 10(b), the choice constructs
obfuscate these patterns. After detailed inspection of this model, and armed with
our results from the Episode Discovery technique, we discovered one less frequent
pattern. We rephrase our first interpretation of the Episode Discovery results
as: “whenever a loan application is submitted it frequently either preaccepted
or declined, or in some rare cases followed by a fraud detection” (“Beoordelen
fraude”).
3

Plugin action: “Mine process tree with Inductive Miner”.
Parameters: Variant = Inductive Miner - infrequent, Noise threshold = 0.20, Event classifier =
Event Name.
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Fig. 10. Algorithm: Inductive miner [22]. Result in ProM for the BPIC 2012 event log.

DECLARE Miner.4 Finally, in Fig. 11, the DECLARE model is given, as pro-
duced by the DECLARE Miner [23]. In this case we did change the following
parameters: we chose the succession template and set the min support to 50
(comparable to the default settings of Episode Miner). As can be observed,
all the frequent patterns can be found. However, note that due to the aggre-
gated overview of the DECLARE model, it is not immediately clear that
the patterns A PARTLYSUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE and
A PARTLYSUBMITTED+COMPLETE ≤ A DECLINED+COMPLETE are disjoint. No other
patterns were discovered.

Fig. 11. Algorithm: DECLARE Miner [23]. Result in ProM for the BPIC 2012 event
log, using the succession template and a min support of 50.

As demonstrated in this case study, and summarized in Table 4, overall end-
to-end process models can be rather complicated, and the search for local pat-
terns (i.e., episodes) quickly reveals important insight into recorded behavior.

5.4 Case Study – Runtime Compared with Existing Algorithms

After showing the insights that can be gained by our algorithm, we now compare
the running time of our approach with existing algorithms. We revisit the same
4

Plugin action: “Declare Maps Miner”.
Parameters: Selected Templates = {succession}, All Activities (considering Event Types), Min.
support = 50, Alpha = 0, Control Flow = On, Time = Off.
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set of algorithms, and investigate the average running time on all three event
logs. The same (default) parameter settings are used as in the previous section
(see footnotes 1-4).

The resulting running times are compared in Fig. 12. Note that the runtime
is shown in milliseconds, on a logarithmic scale. Broadly speaking, the discovery
algorithms can be grouped in three classes, based on their runtime. Our episode
miner and the alpha miner form the fastest class of discovery algorithms. Next is
the class of algorithms to which the heuristics and inductive miner belong. These
algorithms are roughly ten times slower than the first class. Finally, there is the
class of the declare miner. This algorithm is roughly a hundred times slower than
the first class.

Looking at the difference between the BPIC 2012 and 2013 logs, we see
observe the 2012 log has more event classes (36 for 2012, 13 for 2013), more
traces (13,087 for 2012, 7,554 for 2013), and longer traces (avg. 20.05 for 2012,
avg. 8.68 for 2013). This increase in size is directly observable in terms of running
time for the existing algorithms, but has a less effect on the running time of the
episode miner (with default settings).

We conclude that our Episode Discovery realization is among the fastest of
algorithms. In particular, it is orders of magnitude faster than the Declare Miner
configured to discover only succession relations.

Fig. 12. Comparison of the running time for the different discovery algorithms used
in the case study. The runtime is shown in milliseconds, on a logarithmic scale. We
distinguish three classes based on runtimes: 1) our Episode miner and the α-miner, 2)
the class of algorithms to which the Heuristics and Inductive miner belong, and 3) the
class of the Declare miner.

5.5 Case Study – Episode Rules

Continuing with our case study of the BPI Challenge 2012 event log, we also
take a look at the discovery of association rules. Here we use the episode rule



Discovery of Frequent Episodes in Event Logs 27

generation feature of our Episode Discovery ProM plugin, and used the default
settings.

The result consists of six episode rules, one of which is shown in Fig. 13. The
interpretation of the shown episode rule is as follows: “If we saw A PARTLY
SUBMITTED+COMPLETE ≤ A PREACCEPTED+COMPLETE occurring, we likely will also
see W Complementeren aanvraag+SCHEDULE occurring next”. In other words,
whenever a partially submitted request was preaccepted, it is likely that we
will request additional information (“Complementeren aanvraag”).

Similar, episode rules can be used in an online setting to predict likely follow-
up activities using episodes discovered in historical data.

Fig. 13. Episode rules discovered in ProM for the BPIC 2012 event log. The black solid
line indicates the assumed partial order (the β in β ⇒ α), the red dashed line indicates
the added pattern (the α) (Color figure online.)

5.6 Case Study – Alternative Perspective: Resources

We conclude our case study of the BPI Challenge 2012 event log with mining
patterns in the flow of work between persons. For this we used the Resource
classifier defined in the event log. We explored this perspective using: the Induc-
tive miner [22], Handover of Work Social Network miner [26], and our Episode
Discovery technique.

The discovered episodes are shown in Fig. 14. The vertices in these results
represent resources instead of activities. The first pattern shows that the resource
112 is present in all traces (based on the observation that freq(112 ≤ 112 ≤
112) = 1.0). Furthermore, we also discover that in most cases work is passed from
the resource 112 to tasks without a recorded resource (e.g., automated tasks).
Activities conducted by “no recorded resource” can be observed in Fig. 14 as
empty vertices.

Figure 15(a) shows the overall process model (a process tree) for the resource
perspective, produced by the Inductive miner [22]. At first glance no obvious
pattern is visible. In the close-up in Fig. 15(b), the resource 112 and “no recorded
resource”/“empty resource” are visible, but no clear patterns are visible.

In Fig. 15(c) the handover of work social network is given, as produced by
the organizational miner [26]. Most of the resources are forming one big tightly-
connected cluster. The “no recorded resource”/“empty resource” is completely
disconnected, but the resource 112 is not easily found (it is in the top-left corner).
The patterns found by the Episode Miner cannot be deduced from this social
network.

By using the resource perspective in combination with Episode Discovery, we
gained insight into the most important resources, and the flow of work between
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Fig. 14. Episodes discovered in ProM for the BPIC 2012 event log, using the Resource
classifier. In total, forty episodes were discovered. Note that the vertices in these results
represent resources instead of activities. The empty vertices indicate the absence of a
recorded resource (e.g., automated tasks).

Fig. 15. Result in ProM for the BPIC 2012 event log, using the Resource classifier.
Algorithms: Inductive miner [22], Handover of Work Social Network miner [26].

resources. This demonstrates that Episode Discovery is not only useful in the
activity-focused control-flow perspective, but also in other perspectives. While
we only showed pattern discovery in the control-flow and resource domain, other
perspectives are possible. One example is discovering the flow of work between
event locations (e.g., system components or organization departments generating
the events). Another example is discovering the relations between data attributes
(e.g., which information is used in which order).

6 Conclusion and Future Work

In this paper, we considered the problem of discovering frequently occurring
episodes in an event log. An episode is a collection of events that occur in a
given partial order. We presented efficient algorithms for the discovery of frequent
episodes and episode rules occurring in an event log, and presented experimental
results.

Our experimental evaluation shows that, for a reasonably low number of fre-
quent episodes, the algorithm turns out to be quite fast (under one second);
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typically faster than existingmanyalgorithms.Themainproblem is the correct set-
ting of the episode pruning parameters minFreq , minActFreq , and maxTraceDist .
In addition, comparison with existing discovery algorithms has shown the bene-
fit of episode mining in getting insight into recorded behavior. Moreover, we have
demonstrated the usefulness of episode rules that can be discovered. Finally, the
applicability of Episode Discovery for other perspectives (like the resources per-
spective) was shown.

During the development of the algorithm for ProM 6, special attention
was paid to optimizing the Occurs() algorithm (Algorithm 5) implementation,
which proved to be the main bottleneck. Future work could be to prune occur-
rence checking based on the parents of an episode, leveraging the fact that an
episode cannot occur in a trace if a parent also did occur in that trace.

Another approach to improve the algorithm is to apply the generic divide
and conquer approach for process mining, as defined in [28]. This approach splits
the set of activities into a collection of partly overlapping activity sets. For each
activity set, the log is projected onto the relevant events, and the regular episode
discovery algorithm is applied. In essence, the same trick is applied as used by the
minActFreq parameter (using an alphabet subset), which is to create a different
set of initial 1-node parallel episodes to start discovering with.

The main bottleneck is the frequency computation by checking the occurrence
of each episode in each trace. Typically, we have a small amount of episodes to
check, but many traces to check against. Using the MapReduce programming
model developed by Dean and Ghemawat, we can easily parallelize the episode
discovery algorithm and execute it on a large cluster of commodity machines
[29]. The MapReduce programming model requires us to define map and reduce
functions. The map function, in our case, accepts a trace and produces [episode,
trace] pairs for each episode occurring in the given trace. The reduce function
accepts an episode plus a list of traces in which that episode occurs, and outputs
a singleton list if the episode is frequent, and an empty list otherwise. This way,
the main bottleneck of the algorithm can be effectively parallelized.
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Abstract. Event data can be found in any information system and pro-
vide the starting point for a range of process mining techniques. The
widespread availability of large amounts of event data also creates new
challenges. Existing process mining techniques are often unable to handle
“big event data” adequately. Decomposed process mining aims to solve
this problem by decomposing the process mining problem into many
smaller problems which can be solved in less time, using less resources, or
even in parallel. Many decomposed process mining techniques have been
proposed in literature. Analysis shows that even though the decomposi-
tion step takes a relatively small amount of time, it is of key importance
in finding a high-quality process model and for the computation time
required to discover the individual parts. Currently there is no way to
assess the quality of a decomposition beforehand. We define three qual-
ity notions that can be used to assess a decomposition, before using
it to discover a model or check conformance with. We then propose a
decomposition approach that uses these notions and is able to find a
high-quality decomposition in little time.

Keywords: Decomposed process mining · Decomposed process discov-
ery · Distributed computing · Event log

1 Introduction

Process mining aims to discover, monitor and improve real processes by extract-
ing knowledge from event logs readily available in today’s information sys-
tems [1]. In recent years, (business) processes have seen an explosive rise in
supporting infrastructure, information systems and recorded information, as
illustrated by the term Big Data. As a result, event logs generated by these
information systems grow bigger and bigger as more event (meta-)data is being
recorded and processes grow in complexity. This poses both opportunities and
challenges for the process mining field, as more knowledge can be extracted from
the recorded data, increasing the practical relevance and potential economic
value of process mining. Traditional process mining approaches however have
difficulties coping with this sheer amount of data (i.e. the number of events), as

c© IFIP International Federation for Information Processing 2015
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most interesting algorithms are linear in the size of the event log and exponential
in the number of different activities [2].

In order to provide a solution to this problem, techniques for decomposed
process mining [2–4] have been proposed. Decomposed process mining aims to
decompose the process mining problem at hand into smaller problems that can be
handled by existing process discovery and conformance checking techniques. The
results for these individual sub-problems can then be combined into solutions for
the original problems. Also, these smaller problems can be solved concurrently
with the use of parallel computing. Even sequentially solving many smaller prob-
lems can be faster than solving one big problem, due to the exponential nature of
many process mining algorithms [2]. Several decomposed process mining tech-
niques have been developed in recent years [2–4,9,10,12,16]. Though existing
approaches have their merits, they lack in generality. In [3], a generic approach
to decomposed process mining is proposed. The proposed approach provides
a framework which can be combined with different existing process discovery
and conformance checking techniques. Moreover, different decompositions can
be used while still providing formal guarantees, e.g. the fraction of perfectly
fitting traces is not influenced by the decomposition.

When decomposing an event log for (decomposed) process mining, several
problems arise. In terms of decomposed process discovery, these problems lie in
the step where the overall event log is decomposed into sublogs, where submodels
are discovered from these sublogs, and/or where submodels are merged to form
the final model. Even though creating a decomposition is computationally unde-
manding, it is of key importance for the remainder of the decomposed process
discovery process in terms of the overall required processing time and the quality
of the resulting process model.

The problem is that there is currently no clear way of determining the quality
of a given decomposition of the events in an event log, before using that decom-
position to either discover a process model or check conformance with.

The current decomposition approaches do not use any quality notions to
create a decomposition. Thus, potential improvements lie in finding such qual-
ity notions and a decomposition approach that uses those notions to create a
decomposition with.

The remainder of this paper is organized as follows. In Sect. 2 related work
is discussed. Section 3 introduces necessary preliminary definitions for decom-
posed process mining and the generic decomposition approach. Section 4 intro-
duces decomposition quality notions to grade a decomposition upon, and two
approaches that create a high quality decomposition according to those notions.
Section 5 shows a (small) use case. The paper is concluded with views on future
work in Sect. 6.

2 Related Work

Process discovery aims at discovering a process model from an event log while
conformance checking aims at diagnosing the differences between observed and
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modeled behavior (resp. the event log and the model). Various discovery algo-
rithms and many different modeling formalisms have been proposed in literature.
As very different approaches are used, it is impossible to provide a complete
overview of all techniques here. We refer to [1] for an introduction to process
mining and an overview of existing techniques. For an overview of best practices
and challenges, we refer to the Process Mining Manifesto [5]. The goal of this
paper is to improve decomposed process discovery, where challenging discovery
problems are split in many smaller problems which can be solved by existing
discovery techniques.

In the fields of data mining and machine learning many efforts have been
made to improve the scalability of existing techniques. Most of these techniques
can be distributed [8,17], e.g. distributed clustering, distributed classification,
and distributed association rule mining. To support this, several distributed data
processing platforms have been created and are widely used [14,20]. Some exam-
ples are Apache Hadoop [23], Spark [26], Flink [21], and Tez [19]. Specific data
mining and machine learning libraries are available for most of these platforms.
However, these approaches often partition the input data and therefore cannot
be used for the discovery of process models. Decomposed process mining aims
to provide a solution to this problem.

Little work has been done on the decomposition and distribution of process
mining problems [2–4]. In [18] MapReduce is used to scale event correlation
as a preprocessing step for process mining. More related are graph-partitioning
based approaches. By partitioning a causal dependency graph into partially over-
lapping subgraphs, events are clustered into groups of events that are causally
related. In [11] it is shown that region-based synthesis can be done at the level
of synchronized State Machine Components (SMCs). Also a heuristic is given to
partition the causal dependency graph into overlapping sets of events that are
used to construct sets of SMCs. Other region-based decomposition techniques
are proposed in [9,10]. However, these techniques are limited to discovering Petri
Nets from event logs. In [16] the notions of Single-Entry Single-Exit (SESE) and
Refined Process Structure Trees (RPSTs) are used to hierarchically partition a
process model and/or event log for decomposed process discovery and confor-
mance checking. In [6], passages are used to decompose process mining problems.

In [3] a different (more local) partitioning of the problem is given which,
unlike [11], decouples the decomposition approach from the actual conformance
checking and process discovery approaches. It is indicated that a partitioning of
the activities in the event log can be made based on a causal graph of activities.
It can therefore be used together with any of the existing process discovery
and conformance checking techniques. The approach presented in this paper is
an extension of the approach presented in [3], though we focus on discovery.
Where [3] splits the process mining problem at hand into subproblems using a
maximal decomposition of a causal dependency graph, our approach first aims
to recombine the many created activity clusters into better and fewer clusters,
and only then splits the process mining problem into subproblems. As a result,
fewer subproblems remain to be solved.
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The techniques used to recombine clusters are inspired by existing, well-
known software quality metrics and the business process metrics listed in [22],
i.e. cohesion and coupling. More information on the use of software engineering
metrics in a process mining context is described in [22]. However, in this instance,
these metrics are used to measure the quality of the decomposition itself rather
than the process to be discovered. As such, the quality of the decomposition can
be assessed before it is used to distribute the process mining problem.

3 Preliminaries

This section introduces the notations needed to define a better decomposition
approach. A basic understanding of process mining is assumed [1].

3.1 Multisets, Functions, and Sequences

Definition 1 (Multisets). Multisets are defined as sets where elements may
appear multiple times. B(A) is the set of all multisets over some set A. For
some multiset b ∈ B(A), and element a ∈ A, b(a) denotes the number of times a
appears in b.

For example, take A = {a, b, c, d} : b1 = [] denotes the empty multiset, b2 = [a, b]
denotes the multiset over A where b2(c) = b2(d) = 0 and b2(a) = b2(b) = 1, b3 =
[a, b, c, d] denotes the multiset over A where b3(a) = b3(b) = b3(c) = b3(d) =
1, b4 = [a, b, b, d, a, c] denotes the multiset over A where b4(a) = b4(b) = 2 and
b4(c) = b4(d) = 1, and b5 = [a2, b2, c, d] = b4. The standard set operators can be
extended to multisets, e.g. a ∈ b2, b5 \ b2 = b3, b2 � b3 = b4 = b5, |b5| = 6

Definition 2 (Function Projection). Let f ∈ X �→ Y be a (partial) function
and Q ⊆ X. f�Q denotes the projection of f on Q : dom(f�Q) = dom(f) ∩ Q
and f�Q(x) = f(x) for x ∈ dom(f�Q).

The projection can be used for multisets. For example, b5�{a,b} = [a2, b2].

Definition 3 (Sequences). A sequence is defined as an ordering of elements of
some set. Sequences are used to represent paths in a graph and traces in an event
log. S(A) is the set of all sequences over some set A. s = 〈a1, a2, . . . , an〉 ∈ S(A)
denotes a sequence s over A of length n. Furthermore: s1 = 〈 〉 is the empty
sequence and s1 · s2 is the concatenation of two sequences.

For example, take A = {a, b, c, d} : s1 = 〈a, b, b〉, s2 = 〈b, b, c, d〉, s1 · s2 =
〈a, b, b, b, b, c, d〉
Definition 4 (Sequence Projection). Let A be a set and Q ⊆ A a subset.
�Q ∈ S(A) → S(Q) is a projection function and is defined recursively: (1) 〈 〉�Q =
〈 〉 and (2) for s ∈ S(A) and a ∈ A:

(〈a〉 · s)�Q =

{

s�Q if a /∈ Q

〈a〉 · s�Q if a ∈ Q

So 〈a, a, b, b, c, d, d〉�{a,b} = 〈a, a, b, b〉.
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3.2 Event Logs

Event logs are the starting point for process mining. They contain information
recorded by the information systems and resources supporting a process. Typ-
ically, the executed activities of multiple cases of a process are recorded. Note
that only example behavior is recorded, i.e. event logs only contain information
that has been seen. An event log often contains only a fraction of the possible
behavior [1]. A trace describes one specific instance (i.e. one case) of the process
at hand, in terms of the executed activities. An event log is a multiset of traces,
since there can be multiple cases having the same trace. For the remainder of
this paper, we let UA be some universe of activities.

Definition 5 (Event log). Let A ⊆ UA be a set of activities. A trace s ∈ S(A)
is a sequence of activities. Let L ∈ B(S(A)) be a multiset of traces over A. L is
an event log over A.

An example event log is L1 = [〈a, b, c, d〉5, 〈a, b, b, c, d〉2, 〈a, c, d〉3]. There are three
unique traces in L1, and it contains information about a total of 10 cases. There
are 4·5+5·2+3·3 = 39 events in total. The projection can be used for event logs
as well. That is, for some log L ∈ B(S(A)) and set Q ⊆ A : L�Q = [s�Q|s ∈ L].
For example L1�{a,b,c} = [〈a, b, c〉5, 〈a, b, b, c〉2, 〈a, c〉3]. We will refer to these
projected event logs as sublogs.

3.3 Activity Matrices, Graphs, and Clusters

In [3] different steps for a generic decomposed process mining approach have
been outlined. We decompose the overall event log based on a causal graph of
activities. This section describes the necessary definitions for this decomposition
method.

Definition 6 (Causal Activity Matrix). Let A ⊆ UA be a set of activities.
M(A) = (A×A) → [−1.0, 1.0] denotes the set of causal activity matrices over A.
For a1, a2 ∈ A and M ∈ M(A), M(a1, a2) denotes the “causal relation strength”
from a1 to a2.

A value close to 1.0 signifies that we are quite confident there exists a causal
relation (e.g. directly follows relation) between two activities while a value close
to −1.0 signifies that we are quite sure there is no relation. A value close to
0.0 indicates uncertainty, i.e., there may be a relation, but there is no strong
evidence for it.

For example, Table 1 shows an example causal activity matrix for the event
log L1. It shows that we are confident that casual relations exists from a to b,
from a to c, from b to c, and from c to d, that we are uncertain about a causal
relation from b to b, and that we are confident that other causal relations do not
exist.



Finding Suitable Activity Clusters for Decomposed Process Discovery 37

Table 1. Example causal activity matrix M1 for event log L1.

From\To a b c d

a −0.46 0.88 0.75 −1.00

b −1.00 0.00 0.88 −1.00

c −1.00 −1.00 −0.90 1.00

d −1.00 −1.00 −1.00 −0.67

Fig. 1. Example causal activity graph G1 for causal activity matrix M1.

Definition 7 (Causal Activity Graph). Let A ⊆ UA be a set of activities.
G(A) denotes the set of causal activity graphs over A. A causal activity graph G ∈
G(A) is a 3-tuple G = (V,E,w) where V ⊆ A is the set of nodes, E ⊆ (V × V )
is the set of edges, and w ∈ E → (0.0, 1.0] is a weight function that maps every
edge onto a positive weight. G = (V,E,w) ∈ G(A) is the causal activity graph
based on M ∈ M(A) and a specific causality threshold τ ∈ [−1.0, 1.0) iff

• E = {(a1, a2) ∈ A × A | M(a1, a2) > τ},
• V =

⋃

(a1,a2)∈E {a1, a2}, and

• w((a1, a2)) = M(a1,a2)−τ
1−τ for (a1, a2) ∈ E.

That is, for every pair of activities (a1, a2) ∈ A, there’s an edge with a positive
weight from a1 to a2 in G iff the value for a1 to a2 in the causal activity matrix
M exceeds some threshold τ . Note that V ⊆ A since some activities in A might
not be represented in G.

For example, Fig. 1 shows the causal activity graph that was obtained from the
causal activity matrix M1 using τ = 0.

Definition 8 (Activity Clustering). Let A ⊆ UA be a set of activities. C(A)
denotes the set of activity clusters over A. An activity cluster C ∈ C(A) is a
subset of A, that is, C ⊆ A. Ĉ(A) denotes the set of activity clusterings over A.
An activity clustering Ĉ ∈ Ĉ(A) is a set of activity clusters, that is, Ĉ ⊆ P (A)1.
A k-clustering Ĉ ∈ Ĉ(A) is a clustering with size k, i.e. |Ĉ| = k. The number
of activities in Ĉ is denoted by ||Ĉ|| = | ⋃

C∈ ̂C
C|, i.e. ||Ĉ|| signifies the number of

unique activities in Ĉ.

For example, Fig. 2 shows the activity clustering Ĉ1 with size 2 for the causal
activity graph G1. Cluster 0 contains the activities c (as input) and d (as output),
1 P (A) denotes the powerset over A.
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Fig. 2. Example activity clustering Ĉ1 for causal activity graph G1.

whereas Cluster 1 contains a (as input), b (as input and as output), and c (as
output). Note that the inputs and output are not part of the definition, but they
are included here to better illustrate the fabric of the clusters. Also note that
||Ĉ1|| = |{a, b, c} ∪ {c, d}| = |{a, b, c, d}| = 4.

3.4 Process Models and Process Discovery

Process discovery aims at discovering a model from an event log while confor-
mance checking aims at diagnosing the differences between observed and modeled
behavior (resp. the event log and the model). Various discovery algorithms have
been proposed in literature. Literature suggests many different notations for
models. We abstract from any specific model notation, but will define the set of
algorithms that discover a model from an event log. These discovery algorithms
are often called mining algorithms, or miners in short.

Definition 9 (Process Model). Let A ⊆ UA be a set of activities. N (A)
denotes the set of process models over A, irrespective of the specific notation
(Petri nets, transition systems, BPMN, UML ASDs, etc.) used.

Definition 10 (Discovery Algorithm). Let A ⊆ UA be a set of activities.
D(A) = B(S(A)) → N (A) denotes the set of discovery algorithms over A.
A discovery algorithm D ∈ D(A) discovers a process model over A from an
event log over A.

For example, Fig. 3 shows the Petri net N1 which was discovered from the event
log L1 using the “ILP-Based Process Discovery” algorithm2.

Fig. 3. Example Petri net N1 discovered from the event log L1.

2 This algorithm is available in ProM 6.5, see Subsect. 4.3.
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Fig. 4. Submodels discovered for the sublogs of L1.

3.5 Decomposed Process Discovery

As discussed, in [3], a general approach to decomposed process mining is pro-
posed. In terms of decomposed process discovery, this approach can be explained
as follows: Let A ⊆ UA be a set of activities, and let L ∈ B(S(A)) be an event log
over A. In order to decompose the activities in L, first a causal activity matrix
M ∈ M(A) is discovered (cf. Table 1). Any causal activity matrix discovery
algorithm DCA ∈ B(S(A)) → M(A) can be used. From M a causal activity
graph G ∈ G(A) is filtered (using a specific causality threshold, cf. Fig. 1). By
choosing the value of the causality threshold carefully, we can filter out uncom-
mon causal relations between activities or relations of which we are unsure, for
example those relations introduced by noise in the event log.

Once the causal activity graph G has been constructed, an activity clus-
tering Ĉ ∈ Ĉ(A) is created (cf. Fig. 2). Any activity clustering algorithm
AC ∈ G(A) → Ĉ(A) can be used to create the clusters. Effectively, an activ-
ity clustering algorithm partitions the causal activity graph into partially over-
lapping clusters of activities. Many graph partitioning algorithms have been
proposed in literature [7]. Most algorithms however partition the graph into
non-overlapping subgraphs, while in our case some overlap is required in order
to merge submodels later on in the process. In [3], the so-called maximal decom-
position is used, where the causal activity graph is cut across its vertices and
each edge ends up in precisely one submodel, according to the method proposed
in [15]. This leads to the smallest possible submodels.

Next, for every cluster in the clustering, L is filtered to a corresponding
sublog by projecting the cluster to L, i.e., for all C ∈ Ĉ a sublog L�C is created.
For example, based on the activity cluster array Ĉ1 (cf. Fig. 2), the event log
L1 would be split into sublogs L1�{a,b,c} and L1�{c,d}, referring to clusters 1
and 0 respectively. A process model is discovered for each sublog. These are
the submodels. Any discovery algorithm D ∈ D(A) can be used to discover the
submodels. For example, Fig. 4 shows the submodels that may be discovered
from the sublogs of L1 as mentioned above.

Finally, the submodels are merged into an overall model (cf. Fig. 3). Any
merging algorithm in B(N (A)) → N (A) can be used for this step. Currently,
submodels are merged based on activity labels. Note that we have |Ĉ| clusters,
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Fig. 5. The general decomposed process discovery workflow, using a more complex
event log L2 as an example. Finding a suitable activity clustering is of key importance.

sublogs and submodels, and ||Ĉ|| activities in the final, merged model. Figure 5
shows the general decomposed process discovery workflow.

This workflow clarifies the generality of the approach. The necessary steps
in the approach are defined by their input and output, but any applicable algo-
rithm can be used to perform each step. This also shows the strength of a generic
decomposed process mining approach. It might be of interest to only discover
a small fragment of a particular process, e.g. only show the part of a med-
ical process where repeated treatment is necessary, or only show the activities
(events) performed by some selected resource (provided resource-data is stored in
the log). The same holds for decomposed conformance checking. Clustering the
activities such that the activities belonging to the interesting part of a process
are clustered together will lead to a “filtered” sublog. Applying a fast discovery
algorithm to non-interesting parts of the process or only discovering or checking
conformance of the submodel of interest can greatly reduce calculation time.

4 A Better Decomposition

It is apparent that the manner in which activities are clustered has a substantial
effect on required processing time, and it is possible for similarly sized clusterings
(in the average cluster size) to lead to very different total processing times. As
a result of the vertex-cut (maximal) decomposition approach [3], most activities
will be in two (or more) activity clusters, leading to double (or more) work, as the
clusters have a lot of overlap and causal relations between them, which might not
be desirable. From the analysis results in [13] we can see that this introduces a
lot of unwanted overhead, and generally reduces model quality. Also, sequences
or sets of activities with high causal relations are generally easily (and thus
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quickly) discovered by process discovery algorithms, yet the approach will often
split up these activities over different clusters.

Model quality can potentially suffer from a decomposition that is too fine-
grained. It might be that the sublogs created by the approach contain too little
information for the process discovery algorithm to discover a good, high quality
submodel from, or that a process is split up where it shouldn’t be. Merging these
low-quality submodels introduces additional problems.

In order to achieve a high quality process model in little time, we have to find
a decomposition that produces high quality submodels with as little overlap as
possible (shared activities) and causal relations between them. Also, the submod-
els should preferably be of comparable size, because of the exponential nature
of most process discovery algorithms [2]. Hence, a good decomposition should
(1) maximize the causal relations between the activities within each cluster in
the activity clustering, (2) minimize the causal relations and overlap across the
clusters and (3) have approximately equally sized clusters. The challenge lies in
finding a good balance between these three clustering properties. In Subsect. 4.1,
we formally define these properties and provide metrics in order to be able to
asses the quality of a given decomposition before using it to discover a model or
check conformance with.

A clustering where one cluster is a subset of another cluster is not valid as
it would lead to double work, and would thus result in an increase in required
processing time without increasing (or even decreasing) model quality. Note
that this definition of a valid clustering allows for disconnected clusters, and
that some activities might not be in any cluster. This is acceptable as processes
might consist of disconnected parts and event logs may contain noise. However,
if activities are left out some special processing might be required.

Definition 11 (Valid Clustering). Let A ⊆ UA be a set of activities. Let
Ĉ ∈ Ĉ(A) be a clustering over A. Ĉ is a valid clustering iff: Ĉ �= ∅ ∧
∀C1,C2∈ ̂C∧C1 �=C2

C1 �⊆ C2. ĈV(A) denotes the set of valid clusterings over A.

For example, the clustering shown in Fig. 2 is valid, as {a, b, c} �⊆ {c, d} and
{c, d} �⊆ {a, b, c}.

4.1 Clustering Properties

We define decomposition quality notions in terms of clustering properties.
The first clustering property we define is cohesion. The cohesion of an activ-

ity clustering is defined as the average cohesion of each activity cluster in that
clustering. A clustering with good cohesion (cohesion ≈ 1) signifies that causal
relations between activities in the same cluster are optimized, whereas bad cohe-
sion (cohesion ≈ 0) signifies that activities with few causal relations are clustered
together.

Definition 12 (Cohesion). Let A ⊆ UA be a set of activities. Let G =
(V,E,w) ∈ G(A) be a causal activity graph over A, and let Ĉ ∈ ĈV(A) be
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a valid clustering over A. The cohesion of clustering Ĉ in graph G, denoted
Cohesion(Ĉ, G), is defined as follows:

Cohesion(Ĉ, G) =

∑

C∈ ̂C Cohesion(C,G)

|Ĉ|

Cohesion(C,G) =

∑

(a1,a2)∈E∩(C×C) w((a1, a2))

|C × C|
For example:

• Cohesion({a, b, c}, G1) = (0.88 + 0.75 + 0.88)/9 = 0.28,
• Cohesion({c, d}, G1) = 1.00/4 = 0.25, and
• Cohesion(Ĉ1, G1) = (0.28 + 0.25)/2 = 0.26.

The second clustering property is called coupling, and is also represented
by a number between 0 and 1. Good coupling (coupling ≈ 1) signifies that
causal relations between activities across clusters are minimized. Bad coupling
(coupling ≈ 0) signifies that there are a lot of causal relations between activities
in different clusters.

Definition 13 (Coupling). Let A ⊆ UA be a set of activities. Let G =
(V,E,w) ∈ G(A) be a causal activity graph over A, and let Ĉ ∈ ĈV(A) be
a valid clustering over A. The coupling of clustering Ĉ in graph G, denoted
Coupling(Ĉ, G), is defined as follows:

Coupling(Ĉ, G) =

⎧

⎨

⎩

1 if |Ĉ| ≤ 1

1 −
∑

C1,C2∈ ̂C∧C1 �=C2

Coupling(C1,C2,G)

| ̂C|·(| ̂C|−1)
if |Ĉ| > 1

Coupling(C1, C2, G) =

∑

(a1,a2)∈E∩((C1×C2)∪(C2×C1))

w((a1, a2))

2 · |C1 × C2|
For example:

• Coupling({a, b, c}, {c, d}, G1) = (0.75 + 0.88 + 1.00)/12 = 0.22,
• Coupling({c, d}, {a, b, c}, G1) = (0.75 + 0.88 + 1.00)/12 = 0.22, and
• Coupling(Ĉ1, G1) = 1 − (0.22 + 0.22)/2 = 0.78.

Note that the weights of the causal relations are used in the calculation of
cohesion and coupling. Relations of which we are not completely sure of (or that
are weak) therefore have less effect on these properties than stronger ones.

The balance of an activity clustering is the third property. A clustering with
good balance has clusters of (about) the same size. Like cohesion and coupling,
balance is also represented by a number between 0 and 1, where a good balance
(balance ≈ 1) signifies that all clusters are about the same size and a bad balance
(balance ≈ 0) signifies that the cluster sizes differ quite a lot. Decomposing
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the activities into clusters with low balance (e.g. a k-clustering with one big
cluster holding almost all of the activities and (k − 1) clusters with only a few
activities) will not speed up discovery or conformance checking, rendering the
whole decomposition approach useless. At the same time finding a clustering
with perfect balance (all clusters have the same size) will most likely split up the
process/log in places that “shouldn’t be split up”, as processes generally consist
out of different-sized natural parts.

This balance formula utilizes the standard deviation of the sizes of the clus-
ters in a clustering to include the magnitude of the differences in cluster sizes.
A variation of this formula using squared errors or deviations could also be used
as a clustering balance measure.

Definition 14 (Balance). Let A ⊆ UA be a set of activities. Let Ĉ ∈ ĈV(A)
be a valid clustering over A. The balance of clustering Ĉ denoted Balance(Ĉ) is
defined as follows:

Balance(Ĉ) = 1 − 2 · σ(Ĉ)

||Ĉ||
Where σ(Ĉ) signifies the standard deviation of the sizes of the clusters in the
clustering Ĉ.

For example, Balance(Ĉ1) = 1 − (2 · 0.5)/2 = 0.5.
In order to assess a certain decomposition based on the clustering properties,

we use a weighted scoring function, which grades an activity clustering with a
score between 0 (bad clustering) and 1 (good clustering). A weight can be set
for each clustering property, depending on their relative importance. A cluster-
ing with clustering score 1 therefore has perfect cohesion, coupling and balance
scores, on the set weighing of properties.

Definition 15 (Clustering Score). Let A ⊆ UA be a set of activities. Let
G ∈ G(A) be a causal activity graph over A, and let Ĉ ∈ ĈV(A) be a valid clus-
tering over A. The clustering score (score) of clustering Ĉ in graph G, denoted
Score(Ĉ, G), is defined as follows:

Score(Ĉ, G) = Cohesion(Ĉ, G) ·
(

CohW

CohW + CouW + BalW

)

+ Coupling(Ĉ, G) ·
(

CouW

CohW + CouW + BalW

)

+ Balance(Ĉ) ·
(

BalW
CohW + CouW + BalW

)

where CohW , CouW , and BalW are the weights for Cohesion, Coupling, and
Balance.

For example, if we take all weights to be 10, that is, CohW = CouW = BalW =
10, then Score(Ĉ1, G1) = 0.26 · (10/30) + 0.78 · (10/30) + 0.5 · (10/30) = 0.51.



44 B.F.A. Hompes et al.

4.2 Recomposition of Activity Clusters

As described in Subsect. 3.5, creating a good activity clustering is essentially a
graph partitioning problem. The causal activity graph needs to be partitioned
in parts that have (1) good cohesion, (2) good coupling and (3) good balance.
The existing maximal decomposition approach [3] often leads to a decomposition
that is too decomposed, i.e. too fine-grained. Cohesion and balance of cluster-
ings found by this approach are usually quite good, since all clusters consist of
only a few related activities. However, coupling is inherently bad, since there’s a
lot of overlap in the activity clusters and there are many causal relations across
clusters. This decomposition approach leads to unnecessary and unwanted over-
head and potential decreased model quality. We thus want to find a possibly
non-maximal decomposition which optimizes the three clustering properties.

Instead of applying or creating a different graph partitioning algorithm, we
recompose the activity clusters obtained by the vertex-cut decomposition, since it
is maximal (no smaller valid clustering exists [3]). The idea is that it is possible
to create a clustering that has fewer, larger clusters, requiring less processing
time to discover the final model, because overhead as well as cluster overlap are
reduced. Additionally, model quality is likely to increase because of the higher
number of activities in each cluster and the lower coupling between clusters.

For example, if we put all activities from event log L1 in a single cluster
{a, b, c, d}, yielding clustering Ĉ ′

1, and use the same weights, then we would get
the following scores:

• Cohesion(Ĉ ′
1, G1) = (0.88 + 0.75 + 0.88 + 1.00)/16 = 0.22,

• Coupling(Ĉ ′
1, G1) = 1,

• Balance(Ĉ ′
1) = 1, and

• Score(Ĉ ′
1, G1) = 0.22 · (10/30) + 1 · (10/30) + 1 · (10/30) = 0.74.

Clearly, as 0.74 > 0.51, the chosen weights would lead to the situation where a
single cluster {a, b, c, d} would be preferred over two clusters {a, b, c} and {c, d}.

There are often many ways in which a clustering can be recomposed to the
desired amount of clusters, as shown in Fig. 6. We are interested in the high-
est quality clustering of the desired size k, i.e. the k-clustering that has the
best cohesion, coupling and balance properties. A k-clustering that has a high
clustering score will very likely lead to such a decomposition.

In order to find a good decomposition in the form of a high-scoring clustering
quickly, we propose two agglomerative hierarchical recomposition approaches,
which iteratively merge clusters, reducing the size of the clustering by one each
iteration. As the amount of k-clusterings for a given causal activity graph is
finite, it is possible to exhaustively find the best k-clustering. However, for even
moderately-sized event logs (in the number of activities) this is too resource-
and time-consuming, as shown in [13]. Also, a semi-exhaustive “random” recom-
position approach was implemented that randomly recomposes the clustering to
k clusters a given amount of times and returns the highest-scoring k-clustering
found. This method is used as a benchmark for the hierarchical recomposition
approaches.
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Fig. 6. 2 possible recompositions for event log L2 (cf. Fig. 5) from 4 (top) to 2 clusters
(bottom left and right). Finding a good recomposition is key to creating a coarser
clustering which could potentially decrease processing time and increase model quality.

Proximity-Based Approach. We propose an hierarchical recomposition app-
roach based on proximity between activity clusters, where cluster coupling is
used as the proximity measure (Algorithm 1). The starting point is the cluster-
ing as created by the vertex-cut approach. We repeatedly merge the clusters
closest to one another (i.e. the pair of clusters with the highest coupling) until
we end up with the desired amount of clusters (k). After the k-clustering is
found, it is made valid by removing any clusters that are a subcluster of another
cluster, if such clusters exist. It is therefore possible that the algorithm returns
a clustering with size smaller than k.

By merging clusters we are likely to lower the overall cohesion of the cluster-
ing. This drawback is minimized, as coupling is used as the distance measure.
Coupling is also minimized. The proximity-based hierarchical recomposition app-
roach however is less favored towards the balance property, as it is possible
that -because of high coupling between clusters- two of the larger clusters are
merged. In most processes however, coupling between two “original” clusters will
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be higher than coupling between “merged” clusters. If not, the two clusters cor-
respond to parts of the process which are more difficult to split up (e.g. a loop,
a subprocess with many interactions and/or possible paths between activities,
etc.). Model quality is therefore also likely to increase by merging these clusters,
as process discovery algorithms don’t have to deal with missing activities, or
incorrect causal relations introduced in the corresponding sublogs. A possible
downside is that as the clustering might be less balanced, processing time can
be slightly higher in comparison with a perfectly-balanced decomposition.

Algorithm 1. Proximity-based Agglomerative Hierarchical Recomposition

Input: Ĉ ∈ ĈV(A), G ∈ G(A), k ∈ [1, |Ĉ|]
Output: Ĉ′ ∈ ĈV(A), |Ĉ′| ≤ k

Result: The clustering Ĉ′ recomposed from Ĉ, into maximal k clusters.

begin

Ĉ′ ∈ Ĉ(A) ←− Ĉ

while |Ĉ′| > k do
highestcoupling ←− 0
CA ∈ C(A) ←− ∅
CB ∈ C(A) ←− ∅
foreach C1 ∈ Ĉ′ do

foreach C2 ∈ Ĉ′ \ {C1} do
if Coupling(C1, C2, G) > highestcoupling then

highestcoupling ←− Coupling(C1, C2, G)
CA ←− C1

CB ←− C2

Ĉ′ ←− Ĉ′ \ {CA, CB}⋃{CA ∪ CB}
Ĉ′′ ∈ Ĉ(A) ←− Ĉ′

foreach C ∈ Ĉ′′ \ {CA ∪ CB} do
if C ⊆ {CA ∪ CB} then

Ĉ′ ←− Ĉ′ \ {C}

return Ĉ′

For example, Fig. 7 shows the 2-clustering that is obtained by this approach
when we start from the 4-clustering for event log L2 shown earlier. Cluster 0 is
merged with Cluster 3, and Cluster 1 with Cluster 2.

Score-Based Approach. We propose a second hierarchical recomposition algo-
rithm that uses the scoring function in a look-ahead fashion (Algorithm2). In
essence, this algorithm, like the proximity-based variant, iteratively merges two
clusters into one. For each combination of clusters, the score of the clustering that
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Fig. 7. Best 2-clustering found when starting from the 4-clustering shown at the top
of Fig. 6 using the Proximity-based approach.

results from merging those clusters is calculated. The clustering with the highest
score is used for the next step. The algorithm is finished when a k-clustering is
reached. Like in the proximity-based approach, after the k-clustering is found, it
is made valid by removing any clusters that are a subcluster of another cluster,
if such clusters exist.

The advantage of this approach is that specific (combinations of) clustering
properties can be given priority, by setting their scoring weight(s) accordingly.
For example, it is possible to distribute the activities over the clusters near
perfectly, by choosing a high relative weight for balance. This would likely lead
to a lower overall processing time. However, it might lead to natural parts of the
process being split over multiple clusters, which could negatively affect model
quality. A downside of this algorithm is that, as the algorithm only looks ahead
one step, it is possible that a choice is made that ultimately leads to a lower
clustering score, as that choice cannot be undone in following steps.

For example, Fig. 8 shows the 2-clustering that is obtained by this approach
when we start from the 4-clustering for event log L2 shown earlier where all
weights have been set to 10. Cluster 0 is now merged with Cluster 1, and Cluster 2
with Cluster 3.

4.3 Implementation

All concepts and algorithms introduced in this paper are implemented in release
6.5 of the process mining toolkit ProM 3 [24], developed at the Eindhoven Uni-
versity of Technology. All work can be found in the ActivityClusterArrayCreator
package, which is part of the DivideAndConquer package suite. This suite is
installed by default in ProM 6.5.

The plug-in to use in ProM is Modify Clusters, which takes an activity cluster
array (clustering) and a causal activity graph as input. The user can decide to

3 ProM6.5 can be downloaded from http://www.promtools.org.

http://www.promtools.org
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Algorithm 2. Score-based Agglomerative Hierarchical Recomposition

Input: Ĉ ∈ ĈV(A), G ∈ G(A), k ∈ [1, |Ĉ|]
Output: Ĉ′ ∈ ĈV(A), |Ĉ′| ≤ k

Result: The clustering Ĉ′ recomposed from Ĉ, into maximal k clusters.

begin

Ĉ′ ∈ Ĉ(A) ←− Ĉ

while |Ĉ′| > k do
highestscore ←− 0

foreach C1 ∈ Ĉ′ do
foreach C2 ∈ Ĉ′ \ {C1} do

Ĉ′′ ←− Ĉ′ \ {C1, C2}⋃{C1 ∪ C2}
if Score(Ĉ′′, G) > highestscore then

highestscore ←− Score(Ĉ′′, G)

Ĉ′′′ ∈ Ĉ(A) ←− Ĉ′′

Ĉ′ ←− Ĉ′′′

Ĉ′′ ←− Ĉ′

foreach C1 ∈ Ĉ′′ do
foreach C2 ∈ Ĉ′′ \ {C1} do

if C1 ⊆ C2 then

Ĉ′ ←− Ĉ′ \ {C1}

return Ĉ′

either set the parameters of the action using a dialog, or to use the default
parameter values. Figure 9 shows both options, where the top one will use the
dialog and the bottom one the default parameter values. Figure 10 shows the
dialog. At the top, the user can select which approach to use:

Brute Force: Use a brute force approach to find the optimal k-clustering.
Incremental using Best Coupling: Use the proximity-based approach to

find a k-clustering.
Incremental using Best Coupling (only Overlapping Clusters): Use the

proximity-based approach to find a k-clustering, but allow only to merge
clusters that actually overlap (have an activity in common). This is the
default approach.

Incremental using Best Score: Use the score-based approach to find a k-
clustering.

Incremental using Best Score (only Overlapping Clusters): Use the
score-based approach to find a k-clustering, but allow only to merge clusters
that actually overlap (have an activity in common).

Random: Randomly merge clusters until a k-clustering is reached.
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Fig. 8. Best 2-clustering found when starting from the 4-clustering shown at the top
of Fig. 6 using the Score-based approach with all weights set to 10.

Fig. 9. The Modify Clusters actions in ProM6.5.

Below, the user can set the value of k, which is set to 50% of the number
of existing clusters by default. At the bottom, the user can set the respective
weights to a value from 0 to 100. By default, all weights are set to 100.
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Fig. 10. The dialog that allows the user to set parameter values.

5 Use Case

The proposed recomposition techniques are tested using event logs of different
sizes and properties. Results for an event log consisting of 33 unique activities,
and 1000 traces are shown in this section. For this test the ILP Miner process dis-
covery algorithm was used [25]. Discovering a model directly for this log will lead
to a high quality model, but takes ∼25 min on a modern quad-core system [13].
The vertex-cut decomposed process mining approach is able to discover a model
in roughly 90 s, however the resulting model suffers from disconnected activities
(i.e. a partitioned model). The goal is thus to find a balance between processing
times and model quality.

We are interested in the clustering scores of each algorithm when recom-
posing the clustering created by the vertex-cut approach to a smaller size.
Exhaustively finding the best possible clustering proved to be too time- and
resource-consuming. Therefore, besides the two approaches listed here, a ran-
dom recomposition approach was used which recomposes clusters randomly one
million times. The highest found score is shown as to give an idea of what the
best possible clustering might be. Equal weights were used for the three cluster-
ing properties in order to compute the clustering scores. All clustering scores are
shown in Fig. 11. As can be seen, the vertex-cut approach creates 22 clusters. We
can see that all algorithms perform very similarly in terms of clustering score.
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Fig. 11. Clustering score per recomposition algorithm.

Only for very small clustering sizes the proximity-based approach performs worse
than the other approaches, due to its tendency to create unbalanced clusters.

Besides clustering scores, we are even more interested in how each decompo-
sition method performs in terms of required processing time and quality of the
resulting process model. In Fig. 12 we can see that decomposing the event log
drastically reduces processing times. For an event log this size, the decomposi-
tion steps relatively takes up negligible time (see base of bars in figure), as most
time is spent discovering the submodels (light blue bars). Processing times are
reduced exponentially (as expected), until a certain optimum decomposition (in
terms of speed) is reached, after which overhead starts to increase time linearly
again.

We have included two process models (Petri Nets) discovered from the event
log. Figure 14 shows the model discovered when using the vertex-cut decomposi-
tion. Figure 15 shows the model discovered when using the clustering recomposed
to 11 clusters with the Proximity-based agglomerative hierarchical approach. We
can see that in Fig. 14, activity “10” is disconnected (marked blue). In Fig. 15,
this activity is connected, and a structure (self-loop) is discovered. We can also
see that activities “9” and “12” now are connected to more activities. This shows
that the vertex-cut decomposition sometimes splits up related activities, which
leads to a lower quality model. Indeed, Fig. 13 shows that the activities “9”, “10”,
and “12” were split over two clusters in the vertex-cut decomposition (top), and
were regrouped (bottom) by our recomposition. By recomposing the clusters we
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Fig. 12. Time per step & Partitions in model using the agglomerative hierarchical
recomposition approaches and the ILP Miner process discovery algorithm (Color figure
online).

Fig. 13. Activities that were split over multiple clusters by the vertex-cut decomposi-
tion (top), that were regrouped by our recomposition (bottom).

rediscover these relations, leading to a higher quality model. Processing times
for these two models are comparable, as can be seen in Fig. 12.

The proposed agglomerative hierarchical recomposition algorithms are able
to create activity clusterings that have good cohesion, coupling and balance
properties in very little time. Often times the scores of these clusterings are
almost as good as the scores of clusterings created by the much slower exhaus-
tive approaches [13]. The results show that by creating such good clusterings,
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Fig. 14. Process model discovered using the vertex-cut decomposition. Some activities
are disconnected in the final model (Color figure online).
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Fig. 15. Process model discovered using the vertex-cut clustering recomposed to 11
clusters. Previously disconnected activities are connected again, improving model qual-
ity (Color figure online).
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indeed a better decomposition can be made. Because cluster overlap and the
amount of clusters are reduced, overhead can be minimized, reducing required
processing time. This results in a comparable total required processing time from
event log to process model, even though an extra step is necessary. The larger the
event log, the higher the time gain. By recomposing the clusters, processes are
split up less in places where they shouldn’t be, leading to better model quality.
Because the discovered submodels are of higher quality and have less overlap and
coupling, the merging step introduces less or no unnecessary (implicit) or double
paths in a model, which leads to improvements in precision, generalization and
simplicity of the final model.

6 Conclusions and Future Work

In decomposed process discovery, large event logs are decomposed by somehow
clustering their events (activities), and there are many ways these activity clus-
terings can be made. Hence, good quality notions are necessary to be able to
assess the quality of a decomposition before starting the time-consuming actual
discovery algorithm. Being able to find a high-quality decomposition plays a key
role in the success of decomposed process mining, even though the decomposition
step takes relatively very little time.

By using a better decomposition, less problems arise when discovering sub-
models for sublogs and when merging submodels into the overal process model.
We introduced three quality notions in the form of clustering properties: cohe-
sion, coupling and balance. It was shown that finding a non-maximal decom-
position can potentially lead to a decrease in required processing time while
maintaining or even improving model quality, compared to the existing vertex-
cut maximal decomposition approach. We have proposed two variants of an
agglomerative hierarchical recomposition technique, which are able to create a
high-quality decomposition for any given size, in very little time.

Even though the scope was limited to decomposed process discovery, the
introduced quality notions and decomposition approaches can be applied to
decomposed conformance checking as well. However, more work is needed to
incorporate them in a conformance checking environment.

Besides finding a better decomposition, we believe improvements can be
gained in finding a better, more elaborate algorithm to merge submodels into the
overal process model. By simply merging submodels based on activity labels it is
likely that implicit paths are introduced. Model quality in terms of fitness, sim-
plicity, generality or precision could suffer. An additional post-processing step
(potentially using causal relations) could also solve this issue.

Even though most interesting process discovery algorithms are exponential
in the number of different activities, adding an infrequent or almost unrelated
activity to a cluster might not increase computation time for that cluster as much
as adding a frequent or highly related one. Therefore, besides weighing causal
relations between activities in the causal activity matrix, activities themselves
might be weighted as well. Frequency and connectedness are some of the many
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possible properties that can be used as weights. It might be possible that one
part of a process can be discovered easily by a simple algorithm whereas another,
more complex part of the process needs a more involved discovery algorithm to
be modeled correctly. Further improvements in terms of processing time can be
gained by somehow detecting the complexity of a single submodel in a sublog,
and choosing an adequate discovery algorithm.

Finally, as discussed, the proposed recomposition algorithms expect the
desired amount of clusters to be given. Even though the algorithms were shown
to provide good results for any chosen number, the approach would benefit from
some method that determines a fitting clustering size for a given event log. This
would also mean one less potentially uncertain step for the end-user.
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Abstract. Alignments provide a robust approach for conformance
checking, which has been largely applied in various contexts such as
auditing and performance analysis. Alignment-based conformance check-
ing techniques pinpoint the deviations causing nonconformity based on
a cost function. However, such a cost function is often manually defined
on the basis of human judgment and thus error-prone, leading to align-
ments that do not provide accurate explanations of nonconformity. This
paper proposes an approach to automatically define the cost function
based on information extracted from the past process executions. The
cost function only relies on objective factors and thus enables the con-
struction of probable alignments, i.e. alignments that provide probable
explanations of nonconformity. Our approach has been implemented in
ProM and evaluated using both synthetic and real-life data.

Keywords: Conformance checking · Alignments · Cost functions

1 Introduction

Modern organizations are centered on the processes needed to deliver products
and services in an efficient and effective manner. Organizations that operate at
a higher process maturity level use formal/semiformal models (e.g., UML, EPC,
BPMN and YAWL models) to document their processes. In some case these
models are used to configure process-aware information systems (e.g., WFM or
BPM systems). However, in most organizations process models are not used to
enforce a particular way of working. Instead, process models are used for discus-
sion, performance analysis (e.g., simulation), certification, process improvement,
etc. However, reality may deviate from such models. People tend to focus on
idealized process models that have little to do with reality. This illustrates the
importance of conformance checking [1,2,12].

This work is an extended and revised version of [8].
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Conformance checking aims to verify whether the observed behavior recorded
in an event log matches the intended behavior represented as a process model.
The notion of alignments [2] provides a robust approach to conformance check-
ing, which makes it possible to pinpoint the deviations causing nonconformity.
An alignment between a recorded process execution and a process model is a
pairwise matching between activities recorded in the log and activities allowed
by the model. Sometimes, activities as recorded in the event log (events) cannot
be matched to any of the activities allowed by the model (process activities).
For instance, an activity is executed when not allowed. In this case, we match
the event with a special null activity (hereafter, denoted as �), thus resulting
in a so-called move on log. Other times, an activity should have been executed
but is not observed in the event log. This results in a process activity that is
matched to a � event, thus resulting in a so-called move on model.

Alignments are powerful artifacts to detect nonconformity between the
observed behavior as recorded in the event log and the prescribed behavior as
represented by process models. In fact, when an alignment between a log trace
and process model contains at least one move on log or model, it means that
such a log trace does not conform to the model. As a matter of fact, moves on
log/model indicate where the execution is not conforming by pinpointing the
deviations that have caused this nonconformity.

In general, a large number of possible alignments exist between a process
model and a log trace, since there may exist manifold explanations why a trace
is not conforming. It is clear that one is interested in finding what really hap-
pened. Adriansyah et al. [4] have proposed an approach based on the principle
of the Occam’s razor: the simplest and most parsimonious explanation is prefer-
able. Therefore, one should not aim to find any alignment but, precisely, one of
the alignments with the least expensive deviations (one of the so-called optimal
alignments), according to some function assigning costs to deviations.

Existing alignment-based conformance checking techniques (e.g. [2,4])
require process analysts to manually define a cost function based on their back-
ground knowledge and beliefs. The definition of such a cost function is fully
based on human judgment and, thus, prone to imperfections. These imperfec-
tions ultimately lead to alignments that are optimal, according to the provided
cost function, but that do not provide an explanation of what really happened.

In this paper, we propose an alternative way to define a cost function, where
the human judgment is put aside and only objective factors are considered. The
cost function is automatically constructed by looking at the logging data and,
more specifically, at the past process executions that are compliant with the
process model. The intuition behind is that one should look at the past history
of process executions and learn from it what are the probable explanations of
nonconformity. In particular, probable explanations of nonconformity for a cer-
tain process execution can be obtained by analyzing the behavior observed for
such a process execution in each and every state and the behavior observed for
other confirming traces when they were in the same state. Our approach gives
a potentially different cost for each move on model and log (depending on the
current state), leading to the definition of a more sensitive cost function.
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The approach has been fully implemented as a software plug-in for the open-
source process-mining framework ProM. To assess the practical relevance of our
approach, we performed an evaluation using both synthetic and real event logs
and process models. In particular, we tested it on a real-life case study about the
management of road-traffic fines by an Italian town. The results show that our
approach significantly improves the accuracy in determining probable explana-
tions of nonconformity compared to existing techniques. Moreover, an analysis
of the computation time shows the practical feasibility of our approach.

The paper is organized as follows. Section 2 introduces preliminary concepts.
Section 3 provides the motivations for this work, discussing how the construction
of optimal alignments should be kept independent of the reason why such align-
ments are constructed. Section 4 presents our approach for constructing optimal
alignments. Section 5 presents experiment results, which are discussed in Sect. 6.
Finally, Sect. 7 discusses related work and concludes the paper providing direc-
tions for future work.

2 Preliminaries

This section introduces the notation and preliminaries for our work.

2.1 Labeled Petri Nets, Event Logs, and Alignments

Process models describe how processes should be carried out. Many languages
exist to model processes. Here, we use a simple formalism, which suffices for the
purpose of this work:

Definition 1 (Labeled Petri Net). A Labeled Petri net is a tuple (P, T, F,A,
�,mi,mf ) where

– P is a set of places;
– T is a set of transitions;
– F ⊆ (P ×T )∪ (T ×P ) is the flow relation between places and transitions (and

between transitions and places);
– A is the set of labels for transitions;
– � : T → A is a function that associates a label with every transition in T ;
– mi is the initial marking;
– mf is the final marking.

Hereafter, the simpler term Petri net is used to refer to Labeled Petri nets. The
label of a transition identifies the activity represented by such a transition. Mul-
tiple transitions can be associated with the same activity label; this means that
the same activity can be represented by multiple transitions. This is typically
done to make the model simpler. Some transitions can be invisible. Invisible
transitions do not correspond to actual activities but are necessary for routing
purposes and, as such, their execution is never recorded in event logs. Given
a Petri net N , InvN ⊆ A indicates the set of labels associated with invisible
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Fig. 1. A process model for managing road traffic fines. The green boxes represent
the transitions that are associated with process activities while the black boxes repre-
sent invisible transitions. The text below the transitions represents the label, which is
shortened with a single letter as indicated inside the transitions (Color figure online).

transitions. As a matter of fact, invisible transitions are also associated with
labels, though these labels do not represent activities. We assume that a label
associated with a visible transition cannot be also associated with invisible ones
and vice versa.

The state of a Petri net is represented by a marking, i.e. a multiset of tokens
on the places of the net. A Petri net has an initial marking mi and a final
marking mf . When a transition is executed (i.e., fired), a token is taken from each
of its input places and a token is added to each of its output places. A sequence of
transitions σM leading from the initial to the final marking is a complete process
trace. Given a Petri net N , ΓN indicates the set of all complete process traces
allowed by N .

Example 1. Figure 1 shows a normative process, expressed in terms of Petri net,
which encodes the Italian laws and procedures to manage road traffic fines [19].
A process execution starts by recording a traffic fine in the system and sending it
to Italian residents. Traffic fines might be paid before or after they are sent out by
police or received by the offenders. Offenders are allowed to pay the due amount
in partial payments. If the total amount of the fine is not paid in 180 days, a
penalty is added. Offenders may appeal against a fine to the prefecture and/or
judge. If an appeal is accepted, the fine management is closed. On the other
hand, if the fine is not paid by the offender (and no appeal has been accepted),
the process eventually terminates by handing over the case for credit collection.

Given a Petri net N = (P, T, F,A, �,mi,mf ), a log trace σL ∈ A∗ is a
sequence of events where each event records the firing of a transition. In partic-
ular, each event records the label of the transition that has fired. An event log
L ∈ B(A) is a multiset of log traces, where B(X) is used to represent the set of
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γ1 =
c s n t � � o �
c s n t l r o i3

γ2 =
c s n t o � �
c s n t � l i6

γ3 =
c s n t o �
c s n � � d

Fig. 2. Alignments of σ1 = 〈c, s, n, t, o〉 and the process model in Fig. 1

all multisets over X. Here we assume that no events exist for activities not in A;
in practice, this can happen: in such cases, such events are filtered out before
the event log is taken into consideration.

Not all log traces can be reproduced by a Petri net, i.e. not all log traces
perfectly fit the process description. If a log trace perfectly fits the net, each
“move” in the log trace, i.e. an event observed in the trace, can be mimicked by
a “move” in the model, i.e. a transition fired in the net. After all events in the log
trace are mimicked, the net reaches its final marking. In cases where deviations
occur, some moves in the log trace cannot be mimicked by the net or vice versa.
We explicitly denote “no move” by �.

Definition 2 (Legal move). Let N = (P, T, F,A, �,mi,mf ) be a Petri net. Let
SL = (A \ InvN ) ∪ {�} and SM = A ∪ {�}. A legal move is a pair (mL,mM ) ∈
(SL × SM ) \ (�,�) such that

– (mL,mM ) is a synchronous move if mL ∈ SL, mM ∈ SM and mL = mM ,
– (mL,mM ) is a move on log if mL ∈ SL and mM =�,
– (mL,mM ) is a move on model if mL =� and mM ∈ SM .

ΣN denotes the set of legal moves for a Petri net N .

In the remainder, we indicate that a sequence σ′ is a prefix of a sequence σ′′,
denoted with σ′ ∈ (σ′′), if there exists a sequence σ′′′ such that σ′′ = σ′ ⊕ σ′′′,
where ⊕ denotes the concatenation operator.

Definition 3 (Alignment). Let ΣN be the set of legal moves for a Petri net
N = (P, T, F,A, �,mi,mf ). An alignment of a log trace σL and N is a sequence
γ ∈ Σ∗

N such that, ignoring all occurrences of �, the projection on the first
element yields σL and the projection on the second element yields a sequence
〈a1, . . . , an〉 such that there exists a sequence σ′

P = 〈t1, . . . , tn〉 ∈ (σP ) for some
σP ∈ ΓN where, for each 1 ≤ i ≤ n, �(ti) = ai. If σ′

P ∈ ΓN , γ is called a
complete alignment of σL and N .

Figure 2 shows three possible complete alignments of a log trace σ1 = 〈c, s, n, t, o〉
and the net in Fig. 1. The top row of an alignment shows the sequence of events
in the log trace, and the bottom row shows the sequence of activities in the net
(both ignoring �). Hereafter, we denote |L the projection of an alignment over
the log trace and |P the projection over the net.

As shown in Fig. 2, there can be multiple possible alignments for a given log
trace and process model. The quality of an alignment is measured based on a
provided cost function K : Σ∗

N → R
+
0 , which assigns a cost to each alignment
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γ ∈ Σ∗
N . Typically, the cost of an alignment is defined as the sum of the costs

of the individual moves in the alignment. An optimal alignment of a log trace
and a process trace is one of the alignments with the lowest cost according to
the provided cost function.

As an example, consider a cost function that assigns to any alignment a cost
equal to the number of moves on log and model for visible transitions. If moves
on model for invisible transitions ik are ignored, γ1 has two moves on model, γ2
has one move on model and one move on log, and γ3 has one move on model
and two moves on log. Thus, according to the cost function, γ1 and γ2 are two
optimal alignments of σ1 and the process model in Fig. 1.

2.2 State Representation

At any point in time, a sequence of execution of activities leads to some state, and
this state depends on which activities have been performed and in which order.
Accordingly, any process execution can be mapped onto a state. As discussed
in [3], a state representation function takes care of this mapping:

Definition 4 (State Representation). Let A be a set of activity labels and
R the set of possible state representations of the sequences in A∗. A state rep-
resentation function abst : A∗ → R produces a state representation abst(σ) for
each process trace σ ∈ Γ.

Several state-representation functions can be defined. Each function leads to
a different abstraction, meaning that multiple different traces can be mapped
onto the same state, thus abstracting out certain trace’s characteristics. Next,
we provide some examples of state-representation functions:

Sequence abstraction. It is a trivial mapping where the abstraction preserves the
order of activities. Each trace is mapped onto a state that is the trace itself,
i.e. for each σ ∈ A∗, abst(σ) = σ.

Multi-set abstraction. The abstraction preserves the number of times each activ-
ity is executed. This means that, for each σ ∈ A∗, abst(σ) = M ∈ B(A) such
that, for each a ∈ A, M contains all instances of a in σ.

Set abstraction. The abstraction preserves whether each activity has been exe-
cuted or not. This means that, for each σ ∈ A∗, abst(σ) = M ⊆ A such that,
for each a ∈ A, M contains a if it ever occurs in σ.

Example 2. Table 1 shows the state representation of some process traces of
the net in Fig. 1 using different abstractions. For instance, trace 〈c, p, p, s, n〉
can be represented as the trace itself using the sequence abstraction, as state
{c(1), p(2), s(1), n(1)} using the multi-set abstraction (in parenthesis the number
of occurrences of activities in the trace), and as {c, p, s, n} using the set abstrac-
tion. Traces 〈c, p, s, n〉 and 〈c, p, p, s, n, p〉 are also mapped to state {c, p, s, n}
using the set abstraction.
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Table 1. Examples of state representation using different abstractions

Sequence # Multi-set # Set #

〈c, p〉 25 {c(1), p(1)} 25 {c, p} 25

〈c, s, n, p〉 15 {c(1), p(1), s(1), n(1)} 15

〈c, p, p, s, n〉 5 {c(1), p(2), s(1), n(1)} 5 {c, p, s, n} 45

〈c, p, p, s, n, p〉 25 {c(1), p(3), s(1), n(1)} 25

〈c, s, n, a, d〉 10 {c(1), s(1), n(1), a(1), d(1)} 10 {c, s, n, a, d} 10

〈c, s, n, p, a, d〉 10 {c(1), s(1), n(1), p(1), a(1), d(1)} 10 {c, s, n, p, a, d} 10

〈c, s, n, p, t, l〉 25 {c(1), s(1), n(1), p(1), t(1), l(1)} 30

{c, s, n, p, t, l} 60
〈c, s, p, n, t, l〉 5

〈c, p, s, n, p, t, l〉 5 {c(1), s(1), n(1), p(2), t(1), l(1)} 30〈c, s, p, n, p, t, l〉 25

〈c, s, n, p, t, l, r, o〉 50 {c(1), s(1), n(1), p(1), t(1), l(1), r(1), o(1)} 50 {c, s, n, p, t, l, r, o} 50

3 Constructing Optimal Alignments Is Purpose
Independent

As discussed in Sect. 2.1, the quality of an alignment is determined with respect
to a cost function. An optimal alignment provides the simplest and most par-
simonious explanation with respect to the used cost function. Therefore, the
choice of the cost function has a significant impact on the computation of opti-
mal alignments.

Typically, process analysts define a cost function based on the context of use
and the purpose of the analysis. For instance, Adriansyah et al. [7] study various
ratios between the cost of moves on model and moves on log, and analyze their
influence on the fitness of a trace with respect to a process model. The work
in [5,6] uses alignments to identify nonconforming user behavior and quantify
it with respect to a security perspective. In particular, the cost of deviations is
determined in terms of which activity was executed, which user executed the
activity along with its role, and which data have been accessed.

Existing alignment-based techniques make the implicit assumption that the
obtained optimal alignments represent the most plausible explanations of what
actually happened. However, they do not account for the fact that the use of
different cost functions can yield different optimal alignments, thus resulting in
inconsistent diagnostic information. The following example provides a concrete
illustration of this issue.

Example 3. Consider the fine management process presented in Fig. 1 and the log
trace σ2 = 〈c, s, a, d〉. Suppose an analyst has to analyze σ2 with respect to both
fitness, in order to verify to what extent log traces comply with the behavior
prescribed by the process model, and the information provided to citizens, in
order to minimize the number of complaints and legal disputes. To this end,
the analyst defines two cost functions, presented in Fig. 3a. Cost function c1
defines the cost of deviations in terms of fitness. In particular, we use the cost
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Moves Cost Functions
c1 c2

(p,�) 5 1
(�, p) 1 1
(a,�) 5 1
(�, a) 1 1
(s,�) 5 1
(�, s) 1 5
(n,�) 5 1
(�, n) 1 5

(a) Cost Functions

c s � a d
c s n a d

(b) Optimal alignment using c1

c s a d
c s � �

(c) Optimal alignment using c2

Fig. 3. Inconsistent explanations of nonconformity due to the use of different cost
functions.

function presented in [7] which defines a ratio between the cost of moves on
log and the cost of moves on model equal to 5:1 for all activities. On the other
hand, cost function c2 defines the cost of deviations in terms of user satisfaction.
Here, deviations concerning payment have low cost. On the other hand, the
missed delivery of the fine or notification has a high cost. The optimal alignments
obtained using cost functions c1 and c2 are given in Fig. 3b and c respectively.

Based on the example above, an interesting question comes up: which align-
ments should the analyst take as a plausible explanation of what happened? The
alignments in Fig. 3b and c are supposed to be both plausible explanations, but
with respect to different criteria. Our claim is that, although alignments provide
a robust approach to conformance checking, it is necessary to rethink how cost
functions are defined and, in general, how alignment-based techniques should be
applied in practice.

This paper starts from the belief that the construction of an optimal align-
ment is independent from the purpose of the analysis. An optimal alignment
should provide probable explanations of nonconformity, independently of why
we are interested to know that. Therefore, first, an alignment providing prob-
able explanations of what actually happened has to be constructed (hereafter
we refer to such an alignment as probable alignment). Later, this alignment is
analyzed according to the purpose of the analysis.

This separation of concerns can be achieved by employing two cost functions:
a first cost function to find probable alignments and a second cost function to
quantify the severity of the deviations of the computed alignments, which is
customized according to the purpose of use. In the remainder of this paper, we
discuss how to construct a cost function which provides probable explanations of
what actually happened. In particular, this paper is concerned with construct-
ing probable alignments; the discussion on the second purpose-dependent cost
function is out of the scope of this paper.
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4 History-Based Construction of Probable Alignments

This section presents our approach to construct alignments that give probable
explanations of deviations based on objective facts, i.e. the historical logging
data, rather than on subjective cost functions manually defined by process ana-
lysts. To construct an optimal alignment between a process model and an event
log, we use the A-star algorithm [13], analogously to what proposed in [4].

Section 4.1 discusses how the cost of an alignment is computed, and Sect. 4.2
briefly reports on the use of A-star to compute probable alignments.

4.1 Definition of Cost Functions

The computation of probable alignments relies on a cost function that accounts
for the probability of an activity to be executed in a certain state. The definition
of such a cost function requires an analysis of the past history as recorded in the
event log to compute the probability of an activity to immediately occur or to
never eventually occur when the process execution is in a certain state.

The A-star algorithm [13] finds an optimal path from a source node to target
node where optimal is defined in terms of minimal cost. In our context, moves
that are associated to activities whose execution is more probable in a given state
should have a low cost, whereas moves that are associated to activities whose
execution is unlikely in a given state should have a high cost. Therefore, prob-
abilities cannot be straightforwardly used as costs of moves. For this purpose,
we need to introduce a class of functions F ⊆ [0, 1] → R

+ to map probabilities
to costs of moves. Based on the restriction imposed by the A-star algorithm on
the choice of the cost function, a function f ∈ F if and only if f(0) = ∞ and f
is monotonously decreasing between 0 and 1 (with f(1) > 0). Hereafter, these
functions are called cost profile. Intuitively, a cost profile function is used to
compute the cost of a legal move based on the probability that a given activity
occurs when the process execution is in a given state. Below, we provide some
examples of cost profile function:

f(p) = 1
p f(p) = 1√

p f(p) = 1 + log
(

1
p

)

(1)

The choice of the cost profile function has a significant impact on the compu-
tation of alignments (see Sect. 6). For instance, the first cost profile in Eq. 1
favorites alignments with more frequent traces, whereas the last cost profile
is more sensitive to the number of deviations in the computed alignments. In
Sect. 5, we evaluate these sample cost profiles with different combinations of
event logs and process models. The purpose is to verify whether a cost profile
universally works better than the others.

Similarly to what proposed in [4], the cost of an alignment move depends
on the move type and the activity involved in the move. However, differently
from [4], it also depends on the position in which the move is inserted:
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Definition 5 (Cost of an alignment move). Let ΣN be the set of legal moves
for a Petri net N . Let γ ∈ Σ∗

N be a sequence of legal moves for N and f ∈ F
a cost profile. The cost of appending a legal move (mL,mM ) ∈ ΣN to γ with
state-representation function abst is:

κabst((mL,mM ), γ) =
⎧

⎪⎪⎨

⎪⎪⎩

0 mL = mM

0 mL =� and mM ∈ InvN

f
(

Pabst(mM occurs after γ |P )
)

mL =� and mM �∈ InvN

f
(

Pabst(mL never eventually occurs after γ |P )
)

mM =�
(2)

Readers can observe that the cost of a move on log (mL,�) is not simply based
on the probability of not executing activity mL immediately after γ |P ; rather,
it is based on the probability of never having activity mM at the any moment
in the future for that execution. This is motivated by the fact that a move
on log (mL,�) indicates that mL is not expected to ever occur in the future.
Conversely, if it was expected, a number of moves in model would be introduced
until the process model, modeled as a Petri net, reaches a marking that allows
mL to occur (and, thus, a move in both can be appended).

For a reliable computation of probabilities, we only use the subset of traces
Lfit of the original event log L that fit the process model. We believe that,
in many process analyses, it is not unrealistic to assume that several traces are
compliant. For instance, this is the case for the real-life process about road-traffic
fine management discussed in Sect. 5.2.

One may argue that some paths in the process model can be more prone
to compliance errors compared to other paths. Thus, eliminating all non-fitting
traces from the log would lead to underestimate the probability of executing
activities in such paths. We argue that the reasons for nonconformity should be
carefully investigated. For instance, frequent cases of nonconformity on a certain
path may indicate that the process model does not reflect the reality [15,24].
Ideally, an analyst should revise the process model and then use the new model
to identify the set of fitting traces. This problem, however, is orthogonal to the
current work and can be addressed using techniques for process repairing [14]. In
this work, we assume that the process model is complete and accurately defines
the business process. On the other hand, if the process model correctly reflects
the reality, it is not obvious that non-fitting traces should be used to compute the
cost function. Indeed, the resulting cost function would be biased by behavior
that should not be permitted. Moreover, using error correction methods may lead
to the problem of overfitting the training set [16]. Based on these considerations,
we only use fitting traces as historical logging data.

The following two definitions describe how to compute the probabilities
required by Definition 5.

Definition 6 (Probability that an activity occurs). Let L be an event
log and Lfit ⊆ L the subset of traces that comply with a given process model
represented by a Petri net N = (P, T, F,A, �,mi,mf ). The probability that an
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activity a ∈ A occurs after executing σ with state-representation function abst is
the ratio between number of traces in Lfit in which activity a is executed after
reaching state abst(σ) and the total number of traces in Lfit that reach state
abst(σ):

Pabst(a occurs after σ) = |{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)∧σ′′⊕〈a〉∈(σ′)}|
|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)}| (3)

Definition 7 (Probability that an activity never eventually occurs).
Let L be an event log and Lfit ⊆ L the subset of traces that comply with a
given process model represented by a Petri net N = (P, T, F,A, �,mi,mf ). The
probability that an activity a ∈ A will never eventually occur in a process execu-
tion after executing σ ∈ A∗ with state-representation function abst is the ratio
between the number of traces in Lfit in which a is never eventually executed
after reaching state abst(σ) and the total number of traces in Lfit that reach
state abst(σ):

Pabst(a never eventually occurs after σ) =
|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)∧∀σ′′′ σ′′⊕σ′′′⊕〈a′〉∈(σ′)∧a′ �=a}|

|{σ′∈Lfit : ∃σ′′∈(σ′). abst(σ′′)=abst(σ)}|
(4)

Intuitively, Pabst(a occurs after σ) and Pabst(a never eventually occurs after σ)
are conditional probabilities. Given two events A and B, the conditional proba-
bility of A given B is defined as the quotient of the probability of the conjunction
of events A and B, and the probability of B:

P (A|B) =
P (A ∩ B)

P (B)
(5)

It is easy to verify that Eq. 3 coincides with Eq. 5 where A represents that activity
a is executed, B that trace σ is executed, and A ∩ B that σ ⊕ 〈a〉 is executed.
Similar observations hold for Eq. 4.

The cost of an alignment is the sum of the cost of all moves in the alignment,
which are computed as described in Definition 5:

Definition 8 (Cost of an alignment). Let ΣN be the set of legal moves for
a Petri net N . The cost of alignment γ ∈ Σ∗

N with state-representation function
abst is computed as follows:

Kabst(γ ⊕ (mL,mM )) =
{

κabst((mL,mM ), 〈〉) γ = 〈〉
κabst((mL,mM ), γ) + Kabst(γ) otherwise (6)

Hereafter, the term probable alignment is used to denote any of the optimal
alignments (i.e., alignments with the lowest cost) according to the cost function
given in Definition 8.

4.2 The Use of the A-Star Algorithm to Construct Alignments

The A-star algorithm [13] aims to find a path in a graph V from a given source
node v0 to any node v ∈ V in a target set. Every node v of graph V is associated
with a cost determined by an evaluation function f(v) = g(v) + h(v), where
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– g : V → R
+
0 is a function that returns the cost of the smallest path from v0

to v;
– h : V → R

+
0 is a heuristic function that estimates the cost of the path from v

to its preferred target node.

Function h is said to be admissible if it returns a value that underestimates
the distance of a path from a node v′ to its preferred target node v′′, i.e. g(v′)+
h(v′) ≤ g(v′′). If h is admissible, A-star finds a path that is guaranteed to have
the overall lowest cost.

The A-star algorithm keeps a priority queue of nodes to be visited: higher
priority is given to nodes with lower costs. The algorithm works iteratively: at
each step, the node v with lowest cost is taken from the priority queue. If v
belongs to the target set, the algorithm ends returning node v. Otherwise, v is
expanded: every successor v′ is added to the priority queue with a cost f(v′).

We employ A-star to find any of the optimal alignments between a log trace
σL ∈ L and a Petri net N . In order to be able to apply A-star, an opportune
search space needs to be defined. Every node γ of the search space V is associated
to a different alignment that is a prefix of some complete alignment of σL and N .
Since a different alignment is also associated to every search-space node and vice
versa, we use the alignment to refer to the associated state. The source node is
an empty alignment γ0 = 〈〉 and the set of target nodes includes every complete
alignment of σL and N .

Let us denote the length of a sequence σ with ‖σ‖. Given a node/alignment
γ ∈ V , the search-space successors of γ include all alignments γ′ ∈ V obtained
from γ by concatenating exactly one move. Given an alignment γ ∈ V , the cost
of the path from the initial node to node γ ∈ V is:

g(γ) = ‖γ |L ‖ + K(γ).

where K(γ) is the cost of alignment γ according to Definition 8. It is easy
to check that, given two complete alignments γ′

C and γ′′
C , K(γ′

C) < K(γ′′
C) iff

g(γ′
C) < g(γ′′

C) and K(γ′
C) = K(γ′′

C) iff g(γ′
C) = g(γ′′

C). Therefore, an optimal
solution returned by A-star coincides with an optimal alignment.

The time complexity of A-star depends on the heuristic used to find an opti-
mal solution. In this work, we consider term ‖σL‖ in h to define an admissible
heuristic; this term does not affect the optimality of solutions. Given an align-
ment γ ∈ V , we employ the heuristics:

h(γ) = ‖σL‖ − ‖γ |L ‖.

For alignment γ, the number of steps to add in order to reach a complete align-
ment is lower bounded by the number of execution steps of trace σL that have
not been included yet in the alignment, i.e. ‖σL‖ − ‖γ |L ‖. Since the additional
cost to traverse a single node is at least 1, the cost to reach a target node is at
least h(γ), corresponding to the case where the part of the log trace that still
needs to be included in the alignment perfectly fits.
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γ′ =
c s n

c s n
︸ ︷︷ ︸

γ

⊕

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(l, �) κ (l, �), γ
)

= 1.49
(�, p) κ (�, p), γ

)
= 1.04

(�, a) κ (�, a), γ
)

= 2.04
(�, d) κ (�, d), γ

)
= ∞

. . .

Fig. 4. Construction of the alignment of log trace σ3 = 〈c, s, n, l, o〉 and the net in
Fig. 1. Cost of moves are computed with sequence state-representation function, cost
profile f(p) = 1 + log (1/p), and Lfit in Table 1.

Example 4. Consider a log trace σ3 = 〈c, s, n, l, o〉 and the net N in Fig. 1.
An analyst wants to determine probable explanations of nonconformity by con-
structing probable alignments of σ3 and N , based on historical logging data.
In particular, Lfit consists of the traces in Table 1 (the first column shows the
traces, and the second the number of occurrences of a trace in the history).
Assume that the A-star algorithm has constructed an optimal alignment γ of
trace 〈c, s, n〉 ∈ (σ3) and N (left part of Fig. 4). The next event in the log trace
(i.e., l) cannot be replayed in the net. Therefore, the algorithm should determine
which move is the most likely to have occurred. Different moves are possible; for
instance, a move on log for l, a move on model for p, a move on model for t,
etc. The algorithm computes the cost for these moves using Eq. 5 (right part of
Fig. 4). As move on model (�, p) is the move with the least cost (and no other
alignments have lower cost), alignment γ′ = γ ⊕ (�, p) is selected for the next
iteration. It is worth noting that activity d never occurs after 〈c, s, n〉 in Lfit;
consequently, the cost of move (�, d) is equal to ∞.

5 Implementation and Experiments

We have implemented our approach for history-based construction of alignments
as a plug-in of the nightly-build version of the ProM framework (http://www.
promtools.org/prom6/nightly/).1 The plug-in takes as input a process model and
two event logs. It computes probable alignments for each trace in the first event
log with respect to the process model based on the frequency of the traces in the
second event log (historical logging data). The output of the plug-in is a set of
alignments and can be used by other plug-ins for further analysis. A screenshot
of the plugin is shown in Fig. 5. In particular, the figure shows the result of
aligning a few sample event traces with the net in Fig. 1.

To assess the practical feasibility and accuracy of the approach, we performed
a number of experiments using both synthetic and real-life logs. In the experi-
ments with synthetic logs, we assumed that the execution of an activity depends
on the activities that were performed in the past. In the experiments with real-
life logs, we tested if this assumption holds in real applications. Accordingly, the
1 The plug-in is available in package History-Based Conformance Checking.

http://www.promtools.org/prom6/nightly/
http://www.promtools.org/prom6/nightly/
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Fig. 5. Screenshot of the implemented approach in ProM, showing the probable align-
ment constructed between log traces and the process model in Fig. 1.

real-life logs were used as historical logging data. To evaluate the approach, we
artificially added noise to the traces used for the experiments. This was nec-
essary to assess the ability of the approach to reconstruct the original traces.
The experiments were performed using a machine with 3.4 GHz Intel Core i7
processor and 16 GB of memory.

5.1 Synthetic Data

For the experiments with synthetic data, we used the process for handling credit
requests in [19]. Based on this model, we generated 10000 traces consisting of
69504 events using the CPN Tools (http://cpntools.org). To assess the accuracy
of the approach, we manipulated 20 % of these traces by introducing different
percentages of noise. In particular, given a trace, we added and removed a num-
ber of activities to/from the trace equal to the same percentage of the trace
length. The other traces were used as historical logging data. We computed
probable alignments of the manipulated traces and process model, and evalu-
ated the ability of the approach to reconstruct the original traces. To this end,
we measured the percentage of correct alignments (i.e., the cases where a pro-
jection of an alignment over the process coincides with the original trace) and
compute the overall Levenshtein distance [17] between the original traces and
the projection of the computed alignments over the process. The Levenshtein
distance is a string metric that measures the distance between two sequences,
i.e. the minimal number of changes required to transform one sequence into the

http://cpntools.org
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Table 2. Results of experiments on synthetic data. CA indicates the percentage of
correct alignments, and LD indicates the overall Levenshtein distance between the
original traces and the projection of the alignments over the process. For comparison
with existing approaches, the standard cost function as defined in [4] was used. The
best results for each amount of noise are highlighted in bold.

other. In our setting, it provides an indication of how much the projection of the
computed alignments over the process is close to the original traces.

We tested our approach with different amounts of noise (i.e., 10 %, 20 %, 30 %
and 40 % of the trace length), with different cost profiles (i.e., 1/p, 1/√

p, and 1 +
log(1/p)), and with different state-representation functions (i.e., sequence, multi-
set, and set). Moreover, we compared our approach with existing alignment-
based conformance checking techniques. In particular, we used the standard
cost function introduced in [4]. We repeated each experiment five times. Table 2
shows the results where every entry reports the average over the five runs.

The results show that cost profiles 1/√
p and 1 + log(1/p) in combination with

sequence and multi-set abstractions are able to better identify what really hap-
pened, i.e. they align the manipulated traces with the corresponding original
traces in more cases (CA). In all cases, cost profile 1 + log(1/p) with sequence
state-representation function provides more accurate diagnostics (LD): even if
log traces are not aligned to the original traces, the projection over the process
of alignments constructed using this cost profile and abstraction are closer to the
original traces. Compared to the cost function used in [4], our approach com-
puted the correct alignment for 4.4 % more traces when cost profile 1 + log(1/p)
and sequence state-representation function are used. In particular, our approach
correctly reconstructed the original trace for 18.4 % of the traces that were not
correctly reconstructed using the cost function used in [4]. Moreover, an analysis
of LD shows that, on average, the traces reconstructed using our approach have
0.37 deviations (compared to the original traces), while the traces reconstructed
using the cost function used in [4] have 0.45 deviation. This corresponds to an
improvement of LD of about 15.2 %.

5.2 Real-Life Logs

To evaluate the applicability of our approach to real-life scenarios, we used an
event log obtained from a fine management system of the Italian police [19].2

The process model in form of Petri net is presented in Fig. 1. We extracted a log
2 The event log is also available for download: http://dx.doi.org/10.4121/uuid:

270fd440-1057-4fb9-89a9-b699b47990f5.

http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
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Table 3. Results of experiments on real-life data. Notation analogous to Table 2.

consisting of 142408 traces and 527549 events, where all traces are conforming to
the net. To these traces, we applied the same methodology used for the exper-
iments reported in Sect. 5.1. We repeated the experiments five times. Table 3
shows the results where every entry reports the average over the five runs.

The results confirm that cost profiles 1/√
p and 1+log(1/p) in combination with

sequence and multi-set state-representation functions provide the more accurate
diagnostics (both CA and LD). Moreover, the results show that our approach
(regardless of the used cost profile and state-representation function) performs
better than the cost function in [4] on real-life logs. In particular, using sequence
state-representation function and cost profile 1 + log(1/p), our approaches com-
puted the correct alignment for 1.8 % more traces than what the cost function in
[4] did. Although this may not be seen as a significant improvement, it is worth
noting that the cost function in [4] already reconstructs most of the traces (98 %
and 97 % of the traces for 10 % and 20 % noise respectively). Nonetheless, our
approach correctly reconstructed the original trace for 19.3 % of the traces that
were not correctly reconstructed using the cost function used in [4]. Moreover,
our approach improves LD by 21.1 % compared to the cost function used in [4].
Such an improvement shows that when the original trace is not reconstructed
correctly, our approach returns an explanation that is significantly closer to what
actually happened.

5.3 Complexity Analysis

In the previous sections, we have analyzed the accuracy of our approach for
the computation of probable alignments. In this section, we aim to perform a
complexity analysis. In the worst case, the problem is clearly exponential in
the length of the log traces and the number of process activities. However, in
this paper, we advocate the use of the A-star algorithm since it can drastically
reduce the execution time in the average case. To illustrate this, we report on
the computation time for the loan process and the fine-management process for
different amounts of noise.

Figure 6 shows the distribution of the computation time for the traces used in
the experiments. In particular, Fig. 6a shows that, in the experiments of Sect. 5.1
(loan process), the construction of alignments required less than 1 ms for most
of the traces. On the other hand, the construction of probable alignments for
the fine management process required less than 0.3 ms for most of the traces
(Fig. 6b). Table 4 reports the mean and standard deviation of computation time
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(a) Loan process

(b) Fine management process

Fig. 6. Distribution of the computation time required to construct probable alignments
for different amounts of noise. The computation time is grouped into 1 ms intervals in
Fig. 6a and 0.3 ms intervals in Fig. 6b. The y-axis values are shown in a logarithmic
scale.

Table 4. Mean and standard deviation of computation time required to construct
probable alignments for different amounts of noise.

(a) Loan process

Noise Mean Standard Deviation

10% 0.255 0.635

20% 0.421 0.935

30% 0.999 3.280

40% 3.014 14.146

(b) Fine management process

Noise Mean Standard Deviation

10% 0.102 0.042

20% 0.111

30% 0.110

40% 0.139

0.047

0.091

0.232

required to construct probable alignments for different levels of noise. The results
show that, in both experiments, the time needed to construct probable align-
ments increases with increasing amounts of noise.

Based on the results presented in this section, we can conclude that, for both
synthetic and real-life processes, our approach can construct probable alignments
for a trace in the order of magnitude of milliseconds, which shows its practical
feasibility.
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Fig. 7. Process model including two paths formed by a (sub)sequence of 50 activities
and 1 activity respectively. The first path is executed in 99 % of the cases; the second
in 1 % of the cases. γ1 and γ2 are two possible alignments of trace σ = 〈x, y〉 and the
process model.

6 Discussion

The A-star algorithm requires a cost function to penalize nonconformity. In our
experiments, we have considered a number of cost profiles to compute the cost
of moves on log/model based on the probability of a given activity to occur in
historical logging data. The selection of the cost profile has a significant impact
on the results as they penalize deviations differently. For instance, cost profile
1/p penalizes less probable moves much more than 1 + log(1/p). To illustrate
this, consider a trace σ = 〈x, y〉 and the process model in Fig. 7a. Two possible
alignments, namely γ1 and γ2, are conceivable (Fig. 7b). γ1 contains a large
number of deviations compared to γ2 (50 moves on log vs. 1 move on log). The
use of cost profile 1/p yields γ1 as the optimal alignment, while the use of cost
profile 1 + log(1/p) yields γ2 as the optimal alignment. Tables 2 and 3 show that
cost profile 1 + log(1/p) usually provides more accurate results. Cost profile 1/p

penalizes less probable moves excessively, and thus tends to construct alignments
with more frequent traces in the historical logging data even if those alignments
contain a significantly larger number of deviations. Our experiments suggest
that the construction of probable alignments requires a trade-off between the
frequency of the traces in historical logging data and the number of deviations
in alignments, which is better captured by cost profile 1 + log(1/p).

Different state-representation functions can be used to characterize the
state of a process execution. In this work, we have considered three state-
representation functions: sequence, multi-set, and set. The experiments show that
in general the sequence abstraction produces more accurate results compared to
the other abstractions. The set abstraction provides the least accurate results,
especially when applied to the process for handling credit requests (Table 2).
The main reason is that this abstraction is not able to accurately characterize
the state of the process, especially in presence of loops: after each loop iteration
the process execution yields the same state. Therefore, the cost function con-
structed using the set abstraction is not able to account for the fact that the
probability of executing certain activities can increase after every loop iteration,
thus leading to alignments in which loops are not captured properly.

The experiments show that our technique tends to build alignments that pro-
vide better explanations of deviations. It is easy to see that, when nonconformity
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is injected in fitting traces and alignments are subsequently built, the resulting
alignments yield perfect explanations if the respective process projections coin-
cide with the respective fitting traces before the injections of nonconformity.
Tables 2 and 3 show that, basing the construction of the cost function on the
analysis of historical logging data, our technique tends to build alignments whose
process projection is closer to the original fitting traces and, hence, the expla-
nations of deviations are closer to the correct ones.

7 Related Work and Conclusions

In process mining, a number of approaches have been proposed to check confor-
mance of process models and the actual behavior recorded in event logs. Some
approaches [10,11,18,21,22] check conformance by verifying whether traces sat-
isfies rules encoding properties expected from the process. Petković et al. [23]
verify whether a log trace is a valid trace of the transition system generated by
the process model. Rozinat et al. [24] propose a token-based approach for check-
ing conformance of an event log and a Petri net. The number of missing and
added tokens after replaying traces is used to measure the conformance between
the log and the net. Banescu et al. [9] extend the work in [24] to identify and
classify deviations by analyzing the configuration of missing and added tokens
using deviation patterns. The genetic mining algorithm in [20] uses a similar
replay technique to measure the quality of process models with respect to given
executions. However, these approaches only give a Boolean answers diagnosing
whether traces conform to a process model or not. When they are able to provide
diagnostic information, such information is often imprecise. For instance, token-
based approaches may allow behavior that is not allowed by the model due to
the used heuristics and thus may provide incorrect diagnostic information.

Recently, the construction of alignments has been proposed as a robust app-
roach for checking the conformance of event logs with a given process model [4].
Alignments have proven to be powerful artifacts to perform conformance check-
ing. By constructing alignments, analysts can be provided with richer and more
accurate diagnostic information. In fact, alignments are also used as the main
enablers for a number of techniques for process analytics, auditing, and process
improvement, such as for performance analysis [2], privacy compliance [5,6] and
process-model repairing [14].

To our knowledge, the main problem of existing techniques for constructing
optimal alignments is related to the fact that process analysts need to provide
a function which associates a cost to every possible deviation. These cost func-
tions are only based on human judgment and, hence, prone to imperfections.
If alignment-based techniques are fed with imprecise cost functions, they cre-
ate imperfect alignments, which ultimately leads to unlikely or, even, incorrect
diagnostics.

In this paper, we have proposed a different approach where the cost function
is automatically computed based on real facts: historical logging data recorded in
event logs. In particular, the cost function is computed based on the probability
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of activities to be executed or not in a certain state (representing which activities
have been executed and their order). Experiments have shown that, indeed, our
approach can provide more accurate explanations of nonconformity of process
executions, if compared with existing techniques.

We acknowledge that the evaluation is far from being completed. We aim
to perform more extensive experiments to verify whether certain cost-profile
functions provide more probable alignments than others or, at least, to give
some guidelines to determine in which settings a given cost-profile function is
preferable.

In this paper, we only considered the control flow, i.e. the name of the activ-
ities and their ordering, to construct the cost function and, hence, to compute
probable alignments. However, the choice in a process execution is often driven
by other aspects. For instance, when instances are running late, the execution of
certain fast activities are more probable; or, if a certain process attribute takes
on a given value, certain activities are more likely to be executed. We expect that
our approach can be significantly improved if other business process perspectives
(e.g., data, time and resources) are taken into account.
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Abstract. Since the environment for businesses is becoming more com-
petitive by the day, business organizations have to be more adaptive to
environmental changes and are constantly in a process of optimization.
Fundamental parts of these organizations are their business processes.
Discovering and understanding the actual execution flow of the processes
deployed in organizations is an important enabler for the management,
analysis, and optimization of both, the processes and the business. This
has become increasingly difficult since business processes are now often
dynamically changing and may produce hundreds of events per second.
The basis for this paper is the Constructs Competition Miner (CCM):
A divide-and-conquer algorithm which discovers block-structured
processes from event logs possibly consisting of exceptional behaviour.
In this paper we propose a set of modifications for the CCM to enable
dynamic business process discovery of a run-time process model from a
stream of events. We describe the different modifications with a particu-
lar focus on the influence of individual events, i.e. ageing techniques. We
furthermore investigate the behaviour and performance of the algorithm
and the ageing techniques on event streams of dynamically changing
processes.

Keywords: Run-time models · Business Process Management · Process
mining · Complex Event Processing · Event streaming · Big Data

1 Introduction

The success of modern organizations has become increasingly dependent on the
efficiency and performance of their employed business processes (BPs). These
processes dictate the execution order of singular tasks to achieve certain business
goals and hence represent fundamental parts of most organizations. In the con-
text of business process management, the recent emergence of Big Data yields
new challenges, e.g. more analytical possibilities but also additional run-time con-
straints. An important discipline in this area is Process Discovery: It is concerned
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with deriving process-related information from event logs and, thus, enabling the
business analyst to extract and understand the actual behaviour of a business
process. Even though they are now increasingly used in commercial settings, many
of the developed process discovery algorithms were designed to work in a static
fashion, e.g. as provided by the ProM framework [21], but are not easily applica-
ble for processing real-time event streams. Additionally, the emergence of Big
Data results in a new set of challenges for process discovery on event streams, for
instance [16,22]: (1) high event frequency (e.g. thousands of events per second),
and (2) less rigid processes (e.g. BPs found on the operational level of e-Health
and security use-cases are usually subjected to frequent changes).

In order to address the challenges we propose modifications for the Con-
structs Competition Miner (CCM) [15] to enable dynamic process discovery as
proposed in [16]. The CCM is a process discovery algorithm that follows a divide-
and-conquer approach to directly mine a block-structured process model which
consists of common BP-domain constructs and represents the main behaviour
of the process. This is achieved by calculating global relations between activities
and letting different constructs compete with each other for the most suitable
solution from top to bottom using “soft” constraints and behaviour approxima-
tions. The CCM was designed to deal with noise and not-supported behaviour.
To apply the CCM on event streams the algorithm was split up into two indi-
vidually operating parts:

1. Run-Time Footprint Calculation, i.e. the current footprint1, which rep-
resents the abstract “state” of the system, is updated with occurrence of each
event. The influence of individual events on the run-time footprint is deter-
mined by two different strategies: time-based and occurrence-based ageing.
Since every occurring event constitutes a system state transition, the algo-
rithmic execution-time needs to be kept to a minimum.

2. Scheduled Footprint Interpretation, i.e. from the footprint the current
business process is discovered in a scheduled, reoccurring fashion. Since this
part is executed in a different lifecycle it has less execution-time constraints.
In this step the abstract “computer-centric” footprint is transformed into a
“human-centric” business process representation.

The remainder of this paper provides essential background information (Sect. 2),
a discussion of related work (Sect. 3), a summarized description of the original
CCM (Sect. 4), the modifications that were carried out on top of the CCM
to enable Scalable Dynamic Process Discovery (Sect. 5), an evaluation of the
behaviour of the resulting algorithm for event streams of dynamically changing
processes (Sect. 6), and an outlook of future work (Sect. 7).

2 Background

Business Processes are an integral part of modern organizations, describing the
set of activities that need to be performed, their order of execution, and the
1 footprint is a term used in the process discovery domain, abstractly representing

existent “behaviour” of a log, e.g. activity “a” is followed by activity “b”.
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entities that execute them. Prominent BP examples are Order-to-Cash or
Procure-to-Pay. According to Ko et al. BPs are defined as “...a series or net-
work of value-added activities, performed by their relevant roles or collabora-
tors, to purposefully achieve the common business goal” [8]. A BP is usually
described by a process model conforming to a business process standard, e.g.
Business Process Model and Notation (BPMN) [14], or Yet Another Workflow
Language (YAWL) [19]. In this paper, we will focus on business processes consist-
ing of a set of common control-flow elements, supported by most of the existing
BP standards: start and end events, activities (i.e. process steps), parallel gate-
ways (AND-Split/Join), and exclusive gateways (XOR-Split/Join) (see [14,19]).
In Fig. 1 an example process involving all the introduced elements is displayed.
Formally, we define a business process model as follows [15]:

Definition 1. A business process model is a tupel BP = (A,S, J,Es, Ee, C)
where A is a finite set of activities, S a finite set of splits, J a finite set of joins,
Es a finite set of start events, Ee a finite set of end events, and C ⊆ F × F the
path connection relation, with F = A ∪ S ∪ J ∪ Es ∪ Ee, such that

– C = {(c1, c2) ∈ F × F | c1 �= c2 ∧ c1 /∈ Ee ∧ c2 /∈ Es},
– ∀a ∈ A ∪ J ∪ Es : |{(a, b) ∈ C | b ∈ F}| = 1,
– ∀a ∈ A ∪ S ∪ Ee : |{(b, a) ∈ C | b ∈ F}| = 1,
– ∀a ∈ J : |{(b, a) ∈ C | b ∈ F}| ≥ 2,
– ∀a ∈ S : |{(a, b) ∈ C | b ∈ F}| ≥ 2, and
– all elements e ∈ F in the graph (F,C) are on a path from a start event a ∈ Es

to an end event b ∈ Ee.

For a block-structured BP model it is furthermore required that the process
is hierarchically organised [15], i.e. it consists of unique join-split-pairs, each
representing either a single entry or a single exit point of a non-sequential BP
construct, e.g. Choice, Parallel, Loop, etc. The example process in Fig. 1 is a
block-structured process. A similar representation gaining popularity in recent
years is the process tree, as defined based on Petri nets/workflow nets in [9].

When a business process is automatically or semi-automatically executed
with a BP execution engine, e.g. with a Business Process Management System
(BPMS), an event log is produced, i.e. a all occurred events are logged and

Fig. 1. Example business process with all element types included
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stored. These logs and their contained events may capture different aspects of a
process execution, e.g. a different granularity of events are logged. In this paper
however, we only focus on a minimal set of event features: In order to allow the
discovery of the control-flow, every event is required to have a reference (1) to the
associated process instance and (2) to the corresponding activity. Furthermore,
we assume that the log contains exactly one event for each activity execution, i.e.
activity lifecycle events are not regarded. All events resulting from the execution
of the same process instance are captured in one trace. A trace is assumed to be
independent from other traces, i.e. the execution order of a process instance is
not in any way dependent on the execution of a second instance. Accordingly,
an event e is represented by a pair e = (t, a) where t ∈ N is the unique identifier
of the trace and a ∈ A is a unique reference to the executed activity.

The research area of Process Discovery is concerned with the extraction of a
business process model from event logs without using any a-priori information [23].
Conventional challenges in process discovery originate from the motivation to
achieve a high quality of results, i.e. discovered processes should support as accu-
rately as possible the behaviour contained in the log. In particular that means,
process discovery algorithms have to deal with multiple objectives, e.g. precision,
simplicity, fitness - over-fitting vs. under-fitting (see [23]). Process discovery algo-
rithmsare usually assumed tobe carried out in an staticwayas an“offline”method.
This is reflected by the fact that the input for these algorithms is an entire log as
conceptually shown by the following definition:

Definition 2. Let the log Ln = [e0, e1, ...en] be a sequence of n+1 events ordered
by time of occurrence (∀i < j∧ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then process discovery
is defined as a function that maps a log Ln to a process BPn:

ProcessDiscovery : [e0, e1, ..., en] ⇒ BPn

3 Related Work

A large number of process discovery algorithms exist, e.g. Inductive Miner [9],
HeuristicsMiner [25], alpha-miner [20] and CCM [15]. These and many algo-
rithms have in common that at first a footprint of the log is created based on
which the process is constructed. Similar to the CCM, the following related
algorithms also discover block-structured processes: (1) Genetic process discov-
ery algorithms that restrict the search space to block-structured process models,
e.g. [4]. However, these are non-deterministic and generally have a high exe-
cution time due to exponentially expanding search space. (2) Another relevant
approach that is conceptually similar to the CCM is proposed in [9], the Induc-
tive Miner (IM): A top-down approach is applied to discover block-structured
Petri nets. The original algorithm evaluates constraints based on local relation-
ships between activities in order to identify the representing construct in an
inductive fashion. In recent work, the IM has also been extended to deal with
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noise [10]. Generally, in all discovery approaches based on footprints known to
the authors the footprint is represented by a direct neighbours matrix represent-
ing information about the local relations between the activities, e.g. for the BP
of Fig. 1: h can only appear directly after g or e. As discussed in Sect. 4 the CCM
on the other hand extracts the process from a footprint based on global relations
between activities, e.g. h appears at some point after g or e.

However, of little importance for conventional process discovery algorithms
is their practicality with regards to an application during run-time: as defined
in Definition 2 process discovery is a static method that analyses an event log
in its entirety. An alternative to this approach is the immediate processing of
events when they occur to information of an higher abstraction level in order
to enable a real-time analysis. This approach is called Complex Event Process-
ing (CEP): a method that deals with the event-driven behaviour of large, dis-
tributed enterprise systems [11]. More specifically, in CEP events produced by
the systems are captured, filtered, aggregated, and finally abstracted to complex
events representing high-level information about the situational status of the sys-
tem, e.g. performance, control-flow, etc. The need for monitoring aspects of busi-
ness processes at run-time by applying CEP methodologies has been identified
by Ammon et al., thus coining the term Event-Driven Business Process Manage-
ment (EDBPM) - a combination of two disciplines: Business Process Manage-
ment (BPM) and Complex Event Processing [1]. The dynamic process discovery
solution proposed in this paper is an application of EDBPM (see Sect. 5). The
motivation is to have a run-time reflection of the employed processes based on
up-to-date rather than historical information which essentially allows business
analysts to react quicker to changes or occurring bottlenecks etc. in order to opti-
mise the overall performance of the monitored processes. In accordance to this
objective process discovery algorithms for event streams have to deal with two
additional challenges as opposed to the traditional process discovery algorithms:

1. The application of process discovery on event streams is executed in a real-
time setting and thus is required to conform to special memory and execution
time constraints. Especially with regards to many modern systems producing
“big data”, i.e. data that is too large and complex to store and process all
of it [12]. This means in particular, that online algorithms should be able to
(1) process an infinite number of events without exceeding a certain memory
threshold and (2) process each event within a small and near-constant amount
of time [5].

2. Real-life BPs are often subject to externally or internally initiated change
which has to be reflected in the results of an process discovery algorithm
analysing an event stream. The observed characteristic of dynamically chang-
ing processes is also called concept drift and has been identified as a major
challenge for process discovery algorithms [2,22,23]. Generally, discovery algo-
rithms on event streams should be able to (1) reflect newly appearing behav-
iour as well as (2) forget outdated behaviour.

Although not specifically, incremental process mining as introduced in [3]
does attempt to anticipate the problem of concept drift to some extent. Here,
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the assumption is that a log does not yet contain the entire behaviour of the
process (i.e. an incomplete log) at the time of the discovery of the initial (declar-
ative) process. Additional behaviour, that occurred after the initial discovery
and captured in a second log, is analysed separately and the new information
is then added to the existing BP model. This is possible due to structure of
declarative BP specifications. The process of incrementally analysing log seg-
ments and then extending the BP model accordingly, i.e. incremental process
mining, is motivated by the assumption that the update of an already exist-
ing (declarative) BP model is easier than to always analyse the complete log
from scratch [3]. Another approach called incremental worklfow mining is based
on the same principle but does discover and adapt a Petri Net from incremen-
tally processing log segments [6,7]. It is a semi-automatic (and prototypical)
approach specifically designed for dealing with process flexibility in Document
Management Systems that does not anticipate incomplete or noisy logs. A third
incremental approach is presented in [18] which utilises the theory of regions to
create transition systems for successive sub-logs and eventually transform them
into a Petri Net. Albeit based on a slightly different concept, incremental process
mining approaches can be considered for process discovery on event streams since
the event processing could be designed to group a number of successive traces
into sub-logs which are then individually analysed and incrementally extend the
overall BP. However, a conceptual weakness of incremental mining approaches
is the lacking ability of forgetting outdated behaviour.

In the context of process discovery on event streams, a synonymous term
sometimes used is Streaming Process Discovery (SPD). SPD was coined by
Burattin et al. in [5]. In their work the HeuristicsMiner [25] has been modified for
this purpose and a comprehensive evaluation of different event stream process-
ing types was carried out. The fundamentals of the HeuristicsMiner remain
the same but the direct-neighbours-footprint is dynamically adapted or rebuilt
while processing the individual events. From this the Causal Net is periodically
extracted, e.g. for every event or every 1000 events, using the traditional Heuric-
ticsMiner. For instance, for the evaluation of the different streaming methods
the HM discovery was triggered every 50 events [5]. Three different groups of
event streaming methods have been implemented and investigated:

Event Queue: The basic methodology of this approach is to collect events in
a queue which is representing a log that can be analysed in the traditional
way of process discovery. Three basic types can be differentiated: (1) In the
sliding window approach the queue is a FIFO (First-In-First-Out), i.e. when the
maximum queue length (queue memory) is reached for every new event inserted,
the oldest event in the queue is removed; (2) In the periodic reset approach
the queue is reset whenever the maximum queue length is reached. The main
advantage of these approaches are that the event queue can be regarded as event
log and enables the analysis via traditional discovery/mining algorithms on event
logs. Two of the main disadvantages are: Each event is handled at least twice:
once to store it in the queue and once or more to discover the model from the
queue; Also, it does only allow for a rather simplistic interpretation of “history”,
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i.e. an older event is either still in the queue and has same influence as a newer
event, or it is completely forgotten.

Stream-Specific Approaches: Stream-specific approaches already process events
into footprint information, i.e. queues that consist of a fixed size hold information
about the latest occurring activities and directly-follows relations. When a new
event occurs all values in the queues are updated and/or replaced. Burattin
et al. distinguish between the following three update operations: (1) Stationary,
i.e. the queues function as a “sliding window” over the event stream and every
queue entry has the same weight, (2) Ageing, i.e. the weight of the latest entry
is increased and the weights of older entries in the queue are decreased, and
(3) Self-Adaptive Ageing, i.e. the factor with which the influence of older entries
decreases is dependent on the fitness of the discovered model in relation to latest
events stored in an additional sample queue of a fixed size: quickly decreasing
for a low fitness and slowly decreasing for a high fitness. Generally, stream-
specific approaches are assumed to be a more balanced approach since events are
only handled once and directly processed into footprint information [5]. Burattin
et al. also argue that ageing-based approaches have a more realistic interpretation
of “history” since older events have less influence than newer events [5]. One
disadvantage is that the footprint is captured through a set of queues with a
fixed size: if this size is set too low, behaviour is prematurely forgotten; if this
size is set too high some of the old behaviour is never forgotten.

Lossy Counting: Lossy Counting is a technique adopted and modified from [13]
that uses approximate frequency count and divides the stream into a fixed num-
ber of buckets.

Another approach for discovering concept drifts on event streams of less
relevance to the paper’s topic is presented in [12]: A discovery approach for
declarative process models using the sliding window approach and lossy counting
to update a set of valid business constraints according to the events occurring
in the stream.

4 Static Constructs Competition Miner

The CCM as described in [15] is a deterministic process discovery algorithm that
operates in a static fashion and follows a divide-and-conquer approach which, from
a given event log, directly mines a block-structured process model that represents
the main behaviour of the process. The CCM has the following main features [15]:
(1) A deadlock-free, block-structured business process without duplicated activ-
ities is mined; (2) The following BP constructs are supported and can be dis-
covered for single activities: Normal, Optional, Loopover, and Loopback; or for a
set of activities: Choice, Sequence, Parallel, Loop, Loopover-Sequence, Loopover-
Choice, Loopover-Parallel (see Fig. 2), and additionally all of them as optional
constructs - these are constructs supported by the majority of business process
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Fig. 2. Business process constructs supported by the CCM [15]

Algorithm 1. Methodology of the CCM in Pseudocode
Data: Log L
Result: BP bp

1 begin
2 A ← getSetOfAllActivitiesInLog(L);
3 BP bp ← buildInitialBPWithStartAndEnd();
4 bp ← getFootprintAndBuildConstruct(A,L, bp);
5 return bp;

6 Function getFootprintAndBuildConstruct(Am, Log L,BP bp)
7 Footprint fp = extractFootprintForActivities(Am, L);
8 if |Am| = 1 then
9 Construct c ← analyseConstructForSingleActivity(fp);

10 bp ← createSingleActivityConstruct(c, Am);

11 else
12 ConstructsSuitability[] cs ← calculateSuitabilityForConstructs(fp, Am);
13 (Construct c, Afirst , Asecond ) ← constructCompetition(cs, Am);
14 bp ← createBlockConstruct(c, bp);
15 bp ← getFootprintAndBuildConstruct(Afirst , L, bp);
16 bp ← getFootprintAndBuildConstruct(Asecond , L, bp);

17 return bp;

standards like BPMN or YAWL; (3) If conflicting or exceptional behaviour exists
in the log, the CCM picks the “best” fitting BP construct.

Algorithm 1 shows the conceptual methodology of the CCM algorithm in
pseudocode. The CCM applies the divide-and-conquer paradigm and is imple-
mented in a recursive fashion (see lines 7, 16, and 17). At the beginning
getFootprintAndBuildConstruct is initially called for all involved activities
(Am = A) with the process bp consisting of only a start and end element. The
recursive function is first creating a footprint fp from the given log L only consid-
ering the activities specified in set Am (at the beginning all involved activities).
In a next step it will be decided which is the best construct to represent the



DCCM - Occurrence- vs. Time-Based Ageing 87

behaviour captured by fp: (1) if the activity set Am only consists of one ele-
ment, it will be decided which of the single activity constructs (see bottom of
Fig. 2) fits best - the process bp will then be enriched with the new single activ-
ity construct (see line 11); (2) If the activity set Am contains more than one
element, the suitability for each of the different constructs is calculated for any
two activities x, y ∈ Am based on “soft” constraints and behaviour approxima-
tions, e.g. activities a and b are in a strong Sequence relationship. The result
of this calculation (line 13) is a number of suitability matrices, one for each
construct. In the subsequent competition algorithm it is determined what is the
best combination of (A) the construct type c ∈ {Sequence, Choice, Loop, ...},
and (B) the two subsets Afirst and Asecond of Am with Afirst ∪ Asecond = Am,
Afirst ∩Asecond = {}, and Afirst, Asecond �= {}, that best accommodate all x, y-
pair relations of the corresponding matrix of construct c (line 14). The construct
is then created and added to the existing process model bp (line 15), e.g. XOR-
split and -join if the winning construct c was Choice. At this stage the recursive
method calls will be executed to analyse and construct the respective behaviour
for the subsets Afirst and Asecond. The split up of the set Am continues in a
recursive fashion until it cannot be divided any more, i.e. the set consists of a
single activity (see case (1)). The process is completely constructed when the
top recursive call returns.

Of particular interest for the transformation of the CCM algorithm to a
solution for dynamic process discovery is the composition of the footprint and its
calculation from the log. As opposed to many other process discovery algorithms,
e.g. alpha-miner [20], the footprint does not consist of absolute relations, e.g. h
is followed by a (see example in Fig. 1), but instead holds relative relation values,
e.g. a is eventually followed by g in 0.4 ∼= 40% of the traces. Furthermore, the
footprint only contains global relations between activities in order to guarantee a
low polynomial execution time for the footprint interpretation [15]. The footprint
of the CCM contains information about: (1) the occurrence of each involved
activities x ∈ Am, i.e. how many times x appears at least once per trace, how
many times an x appears on average per trace, and how many times the trace
started with x; (2) the global relations of each activity pair x, y ∈ Am, i.e. in
how many traces x appears sometime before the first occurrence of y in the
trace, and in how many traces x appears sometime before any occurrence of y
in the trace2. All measures in the footprint are relative to the number of traces
in the log. Furthermore, not only one overall footprint is created for the CCM
but also for every subset Afirst and Asecond, that is created during execution, a
new sub-footprint is created (see Algorithm 1).

2 This stands in contrast to existing discovery solutions since in the CCM the footprint
and its interpretation is not based on local relationships between activity occurrences,
e.g. direct neighbours, but based on global relationships between them.
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5 Dynamic Constructs Competition Miner

As established in Sect. 1, increasingly dynamic processes and the need for imme-
diate insight require current research in the domain of process mining to be
driven by a set of additional challenges. To address these challenges the concept
of Scalable Dynamic Process Discovery (SDPD), an interdisciplinary concept
employing principles of CEP, Process Discovery, and EDBPM, has been intro-
duced in [16]: “SDPD describes the method of monitoring one or more BPMSs
in order to provide at any point in time a reasonably accurate representation of
the current state of the processes deployed in the systems with regards to their
control-flow, resource, and performance perspectives as well as the state of still
open traces.” That means, any potential changes in the mentioned aspects of
the processes in the system that occur during run-time have to be recognized
and reflected in the continuously updated “current state” of the process. Due to
its purpose, for solutions of SDPD an additional set of requirements applies. For
this paper, the most relevant of them are [16]:

– Detection of Change: An SDPD solution is required to detect change in two
different levels defined in [17]: (1) Reflectivity: A change in a process instance
(trace), i.e. every single event represents a change in the state of the associated
trace. (2) Dynamism: A change on the business process level, e.g. because
events/traces occurred that contradicts with the currently assumed process.

– Algorithmic Run-Time: An SDPD solution is applied as CEP concept and has
to be able deal with large business processes operating with a high frequency,
i.e. the actual run-time of the algorithms becomes very important. The key
algorithms should be run-time effective to cope with increasing workload at
minimal possible additional computational cost.

Motivated by these challenges the initial process discovery approach was altered
to allow for dynamic process discovery. As opposed to the traditional static
methodology (see Definition 2), dynamic process discovery is an iterative app-
roach as defined in the following:

Definition 3. Let log Ln = [e0, e1, ...en] be a sequence of n+1 events ordered by
time of occurrence ( ∀i < j ∧ ei, ej ∈ Ln : time(ei) ≤ time(ej)) and BPn be the
business process model representing the behaviour in Ln, then dynamic process
discovery is defined as a function that projects the tuple (en, BPn−1) to BPn:

DynamicProcessDiscovery : (en, BPn−1) ⇒ BPn

As described in Sect. 4, the CCM is a static mining algorithm and has to
be modified in order to enable SDPD. The result of this modifications is called
Dynamic CCM (DCCM). However, two restrictions for the DCCM with regards
to the previously mentioned requirements of SDPD apply: (1) instead of discover-
ing change on the BP perspectives control-flow, resources, and performance per-
spective, the DCCM described in this paper only focuses on discovering change
in the control-flow, and (2) only change on the abstraction level of Dynamism
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is detected, i.e. whether or not the control-flow of the process has changed - the
detection of change on the abstraction level of Reflectivity will not be supported
by the DCCM. Additionally to the requirements of SDPD the DCCM features
the following important aspects: (1) robust : if conflicting, exceptional, or not
representable behaviour occurs in the event stream, the DCCM does not fail but
always picks the BP construct that best accommodates the recorded behaviour;
(2) deterministic: the DCCM yields the exact same output BP for the same
input stream of events.

Four different modifications were applied to the default CCM to create the
DCCM. These modifications are summarised in the following list and described
in more detail in the following sub-sections:

1. Splitting up the algorithm in two separate parts: one for dynamically updat-
ing the current footprint(s) complying to the requirement of extremely low
algorithmic run-time, and one for interpreting the footprint into a BP model
which has less restrictions with regards to its run-time.

2. In the CCM the footprint is calculated in relation to all occurring traces.
This is not applicable for SDPD since the number of traces should not have
an influence on the execution-time of any component of an SDPD solution.
For this reason the footprint has to be calculated in a dynamic fashion, i.e. an
event-wise footprint update independent from the previously occurred num-
ber of events or traces.

3. The original behaviour of the CCM to carry out a footprint calculation for
every subset that has been created by the divide-and-conquer approach is
not optimal as then the DCCM would have to extract up to 2 ∗ n + 1 dif-
ferent footprints if only one activity was split-up from the main set for each
recursion.3 This has been improved for the DCCM: for the most common
constructs Choice and Sequence the sub-footprints are automatically derived
from the parent footprint.

4. In rare cases it can happen that for every appearing event the state of the
process is alternating between a number of different control-flows. This is
caused by “footprint equivalent” BP models, i.e. two models are footprint
equivalent if they both express the behaviour captured by the footprint. We
introduce a measure which favours the last control-flow state in order to
prevent the described behaviour.

5.1 Methodology of the Dynamic CCM

The original CCM algorithm had to be split up into two separate parts in order
to comply to the SDPD’s requirement of low algorithmic run-time for the event
processing. A component triggered by the occurrence of a new event to update
3 e.g. for A = {a, b, c, d} : (a, b, c, d) → ((a, b, c), (d)) → (((a), (b, c)), (d)) →

(((a), ((b), (c))), (d)), seven different footprints for sets {a, b, c, d}, {a, b, c}, {b, c}, {a},
{b}, {c}, {d} need to be created - (, ) denote the nested blocks that emerge while
splitting the sets recursively.
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Fig. 3. Conceptual methodology of the dynamic CCM

the dynamic footprint and a component decoupled from the event processing
which interprets the footprint into a BP Model. The conceptual methodology of
the DCCM is depicted in Fig. 3. The components, models, and functionality of
the DCCM are described in the following: Events from the monitored Enterprise
System, in which the end-to-end process is deployed, are fed into an event stream.
The Footprint Update component is the receiver of these events and processes
them directly into changes on the overall Dynamic Footprint which represents
the abstract state of the monitored business process. If additional footprints for
subsets of activities are required as specified by the Sub-Footprint Configurations,
e.g. if a Loop or Parallel construct was identified, then these sub-footprints are
also updated (or created if they were not existent before). The Dynamic Foot-
print(s) can then at any point in time be compiled to a human-centric repre-
sentation of the business process by the Footprint Interpretation component, i.e.
the abstract footprint representation is interpreted into knowledge conforming
to a block-structured BP model. In the DCCM this interpretation is scheduled
dependent on how many new completed traces appeared, e.g. the footprint inter-
pretation is executed once every 10 terminated traces. If the interpretation fre-
quency m ∈ N of the DCCM is set to 1 a footprint interpretation is executed for
every single trace that terminated. The Footprint Interpretation algorithm works
similar to the CCM algorithm shown in Algorithm1; but instead of extracting
footprints from a log (line 8), the modified algorithm requests the readily avail-
able Dynamic Footprint(s). If a sub-footprint is not yet available (e.g. at the
beginning or if the process changed) the Footprint Interpretation specifies the
request for a sub-footprint in the Sub-Footprint Configurations in the fashion
of a feedback loop. Thus, Sub-Footprint Configurations and Dynamic Footprints
act as interfaces between the two components, Footprint Update and Footprint
Interpretation. The Footprint Interpretation cannot continue to analyse the sub-
sets if no sub-footprint for these exist yet. In this case, usually occurring in the
warm-up or transition phase, an intermediate BP model is created with activities
containing all elements of the unresolved sets as depicted in Fig. 4.
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Fig. 4. Result of the Footprint Interpretation on an event stream produced by the exam-
ple from Fig. 1 if no sub-footprints for {a, b, c, d} and {e, f, g, h} are available yet - only
the top-level loop has been discovered

5.2 Run-Time Update of the Dynamic Footprint

The Footprint Update component processes events to changes in the Dynamic
Footprint, i.e. updates the abstract representation of the process state. The orig-
inal footprint extraction of the CCM algorithm calculates all values in relation
to the number of occurred traces, i.e. every trace’s influence on the footprint is
equal: 1

|traces| . To keep the algorithmic run-time to a minimum and allow for
scalability the footprint update calculation should only take a fixed amount of
time, independent from the total number of previously occurred events or traces.
An increase of the total number of involved activities can cause, however, a linear
increase of the execution-time due to the recalculation of the relations between
the occurred activity and, in the worst case, all other activities. The indepen-
dence from previous traces is the reason the footprint is calculated in a dynamic
fashion, i.e. the dynamic footprint is incrementally updated in a way that older
events “age” and thus have less influence than more recent events.

The general ageing approach that is utilized in the Footprint Update of the
DCCM is based on the calculation of an individual trace footprint4 (TFP ) for
each trace which influences the dynamic overall footprint (DFP ). For the n-th
new TFPn the DFP is updated in the following way: Given a specified trace
influence factor tif ∈ R with 0 < tif ≤ 1 the old DFPn−1 is aged by the ageing
factor af = 1 − tif , i.e.

DFPn = tif ∗ TFPn + (1 − tif ) ∗ DFPn−1 (1)

E.g., for trace influence factor tif = 0.01: DFPn = 0.01∗TFPn+0.99∗DFPn−1.
Two different ageing methods have been developed which will be evaluated
against each other in Sect. 6: Occurrence-based Ageing and Time-based Ageing.

Occurrence-Based Ageing is an ageing method similar to the approach of Bur-
retin et al. [5] discussed in Sect. 3. In this case the trace influence tif is a fixed
value and the DFP ages the same proportion for every time a trace footprint
4 the occurrence values for activities as well as the global relations (see end of Sect. 4)

are represented in the trace footprint by absolute statements true ≡ 1 if it occurred
and false ≡ 0 if not.
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Fig. 5. Development of the influence of a trace for different trace influence factors(tif )

is added indeterminate from how much time has passed since the last foot-
print update. For example, assuming tif = 0.01 the trace footprint TFPn has
the influence of 0.01 when it first occurs (see Eq. 1); after another TFPn+1

has occurred the influence of TFPn decreases to 0.01 ∗ 0.99, and after another
0.01∗0.992 and so on. By applying this incremental method, older TFP are los-
ing influence in the overall dynamic footprint. Figure 5 shows how the influence
of a trace is dependent on its “age”: If tif = 0.1, the influence of a trace that
appeared 60 traces ago became almost irrelevant. At the same time if tif = 0.01
the influence of a trace of the same age is still a little more than half of its initial
influence when it first appeared. Essentially, the purpose of the trace influence
factor tif is to configure both, the “memory” and the adaptation rate, of the
footprint update component, i.e. a high tif means quick adaptation but short
memory but a small tif means a slow adaptation but a long memory. Finding
the correct trace influence is an issue of balancing these two inversely propor-
tional effects, e.g. it might be generally desirable to have a high adaptation rate
(tif = 0.1) but if some behaviour of the process only occurs once in every 60
traces it will already be “forgotten” when it reappears (see Fig. 5) essentially
resulting in a continuously alternating business process. However, while apply-
ing this method it was observed that at the beginning of the event streaming
an unnecessarily long time to “warm-up” was required until the DFP reflected
the correct behaviour of the business process. In order to shorten the “warm-up”
phase of the Footprint Update a more dynamic method was adopted: If the overall
amount of so far occurred traces |traces| < 1

tif
then the influence of the dynamic

overall footprint is |traces|
|traces|+1 and of the new trace footprint 1 − 1

|traces|+1 . As a
result all traces that occur while |traces| < 1

tif
have the same influence in the

DFP of 1
|traces| . For instance if tif = 0.01 and |traces| = 9 then a new dynamic

footprint is calculated with DFP 10 = 1
10 ∗ TFP + 9

10 ∗ DFP 9 and for the next
trace DFP 11 = 1

11 ∗TFP + 10
11 ∗DFP 10. As soon as |traces| ≥ 1

tif
the standard

occurrence ageing with a fixed influence factor is adopted:
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DFPn =

⎧

⎨

⎩

TFPn if n = 0
1
n ∗ TFPn + n−1

n ∗ DFPn−1 if 0 < n < 1
tif

tif ∗ TFPn + (1 − tif ) ∗ DFPn−1 if n ≥ 1
tif

(2)

Because of this implementation the “warm-up” phase of the Footprint Update
could be drastically reduced, i.e. processes were already completely discovered a
few traces after the start of the monitoring which will be shown in Sect. 6.

Time-Based Ageing is an ageing method based on the time that has passed
since the last trace occurred. The more time has passed the less influence the
old DFPn−1 has on the updated DFPn. This is achieved in a similar way
than in the occurrence-based ageing but instead of having an ageing factor af
relative to the trace occurrence it is now relative to the time passed. That means
that ageing factor af and trace influence factor tif are not fixed for each trace
occurrence but calculated based on an ageing rate ar per passed time unit tur,
i.e. in particular time tn has passed since the last trace occurred then

af = a
tn
tur
r and tif = 1 − af

If tn = tur then the dynamic overall footprint ages exactly the same as with
the occurrence-based ageing, if tn > tur then it ages quicker, and if tn < tur it
ages slower. For instance, with ageing rate ar = 0.99 and time unit tur = 1s:
If the new trace occurred tn = 2s after the last footprint update then the new
dynamic overall footprint DFPn = (1 − 0.992) ∗ TFPn + 0.992 ∗ DFPn−1.
Through time-based ageing the influence development of passed traces behaves
similarly to the occurrence-based ageing in Fig. 5 apart from that the ageing is
not based on trace-oldness but on time-oldness (the numbers on the x-axis now
represent the passed time units since the trace occurred). For the time-based
ageing a similar problem was observed during the warm-up phase than with the
occurrence-based ageing: Since the DFP only consists of zeros when initialised it
takes an unnecessary long time to converge towards a footprint representing the
correct behaviour of the business process. For this reason an alternative linear
ageing relative to the overall passed time since the first trace recorded tur was
adopted as well. The final ageing factor af is the minimum of both calculated
values as shown in Eq. 3.

af = min(1 − tn
tall

, a
tn
tur
r ) (3)

DFPn = (1 − af ) ∗ TFPn + af ∗ DFPn−1 (4)

Considering the example from earlier where ar = 0.99, time unit tur = 1s, the
new trace TFPn occurred 2s after the last update, and the first trace recorded
was tall = 4s then af = min(1− 2s

4s , 0.992) = 0.5 and according to Eq. 4: DFPn =
(1−0.5)∗TFPn+0.5∗DFPn−1. In this way the warm-up phase can be shortened
similar to the occurrence-based approach but still be based on time.
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Another important dynamism feature that had to be implemented was the
possibility to add an activity that has not appeared before. A new activity is first
recorded in the respective trace footprint. When the trace is terminated it will
be added to the overall footprint in which it is not contained yet. The factored
summation of both footprints to build the new dynamic footprint is carried out
by assuming that a not previously in the dynamic overall footprint contained
relation value is 0. Furthermore, activities that do not appear any more during
operation should be removed from the dynamic footprint. This was implemented
in the DCCM in the following way: If the occurrence once value of an activity
drops below a removal threshold tr ∈ R, tr < tif it will be removed from the
dynamic footprint, i.e. all values and relations to other activities are discarded.

The fact that especially many Choice and Sequence constructs are present
in common business processes, motivates an automated sub-footprint creation
in the Footprint Interpretation based on the parent footprint rather then cre-
ating the sub-footprint from the event stream. This step helps to decrease the
execution-time of the Footprint Update and was achieved by introducing an extra
relation to the footprint5 - the direct neighbours relation as used by other mining
algorithms (see Sect. 3). In the Footprint Interpretation this relation is then used
for creating the respective sub-footprints for Sequence and Choice constructs but
not for identifying BP constructs since the direct neighbours relation does not
represent a global relation between activities.

5.3 Modifications in the Footprint Interpretation Component

As analysed in the beginning of this section, the original behaviour of the
CCM to retrieve a sub-footprint for each subset that has been created by
the divide-and-conquer approach is not optimal. This is why, in the Footprint
Interpretation the DCCM calculates the sub-footprints for the most common
constructs, Choice and Sequence, from the available parent footprint: (1) For
the Choice construct the probability of the exclusive paths are calculated with
pfirst =

∑

x∈Afirst
Fel(x) and psecond =

∑

x∈Asecond
Fel(x) with Fel(x) being

the occurrences of x as first element (see CCM footprint description in Sect. 4).
Then the relevant values of the parent footprint are copied into their respective
new sub-footprints and normalized, i.e. multiplied with 1

pfirst
and 1

psecond
, respec-

tively. (2) The sub-footprints for the Sequence construct are similarly built, but
without the normalization. Instead, the direct neighbours relation, now also part
of the dynamic footprint, is used to calculate the new overall probabilities of the
sub-footprints.

If two or more BP constructs are almost identically suitable for one and the
same footprint, a slight change of the dynamic footprint might result in a differ-
ently discovered BP. This may cause an alternating behaviour for the footprint
5 In rare cases (if Loop and Parallel constructs dominate) this modification can have a

negative effect on the execution-time since extra information needs to be extracted
without the benefit of mining less sub-footprints.
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interpretation, i.e. with almost every footprint update the result of the inter-
pretation changes. This is undesirable behaviour which is why the competition
algorithm was additionally modified as follows: All combinations of BP con-
struct and subsets are by default penalized by a very small value, e.g. tif

10 , with
the exception of the combination corresponding to the previously discovered BP
model, hence reducing the risk of discovering alternating BP models.

6 Evaluation

The static CCM algorithm has been tested in detail for its accuracy in [15]: (1) in
a qualitative analysis the CCM was able to rediscover 64 out of 67 processes for
which a log was produced through simulation. (2) in the second part of the
evaluation the discovery performance of the CCM was compared to the mining
algorithms HeuristicsMiner (HM) [25], Inductive Miner (IM) [10], and the Flower
Miner (FM), all of which are readily available in the ProM nightly build [21]. For
ten given logs (including real-life logs and publicly available logs) the results of
the algorithms (each configured with their default parameters) were evaluated
for their trace fitness ftf , precision fpr, generalization fg, and simplicity fs with
the help of the PNetReplayer plugin [24]. The averaged results of the detailed
analysis are shown in Table 1 [15]; Note, that a lower simplicity value is better.

Table 1. Conformance results of the different discovery algorithms [15]

Trace Fitness ftf Precision fpr Generalization fg Simplicity fs

HM IM FM CCM HM IM FM CCM HM IM FM CCM HM IM FM CCM

0.919 0.966 1.0 0.979 0.718 0.622 0.124 0.663 0.941 0.915 0.992 0.930 155.3 122.8 56.4 111.9

In the remainder of this section evaluation results of the DCCM are pre-
sented with regards to its capability of initially discovering the correct process
and how it reacts to certain changes of a real-time monitored business process.
Furthermore, a comparative analysis is carried out to determine the advantages
and disadvantages of the two ageing strategies, occurrence-based and time-based
ageing.

6.1 Experiment Setup

The experiments revolve around the concept of process rediscovery, i.e. that a
source business process is executed and produces an event stream which is fed to
the DCCM which then should discover a process behaviourally equivalent to the
executed source process. Figure 6 shows three measures (tw, td, and ttr) which
we use to evaluate the quality of the DCCM. In the figure BP1 and BP2 are the
business processes deployed in the monitored system and BP ′

1 to BP ′
n are the

models discovered by the DCCM. Additionally, BP1 and BP ′
m are equivalent

(BP1 ≡ BP ′
m) as well as BP2 and BP ′

n (BP2 ≡ BP ′
n). For this part of the

evaluation the following measures are of interest:
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Fig. 6. Measures for detection of BP change in system

– Warm-up: tw ∈ N the amount of completed traces the DCCM needs as input
at the start until the resulting model equivalently represents the process in
the system, i.e. until BP1 ≡ BP ′

m.
– Change Detection: td ∈ N the amount of completed traces it takes to detect

a certain change in the monitored process - from the point at which the
process changed in the system to the point at which a different process was
detected. When the change is detected the newly discovered process is usually
not equivalent to the new process in the system BP2 but instead represents
parts of the behaviour of both processes, BP1 and BP2.

– Change Transition Period: ttr ∈ N the amount of completed traces it takes
to re-detect a changed process - from the point at which the process change
was detected to the point at which the correct process representation was
identified, i.e. until BP2 ≡ BP ′

n. In this period multiple different business
processes may be detected, each best representing the dynamic footprint at
the respective point in time.

The basis of our evaluation is the example model in Fig. 1 which is simulated and
the resulting event stream fed into the DCCM. In order to get reliable values for
the three measures tw, td, and ttr, this is repeated 60 times for each configuration.
From these 60 runs the highest and lowest 5 values for each measure are discarded
and the average is calculated over the remaining 50 values. For each experiment
the CCM core is configured with its default parameters (see [15]).

6.2 Warm-up Evaluation

The first experiment will evaluate how the DCCM behaves at the beginning
when first exposed to the event stream, more particularly, we want to determine
the duration of the warm-up phase tw. Figure 7 shows the development of the
first few BP models extracted by the DCCM using Occurrence Ageing with trace
influence factor tif = 0.01 (see Sect. 5.2) and interpretation frequency m = 10,
i.e. an interpretation is executed every 10 completed traces: After the first trace
the discovered process is a sequence reflecting the single trace that defines the
process at that point in time. At trace 10, which is the next scheduled foot-
print interpretation, the algorithm discovers a Loop construct but cannot further
analyse the subsets since the corresponding sub-footprint was not requested yet.
Because of that, the feedback mechanism via the Sub-Footprint Configurations
is utilized by the Footprint Interpretation algorithm to register the creation of
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Fig. 7. The evolution of the discovered BP model during the warm-up phase

the missing sub-footprints. In the next scheduled run of the footprint interpre-
tation, the Parallel construct of a, b, c, and d is discovered but again the analysis
can not advance since a sub-footprint for the individual activity subsets has not
been created yet. Activities e, f, g, and h seem to have appeared only in exactly
this sequence until trace 20. Skipping one of the interpretation steps, we can see
that at trace 40 the complete process has been mined, i.e. tw = 40.

In Fig. 8 the development of warm-up duration tw for of the DCCM with
Occurrence Ageing for different m ∈ {1, 2, 3, 6, 10} and tif ∈ {0.001, 0.002, 0.005,
0.01, 0.018, 0.03} is depicted. The warm-up phase seems generally very short
and not strongly influenced by tif . For m = 10 the warm-up phase cannot
be any shorter because the example process consists of a block-depth of 3:

Fig. 8. Warm-up time with the occurrence ageing in relation to the trace influence
factor
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Fig. 9. Warm-up time with time ageing in relation to the trace influence factor

Parallel-in-Parallel-in-Loop, i.e. 3 subsequent requests for sub-footprints have
to be made. This is an indicator that the modification effort to shorten the
warm-up phase had a positive effect. No significant changes of tw can be noticed
when increasing or decreasing the trace influence factor tif . This is caused by
the optimisation rule that essentially nullifies the default ageing via tif (see Eq. 2
in Sect. 5.2).

A similar sensitivity experiment was carried out for the warm-up duration
tw with the Time-based Ageing (Sect. 5.2): In order to make the results compa-
rable the ageing time unit was set to one minute (tur = 1min) and the sim-
ulation produced on average approximately one instance per minute (instance
occurrence: 1/min; deviation: 0.5). As a result similar tif for the occurrence-
based and time-based6 ageing should yield results of a similar magnitude and
are thus comparable, i.e. 10 traces ≈ 10 min. In Fig. 9 the development of warm-
up duration tw for the DCCM with Time Ageing for different m ∈ {1, 5} and
tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1} is depicted. As a reference the results of the
Occurrence Ageing with m = 1 were also added to the graph. Similar to the
occurrence-based ageing, the development of the warm-up duration tw seems to be
in no relation to the trace influence factor tif for the time-based ageing. This indi-
cates that the optimisation rule for the time-based ageing successfully improves
and nullifies the default ageing method for the warm-up phase (see Eqs. 3 and 4 in
Sect. 5.2). Additionally, it can be seen that the result of the two different ageing
types with a similar configuration yield similar results (for m = 1).

In order to examine the effect of the optimisations for both of the ageing
methods, the same experiments were repeated without the respective optimi-
sations (only for m = 1). Figure 10 shows that especially for the occurrence
ageing a sizeable improvement was achieved through the application of the pro-
posed optimisations, e.g. for tif = 0.02 the non-optimized occurrence ageing
took on average 341 traces until the model was rediscovered but the optimised
version was already successful after 8.44 traces (on average). The non-optimised

6 Time-based ageing is technically based on an ageing rate ar rather than trace influence
factor tif . However, ar can be derived from tif , i.e. ar = 1 − tif .
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time-based ageing already yielded comparatively good results which could be
further improved by the optimisation proposed (see Eq. 3 in Sect. 5.2), e.g. for
tif = 0.02 the non-optimized time ageing took on average 37.16 min (≈ number
of traces) until the model was rediscovered but the optimised version was already
successful after an average of 8.42 min.

Fig. 10. Warm-up time without optimisation in relation to the trace influence factor
with m = 1

6.3 Change Evaluation

In a second experiment we applied three changes of different extent to the busi-
ness process (moving of an activity, adding an activity, and a complete process
swap) during execution and are interested in the behaviour of the DCCM as well
as in the change detection td and the change transition period ttr.

Moving of Activity “A”. The change applied is the move of activity A from the
position before the inner Parallel construct to the position behind it. Figure 11
shows the evolution of the discovered BP models with occurrence ageing and
trace influence factor tif = 0.01 and interpretation frequency m = 10. The
change was applied after 5753 traces. The footprint interpretation detects at
the first chance to discover the change (trace 5760) a concept drift and finds
via competition the best fitting construct: Parallel of a, c and b, d. The change
detection td seemed to be unrelated to m and tif for all experiment runs and was
immediately recognized every time7. In Fig. 12 the development of ttr for both
ageing approaches different m ∈ {1, 10} and tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1}
is shown. For this change a clear difference between the performance of the
occurrence-based and the time-based ageing can be observed: The time-based
7 Note, that other changes like deletion of an activity will take longer to recognise,

since their existence still “lingers” in the footprints “memory” for some time.
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Fig. 11. The evolution of the discovered BP model during a change (move of activity
“A”)

ageing is significantly slower to finally detect the correct changed process, e.g.
for tif = 0.02 and m = 1 the time-based method detects the correct process
BP2 after on average 345 traces/minutes while the occurrence-based method
recognises the new process correctly already after 105 traces (on average). Fur-
thermore, it is observable that the change transition period ttr was not partic-
ularly influenced by the interpretation frequency m but strongly influenced by
tif . If the value was very small (tif = 0.005) a change took on average 450 traces
(occurrence-based) or 1382 traces/minutes (time-based) in order to be reflected
correctly in the discovered BP model. On the other hand if the trace influence
factor is chosen very high, e.g. tif = 0.1, the new process is correctly discovered
after 21.1 (occurrence-based) or 67 (time-based) traces/minutes.

Adding of Activity “I”. The change applied in this scenario is the addition of
activity I at the end of the process. Figure 13 shows the evolution of the discov-
ered BP models with occurrence ageing and trace influence factor tif = 0.01 and
interpretation frequency m = 10 while the change was applied after 5753 traces.
It can be observed that the change detection td was again immediate, i.e. unre-
lated to m and tif . However, it took on average 140 traces longer for the tran-
sition phase to be completed than for the previous scenario, i.e. on average 690
traces were necessary. The intermediate model which was valid from trace 5760
until 6450 (exclusively) recognises the relative position of activity I correctly (at
the end of the process) but makes the activity optional. This is due to the fact
that the “memory” of the dynamic overall footprint still contains behaviour from
the original process in which the process ended without an activity I. Only after
a certain amount of traces (dependent on the trace influence factor tif ) the mem-
ory of this behaviour became insignificant. Figure 14 shows an overview of the
development of ttr for all changes and both ageing approaches with m = 1 and
tif ∈ {0.005, 0.01, 0.02, 0.05, 0.1}. Both ageing approaches behave similarly for the
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Fig. 12. The change transition period in relation to the trace influence factor (for
recognising move of activity “A”)

change of introducing the new activity I: even though the time-based ageing was
usually slightly quicker, e.g. for tif = 0.01: 687 (occurrence-based) vs. 684 (time-
based) traces/minutes, the transition periods essentially only differed marginally
(2 to 6 traces). When comparing the transition period ttr for the occurrence-based
method we can conclude that the movement of an activity was quicker detected
correctly than the addition of a new activity (tif = 0.01: 209 (move A) vs. 687
(add I)). However, for the time-based ageing only a relatively small difference was
observed (tif = 0.01: 691 (move A) vs. 684 (add I)).

Complex Change (Swap of Complete Process). The change applied in third sce-
nario is a complete exchange of the original process during runtime, i.e. a revolu-
tionary change. Figure 15 shows the evolution of the discovered BP models with
occurrence ageing and trace influence factor tif = 0.01 and interpretation fre-
quency m = 10 with the change being applied after 5753 traces. The change detec-
tion td was again immediate (not displayed in Fig. 15), thus being unrelated to m
and tif . Many different process versions occurred during the transition phase of
which only the version at trace 6310 is exemplary shown in the figure. ProcessBP2

which is extremely different from BP1 was finally correctly detected at trace 6680,
i.e. on average 927 traces after the change was applied and 230 traces later than
the introduction of a new activity (second scenario). When comparing the perfor-
mance of occurrence-based and time-based ageing it can be observed that both
develop similarly in relation to the trace influence factor tif (see top two graphs
in Fig. 14). This scenario can be considered the baseline scenario for how long a
the transition phase may last at maximum for any tif .

6.4 Occurrence-Based vs. Time-Based Ageing

A first observation is that the change detection td for all changes and ageing
configuration was always quasi-immediate, i.e. whenever the first interpretation
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Fig. 13. The evolution of the discovered BP model during a change (addition of activity
“I”)

occurred after a change it was detected that the process has changed. This is
mainly due to the configuration of the core CCM component and may change
if different interpretation thresholds are selected. The ageing strategy, however,
seems to not influence this directly (unless an extremely low trace influence tif
is selected).

A second observation is that there is a significant difference for the transition
duration ttr depending on the extent of the change, e.g. the movement of activity
A took on average only ttr = 209 traces to be correctly recognised whereas
swapping process BP1 with an entirely different process took on average ttr =
932 to be recognised by the DCCM with occurrence-based ageing and tif = 0.01
and m = 1.

Thirdly, time-based and occurrence-based ageing perform in most cases simi-
larly well, with the exception of change scenario 1, in which activity A was moved
to a different position within the process. Here, the occurrence-based ageing was
able to detect the change significantly earlier than the time-based method, e.g.
for tif = 0.1 the new process is correctly discovered after 21.1 (occurrence-based)
or 67 (time-based) traces/minutes. However, a fact not shown in the graphs is
the number of exceptional results: While the time-based ageing did not suffer
any exceptional experiment results it was observed that in approximately 4 % of
the experiments for the occurrence-based method disproportionately high val-
ues for ttr occurred. Due to the experiment setup, these results were ignored
(see Sect. 6.1 - removal of the five highest and lowest values). In this context
it was furthermore observed that a very high trace influence tif >> 0.1 (not
part of the above experiments) resulted in frequently changing/alternating dis-
covered BP models even though the source process producing the events did not
change. The reason for this behaviour is that not all variations of the process
are included in the current dynamic footprint because they have already been
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Fig. 14. The change transition period in relation to the trace influence factor for all
three changes (m = 1)

Fig. 15. The evolution of the discovered BP model during a change (complex change)

“forgotten” before they reappeared. It was observed that for the examined sce-
narios the occurrence-based ageing is slightly more susceptible to this issue than
the time-based approach. Generally, the issue of “forgetting” too quickly is more
likely to occur in large business processes containing rarely executed but still
relevant behaviour and emphasises the importance of setting the trace influence
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factor tif correctly to balance between timely correct discovery (higher tif ) and a
sufficiently long memory (lower tif ) to not forget frequently occurring behaviour.

Additionally to the warm-up and change evaluation, first performance tests
have been carried out for large artificially produced processes. For a randomly
created and strongly nested process consisting of 100 activities the throughput
of the footprint update was close to 100, 000 events per second and the foot-
print interpretation successfully discovered the process in a matter of seconds.
Although not tested yet in a real-life setting, the shown results indicate that the
DCCM is very suitable for discovering and monitoring large enterprise processes.

7 Conclusion and Future Work

In this paper we suggested modifications for the Constructs Competition Miner
to enable Scalable Dynamic Process Discovery as proposed in [16]. The CCM
is a process discovery algorithm that follows a divide-and-conquer approach to
directly mine a block-structured process model which consists of common BP-
domain constructs and represents the main behaviour of the process. This is
achieved by calculating global relations between activities and letting the differ-
ent supported constructs compete with each other for the most suitable solution
from top to bottom using “soft” constraints and behaviour approximations. The
CCM was designed to deal with noise and not-supported behaviour. To apply the
CCM in a real-time environment it was split up into two separate parts, executed
on different occasions: (1) the footprint update which is called for every occurring
event and updates the dynamic footprint(s) and (2) the footprint interpretation
which derives the BP model from the dynamic footprint through applying a
modified top-down competition approach of the original CCM algorithm. The
modifications on the CCM were mostly motivated by the objective to keep algo-
rithmic run-time of the individual algorithms to a minimum. This was success-
fully implemented which is shown by the performance results in the evaluation
section. Both possible ageing methods, occurrence-based and time-based ageing,
showed reasonably good results, especially with the optimisations to reduce the
warm-up duration tw. It was furthermore shown that changes in the monitored
process are almost instantly detected, i.e. td ≈ 0.

The presented approach of Dynamic CCM (DCCM) is driven by the require-
ments of real life industrial use cases provided by business partners within the EU
funded project TIMBUS. During the evaluation in the context of the use-cases it
became apparent that this concept still has a number of limitations which are con-
sidered to be future work: (1) Changes in the state of the business process are usu-
ally detected almost immediately but it may take a long time until the new state of
the system is reflected appropriately in the extracted business process model. This
behaviour originates from the fact that the footprint and the interpreted business
process are in a sort of intermediate state for a while until the influence of the old
version of the business process has disappeared. Furthermore, the trace influence
factor tif is a pre-specified value but in reality it is dependent on how many traces
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we need to regard to represent all the “behaviour” of the model8. This in turn is
strongly dependent on the amount of activities in the model, since more activities
usually mean more control-flow behaviour. A possible future modification could
be to have the influence factor dynamically adapt, i.e. similar to the self-adapting
ageing proposed in [5]. (2) If no sub-footprint is available for a set of activities, the
footprint interpreter does not further analyse this set. Through approximations or
the use of the direct neighbours relation at least a “close enough” control-flow for
the subset could be retrieved. (3) The discovery of the state of a business process
should also comprise information of other perspectives than the control-flow, e.g.
resource and performance.
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concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011.
LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011)

3. Cattafi, M., Lamma, E., Riguzzi, F., Storari, S.: Incremental declarative process
mining. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Knowledge
Management. SCI, vol. 260, pp. 103–127. Springer, Heidelberg (2010)

4. Buijs, J., Van Dongen, B., Van Der Aalst, W.: A genetic algorithm for discovering
process trees. In: Evolutionary Computation (CEC), pp. 1–8. IEEE (2012)

5. Burattin, A., Sperduti, A., Van Der Aalst, W.: Heuristics miners for streaming
event data. CoRR abs/1212.6383 (2012)
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Abstract. Cloud computing is introducing an architectural paradigm
shift that involves a large part of the IT industry. The flexibility in allo-
cating and releasing resources at runtime creates new business oppor-
tunities for service providers and their customers. However, despite its
advantages, cloud computing is still not showing its full potential. Lack
of mechanisms to formally assess the behavior of the cloud and its ser-
vices/processes, in fact, negatively affects the trust relation between
providers and potential customers, limiting customer movement to the
cloud. Recently, cloud certification has been proposed as a means to sup-
port trustworthy services by providing formal evidence of service behav-
ior to customers. One of the main limitations of existing approaches is
the uncertainty introduced by the cloud on the validity and correctness
of existing certificates. In this paper, we present a trustworthy cloud
certification approach based on model verification. Our approach checks
certificate validity at runtime, by continuously verifying the correctness
of the service model at the basis of certification activities against real
and synthetic service execution traces.

Keywords: Certification · Cloud · FSM · Model verification

1 Introduction

Cloud computing paradigm is radically changing the IT infrastructure, as well
as traditional software provisioning and procurement. Cloud-based services are
becoming the primary choice for many industries due to the advantages they offer
in terms of efficiency, functionality, and ease of use. Several factors characterize
the choice between functionally-equivalent services at infrastructure, platform,
and application layers, among which Quality of Service (QoS) stands out [17].
However, the dynamic and opaque nature of the cloud makes it hard to preserve
steady and transparent QoS, which often affects the trust relationship between
providers and their customers, and limits customer movement to the cloud.

In response to the need of a trustworthy and transparent cloud environment,
several assurance techniques have been defined [6,12,16,22,23]. Among them,
c© IFIP International Federation for Information Processing 2015
P. Ceravolo et al. (Eds.): SIMPDA 2014, LNBIP 237, pp. 107–122, 2015.
DOI: 10.1007/978-3-319-27243-6 5
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certification approaches are on the rise [2,10,26]. Cloud certification in fact is
beneficial for both customers having trusted evidence on the correct behavior of
the cloud (and corresponding cloud/service providers) in the treatment and man-
agement of their data and applications, and providers having trusted evidence
on the truthfulness of their claims.

Software certification has a long history and has been used in several domains
to increase trust between software system providers and customers. A certificate
allows providers to gain recognition for their efforts to increase the quality of
their systems, and supports trust relationships grounded on empirical evidence
[26]. However, cloud computing introduces the need of re-thinking existing cer-
tification techniques in light of new challenges, such as services and processes
owned by unknown parties, data not fully under control of their owners, and an
environment subject to rapid and sudden changes. Certification processes need
then to be tailored to accommodate these new challenges.

An increasing trend in software system certification is to test, monitor, and/or
check a system behavior according to its model [4,7,24]. If this paradigm fits well
the certification of a static system, it opens the door to potential inconsisten-
cies in cloud environments, where cloud services and corresponding processes
are subject to changes when deployed in the production environment, and could
therefore differ from their counterparts verified in a lab environment. In this sce-
nario, online certification is a fundamental requirement and evidence collection
becomes a continuous and runtime process. In general we need to answer the fol-
lowing question: “does my service behave as expected at runtime when deployed
in the production environment?”. The correct answer to this question passes
from the continuous verification of the model used to provide a solid evidence on
service behavior. In this paper, we present an approach to continuous model ver-
ification at the basis of a sound cloud service certification. Our approach builds
on testing and monitoring of execution traces to discover differences between the
model originally used to verify and certify a service in a lab environment, and
the one inferred in the production environment.

The remainder of this paper is structured as follows. Section 2 presents
our certification process and reference scenario. Section 3 presents two differ-
ent approaches to model generation. Section 4 describes our approach to model
verification. Section 5 presents a certification process adaptation based on model
verification in Sect. 4. Section 6 illustrates an experimental evaluation of our app-
roach. Section 7 discusses related work and Sect. 8 draws our concluding remarks.

2 Certification Process and Reference Scenario

We describe the certification process at the basis of the approach in this paper
and our reference scenario.

2.1 Certification Process

A certification process for the cloud involves three main parties [2], namely a
cloud/service provider (service provider in the following), a certification authority,
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Fig. 1. Certification process

and an accredited Lab. It is aimed at collecting the evidence proving a property pr
for a cloud service cs (Target of Certification – ToC). The process, being defined
for the cloud, must combine both offline and online evaluation. Offline evalua-
tion usually considers a copy of the ToC deployed in a lab environment, which can
be tested according to the selected property. While offline evaluation verifies ser-
vices in a controlled setting and provides many advantages such as improved per-
formance and reduced costs, it does not represent alone a suitable approach for
the cloud. For this reason, online evaluation has attracted increasing attention,
since it provides rich information coming from real services and processes running
with production configurations. It also permits to study the behavior of services
at runtime, and verify that service certificates are valid over time and across sys-
tem/environment changes. Online evaluation involves the real ToC, which can be
evaluated by monitoring real traces of execution or by testing specific aspects of
its behavior.

Figure 1 shows our certification process, taken as reference in this paper.
A service provider initiates the certification process by requesting a certificate
for one of its cloud services cs (ToC) for a given property pr (step 1). We note
that the request may contain the model m of the service to be certified ([m]
in Fig. 1). The certification authority receiving the request starts the process
by involving its accredited lab (step 2). The latter is delegated by the certifica-
tion authority to carry out the service evaluation. The accredited lab checks the
correctness of model m (step 3), if available, or generates it according to infor-
mation (e.g., interface description, implementation documentation, source code)
available on the service. Model m is then used to collect the evidence, which is
delivered to the certification authority (step 4). The certification authority eval-
uates whether the evidence is sufficient or not to prove the requested property
for the service and issue a certificate C to it (step 5). Upon certificate issuing
(step 5), the accredited lab starts a continuous and online evaluation process
(step 6), involving model verification and refinement (step 3). We note that,



110 M. Anisetti et al.

although some solutions for online evaluation exist [5,27], online evaluation is
often preceded by offline evaluation to target those scenarios which are difficult
to evaluate on real systems (e.g., Denial of Service, security attacks).

In summary, we consider a certification process whose evidence collection
is driven by a model of the ToC [2]. The model is an automaton represent-
ing the ToC behavior. It is used to exercise the ToC and collect the evidence
needed to verify the property of interest. The model is verified both offline,
when provided by the service provider, and online, where its validity is continu-
ously evaluated together with the validity of the corresponding certificate. Our
certification process can support different types of evidence (e.g., test-based,
monitoring-based) to assess the quality of service. On one hand, test-based cer-
tification is grounded on results retrieved by test case executions on the ToC,
while monitoring-based certification builds on evidence retrieved by observing
real executions of the ToC. The choice of defining a cloud certification scheme
based on system modeling is driven by the fact that model-based approaches
are common in the context of software evaluation [2,7,19,20,24]. In particular,
model-based approaches have been used to analyze software behavior, to prove
non-functional properties of software, to infer system executions, and to generate
test cases at the basis of software evaluation.

2.2 Reference Scenario

Our reference scenario is a travel planner TPlan delivered at cloud application
layer (SaaS),1 implementing functionality for flight and hotel reservation. It is
implemented as a composite service and includes three main parties: (i) the
client requesting a travel plan; (ii) the travel agency (i.e., TPlan) implementing
service TPlan and acting as the service orchestrator; and (iii) the component
services which are invoked by the travel agency within TPlan process. The travel
agency implements TPlan as a business process using a service BookFlight for
flight reservation, a service BookHotel for hotel reservation, and a service Bank-
Payment for payment management. Table 1 summarizes the details about the
operations of partner services, including TPlan.

Upon logging into the system by means of a public interface provided by
TPlan (operation login), customers submit their preferences, which are distrib-
uted to the partner operations findOffers of services BookFlight and BookHotel.
Once the customer has selected the preferred flight and hotel (calling operations
bookOffer of services BookFlight and BookHotel, respectively), service BankPay-
ment is invoked to conclude the reservation (operation makePayment of service
BankPayment). We note that BankPayment is invoked only in case both Book-
Flight and BookHotel are correctly executed. The customer can also cancel a
previous transaction and logout from the system (operations cancelTPlan and
logout of TPlan).

1 We note that, though for simplicity a SaaS scenario is considered in the paper,
the proposed approach applies to services insisting also on platform (PaaS) and
infrastructure (IaaS) layers.
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Table 1. Operations of service travel planner

Service Operation Description

TPlan < tokenID > login(username, password) Provides password-based authen-

tication, and returns an authenti-

cation token

TPlan < TPlanID > saveTPlan(hotelBookings, flightBookings) Saves hotel and flight reservations

TPlan < confirmation > cancelTPlan( TPlanID) Cancels a plan

TPlan < confirmation > logout (tokenID) Disconnects a user and destroys

the authentication token

BookHotel <confirmation> login (tokenID) Provides a token-based authenti-

cation

BookHotel < hotelsList > findOffers(check-in, check-out) Searches for hotel offers and

returns a list of offers

BookHotel < confirmation > bookOffer (offerID) Books a specific offer from the

offer list

BookHotel < confirmation > cancel(bookingID) Cancels an existing reservation

BookHotel < confirmation > logout( tokenID) Disconnects a user from service

BookHotel

BookFlight < confirmation > login(tokenID) Provides a token-based authenti-

cation

BookFlight < flightsList > findOffers(departure-day, return-day) Searches for flight offers and

returns a list of offers

BookFlight < confirmation >bookOffer(offerID) Books a specific offer from the

offer list

BookFlight < confirmation > cancel(bookingID) Cancels an existing reservation

BookFlight < confirmation >logout(tokenID) Disconnects a user from service

BookFlight

BankPayment < transactionID >makePayment(tokenID, TPlansID) Executes a payment

BankPayment < confirmation > cancelPayment(transactionID) Cancels a transaction

3 System Modeling

The trustworthiness of a model-based cloud certification process is strictly inter-
twined with the trustworthiness of the considered model, or in other words
depends on how much the model correctly represents the ToC. The latter
depends on (i) the amount of information available on the system to be modeled
and (ii) how the model is generated. We consider two types of models depend-
ing on the amount of available information: (i) workflow-based models that con-
sider information on service/operation conversations, (ii) implementation-based
models that extend workflow-level models with details on operation and service
implementation. In the following, we give a quick overview on workflow-based
and implementation-based models.

3.1 Workflow-Based Model

A workflow-based model represents the ToC in terms of operations/services. At
this level we differentiate between two types of workflow: (i) single-service work-
flow, which models the sequence of operation invocations within a single service
and (ii) composite-service workflow, which models a sequence of operation invo-
cations within a composite service. We note that, in the latter case, operations
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belong to different composed services. We also note that single-service work-
flow can be considered as a degeneration of the general case of composite-service
workflow, modeling the internal flow of a single service. Some approaches already
used workflow-based models for service verification (e.g., [15,20]). Merten et al.
[20] presented a black-box testing approach for service model generation, which
entirely relies on service interface and addresses requirements of single-service
workflow. Their approach focuses on the definition of a data-sensitive behavioral
model in three steps as follows. First, it analyzes the service interface and gen-
erates a dependency automaton based on input/output dependencies between
operations. Second, a saturation rule is applied, adding possible service invo-
cations from the client to the model (e.g., directly calling an operation with-
out following the subsequent calls). Third, an additional step verifies whether
the generated dependencies are semantically meaningful or not. Fu et al. [15]
addressed the issue of correctness verification of composite services using a model
based approach. To this aim, they developed a tool to check that web services
satisfy specific Linear temporal logic properties. Their approach relies on BPEL
specifications, which are translated in guarded automata. Automata are then
translated into Promela language and checked using the SPIN model checker.

3.2 Implementation-Based Model

An implementation-based model extends the workflow-based model with imple-
mentation details coming from the service providers. These details can be used
in different ways depending on the type of information they carry on. If they
include implementation documentation, they can be used to manually build an
automaton representing the behavior of the single operations. Otherwise, if the
providers provide traces of the internal operation execution, methods such as
the one in [19] can be used to automatically generate the internal behavioral
model of the service. Each of the states in the workflow-based model can be fur-
ther extended in the implementation-based model. At this level we can combine
techniques for extracting the service model based on data value constraints [14]
and techniques that generate a finite state machine based on service component
interactions [8].

Example 1. Figure 2 presents a workflow-based model (composite-service), a
workflow-based model (single service), and an implementation-based model.
Workflow-based model (composite-service) is driven by the flow of calls between
services in the composition. For instance, BookFlight and BookHotel are two
partner services that are invoked by TPlan. Workflow-based model (single ser-
vice) is driven by the flow of operation calls within a service, which are annotated
over the arcs. For instance, service BookHotel exposes different operations to
book a hotel room (see Table 1), which are used to generate its FSM model [20].
The model includes the input/output dependencies between operations. Also, for
simplicity, a transition is triggered iff the execution of the annotated operation
call is successful. Node Env in Fig. 2 represents requests sent by the client to
different operations. Implementation-based model is driven by the flow of code
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Fig. 2. Three-level modeling for TPlan service

instructions within a service operation and provides a fine-grained representation
of the considered service.

All generated models can be represented as a Finite State Machine (FSM)
defined as follows.

Definition 1 (Model m). Let us consider a service model m generated by the
accredited lab. Model m can be defined as m=(S,Σ, δ, s0, F ), where S is a finite
set of states, Σ is a finite set of input, δ : S × Σ �→ S is the transition function,
s0∈S is the initial state, and F ⊆ S is the set of final states.

We note that each transition annotation in Σ corresponds to a valid opera-
tion/code instruction call at any levels of the cloud stack, including infrastructure
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and platform levels. The service model represents the different execution paths
for the service. A path can be formally defined as follows.

Definition 2 (Path pt i). Given a service model m, a path pt i is a sequence
of states pt i=〈s0,. . .,sn〉, with s0∈S and sn∈S denoting the initial state and a
final state, respectively, s.t. ∀n−1

i=0 si, ∃ a transition (si × σ �→ si+1)∈δ.

When a certification process is considered, the minimum amount of information
required for system modeling is mandated by the certification authority and
usually involves a combination of workflow and implementation information.
The approach in this paper supports both workflow-based and implementation-
based modeling, as well as manual modeling.

There is however a subtlety to consider. Sometimes the correctness of a cloud
service model, and in turn of the corresponding certification process, passes
through the modeling of the configurations of the cloud infrastructure where the
service is deployed. For instance, the activities to be done to certify a property
confidentiality against other tenants depend on the real service deployment, such
as how resources are shared among tenants. If a tenant shares a physical machine
with other tenants, confidentiality can be guaranteed by encrypting the physical
storage; if a tenant is the only one deployed on the physical machine, no encryp-
tion is required to preserve the property. This difference, if not correctly modeled,
can result in scenarios where laboratory configurations guarantee the property,
which is no more valid with production configurations. In this paper, we assume
that configurations are not modeled in the FSM leaving such modeling issue for
our future work.

4 Model Verification

According to the process in Fig. 1, model verification is under the responsibil-
ity of the accredited lab that starts the verification of the ToC model in a lab
environment. If the verification is successful the certification process continues
and eventually leads to certificate issuing based on the collected evidence. We
note that, in those cases where the model is generated by the accredited lab
itself, model verification is successful by definition. Upon certificate issuing, the
certificate is linked to the ToC deployed in the production environment. How-
ever, in addition to common errors that could inadvertently be added during
model definition, the ToC can be affected by events changing its behavior once
deployed in the cloud production environment, and therefore impairing the cor-
rectness of the original modeling effort usually done in a lab environment. It
is therefore fundamental to provide an approach to online model verification,
which allows to continuously evaluate the correctness and trustworthiness of
certification processes and the validity of the corresponding issued certificates.
The accredited lab is responsible for online model verification, and checks the
consistency between the observed ToC behavior and the original model.

In the following of this section, we present our model verification approach.
The approach checks model correctness by collecting execution traces from real
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ToC executions and projecting them on the model itself. Figure 3 shows the
conceptual design of our approach.

4.1 Execution Trace Collection

Execution trace collection represents the first step of our verification process.
Traces are collected either by monitoring real executions of the ToC involving real
customers or by observing the results of ad hoc test-based synthetic executions
(synthetic traces). Execution traces can be formally defined as follows.

Definition 3 (Trace T i). An execution trace T i is a sequence 〈t1,. . .,tn〉 of
actions, where tj can be either an operation execution opj or a code instruction
execution ci j.

We note that a trace T i composed of a sequence of operation executions opj

refers to a workflow-based model, while a trace T i also including code instruc-
tion executions ci j refers to an implementation-based model. We also note that
execution traces can be collected at multiple provider sites, depending on the
considered workflow.

Example 2. According to our reference scenario in Sect. 2.2, two types of
traces can be collected depending on the considered level (see Fig. 2). At
workflow level, a trace represents a sequence of operation invocations, which
may belong to a single (e.g., T i=〈BookHotel.login(), BookHotel.findOffers(),
BookHotel.bookOffers()〉) or multiple (e.g., T i=〈BookHotel.login(), BookHotel.
findOffers(), BookHotel.bookOffers(), BankPayment.makePayment()〉) ser-
vices. At implementation level, a trace is represented by a sequence of code
instruction executions (e.g. T i=〈checkOfferAvailability, notavailable,
returnError〉).

4.2 Service Model Verification

Model verification is a function that takes as input the service model m=(S,
Σ, δ, s0, F ) and collected execution traces T i, and produces as output either
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success (1), if the traces conform to the service model, or failure (0), otherwise,
with a description of the type of inconsistency found. Formally, we can define
model verification as follows.

Definition 4 (MV). Model Verification is a function MV :M×T →{0,1}×R
that takes as input the initial service model m=(S,Σ, δ, s0, F )∈M and execution
traces T i∈T , and produces as output either:

– [1,∅] iff i) ∀T i∈T , ∃ a finite path ptj=〈s0, . . . , sn〉 in m∈M s.t. T i is consis-
tent with ptj (denoted T i≡ptj) and ii) ∀ptj=〈s0, . . . , sn〉 in m∈M, ∃T i∈T
s.t. T i≡ptj, or

– [0,r], otherwise, where r∈R describes the reason why a failure is returned.

We note that model verification is based on a consistency function ≡ between
collected traces and service model paths, as defined in the following.

Definition 5 (Consistency Function ≡). Given a trace T i=〈t1,. . .,tn〉∈T
and ptj=〈s0, . . . , sn〉 in m∈M, T i≡ptj iff ∀tk∈T i, ∃ (sk−1×σ �→sk)∈δ s.t. tk
and σ refer to the same operation/code instruction.

Definitions 4 and 5 establish the basis for verifying the consistency between
observed traces and paths. A failure in the model verification means that there is
an inconsistency between the service model and the execution traces, which can
affect an existing certification process and invalidate an issued certificate (see
Sect. 5). Several types of inconsistencies can take place, which can be reduced to
three main classes as follows.

– Partial path discovery: it considers a scenario in which a trace is consis-
tent with a subset of a path in the model. In other words, given a trace
T i=〈t1,. . .,tn〉∈T and a path ptj=〈s0, . . . , s l〉 in m∈M, ∃ a subset ptj of
ptj s.t. T i≡ptj . This means that while mapping a trace to paths in the
model, only an incomplete path is found. We note that, for traces that stop
before a final state in m, an inconsistency is raised after a pre-defined timeout
expires. The timeout models the expected elapsed time between two opera-
tions/instructions execution.

– New path discovery: it considers a scenario in which a trace is not consistent
with any path in the model. In other words, given a trace T i and a model m,
∀ptj∈m, T i �≡ptj . This means that a new path is found, that is, at least a new
transition and/or a new state is found in the traces.

– Broken existing path: it considers a scenario in which real traces do not cover
a path in the model, and the synthetic traces return an error for the same
path. In other words, given a path ptj , � ∃T i s.t. T i≡ptj . This means that the
model includes a path that is not available/implemented in the real ToC.

We note that the above classes of inconsistency are due to either a bad mod-
eling of the service or a change in the production service/environment. Broken
existing path inconsistencies can also be due to unexpected failures within the
deployed ToC. We also note that additional inconsistencies can be modeled by
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Table 2. Execution traces of operation BookHotel.

# Trace Trace values

1 login(),findOffers(),bookOffer(),logout()

2 bookOffer(),cancel()

3 findOffers(),login(),bookOffer(),logout()

4 Env,cancel()

5 Env,login(),logout()

6 Env,cancel(),login(),cancel(),logout()

7 Env,bookOffer(),login(),bookOffer(),logout()

8 bookOffer(),login(),bookOffer(),cancel()

9 findOffers(),bookOffer(),login(),bookOffer(),logout()

10 findOffers(),login(),logout()

a combination of the above three. As an example, let us consider a single oper-
ation annotating a transition in model m (e.g., login() of service BookHotel),
which is updated to a new version with a new slightly different interface. In this
case, two inconsistencies are raised. First, a new path is discovered such that it
contains the new interface for operation login(); then, a broken existing path
is discovered having the original operation login().

Example 3 Let us consider the execution traces in Table 2. By projecting the list
of traces over the model in Fig. 2 (single service workflow), we find some inconsis-
tencies. For instance, trace 2 shows a partial path inconsistency. The sequence of
calls (BookHotel.bookOffer(), BookHotel.cancel()) maps to a sub-path of the
model (login, bookOffer, cancel). Trace 10 shows a new path discovery incon-
sistency. The sequence of calls (BookHotel.findOffers(), BookHotel. login(),
BookHotel.logout()) is supported by the service, while the model does not have
this path (i.e., the model is missing a transition from node findOffers to node
login). Finally, let us consider a scenario in which a failure in the authentication
mechanism makes function login() unreachable. In this case, a broken existing
path inconsistency is raised for each path involving function login().

5 Certification Process Adaptation

Inconsistencies raised by our model verification in Sect. 4 trigger a certification
process adaptation, which could result in a certificate refinement. Certification
process adaptation is executed during online evaluation by the accredited lab.
It is aimed at incrementally adapting the certification process according to the
severity of the model inconsistency, reducing as much as possible the need of
costly re-certification processes [3].
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The accredited lab, during online evaluation, collects the results of our model
verification including possible inconsistencies. Then, it adapts the entire evalu-
ation process following four different strategies.

– No adaptation: model verification raises negligible inconsistencies (e.g., a par-
tial path discovery that does not affect the certified property). Accredited lab
confirms the validity of the certificate.

– Re-execution: model verification raises one or more broken existing path incon-
sistencies. Accredited lab triggers additional testing activities by re-executing
test cases on broken paths, to confirm the validity of the certificate.

– Partial re-certification: model verification raises critical inconsistencies (e.g.,
a new path discovery or a partial path discovery that affects the certified
property). Accredited lab executes new evaluation activities, such as exercising
the new portion of the system for certificate renewing.

– Re-certification: re-execution or partial re-certification fail and the accredited
lab invalidates the certificate. A new certification process re-starts from step
2 in Fig. 1 by adapting original model m according to the model verification
outputs (i.e., r in Definition 4).

The role of model verification is therefore twofold. On one side, it triggers re-
execution of testing activities; on the other side, it adapts the model for partial or
complete re-certification. In any case, model verification supports a trustworthy
cloud certification process, where accidental and/or malicious modifications to
certified services are identified well in advance, reducing the window of time in
which an invalid certificate is perceived as valid.

6 Experimental Evaluation

We implemented a Java-based prototype of our model verification approach. The
prototype is composed of two main modules, namely, consistency checker and
model adapter. Consistency checker receives as input a service model and a set of
real and synthetic traces,2 and returns as output inconsistent traces with the cor-
responding type of inconsistency. Model adapter receives as input the results of the
consistency checker and, according to them, generates as output a refined model.

To assess the effectiveness of our prototype, we generated an experimental
dataset as follows. We first manually defined the correct implementation-based
model mcs of a generic service cs composed of 20 different paths; we then ran-
domly generated 1000 inconsistent models by adding random inconsistencies
(Sect. 4.2) to mcs . Inconsistent models are such that 10 %, 20 %, 30 %, 40 %,
or 50 % of the paths are different (e.g., missing, new) from the paths in mcs .
To simulate realistic customer behaviors, we extended mcs by adding a proba-
bility Pi to each path pti ∈ mcs , such that

∑

i Pi = 1. Probabilities are taken
randomly from a normal probability distribution such that there exist few paths
whose probability of being invoked tends to 0. Real and synthetic traces are then
produced using mcs extended with probabilities.

2 We remark that synthetic traces are generated by ad hoc testing.
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Fig. 4. Refined model coverage of mcs .

The experimental evaluation proceeded as follows. First, using the consistency
checker, we verified inconsistent models in the dataset and retrieved inconsistent
traces together with the type of inconsistency. Then, using the model adapter, we
built a refined model of each inconsistent model, and evaluated how much these
models approximate the correct model mcs . Our results show that the refined
models covered 64 % of paths in mcs on average, with an increase of 28 % on the
average coverage of the inconsistent models. Also, 17 % of the inconsistent mod-
els were able to cover the entire model mcs (i.e., 100 % coverage), while 0 % of
the inconsistent models in the dataset covered the entire model by construction.
Figure 4 shows a Box and Whisker chart presenting more detailed results on the
basis of the rates of differences (i.e., 10 %, 20 %, 30 %, 40 %, 50 %) introduced in the
inconsistent models. The Box and Whisker chart in Fig. 4 splits the dataset into
quartiles. Within the box, containing two quartiles, the horizontal line represents
the median of the dataset. Two vertical dashed lines, called whiskers, extend from
the bottom and top of the box. The bottom whisker goes from box to the small-
est non-outlier in the data set, and the top whisker goes from box to the largest
non-outlier. The outliers are plotted separately as points on the chart. Figure 4
shows that while we increased the perturbation level, we decreased the ability to
achieve a full coverage of the initial model. In fact, the median value decreases in
such a way that the complete coverage is achieved in the last category (50 %) as
an outlier. Nevertheless, in all the perturbation levels, 50 % of the models recover
at least 40 % of the inconsistencies. Additionally, in the first case (10 % perturba-
tion), more than 50 % of the models were completely recovered; therefore, both
the median and the maximum coverage are equal to 1.

In summary, model adapter does not achieve full coverage of mcs for all
refined models. This is mainly due to the fact that paths at low probability are
invoked with low probability. If these paths are already specified in an incon-
sistent model, then a synthetic trace can be generated to evaluate them (if no
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real traces are observed) and the refined model covers 100 % of mcs . Otherwise,
they remain hidden impairing the ability of model adapter to produce a refined
model that covers 100 % of mcs . In our future work, we plan to apply fuzzing
and mutation techniques to inconsistent models as a way to reveal hidden paths.

7 Related Work

Model-based verification of software components is increasingly becoming the
first choice technique to assess the quality of software systems, since it provides
a systematic approach with solid theoretical background. In the context of cloud
certification, model-based approaches are used to provide the evidence to certify
service quality. The work proposed in [7] starts from a model of the service under
certification as a Symbolic Transition System (STS), and generates a certifica-
tion model as a discrete-time Markov chain. The Markov chain is then used to
prove dependability properties of the service. In [4], the authors uses STSs to
model services at different levels of granularity. The model is then used to auto-
matically generate the test cases at the basis of the service certification process.
Spanoudakis et al. [25] present the EU FP7 Project CUMULUS [9], which pro-
poses a security certification scheme for the cloud based on the integration of
different techniques for evidence collection and validation. Additionally, they
support also an incremental approach to certify continuously evolving services.
A different strategy proposed by Munoz and Mãna in [21] focuses on certify-
ing cloud-based systems using trusted computing platforms. In [13], a security
certification framework is proposed. The framework relies on the definition of
security properties to be certified. It then uses a monitoring tool to check peri-
odically the validity of the defined properties. In [1], the OPTET project aims
to understand the trust relation between the different stakeholders. OPTET
offers methodologies tools and models, which provide evidence-based trustwor-
thiness. Additionally, it puts high emphasis on evidence collection during sys-
tem development, enriched by monitoring and system adaptation to maintain
its trustworthiness. In [11], an extension to the Digital Security Certificate [18]
is proposed. This certificate contains machine-readable evidence for each claim
about the system quality. The certificates are verified by continuously moni-
toring the certified properties. Differently from the above works, our approach
provides a certification process whose trustworthiness is verified by continuously
checking the equivalence between a service model and its implementation. Our
approach also supports model adaptation to reflect changes that might happen
while services are running.

8 Conclusions

In the last few years, the definition of assurance techniques, increasing the con-
fidence of cloud users that their data and applications are treated and behave as
expected, has attracted the research community. Many assurance techniques in
the context of audit, certification, and compliance domains have been provided,
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and often build their activities on service modeling. The correctness of these
techniques however suffers by hidden changes in the service models, which may
invalidate their results if not properly managed. In this paper, we presented a
model-based approach to increase the trustworthiness of cloud service certifica-
tion. Our approach considers service models at different granularity and verifies
them against runtime execution traces, to the aim of evaluating their correctness
and, in turn, the validity of the corresponding certificates. We also developed and
experimentally evaluated a first prototype of our model verification approach.
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