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Abstract. Security models for two-party authenticated key exchange
(AKE) protocols have developed over time to capture the security of
AKE protocols even when the adversary learns certain secret values.
Increased granularity of security can be modelled by considering partial
leakage of secrets in the manner of models for leakage-resilient cryptog-
raphy, designed to capture side-channel attacks. In this work, we use the
strongest known partial-leakage-based security model for key exchange
protocols, namely continuous after-the-fact leakage eCK (CAFL-eCK)
model. We resolve an open problem by constructing the first concrete
two-pass leakage-resilient key exchange protocol that is secure in the
CAFL-eCK model.
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1 Introduction

During the past two decades side-channel attacks have become a familiar method
of attacking cryptographic systems. Examples of information which may leak
during executions of cryptographic systems, and so allow side-channel attacks,
include timing information [6,8,18], electromagnetic radiation [15], and power
consumption [21]. Leakage may reveal partial information about the secret para-
meters which have been used for computations in cryptographic systems. In
order to abstractly model leakage attacks, cryptographers have proposed the
notion of leakage-resilient cryptography [1,4,7,13,14,16,17,20]. In this notion
the information that leaks is not fixed, but instead chosen adversarially, so as to
model any possible physical leakage function. A variety of different cryptographic
primitives have been developed in recent years. As one of the most widely used
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cryptographic primitives, it is important to analyze the leakage resilience of key
exchange protocols.

Earlier key exchange security models, such as the Bellare–Rogaway [5],
Canetti–Krawczyk [9], and extended Canetti–Krawczyk (eCK) [19] models, aim
to capture security against an adversary who can fully compromise some, but
not all, secret values. This is not a very granular form of leakage, and thus is not
suitable for modelling side-channel attacks in key exchange protocols enabled by
partial leakage of secret keys. This motivates the development of leakage-resilient
key exchange security models [3,4,11,22,23]. Among them the generic security
model proposed by Alawatugoda et al. [3] in 2014 facilitates more granular leak-
age.

Alawatugoda et al. [3] proposed a generic leakage-security model for key
exchange protocols, which can be instantiated as either a bounded leakage vari-
ant or as a continuous leakage variant. In the bounded leakage variant, the total
amount of leakage is bounded, whereas in the continuous leakage variant, each
protocol execution may reveal a fixed amount of leakage. Further, the adversary
is allowed to obtain the leakage even after the session key is established for the
session under attack (after-the-fact leakage). In Sect. 3 we review the continuous
leakage instantiation of the security model proposed by Alawatugoda et al.

Alawatugoda et al. [3] also provided a generic construction for a protocol
which is proven secure in their generic leakage-security model. However, when
it comes to a concrete construction, the proposed generic protocol can only be
instantiated in a way that is secure in the bounded version of the security model.
Until now there are no suitable cryptographic primitives which can be used to
instantiate the generic protocol in the continuous leakage variant of the security
model.

Our aim is to propose a concrete protocol construction which can be proven
secure in the continuous leakage instantiation of the security model of Alawatu-
goda et al. Thus, we introduce the first concrete construction of continuous and
after-the-fact leakage-resilient key exchange protocol.

Bounded Leakage and Continuous Leakage. Generally, in models assuming
bounded leakage there is an upper bound on the amount of leakage information
for the entire period of execution. The security guarantee only holds if the leakage
amount is below the prescribed bound. Differently, in models allowing continuous
leakage the adversary is allowed to obtain leakage over and over for a polynomial
number of iterations during the period of execution. Naturally, there is a bound
on the amount of leakage that the adversary can obtain in each single iteration,
but the total amount of leakage that the adversary can obtain for the entire
period of execution is unbounded.

After-the-Fact Leakage. The concept of after-the-fact leakage has been
applied previously to encryption primitives. Generally, leakage which happens
after the challenge is given to the adversary is considered as after-the-fact leak-
age. In key exchange security models, the challenge to the adversary is to
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distinguish the session key of a chosen session, usually called the test session,
from a random session key [5,9,19], After-the-fact leakage is the leakage which
happens after the test session is established.

Our Contribution. Alawatugoda et al. [3] left the construction of a continu-
ous after-the-fact leakage-resilient eCK secure key exchange protocol as an open
problem. In this paper, we construct such a protocol (protocol P2) using exist-
ing leakage-resilient cryptographic primitives. We use leakage-resilient storage
schemes and their refreshing protocols [12] for this construction.

Table 1 compares the proposed protocol P2, with the NAXOS protocol [19],
the Moriyama-Okamoto (MO) protocol [22] and the generic Alawatugoda et al.
[3] protocol instantiation, by means of computation cost, security model and the
proof model.

Table 1. Security and efficiency comparison of leakage-resilient key exchange protocols

Protocol Initiator cost Responder cost Leakage Feature After-the-fact Proof model

NAXOS [19] 4 Exp 4 Exp None None Random oracle

MO [22] 8 Exp 8 Exp Bounded No Standard

Alawatugoda et al. [3] 12 Exp 12 Exp Bounded Yes Standard

Protocol P2 (this paper) 6 Exp 6 Exp Continuous Yes Random oracle

In protocol P2, the secret key is encoded into two equal-sized parts of some
chosen size, and the leakage bound from each of the two parts is 15% of the
size of a part, per occurrence. Since this is a continuous leakage model the total
leakage amount is unbounded. More details of the leakage tolerance of protocol
P2 may be found in Sect. 5.3.

2 Preliminaries

We discuss the preliminaries which we use for the protocol constructions.

2.1 Diffie–Hellman Problems

Let G be a group generation algorithm and (G, q, g) ← G(1k), where G is a cyclic
group of prime order q and g is an arbitrary generator.

Definition 1 (Computational Diffie–Hellman (CDH) Problem). Given

an instance (g, ga, gb) for a, b
$←− Zq, the CDH problem is to compute gab.

Definition 2 (DecisionDiffie–Hellman (DDH)Problem).Given an instance

(g, ga, gb, gc) for a, b
$←− Zq and either c

$←− Zq or c = ab, the DDH problem is to
distinguish whether c = ab or not.

Definition 3 (Gap Diffie–Hellman (GDH) Problem). Given an instance

(g, ga, gb) for a, b
$←− Zq, the GDH problem is to find gab given access to an

oracle O that solves the DDH problem.



280 J. Alawatugoda et al.

2.2 Leakage-Resilient Storage

We review the definitions of leakage-resilient storage according to Dziembowski
et al. [12]. The idea behind their construction is to split the storage of elements
into two parts using a randomized encoding function. As long as leakage is then
limited from each of its two parts then no adversary can learn useful information
about an encoded element. The key observation of Dziembowski et al. is then to
show how such encodings can be refreshed in a leakage-resilient way so that the
new parts can be re-used. To construct a continuous leakage-resilient primitive
the relevant secrets are split, used separately, and then refreshed between any
two usages.

Definition 4 (Dziembowski-Faust Leakage-Resilient Storage Scheme).
For any m,n ∈ N, the storage scheme Λn,m

Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

) effi-
ciently stores elements s ∈ (Z∗

q)
m where:

– Encoden,m
Z∗
q

(s) : sL
$←− (Z∗

q)
n\{(0n)}, then sR ← (Z∗

q)
n×m such that sL ·sR = s

and outputs (sL, sR).
– Decoden,m

Z∗
q

(sL, sR) : outputs sL · sR.

In the model we expect an adversary to see the results of a leakage function
applied to sL and sR. This may happen each time computation occurs.

Definition 5 (λ-limited Adversary). If the amount of leakage obtained by
the adversary from each of sL and sR is limited to λ = (λ1, λ2) bits in total
respectively, the adversary is known as a λ-limited adversary.

Definition 6 ((λΛ, ε1)-secure leakage-resilient storage scheme). We say

Λ = (Encode,Decode) is (λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−

(Z∗
q)

m and any λΛ-limited adversary C, the leakage from Encode(s0) = (s0L, s0R)
and Encode(s1) = (s1L, s1R) are statistically ε1-close. For an adversary-chosen
leakage function f = (f1, f2), and a secret s such that Encode(s) = (sL, sR), the
leakage is denoted as

(
f1(sL), f2(sR)

)
.

Lemma 1 ([12]). Suppose that m < n/20. Then Λn,m
Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

)
is (λ, ε)-secure for some ε and λ = (0.3 · n log q, 0.3 · n log q).

The encoding function can be used to design different leakage resilient schemes
with bounded leakage. The next step is to define how to refresh the encoding so
that a continuous leakage is also possible to defend against.

Definition 7 (Refreshing of Leakage-Resilient Storage). Let (L′, R′) ←
Refreshn,m

Z∗
q

(L,R) be a refreshing protocol that works as follows:

– Input : (L,R) such that L ∈ (Z∗
q)

n and R ∈ (Z∗
q)

n×m.
– Refreshing R :

1. A
$←− (Z∗

q)
n\{(0n)} and B ← non singular (Z∗

q)
n×m such that A·B = (0m).
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2. M ← non-singular (Z∗
q)

n×n such that L · M = A.
3. X ← M · B and R′ ← R + X.

– Refreshing L :
1. Ã

$←− (Z∗
q)

n\{(0n)} and B̃ ← non singular (Z∗
q)

n×m such that Ã·B̃ = (0m).
2. M̃ ← non-singular (Z∗

q)
n×n such that M̃ · R′ = B̃.

3. Y ← Ã · M̃ and L′ ← L + Y .
– Output : (L′, R′)

LetΛ = (Encode,Decode) be a (λΛ, ε1)-secure leakage-resilient storage scheme
and Refresh be a refreshing protocol. We consider the following experiment Exp,
which runsRefresh for � rounds and lets the adversary obtain leakage in each round.
For refreshing protocol Refresh, a λRefresh-limited adversary B, � ∈ N and s

$←−
(Z∗

q)
m, we denote the following experiment by Exp(Refresh,Λ)(B, s, �):

1. For a secret s, the initial encoding is generated as (s0L, s0R) ← Encode(s).
2. For j = 1 to � run B against the jth round of the refreshing protocol.
3. Return whatever B outputs.

We require that the adversary B outputs a single bit b ∈ {0, 1} upon performing

the experiment Exp using s
$←− {s0, s1} ∈ (Z∗

q)
m. Now we define leakage-resilient

security of a refreshing protocol.

Definition 8 ((�,λRefresh, ε2)-secure Leakage-Resilient Refreshing Proto-
col). For a (λΛ, ε1)-secure Leakage-Resilient Storage Scheme Λ = (Encode,
Decode) with message space (Z∗

q)
m, Refresh is (�,λRefresh, ε2)-secure leakage-

resilient, if for every λRefresh-limited adversary B and any two secrets s0, s1 ∈
(Z∗

q)
m, the statistical distance between Exp(Refresh,Λ)(B, s0, �) and Exp(Refresh,Λ)

(B, s1, �) is bounded by ε2.

Theorem 1 ([12]). Let m/3 ≤ n, n ≥ 16 and � ∈ N. Let n,m and Z
∗
q be such

that Λn,m
Z∗
q

is (λ, ε)-secure leakage-resilient storage scheme (Definitions 4 and 6).
Then the refreshing protocol Refreshn,m

Z∗
q

(Definition 7) is a (�,λ/2, ε′)-secure
leakage-resilient refreshing protocol for Λn,m

Z∗
q

(Definition 8) with ε′ = 2�q(3qmε+
mq−n−1).

3 Continuous After-the-Fact Leakage eCK Model
and the eCK Model

In 2014 Alawatugoda et al. [3] proposed a new security model for key exchange
protocols, namely the generic after-the-fact leakage eCK ((·)AFL-eCK) model
which, in addition to the adversarial capabilities of the eCK model [19], is
equipped with an adversary-chosen, efficiently computable, adaptive leakage
function f , enabling the adversary to obtain the leakage of long-term secret keys
of protocol principals. Therefore the (·)AFL-eCK model captures all the attacks
captured by the eCK model, and captures the partial leakage of long-term secret
keys due to side-channel attacks.
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The eCK Model. In the eCK model, in sessions where the adversary does not
modify the communication between parties (passive sessions), the adversary is
allowed to reveal both ephemeral secrets, long-term secrets, or one of each from
two different parties, whereas in sessions where the adversary may forge the
communication of one of the parties (active sessions), the adversary is allowed
to reveal the long-term or ephemeral secret of the other party. The security
challenge is to distinguish the real session key from a random session key, in an
adversary-chosen protocol session.

Generic After-the-Fact Leakage eCK Model. The generic (·)AFL-eCK
model can be instantiated in two different ways which leads to two security mod-
els. Namely, bounded after-the-fact leakage eCK (BAFL-eCK) model and con-
tinuous after-the-fact leakage eCK (CAFL-eCK) model. The BAFL-eCK model
allows the adversary to obtain a bounded amount of leakage of the long-term
secret keys of the protocol principals, as well as reveal session keys, long-term
secret keys and ephemeral keys. Differently, the CAFL-eCK model allows the
adversary to continuously obtain arbitrarily large amount of leakage of the long-
term secret keys of the protocol principals, enforcing the restriction that the
amount of leakage per observation is bounded.

Below we revisit the definitions of the CAFL-eCK model, and we also recall
the definitions of the eCK model as a comparison to the CAFL-eCK definitions.

3.1 Partner Sessions in the CAFL-eCK Model

Definition 9 (Partner Sessions in the CAFL-eCK Model). Two oracles
Πs

U,V and Πs′
U ′,V ′ are said to be partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;
2. messages sent from Πs

U,V and messages received by Πs′
U ′,V ′ are identical;

3. messages sent from Πs′
U ′,V ′ and messages received by Πs

U,V are identical;
4. U ′ = V and V ′ = U ;
5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner oracles compute identical session
keys.

The definition of partner sessions is the same in the eCK model.

3.2 Leakage in the CAFL-eCK Model

A realistic way in which side-channel attacks can be mounted against key exchange
protocols seems to be to obtain the leakage information from the protocol compu-
tations which use the secret keys. Following the previously used premise in other
leakage models that “only computation leaks information”, leakage is modelled
where any computation takes place using secret keys. In normal protocol mod-
els, by issuing a Send query, the adversary will get a protocol message which is
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computed according to the normal protocol computations. Sending an adversary-
chosen, efficiently computable adaptive leakage function with the Send query thus
reflects the concept “only computation leaks information”.

A tuple of t adaptively chosen efficiently computable leakage functions f =
(f1j , f2j , . . . , ftj) are introduced; j indicates the jth leakage occurrence and the
size t of the tuple is protocol-specific. A key exchange protocol may use more
than one cryptographic primitive where each primitive uses a distinct secret key.
Hence, it is necessary to address the leakage of secret keys from each of those
primitives. Otherwise, some cryptographic primitives which have been used to
construct a key exchange protocol may be stateful and the secret key is encoded
into number of parts. The execution of a stateful cryptographic primitive is split
into a number of sequential stages and each of these stages uses one part of the
secret key. Hence, it is necessary to address the leakage of each of these encoded
parts of the secret key.

Note that the adversary is restricted to obtain leakage from each key part
independently: the adversary cannot use the output of f1j as an input parameter
to the f2j and so on. This prevents the adversary from observing a connection
between each part.

3.3 Adversarial Powers of the CAFL-eCK Model

The adversary A controls the whole network. A interacts with a set of oracles
which represent protocol instances. The following query allows the adversary to
run the protocol.

– Send(U, V, s,m, f) query: The oracle Πs
U,V , computes the next protocol mes-

sage according to the protocol specification and sends it to the adversary A,
along with the leakage f(skU ). A can also use this query to activate a new
protocol instance as an initiator with blank m.

In the eCK model Send query is same as the above except the leakage function f .
The following set of queries allow the adversary A to compromise certain

session specific ephemeral secrets and long-term secrets from the protocol prin-
cipals.

– SessionKeyReveal(U, V, s) query: A is given the session key of the oracle
Πs

U,V .
– EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session

randomness) of the oracle Πs
U,V .

– Corrupt(U) query: A is given the long-term secrets of the principal U . This
query does not reveal any session keys or ephemeral keys to A.

SessionKeyReveal, EphemeralKeyReveal and Corrupt (Long-term key reveal)
queries are the same in the eCK model.

Once the oracle Πs
U,V has accepted a session key, asking the following query

the adversary A attempt to distinguish it from a random session key. The Test
query is used to formalize the notion of the semantic security of a key exchange
protocol.
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– Test(U, s) query: When A asks the Test query, the challenger first chooses

a random bit b
$←− {0, 1} and if b = 1 then the actual session key is returned

to A, otherwise a random string chosen from the same session key space is
returned to A. This query is only allowed to be asked once across all sessions.

The Test query is the same in the eCK model.

3.4 Freshness Definition of the CAFL-eCK Model

Definition 10 (λ − CAFL-eCK-freshness). Let λ = (λ1, . . . , λt) be a vector
of t elements (same size as f in Send query). An oracle Πs

U,V is said to be
λ − CAFL-eCK-fresh if and only if:

1. The oracle Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a
SessionKeyReveal.

2. If the partner Πs′
V,U exists, none of the following combinations have been

asked:
(a) Corrupt(U) and EphemeralKeyReveal(U, V, s).
(b) Corrupt(V ) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′
V,U does not exist, none of the following combinations have

been asked:
(a) Corrupt(V ).
(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For each Send(U, ·, ·, ·, f) query, size of the output of |fij(skU i)| ≤ λi.
5. For each Send(V, ·, ·, ·, f) queries, size of the output of |fij(skV i)| ≤ λi.

The eCK-freshness is slightly different from the λ − CAFL-eCK-freshness by
stripping off points 4 and 5.

3.5 Security Game and Security Definition of the CAFL-eCK
Model

Definition 11 (λ − CAFL-eCK Security Game). Security of a key exchange
protocol in the CAFL-eCK model is defined using the following security game,
which is played by the adversary A against the protocol challenger.

– Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries to any oracle at will.

– Stage 2: A chooses a λ − CAFL-eCK-fresh oracle and asks a Test query.
The challenger chooses a random bit b

$←− {0, 1}, and if b = 1 then the actual
session key is returned to A, otherwise a random string chosen from the same
session key space is returned to A.

– Stage 3: A continues asking Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries. A may not ask a query that violates the λ−CAFL-eCK-
freshness of the test session.

– Stage 4: At some point A outputs the bit b′ ← {0, 1} which is its guess of
the value b on the test session. A wins if b′ = b.
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The eCK security game is same as the above, except that in Stage 2 and Stage
3 eCK-fresh oracles are chosen instead of λ − CAFL-eCK-fresh oracles. SuccA
is the event that the adversary A wins the security game in Definition 11.

Definition 12 (λ − CAFL-eCK-security). A protocol π is said to be λ −
CAFL-eCK secure if there is no adversary A that can win the λ − CAFL-eCK
security game with significant advantage. The advantage of an adversary A is
defined as Advλ−CAFL-eCK

π (A) = |2Pr(SuccA) − 1|.

3.6 Practical Interpretation of Security of CAFL-eCK Model

We review the relationship between the CAFL-eCK model and real world attack
scenarios.

– Active adversarial capabilities: Send queries address the powers of an
active adversary who can control the message flow over the network. In the
previous security models, this property is addressed by introducing the send
query.

– Side-channel attacks: Leakage functions are embedded with the Send query.
Thus, assuming that the leakage happens when computations take place in
principals, a wide variety of side-channel attacks such as timing attacks, EM
emission based attacks, power analysis attacks, which are based on continuous
leakage of long-term secrets are addressed. This property is not addressed in
the earlier security models such as the BR models, the CK model, the eCK
model and the Moriyama-Okamoto model.

– Malware attacks: EphemeralKeyReveal queries cover the malware attacks
which steal stored ephemeral keys, given that the long-term keys may be
securely stored separately from the ephemeral keys in places such as smart
cards or hardware security modules. Separately, Corrupt queries address mal-
ware attacks which steal the long-term secret keys of protocol principals. In
the previous security models, this property is addressed by introducing the
ephemeral-key reveal, session-state reveal and corrupt queries.

– Weak random number generators: Due to weak random number gen-
erators, the adversary may correctly determine the produced random num-
ber. EphemeralKeyReveal query addresses situations where the adversary can
get the ephemeral secrets. In the previous security models, this property is
addressed by introducing the ephemeral-key reveal query or the session-state
reveal query.

4 Protocol P1: Simple eCK-Secure Key Exchange

The motivation of LaMacchia et al. [19] in designing the eCK model was that an
adversary should have to compromise both the long-term and ephemeral secret
keys of a party in order to recover the session key. In this section we look at
construction paradigms of eCK-secure key exchange protocols, because our aim
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is to construct a CAFL-eCK-secure key exchange protocol using a eCK-secure
key exchange protocol as the underlying primitive.

In the NAXOS protocol, [19], this is accomplished using what is now called
the “NAXOS trick”: a “pseudo” ephemeral key ẽsk is computed as the hash of
the long-term key lsk and the actual ephemeral key esk: ẽsk ← H(esk, lsk). The
value ẽsk is never stored, and thus in the eCK model the adversary must learn
both esk and lsk in order to be able to compute ẽsk. The initiator must compute
ẽsk = H(esk, lsk) twice: once when sending its Diffie–Hellman ephemeral public
key g

˜esk, and once when computing the Diffie–Hellman shared secrets from the
received values. This is to avoid storing a single value that, when compromised,
can be used to compute the session key.

Moving to the leakage-resilient setting requires rethinking the NAXOS trick.
Alawatugoda et al. [3] have proposed a generic construction of an after-the-fact
leakage eCK ((·)AFL-eCK)-secure key exchange protocol, which uses a leakage-
resilient NAXOS trick. The leakage-resilient NAXOS trick is obtained using
a decryption function of an after-the-fact leakage-resilient public key encryp-
tion scheme. A concrete construction of a BAFL-eCK-secure protocol is possible
since there exists a bounded after-the-fact leakage-resilient public key encryp-
tion scheme which can be used to obtain the required leakage-resilient NAXOS
trick, but it is not possible to construct a CAFL-eCK-secure protocol since
there is no continuous after-the-fact leakage-resilient scheme available. There-
fore, an attempt to construct a CAFL-eCK-secure key exchange protocol using
the leakage-resilient NAXOS approach is not likely at this stage.

4.1 Description of Protocol P1

Our aim is to construct an eCK-secure key exchange protocol which does not use
the NAXOS trick, but combines long-term secret keys and ephemeral secret keys
to compute the session key, in a way that guarantees eCK security of the protocol.
The protocol P1 shown in Table 2 is a Diffie–Hellman-type [10] key agreement
protocol. Let G be a group of prime order q and generator g. After exchanging
the public values both principals compute a Diffie–Hellman-type shared secret,
and then compute the session key using a random oracle H. We use the random
oracle because otherwise it is not possible to perfectly simulate the interaction
between the adversary and the protocol, in a situation where the simulator does
not know a long-term secret key of a protocol principal.

In order to compute the session key, protocol P1 combines four components
(Z1 ← Ba, Z3 ← Y a, Z4 ← Y x, Z2 ← Bx) using the random oracle function H.
These four components cannot be recovered by the attacker without both the
ephemeral and long-term secret keys of at least one protocol principal, which
allows a proof of eCK security.

Though the design of protocol P1 is quite straightforward, we could not
find it given explicitly in the literature: most work on the design of eCK-secure
protocols seeks to create more efficient protocols than this naive protocol, but the
naive protocol is more appropriate for building into a leakage-resilient protocol.
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Table 2. Protocol P1

Alice (Initiator) Bob (Responder)

Initial Setup

a
$←− Z

∗
q , A ← ga b

$←− Z
∗
q , B ← gb

Protocol Execution

x
$←− Z

∗
q , X ← gx

Alice,X−−−−−→ y
$←− Z

∗
q , Y ← gy

Bob,Y←−−−−
Z1 ← Ba, Z2 ← Bx Z′

1 ← Ab, Z′
2 ← Xb

Z3 ← Y a, Z4 ← Y x Z′
3 ← Ay, Z′

4 ← Xy

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y ) K ← H(Z′
1, Z

′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y )

K is the session key

Leakage-Resilient Rethinking of Protocol P1. Moving to the leakage-
resilient setting requires rethinking the exponentiation computation in a leakage-
resilient manner. Since there exist leakage-resilient encoding schemes and
leakage-resilient refreshing protocols for them (Definitions 4 and 7) our aim is
computing the required exponentiations in a leakage-resilient manner using the
available leakage-resilient storage and refreshing schemes. For now we look at
the eCK security of protocol P1, and later in Sect. 5 we will look at the leakage-
resilient modification to protocol P1 in detail.

4.2 Security Analysis of Protocol P1

Theorem 2. If H is modeled as a random oracle and G is a group of prime
order q and generator g, where the gap Diffie–Hellman (GDH) problem is hard,
then protocol P1 is secure in the eCK model.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most

NS number of protocol sessions. Let A be an adversary against protocol P1.
Then, B is an algorithm which is constructed using the adversary A, against the
GDH problem such that the advantage of A against the eCK-security of protocol
P1, AdveCK

P1 is:

AdveCK
P1 (A) ≤ max

(
N2

P N2
S

(
PrGDH

g,q (B)
)
, N2

P

(
PrGDH

g,q (B)
)
, N2

P NS

(
PrGDH

g,q (B)
)
,

N2
P NS

(
PrGDH

g,q (B)
)
, N2

P NS

(
PrGDH

g,q (B)
)
, N2

P

(
PrGDH

g,q (B)
))

.

Proof Sketch: Let A denote the event that A wins the eCK chal-
lenge. Let H denote the event that A queries the random oracle
H with (CDH(A∗, B∗),CDH(B∗,X∗),CDH(A∗, Y ∗),CDH(X∗, Y ∗), initiator,X,
responder, Y ), where A∗, B∗ are the long-term public-keys of the two partners
to the test session, and X∗, Y ∗ are their ephemeral public keys for this session.
Note that when A = ga, B = gb,CDH(A,B) = gab; also initiator is the initiator
of the session and responder is the responder of the session.

Pr(A) ≤ Pr(A ∧ H) + Pr(A ∧ H̄).
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Without the event H occurring, the session key given as the answer to the
Test query is random-looking to the adversary, and therefore Pr(A|H̄) = 1

2 .
Pr(A ∧ H̄) = Pr(A|H̄) Pr(H̄), and therefore Pr(A ∧ H̄) ≤ 1

2 . Hence,

Pr(A) ≤ 1
2

+ Pr(A ∧ H),

that is Pr(A ∧ H) = AdveCK
P1 (A). Henceforth, the event (A ∧ H) is denoted

as A∗.

Note 1. Let B be an algorithm against a GDH challenger. B receives L = g�,W =
gw as the GDH challenge and B has access to a DDH oracle, which outputs 1 if
the input is a tuple of (gα, gβ , gαβ). Ω : G×G → G is a random function known
only to B, such that Ω(Φ,Θ) = Ω(Θ,Φ) for all Φ,Θ ∈ G. B will use Ω(Φ,Θ)
as CDH(Φ,Θ) in situations where B does not know logg Φ and logg Θ. Except
with negligible probability, A will not recognize that Ω(Φ,Θ) is being used as
CDH(Φ,Θ).

We construct the algorithm B using A as a sub-routine. B receives L =
g�,W = gw as the GDH challenge. We consider the following mutually exclusive
events, under two main cases:

1. A partner to the test session exists: the adversary is allowed to corrupt both
principals or reveal ephemeral keys from both sessions of the test session.
(a) Adversary corrupts both the owner and partner principals to the test

session - Event E1a

(b) Adversary corrupts neither owner nor partner principal to the test ses-
sion - Event E1b

(c) Adversary corrupts the owner to the test session, but does not corrupt
the partner to the test session - Event E1c

(d) Adversary corrupts the partner to the test session, but does not corrupt
the owner to the test session - Event E1d

2. A partner to the test session does not exist: the adversary is not allowed to
corrupt the intended partner principal to the test session.
(a) Adversary corrupts the owner to the test session - Event E2a

(b) Adversary does not corrupt the owner to the test session - Event E2b

In any other situation the test session is no longer fresh. If event A∗ happens at
least one of the following event should happen.

[(E1a ∧ A∗), (E1b ∧ A∗), (E1c ∧ A∗), (E1d ∧ A∗), (E2a ∧ A∗), (E2b ∧ A∗)]

Hence,

AdveCK
P1 ≤ max

(
Pr(E1a ∧ A∗),Pr(E1b ∧ A∗),Pr(E1c ∧ A∗),

Pr(E1d ∧ A∗),Pr(E2a ∧ A∗),Pr(E2b ∧ A∗)
)
.

Complete security analysis of each event is available in the full version of this
paper [2]. �	



Continuous After-the-Fact Leakage-Resilient eCK-Secure Key Exchange 289

5 Protocol P2: A Leakage-Resilient Version of P1

Protocol P1 is an eCK-secure key exchange protocol (Theorem 2). The eCK
model considers an environment where partial information leakage does not take
place. Following the concept that only computation leaks information, we now
assume that the leakage of long-term secret keys happens when computations
are performed using them. Then, instead of the non-leakage eCK model which
we used for the security proof of protocol P1, we consider the CAFL-eCK model
which additionally allows the adversary to obtain continuous leakage of long-
term secret keys.

Our idea is to perform the computations which use long-term secret keys
(exponentiation operations) in such a way that the resulting leakage from the
long-term secrets should not leak sufficient information to reveal them to the
adversary. To overcome that challenge we use a leakage-resilient storage scheme
and a leakage-resilient refreshing protocol, and modify the architecture of proto-
col P1, in such a way that the secret keys s are encoded into two portions sL, sR,
Exponentiations are computed using two portions sL, sR instead of directly using
s, and the two portions sL, sR are being refreshed continuously. Thus, we add
leakage resiliency to the eCK-secure protocol P1 and construct protocol P2 such
that it is leakage-resilient and eCK-secure.

Obtaining Leakage Resiliency by Encoding Secrets. In this setting we
encode a secret s using an Encode function of a leakage-resilient storage scheme
Λ = (Encode,Decode). So the secret s is encoded as (sL, sR) ← Encode(s). As
mentioned in the Definition 2.4.1 the leakage-resilient storage scheme randomly
chooses sL and then computes sR such that sL · sR = s. We define the tuple
leakage parameter λ = (λ1, λ2) as follows: λ-limited adversary A sends a leakage
function f = (f1j , f2j) and obtains at most λ1, λ2 amount of leakage from each
of the two encodings of the secret s respectively: f1j(sL) and f2j(sR).

As mentioned in Definition 7, the leakage-resilient storage scheme can contin-
uously refresh the encodings of the secret. Therefore, after executing the refresh-
ing protocol it outputs new random-looking encodings of the same secret. So for
the λ-limited adversary again the situation is as before. Thus, refreshing the
encodings will help to obtain leakage resilience over a number of protocol exe-
cutions.

The computation of exponentiations is also split into two parts. Let G be a
group of prime order q with generator g. Let s

$←− Z
∗
q be a long-term secret key

and E = ge be a received ephemeral value. Then, the value Z needs to be com-
puted as Z ← Es. In the leakage-resilient setting, in the initial setup the secret
key is encoded as sL, sR ← Encoden,1

Z∗
q

(s). So the vector sL = (sL1, · · · , sLn)
and the vector sR = (sR1, · · · , sRn) are such that s = sL1sR1 + · · · + sLnsRn.
Then the computation of Es can be performed as two component-wise computa-
tions as follows: compute the intermediate vector T ← EsL = (EsL1 , · · · , EsLn)
and then compute the element Z ← T sR = EsL1sR1EsL2sR2 · · · EsL1sR1 =
EsL1sR1+···+sLnsRn = Es.
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5.1 Description of Protocol P2

Using the above ideas, by encoding the secret using a leakage-resilient storage
scheme, and refreshing the encoded secret using a refreshing protocol, it is pos-
sible to hide the secret from a λ-limited adversary. Further, it is possible to
successfully compute the exponentiation using the encoded secrets. We now use
these primitives to construct a CAFL-eCK-secure key exchange protocol, using
an eCK-secure key exchange protocol as an underlying primitive.

Let Λn,1
Z∗
q

= (Encoden,1
Z∗
q

,Decoden,1
Z∗
q

) be the leakage-resilient storage scheme

which is used to encode secret keys and Refreshn,1
Z∗
q

be the (�,λ, ε)-secure leakage-

resilient refreshing protocol of Λn,1
Z∗
q

.
As we can see, the obvious way of key generation (initial setup) in a protocol

principal of this protocol is as follows: first pick a
$←− Z

∗
q as the long-term secret

key, then encode the secret key as (a0
L, a0

R) ← Encoden,1
Z∗
q

(a), then compute the
long-term public key A = ga using the two encodings (a0

L, a0
R), and finally erase

a from the memory. The potential threat to that key generation mechanism
is that even though the long-term secret key a is erased from the memory, it
might not be properly erased and can be leaked to the adversary during the key
generation. In order to avoid such a vulnerability, we randomly picks two values
a0

L
$←− (Z∗

q)
n\{(0n)}, a0

R
$←− (Z∗

q)
n×1\{(0n×1)} and use them as the encodings

of the long-term secret key a of a protocol principal. As explained earlier, we
use a0

L, a0
R to compute the corresponding long-term public key A in two steps as

a′ ← ga0
L and A ← a′a0

R . Thus, it is possible to avoid exposing the un-encoded
secret key a at any point of time in the key generation and hence avoid leaking
directly from a at the key generation step. Further, the random vector a0

L is
multiplied with the random vector a0

R, such that a = a0
L · a0

R, which will give a
random integer a in the group Z

∗
q . Therefore, this approach is same as picking

a
$←− Z

∗
q at first and then encode, but in the reverse order. During protocol

execution both a0
L, a0

R are continuously refreshed and refreshed encodings aj
L, aj

R

are used to exponentiation computations.
Table 3 shows protocol P2. In this setting leakage of a long-term secret key

does not happen directly from the long-term secret key itself, but from the two
encodings of the long-term secret key (the leakage function f = (f1j , f2j) directs
to the each individual encoding). During the exponentiation computations and
the refreshing operation collectively at most λ = (λ1, λ2) leakage is allowed to the
adversary from each of the two portions independently. Then, the two portions of
the encoded long-term secret key are refreshed and in the next protocol session
another λ-bounded leakage is allowed. Thus, continuous leakage is allowed.

5.2 Security Analysis of Protocol P2

Theorem 3. If the underlying refreshing protocol Refreshn,1
Z∗
q

is (�,λ, ε)-secure

leakage-resilient refreshing protocol of the leakage-resilient storage scheme Λn,1
Z∗
q
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Table 3. Concrete construction of Protocol P2

Alice (Initiator) Bob (Responder)

Initial Setup

a0
L

$←− (Z∗
q)

n\{(0n)}, a0
R

$←− (Z∗
q)

n×1\{(0n×1)} b0L
$←− (Z∗

q)
n\{(0n)}, b0R $←− (Z∗

q)
n×1\{(0n×1)}

a′ ← ga
0
L , A ← (a′)a

0
R b′ ← gb

j
L , B ← (b′)b

0
R

Protocol Execution

x
$←− Z

∗
q , X ← gx

Alice,X−−−−−→ y
$←− Z

∗
q , Y ← gy

Bob,Y←−−−−

T1 ← Ba
j
L , Z1 ← T

a
j
R

1 T3 ← Ab
j
L , Z′

1 ← T
b
j
R

3

Z2 ← Bx T4 ← Xb
j
L , Z′

2 ← T
b
j
R

4

T2 ← Y a
j
L , Z3 ← T

a
j
R

2 Z′
3 ← Ay

Z4 ← Y x Z′
4 ← Xy

(aj+1
L , aj+1

R ) ← Refreshn,1
Z∗
q

(aj
L, a

j
R) (bj+1

L , bj+1
R ) ← Refreshn,1

Z∗
q

(bjL, b
j
R)

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y ) K ← H(Z′
1, Z

′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y )

K is the session key

and the underlying key exchange protocol P1 is eCK-secure key exchange proto-
col, then protocol P2 is λ-CAFL-eCK-secure.

Let A be an adversary against the key exchange protocol P2. Then the advan-
tage of A against the CAFL-eCK-security of protocol P2 is:

Advλ−CAFL-eCK
P2 (A) ≤ NP

(
AdveCK

P1 (A) + ε
)
.

Proof. The proof proceeds by a sequence of games.

– Game 1. This is the original game.
– Game 2. Same as Game 1 with the following exception: before A begins,

an identity of a random principal U∗ $←− {U1, . . . , UNP
} is chosen. Challenger

expects that the adversary will issue the Test for a session which involves the
principal U∗ (Π ·

U∗,· or Π ·
·,U∗). If not the challenger aborts the game.

– Game 3. Same as Game 2 with the following exception: challenger picks a
random s

$←− Z
∗
q and uses encodings of s to simulate the adversarial leakage

queries f = (f1j , f2j) of the principal U∗.

We now analyze the adversary’s advantage of distinguishing each game from
the previous game. Let AdvGame x(A) denote the advantage of the adversary A
winning Game x.

Game 1 is the original game. Hence,

AdvGame 1(A) = Advλ−CAFL-eCK
P2 (A). (1)

Game 1 and Game 2. The probability of Game 2 to be halted due to incorrect
choice of the test session is 1 − 1

NP
. Unless the incorrect choice happens, Game

2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
AdvGame 1(A). (2)
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Game 2 and Game 3. We construct an algorithm B against a leakage-resilient
refreshing protocol challenger of Refreshn,1

Z∗
q

, using the adversary A as a subrou-
tine.

The (�,λ, ε)-Refreshn,1
Z∗
q

refreshing protocol challenger chooses s0, s1
$←− Z

∗
q

and sends them to the algorithm B. Further, the refreshing protocol challenger
randomly chooses s

$←− {s0, s1} and uses s as the secret to compute the leakage
from encodings of s. Let λ = (λ1, λ2) be the leakage bound and the refreshing
protocol challenger continuously refresh the two encodings of the secret s.

When the algorithm B gets the challenge of s0, s1 from the refreshing pro-
tocol challenger, B uses s0 as the secret key of the protocol principal U∗ and
computes the corresponding public key. For all other protocol principals B sets
secret/public key pairs by itself. Using the setup keys, B computes answers to all
the queries from A and simulates the view of CAFL-eCK challenger of protocol
P2. B computes the leakage of secret keys by computing the adversarial leakage
function f on the corresponding secret key (encodings of secret key), except the
secret key of the protocol principal U∗. In order to obtain the leakage of the
secret key of U∗, algorithm B queries the refreshing protocol challenger with the
adversarial leakage function f , and passes that leakage to A.

If the secret s chosen by the refreshing protocol challenger is s0, the leakage
of the secret key of U∗ simulated by B (with the aid of the refreshing proto-
col challenger) is the real leakage. Then the simulation is identical to Game 2.
Otherwise, the leakage of the secret key of U∗ simulated by B is a leakage of a
random value. Then the simulation is identical to Game 3. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ ε. (3)

Game 3. Since the leakage is computed using a random s value, the adversary
A will not get any advantage due to the leakage. Therefore, the advantage A will
get is same as the advantage that A has against eCK challenger of protocol P1.
Because both P1 and P2 are effectively doing the same computation, regardless
of the protocol P2, and with no useful leakage the CAFL-eCK model is same as
the eCK model. Hence,

AdvGame 3(A) = AdveCK
P1 (A). (4)

We find,
Advλ−CAFL-eCK

P2 (A) ≤ NP

(
AdveCK

P1 (A) + ε
)
. �	

5.3 Leakage Tolerance of Protocol P2

The order of the group G is q. Let m = 1 in the leakage-resilient storage scheme
Λn,1
Z∗
q

. According to the Lemma 1, if m < n/20, then the leakage parameter for
the leakage-resilient storage scheme is λΛ = (0.3n log q, 0.3n log q). Let n = 21,
then λΛ = (6.3 log q, 6.3 log q) bits. According to the Theorem 1, if m/3 ≤ n and
n ≥ 16, the refreshing protocol Refreshn,1

Z∗
q

of the leakage-resilient storage scheme
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Λn,1
Z∗
q

is tolerant to (continuous) leakage up to λRefresh = λΛ/2 = (3.15
log q, 3.15 log q) bits, per occurrence.

When a secret key s (of size log q bits) of protocol P2 is encoded into two
parts, the left part sL will be n · log q = 21 log q bits and the right part sR will
be n · 1 · log q = 21 log q bits. For a tuple leakage function f = (f1j , f2j) (each
leakage function f(·) for each of the two parts sL and sR), there exists a tuple
leakage bound λ = (λ, λ) for each leakage function f(·), such that λ = 3.15 log q

bits, per occurrence, which is 3.15 log q
21 log q × 100% = 15% of the size of a part. The

overall leakage amount is unbounded since continuous leakage is allowed.

6 Conclusion

In this paper we answered that open problem of constructing a concrete
CAFL-eCK secure key exchange protocol by using a leakage-resilient storage
scheme and its refreshing protocol. The main technique used to achieve after-
the-fact leakage resilience is encoding the secret key into two parts and only
allowing the independent leakage from each part. As future work it is worth-
while to investigate whether there are other techniques to achieve after-the-fact
leakage resilience, rather than encoding the secret into parts. Moving to the
standard model is another possible research direction. Strengthening the secu-
rity model, by not just restricting to the independent leakage from each part,
would be a more challenging research direction.
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