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Abstract. We provide a new inequality that links two important entropy
notions: Shannon Entropy H1 and collision entropy H2. Our formula
gives the worst possible amount of collision entropy in a probability dis-
tribution, when its Shannon Entropy is fixed. While in practice it is easier
to evaluate Shannon entropy than other entropy notions, it is well known
in folklore that it does not provide a good estimate of randomness quality
from a cryptographic viewpoint, except very special settings. Our results
and techniques put this in a quantitative form, allowing us to precisely
answer the following questions:
(a) How accurately does Shannon entropy estimate uniformity? Con-

cretely, if the Shannon entropy of an n-bit source X is n− ε, where ε
is a small number, can we conclude that X is close to uniform? This
question is motivated by uniformity tests based on entropy estima-
tors, like Maurer’s Universal Test.

(b) How much randomness can we extract having high Shannon entropy?
That is, if the Shannon entropy of an n-bit source X is n−O(1), how
many almost uniform bits can we retrieve, at least? This question is
motivated by the folklore upper bound O(log(n)).

(c) Can we use high Shannon entropy for key derivation? More precisely,
if we have an n-bit source X of Shannon entropy n − O(1), can
we use it as a secure key for some applications, such as square-
secure applications? This is motivated by recent improvements in
key derivation obtained by Barak et al. (CRYPTO’11) and Dodis
et al. (TCC’14), which consider keys with some entropy deficiency.

Our approach involves convex optimization techniques, which yield the
shape of the “worst” distribution, and the use of the Lambert W func-
tion, by which we resolve equations coming from Shannon Entropy con-
straints. We believe that it may be useful and of independent interests
elsewhere, particularly for studying Shannon Entropy with constraints.
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1 Introduction

1.1 Entropy Measures

Entropy, as a measure of randomness contained in a probability distribution,
is a fundamental concept in information theory and cryptography. There exist
many entropy definitions and they are not equally good for all applications.
While the most famous (and most liberal) Shannon Entropy [Sha48], which quan-
tifies the encoding length, is extremely useful in information theory, more conser-
vative measures, like min-entropy (which quantifies unpredictability) or collision
entropy (which bounds collision probability between samples), are necessary in
cryptographic applications, like extracting randomness [NZ96,HILL99,RW05]
or key derivation [DY13,BDK+11]. Any misunderstanding about what is a
suitable entropy notion may be a serious problem not only of a theoretical
concern, because it leads to vulnerabilities due to overestimating security. In
fact, when entropy is overestimated, security of real-world applications can be
broken [DPR+13]. Standards [BK12,AIS11] recommend to use more conser-
vative entropy metrics in practical designs, but in the other hand Shannon
entropy is easier to evaluate [AIS11] (in particular when the distribution of
the randomness source is not exactly known) and moreover Shannon entropy
estimators have already been relatively well studied and are being used in prac-
tice [Mau92,Cor99,BL05,LPR11].

1.2 Motivations and Goals of this Work

The aim of this paper is to provide sharp separation results between Shan-
non entropy and Renyi entropy (focusing on collision entropy and min-entropy).
Under certain conditions, for example when consecutive bits of a given random
variable are independent (produced by a memoryless source), they are compara-
ble [RW05,Hol11] (this observation is closely related to a result in information
theory known as the Asymptotic Equipartition Property [Cac97]). Such a sim-
plifying assumption is used to argue about provable security of true random
number generators [BKMS09,VSH11,LPR11], and may be enforced in certain
settings, for example when certifying devices in a laboratory [BL05]. But in
general (especially from a theoretical viewpoint) neither min-entropy (being of
fundamental importance for general randomness extraction [RW05,Sha11]) nor
collision entropy, useful for key derivation [DY13,BDK+11,Shi15], randomness
extraction [HILL99], and random number generating [BKMS09,BST03]) cannot
be well estimated by Shannon entropy. Still, in practice Shannon entropy remains
an important tool for testing cryptographic quality of randomness [AIS11]. In
this paper we address the natural question

How bad is Shannon entropy as an estimate of cryptographic quality of
randomness?

and answer it in a series of bounds, focusing on three important cryptographic
applications, which require entropy estimation: (a) uniformity testing, (b) gen-
eral randomness extraction and (c) key derivation.
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1.3 Our Results and Techniques

Brief Summary. We investigate in details the gap between Shannon Entropy
and Renyi Entropy (focusing on smooth collision entropy and smooth min-
entropy) in a given entropy source. We impose no restrictions on the source
and obtain general and tight bounds, identifying the worst case. Our results are
mostly negative, in the sense that the gap may be very big, so that even almost
full Shannon Entropy does not guarantee that the given distribution is close to
uniform or that it may used to derive a secure key. This agrees with folklore.
However, to the best of our knowledge, our analysis for the first time provides
a comprehensive and detailed study of this problem, establishing tight bounds.
Moreover, our techniques may be of independent interests and can be extended
to compare Renyi entropy of different orders.

Results and Corollaries. Bounding Renyi Entropy by Shannon Entropy. Being
interested in establishing a bound on the amount of extractable entropy in terms
of Shannon Entropy only, we ask the following question

Q: Suppose that the Shannon Entropy H1(X) of an n-bit random vari-
able X is at least k. What is the best lower bound on the collision entropy
H2(X)?

We give a complete answer to this question in Sect. 3.1. It is briefly summarized
in Table 1 below.

Table 1. Minimal collision entropy given Shannon entropy constraints.

Domain of X H1(X) Region Max. �2-
distance to
uniform

Min. value of H2(X)

{0, 1}n n − Δ 2nΔ � 13 Θ
(

Δ
log(2nΔ)

)
n − log2

(
1 + Θ

(
2nΔ2 log−2(2nΔ

))

2nΔ � 13 O (Δ) n − log2
(
1 + O

(
2nΔ2

))

The Shape of the Worst-case Distribution. Interestingly, the description of the
“worst” distribution X is pretty simple: it is a combination of a one-point heavy
mass with a flat distribution outside. In fact, it has been already observed in
the literature that such a shape provides good separations for Shannon Entropy
[Cac97]. However, as far as we know, our paper is the first one which provides a
full proof that this shape is really best possible.

Infeasibility of Uniformity Tests Based on Entropy Estimators. If an n-bit ran-
dom variable X satisfies H1(X) = n then it must be uniform. It might be
tempting to think that a very small entropy gap Δ = n − H1(X) (when entropy
is very “condensed”) implies closeness to the uniform distribution. Clearly, this
is a necessary condition. For example, standards for random number generat-
ing [AIS11] require the Shannon entropy of raw bits to be at least 0.997 per bit
on average.
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Q: Suppose that the Shannon Entropy H1(X) of an n-bit random vari-
able X is at least n − Δ, where Δ ≈ 0. What is the best upper bound
on the distance between X and the uniform distribution Un?

There are popular statistical randomness tests [Mau92,Cor99] which are based
on the fact that very small Δ is necessary to a very small statistical distance.
Theoretically, they can detect any deviation at any confidence level. In this paper
we quantify what is well known in folklore, namely that this approach cannot be
provable secure and efficient at the same time. Based on the results summarized
in Table 1, we prove that for the statistical distance (the �1 distance) the gap Δ
can be as small as ε but still the source is ε/n-far from the uniform distribution.
Putting this statement around, to guarantee ε-closeness we need to estimate
the entropy up to a tiny margin nε. This shows that an application of entropy
estimators to test sequences of truly random bits may be problematic, because
estimating entropy within such a small margin is computationally inefficient.
Having said this, we stress that entropy estimators like Maurer’s Universal Test
[Mau92] are powerful tools capable of discovering most of defects which appear
within a broader margin of error.

Large Gap Between Shannon and Smooth Collision Entropy. Many constructions
in cryptography require min-entropy. However, the weaker notion of collision
entropy found also many applications, especially for problems when one deals
with imperfect randomness. The collision entropy of a distribution X constitutes
a lower bound on the number of extractable almost-uniform bits, according to the
Leftover Hash Lemma [HILL99,RW05]. Moreover, the recent improvements in
key derivation [DY13,BDK+11] show that for some applications we can use high
collision entropy to generate secure keys, wasting much less entropy comparing
to extractors-based techniques (see Sect. 2.5). For example, consider the one-
time MAC with a 160-bit key over GF (280), where the key is written as (a, b)
and the tag for a message x is ax + b. The security is ε = 2−80 when the
key is uniform [DY13]. We also know that it is ε = 2−70-secure when the key
has 150 = 160 − 10 bits of collision entropy. Suppose that a Shannon entropy
estimator indicates 159 bits of entropy. Is our scheme secure? This discussion
motivates the following question

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈
{0, 1}n is at least n − Δ where Δ � 1. What is the best lower bound on
H2(X)? Does it help if we consider only H2(X ′) where X ′ is close to X?

As a negative result, we demonstrate that the gap between the Shannon Entropy
and Renyi Entropy could be almost as big as the length of the entropy source
output (that is almost maximal possible). Moreover, smoothing entropy, even
with weak security requirements, does not help. For example, we construct a
256-bit string of more than 255 bits of Shannon Entropy, but only 19 bits of
(smooth) Renyi entropy. This is just an illustrative example, we provide a more
general analysis in Corollary 4 in Sect. 4.

Large Gap Between Shannon and Extractable Entropy. Min entropy gives only
a lower bound on extractable entropy. However, its smooth version can be used
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to establish an upper bound on the amount of almost random bits, of required
quality, that can be extracted from a given source [RW05].

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈
{0, 1}n is at least n − Δ where Δ < 1. How many bits that are close to
uniform can be extracted from X?

Again, analogously to the previous result, we provide a separation between
Shannon and extractable entropy, where the gap is almost as big as the length
of the random variable. For example, we construct a 256-bit string of more than
255.5 bits of Shannon Entropy, but only 10 bits of extractable entropy, even if we
allow them to be of very weak quality, not really close to uniform! This is just
an illustrative example, we provide a more precise and general statement. To
our knowledge, the concrete tight bounds we provide are new, though a similar
“extreme” numerical example can be found in [Cac97]. The separation is again
a straightforward application of ideas behind the proof of the results in Table 1

Converting Shannon Entropy into Renyi Entropy. Even though the gap in our
separations are almost as big as the length of the source output, there might be
small amount of Renyi Entropy in every distribution of high Shannon Entropy.

Q: Suppose that the Shannon Entropy of an n-bit random variable X is
at least n − Δ where Δ � 1. Does X have some non-trivial amount of
collision entropy?

This question may be relevant in settings, when one would like to check whether
some (not really big though) collision entropy is present in the source. For exam-
ple, there are necessary conditions on security of message authentication codes in
terms of collision entropy [Shi15]. We establish a simple and tight bound on this
amount: it is about 2 log2 n−2 log2 Δ. For example, in the concrete case of a 256-
bit string of Shannon Entropy 255 we find that the necessary amount of Renyi
entropy is 15. We also establish an interesting rule of thumb: for much more than
one bit of Renyi entropy in the output of a source, its Shannon Entropy must
be bigger than the half of its length. Again, besides this numerical example we
provide detailed and general bounds.

Techniques. To prove our main technical results, we use standard convex opti-
mization techniques combined with some calculus which allows us to deal with
implicit equations. In particular, we demonstrate that the Lambert-W function
is useful in studying Shannon Entropy constraints.

1.4 Organization of the Paper

We start with necessary definitions and explanations of basic concepts in Sect. 2.
Our main result is discussed in Sect. 3. Further applications are given in Sect. 4.
We end with the conclusion in Sect. 5. The proofs of main results, which are
technical and complicated a bit, appear in Sect. 5.
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2 Preliminaries

2.1 Basic Notions

By US we denote the uniform distribution over a set S, and Un is a shortcut
for the uniform n-bit distribution. The probability mass function of a random
variable X is denoted by PX .

2.2 Quantifying Closenes of Distributions

The closeness of two distributions X,Y over the same domain Ω is most com-
monly measured by the so called statistical or variational distance SD(X;Y ). It
is defined as the half of the �1-distance between the probability mass functions
SD(X;Y ) = 1

2d1(PX ;PY ) = 1
2

∑
x |Pr[X = x] − Pr[Y = x]|. In this paper we use

also the �2-distance between probability distributions, defined as d2(PX ;PY ) =√∑
x (Pr[X = x] − Pr[Y = x])2. These two �p distances are related by d2(·) <

d1(·) �
√|Ω| · d2(·). In information theory the closeness of two distributions

is often measures using so called divergences. The Kullback-Leibler divergence
between X and Y is defined as KL(X ‖ Y ) = −∑

x PX(x) log PX(x)
PY (x) , and the

Renyi divergence of order 2 equals D2 (X ‖ Y ) =
∑

x
(PX(x)−PY (x))2

PX(x) . We have
D2 (X ‖ US) = H2(US) − H2(X) = log2 (|S|CP(X)).

For convenience we define also the collision probability of X as the probability
that two independent copies of X collide: CP(X) =

∑
x Pr[X = x]2.

2.3 Entropy Definitions

Below we define the three key entropy measures, already mentioned in the intro-
duction. It is worth noting that they all are special cases of a much bigger
parametrized family of Renyi entropies. However the common convention in
cryptography, where only these three matter, is to slightly abuse the terminol-
ogy and to refer to collision entropy when talking about Renyi entropy, keeping
the names for Shannon and Min-Entropy.
Definition 1 (Entropy Notions). The Shannon Entropy H(X) = H1(X), the
collision entropy (or Renyi entropy) H2(X), and the Min-Entropy H∞(X) of a
distribution X are defined as follows

H(X) =
∑

x

Pr[X = x] log Pr[X = x] (1)

H2(X) = − log

(
∑

x

Pr[X = x]2
)

(2)

H∞(X) = − log max
x

Pr[X = x]. (3)

Remark 1 (Comparing Different Entropies). It is easy to see that we have

H(X) � H2(X) � H∞(X),

with the equality if and only if X is uniform.
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2.4 Entropy Smoothing

The Concept. Entropy Smoothing is a very useful concept of replacing one
distribution by a distribution which is very close in the statistical distance (which
allows keeping its most important properties, like the amount of extractable
entropy) but more convenient for the application at hand (e.g. a better structure,
removed singularities, more entropy).

Applications of Smooth Entropy. The smoothing technique is typically
used to increase entropy by cutting off big but rare “peaks” in a probability
distribution, that is point masses relatively heavy comparing to others. Proba-
bly the most famous example is the so called Asymptotic Equipartition Property
(AEP). Imagine a sequence X of n independent Bernoulli trials, where 1 appears
with probability p > 1/2. Among all n-bit sequences the most likely ones are
those with 1 in almost all places. In particular H∞(X) = −n log p. However, for
most of the sequences the number of 1’s oscillates around pn (these are so called
typical sequences). By Hoeffding’s concentration inequality, the number of 1’s
is at most pn + h with probability 1 − exp(−2h2/n). For large n and suitably
chosen h, the distribution of X approaches a distribution X ′ of min-entropy
H∞(X ′) ≈ −n(p log p + (1 − p) log(1 − p)) ≈ H(X) (the relative error here is
of order O(n−1/2)), much larger than the min-entropy of the original distrib-
ution! A quantitative version of this fact was used in the famous construction
of a pseudorandom generator from any one-way function [HILL88]. Renner and
Wolf [RW04] revisited the smoothing technique in entropy framework and came
up with new applications.

Definition 2 (Smooth Entropy, [RW04]). Suppose that α ∈ {1, 2,∞}. We
say that the ε-smooth entropy of order α of X is at least k if there exists a
random variable X ′ such that SD(X;X ′) � ε and Hα(X ′) � k.

For shortness, we also say smooth Shannon Entropy, smooth Renyi entropy or
smooth min-entropy. We also define the extractable entropy of X as follows

Definition 3 (Extractable Entropy, [RW05]). The ε-extractable entropy of
X is defined to be

Hε
ext(X) = max

U : ∃f∈Γ ε(X→U)
log |U| (4)

where Γ ε(X → U) consists of all functions f such that SD(f(X,R);UU , R) � ε
where R is uniform and independent of X and UU .

2.5 Randomness Extraction and Key Derivation

Roughly speaking, an extractor is a randomized function which produces an
almost uniform string from a longer string but not of full entropy. The random-
ization here is necessary if one wants an extractor working with all high-entropy
sources; the role of that auxiliary randomness is similar to the purpose of cata-
lysts in chemistry.
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Definition 4 (Strong Extractors [NZ96]). A strong (k, ε)-extractor is a func-
tion Ext : {0, 1}n × {0, 1}d → {0, 1}k such that

SD(Ext(X,Ud), Ud;Uk+d) � ε. (5)

A very simple, efficient and optimal (with respect to the necessarily entropy loss)
extractor is based on universal hash functions. Recall that a class H of functions
from n to m bits is universal [CW79] if for any different x, y there are exactly
|H|/2m functions h ∈ H such that h(x) = h(y).

Lemma 1 (Leftover Hash Lemma). Let H be a universal class of functions
from n to random m bits, let H be chosen from H at random and let X be an
n-bit variable. If H2(X) � k, then SD(H(X),H;Um,H) � 1

2 · 2
m−k

2 .

By Lemma 1 and the properties of the statistical distance we obtain

Corollary 1 (Bound on Extractable Entropy, [RW05]). We have Hε
∞(X) �

Hε
ext(X) � H

ε/2
2 (X) − 2 log(1/ε) − 1.

Note that to extract k bits ε-close to uniform we need to invest k+2 log(1/ε) bits
of (collision) entropy; the loss of 2 log(1/ε) bits here is optimal [RTS00]. While
there are many other extractors, the Leftover Hash Lemma is particularly often
used in the TRNG design [BST03,BKMS09,VSH11] because it is simple, effi-
cient, and provable secure. Extractors based on the LHL are also very important
in key derivation problems [BDK+11]. Note that the LHL uses only collision
entropy, weaker than min-entropy.

To get an illustrative example, note that deriving a key which is ε-close to
uniform with ε = 2−80 requires losing L = 2 log(1/ε) = 160 bits of entropy.
Sometimes we can’t afford to lose so much. In special cases, in particular for so
called square-friendly applications [BDK+11,DY13] we can get an improvement
over Corollary 1. In particular, for these applications (which include message
authentication codes or digital signatures), we can apply X of collision entropy
k < m, still achieving some non-trivial security.

Theorem 1 (Beating the 2 log(1/ε) Entropy Loss for Some Applica-
tions. [BDK+11]). Let P be an ε-secure and σ-square-secure application (when
keyed with Um). Let H be a universal class of functions from n to random m
bits, let H be chosen from H at random. Then for any X of length n and
collision-entropy k, the application P keyed with H(X) given H is ε′-secure
when ε′ � ε +

√
σ · 2

m−k
2 .

In particular, when σ = ε we get around of the RT-bound, achieving ε′ ≈ 2ε
with only k = m + log(1/ε). This way we save log(1/ε) ≈ 80 bits.

3 Main Result

In this section we calculate what is the minimal collision entropy in a distrib-
ution having a certain amount of Shannon entropy. First, by means of convex
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optimization, we show in Sect. 3.1 that the uniform distribution with one extra
heavy mass is the “worst” shape. Next, using some facts about Lambert W
function, in Sect. 3.2 we solve the corresponding implicit equation and derive a
closed-form answer.

3.1 Maximizing Collisions Given Shannon Entropy

Below we answer the posted question on the best bound on H2 in terms of H1.
The “worst case” distribution, which minimizes the gap, is pretty simple: it is
a combination of a one-point mass at some point and a uniform distribution
outside.

Theorem 2. Let X be a random variable with values in a d-element set. If
H(X) = k, then

H2(X) � − log2

(

b2 +
(1 − b)2

d − 1

)

(6)

where b is the unique solution to

H(b) + (1 − b) log2(d − 1) = k (7)

under the restriction b � 1
d (H(b) denotes the entropy of a bit equal 1 with

probability b). The bound in Eq. (6) is best possible.

Remark 2 (The Implicit Equation in Theorem 2). The number b is defined nondi-
rectly depending on d and k. In Sect. 3.2, we will show how to accurately approx-
imate the solution of this equation.

The proof of Theorem2 appears in AppendixA. The main idea is to write down
the posted question as a constrained optimization problem and apply standard
Lagrange multipliers techniques.

3.2 Closed-Form Bounds for Solutions

Below we present a tight formula approximating the solution to Eq. (7). We will
substitute it to Eq. (6) in order to obtain a closed-form expression.

Lemma 2 (The solution for Moderate Gaps). Let b be the solution to
Eq. (7) and let Δ = log2 d − k be the entropy gap. Suppose dΔ � 13. Then we
have

0.84Δ

log2(dΔ) − 1.52
� b � 1.37Δ

log2(dΔ) − 1.98
(8)

The proof is referred to AppendixB. The main idea is to solve Eq. (8) approx-
imately using the so called Lambert W function, that matches Shannon-like
expressions of the form y log y. Here we discuss the lemma and its applications.
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Remark 3 (Establishing Tighter Constants). The inspection of the proof shows
that the numerical constants in Lemma 2 can be made sharper, if needed. Under
the mild assumption that Δ−1 = 2o(log2 d) one can get

b =
(1 + o(1))Δ

log2(dΔ) − log2 e − log2 log2 e + o(1)
(9)

The gap between 1.52 and 1.98 is self-improving, in the sense that knowing in
advance a better upper bound on b one can make it closer to 0. In turn, the gap
between 0.84 and 1.37 can be made closer to 0 by choosing in the proof a more
accurate approximation for the Lambert W function.

Now we are ready to compute minimal collision entropy given Shannon Entropy.

Corollary 2 (Minimal Collision Entropy, General Case). Let X∗ min-
imizes H2(X) subject to H(X) � n − Δ where X takes its values in a given
d-element set. If dΔ � 13 then

0.55Δ

log2(dΔ)
� d2(X∗;U) � 3.24Δ

log2(dΔ)
, (10)

where U is uniform over the domain of X. If dΔ < 13 then

d2(X∗;U) < 0.88Δ. (11)

The collision entropy is obtained as H2(X∗) = − log2
(
1
d + d2(X∗;U)2

)
.

Proof (Proof of Corollary 2). We will consider two cases.

Case I: dΔ � 13. By Lemma 2 we get

0.84Δ

log2(dΔ)
� b � 2.95Δ

log2(dΔ)
(12)

By the last inequality and the fact that x → x
log2 x is increasing for x � e we get

bd � 0.84dΔ

log2(dΔ)
� 2.95

Let b0 = 1
d . By the last inequality we get b − b0 � 0.66b. Since

b2 +
(1 − b)2

d − 1
= b0 +

d

d − 1
· (b − b0)2,

by the identity d2(X;U)2 =
∑

x Pr[X = x]2 − 1
d and the definition of collision

entropy we get

d2(X∗, U)2 = CP(X∗) − b0 =
d

d − 1
· (b − b0)2.
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Note that dΔ � 13 implies d log2 d � 13 (because Δ � log2 d) and hence d > 5.
By this inequality and b − b0 � 0.66b we finally obtain

0.43b2 � d2(X∗;U)2 � 1.2b2 (13)

and the result for the case dΔ � 13 follows by combining Eqs. (12) and (13).

Case II: dΔ < 13. We do a trick to “embed” our problem into a higher dimension.
If p ∈ R

d is the distribution of X, define p′ ∈ R
d+1 by p′

i = (1 − γ)p′
i for i � d

and p′
d+1 = γ. It is easy to check that H1(p′) = −(1−γ) log2(1−γ)−γ log2 γ +

(1 − γ)H1(p). Setting γ = 1
1+2H1(p) we get

H1(p′) − H1(p) = −(1 − γ) log2(1 − γ) − γ log2 γ − γH1(p)

− (1 − γ) log2(1 − γ) − γ log2
(
2H1(p)γ

)

= log2
2H1(p) + 1

2H1(p)

� log2
d + 1

d

� (1 − b) log2
d

d − 1

where the first inequality follows by H1(p) � log2 d, and the second inequality
follows because b � 1

d implies that is suffices to prove log2
d+1

d �
(
1 − 1

d

)
log2

d
d−1

or equivalently that d log2
d+1

d � (d − 1) log2
d

d−1 ; this is true because the map
u → u log2(1 + u−1) is increasing in u for u > 0 (we skip an easy argument,
which simply checks the derivative). Since H1(p′) − H1(p) = 0 for γ = 0 and
since H1(p′) − H1(p) � (1 − b) log2

d
d−1 > (1 − b) log2

d+1
d for 1

1+2H1(p) for
� (1 − b) log2

d
d−1 , by continuity we conclude that there exists γ = γb, between

0 and 1
1+2H1(p) , such that p′ satisfies

(1 − b) log2
d + 1

d
= H1(p′) − H1(p).

Adding this Eq. (7) by sides, we conclude that also b solves 7 with the dimension
d replaced by d′ = d + 1 and the constraint k replaced by k′ = H1(p′). By
H1(p′) − H1(p) � log2

d+1
d we conclude that Δ′ = log2(d + 1) − H1(p′) �

log2 d − H1(p) = Δ so the entropy gap is even smaller. After a finite number of
step, we end with Δ′ � Δ, the same b and d′Δ′ � 13. Then by the first case we
get that the squared distance is at most O(Δ′2) = O(Δ2).

4 Applications

4.1 Negative Results

The first result we provide is motivated by uniformness testing based on Shannon
entropy. We hope that n-bit distribution with entropy n − Δ where Δ ≈ 0, that
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is with an extremely small entropy defficency, is close to uniform. We show that
for this to be true, Δ has to be negligible.

Corollary 3 (Shannon Entropy Estimators are Inefficient as Unifor-
mity Tests). Suppose that n � 1 and ε > 2−0.9n. Then there exists a distribu-
tion X ∈ {0, 1}n such that H1(X) � n − ε but SD(X;Un) = Ω(ε/n).

Remark 4. Note that typically one estimates Shannon Entropy within an addi-
tive error O(1). However here, to prove that the distribution is ε-close to uniform,
one has to estimate the entropy with an error O(nε), which is much tighter! The
best known bounds on the running time for an additive error O(ε) are polynomial
in ε [AOST14,Hol06]1. With ε secure (meaning small) enough for cryptographic
purposes, such a precision is simply not achievable within reasonable time.

Proof (Proof of Corollary 3). Take d = 2n in Corollary 2 and Δ = ε. Suppose
that Δ = Ω(2−0.9n). We have d2(X;Un) = Θ(Δn−1). In the other hand we
have the trivial inequality d2(X;Un) � 4 ·SD(X;Un) (which is a consequence of
standard facts about �p-norms) and the result follows.

Corollary 4 (SeparatingSmoothRenyiEntropyandShannonEntropy).
For any n,δ such that 2−n < δ < 1

6 , there exists a distribution X ∈ {0, 1}n

such that H(X) � (1 − 2δ)n + log2(1 − 2−n), H2(X) � 2 log2(1/δ) − 2 and
Hε

2(X) � H2(X) + 1 for every ε � δ. For a concrete setting consider n = 256
and δ = 2−10. We have H(X) > 255 but H2(X) � 18 and Hε

2(X) � 19 for every
ε < 2−9!

Proof. We use a distribution of the same form as the optimal distribution as
for problem (15). Denote N = 2n and define pi = 1−2δ

N−1 for i = 2, . . . , N , and
p1 = 2δ. It is easy to see that H(p) � (1 − 2δ)n + log2(1 − 2n) and H2(p) <
log(1/δ)−2. Consider now arbitrary distribution p′ such that SD(p;p′) � ε. We
have p′

i = pi + εi where
∑

i εi = 0 and
∑

i |εi| = 2ε. Note that
∑

i>1

p′2
i −

∑

i>1

p2
i > 2

∑

i>1

piεi

> −2(1 − 2δ)ε
N − 1

= − 2ε

1 − 2δ
·
∑

i>1

pi
2,

and p′2
1 − p2

1 � −δ2 = − 1
2p

2
1. Thus, for 2ε + δ < 1

2 it follows that
∑

i�1 p
′2
i �

(
1 − 1

2

) ∑
i�1 p

2
i and the result follows.

Corollary 5 (Separating Extractable Entropy and Shannon Entropy).
For any n � 1, ε ∈ (0, 1) and δ > 2−n, there exists a random variable X ∈ {0, 1}n

such that H(X) � (1 − ε − δ)n + log2(1 − 2−n) but Hε
ext(X) � log(1/δ). For a

concrete setting consider n = 256 and δ = 2−10. We have H(X) > 255.5 but
Hε

ext(X) � 10 for every ε < 2−10!
1 More precisely they require poly(ε−1) independent samples.
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Proof (Proof of Corollary 5). We use a distribution of the same form as the
optimal distribution as for problem (15). Fix ε, δ (we can assume ε + δ < 1) and
denote N = 2n. We define pi = 1−ε−δ

N−1 for i = 2, . . . , N , and p1 = ε + δ. Note
that pi < δ for i 	= 1. It follows then that Hε

∞(p) � log(1/ε). In the other hand,
note that p is a convex combination of the distribution uniform over the first
N − 1 points (with the weight 1 − ε − δ and a point mass at N (with the weight
ε + δ. It follows that Shannon Entropy of p is at least (1 − ε − δ) · log2(N − 1).

4.2 Positive Results

Now we address the question what happens when Δ > 1. This is motivated by
settings where keys with entropy deficiency can be applied (cf. Theorem1 and
related references).

Corollary 6 (Collision Entropy When the Shannon Gap is Moderate).
Let k � n−1 and let X∗ ∈ {0, 1}n minimizes H2(X) subject to H(X) � k where
X ∈ {0, 1}n. Then

2 log2 n − 2 log2(n − k) � H2(X∗) � 2 log2 n − 2 log2(n + 1 − k) + 1. (14)

For instance, if k = 255 then 15 < H2(X∗) < 16.

Proof (Proof of Corollary 6). Let b be the solution to Eq. (7) (here we have
d = 2n). Since 0 � H(b) � 1 we have k

log2(d−1) � 1 − b � k−1
log2(d−1) . We improve

the left-hand side inequality a little bit

Claim. We have 1 − k−1
log2 d � b � 1 − k

log2 d .

Proof (Proof of Sect. 4.2). Since b � 1
d we have log2(d − 1) − log(1 − b) � log2 d

and therefore

k = −b log2 b − (1 − b) log2(1 − b) + (1 − b) log2(d − 1)
� −b log2 b + (1 − b) log2 d

from which it follows that 1 − b � k
log2 d . The left part is already proved.

The result now easily follows by observing that (1−b)2

d−1 � b2 holds true for b �
−1+

√
d−1

d−2 � 1
2 , also for d = 2. This is indeed satisfied by Sect. 4.2 and k �

log2 d − 1.

4.3 Bounds in Terms of the Renyi Divergence

Our Corollary 2 gives a bound on the �2-distance between X and U . Note that

d2(X;U)2 = CP(X) − d−1 = d−1 (dCP(X) − 1) = d−1
(
2D2(X‖U) − 1

)

and thus our bounds can be expressed in terms of the Renyi divergence D2. Since
we find the distribution X with possibly minimal entropy, this gives an upper
bound on the divergence in terms the Shannon entropy.
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5 Conclusion

Our results put in a quantitative form the well-accepted fact that Shannon
Entropy does not have good cryptographic properties, unless additional strong
assumptions are imposed on the entropy source. The techniques we applied may
be of independent interests.

Acknowledgment. The author thanks anonymous reviewers for their valuable
comments.

A Proof of Theorem2

Proof (Proof of Theorem 2). Consider the corresponding optimization problem

minimize
p∈Rd

− log2

(
d∑

i=1

p2
i

)

subject to 0 < pi, i = 1, . . . , d.

d∑

i=1

pi − 1 = 0

d∑

i=1

−pi log2 pi = k

(15)

The Lagrangian associated to (15) is given by

L(p, (λ1, λ2)) = − log2

(
d∑

i=1

p2
i

)

− λ1

(
d∑

i=1

pi − 1

)

− λ2

(

−
d∑

i=1

pi log2 pi − k

)

(16)

Claim. The first and second derivative of the Lagrangian (16) are given by

∂L

∂pi

= −2 log2 e · pi

p2
− λ1 + λ2 log2 e + λ2 log2 pi (17)

∂2L

∂pipj

= 4 log2 e · pipj

(p2)2
+ [i = j] ·

(

−2 log2 e
p2

+
λ2 log2 e

pi

)

(18)

Claim. Let p∗ be a non-uniform optimal point to 15. Then it satisfies p∗
i ∈ {a, b}

for every i, where a, b are some constant such that

−2 log2 e
p∗2 +

λ2 log2 e
a

> 0 > −2 log2 e
p∗2 +

λ2 log2 e
b

(19)
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Proof (Proof of AppendixA). At the optimal point p we have ∂L
∂pi

= 0 which
means

−2 log2 e · pi

p2
− λ1 + λ2 log2 e + λ2 log2 pi = 0, i = 1, . . . , d. (20)

Think of p2 as a constant, for a moment. Then the left-hand side of Eq. (20) is of
the form −c1pi+c2 log2 pi+c3 with some positive constant c1 and real constants
c2, c3. Since the derivative of this function equals −c1 + c2

pi
, the left-hand side is

either decreasing (when c2 � 0) or concave (when c2 > 0). For the non-uniform
solution the latter must be true (because otherwise pi for i = 1, . . . , d are equal).
Hence the Eq. (20) has at most two solutions {a, b}, where a < b and both are
not dependent on i. Moreover, its left-hand side has the maximum between a
and b, thus we must have −c1 + c2

a > 0 > −c1 + c2
b . Expressing this in terms of

λ1, λ2 we get Eq. (19).

Claim. Let p∗ and a, b be as in AppendixA. Then pi = a for all but one index i.

Proof (Proof of AppendixA). The tangent space of the constraints
∑d

i=1 pi −
1 = 0 and −∑d

i=1 pi log2 pi − k = 0 at the point p is the set of all vectors h ∈ R
d

satisfying the following conditions
∑d

i=1 hi = 0
∑d

i=1 −(log2 pi + log2 e)hi = 0
(21)

Intuitively, the tangent space includes all infinitesimally small movements that
are consistent with the constraints. Let D2L =

(
∂2L

∂pipj

)

i,j
be the second deriv-

ative of L. It is well known that the necessary second order condition for the
minimizer p is hT (D2)Lh � 0 for all vectors in the tangent space (21). We have

hT · (D2L) · h = 4 log2 e ·
(∑d

i= pihi

)2

(p2)2
+

d∑

i=1

(

−2 log2 e
p2

+
λ2 log2 e

pi

)

h2
i .

Now, if the are two different indexes i1, i2 such that p∗
i1

= p∗
i2

= b, we can define
hi1 = −δ, hi2 = δ and hi = 0 for i 	∈ {i1, i2}. Then we get

hT · (D2L) · h = 2
(

−2 log2 e
p2

+
λ2 log2 e

b

)

δ2

which is negative according to Eq. (19). Thus we have reached a contradiction.

Finally, taking into account the case of possibly uniform p∗ and combining it
with the last claim we get

Claim. The optimal point p∗ satisfies p∗
i0

= b and p∗
i = 1−b

d−1 for i 	= i0, for some
b � 1

d . Then we have H(p∗) = H(b) + (1 − b) log2(d − 1) and H2(p∗) = −
log2

(
b2 + (1−b)2

d−1

)
.



272 M. Skórski

It remains to take a closer look at Eq. (7). It defines b as an implicit function of
k and d. Its uniqueness is a consequence of the following claim

Claim. The function f(b) = H(b) + (1 − b) log2(d − 1) is strictly decreasing and
concave for b � 1

d .

Proof (Proof of AppendixA). The derivative equals ∂f
∂b = − log2

b
1−b −log2(d−1)

and hence, for 1
d < b < 1, is at most − log2

1
d

1− 1
d

− log2(d − 1) = 0. The second

derivative is ∂2f
∂b2 = − log2 e

b(1−b) . Thus, the claim follows.
The statement follows now by Appendices A and B.

B Proof of Lemma2

Proof. Let Δ = log2 d − k be the gap in the Shannon Entropy. Note that from
Eq. (7) and the inequality −2 � d(log2(d − 1) − log2 d) � − log2 e it follows that

−b log2 b − (1 − b) log2(1 − b) − b log2 d = −Δ + C1(d) · d−1

where log2 e � C1 � 2. Note that f
(
1
2

)
= −1 + 1

2 log2(d − 1) < log2 d − 1.
Since Δ � 1 implies f(b) � log2 d − 1, by AppendixA we conclude that b < 1

2 .
Next, observe that 1 � −(1−b) log2(1−b)

b � log2 e, for 0 < b < 1
2 . This means

that −(1 − b) log2(1 − b) = −b log2 C2(d) where 1
e � C2(d) � 1

2 . Now we have

−b log2(C2(d) · d · b) = −Δ + C1(d) · d−1.

Let y = C2(d)·d·b. Our equation is equivalent to y ln y = C3(d)·d·Δ−C1(d)C3(d).
where C3 = C2/ log2 e. Using the Lambert-W function, which is defined as
W (x) · eW (x) = x, we can solve this equations as

b =
eW (C3(d)dΔ−C3(d)C1(d))

C2(d)d
. (22)

For x � e we have the well-known approximation for the Lambert W function
[HH08]

ln x − ln lnx < W (x) � lnx − ln lnx + ln(1 + e−1). (23)

Provided that C3(d)dΔ−C3(d)C1(d) � 1, which is satisfied if dΔ � 6, we obtain

b =
C3(d)dΔ − C3(d)C1(d)

C3(d)d · log2 (C3(d)dΔ − C3(d)C1(d))
· C4(d) (24)

where 1 � C4(d) � 1 + e−1. Since the function x → x
log2 x is increasing for x � e

and since for dΔ � 13 we have C3(d)dΔ − C3(d)C1(d) � e, from Eq. (24) we get

b � C3(d)dΔ

C3(d)d · log2 (C3(d)dΔ)
· C4(d) =

C4(d)Δ
log2 (C3(d)dΔ)

(25)
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from which the right part of Eq. (8) follows by the inequalities on C3 and C4.
For the lower bound, note that for dΔ � 13 we have C3(d)dΔ − C3(d)C1(d) �
C3(d)dΔ · 1113 because it reduces to C1(d) � 2, and that C3(d)dΔ · 1113 � 13 · 1

e log2 e ·
11
13 > e. Therefore, by Eq. (24) and the mononicity of x

log2 x we get

b �
11
13C3(d)dΔ

C3(d)d · log2
(
11
13C3(d)dΔ

) · C4(d) =
11
13C4(d)Δ

log2
(
11
13C3(d)dΔ

) , (26)

from which the left part of Eq. (8) follows by the inequalities on C3 and C4.
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