
Jens Groth (Ed.)

 123

LN
CS

 9
49

6

15th IMA International Conference, IMACC 2015
Oxford, UK, December 15–17, 2015
Proceedings

Cryptography
and Coding



Lecture Notes in Computer Science 9496

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany



More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410


Jens Groth (Ed.)

Cryptography
and Coding
15th IMA International Conference, IMACC 2015
Oxford, UK, December 15–17, 2015
Proceedings

123



Editor
Jens Groth
University College London
Cambridge
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27238-2 ISBN 978-3-319-27239-9 (eBook)
DOI 10.1007/978-3-319-27239-9

Library of Congress Control Number: 2015957651

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by SpringerNature
The registered company is Springer International Publishing AG Switzerland



Preface

The International Conference of Cryptography and Coding is the biennial conference
of the Institute of Mathematics and its Applications (IMA) on cryptography and coding
theory. The conference series has been running for more than three decades and the
15th edition was held December 15–17, 2015, in inspirational and historical sur-
roundings at St. Catherine’s College at the University of Oxford.

We received 36 submissions from authors all over the world on a diverse set of
topics both in cryptography and coding theory. The Program Committee selected 18
of the submissions for presentation at the conference. The review process was
double-blind and rigorous: Each submission was reviewed independently by at least
three reviewers in an individual review phase, and subsequently considered by the
Program Committee in a discussion phase. Feedback from the reviews and discussions
was given to the authors and their revised submissions are included in the proceedings.

The Program Committee selected one distinguished article for the best paper award.
Congratulations to Kenneth G. Paterson, Jacob C.N. Schuldt, Dale L. Sibborn, and
Hoeteck Wee for winning the award this year with their paper “Security Against
Related Randomness Attacks via Reconstructive Extractors.”

In addition to the presentations of accepted papers, the conference also featured four
keynote talks by internationally leading scientists on their research in the interface of
cryptography and coding theory. I am grateful to Sihem Mesnager, Allison Bishop,
Alexander May, and Daniel Wichs for accepting our invitation and sharing the insights
gathered from their exciting research. Sihem Mesnager kindly offered a companion
paper to her talk, “On Existence (Based on an Arithmetical Problem) and Constructions
of Bent Functions,” co-authored by Gérard Cohen and David Madore.

Running a conference like IMACC requires the effort of many people and many
thanks are due. I would like to thank the Steering Committee for their trust and support.
I thank the authors for their submissions, and the Program Committee and the external
reviewers for their effort in selecting the scientific program. Thanks also goes to the
IACR and Shai Halevi for their cooperation and for letting us use the WebSubRev
software to manage the submission and review process. I appreciate the assistance by
Alfred Hofmann and Anna Kramer from Springer in the production of the proceedings.
Finally, I am incredibly thankful to conference officer (general chair) Lizzi Lake and
her colleagues at the Institute of Mathematics and its Applications for handling all the
practical matters of the conference.

December 2015 Jens Groth
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On Existence (Based on an Arithmetical
Problem) and Constructions of Bent Functions

Sihem Mesnager1(B), Gérard Cohen2, and David Madore2

1 Department of Mathematics, University of Paris VIII, University of Paris XIII,
LAGA, UMR 7539, CNRS, and Télécom ParisTech, Paris, France

smesnager@univ-paris8.fr
2 Télécom ParisTech, UMR 5141, CNRS, Paris, France

Abstract. Bent functions are maximally nonlinear Boolean functions.
They are wonderful creatures introduced by O. Rothaus in the 1960’s
and studied firstly by J. Dillon since 1974. Using some involutions over
finite fields, we present new constructions of bent functions in the line
of recent Mesnager’s works. One of the constructions is based on an
arithmetical problem. We discuss existence of such bent functions using
Fermat hypersurface and Lang-Weil estimations.

Keywords: Boolean functions · Bent functions · Finite fields ·
Arithmetic and geometric tools

1 Introduction

Bent functions are maximally nonlinear Boolean functions with an even number
of variables. They were introduced by Rothaus [36] in 1976 but already stud-
ied by Dillon [14] since 1974. For their own sake as interesting combinatorial
objects, but also for their relations to coding theory (e.g. Reed-Muller codes,
Kerdock codes), combinatorics (e.g. difference sets), design theory (any differ-
ence set can be used to construct a symmetric design), sequence theory, and
applications in cryptography (design of stream ciphers and of S-boxes for block
ciphers), they have attracted a lot of research for four decades. Yet, their classi-
fication is still elusive, therefore, not only their characterization, but also their
generation are challenging problems. A non-exhaustive list of references dealing
with constructions of binary bent Boolean functions is [1–4,6,8,10,11,14–17,22–
25,27–32,35,37]. Some open problems can be found in [7]. For a recent survey,
see [9]. A book devoted especially to bent functions and containing a complete
survey (including variations, generalizations and applications) is [34].

The paper was presented as a part of an invited talk entitled “Bent functions and
their connections to coding theory and cryptography” at the fifteenth International
Conference on Cryptography and Coding, Oxford, United Kingdom (IMACC 2015)
given by S. Mesnager.

c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 3–19, 2015.
DOI: 10.1007/978-3-319-27239-9 1



4 S. Mesnager et al.

Bent functions occur in pairs. In fact, given a bent function one can define
its dual which is again bent. Computing the dual of a given bent function is
not an easy task in general. Recently, the first author has derived in [31] several
new infinite classes of bent functions defined over the finite field F2n with their
duals. All these families are obtained by selecting three pairwise distinct bent
functions from general classes and satisfying some conditions. In [32], the first
author extends the results of [31] and exhibits several new infinite families of
bent functions, together with their duals. Some of them are obtained via new
infinite families of permutations that the author provides with their composi-
tional inverses. In [32], secondary-like constructions of permutations leading to
several families of bent functions have also been introduced. The paper is in the
line of [31,32]. Our objective is to provide more primary constructions of bent
functions defined over the finite field F22m � F2m × F2m in bivariate representa-
tion in terms of the sum of the products of trace functions.

This paper is organized as follows. Formal definitions and necessary prelimi-
naries are introduced in Sect. 2. In Sect. 3, we present an overview of the previous
constructions of binary bent functions related to our work. Next, in the line of
[31,32] based on special permutations, we investigate bent functions from invo-
lutions. We focus on monomial involutions and show how one can derive bent
functions. A main result is given by Theorem 2. Finally, in Sect. 5, we study the
existence of functions derived from Theorem 2. The problem of designing new
primary bent functions turns out to be an arithmetical problem that we study
by giving solutions using arithmetic and geometric tools.

2 Notation and Preliminaries

A Boolean function on the finite field F2n of order 2n is a mapping from F2n to
the prime field F2 . It can be represented as a polynomial in one variable x ∈ F2n

of the form f(x) =
∑2n−1

j=0 ajx
j where the aj ’s are elements of the field. Such a

function f is Boolean if and only if a0 and a2n−1 belong to F2 and a2j = a2
j for

every j �∈ {0, 2n − 1} (where 2j is taken modulo 2n − 1). This leads to a unique
representation which we call the polynomial form (for more details, see e.g. [6]).
First, recall that for any positive integers k, and r dividing k, the trace function
from F2k to F2r , denoted by Trk

r , is the mapping defined for every x ∈ F2k as:

Trk
r (x) :=

k
r −1∑

i=0

x2ir = x + x2r + x22r + · · · + x2k−r

.

In particular, we denote the absolute trace over F2 of an element x ∈ F2n

by Trn
1 (x) =

∑n−1
i=0 x2i . We make use of some known properties of the trace

function such as Trn
1 (x) = Trn

1 (x2) and for every integer r dividing k, the
mapping x �→ Trk

r (x) is F2k -linear.
The bivariate representation of Boolean functions makes sense only when n

is an even integer. It plays an important role for defining bent functions and is
defined as follows: we identify F2n (where n = 2m) with F2m ×F2m and consider
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then the input to f as an ordered pair (x, y) of elements of F2m . There exists a
unique bivariate polynomial

∑

0≤i,j≤2m−1

ai,jx
iyj

over F2m such that f is the bivariate polynomial function over F2m associated
to it. Then the algebraic degree of f equals max(i,j) | ai,j �=0(w2(i) + w2(j)). The
function f being Boolean, its bivariate representation can be written in the (non
unique) form f(x, y) = Trm

1 (P (x, y)) where P (x, y) is some polynomial in two
variables over F2m . There exist other representations of Boolean functions not
used in this paper (see e.g. [6]) in which we shall only consider functions in their
bivariate representation.

If f is a Boolean function defined on F2n , then the Walsh Hadamard trans-
form of f is the discrete Fourier transform of the sign function χf := (−1)f of
f , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑

x∈F2n

(−1)f(x)+Trn
1 (ωx).

Bent functions can be defined in terms of the Walsh transform as follows.

Definition 1. Let n be an even integer. A Boolean function f on F2n is said to
be bent if its Walsh transform satisfies χ̂f (a) = ±2

n
2 for all a ∈ F2n .

The automorphism group of the set of bent functions (i.e., the group of
permutations π on F2n such that f ◦ π is bent for every bent function f) is
the general affine group, that is, the group of linear automorphisms composed
by translations. The corresponding notion of equivalence between functions is
called affine equivalence. Also, if f is bent and � is affine, then f + � is bent. A
class of bent functions is called a complete class if it is globally invariant under
the action of the general affine group and under the addition of affine functions.
The corresponding notion of equivalence is called extended affine equivalence, in
brief, EA-equivalence.

Bent functions occur in pair. In fact, given a bent function f over F2n , we
define its dual function, denoted by f̃ , when considering the signs of the values
of the Walsh transform χ̂f (x) (x ∈ F2n) of f . More precisely, f̃ is defined by the
equation:

(−1) ˜f(x)2
n
2 = χ̂f (x). (2.1)

Due to the involution law the Fourier transform is self-inverse. Thus the dual
of a bent function is again bent, and ˜̃

f = f . A bent function is said to be self-dual
if f̃ = f .

Let us recall a fundamental class of Boolean bent functions. Bent functions
from the Maiorana-McFarland construction are defined over F2m ×F2m by (2.2):

f(x, y) = Trm
1 (φ(y)x) + g(y), (x, y) ∈ F2m × F2m (2.2)
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where m is some positive integer, φ is a function from F2m to itself and g stands
for a Boolean function over F2m . We have the following well-known result (e.g.
see [6,34]).

Proposition 1. Let m be a positive integer. Let g be a Boolean function defined
over F2m . Define f over F2m × F2m by (2.2). Then f is bent if and only if φ is
a permutation of F2m . Furthermore, its dual function f̃ is

f̃(x, y) = Trm
1 (yφ−1(x)) + g(φ−1(x)) (2.3)

where φ−1 denotes the inverse mapping of the permutation φ.

The class of bent functions given by (2.2) is the so-called Maiorana-McFarland
class. It has been widely studied because its Walsh transform can be easily com-
puted and its elements are completely characterized (e.g. see [6]).

3 Related Previous Constructions of Bent Functions

In [5] a secondary construction of bent functions is provided (building new bent
functions from already defined ones). It is proved there that if f1, f2 and f3
are bent, then if ψ := f1 + f2 + f3 is bent and if ψ̃ = f̃1 + f̃2 + f̃3, then
g(x) = f1(x)f2(x)+ f1(x)f3(x)+ f2(x)f3(x) is bent, and g̃ = f̃1f̃2 + f̃1f̃3 + f̃2f̃3.
Next, the first author has completed this result by proving in [31] that the
converse is also true. The combined result is stated in the following theorem.

Theorem 1 ([31]). Let n be an even integer. Let f1, f2 and f3 be three pairwise
distinct bent functions over F2n such that ψ = f1 + f2 + f3 is bent. Let g be a
Boolean function defined by

g(x) = f1(x)f2(x) + f1(x)f3(x) + f2(x)f3(x). (3.1)

Then g is bent if and only if ψ̃ + f̃1 + f̃2 + f̃3 = 0. Furthermore, if g is bent, then
its dual function g̃ is given by

g̃(x) = f̃1(x)f̃2(x) + f̃1(x)f̃3(x) + f̃2(x)f̃3(x), ∀x ∈ F2n .

In [31,32], the first author has studied functions g of the shape (3.1) and
derived several new primary constructions of bent functions.

To apply Theorem 1 to a 3-tuple of functions of the form (2.2) with g = 0,
one has to choose appropriately the maps φ involved in their expressions. The
following result is proven in [31].

Corollary 1. Let m be a positive integer. Let φ1, φ2 and φ3 be three permuta-
tions of F2m . Then,

g(x, y) = Trm
1 (xφ1(y))Trm

1 (xφ2(y)) + Trm
1 (xφ1(y))Trm

1 (xφ3(y))
+ Trm

1 (xφ2(y))Trm
1 (xφ3(y))

is bent if and only if
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1. ψ = φ1 + φ2 + φ3 is a permutation,
2. ψ−1 = φ−1

1 + φ−1
2 + φ−1

3 .

Furthermore, its dual function g̃ is given by

g̃(x, y) = Trm
1 (φ−1

1 (x)y)Trm
1 (φ−1

2 (x)y) + Trm
1 (φ−1

1 (x)y)Trm
1 (φ−1

3 (x)y)

+ Trm
1 (φ−1

2 (x)y)Trm
1 (φ−1

3 (x)y).

Permutations satisfying (Am) were introduced by the first author in [32].

Definition 2. Let m be a positive integer. Three permutations φ1, φ2 and φ3 of
F2m are said to satisfy (Am) if the following two conditions hold.

1. Their sum ψ = φ1 + φ2 + φ3 is a permutation of F2m .
2. ψ−1 = φ−1

1 + φ−1
2 + φ−1

3 .

Several new bent functions have been exhibited from monomial permutations
(see [31]) and from more families of new permutations of F2m (see [32]). Firstly,
we list below the constructions obtained by the first author in [31].

1. Bent functions obtained by selecting Niho bent functions:
– f(x) = Trm

1 (λx2m+1) + Trn
1 (ax)Trn

1 (bx); x ∈ F2n , n = 2m, λ ∈ F
�
2m and

(a, b) ∈ F
�
2n × F

�
2n such that a �= b and Trn

1 (λ−1b2
m

a) = 0.

f̃(x) = Trm
1 (λ−1x2m+1) +

(
Trm

1 (λ−1a2m+1) + Trn
1 (λ−1a2mx)

)
×

(
Trm

1 (λ−1b2
m+1) + Trn

1 (λ−1b2
m

x)
)

+ 1.

– g(x) = Trm
1 (x2m+1)+Trn

1

( ∑2r−1−1
i=1 x(2m−1) i

2r +1
)

+Trn
1 (λx)Trn

1 (μx); x ∈
F2n , n = 2m, (λ, μ) ∈ F

�
2m × F

�
2m (λ �= μ).

g̃(x) = Trm
1

((
u(1+x+x2m)+u2n−r

+x2m
)
(1+x+x2m)

1
2r−1

)
×Trm

1

(
(λ+

μ)(1 + x + x2m)
1

2r−1

)
+ Trm

1

((
u(1 + x + x2m) + u2n−r

+ x2m + λ
)
(1 + x +

x2m)
1

2r−1

)
× Trm

1

((
u(1 + x + x2m) + u2n−r

+ x2m + μ
)
(1 + x + x2m)

1
2r−1

)
;

where u ∈ F2n satisfying u + u2m = 1.
2. Bent functions obtained by selecting bent Boolean functions of Maiorana-

McFarland’s class:
– f(x, y) = Trm

1 (a1y
dx)Trm

1 (a2y
dx)+Trm

1 (a1y
dx)Trm

1 (a3y
dx)+Trm

1 (a2y
dx)

Trm
1 (a3y

dx); where (x, y) ∈ F2m ×F2m , d is a positive integer which is not
a power of 2 and gcd(d, 2m − 1) = 1, ai’s are pairwise distinct such that
b := a1+a2+a3 �= 0 and a−e

1 +a−e
2 +a−e

3 = b−e where e = d−1 (mod 2m−1).

f̃(x, y) = Trm
1 (a−e

1 xey)Trm
1 (a−e

2 xey) + Trm
1 (a−e

1 xey)Trm
1 (a−e

3 xey)

+ Trm
1 (a−e

2 xey)Trm
1 (a−e

3 xey).



8 S. Mesnager et al.

– g(x, y) = Trm
1 (a−11x11y)Trm

1 (a−11c−11x11y)Trm
1 (a−11x11y)Trm

1 (c11a−11

x11y) + Trm
1 (a−11c−11x11y)Trm

1 (c11a−11x11y); where (x, y) ∈ F2m × F2m ,
a ∈ F

�
2n with n = 2m is a multiple of 4 but not of 10, c ∈ F2m is such that

c4 + c + 1 = 0.
g̃(x, y) = Trm

1 (aydx)Trm
1 (acydx)+Trm

1 (aydx)Trm
1

(
ac−1ydx

)
+Trm

1 (acydx)
Trm

1

(
ac−1ydx

)
; with d = 11−1 (mod 2n − 1).

– h(x, y) = (Trm
1 (a1y

dx) + g1(y))(Trm
1 (a2y

dx) + g2(y)) + (Trm
1 (a1y

dx) +
g1(y))(Trm

1 (a3y
dx) + g3(y)) + (Trm

1 (a2y
dx) + g2(y))(Trm

1 (a3y
dx) + g3(y));

where m = 2r, gcd(d, 2m −1) = 1, a1, a2 and a3 are three pairwise distinct
elements of F2m such that b := a1 +a2 +a3 �= 0 and a−e

1 +a−e
2 +a−e

3 = b−e

and for i ∈ {1, 2, 3}, gi ∈ Dm := {g : F2m → F2 | g(ax) = g(x),∀(a, x) ∈
F2r × F2m}.
h̃(x, y) = (Trm

1 (a−e
1 xey)+g1(xe))(Trm

1 (a−e
2 xey)+g2(xe))+(Trm

1 (a−e
1 xey)+

g1(xe))(Trm
1 (a−e

3 xey) + g3(xe)) + (Trm
1 (a−e

2 xey) + g2(xe))(Trm
1 (a−e

3 xey) +
g3(xe)) where e = d−1 (mod 2m − 1).

3. Self-dual bent functions obtained by selecting functions from Maiorana-
McFarland completed class1:
– g(x) = Tr4k

1 (a1x
2k+1)Tr4k

1 (a2x
2k+1)+Tr4k

1 (a1x
2k+1)Tr4k

1 (a3x
2k+1)+Tr4k

1

(a2x
2k+1)Tr4k

1 (a3x
2k+1); where x ∈ F24k , k ≥ 2, a1, a2, a3 be three pairwise

distinct nonzero solutions in F24k of the equation λ23k + λ = 1 such that
a1 + a2 + a3 �= 0.

4. Bent functions obtained by selecting functions from PSap:
– f(x, y) = Trm

1 (a1y
2m−2x)Trm

1 (a2y
2m−2x) + Trm

1 (a1y
2m−2x)Trm

1

(a3y
2m−2x) + Trm

1 (a2y
2m−2x)Trm

1 (a3y
2m−2x); where (x, y) ∈ F2m × F2m ,

the ai’s are pairwise distinct in F2m such that a1 + a2 + a3 �= 0.

f̃(x, y) = f(y, x).

5. Bent functions obtained by combining Niho bent functions and self-dual bent
functions:
– f(x) = Tr2k

1 (x22k+1) + Tr4k
1 (ax)Tr2k

1 (x22k+1) + Tr4k
1 (ax)Tr4k

1 (λ2(x + β)
2k+1)+Tr4k

1 (ax); where x ∈ F24k (k ≥ 2), λ2 ∈ F24k such that λ2+λ2
23k =

1, a ∈ F
�
24k is a solution of a22k + λ2

2−k

a2−k

+ λ2a
2k = 0 and β ∈ F24k

such that Tr4k
1 (βa) = Tr2k

1 (a22k+1) + Tr4k
1 (λ2a

2k+1).

f̃(x) = Tr2k
1 (x22k+1) +

(
Tr2k

1 (x22k+1) + Tr4k
1 (λ2x

2k+1) + Tr4k
1 (βx)

)
×

(
Tr4k

1 (a2kx) + Tr2k
1 (a22k+1)

)
.

Secondly, we list below the infinite families of bent functions from new per-
mutations and their duals provided by the first author in [32].

1 The Maiorana-McFarland completed class is the smallest class containing the class
of Maiorana-McFarland which is globally invariant under the action of the general
affine group and under the addition of affine functions.
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1. Let m be a positive integer. Let L be a linear permutation on F2m . Let f
be a Boolean function over F2m such that L0

f := {α ∈ F2m | Dαf = 0} is
of dimension at least two over F2 . Let (α1, α2, α3) be any 3-tuple of pairwise
distinct elements of L0

f such that α1+α2+α3 �= 0. Then the Boolean function
g defined in bivariate representation on F2m ×F2m by g(x, y) = Trm

1 (xL(y))+
f(y)

(
Trm

1 (L(α1)x)Trm
1 (L(α2)x)+Trm

1 (L(α1)x)Trm
1 (L(α3)x)+Trm

1 (L(α2)x)

Trm
1 (L(α3)x)

)
is bent and its dual function g̃ is given by g̃(x, y) = Trm

1 (L−1

(x)y)+f(L−1(x))
(
Trm

1 (α1y)Trm
1 (α2y)+Trm

1 (α1y)Trm
1 (α3y)+Trm

1 (α2y)Trm
1

(α3y)
)
.

2. Let m = 2k. Let a ∈ F2k and b ∈ F2m such that b2
k+1 �= a2. Set α = b2

k+1+a2

and ρ = a + b2
k

. Let g1, g2 and g3 be three Boolean functions over F2k . Then
the Boolean function h defined in bivariate representation on F2m × F2m by

h(x, y) = Trm
1 (axy + bxy2k) + Trm

1 (xg1(Trm
k (ρy)))Trm

1 (xg2(Trm
k (ρy)))

+Trm
1 (xg1(Trm

k (ρy)))Trm
1 (xg3(Trm

k (ρy)))
+Trm

1 (xg2(Trm
k (ρy)))Trm

1 (xg3(Trm
k (ρy)))

is bent and its dual function h̃ is given by

h̃(x, y) = Trm
1

(
α−1(axy + bx2ky)

)

+ Trm
1

(
α−1(a + b)yg1 (Trm

k (x))
)
Trm

1

(
α−1(a + b)yg2 (Trm

k (x))
)

+ Trm
1

(
α−1(a + b)yg1 (Trm

k (x))
)
Trm

1

(
α−1(a + b)yg3 (Trm

k (x))
)

+ Trm
1

(
α−1(a + b)yg2 (Trm

k (x))
)
Trm

1

(
α−1(a + b)yg3 (Trm

k (x))
)
.

3. Let n be a multiple of m where m is a positive integer and n �= m. Let φ1, φ2

and φ3 be three permutations over F2m satisfying (Am). Let (a1, a2, a3) be a
3-tuple of F�

2m such that a1 + a2 + a3 �= 0. Set

g(x, y) = Trn
1 (xφ1(y))Trn

1 (xφ2(y)) + Trn
1 (xφ1(y))Trn

1 (xφ3(y))
+ Trn

1 (xφ2(y))Trn
1 (xφ3(y))

if (x, y) ∈ F2n × F2m and

g(x, y) = Trn
1 (a1xy2n−2)Trn

1 (a2xy2n−2) + Trn
1 (a1xy2n−2)Trn

1 (a3xy2n−2)

+ Trn
1 (a2xy2n−2)Trn

1 (a3xy2n−2)

if (x, y) ∈ F2n ×F2n \F2m . Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

2 (x)y) + Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

3 (x)y)

+ Trn
1 (φ−1

2 (x)y)Trn
1 (φ−1

3 (x)y)
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if (x, y) ∈ F2m × F2n and

g̃(x, y) = Trn
1 (a1x

2n−2y)Trn
1 (a2x

2n−2y) + Trn
1 (a1x

2n−2y)Trn
1 (a3x

2n−2y)

+ Trn
1 (a2x

2n−2y)Trn
1 (a3x

2n−2y)

if (x, y) ∈ F2n \ F2m × F2n .
4. Let n be a multiple of m where m is a positive integer and n �= m. Let φ1,

φ2 and φ3 be three permutations over F2m satisfying (Am). Let a ∈ F
�
2m and

c ∈ F2n such that c4 + c+1 = 0. Let d be the inverse of 11 modulo 2n −1. Set

g(x, y) = Trn
1 (xφ1(y))Trn

1 (xφ2(y)) + Trn
1 (xφ1(y))Trn

1 (xφ3(y))
+ Trn

1 (xφ2(y))Trn
1 (xφ3(y))

if (x, y) ∈ F2n × F2m and

g(x, y) = Trn
1 (axyd)Trn

1 (acxyd) + Trn
1 (axyd)Trn

1 (ac−1xyd)

+ Trn
1 (acxyd)Trn

1 (ac−1xyd)

if (x, y) ∈ F2n ×F2n \F2m . Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

2 (x)y) + Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

3 (x)y)

+ Trn
1 (φ−1

2 (x)y)Trn
1 (φ−1

3 (x)y)

if (x, y) ∈ F2m × F2n and

g̃(x, y) = Trn1 (a−11x11y)Trn1 (a−11c−11x11y) + Trn1 (a−11x11y)Trn1 (a−11c11x11y)

+ Trn1 (a−11c−11x11y)Trn1 (a−11c11x11y)

if (x, y) ∈ F2n \ F2m × F2n .
5. Let n be a multiple of m where m is a positive integer and n �= m. Let φ1,

φ2 and φ3 be three permutations over F2m satisfying (Am). Let α ∈ F
�
2m . Let

d be a positive integer such that d and 2n − 1 are coprime. Denote by e the
inverse of d modulo 2n − 1. Set

g(x, y) = Trn
1 (xφ1(y))Trn

1 (xφ2(y)) + Trn
1 (xφ1(y))Trn

1 (xφ3(y))
+ Trn

1 (xφ2(y))Trn
1 (xφ3(y))

if (x, y) ∈ F2n × F2m and g(x, y) = Trn
1 (αxyd) if (x, y) ∈ F2n × F2n \ F2m .

Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

2 (x)y) + Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

3 (x)y)

+ Trn
1 (φ−1

2 (x)y)Trn
1 (φ−1

3 (x)y)

if (x, y) ∈ F2m × F2n and g̃(x, y) = Trn
1 (α−exey) if (x, y) ∈ F2n \ F2m × F2n .
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6. Let n = 2m where m is a positive integer. Let φ1, φ2 and φ3 be three permu-
tations over F2m satisfying (Am). Let d be a positive integer such that d + 1
and 2n − 1 are coprime. Let λ ∈ F

�
2m . Set

g(x, y) = Trn
1 (xφ1(y))Trn

1 (xφ2(y)) + Trn
1 (xφ1(y))Trn

1 (xφ3(y))
+ Trn

1 (xφ2(y))Trn
1 (xφ3(y))

if (x, y) ∈ F2n × F2m and g(x, y) = Trn
1

(
λxy (Trn

m(y))d
)

if (x, y) ∈ F2n ×
F2n \ F2m . Then g is bent and its dual function g̃ is defined by

g̃(x, y) = Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

2 (x)y) + Trn
1 (φ−1

1 (x)y)Trn
1 (φ−1

3 (x)y)

+ Trn
1 (φ−1

2 (x)y)Trn
1 (φ−1

3 (x)y)

if (x, y) ∈ F2m × F2n and g̃(x, y) = Trn
1

(
λ− 1

d+1 x (Trn
m(x))− d

d+1 y
)

if (x, y) ∈
F2n \ F2m × F2n .

4 More Constructions of Bent Functions

In this section, we provide from classes of involutions more primary constructions
of bent functions in the line of [31,32].

An involution is a special permutation, but the involution property includes
the bijectivity as it appears in the classical definition.

Definition 3. Let F be any function over F2n . We say that F is an involution
if F ◦ F (x) = x, for all x ∈ F2n .

In a recent work, Charpin, Mesnager and Sarkar [12] have provided a math-
ematical study of these involutions. The authors have considered several classes
of polynomials and characterized when they are involutions (especially mono-
mials as well as linear involutions) and presented several constructions. New
involutions from known ones have also been derived. The following result is an
easy consequence of Theorem 1 showing that one can derive bent functions from
involutions.

Corollary 2. Let m be a positive integer. Let φ1, φ2 and φ3 be three involutions
of F2m . Then,

g(x, y) = Trm
1 (xφ1(y))Trm

1 (xφ2(y)) + Trm
1 (xφ1(y))Trm

1 (xφ3(y))
+ Trm

1 (xφ2(y))Trm
1 (xφ3(y))

is bent if and only if ψ = φ1 + φ2 + φ3 is an involution. Furthermore, its dual
function g̃ is given by g̃(x, y) = g(y, x).

Remark 1. Notice that this gives a very handy way to compute the dual (namely,
transpose the two arguments), in stark contrast with the univariate case.
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Using a monomial involution (see [12]), a first construction of a new family
of bent functions is given by the following statement.

Theorem 2. Let n be an integer. Let d be a positive integer such that d2 ≡ 1
(mod 2n − 1). Let Φ1, Φ2 and Φ3 be three mappings from F2n to F2n defined by
Φi(x) = λix

d for all i ∈ {1, 2, 3}, where the λi ∈ F
�
2n are pairwise distinct such

that λd+1
i = 1 and λ0

d+1 = 1, where λ0 := λ1 + λ2 + λ3. Let g be the Boolean
function defined over F2n × F2n by

g(x, y) = Trn
1 (Φ1(y)x)Trn

1 (Φ2(y)x) + Trn
1 (Φ2(y)x)Trn

1 (Φ3(y)x)
+ Trn

1 (Φ1(y)x)Trn
1 (Φ3(y)x). (4.1)

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its
dual is given by g̃(x, y) = g(y, x).

Proof. Set fi(x, y) := Trn
1 (Φi(y)x) for all i ∈ {1, 2, 3}. The function fi belongs to

Maiorana-McFarland’s class. Moreover, Φi(y) = λiy
d is a polynomial over F2m

which is an involution if and only if λd+1
i = 1 and d2 ≡ 1 (mod 2n − 1). Indeed,

we have Φi(Φi(y)) = λd+1
i yd2

, hence λd+1
i yd2

= y if and only if λd+1
i ≡ 1 and

yd2 ≡ y (mod y2n +y), that is, d2 ≡ 1 (mod 2n −1). Using the same arguments,
∑3

i=1 Φi is an involution since we have (λ1 + λ2 + λ3)d+1 = 1 by hypothesis.
Now, since Φi (resp.

∑3
i=1 Φi) is in particular a permutation over F2n , for every

i ∈ {1, 2, 3} the Boolean function fi (resp. ψ :=
∑3

i=1 fi) is bent whose dual
function equals f̃i (resp. ψ̃) defined by f̃i(x, y) = Trn

1 (yΦ−1
i (x)) = Trn

1 (yΦi(x)),
∀(x, y) ∈ F2n × F2n (resp. ψ̃(x, y) = Trn

1 (y(Φ1 + Φ2 + Φ3)−1(x)) = Trn
1 (y(Φ1 +

Φ2 + Φ3)(x))). Therefore, the condition of bentness given in Theorem 1 holds,
which completes the proof.

Remark 2. Note that if we multiply λ1, λ2, λ3 by a same non-zero constant a
say, λi = 1

aμi for all i ∈ {1, 2, 3}, then the functions g constructed via the λi

and those h constructed via the μi are linked by the relation h(x, y) = g(ax, y).
Therefore the functions g and h are affinely equivalent.

The existence of bent functions given in Theorem 2 is a non-trivial arith-
metical problem and is discussed in the next session.

Using similar arguments as previously, we derive in Propositions 2 and 3
more constructions of bent functions based on some involutions of F2n (see [12])
as application of Corollary 2.

Proposition 2. Let n = rk be an integer with k > 1 and r > 1. For i ∈ {1, 2, 3},
let γi be an element of F�

2n such that Trn
k (γi) = 0 and Φi be a mapping defined

over F2n by

Φi(x) = x + γiTrn
k (x).

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its
dual function is given by g̃(x, y) = g(y, x).
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Proposition 3. Let n = 2m be an even integer. Let h1, h2, h3 be three linear
mappings from F2m to itself. For i ∈ {1, 2, 3}, let Φi be a mapping from F2n to
itself defined by

Φi(x) = hi(Trn
m(x)) + x.

Then the Boolean function g defined over F2n × F2n by (4.1) is bent and its
dual function is given by g̃(x, y) = g(y, x).

Remark 3. Set Φ′
i(x) = hi(Trn

m(x))+x2m . Let g′ be the Boolean function derived
from (4.1) using the Φ′

i’s. Then g′ is bent and its dual is given by g̃′(x, y) =
g′(y, x). Clearly the functions g (given by the previous theorem) and g′ are
affinely equivalent. We point out that very recently, Mesnager has exhibited in
[33] several new constructions of bent functions employing involutions.

5 Finding Primary Bent Functions from Theorem 2

5.1 Discussion

We now turn to the question of finding values n, d and λi which can be used in
Theorem 2 and further satisfying certain “non-obviousness” conditions to be laid
out below. In other words, we are looking for n, d such that d2 ≡ 1 (mod 2n −1)
and λi ∈ F

�
2n such that λd+1

i = 1 with λ0 + λ1 + λ2 + λ3 = 0 and perhaps some
additional constraints such as λi �= λj for i �= j. We further refine the problem
by introducing the quantity e := lcm(d+1, N)/(d+1) = N/ gcd(d+1, N) where
N := 2n −1; the significance of this quantity is that for λi to be a (d+1)-st root
of unity in F2n , a necessary and sufficient condition is that λi be a nonzero e-th
power, say λi = Ze

i (because there are gcd(r,N) solutions to rx = 0 in Z/NZ,
namely the multiples of N/ gcd(r,N)).

So, discussing on the value of e, we now have two problems: the arithmetical
problem, namely, finding for which values of n, d we have d2 ≡ 1 (mod 2n − 1)
with N/ gcd(d+1, N) = e; and the algebraic problem, namely, finding Z0, . . . , Z3

nonzero such that Ze
0+Ze

1+Ze
2+Ze

3 = 0 (and perhaps some additional constraints
for non-obviousness).

In the sequel, we shall denote by G(e) ≤ F
�
2n the cyclic group of e-th powers.

5.2 The Arithmetical Problem

Given an odd positive integer e, we ask upon what conditions we can find n, d
such that d2 ≡ 1 (mod 2n − 1) with N/ gcd(d + 1, N) = e for N := 2n − 1.

Let us temporarily forget about N being 2n−1 (except that it is odd). Now if
N = pv1

1 · · · pvs
s where the pi are distinct odd primes, finding d such that d2 ≡ 1

(mod N) amounts, by the Chinese remainder theorem, to choosing εi ∈ {±1},
and taking d ≡ εi (mod pvi

i ) (thus, there are 2s possible values of d with d2 ≡ 1
(mod N)). Then clearly N/ gcd(d+1, N) is the product of the pvi

i where i ranges
over those indices such that εi = +1. So if we fix e (a positive odd integer) and
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look for appropriate values of N , we find that there exists a d (necessarily unique)
such that d2 ≡ 1 (mod N) and N/ gcd(d+1, N) = e iff N is the product of e by
a positive odd integer prime to it, in other words, N odd and N ≡ te (mod e2)
where t is prime to e (and defined modulo e).

Now if we fix an odd positive integer e, and if we choose for t one of the ϕ(e)
invertible classes mod e (where ϕ is Euler’s totient function), we are interested
in those n such that 2n ≡ 1 + te (mod e2). Not much more can be said about
this in general unless we know something about the multiplicative order of 2
mod e2, but at least we can discuss the small values of e:

Proposition 4. – For e = 3: there exists d such that d2 ≡ 1 (mod 2n − 1)
with N/ gcd(d + 1, N) = e (again with N := 2n − 1) iff n ≡ 2 or n ≡ 4
(mod 6).

– For e = 5: there exists d such that d2 ≡ 1 (mod 2n−1) with N/ gcd(d+1, N) =
e (again with N := 2n − 1) iff n is congruent mod 20 to one of the following
values: 4, 8, 12, 16.

– For e = 7: there exists d such that d2 ≡ 1 (mod 2n−1) with N/ gcd(d+1, N) =
e (again with N := 2n − 1) iff n is congruent mod 21 to one of the following
values: 3, 6, 9, 12, 15, 18.

Proof. In each case, we compute the order of 2 mod e2, namely 6 for e = 3,
resp. 20 for e = 5, and 21 for e = 7, and we then simply compute 2n mod e2 for
each value of n modulo this order, keeping those which are congruent to 1 + te
for t prime to e.

5.3 The Algebraic Problem: Generalities

We now turn to the “algebraic problem”: given e a positive odd integer and n
such that e divides N := 2n − 1, we wish to find Z0, . . . , Z3 nonzero such that
Ze
0 + Ze

1 + Ze
2 + Ze

3 = 0.
The latter equation defines (in 3-dimensional projective space P3

F2n
) a smooth

algebraic surface of a class known as Fermat hypersurfaces, which have been stud-
ied from the arithmetic and geometric points of view (see, e.g., [13, Sect. 2.14]).
The equation has obvious solutions: if {i0, i1, i2, i3} = {0, 1, 2, 3} is a labeling of
the indices and ω, ω′ two e-th roots of unity, then any solution to ωZi0 +Zi1 = 0
and ω′Zi2 + Zi3 = 0 satisfies Ze

0 + Ze
1 + Ze

2 + Ze
3 = 0: these are known as the

standard lines on the Fermat surface, corresponding to cases where two of the λi

are equal. Solutions which do not lie on one of the lines are known as nonobvious
solutions. We now comment on their existence and explicitly construct some.

5.4 Using the Lang-Weil Estimates

Assume e ≥ 3 (some odd integer) is arbitrary but fixed. We show that nonobvious
solutions exist for n large enough, albeit in a nonconstructive way.

The polynomial Ze
0 + Ze

1 + Ze
2 + Ze

3 is irreducible over the algebraic closure
of F2. (Indeed, if it could be written as PQ with P,Q nonconstant, then all
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its partial derivatives would vanish where P = Q = 0, and nontrivial such
points would exist because elementary dimension theory, e.g. [19, Theorem I.7.2],
guarantees that over an algebraically closed field, r homogeneous polynomials
in > r variables always have a nontrivial common zero. But on the other hand it
is clear that the partial derivatives of Ze

0 +Ze
1 +Ze

2 +Ze
3 never all vanish unless all

the Zi vanish. In geometric terms, what we are saying is that a smooth projective
hypersurface is geometrically irreducible.)

Because of this, we can apply the Lang-Weil estimates [20, Theorem 1], and
conclude that the number of solutions to Ze

0 + Ze
1 + Ze

2 + Ze
3 = 0 (in projective

3-space, i.e., up to multiplication by a common constant) over F2n is q2+O(q3/2)
where q := 2n and the constant implied by O(q3/2) is absolute. Even if we deduct
the at most O(q) points located on each of the curves Zi = 0 and standard lines,
we are still left with the same estimate for the number of solutions. This proves:

Proposition 5. For any odd e ≥ 3, there exists n0 such that if n ≥ n0, there
exist Z0, . . . , Z3 ∈ F2n all nonzero and not located on the standard lines (ωZi0 +
Zi1 = 0) ∧ (ω′Zi2 + Zi3 = 0), such that Ze

0 + Ze
1 + Ze

2 + Ze
3 = 0.

In particular, if d is such that d2 ≡ 1 (mod 2n − 1) and (2n − 1)/ gcd(d +
1, 2n − 1) = e, and if we let λi = Ze

i , Theorem 2 applies, and no two of the λi

are equal.

5.5 A Lower Bound on the Number of Solutions

Denote by N(s, e, g) the number of solutions of

xe
1 + · · · xe

s = g, xi ∈ F2n , g ∈ F
�
2n .

By Theorem 5.22 in [21] (see also [38]), we have:

N(s, e, g) ≥ 2n(s−1) − (e − 1)s2n(s−1)/2.

In particular, in the cases of interest to us, namely s = 2, 3, g ∈ G(e):

– N(2, e, g) ≥ 2n − (e − 1)22n/2 > 0, for 2n > (e − 1)4.
– N(3, e, g) ≥ 22n − (e − 1)32n > 0, for 2n > (e − 1)3.

Since we are interested only in nontrivial solutions, we should substract at
most 2e from N(2, e, g) and 3e22n from N(3, e, g) respectively. Once we know
there are solutions, there exist deterministic algorithms for finding them, running
in polynomial time in terms of e and n (see Theorem A3 in [39]).

5.6 A Semi-explicit Construction

Proposition 6. If N > e(2e + 1), there exist non trivial zero sums of 4 terms
in G(e).

Proof. Consider all the M :=
(|G(e)|

2

)
pairs {a, b} of elements in G(e). If M > N ,

two different pairs must have the same sum, providing a non-trivial 4-term 0-sum
of elements of G(e). This occurs as soon as N > e(2e + 1).

Remark 4. Let ci + a = cj + b be such a sum; upon normalization, we get:
c + cj−i+1 + a′ + b′ = 0. That is, we can fix freely one element (c) in the sum.
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5.7 From Three to Four e-powers

Let a + b + c = 0 be a non-trivial zero sum of 3 elements of G(e) (e-th powers).
By cubing this equation, we get: c3 = a3 + b3 + ab(a + b) = a′ + b′ + abc, i.e., a
non-trivial zero sum of 4 elements in G(e)!

Remark 5. This generalizes to any characteristic p �= 3, but since now we have:
−c3 = a3 + b3 −3abc, we need −1 and 3 to be e-th powers (a sufficient condition
being that e does not divide (p − 1), in which case all elements of Fp are e-th
powers).

6 The Case e = 3

We now specialise to the case e = 3 and delve further into the study of explicit
solutions.

6.1 Explicit parametrization in the case e = 3

if e = 3, the equation Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0 defines a smooth cubic surface
(here, a diagonal one), and the 27 sets of simultaneous equations �ω,i0,i1|ω′,i2,i3 :=
(ωZi0 + Zi1 = 0) ∧ (ω′Zi2 + Zi3 = 0) (with {i0, i1, i2, i3} = {0, 1, 2, 3} and ω, ω′

any two cube roots of unity) define the 27 lines on that cubic surface. We refer
to [19, V. Sect. 4] as well as [26, Chap. IV] and the references therein for general
background on cubic surfaces and their configuration of 27 lines.

Geometrically (i.e., over an algebraically closed field), a smooth cubic surface
is isomorphic to the blowup of the projective plane in six points in general posi-
tion: see [19, loc.cit.] or [18, p. 480 & 545]: in practice, this means that the points
on the cubic surface correspond to points on the projective plane, except for the
six exceptional points which must be replaced by their set of tangent directions
(and correspond to six pairwise skew lines on the cubic surface); in particular,
the cubic surface is rational, meaning that its points can be (almost bijectively)
parametrized by rational functions. The same analysis can be performed for
a cubic surface over an arbitrary field provided we can find six pairwise skew
lines which are (collectively) defined over the base field. This is the case for
Z3
0 + Z3

1 + Z3
2 + Z3

3 = 0 over any field, as we can simultaneously “blow down”
the two lines �ω0,0,1|ω0,2,3, for ω0 ranging over the two primitive cube roots of
unity, and their image under cyclic permutations of (Z1, Z2, Z3), all six of which
are pairwise skew. Explicitly, in characteristic two, if we blow them down to
the points (1 : ω0 : 1) and corresponding cyclic permutation of the coordinates
(U : V : W ), we get the parametrization:

Z0 = UV 2 + V W 2 + WU2

Z1 = U2V + V 2W + W 2U + V 3 + W 3

Z2 = U2V + V 2W + W 2U + U3 + W 3

Z3 = U2V + V 2W + W 2U + U3 + V 3
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satisfying Z3
0 +Z3

1 +Z3
2 +Z3

3 = 0, whose inverse is given (projectively, i.e., up to
constants) by

U = Z2
0 + Z2

1 + Z1Z2 + Z2Z3 + Z2
3

V = Z2
1 + Z0Z2 + Z2

2 + Z0Z3 + Z2
3

W = Z0Z1 + Z0Z2 + Z1Z2 + Z0Z3 + Z1Z3 + Z2Z3 + Z2
3

(or any one obtained by cyclically permuting both Z1, Z2, Z3 and U, V,W ).
The gist of the above explanations is that, if over any field of characteristic

two, we substitute any values U, V,W other than the six exceptional points
(1 : ω0 : 1), (1 : 1 : ω0), (ω0 : 1 : 1) in the first set of equations above, we obtain
a solution to Z3

0 +Z3
1 +Z3

2 +Z3
3 = 0; if furthermore the point (U : V : W ) is not

located on one of the fifteen plane lines through two of the exceptional points
(e.g., U = V , V = W , U = W , etc.) or one of the six conics through five of them,
the resulting (Z0, Z1, Z2, Z3) will not be on one of the lines of the cubic surface
(i.e., it will be nonobvious in the terminology used above), and if (U : V : W )
is furthermore chosen outside of the plane cubics UV 2 + V W 2 + WU2 = 0
etc. (given by the equations for the Zi themselves), the point will have nonzero
coordinates so we can use it in construction given in Theorem 2.

(The equations themselves can be checked without any appeal to the machin-
ery of algebraic geometry: for example, using symetries, it is straightforward that,
in characteristic two, (UV 2+V W 2+WU2)3+(U2V +V 2W +W 2U+V 3+W 3)3+
(U2V +V 2W +W 2U+U3+W 3)3+(U2V +V 2W +W 2U+U3+V 3)3 = 0; and one
can similarly check that substituting the first set of equations in the second recov-
ers U, V,W up to a common factor, namely U4V +UV 4+U2V 2W+UV W 3+W 5).

6.2 An explicit example

We present an explicit example with n = 10 and d = 340. To this end, we
represent F210 modulo the minimal polynomial m(x) := x10+x6+x5+x3+x2+
x + 1. Let ξ ∈ F210 be the class of x mod m(x). Then for example taking U = 1,
V = ξ, W = 1 + ξ in the equations above gives Z0 = ξ3 + ξ2 + 1, Z1 = ξ3 + ξ2,
Z2 = ξ2 + 1 and Z3 = ξ, whose cubes, viz., λ0 = ξ9 + ξ8 + ξ7 + ξ4 + ξ3 + ξ2 + 1,
λ1 = ξ9 + ξ8 + ξ7 + ξ6, λ2 = ξ6 + ξ4 + ξ2 + 1 and λ3 = ξ3 all satisfy λ341

i = 1
(and sum up to 0).

Acknowledgments. The first author thanks Jens Groth (Program Chair of the inter-
national conference IMACC 2015) for his nice invitation.
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Abstract. This paper revisits related randomness attacks against
public key encryption schemes as introduced by Paterson, Schuldt and
Sibborn (PKC 2014). We present a general transform achieving secu-
rity for public key encryption in the related randomness setting using as
input any secure public key encryption scheme in combination with an
auxiliary-input reconstructive extractor. Specifically, we achieve security
in the function-vector model introduced by Paterson et al., obtaining
the first constructions providing CCA security in this setting. We con-
sider instantiations of our transform using the Goldreich-Levin extractor;
these outperform the previous constructions in terms of public-key size
and reduction tightness, as well as enjoying CCA security. Finally, we
also point out that our approach leads to an elegant construction for
Correlation Input Secure hash functions, which have proven to be a ver-
satile tool in diverse areas of cryptography.

Keywords: Public-key encryption · Related randomness attacks ·
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1 Introduction

In recent work, and motivated by numerous practical attacks involving diverse
kinds of randomness failure, Paterson, Schuldt and Sibborn [22] introduced
related randomness attacks against public key encryption schemes. In such an
attack, the adversary is able to control the randomness and public keys used
during encryption; the security target is that messages encrypted under an hon-
estly generated public key should still remain hidden from the adversary to the
maximum extent that this is possible. In the model of Paterson et al. [22], the
adversary is able to force the encryption scheme to use random values that are
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related to one another in ways that are specified by functions acting on the ran-
domness space of the scheme. This modelling is inspired by practical attacks like
those by Ristenpart and Yilek in [25], which exploit randomness generation in
virtual machines, and extends the Reset Attack (RA) setting considered by Yilek
in [28]. As demonstrated in [22], it is also connected to other research topics such
as security against related key (RKA) attacks and leakage resilience1.

1.1 The RRA Setting

In the Related Randomness Attack (RRA) setting, the adversary can not only
force the reuse of existing random values as in the RA setting, but can also force
the use of functions of those random values. The extra adversarial power in the
RRA setting allows the modelling of reset attacks in which the adversary does not
have an exact reset capability, but where the randomness used after a reset is in
some way related to that used on previous resets. Such behaviours were observed
in the experimental work by Ristenpart et al. [25], for example. Via access to an
Enc oracle, the RRA adversary is able to get arbitrary messages encrypted under
arbitrary public keys, using functions φ of an initial set of well-distributed but
unknown random values. The public keys can even be maliciously generated, and
hence, the adversary might know the corresponding private keys. The adversary
is tasked with winning an indistinguishability-style game defined via a left-or-
right oracle, LR, which consistently returns the encryption of either the first or
second message of message pairs submitted to the oracle. The encryptions are
with respect to an honestly generated target public key pk∗, but again where the
adversary can force the use of functions φ of the initial random values. When the
functions φ are limited to coming from some set Φ, we speak of a Φ-restricted
adversary.

Because the adversary may know all but one of the private keys, it can check
that its challenger is behaving correctly with respect to its encryption queries.
Moreover, these queries concern public keys that are outside the control of the
challenger. This makes achieving security in the RRA setting technically quite
challenging, while practically relevant.

1.2 Previous Results

Paterson et al. [22] gave a variety of security models and constructions for PKE
secure under related randomness attacks (RRA) in the CPA and CCA settings.
As a first contribution, they explored the use of the Random Oracle Model,
obtaining necessary and sufficient conditions on the function set Φ that are
required to obtain RRA security (these being collision-resistance and output-
unpredictability of Φ). They also showed how to transform any PKE scheme PKE

1 See also [22] for an extended discussion of the practical motivation for studying
related randomness attacks based on the attack literature as represented by [2,6,7,
9,11–13,15–17,19,21,25].
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into a new PKE scheme Hash-PKE that is RRA-secure for Φ-restricted adver-
saries, simply by hashing the random input together with the public key and
message during encryption. This construction is closely related to approaches
in [3,25].

In the standard model, Paterson et al. were able to show that any Φ-restricted
related key attack-secure PRF (RKA-PRF) can be used to build a RRA-secure
PKE scheme for Φ-restricted adversaries, thus transferring security from the
RKA setting for PRFs to the RRA setting for PKE. Using the RKA-PRFs cur-
rently available in the literature [1,4,20] to instantiate this construction, schemes
secure for function families Φ consisting of polynomials of bounded degree, can
be achieved. However, providing security for function families Φ not enjoying
such a convenient algebraic structure would be much more relevant to practical
related randomness attacks. But this is a challenging task: in fact, the results by
Wichs [27] imply that, for a large class of encryption schemes2, security for arbi-
trary function families Φ cannot be shown via a black-box reduction, based on
any cryptographic game involving a single-stage adversary (e.g. computational
assumptions like DDH, IND-CCA security of a public key encryption scheme,
etc.). To obtain further constructions, Paterson et al. considered weakened secu-
rity models; the weakening taking place along two independent dimensions: the
degree of control that the adversary enjoys over the public keys under which it
can force encryptions for related random values, and the degree of adaptivity it
has in the selection of functions φ ∈ Φ. More specifically, they considered the
situations where:

– The public keys are all honestly generated at the start of the security game, the
public keys and all but one of the private keys are then given to the adversary,
and the adversary can adaptively specify the functions φ ∈ Φ involved in its
queries. This is called the honest-key, related randomness attack (HK-RRA)
setting in [22].

– There is no restriction on public keys, but instead of letting the adversary
adaptively choose the functions φ ∈ Φ, the security game itself is parametrised
by a vector of functions φ = (φ1, . . . , φq) that will be used in the attack, and
security is required to hold for all choices of φ from some set Φ. This is called
the function-vector, related randomness attack (FV-RRA) setting in [22]. The
difference between this setting and the (adaptive) HK-RRA setting is subtle,
but note that in the FV-RRA setting, the adversary’s choice of φi cannot
depend on the oracles’ outputs for the previously used functions φ1, . . . , φi−1,
whereas in the HK-RRA setting, it may.

In the first of these two settings, Paterson et al. obtained a generic construc-
tion for a scheme achieving HK-RRA security based on combining any PKE
scheme with a Correlated-Input Secure (CIS) hash function [14]. However, the
then-known instantiations of CIS hash functions only enabled them to obtain
selective, HK-RRA security for Φ-restricted adversaries where Φ is a large class

2 Specifically, Wichs’ results apply to encryption schemes which are injective with
respect to the used randomness.
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of polynomial functions. In view of recent results on RKA-PRFs [1], this con-
struction now appears to be superseded by their earlier generic construction
using Φ-restricted RKA-PRFs.

In the second of the two settings, they gave a direct construction for a PKE
scheme that is FV-RRA-CPA secure solely under the DDH assumption, assuming
the component functions φi of φ are simultaneously hard to invert on a random
input. The scheme is based on a specific PKE scheme of Boneh et al. [8] that
is secure in the so-called auxiliary input setting, wherein the adversary is given
a hard-to-invert function of the secret key as part of its input. However, in this
setting, only a CPA-secure scheme was given in [22].

1.3 Our Contributions

In this paper, we give a new, general transform for achieving FV-RRA-ATK
security for hard-to-invert function families from standard IND-ATK security,
where ATK ∈ {CPA,CCA}. In fact, the transform works for a stronger notion of
FV-RRA-ATK security than was originally introduced in [22]: we will allow an
adversary to also manipulate the randomness used for the LR queries, instead
of being restricted to using only the identity function in such queries. Further-
more, besides yielding schemes secure in the CCA setting, which was left as an
open problem in [22], we show that this transform allows us to construct encryp-
tion schemes that have tighter security reductions (and are more efficient) than
the single FV-RRA-CPA secure scheme that was presented in [22]. As moti-
vation for considering the class of hard-to-invert functions, note that achieving
FV-RRA-ATK security for this class would be relevant in modelling the one-
way state evolution of a PRNG which has exhausted its entropy pool but which
doesn’t receive new entropy.

Auxiliary-Input Reconstructive Extractors: Our transform makes use of a techni-
cal tool called an auxiliary-input reconstructive extractor. Classically, an extrac-
tor is a function Ext, which, given an input and a seed, produces an output
that is statistically indistinguishable from elements chosen uniformly at random
from some set Σ, provided the input is chosen from a distribution with suffi-
cient min-entropy and the seed is chosen uniformly at random. A reconstructive
extractor is an extractor with the additional property that, roughly speaking,
allows the efficient reconstruction of the input x from any distinguisher D that
successfully distinguishes the output of the extractor from random. This is for-
malised in terms of the existence of an oracle machine Rec outputting x. Then
an auxiliary-input reconstructive extractor is a reconstructive extractor in which
the output still remains indistinguishable when the distinguisher D is also given
access to the output of a leakage function h(·) on input x. Our actual definition
(Definition 6) extends this idea further still: the distinguisher D is given either
a set of uniformly random values or the set of outputs of the extractor when
evaluated on φ(x) for all φ ∈ φ, where φ is a vector of functions defined by
the game.
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Our Transform (Intuition): Equipped with an auxiliary-input reconstructive
extractor, our transform to achieve FV-RRA-ATK security is conceptually
simple:

– We append a uniformly random extractor seed s to each public key, resulting
in a new public key denoted p̂k.

– The encryption algorithm consumes a random value r from some set of bit
strings; this is fed into the extractor to create a value K ← Ext(r, s). This
value K used as a key for a Pseudorandom Function (PRF) F to compute
r′ ← FK(p̂k||m) where m is the message to be encrypted. Finally, r′ is used as
the actual randomness for encryption, and we simply encrypt with the original
encryption algorithm.

– Decryption works exactly as in the original decryption algorithm.

Details of the construction are given in Fig. 4 in Sect. 4.
Intuitively, a challenge encryption constructed using randomness value φ(r)

remains secure, since the extractor guarantees an output indistinguishable from
random, even when the adversary gains access to encryptions under the related
randomness values φ′(r). Hence, the PRF, which uses the extractor output as
a key, will guarantee that independent randomness values are used for different
public key and message pairs. In turn, this implies that the adversary is forced
to break the security of the underlying PKE scheme to learn anything about
the encrypted challenge messages. That this approach attains FV-RRA-ATK
security is formally proven in Theorem 1.

Instantiations. In Sect. 5, we consider the instantiation of our transform using
the Goldreich-Levin extractor. This provides a particularly neat construction of
FV-RRA-ATK-secure PKE in which we start with an IND-ATK-secure scheme
and augment it with a simple inner-product computation to prepare the key for
the PRF. However, we stress that, given the limited strength of known results for
the security of the Goldreich-Levin extractor in the auxiliary input setting [10],
our results using this extractor are in turn limited to the original FV-RRA-ATK
security model of [22] (i.e. in which the adversary is restricted to using the
identity function in its LR queries). Still, the schemes obtained from using our
transform with this extractor have significant benefits compared to the single
concrete FV-RRA-CPA-secure scheme from [22]. For example, we obtain shorter
public keys and a tighter security reduction compared to the scheme from [22].
Most importantly, we obtain FV-RRA-CCA security in a completely generic way.

Connection to CIS Hash Functions: As a final contribution, in Sect. 6, we
explore the connections between auxiliary-input reconstructive extractors and
Correlated-Input Secure (CIS) hash functions. The latter were introduced by
Goyal et al. in [14] and have proven useful in a variety of cryptographic con-
structions including password-based login, efficient searches on encrypted data
and RKA-PRFs. We will show that any reconstructive extractor can be used to
construct a secure CIS hash function of a certain type. Specifically, our secu-
rity definition for CIS hash functions involves functions that are selected from
pre-specified sets, as opposed to being adaptively selected as in the strongest
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(but mostly unachieved) definitions in [14]. Using the Goldreich-Levin extrac-
tor once more provides a construction for CIS hash functions that is exquisitely
simple: given key c ∈ Z

n
p and input r ∈ Hn (where H is an arbitrary subset of

Zp), the CIS hash function output is simply:

hc(r) := 〈r, c〉
where the inner product is evaluated over Zp.

2 Preliminaries

Notation. Throughout the paper we will use λ ∈ N to denote the security parame-
ter, which will sometimes be written in its unary representation, 1λ. We denote
by y ← x the assignment of y to x, and by s ←$ S we denote the selection of an
element s uniformly at random from the set S. The notation [n] represents the
set {1, 2, . . . , n}. For an algorithm A, we denote by y ← A(x; r) that A is run
with input x and random coins r, and that the output is assigned to y.

All our security games and proofs will utilise code-based games and the
associated language. Here we briefly recall the basic definitions from Bellare et al.
in [5]. A game consists of at least two procedures. We begin with Initialise,
which assigns starting values to all variables and then gives outputs, if there
are any, to the adversary. The adversary A may then submit queries to the
oracle procedures, and when A halts (and possibly outputs a value) the Finalise
procedure begins. Finalise will take the output from A (if there is one) as its
input and will output its own value. The value output by Finalise is defined to
be the output of the game. We write P[GA ⇒ b] to denote the probability that
game G outputs bit b when run with A. For brevity, in what follows ATK will
denote either CPA or CCA, where theorems or statements apply to both games.
Any proofs or figures will refer to the CCA setting, but may be easily modified
to the CPA case.

Public Key Encryption. We denote a specific PKE scheme by PKE = (PKE.K,
PKE.E, PKE.D). All three algorithms are polynomial-time. The randomised key
generation algorithm PKE.K takes the security parameter as its input and outputs
a key pair (pk, sk). The encryption algorithm, on input a message m ∈ M and
a public key pk chooses random coins from Rnd and uses these coins to output a
ciphertext c. The decryption algorithm is deterministic. Its inputs are a private
key sk and a ciphertext c. The algorithm either outputs a message m or an error
symbol ⊥. We require the scheme PKE to satisfy the correctness property. That
is, for all λ ∈ N, all pairs (pk, sk) output by the key generation algorithm, and
all messages m ∈ M, we require that PKE.D(sk, PKE.E(pk,m)) = m.

Definition 1. The advantage of an IND-ATK adversary A against a scheme
PKE is

Advind-atk
PKE,A (λ) := 2 · P[IND-ATKA

PKE(λ) ⇒ 1] − 1

where game IND-ATK is shown in Fig. 1. A scheme PKE is IND-ATK secure
if the advantage of any polynomial-time adversary is negligible in the security
parameter λ.
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proc. Initialise(λ):

b ←$ {0, 1};

(pk, sk) ←$ PKE.K(1λ);
S ← ∅;
return pk

proc. LR(m0, m1):

c ←$ PKE.E(pk, mb)
S ← S ∪ {c}
return c

proc. Dec(c):

if c ∈ S, return ⊥
else return PKE.D(sk, c)

proc. Finalise(b ):

If b = b , return 1

Fig. 1. Game IND-ATK for PKE. (If ATK = CPA, the adversary’s access to proc.
Dec is removed.)

proc. Initialise(λ):

K ←$ Keysλ

proc. Function(x):

return F (K, x)

proc. Finalise(b):

return b

proc. Initialise(λ):

FunTab ← ∅

proc. Function(x):

if FunTab[x] =⊥,
FunTab[x] ←$ Rngλ

return FunTab[x]

proc. Finalise(b):

return b

Fig. 2. Games for PRF security. Game PRFReal is on the left, PRFRand on the right.

Pseudorandom Functions. We recall the standard definition of pseudorandom
functions:

Definition 2. Let F : Keysλ × Domλ → Rngλ be a family of functions. The
advantage of a PRF adversary A against F is

Advprf
F,A(λ) := P[PRFRealAF (λ) ⇒ 1] − P[PRFRandA

$ (λ) ⇒ 1]

where the games PRFReal and PRFRand are defined in Fig. 2. We say F is a
secure PRF family if the advantage of any polynomial-time adversary is negligible
in the security parameter λ.

3 Function Vector Related Randomness Security

In this section we recall the FV-RRA-ATK notion of security from [22], and then
slightly strengthen this definition to encompass a more general attack.

The FV-RRA-ATK game is designed to capture related randomness attacks,
in which the adversary is allowed to obtain challenge encryptions, as well as
encryptions for maliciously chosen keys, using related randomness values. This
is achieved by giving the adversary access to an encryption oracle Enc which
enables the adversary to manipulate the random values used for the encryption.
More specifically, the standard FV-RRA-ATK security game is parametrised
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proc. Initialise(λ):

b ←$ {0, 1};

(pk∗, sk∗) ←$ PKE.K(1λ);
CoinTab ← ∅; S ← ∅;
return pk∗

proc. Dec(c):

if c ∈ S, then return ⊥
else return PKE.D(sk∗, c)

proc. LR(m0, m1, i, j):

If CoinTab[i] =⊥,
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk∗, mb; φj(ri))
S ← S ∪ {c}
return c

proc. Enc(pk, m, i, j):

if CoinTab[i] =⊥,
CoinTab[i] ←$ Rnd

ri ← CoinTab[i]
c ← PKE.E(pk, m; φj(ri))
return c

proc. Finalise(b ):

if b = b , return 1

Fig. 3. Game (φ, φ′)-FV-RRA-ATK, where φ = (φ1, . . . , φq) and φ′ = (φ′
1, . . . , φ

′
q′).

(If ATK = CPA, then the adversary’s access to proc. Dec is removed.)

by a vector of functions φ = (φ1, . . . , φq), where q := q(λ) is polynomial in
the security parameter λ, and the adversary may request encryption queries by
submitting a tuple of the form (pk,m, i, j) to its Enc oracle. This tuple con-
sists of a public key pk, a message m, an index i selecting the random value ri

with which to encrypt, and an index j that selects the function φj that modi-
fies the randomness ri before encryption. Hence, the adversary will receive the
response PKE.E(pk,m;φj(ri)), where the values ri are uniform and independent.
The adversary may furthermore query a Left or Right (LR) oracle with a tuple
(m0,m1, i). The response of this oracle will be PKE.E(pk∗,mb; ri), where pk∗ is
the target public key and b is a bit, both of which are chosen uniformly and
independently during the initialisation stage of the security game. Note that
the randomness values ri used to respond to LR queries are uniformly chosen
random values. In the CCA version of the game, an adversary can additionally
submit ciphertexts c to a decryption oracle Dec. The decryption oracle will
return PKE.D(sk∗, c) as long as the ciphertext c was not returned by the LR
oracle. When the adversary has made all its (polynomially many) queries, it will
submit a bit b′ to a Finalise procedure, which represents the adversary’s guess
for the bit b. The Finalise procedure will output 1 (representing an adversarial
win) if b = b′. The security game for this notion is given in Fig. 3.

We will now introduce some new definitions that slightly strengthen the
FV-RRA-ATK notion from [22] outlined above. Our strengthening allows an
adversary to manipulate the randomness used for the LR queries, instead of
being restricted to using only the identity function. The security game for our
new notion is given in Fig. 3. The major difference from the definition of [22] is
that the game is parametrised by two sets of functions, φ and φ′. An adversary
may only use functions from φ in its LR queries, and the functions in φ′ may only
be used for Enc queries. Notice that if φ = {id}, then this definition recovers
the corresponding FV-RRA-ATK security game and notion from [22]. While our
generic transform is proven secure in the stronger model shown in Fig. 3, we stress
that, because of the limitations of currently known reconstructive extractors, our
concrete instantiation of the transform will be secure only in the weaker model
of [22].
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The following definition has been adapted from [22] for our purposes. The
definition captures natural restrictions which must be placed on an adversary
with the capability of controlling the randomness of the challenge encryptions
in an IND-ATK style security game. This is reminiscent of the restrictions put
in place in the security definition for deterministic encryption (e.g. see [24]).

Definition 3. Let A be an adversary in Game (φ,φ′)-FV-RRA-ATK that
queries r different randomness indices to its LR and Enc oracles and makes qi,φ

queries to its LR oracle with index i and function φ ∈ φ. Let (mi,φ,1
0 ,mi,φ,1

1 ),
. . . , (mi,φ,qi,φ

0 ,m
i,φ,qi,φ

1 ) be A’s LR queries for index i ∈ [r] and φ ∈ φ. Suppose
that for all pairs (i, φ) ∈ [r] × φ and for all j 	= k ∈ [qi,φ], we have:

mi,φ,j
0 = mi,φ,k

0 iff mi,φ,j
1 = mi,φ,k

1 .

Then we say that A is equality-pattern respecting.

Note that any adversary that is not equality-pattern respecting can trivially
win the game in Fig. 3. More specifically, the adversary can simply query its LR
oracle with the tuples (m0,m1, i, j) and (m0,m2, i, j), where m0,m1 and m2 are
all distinct. The values i and j can be an arbitrary values from the appropriate
domain. If the bit b is equal to 0, the adversary will receive identical ciphertexts,
whereas the ciphertexts will differ if b equals 1. This results in a trivial win
for an adversary. In contrast, an equality-respecting adversary cannot exploit
the available oracles in this particular way, and is forced to mount a non-trivial
attack against the scheme to win the security game.

With the above definition in place, we can now formally define FV-RRA-ATK
security.

Definition 4. Let φ = (φ1, . . . , φq) and φ′ = (φ′
1, . . . , φ

′
q′) be vectors of q :=

q(λ) and q′ := q′(λ) functions respectively. We define the advantage of an
equality-pattern respecting, (φ,φ′)-FV-RRA-ATK adversary A against a PKE
scheme PKE to be:

Adv(φ,φ′)-fv-rra-atk
PKE,A (λ) := 2 · Pr[(φ,φ′)-FV-RRA-ATKA

PKE(λ) ⇒ 1] − 1.

If Φ and Φ′ are sets of vectors of functions, then a PKE scheme PKE is said
to be (Φ,Φ′)-FV-RRA-ATK secure if, for all φ ∈ Φ and for all φ′ ∈ Φ′, the
advantage of any equality-pattern respecting, (φ,φ′)-FV-RRA-ATK adversary
against PKE that runs in polynomial time is negligible in the security parameter λ.

Similar to the notion defined in [22], it is possible to reduce the above defined
FV-RRA-ATK security to a simpler notion in which the security game involves
only a single uniformly chosen random value used in all oracle queries. The
following lemma follows easily from Lemma 1 of [22] and is therefore presented
without a proof.

Lemma 1. Consider an equality-pattern respecting, (φ,φ′)-FV-RRA-ATK
adversary A that queries qr distinct randomness indices and makes at most qLR
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LR queries. Then there exists an equality-pattern respecting, (φ,φ′)-
FV-RRA-ATK adversary B that queries at most 1 randomness index and makes
at most qLR LR queries such that

Adv(φ,φ′)-fv-rra-atk
PKE,A (λ) ≤ qr · Adv(φ,φ′)-fv-rra-atk

PKE,B (λ),

where B runs in approximately the same time as A. In the CCA setting, B makes
the same number of decryption queries as A.

4 Obtaining FV-RRA Security from Auxiliary-Input
Reconstructive Extractors

In this section we present the main result of the paper. Recall that this result
improves upon the work of Paterson et al. [22] by proposing a transform that
converts any IND-ATK scheme into an FV-RRA-ATK scheme via the use of
an auxiliary-input reconstructive extractor. Recall also that the authors of [22]
only provided a single concrete instantiation of a FV-RRA-CPA secure scheme.
In the later sections we will provide instantiations of our transform that are not
only able to meet the stronger FV-RRA-CCA notion, but also provide shorter
public keys and a tighter security reduction compared to the scheme from [22].

Before introducing the extractors we utilise in our transform, we first need to
define the notion of a vector of functions being δ-hard-to-compute with respect
to another vector of functions.

Definition 5. Let φ = (φ1, . . . , φq) and φ′ = (φ′
1, . . . , φ

′
q′) denote vectors of

functions on a set Rndλ, where q := q(λ) and q′ := q′(λ) are polynomial in
the security parameter λ. Let δ(λ) be a function. We say that φ is δ(λ)-hard-
to-compute with respect to φ′ if, for all polynomial time algorithms A and all
sufficiently large λ, we have:

Pr[φi(r) ← A(φ′
1(r), . . . , φ

′
q(r)) : r ←$ Rndλ] ≤ δ(λ),

for all i ∈ {1, . . . , q}. We say that a set of vectors of functions Φ is δ-hard-to-
compute with respect to Φ′ if each vector φ ∈ Φ is δ-hard-to-compute with respect
to every vector in Φ′ (note that the vectors in such a set Φ need not all be of the
same dimension, but we assume they each have dimension that is polynomial in
λ). If δ = negl(λ), then we simply say that Φ is hard-to-compute with respect
to Φ′.

A natural question to ask is: what functions satisfy this notion of being δ-
hard-to-compute? For simplicity, consider the scenario where Φ = {id} (in which
case we simply say that Φ′ is δ-hard-to-invert, cf. Definition 14 of [22]), and
assume that Φ′ consists of only one function, say φ′. In this scenario, an obvious
example of a δ-hard-to-invert function is a function that fixes certain bits of the
output e.g. a function φ′ that takes a bit-string of length n as input, and returns
a string consisting of k zero bits followed by the least significant n−k bits of the
input (for 0 ≤ k ≤ n). No information is leaked about the first k bits of the input,



Security Against Related Randomness Attacks via Reconstructive Extractors 33

and hence no algorithm can invert φ′ with probability greater than 2−k when the
input string is uniformly random. Therefore, if k ≥ − log2 δ, the function φ′ (and,
consequently, Φ′) is δ-hard-to-invert. This example can naturally be extended
to the case where Φ′ contains multiple vectors of functions and Φ 	= {id}.

We now introduce our generalised definition of an auxiliary-input reconstruc-
tive extractor.

Definition 6. An (ε, δ,Φ,Φ′)-auxiliary-input reconstructive extractor is a pair
of functions (Ext, Rec) such that Ext is an extractor that maps from {0, 1}n ×
{0, 1}d to Σ, and Rec is an oracle machine that on input (1n, 1/ε) runs in time
poly(n, 1/ε, log(|Σ|)). Furthermore, for every x ∈ {0, 1}n, every φ =
(φ1, . . . , φq) ∈ Φ, every φ′ ∈ Φ′, and every function D such that

∣
∣
∣
∣
∣

Pr
s←${0,1}d

[D(s, {Ext(φi(x), s)}i∈{1,...,q},φ
′(x)) = 1]

− Pr
s←${0,1}d

σi←$Σ

[D(s, {σi}i∈{1,...,q},φ
′(x)) = 1]

∣
∣
∣
∣
∣
≥ ε

we require that
Pr[RecD(1n, 1/ε,φ′(x)) = φi(x)] ≥ δ

for some i ∈ {1, . . . , q}, where φ = (φ1, . . . , φq), q := q(λ) is polynomial, and
the probability is over the coin tosses of Rec. If, for every D with non-negligible
ε, Rec reconstructs φi(x) with non-negligible probability, we may simply say that
(Ext, Rec) is a (Φ,Φ′)-auxiliary-input reconstructive extractor.

Armed with this new definition of an auxiliary-input reconstructive extractor,
we are ready to state the main result of this paper. We show that any extractor
satisfying Definition 6 can be used in conjunction with an IND-ATK secure
PKE scheme and a PRF to meet the FV-RRA-ATK security notion in Fig. 3.
The encryption scheme that achieves this result is in Fig. 4. The algorithm works
by appending a uniformly random extractor seed to each public key, but leaving
the private key unmodified. The encryption algorithm generates a uniformly
random r, which is then fed into the extractor (using the seed from the public
key). The output of the extractor is used as a key for a PRF, and the input to
the PRF is the public key appended with the message. Finally, the output of the
PRF is used as the new randomness for encryption, and then we simply encrypt
with the standard encryption algorithm.

Theorem 1. If Φ is hard-to-compute with respect to Φ′ and (Ext, Rec) is an
(Φ,Φ′)-auxiliary-input reconstructive extractor, then the PKE scheme EXT-PKE in
Fig. 4 is (Φ,Φ′)-FV-RRA-ATK secure when instantiated with a secure PRF and
an IND-ATK secure PKE scheme PKE. More precisely, consider any polynomial-
size vectors of functions φ ∈ Φ and φ′ ∈ Φ′, any (ε, δ,Φ,Φ′)-auxiliary-input
reconstructive extractor (Ext, Rec), and any equality-pattern respecting, (φ,φ′)-
FV-RRA-ATK adversary A against EXT-PKE. Suppose A makes qLR LR queries



34 K.G. Paterson et al.

Alg. EXT-PKE.K(1λ):

(pk, sk) ← PKE.K(1λ)
s ← seeds

p̂k ← (pk, s)

ŝk ← (sk)

return p̂k

Alg. EXT-PKE.E(p̂k, m):

r ←$ Rnd

K ← Ext(r, s)

r ← FK(p̂k||m)
c ← PKE.E(pk, m; r )
return c

Alg. EXT-PKE.D(ŝk, c):

m ← PKE.D(sk, c)
return m

Fig. 4. Scheme EXT-PKE built from a reconstructive extractor, a PKE scheme PKE, and
a PRF F .

and uses qr randomness indices. Then, either Φ is not δ-hard-to-compute with
respect to Φ′, or there exists a PRF adversary B, and an IND-ATK adversary
C, all running in polynomial time, such that:

Adv(φ,φ′)-fv-rra-atk
EXT-PKE,A (λ) < 2qr · q · Advprf

F,B(λ) + qr · qLR · Advind-atk
PKE,C (λ) + 2qrε.

The proof of the above theorem can be found in the full version of the paper.

5 Instantiation of an Auxiliary-Input Reconstructive
Extractor

Given Theorem 1, it now remains to see what extractors exist that satisfy
Definition 6. The strongest extractor we are aware of is the Goldreich-Levin
extractor, whose properties are analysed in [10, Theorem 1]. That theorem states
the following (with the notation changed to remain consistent with ours):

Theorem 2. Let p be a prime, and let H be an arbitrary subset of Zp. Let f :
Hn → {0, 1}∗ be any (possibly randomised) function. If there is a distinguisher
D that runs in time t such that

∣
∣
∣ Pr[r ← Hn,y ← f(r), s ← Z

n
p : D(y, s, 〈r, s〉) = 1]

− Pr[r ← Hn, y ← f(r), s ← Z
n
p , u ← Zp : D(y, s, u) = 1]

∣
∣
∣ = ε

then there is an inverter A that runs in time t′ = t · poly(n, |H|, 1/ε) such that3

Pr[r ← Hn, y ← f(r) : A(y) = r] ≥ ε3

512 · n · p3
. (1)

This theorem can be used to obtain an auxiliary-input reconstructive extrac-
tor. Specifically, consider the extractor Ext that maps from Hn×Z

n
p to Zp (where

H is a subset of Zp) defined as

Ext(r, s) = 〈r, s〉.
3 The bound quoted in [10] had the denominator 512np2. However, we believe the

bound has a slight error and should in fact be 512np3, as given here. The bound in
Eq. (1) was also used by Paterson et al. in [23].
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Alg. EXT-PKE.K(1λ):

(pk, sk) ← PKE.K(1λ)

s ← Z
λ
p

p̂k ← (pk, s)

ŝk ← (sk)

return p̂k

Alg. EXT-PKE.E(p̂k, m):

r ←$ Hλ

K r, s

r ← FK(p̂k||m)
c ← PKE.E(pk, m; r )
return c

Alg. EXT-PKE.D(ŝk, c):

m ← PKE.D(sk, c)
return m

Fig. 5. Scheme EIP-PKE (Euclidean Inner Product) built from a PKE scheme PKE, and
a PRF F . Here, H denotes a subset of Zq.

Matching the notation of Theorem 2 with Definition 6, Rec is now A, Φ =
{id}, Φ′ is the set of δ-hard-to-invert vectors of functions, φ′ is the function f ,
and the extractor Ext is easily seen to be an (ε, δ, id,Φ′)-auxiliary-input recon-
structive extractor, where

ε = 3
√

512δλp3.

Note that, in the proof of [10], the theorem is stated with one function f .
However, we now use a vector of functions (φ′

1, . . . , φ
′
q) in our proof. Fortunately

this is not problematic, since we can simply interpret f (whose output is in
{0, 1}∗) as a vector of functions. That is, we can set f(r) = (φ′

1(r), . . . , φ
′
q(r)).

By combining Theorem 2 with Theorem 1, we easily obtain the following
theorem.

Theorem 3. Let Φ′ be a set of hard-to-invert vectors of functions on {0, 1}λ.
Then PKE scheme EIP-PKE in Fig. 5 is (id,Φ′)-FV-RRA-ATK secure. More pre-
cisely, consider any polynomial-size vector of functions φ′ ∈ Φ′ which are δ-hard-
to-invert, and any equality-pattern respecting, (id,φ′)-FV-RRA-ATK adversary
A against EIP-PKE. Suppose A makes qLR LR queries and uses qr randomness
indices. Then there exists a PRF adversary B and an IND-ATK adversary C,
all running in polynomial time, such that:

Adv(id,φ′)-fv-rra-atk
EIP-PKE,A (λ) < 2qr ·Advprf

F,B(λ)+qr ·qLR·Advind-atk
PKE,C (λ)+2qr

3
√

512δλp3.

While the above theorem limits the challenge functions modifying the input
to the extractor to being the identity function, the schemes resulting from our
transform using the above reconstructive extractor still enjoy several advantages
over the single FV-RRA-CPA-secure scheme that was presented in [22]. Most
notably, [22] only gave one concrete scheme, which is only secure in the CPA
version of the FV-RRA-ATK game. Our theorem not only shows how to achieve
CCA security (which was left as an open problem in [22]), but also shows how to
convert any IND-CCA scheme into an FV-RRA-CCA secure scheme. Further-
more, the security bound of our theorem is tighter than that of [22], and our
theorem facilitates the use of much smaller public keys. For comparison, when
using our transform with the above Goldreich-Levin extractor, the public key of
the underlying PKE scheme is modified to include λ additional components from
H ⊂ Zq. Hence, transforming, for example, the PKE scheme by Kurosawa and
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Desmedt [18], yields a scheme with public keys consisting of λ+4 group elements
and a hash function key. In contrast, the modified BHHO scheme presented in
[22] requires public keys consisting of 2 ·k(λ) group elements (where k is polyno-
mial). Furthermore, the loss of security in the security reduction of the modified
BHHO scheme includes the component 3

√
512δkp4, which originates from the

reduction to the δ-hard-to-invert functions. In comparison, the corresponding
loss of security obtained from applying our transform is 3

√
512δλp3, which leads

to a weaker requirement on the δ-hard-to-invert functions.
It remains an open question whether there exists extractors that will enable

stronger notions of FV-RRA-ATK security to be shown for schemes like EXT-PKE
(Fig. 4), or alternative extractors that have, for example, shorter seeds. How-
ever, this seems difficult at present. A standard technique to obtain an (ε, δ)-
auxiliary-input reconstructive extractor is to use complexity-leveraging with a
standard reconstructive extractor [26]. Unfortunately, this technique does not
appear to work in the FV-RRA-ATK setting. More specifically, if we wish to
use complexity-leveraging, we require the range of the auxiliary function to be
smaller than the domain. However, for our FV-RRA-ATK game to make sense,
we require that for each φ we have D(φ) = R(φ) = Rnd. Hence, complexity-
leveraging seems to be incompatible with the FV-RRA-ATK model.

6 Connections with CIS Hash Functions

We will now briefly explore the connections between (ε, δ,Φ,Φ′)-auxiliary-input
reconstructive extractors and correlated-input secure (CIS) hash functions. In
particular, we will show that any reconstructive extractor can be used to con-
struct a secure CIS hash function. Correlated-input secure hash functions were
first studied by Goyal et al. in [14]. They introduced several definitions of secu-
rity, but the one we shall be concerned with is the pseudorandomness notion.
Intuitively, a hash function is (pseudorandom) correlated-input secure if the chal-
lenge output of the hash function is indistinguishable from random even when an
adversary is allowed to see outputs on correlated inputs. That is, an adversary
can submit correlation functions φ to its oracle and will receive h(φ(r)), where
h is the (possibly keyed) hash function, and r is a uniformly random input cho-
sen at the beginning of the security game. The adversary may submit multiple
oracle queries, and finally forwards a challenge function φ∗ to the oracle. The
game will return either h(φ∗(r)) or z, where z is chosen uniformly at random
from the range of the hash function. The hash function is (adaptively) secure if
the adversary has negligible advantage in distinguishing the outputs.

As noted in [14], CIS hash functions have applications to password-based
login and efficient searches on encrypted data. Furthermore, they share inter-
esting connections with Related-Key Attack secure primitives. However, the
CIS hash function construction presented in [14] only achieves selective secu-
rity for correlation functions φ corresponding to polynomials of bounded degree,
which limits its usefulness in the above mentioned applications. Constructing
adaptive CIS hash functions for a wide class of functions is a challenging task,
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proc. Initialise(λ):

b ←$ {0, 1};
hc ←$ H
r ←$ D(hc)
return hc

proc. Challenge(j):

if b = 0,
z ←$ R(hc)
return z

else,
return hc(φj(r))

proc. Query(i):

return hc(φi(r))

proc. Finalise(b ):

If b = b , return 1

Fig. 6. The (φ, φ′)-CIS hash game, where φ = (φ1, . . . , φq) and φ′ = (φ′
1, . . . , φ

′
q′).

in particular for non-algebraic function classes. This is evidenced by the results
of Wichs [27], which show that injective CIS hash functions cannot be proved
secure for arbitrary correlation functions φ via a black-box reduction, based on
any cryptographic game. However, here we show that auxiliary-input reconstruc-
tive extractors can be used to construct a specific kind of CIS hash functions.
To explore this connection, we must consider a variant of the CIS hash security
game that was presented in [14]. The security game is shown in Fig. 6, while our
definition of security is given below.

Definition 7. The advantage of an adversary A against a family of hash func-
tions H in the (φ,φ′)-CIS game (Fig. 6) is defined to be

Adv(φ,φ′)-cis
H,A (λ) := 2 · Pr[(φ,φ′)-CISA

H(λ) ⇒ 1] − 1.

Definition 8. A family of hash functions H is said to be (Φ,Φ′)-pseudorandom
correlated-input secure if, for all φ ∈ Φ, all φ′ ∈ Φ′, and all polynomial time
adversaries A, we have

Adv(φ,φ′)-cis
H,A (λ) ≤ negl(λ).

Notice that in our new definition, instead of letting the adversary adaptively
choose the functions as in [14], the security game itself is parametrised with
function vectors φ and φ′, and security is required to hold for all choices of
φ ∈ Φ and φ′ ∈ Φ′. It is worth stressing that there is a subtle difference between
the two approaches to defining security for CIS hash functions, and the definition
used here implies that the function vectors φ and φ′ will be independent of the
chosen hash function (i.e. the hash function key c).

With these definitions and notions in place we can define our hash function
family H from an extractor as follows:

hc(r) := Ext(r, c).

The following theorem establishes the security of the hash function, based
on the security of the underlying auxiliary-input reconstructive extractor.

Theorem 4. Let Ext be an (ε, δ,Φ,Φ′)-auxiliary-input reconstructive extractor,
and let Φ be δ-hard-to-compute with respect to Φ′. Consider the hash function
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family H defined by the hash functions hc(r) := Ext(c, r). Then, for any φ ∈ Φ,
any φ′ ∈ Φ′, and all polynomial time adversaries A, we have

Adv(φ,φ′)-cis
H,A (λ) < ε.

We will sketch the proof of the above theorem.

Proof (Sketch). If an adversary A has advantage greater than or equal to ε, we
would be able to build an extractor adversary D that distinguishes the outputs of
the extractor with probability ε. This in turn would allow us to build a function
Rec that recovers r with probability greater than δ (cf. Definition 6), which is
not possible by assumption. Hence, we have a contradiction, so the advantage
of the adversary A must be less than ε. �

A concrete instantiation of such a CIS hash is possible via Theorem 1 of [10].
If we define

hc(r) := 〈r, c〉, (2)

where c ∈ Z
λ
p and r ∈ Hλ for H ⊂ Zp, then the following corollary is obvious.

Corollary 1. Consider the hash function family H defined by Eq. 2, and let Φ′

be a set of δ-hard-to-invert functions. Then, for all φ′ ∈ Φ′, and all polynomial
time adversaries A, we have

Adv(id,φ′)-cis
H,A (λ) < 3

√
512δλp3.

As highlighted above, CIS hash functions share interesting connections with
RKA-secure primitives. In fact, [14] proposed a general approach for obtain-
ing RKA-security via a CIS hash function. For example, consider a standard
signature scheme given by algorithms {KeyGen, Sign, Verify}, and a (id,Φ′)-
pseudorandom correlated-input secure hash function h for which we assume a
key c is publicly available. To obtain a RKA-secure signature scheme for func-
tions Φ′, simply replace the random coins r used by KeyGen with hc(r), and the
signing key with r. Furthermore, since the signing key of the original scheme is
no longer stored, the algorithm Sign must regenerate this from r using hc and
KeyGen. As shown in [14], the resulting signature scheme will be RKA-secure for
functions Φ′.

Note that, in this approach, only a (id,Φ′)-pseudorandom correlated-input
secure hash function is required. Hence, by using the CIS hash function from
Corollary 1 in the above sketched transformation, we can obtain a RKA-secure
signature scheme for hard-to-invert functions. As far as the authors are aware,
this is the first construction of a RKA-secure signature scheme for this class
of functions. Furthermore, a similar result can be obtained for any primitive for
which the above transformation applies. However, note that due to the properties
of the above described security model for CIS hash functions, which implies
that the functions Φ′ are independent of the hash function key, we only obtain
selective RKA-security.
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1. Abdalla, M., Benhamouda, F., Passelègue, A., Paterson, K.G.: Related-key security
for pseudorandom functions beyond the linear barrier. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 77–94. Springer, Heidelberg
(2014)

2. Becherer, A., Stamos, A., Wilcox, N.: Cloud computing security: raining on the
trendy new parade. In: BlackHat USA (2009)

3. Bellare, M., Brakerski, Z., Naor, M., Ristenpart, T., Segev, G., Shacham, H.,
Yilek, S.: Hedged public-key encryption: how to protect against bad randomness.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 232–249. Springer,
Heidelberg (2009)

4. Bellare, M., Cash, D.: Pseudorandom functions and permutations provably secure
against related-key attacks. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223,
pp. 666–684. Springer, Heidelberg (2010)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

6. Bendel, M.: Hackers describe PS3 security as epic fail, gain unrestricted access
(2011). http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-
fail-gain-unrestricted-access/

7. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T.,
van Someren, N.: Factoring RSA keys from certified smart cards: coppersmith in
the wild. Cryptology ePrint Archive, report 2013/599 (2013). http://eprint.iacr.
org/

8. Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from
decision diffie-hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp.
108–125. Springer, Heidelberg (2008)

9. Debian Security Advisory DSA-1571-1: OpenSSL - predictable random number
generator (2008). http://www.debian.org/security/2008/dsa-1571

10. Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.:
Public-key encryption schemes with auxiliary inputs. In: Micciancio, D. (ed.) TCC
2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)

11. Dodis, Y., Pointcheval, D., Ruhault, S., Vergnaud, D., Wichs, D.: Security analysis
of pseudo-random number generators with input: /dev/random is not robust. IACR
Cryptology ePrint Archive 2013:338 (2013)

12. Dorrendorf, L., Gutterman, Z., Pinkas, B.: Cryptanalysis of the random number
generator of the Windows operating system. ACM Trans. Inf. Syst. Secur. 13(1)
(2009)

13. Goldberg, I., Wagner, D.: Randomness and the Netscape browser (1996). http://
www.drdobbs.com/windows/184409807

14. Goyal, V., O’Neill, A., Rao, V.: Correlated-input secure hash functions. In: Ishai,
Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 182–200. Springer, Heidelberg (2011)

15. Gutterman, Z., Malkhi, D.: Hold your sessions: an attack on java session-id gener-
ation. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 44–57. Springer,
Heidelberg (2005)

16. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number gen-
erator. In: IEEE Symposium on Security and Privacy, pp. 371–385. IEEE Computer
Society (2006)

http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://www.debian.org/security/2008/dsa-1571
http://www.drdobbs.com/windows/184409807
http://www.drdobbs.com/windows/184409807


40 K.G. Paterson et al.

17. Heninger, N., Durumeric, Z., Wustrow, E., Alex Halderman, J.: Mining your Ps and
Qs: detection of widespread weak keys in network devices. In: USENIX Security
Symposium, August 2012

18. Kurosawa, K., Desmedt, Y.G.: A new paradigm of hybrid encryption scheme.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer,
Heidelberg (2004)

19. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Public keys. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol.
7417, pp. 626–642. Springer, Heidelberg (2012)

20. Lucks, S.: Ciphers secure against related-key attacks. In: Roy, B., Meier, W. (eds.)
FSE 2004. LNCS, vol. 3017, pp. 359–370. Springer, Heidelberg (2004)

21. Michaelis, K., Meyer, C., Schwenk, J.: Randomly failed! the state of randomness
in current java implementations. In: Dawson, E. (ed.) CT-RSA 2013. LNCS, vol.
7779, pp. 129–144. Springer, Heidelberg (2013)

22. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L.: Related randomness attacks for
public key encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp.
465–482. Springer, Heidelberg (2014)

23. Paterson, K.G., Schuldt, J.C.N., Sibborn, D.L.: Related randomnessattacks for
public key encryption. IACR Cryptology ePrint Archive 2014:337 (2014)

24. Raghunathan, A., Segev, G., Vadhan, S.: Deterministic public-key encryption for
adaptively chosen plaintext distributions. In: Johansson, T., Nguyen, P.Q. (eds.)
EUROCRYPT 2013. LNCS, vol. 7881, pp. 93–110. Springer, Heidelberg (2013)

25. Ristenpart, T., Yilek, S.: When good randomness goes bad: virtual machine reset
vulnerabilities and hedging deployed cryptography. In: NDSS. The Internet Society
(2010)

26. Wee, H.: Public key encryption against related key attacks. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 262–279.
Springer, Heidelberg (2012)

27. Wichs, D.: Barriers in cryptography with weak, correlated and leaky sources. In:
Kleinberg, R.D. (ed.) ITCS, pp. 111–126. ACM (2013)

28. Yilek, S.: Resettable public-key encryption: how to encrypt on a virtual machine.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 41–56. Springer,
Heidelberg (2010)



Authentication



MI-T-HFE, A New Multivariate
Signature Scheme

Wenbin Zhang(B) and Chik How Tan

Temasek Laboratories, National University of Singapore, Singapore, Singapore
{tslzw,tsltch}@nus.edu.sg

Abstract. In this paper, we propose a new multivariate signature
scheme named MI-T-HFE as a competitor of QUARTZ. The core map
of MI-T-HFE is of an HFEv type but more importantly has a specially
designed trapdoor. This special trapdoor makes MI-T-HFE have several
attractive advantages over QUARTZ. First of all, the core map and the
public map of MI-T-HFE are both surjective. This surjectivity property
is important for signature schemes because any message should always
have valid signatures; otherwise it may be troublesome to exclude those
messages without valid signatures. However this property is missing for
a few major signature schemes, including QUARTZ. A practical parame-
ter set is proposed for MI-T-HFE with the same length of message and
same level of security as QUARTZ, but it has smaller public key size,
and is more efficient than (the underlying HFEv- of) QUARTZ with the
only cost that its signature length is twice that of QUARTZ.

Keywords: Post-quantum cryptography · Multivariate signature
scheme · QUARTZ · HFEv

1 Introduction

Multivariate public key cryptosytems (MPKCs) are constructed using polynomi-
als and their public keys are represented by a polynomial map F = (f1, . . . , fm) :
F

n
q → F

m
q where Fq is the field of q elements and each fi is a polynomial. The

security of MPKCs relies on the following MP problem:

MP Problem. Solve the system f1(x) = 0, . . ., fm(x) = 0, where each fi is a
polynomial in x = (x1, . . . , xm) ∈ F

n
q and all coefficients are in Fq.

This problem is usually called the MQ problem if the degree of the system is
two; namely each fi is a quadratic polynomial. The MP problem is NP-hard if
the degree is at least two [GJ79]. Especially the MQ problem is also NP-hard in
general. Based on this NP-hardness and along with its computational efficiency,
MPKCs is considered as a potential candidate for post-quantum cryptography.

To use polynomial maps F = (f1, . . . , fm) : Fn
q → F

m
q for public key cryp-

tography, one needs to design trapdoors in the polynomial maps. Currently the
most common construction of such a trapdoor is of the following bipolar form
[DY09]:
c© Springer International Publishing Switzerland 2015
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F̄ = L ◦ F ◦ R : Fn
q

R−→ F
n
q

F−→ F
m
q

L−→ F
m
q

where L,R are invertible affine maps and F = (f1, . . . , fm) is a polynomial map.
The public key is F̄ while the secret key usually consists of L,R, F . It should be
efficient to invert the central map F but infeasible to invert F̄ unless one knows
L,R, F .

In MPKCs multivariate polynomials can be used for both encryption schemes
and signature schemes, and encryption schemes can often be converted to sig-
nature schemes, but here we shall focus on signature schemes only. The public
key of a multivariate signature scheme is a specially designed polynomial map
F : Fn

q → F
m
q , a message is a vector y ∈ F

m
q and a signature is a vector x ∈ F

n
q .

Given any message y, the signer need to solve the equation F (x) = y using the
trapdoor to find a solution as a signature x. The verifier verifies if a signature x
is valid by checking if it satisfies the equation F (x) = y. Notice that any message
should have valid signatures in general. Hence F should be a surjective map, or
otherwise there should be a good control on those invalid messages, i.e., those
messages having no valid signatures. However having a good control on invalid
messages may be troublesome, so it is preferred to have F being surjective.

Since the famous Matsumoto-Imai (MI) cryptosystem [MI88] was proposed
in 1980’s, various multivariate encryption and signature schemes have been con-
structed. The MI cryptosystem was broken by Patarin in 1995 [Pat95], but it
has influenced many important variants. A few of them are to modify the MI
cryptosystem by simple methods, such as FLASH for signature [PCG99] and
Ding’s internal perturbation of MI for encryption [Din04]. However all these
simple modification of MI turned out to insecure. In 1996, Patarin [Pat96]
proposed the famous Hidden Field Equation (HFE) encryption scheme which
has been developed into a big family. Though the original HFE has been thor-
oughly broken [KS99,GJS06,BFP13], some of its variants still survive until now,
such as HFEv for encryption and HFEv- for signature, especially QUARTZ as
an instance of HFEv- [PCG01]. Inspired by the linearization attack to the MI
cryptosystem, Patarin proposed the Oil-Vinegar (OV) signature scheme [Pat97].
OV was broken soon, but its variant Unbalanced Oil-Vinegar signature scheme
[KPG99] and Rainbow [DS05b] survive until now. There were also many other
schemes intended for signatures, but major signature schemes that remain secure
are HFEv, HFEv-, QUARTZ, UOV, Rainbow, etc. However, the public map of
HFEv, HFEv- generally cannot be surjective because their central polynomials
are chosen randomly with restriction only on the degree. For UOV and Rain-
bow, it is not guaranteed that any message do have a valid signature though the
failure probability is very small. So to implement these schemes in practice, one
still has to handle those invalid messages.

In this paper, we propose a new multivariate signature scheme, named MI-
T-HFE, to resolve the problem on surjectivity while maintaining efficiency and
security. The core map of MI-T-HFE is a definitely surjective polynomial map,
indeed an HFEv polynomial, and thus its public map is also surjective. The
design of MI-T-HFE is motivated by the idea of [ZT14] where they propose
a double perturbation of the MI cryptosystem by two perturbation methods,
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triangular perturbation and dual perturbation. Here we also modify the MI
cryptosystem by two maps, an extended version of triangular maps and a spe-
cial type of HFEv polynomials. The final map of this modification is an HFEv
polynomial which has a large number of vinegar variables. This construction
can also be viewed as an HFEv polynomial with a trapdoor embedded in its
vinegar variables. In the name MI-T-HFE, MI, T and HFE stand for the MI
cryptosystem, triangular perturbation and HFE polynomials respectively. Com-
pared to QUARTZ, the signature generation of MI-T-HFE can be performed
much faster, and MI-T-HFE can have smaller public key size. We examine the
security of this construction against current main attacks in multivariate pub-
lic key cryptography, and show that it can have the same level of security as
QUARTZ.

This paper is organized as follows. Section 2 is a brief review of some previous
results to be used in this paper. Our new signature scheme MI-T-HFE is then
constructed in Sect. 3. Section 4 is devoted to the cryptanalysis of MI-T-HFE,
then followed by a practical example given in Sect. 5. Finally Sect. 6 concludes
this paper.

2 Preliminaries

In this section, we shall briefly review a few previous results which will be used
in the rest of this paper.

2.1 The Matsumoto-Imai Cryptosystem

We first recall the Matsumoto-Imai (MI) cryptosystem [MI88] as follows. Let q
be a power of 2, K a degree n extension of Fq and φ : K → F

n
q the standard

Fq-linear map

φ(a0 + a1x + · · · + an−1x
n−1) = (a0, a1, . . . , an−1).

Let θ be an integer such that, 0 < θ < n and gcd(qθ + 1, qn − 1) = 1. Define
the following simple polynomial

F̃ : K → K, F̃ (X) = X1+qθ

.

This polynomial F̃ is invertible and its inverse is F̃−1(Y ) = Y η where η(1 +
qθ) ≡ 1 mod qn − 1.

The MI cryptosystem uses F = φ ◦ F̃ ◦ φ−1 : Fn
q → F

n
q as the central map

and its public map is constructed from F by composing two invertible affine
transformation at the two ends F̄ = L ◦ F ◦ R. Since F is invertible, the MI
cryptosystem is an encryption scheme. For convenience, we shall call such an F
an MI map.
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2.2 HFE

After breaking the MI cryptosystem [Pat95], Patarin then proposed Hidden Field
Equations (HFE) for encryption in 1996 [Pat96] which significantly influences
the development of multivariate public key cryptography.

Let q be a power of a prime (odd or even) and K a degree n extension of Fq.
HFE uses the following type of polynomials over K as the central map

H(X) =
∑

aijX
qi+qj

+
∑

biX
qi

+ c.

where the coefficients are randomly chosen in K and the degree of H is bounded
by a relatively small number D. We shall call such an F an HFE map (polyno-
mial).

The parameter D determines the efficiency and security level of HFE. H(X) =
Y can be solved by Berlekamp’s algorithm and the complexity is known as

O(nD2 logq D + D3)

So it can be efficient if deg(H) ≤ D is small enough. However, it is first found
that D cannot be too small otherwise it can be broken by attacks [KS99,Cou01,
FJ03], and later on HFE was thoroughly broken by [GJS06,BFP13].

2.3 HFEv

Though HFE has been broken, some simple modification can make it secure
against those attacks to HFE: HFEv which adds vinegar variables and HFEv-
which deletes a few components from the public map.

HFEv uses the following type of polynomials as the central map

H(X,V ) =
∑

aijX
qi+qj

+
∑

bijX
qi

V qj

+
∑

cijV
qi+qj

+
∑

diX
qi

+
∑

eiV
qi

+ f

where the degree of X is bounded by a relatively small parameter D but the
degree of V can be arbitrary high. In addition, V varies only in a certain subspace
of K of dimension v corresponding to the subspace F

v
q of Fn

q . To invert H, one
first assign a random value to V and then H is reduced to an HFE polynomial
and thus can be solved by Berlekamp’s algorithm. If HFEv is used for encryption,
the parameter v should be small so that decryption won’t be too slow.

HFEv- is HFEv with a few components deleted from the public map. It is
intended for signature schemes. The most famous example of HFEv- is QUARTZ
[PCG01] which has parameters (q,D, n, v, r) = (2, 129, 103, 4, 3) where r is the
number of components deleted.

The central polynomials of HFE, HFEv and HFEv- are randomly chosen
with only one restriction on the degree, so the probability that are surjective
is very small. Additional effort is then necessary to take care of those messages
without valid signatures when using them for signature schemes. This could be
quite troublesome, so a signature scheme with the public map being surjective
is still preferred.



MI-T-HFE, A New Multivariate Signature Scheme 47

2.4 Triangular Maps and Perturbation

Triangular maps are of the following form

G(x) =

⎛

⎜
⎜
⎜
⎝

x1

x2 + g1(x1)
...
xn + gn−1(x1, . . . , xn−1)

⎞

⎟
⎟
⎟
⎠

where g1, . . . , gs are randomly chosen polynomials. The great advantage of this
triangular structure is that G is bijective and it is very easy to solve G(x) = y
inductively.

In [ZT14], triangular maps are turned into a modification method, called
triangular perturbation. Their method is to add to the central map the following
triangular map

G(x) = G(x1,x2) =

⎛

⎜
⎜
⎜
⎝

xn+1 + g1(x1)
xn+2 + g2(x1, xn+1)
...
xn+s + gs(x1, xn+1, . . . , xn+s−1)

⎞

⎟
⎟
⎟
⎠

Namely, the modified central map is

F ′(x) = F (x1) + S · G(x1,x2)

where S is a randomly chosen m×s matrix. Triangular perturbation can preserve
the efficiency and surjectivity of the original scheme, because G(x1,x2) = y
always has a solution x2 = (xn+1, . . . , xn+s) for any x1,y and xn+1, . . . , xn+s

can be computed straightforward by induction. However it cannot enhance the
security if it is applied alone as its triangular structure is vulnerable to high rank
attack.

In [ZT14], they also propose another modification method, called dual per-
turbation, and a new signature scheme by combining the two methods. They
claim that the two methods can protect each other to resist current attacks.
However we find that their scheme is indeed insecure. The reason is that their
dual perturbation can be simplified as adding a random polynomial only on the
second part of the variables after a linear transformation on the variables, and
thus can be removed, contradicting their claim on the security.

3 The New Multivariate Signature Scheme MI-T-HFE

Though the construction of [ZT14] is insecure due to the failure of dual pertur-
bation, we find that their idea of double perturbation, i.e., using two maps to
protect each other remains interesting. In this section, we will apply their idea
to embed a trapdoor into HFEv and thus construct a new signature scheme,
named MI-T-HFE.
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3.1 Preparation

Before giving the construction of MI-T-HFE, we shall first introduce two types
of polynomial maps. The first type of polynomial map is an extended version of
triangular maps,

G(x) = G(x1,x2) =

⎛

⎜
⎜
⎜
⎝

φ1(xn+1) + g1(x1)
φ2(xn+2) + g2(x1, xn+1)
...
φs(xn+s) + gs(x1, xn+1, . . . , xn+s−1)

⎞

⎟
⎟
⎟
⎠

where g1, . . . , gs are randomly chosen polynomials and φi : Fq → Fq are invertible
polynomials, which can be easily inverted. If we want G to be quadratic, then
choose gi, φi to be quadratic. For example, if k > 1, F2k → F2k , x �→ x2 has an
inverse y �→ y2k−1

. Then each φi : F2k → F2k can be chosen as φi(x) = aix
2

where ai ∈ F2k and ai �= 0. This type of maps with each φi(x) = x2 appears in
[PG97]. We make the convention that if q = 2, we choose each φi(x) = x and if
q > 2, we choose each φi(x) = aix

2 for a constant ai �= 0.
Like the triangular perturbation [ZT14], extended triangular maps can also

be used as a modification method, called extended triangular perturbation. It
also preserves the efficiency and surjectivity of the original scheme, but is insecure
against high rank attack. To protect (extended) triangular perturbation, the
triangular structure should be hidden by adding a large amount of quadratic
terms and cross terms of x1,x2.

Next we propose a special type of HFEv polynomials. Let K = Fq[x]/(g(x))
be a degree t extension of Fq where g(x) ∈ Fq[x] is a degree s irreducible poly-
nomial. Let φ : K → F

t
q be the standard Fq-linear map

φ(a0 + a1x + · · · + at−1x
t−1) = (a0, a1, . . . , at−1).

Define the following type of polynomial over K:

H(X1,X2) =
∑

0≤i<t

∑

1≤qj≤D

aijX
qi

1 Xqj

2 +
∑

1≤qi+qj≤D

bijX
qi+qj

2 +
∑

1≤qj≤D

cjX
qj

2 .

Here D is a relatively small number. Fixing a value of X1, H(X1,X2) is then
an HFE polynomial of X2, so X2 can be solved efficiently from H(X1,X2) = 0
with a given X1. Notice that this equation always has the zero solution X2 = 0,
but a nonzero solution is preferred. We can apply Berlekamp’s algorithm to solve
it and among those solutions, we pick a nonzero solution as X2. We shall accept
the zero solution X2 = 0 if there is only the zero solution. It would be ideal that
there is a nonzero solution for most values of X1.

For x1,x2 ∈ F
t
q, define the following map to be used next

H̄ : Ft
q × F

t
q → F

t
q, H̄(x1,x2) = φ(H(φ−1(x1), φ−1(x2))).
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3.2 Construction of MI-T-HFE

Let q be a power of 2, F : Fn
q → F

n
q an MI map, 1 ≤ s ≤ n and 1 ≤ t ≤ n.

Combining the extended triangular map G and the HFEv map H defined above,
we define the following trapdoor function for x1 ∈ F

n
q , x2 ∈ F

s
q, x3 ∈ F

t
q,

F ′ : Fn+s+t
q → F

n
q ,

F ′(x1,x2,x3) = F (x1) + S · G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3) (3.1)

where S is an n × s matrix, T1 an t × (n + s) matrix and T2 an n × t matrix.
This trapdoor function will serve as the central map of MI-T-HFE.

It should be noted that F ′ is indeed an HFEv map with (x1,x2) as the
n + s vinegar variables. In addition, it is also a scheme obtained from the MI
cryptosystem by perturbing it using an extended triangular map and an HFEv
map just like the situation in [ZT14].

Randomly choose two invertible affine transformations L1 : Fn+s+t
q → F

n+s+t
q

and L2 : Fn
q → F

n
q . Then the public map of MI-T-HFE is

P (x1, . . . , xn+s+t) = L2 ◦ F ′ ◦ L1 : Fn+s+t
q → F

n
q .

The signature scheme MI-T-HFE is described as follows.

Public Key: The public key of MI-T-HFE consists of
1. The finite field Fq.
2. The n polynomials in P (x1, . . . , xn+s).

Private Key: The private key of MI-T-HFE consists of
1. The θ of the MI map F .
2. The extended triangular map G.
3. The matrix S.
4. The polynomial H.
5. The two matrices T1, T2.
6. The two invertible affine transformations L1, L2.

Signature Verification: For a given a message y ∈ F
n
q , a signature x ∈ F

n+s+t
q

will be accepted if it satisfies F̄ ′(x) = y.

Signature Generation: For a given message y ∈ F
n
q , a valid signature is gen-

erated in the following procedure:
1. Compute y′ = L−1

2 (y).
2. Randomly choose u = (u1, . . . , us) ∈ F

s
q, then solve F (x1) = y′ − S · u to get

a solution x1.
3. Substitute x1 into G(x1,x2) = u to get a solution x2 given by

xn+1 = φ−1
1 (u1 − g1), . . . , xn+s = φ−1

s (us − gs). (3.2)

4. Substitute x1,x2 into the equation H̄(S1 · (x1,x2),x3) = 0 and solve it by
Berlekamp’s algorithm.
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5. Among those solutions, pick a nonzero solution and assign it to x3. If there
is only the zero solution, then let x3 = 0.

6. Then x = (x1,x2,x3) is a solution to F ′(x) = y.
7. Finally compute x = L−1

1 (x1,x2,x3) which is then a signature.

From the above signature generation, it is easy to see that for any message,
there is always a valid signature. Namely the trapdoor function is a surjective
map. This is very important for a signature scheme. In addition, we remark that
the MI map F in MI-T-HFE can be replaced by any other trapdoor function.

4 Security Analysis

In this section, we shall analyze the security of MI-T-HFE against current major
attacks and discuss the choice of parameters accordingly.

The trapdoor function (3.1)

F ′(x1,x2,x3) = F (x1) + S · G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3)

of MI-T-HFE is a sum of the following three parts:

1. The inner map is an MI map F (x1),
2. The middle map is an extended triangular map S · G(x1,x2), and
3. The outer map is an HFEv map T2 · H̄(T1 · (x1,x2),x3).

From the point of view of perturbation [ZT14], the extended triangular map
and the HFEv map in MI-T-HFE are designed to help each other similar to
[ZT14]. One reason for this design is that the middle triangular map has an
amount of random quadratic terms of the variables x1 to hide F (x1), but its
triangular structure makes the additional variables x2 detectible by high rank
attack. The outer map does not have quadratic terms of x1,x2 but has all other
quadratic terms of the variables. So the middle map can add random quadratic
terms of x1 to perturb F (x1) while the outer map can cover the triangular
structure of the middle triangular map if t is big. Further reasons for the design
of the trapdoor will become clear in the cryptanalysis below.

We first explain why the design of MI-T-HFE can prevent the simple attack
of collecting a large amount of pairs of messages and signatures. In the signature
generation, a random value u ∈ F

s
q is assigned to G and x1 is solved from

F (x1) = y − S · u with y perturbed by the random value S · u. In addition,
notice that x3 can be zero in the signature generation, but in the signature
generation, a nonzero solution to H is preferred and it is of high probability
that there is a nonzero solution for a given message by the properties of HFE
polynomials. The first feature can randomize x1 to break relationship between
x1 and y, and the second feature can assure that most x3 are nonzero so that
information of the subspace of vectors (x1,x2, 0) won’t be recovered from the
collected pairs of messages and signatures.

In the rest of this section, we will consider rank attacks, differential attack,
linearization attack, and attacks to HFE (including MinRank attack and direct
attacks).
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4.1 Rank Attacks

There are two types of rank attacks, MinRank attack (or called low rank attack)
and high rank attack. The MinRank attack tries to find those central polynomials
or their linear combinations with the least number r of variables. Its complexity is
dominated by O(qr) and successfully break Triangle-Plus-Minus schemes [GC00].
However, this attack is not applicable to MI-T-HFE in practice, because the least
number of variables that the central map has is no less than n which is large
enough, noticing that the public map is F ′ from F

n+s+t
q to F

n
q . The high rank

attack, on the contrast, tries to find those central polynomials or their linear
combinations with the most number of variables, or equivalently to find those
variables which appears the fewest times r in the central map. It has complexity
O(qr) and is a powerful way to break triangular schemes [CSV97,GC00,YC05].
In the case of MI-T-HFE, if the outer map is small, i.e., if t is small, then high
rank attack can be applied to find the last variables x3 first and then find the
triangular structure of the second map; namely the three parts of the trapdoor
function (3.1) of MI-TT-HFE can be separated. Hence t should be big enough to
protect the trapdoor against high rank attack. For example, to have the security
level of at least 280, we should have t such that qt ≥ 280.

4.2 Differential Attack

Although the public map F ′ of MI-T-HFE is an HFEv map and it has been
shown that HFE, HFE- and HFEv are generally secure against differential attack
[DST14], the differential attack [FGS05] to Ding’s internal perturbation of the
MI cryptosystem (IPMI) [Din04] should still be taken into account.

The differential attack to IPMI relies on the two facts: (1) there is a large
linear subspace U restricted to which the internal perturbation disappears; (2) a
vector u can be detected if it is in U by checking if the dimension of the kernel
of the differential at u is a specific number.

For MI-T-HFE, we find that the first fact does hold here. Notice that if
x3 = 0, the HFEv polynomial H then automatically disappears. So the linear
subspace of vectors (x1,x2, 0) is an important subspace. If there is no triangular
map in the middle, i.e., s = 0, then the situation is similar to IPMI and thus the
differential attack to IPMI applies. Notice that (extended) triangular maps can
resist differential attack and perturbing the MI map by an (extended) triangular
perturbation can break the differential invariant. Namely if s > 0 then the
second fact does not hold anymore, and when s increases, the dimension varies
in a bigger range so that the differential attack [FGS05] is no longer applicable
here. To resist the differential attack, we guess that s can be just a small number
but further careful analysis is needed to estimate it.

4.3 Linearization Attack

The linearization attack is proposed by Patarin [Pat95] to break the MI cryp-
tosystem. The MI cryptosystem and some other schemes may have a large
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amount of linear equations between x and y (or linear on x but nonlinear on
y). From these equations, part of x may be computed and the rest of x may be
tried one by one. However it is known that linearization attack is not applicable
to triangular maps and HFE maps. The trapdoor function (3.1) of MI-TT-HFE
is a mixture of an MI map, an extended triangular map and an HFE map which
breaks the linear relationship. So if t is big, there would be very few linear equa-
tions among x1 and y so that linearization attack is resisted. Moreover even if
x1 could be recovered, the rest of the variables x2,x3 are still unknown and the
number of them is big enough so that guessing all of them is infeasible.

4.4 Attacks to HFEv

If we lift the trapdoor function (3.1)

F ′(x1,x2,x3) = F (x1) + S · G(x1,x2) + T2 · H̄(T1 · (x1,x2),x3)

of MI-T-HFE to the extension field K, it has the following form of an HFEv
polynomial

H ′(V,X) =
∑

a′
ijV

qi+qj

+
∑

b′
iV

qi

+
∑

0≤i<t

∑

1≤qj≤D

aijV
qi

Xqj

+
∑

1≤qi+qj≤D

bijV
qi

Xqj

+
∑

1≤qj≤D

cjX
qj

.

Here the vinegar variable V corresponds (x1,x2) and variable X corresponds
to x3; F + SG corresponds to the sum of the monomials V qi+qj

, V qi

and T2H̄
corresponds to the sum of the rest monomials.

Attacks applicable to the HFE family are Kipnis-Shamir’s attack [KS99]
based on the MinRank problem and direct attack [FJ03]. In [DS05a] Ding and
Schmidt improve Kipnis-Shamir’s attack to cryptanalyze HFEv. They show that
Kipnis-Shamir’s attack can break HFEv for very small v such as v = 1, but as
v increases, the complexity increases fast and when v is close to the extension
degree of the field K over Fq, HFEv would be just like a random system of
quadratic polynomials.

For direct attack, Ding and Yang provide in [DY13] a solid theoretical estima-
tion on the complexity of direct attack on HFEv and HFEv- by calculating the
degree of regularity. Their conclusion is the same as the case of Kipnis-Shamir’s
attack; namely, direct attack remains feasible for very small v but infeasible for
big v. Especially for QUARTZ whose parameters are (2, 129, 103, 4, 3), its degree
of regularity is bounded by 9 and its security level is estimated as 292 in [DY13].
Notice that QUARTZ has 4 vinegar variables only.

In the case of MI-T-HFE, the number of vinegar variables is n+s bigger than
the extension degree t. So if qt is big enough, such as qt ≥ 280 and D is around
100, then MI-T-HFE is just like a random system of quadratic polynomials
against Kipnis-Shamir’s attack, and has high degree of regularity by the formulas
in [DY13] so that it is secure against direct attack.
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5 A Practical Example and Comparison with QUARTZ

Based on the cryptanalysis in the preceding section, we shall propose a practical
parameter set to compare with QUARTZ. It should be mentioned that here we
are comparing the essential part of QUARTZ, i.e., the HFEv- scheme with the
QUARTZ parameters (2, 129, 103, 4, 3). The full design of QUARTZ [PCG01]
applies this essential part a few times iteratively to increase the security but it
was later found that this iterative structure does not contribute to the security.
We shall propose a parameter set with (almost) identical length of message and
same level of security, and compare the key sizes and efficiency.

We suggest the following set of parameters for MI-T-HFE

(q, n, s, t,D) = (8, 33, 5, 32, 72).

According to the cryptanalysis, the best attack to MI-T-HFE with this set of
parameters is the high rank attack, and its complexity is 296. In other words,
MI-T-HFE with parameters (8, 33, 5, 32, 72) has 96-bit security. As a comparison
with QUARTZ, its degree of regularity is bounded by 143.5 according to the
formulas in [DY13], which is much higher than the bound, 9, for QUARTZ.
Based on the degree of regularity, the security level of MI-T-HFE (8, 33, 5, 32, 72)
against direct attack should be higher than QUARTZ, which is estimated as 292

in [DY13]. So the overall security of the two schemes are 296 and 292 respectively,
which may be regarded as at the same level.

For MI-T-HFE with parameters (8, 33, 5, 32, 72), a message is a vector in F
33
8

whose length is 99 bits, and a signature is vector in F
70
8 whose length is 210 bits.

Its key sizes are calculated as follows. The public map P : Fn+s+t
q → F

n
q has n

components and each component is a quadratic polynomial with (n + s + t)(n +
s + t + 1)/2 quadratic terms, n + s + t linear terms and 1 constant term. Thus
the public key size is

1
2
n(n + s + t + 1)(n + s + t + 2) log2 q bits.

With parameters (8, 33, 5, 32, 72), the public key size is 31.6 Kbytes.
The private key consists of several parts. S has ns entries in Fq, T1, T2

together have 2nt + st entries in Fq, and L1, L2 together have (n + s + t)2 + n2

entries in Fq. G has 3165 coefficients in Fq, and H has 101 coefficients in K ∼= Fqt ,
equivalently 3232 coefficients in Fq. So the private key size is 5.6 Kbytes.

As comparison, a message of QUARTZ is 100 bits and a signature is 107-bit.
Its public key consists of 100 quadratic polynomials each with 107 variables. Thus
its public size is 72.3 Kbytes, more than twice that of MI-T-HFE (8, 33, 5, 32, 72).
Similarly its private key size is 3.9 Kbytes, a bit smaller than that of MI-T-HFE
(8, 33, 5, 32, 72).

We next consider the efficiency of signature generation. In the signature gen-
eration of HFEv and the core part of QUARTZ, one first assigns random values
to the vinegar variables and then one solve the resulted HFE polynomials; if
no solution then try other values of the vinegar variables. This design lowers
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down the efficiency as one may need to solve HFE polynomials a few times. MI-
T-HFE has different design on signature generation: one first solve an MI map
to get x1, then solve a triangular map to get x2, and finally solve the resulted
HFE polynomial only once. This is because the resulted HFE equation in MI-
T-HFE is of the following form

∑
aijX

qi+qi

+
∑

biX
qi

= 0 which always has
solutions — a nonzero solution is preferred if there is one. The first two steps
are very fast with little computation time, confirmed by computer experiments,
as inverting an MI map and a triangular map are both extremely fast. So the
main cost for inverting the central map is on inverting the HFE polynomial
of MI-T-HFE. Recall that the complexity of inverting an HFE polynomial by
Berlekamp’s algorithm is O(nD2 logq D+D3). The value of nD2 logq D+D3 for
MI-T-HFE (8, 33, 5, 32, 72) is 1.2 × 106, much smaller than the value 14.2 × 106

for QUARTZ. So it is expected that the complexity of inverting the HFE map
of MI-T-HFE is much less than that of HFEv and QUARTZ. We did computer
experiments on MAGMA to compare the computation time of inverting their
core HFE maps and found that it is on average about 0.42 s for QUARTZ and
0.13 s for MI-T-HFE (8, 33, 5, 32, 72); namely the latter is more than three times
faster. Hence we may conclude that MI-T-HFE (8, 33, 5, 32, 72) is about three
times faster than the underlying HFEv- of QUARTZ when generating a signa-
ture. Full implementation will be conducted to justify this claim in the future.

To summarize, QUARTZ, or its underlying HFEv- scheme with the QUARTZ
parameters (2, 129, 103, 4, 3), uses an HFE polynomial with very small number of
vinegar variables but relatively higher degree to have a short signature and high
enough security level, but the cost is bigger public key size and low efficiency.
On the contrary, MI-T-HFE (8, 33, 5, 32, 72) uses a special HFE polynomial with
large number of vinegar variables but relatively smaller degree to have smaller
public key size, better efficiency and high enough security level, and the only
cost is longer signatures. Moreover MI-T-HFE is a definitely surjective scheme
but QUARTZ is not.

6 Conclusion

In this paper we have constructed a new multivariate signature scheme, named
MI-T-HFE, whose core map is of an HFEv type but has a trapdoor embedded
in it. MI-T-HFE has a special HFE polynomial with relatively low degree and a
large number of vinegar variables. Unlike the usual HFEv schemes, these vinegar
variables are not randomly assigned values but have special structure; namely it
is a certain combination of a Matsumoto-Imai map and a kind of extended tri-
angular maps. This trapdoor can also be viewed as a double perturbation of the
Matsumoto-Imai cryptosystem by extended triangular maps and HFEv maps.
With this trapdoor, MI-T-HFE is a surjective signature scheme, namely there
are always valid signatures for any message. The special HFE polynomial of
MI-T-HFE and its low degree guarantee its efficiency, while the large amount of
vinegar variables backs its security but does not distract efficiency. To be compa-
rable with QUARTZ, we propose a parameter set for MI-T-HFE with the same
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length of message and same security level as QUARTZ. With the proposed para-
meters, the public key size of MI-T-HFE is about half of QUARTZ, and signature
generation is about three times efficient than the underlying HFEv- scheme with
the QUARTZ parameters — thus much more efficient than QUARTZ. Its dis-
advantage is that its signature length, 210 bits, is about twice that of QUARTZ.
Hence we suggest to use MI-T-HFE instead of QUARTZ if longer signatures are
accepted.
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Abstract. Recently, a new paradigm to construct very efficient multi-
show attribute-based anonymous credential (ABC) systems has been
introduced in Asiacrypt’14. Here, structure-preserving signatures on
equivalence classes (SPS-EQ-R), a novel flavor of structure-preserving
signatures (SPS), and randomizable polynomial commitments are ele-
gantly combined to yield the first ABC systems with O(1) credential
size and O(1) communication bandwidth during issuing and showing.
It has, however, been left open to present a full-fledged revocable multi-
show attribute-based anonymous credential (RABC) system based on the
aforementioned paradigm. As revocation is a highly desired and impor-
tant feature when deploying ABC systems in a practical setting, this is
an interesting challenge.

To this end, we propose an RABC system which builds upon the afore-
mentioned ABC system, preserves its nice asymptotic properties and is in
particular entirely practical. Our approach is based on universal accumu-
lators, which nicely fit to the underlying paradigm. Thereby, in contrast
to existing accumulator-based revocation approaches, we do not require
complex zero-knowledge proofs of knowledge (ZKPKs) to demonstrate
the possession of a non-membership witness for the accumulator. This is
in part due to the nice rerandomization properties of SPS-EQ-R. Thus,
this makes the entire RABC system conceptually simple, efficient and
represents a novel direction in credential revocation. We also propose a
game-based security model for RABC systems and prove the security of
our construction in this model. Finally, to demonstrate the value of our
novel approach, we carefully adapt an efficient existing universal accu-
mulator approach (as applied within Microsoft’s U-Prove) to our setting
and compare the two revocation approaches when used with the same
underlying ABC system.

1 Introduction

Credential systems have been envisioned by Chaum [23], with the motivation
to develop a concept that allows users to interact anonymously with multiple
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organizations online. Thereby, a user can obtain a credential for a pseudonym
(nym) from one organization (issuer) and demonstrate possession of the creden-
tial to other organizations (verifiers), without revealing his nym. Later on, this
idea has been formalized as pseudonym systems in [34] and has, subsequently,
been further extended and formalized as anonymous credential (AC) systems
in [16]. As privacy in digital interactions has become more and more important
over the last decades, various AC systems with different properties and targeting
different environments have been proposed [2,4,6,10,11,15–17,19,22,28,29,43].
Today, the most prevalent approaches are IBM’s idemix [12] and Microsoft’s
U-Prove [39]. The former is based on CL signatures [17] supporting an unlimited
number of unlinkable showings of a credential (multi-show), where the latter is
based on Brands’ blind signatures [10] and all showings are linkable (one-show).

While early ACs, such as [16], did not put focus on how credentials should
look like, nowadays credentials in ACs are typically viewed as being a collection
of users’ attributes, e.g., birth date, nationality, sex. In such a setting, users
obtain credentials on attributes (issued by some organization). Then, users can
prove possession of these credentials anonymously (and in an unlinkable fashion)
to any verifier. Thereby, they reveal only (the possession of) some attributes and
nothing beyond. Such AC systems are also known as privacy-ABC systems (or
simply ABC systems).

Revocation of ABCs. Efficient revocation of credentials is especially impor-
tant and challenging in practical applications of multi-show ABCs. Unfortu-
nately, this is no trivial task at all. It is clearly not possible to simply blacklist
credentials as it can be conveniently done in PKIs. To realize revocable ABCs
(RABCs), various different credential revocation mechanisms have been intro-
duced over the years (cf. [31] for an exhaustive discussion). The idea is that a
revocation authority (which may be run by the credential issuer) publishes revo-
cation information which allows verifiers to decide whether a credential has been
revoked. Ideally, such revocation mechanisms are conceptually simple, scale well
and do not add significant additional burden to users and verifiers. However,
simple mechanisms are either inflexible or far from practical. Examples are the
inclusion of the validity period as attribute into credentials or the re-issuing of all
unrevoked credentials triggered by the replacement of the issuer’s key material.
Obviously, such mechanisms either get insecure due to too long validity periods
(and, thus, too long revocation intervals) or require to frequently re-issue a large
amount of credentials. More importantly, they do not allow to selectively revoke
single credentials in case of loss, theft or fraud.

More sophisticated revocation mechanisms supporting the selective revoca-
tion of single credentials are either based on whitelists or blacklists. Whitelist
approaches require users to prove that unrevoked credentials are contained in
a list. The effort for users (during showings) is typically linear in the number
of valid credentials and/or it requires users to download revocation informa-
tion each time a new credential gets issued. Thus, whitelist approaches do not
scale well and cannot be considered practical in general. In contrast, blacklist
revocation usually scales far better. The main reason for this is that revocation
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list updates are only required on revocation (which usually can be considered a
rare event in comparison to the issuing of new credentials). Thereby, blacklist-
ing approaches based on verifier-local revocation (VLR) [8] do not require any
updates from the users, but require an effort for the verifier that is linear in
the number of revoked credentials. Many of the VLR techniques also have the
problem of missing the property of backward unlinkability [40], i.e., the revo-
cation of a credential implies the linkability of all past showings (e.g., as it is
the case in [29,33]). Furthermore, techniques to add backward unlinkability to
VLR either induce a significant additional computational burden on users and
verifiers [40] or require frequent updates and computational overhead for veri-
fiers [36]. Another blacklist approach [35] represents blacklists as signatures on
ordered credential identifier pairs. This is elegant, since the computational costs
for users and verifiers are constant and quite small. Yet, the user and the verifier
have to update a significant amount of revocation information on each revoca-
tion, as the blacklist has to be recomputed entirely (number of signatures linear
in the number of revoked credentials). The remaining and popular choice is to
use blacklists based on universal accumulators [1,3,13,18,37]. This approach
scales well and requires only constant computational effort for users and veri-
fiers. Although updates of the accumulator and the non-membership witnesses
are required on revocation, these are small and often constant in size.

Design Paradigms of Existing (R)ABCs. ABC systems are typically con-
structed in the following way (with few exceptions [20,21]). A user obtains a sig-
nature on (commitments to) attributes using a suitable signature scheme. Then,
on a showing, the user randomizes the signature (such that the resulting signa-
ture is unlinkable to the issued one) and proves in zero-knowledge the possession
of a signature. Thereby, attributes may be selectively revealed and/or relations
among attributes may be proven. In one-show ABCs, blind signature schemes are
used, and—instead of randomizing the signatures—the same unblinded signature
is presented on each showing. A standard way to turn ABCs into RABCs is to
add a credential identifier (revocation handle) as an additional never-revealed
attribute. Then, for the aforementioned approaches which use explicit ZKPKs,
the choice of the revocation mechanisms is somewhat arbitrary. It only has to
be guaranteed that the identifier in the credential and the one used for blacklist-
ing (or whitelisting) are identical. Hence, the showing in such an RABC system
amounts to providing the ZKPK for the underlying ABC and the ZKPK of the
used revocation mechanism plus an additional ZKPK that the identifier in the
credential coincides with the identifier used for revocation.

Design Paradigm of the ABC from [30]. The ABC system proposed in [30] is
conceptually significantly different from the aforementioned approach. Its main
building block are structure-preserving signatures on equivalence classes (SPS-
EQ-R). An SPS-EQ-R signs equivalence classes defined on group element vec-
tors and allows to consistently randomize messages and signatures in the public
by changing representatives of the signed class. It is used to sign rerandomiz-
able, constant-size commitments to polynomials. Thereby, the rerandomization
of the commitment is compatible with the rerandomization of the SPS-EQ-R.



60 D. Derler et al.

To perform a showing for a subset of the attributes, the (rerandomized) com-
mitment is partially opened and the rerandomization property of SPS-EQ-R
provides unlinkability, while authenticity is still ensured. Additionally, the app-
roach requires a single, constant-size ZKPK to prevent replays of already con-
ducted interactive showings. Consequently, the so obtained ABC system does
not need costly ZKPKs to prove possession of the attributes. In particular, [30]
provides the first ABC system with O(1) credential size and O(1) communication
bandwidth during both issuing and showing and is thus very efficient. The com-
munication costs of other existing approaches are at least linear in the number
of shown/encoded attributes in the ABC system (or constant-size showings can
only be achieved for special cases [5,41], e.g., very small attribute domains, at
the cost of huge public parameters—linear in the number of all potential values
over all attribute domains).

Contribution. The efficiency of the ABC system from [30], e.g., when instan-
tiated with the EUF-CMA secure SPS-EQ-R scheme from [27], makes it very
attractive for practical use. Thus, obtaining an RABC system following the same
paradigm is an important step towards highly efficient and practical RABCs. We
construct an RABC system based on the ABC system in [30] (which can e.g.
be instantiated with the SPS-EQ-R from [27]), and, thereby, rely on a universal
accumulator-based blacklist approach. In contrast to all previous applications of
universal accumulators to blacklist revocation [1,3,32,38], we do, however, not
require explicit ZKPKs of non-membership witnesses satisfying the accumula-
tor verification equation. We achieve this by rerandomizing the used universal
accumulator, which is a novel way of proving possession of a particular non-
membership witness.

In order to evaluate our approach, we, in addition, carefully adapt an existing
universal accumulator revocation mechanism [1,38] (applied within Microsoft’s
U-Prove) to the ABC system from [30]. Contrary to our first construction, this
revocation mechanism represents a traditional ZKPK approach for demonstrat-
ing knowledge of a non-membership witness that satisfies the accumulator verifi-
cation equation. Thereby, it turns out that regarding the most time critical part,
i.e., the showing protocol performed by a (potentially resource constrained [42])
user, our approach outperforms the revocation approach adpoted from U-Prove.

As our revocation mechanisms preserve the asymptotic optimality of the
ABC system in [30], our RABC constructions are also the first RABC system
with O(1) credential size and O(1) communication costs during issuing as well
as showing.

Revocation in ABC systems is typically considered as an add-on and, thus,
not considered in the security models of ABCs. To overcome this issue, another
contribution of this paper is a comprehensive game-based security model for
RABC systems, which explicitly considers backward-unlinkability. We prove our
proposed approach secure in this model. Independently to our work, another
formal model for ABC systems has been introduced in [14]. It also consid-
ers revocation but also additional features such as auditing [15]. However, the
model in [14] aims at constructing ABCs by means of a generic composition
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of numerous building blocks (commitment schemes, NIZKPs, privacy-enhancing
attribute-based signatures, revocation schemes and pseudonym schemes), consid-
ers only non-interactive protocols (using the notion of tokens) and uses stronger
simulation-based security definitions. In particular the stronger security notions
add a non-trivial overhead in terms of efficiency to the constructions, which, in
turn, makes it less attractive for highly efficient and practical ABC systems.1

2 Preliminaries

Definition 1 (Bilinear Map). Let G1 = 〈P 〉, G2 = 〈P̂ 〉 and GT be cyclic
groups of prime order p, where G1 and G2 are additive and GT is multiplicative.
We call e : G1×G2 → GT a bilinear map or pairing if it is efficiently computable
and the following conditions hold:

Bilinearity: e(aP, bP̂ ) = e(P, P̂ )ab = e(bP, aP̂ ) ∀ a, b ∈ Zp

Non-degeneracy: e(P, P̂ ) �= 1GT
, i.e., e(P, P̂ ) generates GT .

We use lower-case boldface letters for elements in GT , e.g., g = e(P, P̂ ).

Definition 2 (Bilinear Group Generator). Let BGGen be an algorithm
which takes a security parameter κ and generates a bilinear group BG = (p,G1,
G2,GT , e, P, P̂ ) in the Type-3 bilinear group setting, where the common group
order p of the groups G1,G2 and GT is a prime of bitlength κ, e is a pairing and
P and P̂ are generators of G1 and G2, respectively.

Definition 3 (Decisional Diffie-Hellman Assumption). The DDH assump-
tion in Gi states that for all probabilistic polynomial-time (PPT) adversaries A
there is a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, BG ← BGGen(1κ), r, s, t ←R Zp

b∗ ← A(
BG, rPi, sPi, ((1 − b) · t + b · rs)Pi

) : b∗= b

]

− 1
2

≤ ε(κ),

where P1 = P and P2 = P̂ and i ∈ {1, 2}.

Definition 4 (Symmetric External Diffie Hellman Assumption). Let BG
be a bilinear group. The SXDH assumption states that the DDH assumption
holds in G1 and G2.

The following assumption [30] is the Type-3 bilinear group counterpart of the
strong Diffie-Hellman assumption.

Definition 5 (co-t-Strong Diffie Hellman Assumption). The co-t-SDH∗
i

assumption states that for all probabilistic polynomial-time (PPT) adversaries
A there is a negligible function ε(·) such that

Pr
[

α ←R Zp, BG ← BGGen(1κ),(
c, Ti

) ←R A(BG, (αjP1)t
j=0, (α

jP2)t
j=0) :

c ∈ Zp \ {−α}
∧ Ti = 1

α+cPi

]

≤ ε(κ),

where P1 = P and P2 = P̂ and i ∈ {1, 2}.
1 We, however, note that the efficiency of our scheme comes at the cost of more complex

proofs.
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We will use the co-t-SDH∗
1 assumption statically, as we will fix t a priori as a

system parameter and assume that it is bounded by poly(κ). Then, the security
loss which applies when using co-t-SDH∗

1 in a non-static way [24] does not apply.

2.1 Universal Accumulators

Cryptographic accumulators [7] represent a finite set X as a single succinct value
ΠX and for each x ∈ X one can compute a witness ωx, certifying membership of
x in X . Universal accumulators additionally support non-membership witnesses
ωy that certify non-membership of a value y /∈ X . Henceforth, we write Π if
we do not want to make X = {x1, . . . , xn} explicit. To blacklist credentials, we
require a universal accumulator. Subsequently, we restate the accumulator of Au
et al. [3] for the Type-3 bilinear group setting and in the model of [25], where
we omit the algorithms that are not required in our context, i.e., the dynamic
features. The formal model is given in the extended version of this paper.

GenAcc(BG, t): Given a bilinear group BG and an upper bound t for the number of
elements to be accumulated, pick λ ←R Z

∗
p, compute pkΠ ← ((λiP )i∈[t], (λ

iP̂ )i∈[t])
and return (∅, pkΠ).

EvalAcc(X , (∅, pkΠ)): Given a set X = {x1, . . . , xn} and an accumulator public key

pkΠ , compute π(X) ←∏i∈[n](X − xi) =
∑n

i=0 ai · Xi and ΠX ←∑n
i=0 ai(λ

iP )
and return ΠX together with aux ← X .

WitCreateAcc(ΠX , aux, y, (∅, pkΠ)): Given an accumulator ΠX , some auxiliary infor-
mation aux = X = {x1, . . . , xn}, a non-member y and an accumulator public
key pkΠ , this algorithm checks whether y ∈ X and if so returns ⊥. Otherwise, it
computes π(X) ←∏i∈[n](X −xi) and d ∈ Z

∗
p such that π(X) = g(X)(X −y)+d

holds. With g(X) =
∑n−1

i=0 ai · Xi it computes Ŵ ←∑n−1
i=0 ai(λ

iP̂ ) and returns

ωy ← (Ŵ , d).
VerifyAcc(Π, ωy, y, pkΠ): Given an accumulator Π, a non-membership witness ωy and

some corresponding y, this algorithm parses ωy as (Ŵ , d), checks if d �= 0 and
e(Π, P̂ ) = e(λP − yP, Ŵ ) · e(dP, P̂ ) holds and if so returns 1 and 0 else.

Scheme 1: Universal accumulator from [3] tailored to non-membership
witnesses.

For the Type-3 bilinear setting, in analogy to [3], we can straightforwardly prove
the following (where we omit the proof):

Theorem 1. Scheme 1 is collision-free under the co-t-SDH∗
i assumption, where

t is the maximum number of values to be accumulated.

2.2 Structure-Preserving Signatures on Equivalence Classes

The notion of structure-preserving signature schemes on equivalence classes
(SPS-EQ-R) has been introduced in [30]. The authors consider elements of a
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vector (Mi)i∈[�] ∈ (G∗
1)

� (where G
∗
1 = G1 \ {0G1}, for some prime order group

G1) which share different mutual ratios. These ratios depend on their discrete
logarithms and are invariant under the operation γ : Z∗

p × (G∗
1)

� → (G∗
1)

� with
(s, (Mi)i∈[�]) �→ s(Mi)i∈[�]. Thus, one can use this invariance to partition (G∗

1)
�

into equivalence classes using the relation R = {(M,N) ∈ (G∗
1)

� × (G∗
1)

� :
∃s ∈ Z

∗
p such that N = s · M} ⊆ (G∗

1)
2�. When signing an equivalence class

[M ]R with such a scheme, one actually signs a representative (Mi)i∈[�] of class
[M ]R. The scheme, then, allows to switch to different representatives of the
same class and to update corresponding signatures in the public, i.e., without
any secret key. The initial instantiation proposed in [30] turned out to only
be secure against random-message attacks (cf. [26] and the updated full version
of [30]), but together with Fuchsbauer [27] they subsequently presented a scheme
that is secure against chosen-message attack (EUF-CMA) in the generic group
model.

For our RABC, we need a Type-3 bilinear group setting based, EUF-CMA-
secure SPS-EQ-R that perfectly adapts signatures (formal definitions are pro-
vided in the extended version of this paper). The SPS-EQ-R construction from
[27] satisfies all our requirements.

3 An Efficient RABC System

In an RABC system there are different organizations issuing credentials for
different users under different pseudonyms.2 Furthermore, there are revoca-
tion authorities which can selectively revoke credentials. Such a system requires
that issuings and showings of the same user are unlinkable and is called multi-
show RABC system when multiple showings carried out by the same user can-
not be linked and one-show RABC system otherwise. A credential cred for
user i under pseudonym nym is issued by an organization j for a set A =
{(attrk, attrVk)}n

k=1 of attribute labels attrk and values attrVk. By #A we
mean the size of A, which is defined to be the sum of cardinalities of all second
components attrVk of all tuples in A. Moreover, we denote by A

′ � A a subset
of the credential attributes. In particular, for every k ∈ [n], we have that either
(attrk, attrVk) is missing or (attrk, attrV′

k) with attrV′
k ⊆ attrVk is present.

A showing with respect to A
′ only proves that a valid credential for A′ has been

issued, but reveals nothing beyond (selective disclosure). Below, we present our
formal RABC model which is based on the ABC model in [30].

Definition 6 (RABC System). A revocable attribute-based anonymous cre-
dential (RABC) system consists of the following polynomial time algorithms:

Setup: A probabilistic algorithm that takes a security parameter κ and some
optional auxiliary information aux (which may fix an universe of attributes
and attribute values and other parameters).

2 We stress that in our context pseudonyms are solely used for revocation and not
for showing purposes (as e.g., in the model of [14]) and thus one might call ours
revocation pseudonyms (but we simply call them pseudonyms henceforth).
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RAKeyGen: A probabilistic algorithm that takes input the public parameters pp
and outputs a key pair (rsk, rpk) for the revocation authority.

OrgKeyGen: A probabilistic algorithm that takes input the public parameters pp
and j ∈ N and outputs a key pair (oskj , opkj) for organization j.

UserKeyGen: A probabilistic algorithm that takes input the public parameters
pp and i ∈ N and outputs a key pair (uski, upki) for user i.

(Obtain, Issue): These (probabilistic) algorithms are run by user i and organi-
zation j, who interact during execution. Obtain takes input the public para-
meters pp, the user’s secret key uski, an organization’s public key opkj , a
pseudonym nym and an attribute set A. Issue takes input the public parame-
ters pp, the public key of the revocation authority rpk, the user’s public key
upki, an organization’s secret key oskj , a pseudonym nym and an attribute
set A. At the end, Obtain outputs a credential crednym for A for user i with
respect to nym.

(Show, Verify): These (probabilistic) algorithms are run by user i and a verifier,
who interact during execution. Show takes input public parameters pp, the
public revocation key rpk, the user’s secret key uski, the organization’s public
key opkj , a credential crednym for the attribute set A, a second set A′ � A and
some information R

nym
S to prove that crednym has not been revoked. Verify

takes input pp, rpk, opkj , a set A
′ and some revocation information RV . At

the end, Verify outputs 1 or 0 indicating whether the credential showing was
accepted or not.

Revoke: This (probabilistic) algorithm takes input the public parameters pp, the
revocation key pair (rsk, rpk) and two disjoint lists NYM and RNYM holding valid
and revoked pseudonyms, respectively. It outputs the revocation information
R = (RV ,RS). RV is needed for verifying the revocation status and RS is a
list holding the revocation information per nym.

3.1 Security Model for RABCs

The subsequent security model is adapted from [30]. We note that we consider
only a single organization (identified by j = 1) in our model (since all organiza-
tions have independent signing keys, the extension is straightforward). Basically,
an RABC system needs to be correct, unforgeable and anonymous. To provide
formal definitions of these properties we introduce several global variables and
oracles. To keep track of all, honest and corrupt users as well as users, whose
secret keys and credentials have leaked, we introduce the sets U, HU, CU and KU,
respectively. Furthermore, we introduce the sets N and RN for keeping track of all
pseudonyms and all revoked pseudonyms, respectively. We use the variables RI
and NYMLoR (initially set to ⊥) to store the globally maintained revocation infor-
mation R and the pseudonyms used in the OLoR oracle. All these sets as well as
RI and NYMRoR are maintained by the environment and are available to the adver-
sary for read access. We use the lists UPK, USK, CRED and ATTR to track issued
user keys, credentials and corresponding attributes (per pseudonym). These lists
are only accessible to the environment. We introduce the subsequent oracles and
assume the public parameters pp to be implicitly available to them:
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OHU+(i): It takes input a user identity i. If i ∈ U return ⊥. Otherwise, it creates
a new user i by running (USK[i], UPK[i]) ← UserKeyGen(pp, i), adding i to U
and to HU and returning UPK[i].

OCU+(pk, i): It takes input a user public key pk and a user i. If i �∈ U, i ∈ CU, or
NYMLoR ∩ N[i] �= ∅ return ⊥. Otherwise, it adds user i to the set of corrupted
users CU, removes i from HU, and sets UPK[i] ← pk.

OKU+(i): It takes input a user i. If i �∈ U, i ∈ KU, or NYMLoR ∩ N[i] �= ∅ return ⊥.
Otherwise, it reveals the credentials and the secret key of user i by returning
USK[i] and the credentials CRED[nym] for all nym ∈ N[i]. Finally, it adds i to
KU.

ORN+(rsk, rpk, REV): It takes input the revocation secret key rsk, the revoca-
tion public key rpk and a list REV of pseudonyms to be revoked. If REV ∩
RN �= ∅ or REV �⊆ N return ⊥. Otherwise, set RN ← RN ∪ REV and RI ←
Revoke(pp, rsk, rpk, N \ RN, RN).

OUIOO(osk, opk, rsk, rpk, i, nym,A): It takes input the organization key pair (osk,
opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym and a
set of attributes A. If i �∈ HU or nym ∈ N return ⊥. Otherwise, it issues a
credential cred on A and nym for an honest user i ∈ HU. Here, the oracle
plays the role of the user as well as the organization. It runs

(cred, ∅) ← (Obtain(pp, USK[i], opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)).

Finally, it sets (CRED[nym], ATTR[nym]) ← (cred,A), appends nym to N[i] and
runs RI ← Revoke(pp, rsk,rpk, N \ RN, RN). The caller does not get any output.

OUI(osk, opk, rsk, rpk, i, nym,A): It takes input the organization key pair (osk,
opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym and a set
of attributes A. If i �∈ HU or nym ∈ N return ⊥. Otherwise, it plays the role
of an honest user who gets issued a credential for A and nym. It runs

(cred, ∅) ← (Obtain(pp, USK[i], opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)),

where Obtain is run on behalf of honest user i and Issue is executed by the
caller (the dishonest organization). Finally, it sets (CRED[nym], ATTR[nym]) ←
(cred,A), appends nym to N[i] and runs RI ← Revoke(pp, rsk, rpk, N \ RN, RN).

OOO(osk, opk, rsk, rpk, i, nym, uski,A): It takes input the organization key pair
(osk, opk), the revocation key pair (rsk, rpk), a user i, a pseudonym nym, a
user secret key uski and a set of attributes A. If i �∈ CU or nym ∈ N return
⊥. Otherwise, it plays the role of the organization when interacting with
a dishonest user, i.e., a corrupted user whose public key has been replaced
(thus, the corresponding secret key uski is not stored in USK). It runs

(cred, ∅) ← (Obtain(pp, uski, opk, nym,A), Issue(pp, rpk, UPK[i], osk, nym,A)),

where Obtain is executed by the caller and sets (CRED[nym], ATTR[nym]) ←
(cred,A), appends nym to N[i] and runs RI ← Revoke(pp, rsk, rpk, N \ RN, RN).

OUV(opk, rpk, nym,A′,RV ): It takes input the organization public key opk, the
public revocation key rpk, a user i, a pseudonym nym, a set of attributes
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A
′ certified to the user inym (that is the index such that nym ∈ N[inym]) and

the revocation information RV . If nym /∈ N, inym �∈ HU, A′ �� ATTR[nym] or
nym ∈ RN return ⊥. Otherwise, it plays the role of an honest user inym and
runs

(∅, b) ← (
Show(pp, rpk,USK[inym], opk, CRED[nym], ATTR[nym],

A
′, RI[2][nym]),Verify(pp, rpk, opk,A′,RV )

)
,

where Verify is executed by the caller (the dishonest verifier).
OLoR(osk, opk, rsk, rpk, b, nym0, nym1,A

′,RV ): It takes input the organization
and revocation key pairs (osk, opk) and (rsk, rpk), a bit b, two pseudonyms
nym0 and nym1 and a set of attributes A

′. It returns ⊥ if for j ∈ {0, 1}
nymj �∈ N ∨ inymj

�∈ HU ∨ inymj
∈ KU ∨ A

′ �� ATTR[nymj ] ∨ nymj ∈ RN,

where inymj
is such that nymj ∈ N[inymj

]. Else, it adds nym0 and nym1

to NYMLoR and interacts with the adversary during an execution of the
(Show,Verify) protocol for the credential with the pseudonym nymb and
attributes A

′.

Now, we are ready to introduce an exact definition of a secure RABC system:

Definition 7 (Correctness). An RABC system is correct, if

∀κ > 0, ∀aux, ∀A, ∀A′ � A ∀j, ∀i,
∀NYM, RNYM ⊆ N : NYM ∩ RNYM = ∅, ∀nym ∈ NYM,
∀pp ← Setup(1κ, aux), ∀(rsk, rpk) ← RAKeyGen(pp) :
(oskj , opkj) ← OrgKeyGen(pp, j), (uski, upki) ← UserKeyGen(pp, i),
(cred, ∅) ← (Obtain(pp, uski, opkj , nym,A), Issue(pp, upki, oskj , nym,A)),
(RS ,RV ) ← Revoke(pp, (rsk, rpk), NYM, RNYM) it holds that
(∅, 1) ← (Show(pp, uski, opkj , cred,A,A′,RS [nym]),Verify(pp, opkj ,A

′,RV )).

Definition 8 (Unforgeability). We call an RABC system unforgeable, if for
all PPT-adversaries A there is a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pp ← Setup(1κ, aux), (rsk, rpk) ← RAKeyGen(pp),
(osk, opk) ← OrgKeyGen(pp, 1),O ← {OHU+(·),OCU+(·, ·),
OKU+(·),ORN+(rsk, rpk, ·),OUIOO(osk, opk, rsk, rpk, ·, ·, ·),
OUV(opk, rpk, ·, ·, RI[0]),OOO(osk, opk, rsk, rpk, ·, ·, ·, ·)},
(A′∗, state) ← AO(pp, opk, rpk),
(∅, b∗) ← (A(state),Verify(pp, opk, rpk,A′∗, RI[1])) :

b∗ = 1 ∧ (
nym∗ = ⊥ ∨ (

nym∗ �= ⊥ ∧(
A

′∗ �� ATTR[nym∗] ∨ (i∗nym∗ ∈ HU \ KU) ∨ nym∗ ∈ RN
)))

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ ε(κ),

where the credential shown by A in the second phase corresponds to pseudonym
nym∗ and to user i∗nym∗ (that is the index such that nym∗ ∈ N[i∗nym∗ ]). Thereby,
⊥ indicates that no such index nym∗ exists.
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The winning conditions in the unforgeability game are chosen following the
subsequent rationale. The first condition (nym∗ = ⊥) captures showings of cre-
dentials, which have never been issued (existential forgeries). The second condi-
tion (nym∗ �= ⊥ ∧ A

′∗ �� ATTR[nym∗]) captures showings with respect to existing
credentials, but invalid attribute sets. The third condition (nym∗ �= ⊥ ∧ i∗nym∗ ∈
HU \ KU) covers showings with respect to honest users, whose credentials and
respective secrets the adversary does not know. This essentially boils down to
replayed showings. Finally, the last condition (nym∗ �= ⊥ ∧ nym∗ ∈ RN) covers
that showings cannot be performed with respect to revoked pseudonyms.

Definition 9 (Anonymity). We call an RABC system anonymous, if for all
PPT-adversaries A there is a negligible function ε(·) such that

Pr

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pp ← Setup(1κ, aux), b ←R {0, 1},
(osk, opk) ← OrgKeyGen(pp, 1),
(rsk, rpk) ← RAKeyGen(pp),
O ← {OHU+(·),OCU+(·, ·),OKU+(·),ORN+(rsk, rpk, ·),
OUI(osk, opk, rsk, rpk, ·, ·, ·),OUV(opk, rpk, ·, ·, RI[0]),
OLoR(osk, opk, rsk, rpk, b, ·, ·, ·, RI[0])},
b∗ ← AO(pp, osk, opk, rsk, rpk)

: b∗ = b

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

− 1
2

≤ ε(κ).

Observe, that the pseudonyms contained in NYMLoR can later be revoked using
the ORN+ oracle. This explicitly requires that even if pseudonyms get revoked and
the adversary has access to all previous showing transcripts, users still remain
anonymous (backward unlinkability).

4 Construction of the RABC System

We first recall the intuition behind the ABC system in [30]. Then, we present
the intuition behind our construction and finally we present our RABC system.

4.1 Intuition of the ABC System

The ABC construction in [30] requires an EUF-CMA secure SPS-EQ-R scheme
with perfect adaption of signatures and DDH holding on the message space
(subsumed as class-hiding property in [30]; e.g., the Scheme in [27]). It further
requires randomizable polynomial commitments with factor openings
(PolyCommitFO, cf. [30]) and one single, constant-size ZKPK to prevent replays
of previously shown credentials. Below, we recall how the building blocks are
combined.

In [30], a credential credi for user i is a vector of two group elements (C1, P )
together with a signature of the organization under the SPS-EQ-R scheme, where
C1 is a polynomial commitment to a polynomial that encodes the attribute set
A of the credential. The encoding of the attribute set A = {(attrk, attrVk)}n

k=1

to a polynomial in Zp[X] is defined by the following encoding function, where
H : {0, 1}∗ → Z

∗
p is a collision-resistant hash function:
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enc : A �→
n∏

k=1

∏

M∈attrVk

(
X − H(attrk‖M)

)
.

Additionally, C1 includes the private key ri corresponding to the public key
Ri = riP of user i.

On a showing for some attribute set A
′ � A, a credential owner proceeds

as follows. To achieve unlinkability, the user randomizes the credential using a
random scalar ρ. This is simply done by changing the representative of (C1, P )
with signature σ to the representative ρ(C1, P ) and signature σ′ (using ChgRepR
of SPS-EQ-R). Then, a user provides the randomized credential together with a
selective opening of the polynomial commitment ρC1 with respect to the encod-
ing of the revealed attributes enc(A′). This so called factor opening includes a
consistently randomized witness (by using ρ), attesting that A′ � A while hiding
the unrevealed attribute set A′.3 Thereby, the rerandomization of PolyCommitFO
is compatible with the rerandomization of the SPS-EQ-R scheme. Additionally,
the user provides a ZKPK (denoted PoK) to demonstrate knowledge of ρ in
ρP with respect to P to guarantee freshness, i.e., to prevent replaying of past
showings.

Now, to verify a credential, the verifier starts by checking the signature σ′ on
the obtained credential (ρC1, ρP ) (using the organization’s SPS-EQ-R public
key). Then, it verifies whether the factor opening to enc(A′) is correct with
respect to the randomized polynomial commitment ρC1 (via VerifyFactorPC [30]).
In particular, it checks whether the polynomial that encodes A′ is indeed a factor
of the polynomial committed to in ρC1 by using the witness to A′ and without
learning anything about A′. By construction this also guarantees that the prover
knows the respective secret key (without revealing it). Furthermore, the verifier
only accepts if PoK holds to guarantee that the showing is fresh (and no replay).

Example: To illustrate the attribute sets, we restate a short example from [30].
Suppose that we are given a user with the following attribute set: A = {(age, {>
16, > 18}), (drivinglicense, {#, car})}, where # indicates an attribute value
that proves the possession of an attribute without revealing any concrete value.
A showing could involve the attributes A

′ = {(age, {> 18}), (drivinglicense,
{#})} and its hidden complement A′ = {(age, {> 16}), (drivinglicense,
{car})}.

4.2 Incorporating Blacklist Revocation

To enable revocation, we need to augment the credentials in the ABC construc-
tion of [30] to include a unique nym. Recall that in our context pseudonyms are
more or less credential identifiers that are never being revealed during showings
and solely used for revocation purposes. In a nutshell, the revocation authority
holds a list of revoked nyms RNYM = {nymi}i∈[n] and unrevoked nyms NYM =
{nymi}i∈[m], respectively. It publishes an accumulator Π, which represents the

3 Such a witness is basically a consistently randomized commitment (by using ρ) to A′.
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list of revoked pseudonyms RNYM. Additionally, the revocation authority main-
tains a public list WIT of non-membership witnesses {ωnymi

}i∈[m] for unrevoked
users. An unrevoked user then demonstrates that the nym encoded in the cre-
dential has not been blacklisted, i.e., nym is not contained in the accumulator,
during a showing. We assume that two dummy nyms are initially inserted into
the accumulator so that the accumulator Π as well as witnesses ωnymi

match
the form, which is required for the respective algorithms to work. We emphasize
that, in contrast to existing accumulator-based approaches, we avoid to prove in
zero-knowledge the possession of such a non-membership witness which satisfies
the accumulator verification relation. Furthermore, we note that one could also
allow the users to update their witnesses on their own by using the dynamic
features of the accumulator construction in [3].

4.3 Our Construction

Our revocation mechanism is based on the observation that the accumulator
in Scheme 1 is compatible with the rerandomizations of the credentials (due
to similarities between Scheme 1 and PolyCommitFO in [30]). In particular, we
extend the original credential by two values C2 and C3, resulting in a credential
cred = ((C1, C2, C3, P ), σ). We choose the second credential component C2 to be
C2 = ui(λP − nym · P ) (which can directly be used in the VerifyAcc algorithm).
Here, ui is an additional user secret key that is required for anonymity (similar
to the secret ri in C1) and corresponds to Ui = uiP in the augmented public key
(Ri, Ui). Furthermore, for technical reasons, we include a third credential com-
ponent C3 = uiQ, where Q (as in the original scheme) is a random element in G1

with unknown discrete logarithm. During showings, rerandomized versions of the
credential will be presented, which is due to the nature of the credential scheme
in [30]. To preserve the correctness of the accumulator verification relation, the
prover must present consistently rerandomized versions of the accumulator Π
(and of the non-membership witnesses as well). Apparently, the prover must be
restricted to present only honestly rerandomized versions thereof.4

Scheme 2 presents our RABC system, where we require t, t′ to be bounded
by poly(κ). If a check does not yield 1 or a PoK is invalid, the respective algo-
rithm terminates with a failure and the algorithm Verify accepts only if VerifyR,
VerifyFactorPC, VerifyAcc return 1. Note that in Scheme 2, we use a slightly modi-
fied version of the algorithm VerifyAcc, which directly takes d = e(dP, P̂ ) instead
of a scalar d as part of the witness (as done in Scheme 1). This version uses the
verification relation e(Π, P̂ ) = e(λP − yP, Ŵ ) · d. Also note that the prover can
compute the commitment of the d′-part of the proof using a pairing, which is
typically faster than a corresponding exponentiation in GT in state-of-the-art
pairing implementations. In addition to PoK on the discrete logarithm of d′,

4 To ensure the authenticity of the rerandomized revocation information, we require
users to prove knowledge of the randomizer used for randomizing the original accu-
mulator and for proof-technical reasons we require the user to prove knowledge of
logQ C3.
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we must also check whether d′ �= 1 to ensure the correct form of the presented
witness (Ŵ ′,d′) (recall that d �= 0 is required). Furthermore, the accumulator
Π needs to be available in an authentic fashion. Finally, we note that the first
move in the showing protocol can be combined with the first move of PoK. Thus,
a showing consists of a total of three moves.

4.4 Security of the RABC System

Theorem 2. The RABC system in Scheme 2 is correct.

The correctness of Scheme 2 follows from inspection.

Theorem 3. If PolyCommitFO is factor-sound, {(Hs, s)}s∈S is a collision-
resistant hash function family, the underlying SPS-EQ-R is EUF-CMA secure
and perfectly adapts signatures, Acc is collision-free and the DDH assumption
holds in G1, then Scheme 2 is unforgeable.

We prove Theorem 3 in the extended version of this paper. Now, for anonymity
of Scheme 2 we introduce two plausible assumptions in the Type-3 bilinear group
setting.

Definition 10. Let BG be a bilinear group with log2 p = κ. Then, for every
PPT adversary A there is a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, r, s, t, u, v ←R Zp, b
∗ ← A(BG, rP, rP̂ , sP, sP̂ ,

tP, ruP̂ , stuP,g(1−b)·v+b·ut)
: b∗= b

]

−1
2

≤ ε(κ).

We emphasize that the assumption in Definition 10 can easily be justified in
the uber-assumption framework [9], i.e., by setting R = 〈1, r, s, t, stu〉 ,S =
〈1, r, s, ru〉 ,T = 〈1〉 , f = ut. The subsequent assumption is closely related to
the assumption in Definition 10, but does not fit the uber-assumption framework
due to the decision-part being in G2. Consequently, we analyze the assumption
in the generic group model.

Definition 11. Let BG be a bilinear group with log2 p = κ. Then, for every
PPT adversary A there is a negligible function ε(·) such that

Pr
[

b ←R {0, 1}, r, s, t, u, v ←R Zp, b
∗ ← A(BG, rP, rP̂ , sP, sP̂ ,

tP, stuP, ((1 − b) · v + b · ru)P̂ )
: b∗= b

]

−1
2

≤ ε(κ).

Proposition 1. The assumption in Definition 11 holds in generic Type-3 bilin-
ear groups and reaches the optimal, quadratic simulation error bound.

The proof of the above proposition is given in the extended version of this paper.

Theorem 4. If the underlying SPS-EQ-R perfectly adapts signatures, DDH in
G1 and the assumptions in Definitions 10 and 11 hold, then Scheme 2 is anony-
mous.

We prove Theorem 4 in the extended version of this paper.
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Setup: Given (1κ, aux), parse aux ← (t, t′), run pp′ =
(BG, (αiP )i∈[t], (α

iP̂ )i∈[t]) ← SetupPC(1
κ, t) and pp′′ = ((λiP )i∈[t′],

(λiP̂ )i∈[t′]) ← GenAcc(BG, t′). Then, let g ← e(P, P̂ ) and Hs : {0, 1}∗ → Z
∗
p be

a collision-resistant keyed hash function used inside enc(·), drawn uniformly at
random from a family of collision-resistant keyed hash functions {(Hs, s)}s∈S .
Finally, choose Q ←R G1 and output pp ← (Hs, enc, Q,g, pp′, pp′′).

RAKeyGen: Given pp return (rsk, rpk) ← (∅, pp′′).
OrgKeyGen: Given pp and j ∈ N, return (oskj , opkj) ← KeyGenR(1κ, � = 4).

UserKeyGen: Given pp and i ∈ N, pick ri, ui ←R Z
∗
p, compute (Ri, Ui) ← (riP, uiP )

and return (uski, upki) ← ((ri, ui), (Ri, Ui)).
(Obtain, Issue): Obtain and Issue interact in the following way:

Issue(pp, rpk, upki, oskj , nym,A) Obtain(pp, uski, opkj , nym,A)

e(C1, P̂ ) =

e(Ri, enc(A)(α)P̂ )
C1,C2,C3←−−−−−− (C1, C2, C3) ← (rienc(A)(α)P,

e(C2, P̂ ) = e(Ui, λP̂ − nym ·
P̂ )

PoK←−→ ui(λP − nym · P ), uiQ)

σ ← SignR((C1, C2, C3, P ),
σ−→ VerifyR((C1, C2, C3, P ), σ, opkj) = 1

oskj) crednym ← ((C1, C2, C3, P ), σ)

where PoK is: PoK{(ψ) : C3 = ψQ ∧ Ui = ψP}.
(Show,Verify): Show and Verify interact in the following way, where RV = Π ←

R[1] and R
nym
S = (Π, (Ŵ , d)) ← (R[1],R[2][nym]):

Verify(pp, rpk, opkj ,A
′,RV ) Show(pp, rpk, uski, opkj , crednym,A,A′,Rnym

S )

ρ, ν ←R Z
∗
p

(Ŵ ′,d′) ← (νŴ , e(ρνuidP, P̂ ))
Π ′ ← ρνuiΠ

cred ← ChgRepR(crednym, ρ, opkj)[
VerifyR(cred, opkj) ∧ cred,C

A′ ,Π′,Ŵ ′,d′
←−−−−−−−−−−− C

A′ ← (ρ · ri) · enc(A′)(α)P

d′ �= 1GT ∧ VerifyFactorPC(pp
′,

C1, enc(A
′), C

A′) ∧ VerifyAcc(Π
′,

(Ŵ ′,d′), C2, pp
′′)
]

= 1 PoK←−→

where cred = ((C1, C2, C3, C4), σ) and PoK is: PoK{(γ, δ, η, ζ, ψ) : Q =
ηP ∨ (C3 = ψQ ∧ C4 = γP ∧ d′ = gδ ∧ Π ′ = ζΠ)}.

Revoke: Given pp, (rsk, rpk), NYM and RNYM, this algorithm computes Π ←
EvalAcc(RNYM, (∅, pp′′)). Then, for all nym ∈ NYM it computes (W ′

nym, dnym) ←
WitCreateAcc(Π, RNYM, nym, (∅, pp′′)), sets WIT[nym] ← (W ′

nym, dnym) and returns
R ← (Π, WIT).

Scheme 2: Our multi-show RABC system.
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5 Discussion

The presented revocation mechanism for the RABC system uses similar building
blocks as the original ABC system. In particular, it does not use a complex ZKPK
for demonstrating the knowledge of a non-membership witness, which satisfies
the verification relation of the accumulator. It only requires a simple ZKPK
of the dicrete logarithms in d′,Π ′, C3 (and C4 which is already required in the
original ABC system from [30]) for technical reasons. Consequently, this concept
yields a new direction for revocation in ABC systems.

In the exented version of this paper, we carefully adapt an existing universal
accumulator revocation mechanism [1,38] (applied within Microsoft’s U-Prove)
to the ABC system from [30] and prove it secure in the model proposed in
this paper. Due to space limitations, this part is not included in this version.
We note, however, that due to the high number of zero-knowledge proofs of
knowledge in [1,38], the approach presented here is the more efficient choice (see
the full version for a detailed comparison).

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments.
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Abstract. Tweakable blockcipher (TBC) is an extension of standard
blockcipher introduced by Liskov, Rivest and Wagner in 2002. TBC is a
versatile building block for efficient symmetric-key cryptographic func-
tions, such as authenticated encryption.

In this paper we study the problem of extending tweak of a given
TBC of fixed-length tweak, which is a variant of popular problem of
converting a blockcipher into a TBC, i.e., blockcipher mode of opera-
tion. The problem is particularly important for known dedicated TBCs
since they have relatively short tweak. We propose a simple and efficient
solution, called XTX, for this problem. XTX converts a TBC of fixed-
length tweak into another TBC of arbitrarily long tweak, by extending
the scheme of Liskov, Rivest and Wagner that converts a blockcipher
into a TBC. Given a TBC of n-bit block and m-bit tweak, XTX pro-
vides (n + m)/2-bit security while conventional methods provide n/2 or
m/2-bit security. We also show that XTX is even useful when combined
with some blockcipher modes for building TBC having security beyond
the birthday bound.

Keywords: Tweakable blockcipher · Tweak extension · Mode of oper-
ation · LRW

1 Introduction

Tweakable Blockcipher. Tweakable blockcipher (TBC) is an extension of
standard blockcipher introduced by Liskov, Rivest and Wagner in 2002 [17].
An encryption of TBC takes a parameter called tweak, in addition to key and
plaintext. Tweak is public and can be arbitrarily chosen. Due to its versatility,
TBC is getting more and more popularity. Known constructions of TBCs are
generally classified into two categories: dedicated design and blockcipher mode
of operation, i.e. using a blockcipher as a black box.

For the first category, Hasty pudding cipher [30] and Mercy [10] are examples
of early designs. More recently Skein hash function uses a dedicated TBC called
Threefish [2]. Jean, Nikolić and Peyrin [13] developed several dedicated TBCs as
components of their proposals to CAESAR [1], a competition of authenticated
encryption (AE).
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 77–93, 2015.
DOI: 10.1007/978-3-319-27239-9 5
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For the second category, Liskov et al. [17] provided two blockcipher modes to
build TBC, and their second mode is known as LRW1. Rogaway [28] refined LRW
and proposed XE and XEX modes, and Minematsu [22] proposed a generaliza-
tion of LRW and XEX. These schemes have provable security up to so-called
“birthday bound”, i.e. they can be broken if adversary performs around 2n/2

queries, where n is the block length of TBC. The first scheme to break this
barrier was shown by Minematsu [23], though it was limited to short tweak and
rekeyed for every tweak. Landecker, Shrimpton and Terashima [16] showed that
a chain of two LRWs has security beyond the birthday bound, which is the first
scheme with this property which does not use rekeying. Lampe and Seurin [15]
extended the work of [16] for longer chains. Tweakable variants of Even-Mansour
cipher [11] are studied by Cogliati, Lampe and Seurin [8] and Mennink [21]. A
concrete example is seen in a CAESAR proposal, called Minalpher [29].

Tweak Extension. In this paper, we study tweak extension of a given TBC.
More formally, let Ẽ be a TBC of n-bit block and m-bit tweak, and we want to
arbitrarily extend m-bit tweak of Ẽ keeping n-bit block. Here m is considered to
be fixed. At first sight the problem looks trivial since most of previous studies
in the second category already cover the case of arbitrarily long tweak when
combined with a universal hash (UH) function of variable-length input, and a
TBC with any fixed tweak is also a blockcipher. Coron et al. (Theorem 6, [9])
pointed out another simple solution by applying a UH function H to tweak and
then use the hash value H(T ) as the tweak of Ẽ. However, the problem is security.
For TBC Ẽ of n-bit block and m-bit tweak, applying LRW or XEX to (fixed-
tweak) Ẽ the security is up to O(2n/2) queries. Coron et al.’s solution is also
secure up to O(2m/2) queries. We would get a better security bound by using
the chained LRW [15,16], but it would significantly increase the computation
cost from Ẽ.

In this paper we provide an alternative solution, called XTX, which can be
explained as an intuitive yet non-trivial combination of LRW and Coron et al.’s
method mentioned above, applicable to any black-box TBC. Specifically, XTX
converts a TBC Ẽ of n-bit block and m-bit tweak into another TBC of n-bit
block and t-bit tweak for any t > m, using H which is a (variant of) UH function
of t-bit input and (n+m)-bit output. See Fig. 1 for XTX. We proved the security
bound of q2ε where ε denotes the bias of UH function. This implies security up to
O(2(n+m)/2) queries if ε is ideally small. As well as LRW, XTX needs one calls
of Ẽ and H, hence the computation cost is only slightly increased, and H is
called only once for multiple encryptions sharing the same tweak, by caching the
output of H.

We observe that tweak length of existing dedicated TBCs are relatively short,
at least not much longer than the block length. For instance, KIASU-BC [13] has
128-bit block and 64-bit tweak, and Threefish has 256 or 512 or 1024-bit block
1 The two schemes shown by [17] are also called LRW1 and LRW2, and we refer to

LRW2 throughout this paper.
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with 128-bit tweak for all block sizes. One apparent reason for having fixed, short
tweak is that it is enough for their primary applications, however, if tweak can be
effectively extended it would expand their application areas. For another reason,
we think the complexity of security analysis for dedicated TBC is expected to be
dependent on the size of tweak space, since we have to make sure that for each
tweak the instance should behave as an independently-keyed blockcipher. The
TWEAKEY framework of Jean et al. [13] provided a systematic way to build
TBCs by incorporating tweak in the key schedule, and it shows that building
efficient TBCs from scratch is far from trivial, in particular when we want to
have long tweaks. Our XTX can efficiently extend tweak of dedicated TBCs
with reasonably small security degradation in terms of the maximum number of
allowable queries. In addition, XTX is even useful when applied to some modes
of operations when the baseline TBC from a (non-tweakable) blockcipher has
beyond-birthday-bound security. We summarize these results in Sect. 4.

Applications of Tweak Extension. We remark that a TBC with long tweak
is useful. In general, a tweak of a TBC can be used to contain various additional
information associated with plaintext block, hence it would be desirable to make
tweak substantially longer than the block length (say 128 bits). For concrete
examples, a large-block TBC of Shrimpton and Terashima [31] used a TBC with
variable-length tweak, which was instantiated by a combination of techniques
from [9,16]. Hirose, Sasaki and Yasuda [12] presented an AE scheme using TBC
with tweak something longer than the unit block.

2 Preliminaries

Notation. Let {0, 1}∗ be the set of all finite bit strings. For an integer � ≥ 0, let
{0, 1}� be the set of all bit strings of � bits. For X ∈ {0, 1}∗, |X| is its length in
bits, and for � ≥ 1, |X|� = �|X|/�� is the length in �-bit blocks. When � denotes
the length of a binary string we also write �n to mean ��/n�. A sequence of a
zeros is denoted by 0a. For set S ⊆ {0, 1}n and x ∈ {0, 1}n, S ⊕ x denotes the
set {s ⊕ x : s ∈ S}. If random variable X is uniformly distributed over X we
write X ∈U X .

Cryptographic Functions. For any keyed function we assume that its first
argument denotes the key. For keyed function F : K × X → Y, we write FK(x)
to denote F (K,x) for the evaluation of input x ∈ X with key K ∈U K.

A blockcipher E : K × M → M is a keyed permutation over the message
space M. We write encryption of M using K as C = EK(M) and its inverse
as M = E−1

K (C). Similarly, a tweakable blockcipher (TBC) is a family of n-bit
blockcipher indexed by tweak T ∈ T . It is written as Ẽ : K × T × M → M.
If M = {0, 1}n and T = {0, 1}t, we say Ẽ is an (n, t)-bit TBC. An encryption
of message M with tweak T is written as ẼT

K(M), and if we have C = ẼT
K(M)
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then M = ẼT,−1
K (C) holds for any (T,M). Let Perm(n) be the set of all n-

bit permutations. For a finite set X , let PermX (n) be the set of all functions
: X ×{0, 1}n → {0, 1}n such that, for any f ∈ PermX (n) and x ∈ X , f(x, ∗) is a
permutation. An n-bit uniform random permutation (URP) is a keyed permuta-
tion with uniform key distribution over Perm(n) (where a key directly represents
a permutation). Note that implementation of n-bit URP is impractical when n is
a block size of conventional blockciphers (say, 64 or 128). We also define an n-bit
tweakable URP (TURP) with tweak space T as a keyed tweakable permutation
with uniform key distribution over PermT (n).

Let A be the adversary trying to distinguish two oracles, O1 and O2, by
possibly adaptive queries (which we call chosen-plaintext attack, CPA for short).
We denote the event that the final binary decision of A after querying oracle O
is 1 by AO ⇒ 1. We write

AdvcpaO1,O2
(A) def= Pr[AO1 ⇒ 1] − Pr[AO2 ⇒ 1], (1)

where the probabilities are defined over the internal randomness of Oi and A. In
particular if O1 = EK and O2 = GK′ for two keyed permutations, EK and GK′ ,
we assume A performs a chosen-ciphertext attack (CCA), i.e., has encryption
and decryption queries and define

AdvccaE,G(A) def= Pr[A(EK ,E−1
K ) ⇒ 1] − Pr[A(GK′ ,G−1

K′ ) ⇒ 1], (2)

where A(EK ,E−1
K ) denotes that A can choose one of EK or E−1

K for each query. In
the same manner we define Advcca

˜EK , ˜GK′
(A) for two keyed tweakable permutations,

where tweaks in queries are arbitrarily chosen.
For n-bit blockcipher EK and (n, t)-bit TBC ẼK , we define SPRP (for strong

pseudorandom permutation) and TSPRP (for tweakable SPRP) advantages for
A as

AdvsprpE (A) def= AdvccaE,P(A), and Advtsprp
˜E

(A) def= Advcca
˜E,˜P

(A), (3)

where P is n-bit URP and P̃ is (n, t)-bit TURP.
If A is information-theoretic, it is only limited in the numbers and lengths of

queries. If A is computational, it also has a limitation on computation time in
some fixed model, which is required to define computationally-secure objects, e.g.
pseudorandom function (PRF). In this paper most security proofs are information-
theoretic, i.e. the target schemes are built upon URP or TURP. When their com-
ponents are substituted with conventional blockcipher or TBC, a computational
security bound is obtained using a standard technique [4].

2.1 Universal Hash Function and Polynomial Hash Function

We will need a class of non-cryptographic functions called universal hash func-
tion [7] defined as follows.
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Definition 1. For function H : K × X → Y being keyed by K ∈U K, we say it
is ε-almost uniform (ε-AU) if

max
x�=x′

Pr
K

[HK(x) = HK(x′)] ≤ ε (4)

holds. Moreover if Y = {0, 1}n for some n, we say it is ε-almost XOR uniform
(ε-AXU) if

max
x�=x′,Δ∈{0,1}n

Pr
K

[HK(x) ⊕ HK(x′) = Δ] ≤ ε (5)

holds.

From the definition if H is ε-AXU then it is also ε-AU.
Next we introduce polynomial hash function as a popular class of AU and

AXU functions. Let Poly[a] : L × {0, 1}∗ → {0, 1}a for key space L = GF(2a) be
the polynomial hash function defined over GF(2a). Formally, we have

Poly[a]L(X) =
∑

i=1,...,|X|a
L|X|a−i+1 · X[i], (6)

where multiplications and additions are over GF(2a), and (X[1], . . . ,X[|X|a])
denotes an a-bit partition of X ∈ {0, 1}∗ with a mapping between {0, 1}a and
GF(2a) and a padding for partial message. Here, padding must have the prop-
erty that the original message is uniquely recovered from the padded message.
For example we can pad the non-empty sequence with v = 100 . . . 0 so that
|X‖v| is a multiple of a. Moreover, we write Poly[a, b] : L × {0, 1}∗ → {0, 1}a ×
{0, 1}b for L = GF(2a) × GF(2b) to denote the function Poly[a, b](L1,L2)(X) =
(Poly[a]L1(X),Poly[b]L2(X)), where L1 and L2 are independent. Further exten-
sions, such as Poly[a, b, c], are similarly defined.

If we limit the input space of Poly to {0, 1}� for some predetermined �, we
have the following.

Proposition 1. A polynomial hash function Poly[n] : L × {0, 1}� → {0, 1}n is
ε-AXU with ε = �n/2n. Moreover, Poly[n1, n2, . . . , nc] : L × {0, 1}� → Y for
L = GF(2n1) × · · · × GF(2nc) and Y = {0, 1}n1 × · · · × {0, 1}nc is ε-AXU for
ε =

∏
i(�ni

/2ni).

Polynomial hash function can work over inputs of different lengths if com-
bined with appropriate encoding. However, for simplicity this paper mainly dis-
cusses the case where Poly has a fixed input length, and in this respect we treat
tweak length (in block or bit) appeared in the security bound as a constant,
which is usually denoted by �. Recall that we use �n to denote ��/n�.

3 Main Construction

3.1 Previous Schemes

We start with a description of one of the most popular TBC schemes based on
blockcipher. It is the second construction of Liskov et al. [17] and is called LRW.
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Using Blockcipher E : K × M → M with M = {0, 1}n and a keyed function
H : L × T → M, LRW is described as

LRWT
K,L(M) = HL(T ) ⊕ EK(M ⊕ HL(T )), (7)

where T ∈ T is a tweak and K ∈U K and L ∈U L are independent keys.
Let LRWP,L denote LRW using n-bit URP, P, as a blockcipher and H with
independent key L ∈U L. Its TSPRP-advantage is bounded as2

AdvtsprpLRWP,L
(A) ≤ ε · q2, (8)

for any CCA-adversary A using q queries, if H is ε-AXU. Since ε ≥ 1/2n this
implies provable security up to the birthday bound. The bound is tight in that
there is an attack matching the bound. Rogaway’s XEX [28] and Minematsu’s
scheme [22] reduce the two keys of LRW to one blockcipher key.

For tweak extension of given (n,m)-bit TBC, Ẽ, we have two previous solu-
tions: the first one is to use LRW with blockcipher instantiated by Ẽ taking a
fixed tweak. This has security bound of (8), hence n/2-bit security when H is
(e.g.) Poly[n]. The second one, proposed by Coron et al. [9] as mentioned earlier,
is to use H : L × T → V and combine Ẽ and H as C = ẼV

K(M) for V = HL(T ).
If H is ε-AU, this clearly has security bound of O(εq2) which implies m/2-bit
security at best. Then, what will happen if we use both solutions all together?
In the next section we show that in fact this combination gives a better result.

3.2 XTX

We describe our proposal. Let Ẽ : K ×V ×M → M be a TBC of message space
M = {0, 1}n and tweak space V = {0, 1}m. Let T be another (larger) tweak
space. Let H : L × T → M × V be a function keyed by L ∈U L. We define
XTX : (K × L) × T × M → M be a TBC of message space M and tweak space
T and key space (K × L), using Ẽ and H, such that

XTXT
K,L(M) = ẼV

K(M ⊕ W ) ⊕ W, where (W,V ) = HL(T ). (9)

Figure 1 shows the scheme. For security we need that H is a variant of ε-AXU
function defined as follows.

Definition 2. Let H be a keyed function H : L × T → {0, 1}n × {0, 1}m. We
say H is (n,m, ε)-partial AXU ((n,m, ε)-pAXU) if it satisfies

max
x,x′∈T ,x�=x′

Δ∈{0,1}n

Pr
L

[HL(x) ⊕ HL(x′) = (Δ, 0m)] ≤ ε. (10)

Clearly an ε-AXU function of (n + m)-bit output is also (n,m, ε)-pAXU.
A change of a tweak in XTX affects to both block and tweak of inner TBC,

whereas in LRW or XEX it affects only to input block, and in Coron et al.’s
2 Originally proved by [17] with a slightly larger constant, then improved by [22].
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XTXT
K,L(M)

HL

Fig. 1. XTX. A thick black line in Ẽ denotes tweak input.

method it affects only to inner tweak. XTX’s structure is somewhat similar to a
construction of (n, n)-bit TBC presented by Mennink [20], though [20] was based
on ideal-cipher model, while XTX works on standard model and has no limitation
on the outer tweak length. As well as LRW, XTX needs two keys. However it
can be easily reduced to one by reserving one tweak bit for key generation. For
instance, when L = {0, 1}n, we let L = Ẽ(0m)(0n) and use (n,m − 1)-bit TBC
defined as Ẽ(∗‖1)(∗).

3.3 Security

We prove the security of XTX when underlying TBC is perfect, i.e. a TURP.

Theorem 1. Let XTX
˜P,L be XTX using (n,m)-bit tweakable URP, P̃, and H :

L × T → {0, 1}n × {0, 1}m for tweak space T with independent key L ∈U L.
Then we have

AdvtsprpXTX
˜P,L

(A) ≤ ε · q2, (11)

for any CCA-adversary A using q queries if H is (n,m, ε)-pAXU.

In particular, when T = {0, 1}� for some � and H is Poly[n + m], we have
AdvtsprpXTX

˜P,L
(A) ≤ �n+mq2/2n+m from Theorem 1 and Proposition 1.

3.4 Proof of Theorem 1

Overview. Following the proof of LRW [22], our proof is based on the method
developed by Maurer [18]3, though other methods such as game-playing proof [6]
or Coefficient-H technique [24] can be used as well. Basically, the proof is an

3 In some special cases the result obtained by the method of [18] cannot be converted
into computational counterparts [19,25]. However the proof presented here does not
have such difficulty. A bug in a theorem of [18] was pointed out by Jetchev, Özen
and Stam [14], however we did not use it.
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extension of LRW proofs [17,22], which shows that the advantage is bounded
by the probability of “bad” event, defined as a non-trivial input collision in
the underlying blockcipher of LRW. Intuitively, the security bound of XTX is
obtained by extending this observation, and we can set “bad” event as non-
trivial, simultaneous collisions of input and tweak in the underlying TBC.

Proof. We start with basic explanations on Maurer’s method. They are mostly
the same as those of [18], with minor notational changes. Consider the game that
an adversary tries to distinguish two keyed functions, F and G, with queries. The
game we consider is information-theoretic, that is, adversary has no computa-
tional limitation and F and G have no computational assumption, say, they are
URF or URP. There may be some conditions of valid adversaries, e.g., no repeat-
ing queries etc. Let αi denote an event defined at time i, i.e., when adversary
performs ith query and receives a response from oracle. Let αi be the negation of
αi. We assume αi is monotone, i.e., αi never occurs if αi−1 occurs. For instance,
αi is monotone if it indicates that all i outputs are distinct. An infinite sequence
of monotone events α = α0α1 . . . is called a monotone event sequence (MES).
Here, α0 denotes some tautological event. Note that α∧β = (α0∧β0)(α1∧β1) . . .
is a MES if α = α0α1 . . . and β = β0β1 . . . are both MESs. Here we may abbre-
viate α ∧ β as αβ. For any sequence of random variables, X1,X2, . . ., let Xi

denote (X1, . . . , Xi). We use dist(Xi) to denote that X1,X2, . . . , Xi are distinct.
We also write dist((X,Y )i) to denote that (X1, Y1), . . . , (Xi, Yi) are distinct.
Let MESs α and β be defined for two keyed functions, F : K × X → Y and
G : K′ × X → Y, respectively. For simplicity, we omit the description of keys
in this explanation. Let Xi ∈ X and Yi ∈ Y be the ith input and output.
Let PF be the probability space defined by F . For example, PF

Yi|XiY i−1(yi, xi)
means Pr[Yi = yi|Xi = xi, Y i−1 = yi−1] where Yj = F (Xj) for j ≥ 1. If
PF

Yi|XiY i−1(yi, xi) = PG
Yi|XiY i−1(yi, xi) for all possible (yi, xi), i.e. all assign-

ments for which probabilities are defined, then we write PF
Yi|XiY i−1 = PG

Yi|XiY i−1 .
Inequalities such as PF

Yi|XiY i−1 ≤ PG
Yi|XiY i−1 are similarly defined. Using MES

α = α0α1, . . . and β = β0β1, . . . defined for F and G we define the following
notations, which will be used in our proof.

Definition 3. We write Fα ≡ Gβ if PF
Yiαi|XiY i−1αi−1

= PG
Yiβi|XiY i−1βi−1

holds
for all i ≥ 1, which means PF

Yiαi|XiY i−1αi−1
(yi, xi) = PG

Yiβi|XiY i−1βi−1
(yi, xi)

holds for all possible (yi, xi) such that both PF
αi−1|Xi−1Y i−1(yi−1, xi−1) and

PG
βi−1|Xi−1Y i−1(yi−1, xi−1) are positive.

Definition 4. We write F |α ≡ G|β if PF
Yi|XiY i−1αi

= PG
Yi|XiY i−1βi

holds for all
i ≥ 1.

In general if Fα ≡ Gβ , then F |α ≡ G|β holds, but not vice versa.

Definition 5. We define ν(F, αq) as the maximal probability of αq for any
adversary using q queries to F , considered as valid in the definition of game,
which we assume clear in the context.
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Theorem 2 (Theorem 1 (i) of [18]). If Fα ≡ Gβ or F |α ≡ G holds, we have
AdvcpaF,G(A) ≤ ν(F, αq) for any adversary using q queries.

We also use the following two lemmas of [18].

Lemma 1 (Lemma 1 (iv) of [18]). Let MESs α and β be defined for F and G.
Moreover, let Xi and Yi denote the ith input and output of F (or G), respec-
tively. Assume F |α ≡ G|β. If PF

αi|XiY i−1αi−1
≤ PG

βi|XiY i−1βi−1
for i ≥ 1, which

means PF
αi|XiY i−1αi−1

(xi, yi−1) ≤ PG
βi|XiY i−1βi−1

(xi, yi−1) holds for all (xi, yi−1)
such that PF

αi−1|Xi−1Y i−1(xi−1, yi−1) and PG
βi−1|Xi−1Y i−1(xi−1, yi−1) are positive.

Then there exists an MES γ defined for G such that Fα ≡ Gβγ .

Lemma 2 (Lemma 6 (iii) of [18]). ν(F, αq ∧ βq) ≤ ν(F, αq) + ν(F, βq).

Analysis of XTX. We abbreviate XTX
˜P,L to XTX1. We define XTX2 be TURP

with tweak space T . What is needed is the indistinguishability of XTX1 and
XTX2 for CCA adversary.

We write the adversary’s query as Xi = (Xi, Ti, Bi) ∈ {0, 1}n × T × {0, 1}.
Here Bi = 0 (Bi = 1) indicates that ith query is an encryption (a decryption)
query. Let Yi ∈ {0, 1}n be the corresponding response and we write HL(Ti) =
(Wi, Vi) following (9). We also assume XTX2 has computation of HL(Ti) =
(Wi, Vi) as dummy, using independent and uniform sampling of L. In XTX2, Wi

and Vi are not used in the computation of Yi. We write the set of scripts for
all i = 1, . . . , jth queries as Zj = (X1, . . . ,Xj , Y1, . . . , Yj). We may use Mi to
denote Xi when Bi = 0 or Yi when Bi = 1, and use Ci to denote Yi when Bi = 0
or Xi when Bi = 1. We say Zj is valid if Ti = Tj and Mi �= Mj (Ci �= Cj) then
Ci �= Cj (Mi �= Mj) holds. We note that a transcript which is not valid is one
that cannot be obtained from a TBC.

We define Si = Mi ⊕ Wi and Ui = Ci ⊕ Wi for both XTX1 and XTX2.
They correspond to the input and output of P̃ in XTX1, and dummy variables
in XTX2. MESs are defined as αq = dist((S, V )q) and βq = dist((U, V )q). We
observe that in XTX1, αq and βq are equivalent, however not equivalent in

XTX2. Let us define D(Vq)
def= {1 ≤ i < q : Vi = Vq} and for n-bit variable

A ∈ {X,Y,W, S, U} define A[D(Vq)]
def= {Ai : i ∈ D(Vq)}. Here A[D(Vq)]c =

{0, 1}n\A[D(Vq)]. Figure 2 shows XTX1 with the labels mentioned above.
We investigate the distribution PG

Yq|Zq−1Xqαqβq
for G ∈ {XTX1,XTX2}. We

have

PG
Yq|Zq−1Xqαqβq

=
∑

L

PG
Yq|Zq−1XqαqβqL · PG

L|Zq−1Xqαqβq
, (12)

where the summation is taken for all values of L = l. We first focus on the
term PG

L|Zq−1Xqαqβq
. Let us assume Bq = 0. For both G = XTX1 and XTX2,

L is uniform over all values consistent with the conditional clause (note that
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Wi

Vi

Si

Ui

P
Ti

n

m

HL

Mi (if Bi = 0 then Xi = Mi, else Yi = Mi)

Ci (if Bi = 0 then Xi = Ci, else Yi = Ci)

Fig. 2. XTX1 with labels used in the proof of Theorem 1.

L defines W q, V q, Sq and Uq−1, thus αq and βq−1 are deterministic events
given L). Hence we have

PXTX1
L|Zq−1Xqαqβq

= PXTX2
L|Zq−1Xqαqβq

. (13)

For PG
Yq|Zq−1XqαqβqL, if Bq = 0 and G = XTX1, Uq is uniform over U def=

U [D(Vq)]c, thus Yq = Cq = Uq ⊕ Wq is uniform over U ⊕ Wq. If Bq = 0 and
G = XTX2 and there is no conditional clause αqβq, Yq(= Cq) is uniform over

C def= C[D(Tq)]c. Here Uq is uniform over

{Ci ⊕ Wq : i ∈ D(Tq)}c = {Ci ⊕ Wi : i ∈ D(Tq)}c = {Ui : i ∈ D(Tq)}c. (14)

With condition αqβq (here only βq is relevant since αq is deterministic given
L), Ui for i ∈ D(Vq) (but Ti �= Tq) is further removed from possible values for
Uq, hence Uq is uniform over U = U [D(Vq)]c and Yq is uniform over U ⊕ Wq.
Therefore Cq’s distributions are identical for both XTX1 and XTX2. The same
analysis holds for the case Bq = 1, and we have

PXTX1
Yq|Zq−1XqαqβqL = PXTX2

Yq|Zq−1XqαqβqL. (15)

Thus Yq’s distributions are identical for both XTX1 and XTX2 if conditioned
by αqβq and L = l for any l. Therefore from (13) and (15) we have

PXTX1
Yq|Zq−1Xqαqβq

= PXTX2
Yq|Zq−1Xqαqβq

, that is, XTX1|αβ ≡ XTX2|αβ. (16)

Let us assume Bq = 0, and we focus on p(G) = PG
αqβq|Zq−1Xqαq−1βq−1L. Note

that the conditional clause uniquely determines whether αq holds or not. If αq

does not hold, p(G) = 0 for both G = XTX1 or XTX2. If αq holds, p(XTX1) = 1
as βq ≡ αq in XTX1, however p(XTX2) < 1 since βq depends on Uq which is not
determined by the conditional clause. This shows that

PXTX2
αqβq|Zq−1Xqαq−1βq−1L ≤ PXTX1

αqβq|Zq−1Xqαq−1βq−1L. (17)
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Moreover using similar argument as (12), we have

PXTX1
L|Zq−1Xqαq−1βq−1

= PXTX2
L|Zq−1Xqαq−1βq−1

. (18)

Thus, from (17) and (18), we have

PXTX2
αqβq|Zq−1Xqαq−1βq−1

≤ PXTX1
αqβq|Zq−1Xqαq−1βq−1

. (19)

From (16) and (19) and Lemma 1, we observe that XTXαβγ
1 ≡ XTXαβ

2 holds
true for some MES γ. With this equivalence, Theorem2 and Lemma 2, we have

AdvccaXTX1,XTX2
(A) ≤ ν(XTX2, αq ∧ βq) ≤ ν(XTX2, αq) + ν(XTX2, βq) (20)

for any CCA adversary A using q queries.
Let XTX2[p̃] be XTX2 using a fixed tweakable permutation p̃ ∈ PermT (n).

We observe that the last two terms of (20) are bounded as

ν(XTX2, αq) ≤ max
p̃∈PermT (n)

ν(XTX2[p̃], αq) (21)

ν(XTX2, βq) ≤ max
p̃∈PermT (n)

ν(XTX2[p̃], βq). (22)

As p̃ is fixed, the adversary can evaluate it without oracle access, hence the right
hand side terms of (21) are obtained by considering the maximum of possible
and valid (Mq, T q, Cq). For fixed (Mq, T q, Cq), the probabilities of αq and βq

are determined by W q and V q. Thus, for any p̃ we have

ν(XTX2[p̃], αq)

≤ max
(Mq,T q,Cq)

valid

Pr
(W q,V q)

(Wi,Vi)=HL(Ti)

[∃i, j, s.t. (Wi ⊕ Wj = Mi ⊕ Mj) ∧ (Vi = Vj)] (23)

≤
(

q

2

)

· ε, and

ν(XTX2[p̃], βq)

≤ max
(Mq,T q,Cq)

valid

Pr
(W q,V q)

(Wi,Vi)=HL(Ti)

[∃i, j, s.t. (Wi ⊕ Wj = Ci ⊕ Cj) ∧ (Vi = Vj)] (24)

≤
(

q

2

)

· ε,

since H is (n,m, ε)-pAXU. From (20), (23) and (24), we conclude the proof. ��

Tightness of Our Bound. We note that the bound is tight in the sense that
we have an attack with about q = O(2(n+m)/2) queries. The attack is simple,
and let M = 0n. The adversary makes q encryption queries (M,T1), . . . , (M,Tq),
where T1, . . . , Tq are distinct tweaks. With a high probability, we have i and j
such that Ci = Cj , where Ci is the ciphertext for (M,Ti) and Cj is that for
(M,Tj). Now, the adversary can make two more encryption queries (M ′, Tj)
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and (M ′, Tj) for any M ′ �= M , and see if the corresponding ciphertexts collide,
in which case, with a high probability, the oracle is the tweakable blockcipher.

The attack works since in the ideal case, there exit i and j such that Ci = Cj

with a non-negligible probability, but we have the collision between ciphertexts
of (M ′, Ti) and (M ′, Tj) with only a negligible probability.

4 Applications

Suppose we have an (n,m)-bit TBC Ẽ and want to extend tweak by applying
XTX. We first remark if Ẽ is obtained by LRW this is almost pointless because
Ẽ itself has only security up to the birthday bound. In this case a simple solution
would be to extend the input domain of UH function used in LRW. However if Ẽ
is a dedicated TBC, or a mode of operation having security beyond the birthday
bound, application of XTX to Ẽ can have practical merits.

4.1 Dedicated TBC

Let us assume Ẽ is an (n,m)-bit dedicated TBC. As mentioned, using Ẽ with
fixed tweak then applying LRW with some UH function only provides n/2-bit
security, and Coron’s method only provides m/2-bit security, while XTX provides
(n+m)/2-bit security. For example, KIASU-BC [13] is a (128, 64)-bit TBC based
on AES. By combining XTX using H as Poly[192] or Poly[64, 64, 64] we obtain a
TBC of longer tweak with 96-bit security with respect to the number of queries,
while previous methods provide 64 or 32-bit security. Similarly, a (256, 128)-bit
TBC version of Threefish can be conveted into a TBC of longer tweak having
192-bit security, using XTX with H being Poly[384] or Poly[128, 128, 128].

We remark that the use of Poly[m,m,m] for m = n/3 instead of Poly[n +
m] can reduce the implementation size and gain efficiency. For example Aoki
and Yasuda [3] proposed to use Poly[n/2, n/2] instead of Poly[n] used in GCM
authenticated encryption. A drawback is that it will increase the advantage with
respect to tweak length, from linear to cubic in our case (though we assumed
it as a constant in Sect. 2.1). Therefore, the use of a polynomial hash function
with a small field is not desirable if the impact of such increase is not negligible.
In addition we have to be careful with the existence of weak keys in polynomial
hash function pointed out by Procter and Cid [27].

4.2 Rekeying Construction

Minematsu’s rekeying construction for TBC [23] is described as follows. Using
a blockcipher E : K × M → M with K = M = {0, 1}n, [23] builds a (n,m)-bit
TBC for m < n such that

MinT
K(M) = EK′

T
(M) where K ′

T = EK(T‖0n−m). (25)

The security bound of this construction is as follows. For any A using q queries
with τ time, we have another adversary B using q queries with τ ′ = τ + O(q)
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M

n

m

THL
EKE 0n−m

XTXT
Min,L(M)

Fig. 3. XTX applied to Minematsu’s TBC.

time such that AdvtsprpMin (A) ≤ (η + 1)AdvsprpE (B) + η2

2n+1 , where η = min{q, 2m}.
As analyzed by [23] this can provide a TBC with beyond-birthday security when
m < n/2. In particular [23] suggested m = n/3 which provides security against
2n−m = 22n/3 queries. Despite the simple construction, one big shortcoming
is its short tweak length, as mentioned by (e.g.) [15,16,20]. This is, however,
recovered if (25) is combined with XTX. Let XTXMin,L be XTX with internal
TBC being Min having n-bit block, m-bit tweak using n-bit blockcipher E. Here
we assume that tweak space of XTXMin,L is T = {0, 1}�, and underlying H :
L × T → {0, 1}n+m is Poly[n + m]. Then for any adversary A using q queries
and τ time, from (25) and Proposition 1 and Theorem 1, we have

AdvtsprpXTXMin,L
(A) ≤ (η + 1)AdvsprpE (B) +

η2

2n+1
+

�n+mq2

2n+m
, (26)

for some adversary B using q queries with τ + O(q) time, where η = min{q, 2m}
as above. For choosing m, we can assume that AdvsprpE (B) is at least q/2n for
adversary B using q queries and τ time when q is about τ (since E has n-bit
key and B can perform exhaustive key search, as observed by Bellare et al. [5]).
Ignoring �n+m and substituting η with 2m in the bound, the first and last terms
are about q/2n−m and q2/2n+m. Then m = n/3 is a reasonable choice which
makes these terms (q/22n/3)i for i = 1 and i = 2. This shows that we can
extend tweak keeping the original security of rekeying construction. The resulting
scheme is shown in Fig. 3, where a triangle in E denotes key input, and HL

denotes Poly[n + m]. Still, we need rekeying for each tweak and this can be
another drawback for performance.

4.3 Chained LRW

A provably-secure TBC construction which does not rely on rekeying construc-
tion [23] was first proposed by Landecker et al. [16]. It is an independently-
keyed chain of LRW, and is called4 CLRW2. Assuming LRW shown as (7) using
4 The name CLRW2 means it is a chain of the second construction of [17], which we

simply call LRW.
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H : L × T → M and E : K × M → M for M = {0, 1}n and T = {0, 1}� as
underlying components, they proposed the construction described as

CLRW2T
K1,K2,L1,L2

(M) = LRWT
K2,L2

(LRWT
K1,L1

(M)). (27)

The authors proved5 that its TSPRP-advantage is O(q3ε2) when H is ε-AXU.
More formally, TSPRP-advantage is at most 8q3ε̂2/(1 − q3ε̂2) where ε̂ is defined
as max{ε, 1/(2n − 2q)}. Thus, assuming ε̂ = ε and the denominator being larger
than 1/2, the bound is at most

16q3ε2. (28)

If H is Poly[n], we have ε = �n/2n, then the bound is 16q3�2n/22n. In this
case CLRW2 needs 2�n GF(2n) multiplications for each �-bit tweak.

A natural extension of CLRW2, i.e. a longer chain more than two, was
proposed by Lampe and Seurin [15]. The construction for r chains is simply
described as r-CLRWT

K1,...,Kr,L1,...,Lr
(M) in the same manner to (27), where

2-CLRW is equivalent to CLRW2. If r blockciphers are independent URPs, they
proved that r-CLRW for any even r has TSPRP-advantage of

crq
(r+2)

4 ε
r
4 , where cr =

4
√

2√
r + 2

· 2
r
4 , (29)

when the underlying H : L×T → M is ε-AXU. If T is {0, 1}� and H is Poly[n],
the bound is

crq
(r+2)

4 �
r
4
n

2
nr
4

. (30)

Let r-CLRW(m) be the r-CLRW with n-bit blockcipher EK and m-bit tweak
(for some fixed m > 0) processed by independently-keyed r instances of Poly[n].
We note that r-CLRW(�) needs r�n multiplications over GF(2n).

r-CLRW Combined with XTX. Let r > 2 be an even integer. We apply
XTX with H being Poly[n, n] using two keys in GF(2n) to r-CLRW(n), to build
an (n, �)-bit TBC. The resulting scheme uses r + 2�n GF(2n) multiplications,
hence uses fewer multiplications than r-CLRW(�) if �n > 1 and r ≥ 4. From
Theorem 1, Proposition 1 and (30), TSPRP-advantage of the resulting scheme is

crq
(r+2)

4

2
nr
4

+
�2nq2

22n
. (31)

This provides the same level of security as (30), unless �n is huge.
In case r = 2 the above combination gives no efficiency improvement. Still, by

combining CLRW2(m) for some m < n with XTX a slight improvement is pos-
sible. This is because CLRW2 needs two n-bit UH functions and the product
5 Originally the constant was 6, however an error in the proof was pointed out by

Procter [26]. He fixed the proof with an increased constant, 8.
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of their biases is multiplied by q3, while the bias of (n + m)-bit UH function
in XTX is multiplied by q2. For example, assuming n is divisible by 3, we set
m = n/3, and consider CLRW2(m) using two Poly[n] (with padding of tweak),
combined with XTX using Poly[n,m] to process �-bit tweak. This requires �n

GF(2n) multiplications and 3�n GF(2m) multiplications. It is not straightfor-
ward to compare the complexity of one multiplication over GF(2n) and three
multiplications over GF(2m), however, in most cases the latter is considered to
be lighter than the former, though the gain will be depending on whether the
underlying computing platform operates well over m-bit words. If this is the case
our scheme will have a better complexity than the plain use of CLRW2.

As a more concrete example, let us consider CLRW2 using two instances of
Poly[m,m,m] with m = n/3. For �-bit tweak, this CLRW2 requires 2 · 3 · 3�n =
18�n multiplications over GF(2m) and its TSPRP-advantage is, based on (28),
at most

16 · q3
(

(3�n)3

(2
n
3 )3

)2

=
11664 · q3 · �6n

22n
. (32)

If we combine this instance of CLRW2(m) with XTX using Poly[m,m,m,m],
then the advantage is at most

16 · 729q3

22n
+ q2

(3�n)4

(2
n
3 )4

=
11664q3

22n
+

81�4nq2

2
4n
3

. (33)

As shown by (32) and (33), for a moderate tweak length both bounds indicate
the security against about 22n/3 queries, while the combined scheme uses fewer
GF(2m) multiplications, i.e. 6 + 4 · 3�n = 6 + 12�n.

5 Conclusion

In this paper, we have studied the problem of tweak extension for a tweakable
blockcipher having fixed-length tweak. We proposed XTX as an effective solution
to this problem, by extending the work of Liskov et al. XTX uses one call of
a given tweakable blockcipher, Ẽ, and a variant of universal hash function, H,
for processing global tweak. When Ẽ has n-bit block and m-bit tweak, XTX
provides (n + m)/2-bit security, which is better than the conventional methods
known as Liskov et al.’s LRW or Corol et al.’s solution. The proposed method is
useful in extending tweak of dedicated tweakable blockciphers, which typically
have relatively short, fixed-length tweak. Moreover, XTX is even useful when
applied to some blockcipher modes for tweakable blockcipher which have beyond-
birthday-bound security. A natural open problem here is to find tweak extension
schemes that have better security bounds than that of XTX.
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Abstract. An authenticated encryption scheme is deemed secure (AE)
if ciphertexts both look like random bitstrings and are unforgeable. AE
is a much stronger notion than the traditional IND–CCA. One short-
coming of AE as commonly understood is its idealized, all-or-nothing
decryption: if decryption fails, it will always provide the same single error
message and nothing more. Reality often turns out differently: encode-
then-encipher schemes often output decrypted ciphertext before verifica-
tion has taken place whereas pad-then-MAC-then-encrypt schemes are
prone to distinguishable verification failures due to the subtle interac-
tion between padding and the MAC-then-encrypt concept. Three recent
papers provided what appeared independent and radically different def-
initions to model this type of decryption leakage.

We reconcile these three works by providing a reference model of
security for authenticated encryption in the face of decryption leakage
from invalid queries. Having tracked the development of AE security
games, we provide a single expressive framework allowing us to com-
pare and contrast the previous notions. We find that at their core, the
notions are essentially equivalent, with their key differences stemming
from definitional choices independent of the desire to capture real world
behaviour.

Keywords: Provable security · Authenticated encryption · Multiple
errors · Unverified plaintext · Robustness

1 Introduction

Nowadays, authenticated encryption (AE) is understood to mean that ciphertexts
both look like random bitstrings (IND$–CPA) and are unforgeable (INT–CTXT).
Moreover, the customary syntax of AE considers encryption deterministic and
stateless, instead accepting a nonce (number-used-once) and associated data to
ensure that repeated encryption of the same message does not lead to repeated
ciphertexts. Preferably security degrades gracefully if nonces are repeated. AE
thus defined is more flexible and considerably stronger than the traditional
notion of IND–CCA symmetric encryption.

The CAESAR competition [4] served as a catalyst to strengthen the secu-
rity models used in AE even further. One particular shortcoming is the tradi-
tional reliance on an idealised, all-or-nothing decryption: if decryption fails, it
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 94–111, 2015.
DOI: 10.1007/978-3-319-27239-9 6
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will only ever provide a single error message. For various reasons, this is not a
realistic assumption. Especially MAC-then-encrypt schemes (or rather, decrypt-
then-verify) are prone to real-world security flaws, on the one hand due to dis-
tinguishable verification failures and on the other due to the need to output (or
at least, store) decrypted ciphertext before verification has taken place.

Three recent works improve the “robustness” of AE schemes by consider-
ing how well their security guarantees hold up under incorrect usage or when
implemented non-ideally. Boldyreva et al. [6] investigated the effect of multiple
decryption errors for both probabilistic and stateful encryption (BDPS). Later,
Andreeva et al. [2] moved to a nonce-based setting, introducing a framework to
capture the release of unverified plaintexts (RUP). Concurrently, Hoang et al.
[11] coined an alternative notion, robust authenticated encryption (RAE), which
they claim is radically different from RUP.

On the surface, these papers take very different approaches, with quite dif-
ferent goals in mind. BDPS concentrates on decryption errors, and does not con-
sider nonce-based encryption. RUP extends AE by syntactically adding explicit,
fixed-size tags and considering separate verification and decryption algorithms.
It models the leakage of candidate plaintexts, with an eye on the online or
nonce-abuse settings. In contrast, RAE considers schemes with variable, user-
specified stretch as authentication mechanism, and decryption is given a much
richer syntax, extending semantics for ciphertexts not generated by the encryp-
tion algorithm. This raises the natural questions how these models relate to each
other and how well each captures real-world decryption leakage.

Our Contribution. Inspired by the above works, we provide a framework tak-
ing in the best of all worlds, where our key goal is to reconcile RUP and RAE
with BDPS, both notationally and conceptually. Our framework allows us to draw
parallels and highlight where the works agree or differ, while ensuring any goals
described can be easily interpreted and compared to the scenarios they model.

Our framework revolves around a broad reference game that models adver-
sarial access, and demonstrate that classic reductions still hold. This allows us
to define “subtle Authenticated Encryption” (SAE) as the strongest security
goal relevant to (deterministic) decryption leakage. The term subtle highlights
that security in the real-world is very much dependent of the subtleties of how
decryption is implemented. As illustration, in the full version we describe a nat-
ural yet insecure implementation of AEZ [11], refuting its robustness. Finally, we
compare results from the three noted papers within our framework, using SAE
as a reference point. After clarifying some (misconceived) terminology, we find
that for schemes with fixed stretch the notions essentially collapse.

The fundamental difference between the models is philosophical: Is authenti-
cated encryption primarily a primitive like a blockcipher, whose security should
be measured with reference to the ideal object of the given syntax and where the
authentication level might be set to zero; or is it a means to authenticate and
encrypt where security should be measured against a—possibly unobtainable—
ideal?
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2 Security Games for the Real World

2.1 Standard Syntax of Authenticated Encryption

Current understanding of authenticated encryption is the culmination of many
years of work (see the full version [3] for an overview). Modern AEAD schemes
take a number of standard inputs and produce a single output. The correspond-
ing spaces are named after the elements they represent: the key space K, the
message space M, the nonce space N, the associated data space A, and finally
the ciphertext space C. Each of these spaces is a subset of {0, 1}∗ and we make
no assertions over the sizes of these spaces.

An authenticated encryption (AE) scheme is a pair of deterministic algo-
rithms Π = (E,D) (encrypt and decrypt) satisfying

E : K × N × A × M → C
D : K × N × A × C → M ∪ {⊥}.

We use subscripts for keys, superscripts for public information (nonce and asso-
ciated data) and put content data in parentheses.

To be correct, decryption must be a left inverse of encryption: if C = EN,A
k (M)

then DN,A
k (C) = M . Conversely, a scheme is tidy if decryption is a right inverse:

if DN,A
k (C) = M �=⊥ then EN,A

k (M) = C. Together then, correctness and tidiness
imply encryption and decryption are inverses. For schemes that are both correct
and tidy, Ek uniquely determines Dk, which implies that security can be regarded
as a property of Ek only [13].

The stretch measures the amount of ciphertext expansion (or redundancy).
We require that the stretch τ(M) = |EN,A

k (M)| − |M |, depends only on the
length of the message, and so τ(M) = τ(|M |) (for all k,N,A, and M). We call
such schemes τ -length-regular, extending the accepted term length–regular to
describe how the length is regulated. To minimise ciphertext expansion, most
modern schemes set τ to be constant. We restrict ourselves to length-regular
schemes: those whose stretch depends only on the length of the message, meaning
τ(M) = τ(|M |).

One might deviate from the syntax above. On the one hand, RUP uses an
equivalent formulation with explicit tag space in addition to the ciphertext space
(see Sect. 3.2). On the other hand, RAE uses an explicit input of the encryption
indicating what size of tag is desired. In Sect. 3.3 we discuss the implication
of user-defined tag-sized explicitly, and our rationale for omitting it from our
framework.

2.2 Syntax of Subtle Authenticated Encryption

Just as a plan seldom survives contact with the enemy, so it goes with authenti-
cated encryption: several provably secure schemes have fallen when implemented
in practice. Especially for the decryption of invalid ciphertext it is challenging to
ensure an adversary really only learns the invalidity of the ciphertext, and not
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some additional information. Additional information that has been considered
in the past (and we will encounter again shortly) are multiple error symbols and
unverified plaintext. Both can be classified as leakage, leading to our new notion
of a subtle authenticated encryption scheme.

A subtle AE (SAE) scheme is a triple of deterministic algorithms Π =
(E,D,Λ), where Λ corresponds to leakage from the decryption function. We
restrict ourselves to leakage functions that are deterministic functions on their
inputs, and only provide leakage to invalid decryption queries. Thus the leakage
function looks like

Λ : K × N × A × C → {�} ∪ L

where the leakage space L can be any non-empty set not containing �, and the
distinguished symbol � refers to a message that is valid. So, for any (N,A,C),
either DN,A

k (C) = ⊥ or ΛN,A
k (C) = �, but not both: a message is either valid

(and so decryption returns the plaintext but there is no leakage) or is invalid
(and so decrypts to ⊥ and leakage is available). The generality of L caters for any
type of leakage, including schemes with multiple errors [6], those which output
candidate plaintexts [2] or those which return arbitrary strings when presented
invalid ciphertexts [11].

Explicitly separating Λ from D emphasises that leakage is a property of
the decryption implementation, rather than of the decryption function. Conse-
quently, security (for correct and tidy schemes) becomes a property of both the
encryption function and the decryption implementation’s leakage. A scheme may
be proven secure for some leakage model Λ, but such a result is only meaningful
as long as Λ accurately reflects the actual leakage as observed in practice. Even
minor optimizations of the same decryption function can change the associated
implementation so much that the scheme goes from being provably secure under
some robust security definition to trivially insecure (we show how AEZ is affected
in the full version). From this perspective, security becomes a subtle rather than
robust affair, hence the name subtle authenticated encryption, a term inspired
by the SubtleCrypto interface of the WebCryptoApi [17].

Comparison with the Traditional Model. There is a canonical mapping
from any SAE scheme (E,D,Λ) to a more traditional one (E,D) simply by
removing access to the leakage oracle: correctness and tidiness of the subtle
scheme clearly imply correctness and tidiness of the traditional one. Note that
many distinct SAE schemes map to the same traditional form, implying that the
canonical mapping induces an equivalence relation on SAE schemes. One could
turn a traditional (E,D) scheme into a subtle form by inverting the above canoni-
cal map, for which the obvious preimage is setting ΛN,A(C) = ⊥ if DN,A

k (C) = ⊥
and otherwise �, again preserving correctness and tidiness. This corresponds to
the SAE scheme whose implementation does not leak at all, so we expect our
security notion to match the traditional one in this case (and it does).

Contrast with Leakage Resilience. Our separation into D and Λ is possible
because decryption is deterministic, and its inputs (i.e. N,A,C) may be provided
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to Λk. Within the leakage resilience community [10], leakage is generally charac-
terised as an auxiliary output from the original algorithm (often supported by an
auxiliary input to control the type of leakage); moreover one would expect both
encryption and decryption to leak. This integrated perspective reflects the real
world more closely (as leakage results from running some algorithm) and is more
expressive. For example, if the decryption routine were probabilistic, the leakage
may require access to the internal randomness, or if the scheme is stateful it may
require the correct state variables. Some of these issues could be overcome by
(for example) assuming the adversary always calls Dk directly before calling Λk,
and that Λk has access to the previous internal state (from which it can deduce
the operation of Dk if required), however ultimately which syntax works best
depends on the context.

In the context of capturing subtle implementation differences for modern
authenticated encryption (where decryption is stateless and deterministic) we
feel separating leakage and decryption is a useful abstraction. Though our work
could be recast into a form more closely aligned with the leakage resilience
literature, the notation would become more cumbersome, for instance when an
adversary can only observe the leakage.

2.3 Authentication and Encryption Security Games

In most modern AE definitions, an adversary is given access to a pair of ora-
cles claiming to implement encryption and decryption. They are either real, and
act as claimed, or ideal, returning the appropriate number of random bits for
encryptions and rejecting all decryption attempts. To win the game, the adver-
sary must decide which version it is interacting with. Certain queries would lead
to trivial wins, for example asking for the decryption of a message output by the
encryption oracle. These queries are forbidden (or their output suppressed).

This contrasts with the original definition of AE as IND–CPA plus INT–
CTXT, where in both constituent games an adversary only has access to a single,
real encryption oracle (and no decryption oracle); moreover, in the IND–CPA
only a single challenge ciphertext is present and for INT–CTXT only a single
ciphertext needs to be forged.

At first sight the two definitions may appear quite different, yet they are
known to be equivalent. Where does this difference stem from and should one
prefer one over the other?

We argue that both definitions can be cast as simplifications of a single
reference game. This reference game is itself a distinguishing game where an
adversary has access to two sets of oracles: one set of oracles will be used to
capture the goal of the adversary, whereas the other matches the powers of the
adversary. For instance, to capture AE an adversary has access to four oracles:
the two oracles from the modern definition (implementing either the real or ideal
scenario) and the two oracles from the traditional IND–CCA definition (namely
true encryption and decryption oracles).

Four oracles may seem overly complicated, but we posit that our approach
using a reference game has several advantages:
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1. Generality: Hybrid arguments and composition results—the techniques
implicitly underlying the standard definition—do not always hold when
enriching the security model to take into account real-world phenomena such
as key dependent messages or leakage (e.g. [9]). In these cases, one typically
undoes certain simplifications; relying on our reference game instead is more
transparent.

2. Granularity: Because adversarial goal and power are clearly separated, one
can immediately identify a natural lattice of security notions and argue about
possible equivalences depending on the context.

3. Intuition: The simplified games are less intuitive when considering real-life
scenarios. For instance, even if an adversary knows it has seen a number
of true plaintext–ciphertext pairs, for any set of fresh purported plaintext–
ciphertext pair it should be clueless as to its validity. This statement follows
directly from our reference game, yet for the simplified games one would need
a hybrid argument.

4. Tightness: In real world scenarios, obtaining challenge ciphertexts versus
known ciphertexts might carry different costs, which can be more easily
reflected in our reference game (as the queries go to different oracles). A secu-
rity analysis directly in our game is potentially more tight than one in a
simplified game (whose results subsequently need to be ported to the more
fine-grained real-world setting).

Security Games. We refer to games in the form GOAL–POWER, clearly sep-
arating the adversary’s objective from its resources. The complete lists of powers
and goals are presented in Table 1, and described. Security of scheme Π in game
XXX against an adversary A is written as an advantage AdvXXX

Π [Π](A) and cap-
tures the adversary’s ability to distinguish between two worlds. In both worlds
the adversary has oracle access that depends on the scheme Π (initiated using
some random and secret key k ←$ K); the oracles corresponding to the goal differ
between the worlds, whereas the oracles corresponding to the power will be identi-
cal. The notation ΔO1,O2

Oa,Ob
, short-hand for the advantage in distinguishing between

(O1,O2) and (Oa,Ob), is used to make the oracles explicit. A scheme is XXX
secure if AdvXXX

Π is sufficiently small for all reasonably resourced adversaries.

Goals. The goal oracles Enc and Dec either implement the true scheme or an
idealised version. In each case they return � if their inputs are not elements of
the appropriate spaces. If b = 0, we are in the real world, where Enc and Dec
implement Ek and Dk respectively, and if b = 1 we are in the ideal world, where
they implement $ and ⊥.

The oracle ⊥ matches the syntax of Dk but returns ⊥ in response to any
queries. The oracle $ is a random function: for each nonce-associated data pair,
it samples an element $N,A uniformly at random from the set of all τ -length-
regular functions f : M → C. When queried, $(N,A,M) := $N,A(M). When
the adversary is forbidden from repeating queries, this corresponds to uniformly
sampling |M | + τ(|M |) random bits.
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Table 1. A compact table of goals and powers. The challenge oracles Enc and Dec
specify the adversary’s goal: they either implement honest encryption and decryption
or their idealised versions, where Enc samples responses randomly and Dec returns ⊥
to all queries. The honest oracles Ek and Dk capture the adversary’s power. Each game
corresponds to a 5–bit bitstring b1b2b3b4b5, with for example CTI–CPA (equivalent to
INT–CTXT) being 01100, and IND–sCCA (i.e. IND-CCA with decryption leakage) as
10111.

Oracles Type Challenge Honest Leakage

Role Enc Dec Ek Dk Λk

Bit 1 2 3 4 5

Names 0 0 n/a 0 0 PAS 0 No leakage

1 0 IND 1 0 CPA 1 Leakage (s)

0 1 CTI 0 1 CDA

1 1 AE 1 1 CCA

The goal is defined based on which oracles an adversary is given access to. We
code this access using 2-bit strings, where the first bit is set in the presence of an
Enc oracle, leaving the second bit for Dec. This leads to three possible goals (it
does not make sense to have no challenge oracle): indistinguishability (IND, 10),
authenticated encryption (AE, 11), and ciphertext integrity (CTI, 01).

Ideal Versus Attainable. Our ideal encryption oracle responds random bitstrings
for fresh calls. This corresponds to security as one would expect it to hold; it
can be considered as a computational analogue of Shannon’s notion of perfect
security where the uncertainty of a ciphertext given a message should be max-
imal. Similarly, the ideal decryption oracle is unforgiven, implying (traditional)
integrity of ciphertexts.

Consequently, for some classes of constructions the advantage cannot be
small. For instance, for online schemes it will be easy to distinguish by look-
ing at prefixed and for schemes without sufficient stretch, randomly choosing a
ciphertext can be used to forge.

One could bypass these impossibilities by adapting the ideal oracles accord-
ingly [1,12]). Hoang et al. [11] suggest to use attainable security as benchmark;
one can see the resulting security notions as (ever more complicated) extensions
of the pseudorandom permutation notion typical for blockcipher security. This
immediately reveals that to some extent, this choice is one of abstraction bound-
aries. When purely studying how to transform one primitive to another, it makes
sense to used the ideal primitive as benchmark (as that will be the best attain-
able). Yet, we prefer a security definition that is both robust and meaningful:
When non-experts use the primitive in larger designs, there should be as few
implementation and configuration pitfalls as possible plus a small adversarial
advantage should imply security as intuitively understood.
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Powers. Traditionally, the adversary’s powers describe what access they are
given to honest encryption and decryption oracles, with which to learn about
the scheme. Again, we identify these with 2-bit strings, listed in Table 1. The
standard notions are a passive attack (PAS, 00) a chosen plaintext attack (CPA,
10), and a chosen ciphertext attack (CCA, 11). Access to only a decryption oracle
is known as (DEM) CCA in the KEM–DEM setting (e.g. [7,8]), we will refer
to it as a chosen decryption attack (CDA, 01). Unless overall encryption access
is restricted as in the DEM scenario, the CDA scenario is of limited relevance
(see Sect. 2.5).

Leakage Oracle. We add a third honest oracle implementing Λk, that models how
schemes behave when subject to imperfect decryption implementations. Again,
we use a bit to indicate whether a game provides an adversary access or not. If
not, the standard notions arise, but presence leads to a range of new notions,
which we will call their “subtle” variant. The name is chosen to emphasise that
security critically depends on implementation subtleties.

As an example, power 101 stands for “subtle Chosen Plaintext Attack”, or
sCPA in short (note the “s” prefix). The power 001 corresponds to an adversary
who cannot make decryption queries, yet it can observe leakage from them. This
seeming contradiction makes sense when recalling that Λk only gives out infor-
mation when queried with invalid ciphertexts. For instance, an adversary might
learn how long it takes for ciphertexts to be rejected, but not what plaintexts
correspond to valid ciphertexts. Given the implied validity checking capability
and following the literature, we will refer to this power as a chosen verification
attack (CVA) instead of a subtle passive attack.

2.4 Restrictions on the Adversary

With these lists in place, we consider what domain separations are required to
prevent trivial wins. That is, we ask in what cases must the adversary be forbidden
from taking the output of one oracle and using it as input to a second. The domain
separation required for inputs to Λk is the same as Dk, although we do not place
any restrictions on the output of Λk: any seemingly trivial wins that occur from
this are weaknesses of the scheme and demonstrate such a Λk cannot be secure.
In the reference game, the adversary may make any queries he wishes that are not
prohibited. In the effective game, he does not make superfluous queries either.

Trivial Wins. Any messages repeated between the two encryption oracles will
distinguish the Enc oracle. Similarly, attempting to decrypt the output of Enc
will allow the adversary to immediate determine whether Enc is random, since
he will receive the initial plaintext if not. Attempting to decrypt the output
of the honest encryption oracle Ek will also trivially identify whether Dec is
real or idealised. Since the scheme is assumed to be tidy, we have that for any
C ∈ C, Ek(Dk(C)) = C. So, any output from the honest decryption oracle
Dk cannot be passed to the challenge encryption oracle Enc, since this would
trivially distinguish the schemes.
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Superfluous Queries. A superfluous query is one to which the adversary need
not make. Sending the output of Ek to Dk is superfluous since by correctness the
answer is already known. Similarly, tidiness implies the opposite: output from
Dk need not be sent to Ek. As soon as Dec outputs something other than ⊥,
the adversary can distinguish it as the real case, and so might as well terminate,
meaning no outputs from Dec need ever be queried to the encryption oracles.
Finally, though not displayed in the diagram, assuming the game is deterministic
and stateless (such as in the nonce or IV–based settings) it is superfluous to
repeat queries or make any that return �, since neither yields useful information.

Nonces. If the adversary is nonce-respecting if he does not query (N,A,M ′) to
either Enc or Ek if he has already queried either of them with (N,A,M) for some
M . Note that we do not require the adversary be nonce-respecting, leaving this
choice to specific security notion: relations between games are independent of
strategies the adversary may or may not use, such as being nonce-respecting or
nonce-abusing. That said, this behaviour can be enforced by the security game
suppressing all such queries and returning �, making such queries superfluous.

2.5 Effective Games

Since there are 32 possible games and countless probabilistic adversaries, it would
be prudent to begin by removing those which are directly equivalent. We give
these in terms of the corresponding bitstring, where x, y and z signify bits that
may (but need not) be set. We write X =⇒ Y to signify that security in game
X implies security in game Y, meaning that for any adversary A against game
Y there is an adversary B against game X who uses similar resources and wins
with similar probability.

Proposition 1 lists three (classes of) implications, which allows us to reduce
the 32 games to only 4 interesting ones in Corollary 1. The proof for Proposition 1
can be found in the full version.

Proposition 1. We may assume the adversary is deterministic and makes no
superfluous or prohibited queries. Against such an adversary, several games are
trivially related:

1. Adding extra oracles never makes the adversary weaker.
2. x1y0z ⇐⇒ x1y1z: a decryption oracle does not help if a Dec challenge oracle

is present.
3. 1x0yz ⇐⇒ 1x1yz: an encryption oracle does not help if a Enc challenge

oracle is present.

However, no further (generic) reductions are possible.

Corollary 1. The effective games are just 1100x, 1000x, 1001x and 0110x
(where x signifies a bit that might or might not be set). These correspond to
AE–PAS, IND–PAS, IND–CDA, CTI–CPA and their subtle variants.
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2.6 Error Simulatability

We now define ERR (for Error Simulatability) to be the goal of distinguishing
Λk from Λl, where l ←$ K is drawn independently of k. As always, this can be
paired with any set of powers, leading to (for example) ERR–CCA:

AdvERR−CCA
Π :=Δεk,Dk,Λk

εk,Dk,Λt.

Initially this may appear unnecessarily specific: why should a definition of sim-
ulatability be given that restricts the simulator so tightly? As the following lemma
shows, if there exists any good simulator, then Λl is one. Choosing this as our ref-
erence definition means security is completely described by (E,D,Λ), rather than
also requiring a description of the simulator. Obviously proof authors are welcome
to use any simulator they wish, but a reference definition should be no more com-
plex than absolutely necessary. After providing the lemma in question, we give
some initial observations. Both results are proven in the full version.

Lemma 1. If there exists a good simulator, Λl is one. That is, if there exists
some stateful simulator S such that Δεk,Dk,Λk

εk,Dk,S is small, then so is ERR–CCA.
The inverse also holds.

Lemma 2. We observe that AdvERR−PAS
Π = 0. Also, CTI–CPA + ERR–CCA

⇐⇒ CTI-sCPA + ERR–CPA.

2.7 Subtle Authenticated Encryption (SAE)

We define Subtle Authenticated Encryption (SAE) as a more succinct name for
AE-sCCA, the strongest goal describable within this framework (i.e. 11111).
The name, inspired by WebCryptoAPI [17], highlights the importance of the
subtleties in implementations when applying such results. Thus, a secure SAE
scheme is a triple (E,D,Λ) along with appropriate spaces such that the AE-
sCCA advantage is sufficiently small. So, the adversary has access to challenge
encryption and decryption oracles, as well as honest encryption and decryption
oracles, and certain amounts of leakage from the decryption function, and can
make any query that does not leak to a trivial win. This characterisation clearly
describes the situation from the real-world perspective.

From the designers point of view, due to reductions described in
Proposition 1 it suffices to demonstrate that the scheme is AE-sPAS (i.e. AE-
CVA, 11001) against an adversary who does not make useless queries or those
that lead to trivial wins. Clearly there are various ways of doing this. Looking
ahead somewhat, we will provide description of SAE in terms of the RUP defini-
tions, as well as comparing it with RAE. The most intuitive method for proving
a scheme SAE secure is likely to be through the following decomposition.

Theorem 1. The SAE goal can be trivially decomposed:

SAE ⇐⇒ AE + ERR–CCA ⇐⇒ IND–CPA + CTI–CPA + ERR–CCA.
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Table 2. Notions from BDPS and RUP that directly translate into our framework.

Our notion IND–CPA CTI–CPA CTI–sCPA IND–sCCA IND–CVA

Simplified bitstring 10000 01100 01101 10011 10001

BDPS notion IND$-CPA INT–CTXT* INT–CTXT IND$–CCA IND$–CVA

Reference (in [6]) Definition 5 Definition 7 Definition 7 Definition 5 Definition 5

Direct translation 10000 01110 01111 10011 10001

RUP notion IND–CPA INT–CTXT INT–RUP

Reference (in [2]) Definition 1 Definition 4 Definition 8

Direct translation 10000 01100 01111

3 Comparison of Recent AE Notions

Three recent papers introduced strengthened AE notions to capture distin-
guishable decryption failures [6], releasing unverified plaintext [2], and “robust”
authenticated encryption [11]. In every case the encryption oracle can be cast as

E : K × N × A × M → C

but their authors make slightly different definitional choices depending on which
aspect of the implementation they had in mind when developing the notion.
The main differences are how decryption and its leakage are defined, when a
ciphertext is considered valid, and what security to aim for. In the remainder
of this section we will show how each of these three notions can be cast into
our framework. With the appropriate modifications, it turns out that each of
these three notions are essentially equivalent to our more general notion. As
an obvious corollary, the three existing notions turn out to be not quite that
radically different.

3.1 Distinguishable Decryption Failures (BDPS, [6])

Several provably secure IND-CCA secure schemes have succumbed to practical
attacks as a result of different decryption failures being distinguishable, both
in the public key and symmetric settings [5,18]. Boldyreva et al. [6] initiated a
systematic study of the effects of symmetric schemes with multiple decryption
errors. They emphasised probabilistic and stateful schemes, omitting a more
modern nonce-based treatment. Below we describe the nonce-based analogues of
their syntax and security notions.

A nonce-based, multi-error AE scheme a la BDPS, is a pair (Ek,Dk),

E : K × N × A × M → C
D : K × N × A × C → M ∪ L

satisfying the classical definition of correctness. The idea is that if decryption
fails, it may output any error symbol from L. (BDPS stipulate finite L, but this
restriction appears superfluous and we omit it.)
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To cast a (nonce-based) BDPS scheme into our SAE syntax, we observe
the obvious (invertible) mapping from a scheme (Ek,Dk) by setting Ek = Ek,
Dk(C) = Dk(C) whenever Dk(C) ∈ M or otherwise ⊥, and Λk(C) = Dk(C)
whenever Dk(C) ∈ L or otherwise �.

Notions. BDPS define a number of notions, including both IND and IND$
concepts. Once adapted to a nonce-based setting, several of their notions directly
translate into our framework, as listed in Table 2. Additionally, BDPS define
error invariance [6, Definition 8], which (roughly) says that it should be hard for
an adversary with access to honest encryption and decryption oracles to achieve
any leakage other than a particular value. This notion, INV–ERR, implies an
adversary cannot learn anything from decryption leakage and can be thought of
as a special case of ERR–CCA since the simulator need just return this common
value. However, error invariance is strictly stronger than leakage simulatability.

The strongest goal defined by BDPS is IND$–CCA3 [6, Definition 19], which
incorporates multiple errors to the classical authenticated encryption notion. It
is characterised by two oracles: an adversary has to distinguish between (Ek,Dk)
(real) and ($,⊥) (ideal), where the error ⊥ is a parameter of the notion. Thus
despite the desire to capture multiple errors, in the ideal case the adversary
is still only presented with a single error symbol. This curious artefact results
from using INV–ERR rather than ERR–CCA to characterise “acceptable” leak-
age. Unfortunately, it leads to a reference definition that does not model the
real-world problem satisfactorily, for instance it fails to capture the release of
unverified plaintext.

Implications and Separations. BDPS provide several implications and sep-
arations between their notions. Although originally stated and proven for prob-
abilistic and stateful schemes, the results easily carry over to a nonce-based
setting. Using our naming convention, BDPS show that IND–CVA + CTI–sCPA
=⇒ IND–sCCA, yet IND–CVA + CTI–CPA �=⇒ IND–sCCA. This immedi-

ately implies a separation between CTI–sCPA and CTI–CPA. They also prove
that AE and INV–ERR jointly are equivalent to their IND$–CCA3 notion (The-
orem 20), which itself implies IND–CVA and CTI–sCPA.

Since INV-ERR implies ERR–CCA, this means IND$–CCA3 implies SAE.
Moreover, the separation between ERR–CCA and INV–ERR carries over when
comparing IND$–CCA3 and SAE. For completeness, we give the following theo-
rem, which is a direct result of combination of Theorems 1 and 20 of BDPS (after
incorporating nonces) with the observation that INV–ERR is more restrictive
than ERR–CCA.

Theorem 2. The IND$–CCA3 notion of BDPS is stronger than SAE solely in
its requirement of simulatable errors. That is,

IND$–CCA3 ⇐⇒ AE + INV–ERR =⇒ AE + ERR–CCA ⇐⇒ SAE.



106 G. Barwell et al.

3.2 Releasing Unverified Plaintext (RUP, [2])

Andreeva et al. [2] set out to model decryption more accurately for schemes
that calculate a candidate plaintext before confirming its validity. In practice,
such a candidate plaintext often becomes available (including to an adversary),
even if validation fails. Examples include all schemes that need to decrypt or
decipher before integrity can be checked (covering MAC–then–Encrypt, MAC–
and–Encrypt, and encode–then–encipher) as well as schemes sporting online
decryption (for instance single-pass CBC–then–MAC decryption). Andreeva et al.
provide a large number of new definitions, covering security under decryption-
leakage for both confidentiality and integrity.

Differences Between Frameworks. The RUP framework includes an explicit
tag T , however the tag and ciphertext terms are always used together. This allows
us to consider the ciphertext as (C, T ) instead, which can be injectively mapped
into C, e.g. by C ′ := C||T if the stretch is fixed. Following their motivating
scenario, the RUP paper models decryption using a decryption oracle D and a
verification oracle V satisfying

D : K × N × A × C → M = L

V : K × N × A × C → {�,⊥}.

When called with a valid ciphertext, Dk returns the plaintext, and Vk returns
�. Conversely, when called with an invalid ciphertext, Dk will return some leak-
age information (nominally, the eponymous “unverified plaintext”) and Vk will
return ⊥.

By changing perspective, we can cast a RUP scheme into the SAE framework:
let Dk(C) = Dk(C) if Vk(C) = � (otherwise Dk(C) = ⊥) and Λk(C) = Dk(C)
whenever Vk(C) = ⊥ (and otherwise Λk(C) = �). Then, (E,D,Λ) is an SAE
scheme (where E = E), with leakage space L = M.

Notions. Andreeva et al. refer to the classic “encryption-only” notions of con-
fidentiality and integrity under their customary names IND–CPA and INT–
CTXT (our CTI–CPA). When decryption comes into play, a large number of
new notions is suggested, typically defined in terms of adversarial access to their
Dk and Vk oracles.

For integrity, dubbed INT–RUP for integrity under release of unverified plain-
text, the adversary is given full access to all three honest oracles (Ek,Dk, and Vk),
and challenged to make a forgery. INT–RUP directly translates into our frame-
work, where it corresponds to CTI-sCCA (itself equivalent to CTI–sCPA). This
makes Andreeva et al.’s INT–RUP equivalent to BDPS’s INT–CTXT notion.

For the myriad of RUP’s confidentiality notions, an adversary is—for what-
ever reason—not provided with a verification oracle. This makes translation into
our syntax cumbersome as any direct method would implicitly provide access to
Vk functionality.
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Implications and Separations. Andreeva et al. provide a number of impli-
cations and separations involving their new notions. They show that PA2 and
DI are equivalent (Theorems 8 and 9), and imply PA1 (Theorem1). Moreover,
when combined with IND–CPA, PA2 provides a meaningful increase in security
(Theorems 2 and 3), whereas PA1 does not (Theorems 4 and 5). Finally, they
provide an alternative proof that CTI–sCPA is strictly stronger than CTI–CPA
(Theorem 10).

Comments and Comparisons. The RUP model restricts any decryption leak-
age to the message space. This is unnecessarily restrictive: it does not directly
cover multiple decryption errors; moreover a scheme may conceivably leak some
internal variable (say a buffer) that is not in the message space.

The verification oracle for most of the RUP confidentiality notions is miss-
ing. For instance, the RUP version of IND–CCA security only gives an adversary
access to the leakage, which raises the question whether RUP’s IND–CCA secu-
rity implies classical IND–CCA once the leakage is ignored. If the scheme is tidy,
the RUP decryption and encryption oracle together suffice to implement the ver-
ification oracle. For a tuple (N,A,C), request M ← DN,A

k (C) and “accept” if
and only if C = C ′ ← EN,A

k (M). Unfortunately, the domain separation in place
for RUP’s IND–CCA prohibits this sequence of queries. As a result, it is unclear
whether RUP’s IND–CCA implies standard IND–CCA or not, even though the
former is defined as part of a framework of stronger notions.

Authenticated Encryption Definition. Andreeva et al. suggest that an
authenticated encryption should meet the combined goals of IND–CPA and PA
for confidentiality, and INT–RUP for integrity [2, Sect. 8]. Having to satisfy three
separate notions may appear needlessly complicated and lacks the elegance a
single notion can provide. We propose RUPAE as a natural and neater way of
defining Andreeva et al.’s final objective, where we use DI instead of the less
direct PA:

AdvRUPAE
Π := ΔEk,Dk,Vk

$,Dl,⊥
This goal may originally have been envisaged by the authors, yet it was not
explicitly alluded to (let alone defined). Providing a single succinct security goal
is only worthwhile if it properly captures the compound notions, which we show
in Theorem 3. The proof is intuitive, based around liberal use of the triangle
inequality, see the full version for details.

Theorem 3. The single term RUPAE notion is equivalent to the triple of goals
originally proposed. That is,

RUPAE ⇐⇒ CTI–sCPA + DI + IND–CPA ⇐⇒ INT–RUP + PA +
IND–CPA

To relate this to our other notions, we provide the following observation
(proven in the full version):
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Lemma 3. CTI–sCPA + ERR–CPA ⇐⇒ CTI–sCPA + DI.

Finally then, we have the reassuring result that security within the RUP
framework coincides with our more general definition. To prove it, one simply
chains Theorem 1, Lemmas 2 and 3, then Theorem 3 (in that order).

Corollary 2. RUPAE security is equivalent to SAE security.

3.3 Robust Authenticated Encryption (RAE, [11])

Robust authenticated encryption, as proposed by Hoang et al. [11, Sect. 3], has
robustness against inadvertent leakage of unverified plaintext as one of it goals.
A notable difference between traditional notions of AE and RAE is that the latter
explicitly targets schemes where the intended level of integrity is specified by the
user for each message. To this end, both encryption and decryption algorithms
are provided with an additional input, called the stretch parameter τ , leading
to the syntax:

E : K × N × A × N × M → C
D : K × N × A × N × C → M.

Thus encryption calls are of the form C = Ek(N,A, τ,M), taking in a nonce
N , some associated data A, the stretch parameter τ and a message M , and
output some ciphertext C. There is a requirement that τ is indeed the stretch,
namely that |C| = |M | + τ . Decryption calls take a similar format, and are
allowed to “leak” a string not of the correct length when queried with invalid
inputs. This length restriction on the leakage implies that valid ciphertexts can
easily be determined from their length: if M = Dk(N,A, τ, C) and |M | = |C|−τ ,
then it follows that Ek(N,A, τ,M) = C.

The Security Game. The RAE security game aims to describe the best possible
security for an object with the given syntax. Comparison to ideal objects is not
new: it is the standard notion for blockciphers (namely a strong pseudorandom
permutation) and has appeared previously as an alternative for deterministic
authenticated encryption (namely strong pseudorandom injections).

For given stretch τ , the ideal object is a random element of Inj(τ), the set of
all injective functions whose outputs are always τ bits longer than their input.
The inverse of an element π ∈ Inj(τ) is not well defined (for τ > 0) for strings
outside of the range π. Since decryption may leak on these incorrect ciphertexts,
returning ⊥ in that case is no longer an option. Hoang et al. solve this problem
by introducing a simulator Sπ which has very restricted “access” to the ideal
encryption π, as explained below.

Security is then defined relative to a simulator S and in terms of distinguish-
ing between two worlds, with

AdvRAE
Π,S := P

[
k ←$ K : AEk,Dk → 1

] − P
[
πN,A,τ ←$ Inj(τ) : Aπ,Sπ → 1

]
.

Here the injections πN,A,τ are tweaked by the nonce, associated data, and stretch
τ . Decryption queries in the ideal world are answered by Sπ which exhibits
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the following behaviour. If a decryption query is valid, then it is of the form
(N,A, τ, C) where C ∈ Image(πN,A,τ ) and the simulator Sπ returns the preimage
M . Otherwise, the ciphertext is invalid, or C /∈ Image(πN,A,τ ). In this case, the
oracle calls a stateful simulator S, which must simulate the decryption oracle
and output a bitstring of any length other than |C| − τ , without access to the
injections π·,·,· (and the Sπ oracle will simply forward S’s output). A code-based
description of this can be found in the original paper, where it is referred to as
world RAEΠ,S [11, Fig. 2].

Fixing the Stretch. The variable, user-defined stretch sets RAE apart from
the notions discussed in this paper so far. Although Hoang et al. insist that all
values of stretch should be allowed for a scheme to be RAE, including τ = 0,
they hasten to add that this does make forging trivial, making it impossible to
get a good (generic) upper bound on the CTI-CPA advantage. However, there
is no intrinsic reason not to let a scheme restrict which values of τ it supports.
Certainly their security definition still makes perfect sense if the stretch is no
longer user defined and depends only on the length of the input message.

To ease comparison with previous security notions, we will henceforth restrict
attention to fixed stretch schemes. This makes the mapping that takes an RAE
scheme to an SAE scheme rather intuitive, and analogous to that used in Sect. 3.2.
Explicitly, let (E,D) be an RAE scheme, and (inspired by RUP) let Vk be the
associated validity function, where VN,A,τ

k (C) = � ⇐⇒ |DN,A,τ
k (C)| − |C| = τ .

Then (E,D,Λ) is an SAE scheme, where EN,A
k (M) := EN,A,τ

k (M) and

DN,A
k (C) :=

{
DN,A

k (C)
⊥ , ΛN,A

k (C) :=

{
� if VN,A,τ

k (C) = �
DN,A

k (C) if VN,A,τ
k (C) �= �

Clearly this security game is similar to those presented above.

Comments and Comparisons. Following Rogaway’s definitional papers [14–
16], most recent symmetric results have been given in terms of indistinguishabil-
ity from the ideal world ($,⊥): an ideal encryption oracle that outputs random
bits and an ideal decryption oracle that never accepts. Hoang et al. instead opt
for an ideal world that corresponds to the “best achievable”, a contrast they
emphasize: “Before, AE–quality was always measured with respect to an aspi-
rational goal; now we’re suggesting to employ an achievable one.” [11, Sect. 1:
Discussion].

One feature, possibly by design, of RAE is that it accurately describes the
security attainable from a PRP through the encode-then-encipher paradigm.
Leakage is envisaged as being an invalid final buffer: one that has been deciphered
but did not decode. This leads to the slightly artificial restriction that leakage
cannot be a string of valid length.
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Fixed–stretch RAE as an SAE Goal. Having applied the transform (which
has no bearing on security), it is not surprising to find RAE and SAE security
essentially coincides, with the only complication a generic attacks term, reflect-
ing the difference between ideal and best possible security. After providing the
RAE[τ ] analogue of Lemma 1, we provide an explicit relationship between the
games.

Lemma 4. For any simulator S, AdvRAE[τ ]
Π,Λ (A) ≤ 2 · AdvRAE[τ ]

Π,S (A), where Λ is
to the simulator that first samples l ←$ K, then for all queries evaluates Λl.

Theorem 4. RAE[τ ] and SAE security are equivalent. Explicitly, for an adver-
sary A making at most q queries, and using a repeated nonces r times,

∣
∣
∣Adv

RAE[τ ]
Π,Λ (A) − AdvSAE

Π (A)
∣
∣
∣ ≤ q

2τ−1 + r2+r
2τ+m+1 .

4 Conclusions

By defining SAE we provided a framework useful to compare prior notions all
addressing the same problems, but from slightly differing perspectives. BDPS
provides the most generalised syntax, although a (seemingly unnecessary) con-
dition that the error space be finite limits the applicability of their results. RUP
presents the material in a very practical way, with definitions and models that
clearly describe how decrypt-then-verify schemes behave, but in doing so yield a
scheme that does not readily generalise to handling alternative leakage sources.
RAE on the other hand defines a goal that, at first glance, appears to be the
strongest of them all, but upon further inspection is rather more nuanced. Over-
all, the three recent works have more in common than the original authors (esp.
of RUP and RAE) might have indicated.
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Abstract. Robust authenticated encryption (RAE) is a primitive for
symmetric encryption that allows to flexibly specify the ciphertext expan-
sion, i.e., how much longer the ciphertext is compared to the plaintext.
For every ciphertext expansion, RAE aims at providing the best-possible
authenticity and confidentiality. To investigate whether this is actually
achieved, we characterize exactly the guarantees symmetric cryptogra-
phy can provide for any given ciphertext expansion. Our characterization
reveals not only that RAE reaches the claimed goal, but also, contrary to
prior belief, that one cannot achieve full confidentiality without cipher-
text expansion. This provides new insights into the limits of symmetric
cryptography.

Moreover, we provide a rigorous treatment of two previously only
informally stated additional features of RAE; namely, we show how
redundancy in the message space can be exploited to improve the security
and we analyze the exact security loss if multiple messages are encrypted
with the same nonce.

1 Introduction

Authenticity and confidentiality are arguably among the most important cryp-
tographic objectives. Authenticated encryption is a symmetric primitive that
aims to achieve both at the same time, allowing efficiency gains and reducing
the risk of misuse compared to combined schemes. Several notions of authen-
ticated encryption have emerged over a series of works [2,3,5,7,8,13], includ-
ing authenticated encryption with associated data [4,12] and misuse-resistant
authenticated encryption [14]. In this development, robust authenticated encryp-
tion (RAE), introduced by Hoang, Krovetz, and Rogaway [6], is the latest and
most ambitious notion. Robust authenticated encryption allows to specify the
ciphertext expansion λ that determines how much longer ciphertexts are com-
pared to the corresponding plaintexts. Its self-declared goal in [6] is to provide the
best-possible authenticity and confidentiality for every choice of λ. This raises the
c© Springer International Publishing Switzerland 2015
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question of what best-possible authenticity and confidentiality is, and whether
RAE actually achieves it. We provide a formal model that allows us to investi-
gate this question and answer it in the affirmative. We further show how to use
verifiable redundancy to improve security, and we show what security guarantees
remain if values intended as nonces are reused. Both questions were addressed
in [6] but not proven formally.

1.1 Robust Authenticated Encryption

An RAE scheme consists of a key distribution K, a deterministic encryption algo-
rithm E , and a deterministic decryption algorithm D. The encryption algorithm
takes as input a key K, a nonce N , associated data A, the ciphertext expan-
sion λ, and a message M . It outputs a ciphertext C. The decryption algorithm
takes as input K, N , A, λ, and C, and returns the corresponding message M (or
⊥ if C is an invalid ciphertext). In [6], the security of an RAE scheme is defined
via a game in which an adversary has access to two oracles and has to distin-
guish between two possible settings. In the first setting, the oracles correspond
to the encryption and decryption algorithm of the RAE scheme, where the key
is fixed in the beginning and chosen according to K. In the second setting, the
first oracle chooses for each N , A, λ, and message length � an injective function
that maps strings of length � to strings of length � + λ. On input (N,A, λ,M),
the oracle answers by evaluating the corresponding function. The second oracle
corresponds to the partially defined inverse of that function that answers ⊥ if
the given value has no preimage. An RAE scheme is secure if these two settings
are indistinguishable for efficient adversaries. While this seems to be a strong
guarantee, it is not clear which security such a scheme actually provides in a
specific application and whether it is best-possible.

1.2 Security Definitions and Constructive Cryptography

Since game-based security definitions only capture what an adversary can do in
a specific attack-scenario, they inherently fall short of providing guarantees that
hold in any possible application of the scheme. To capture what RAE schemes
achieve, we formulate our results using the constructive cryptography frame-
work by Maurer and Renner [9,10]. The central idea of this framework is that
the resources available to the parties, such as communication channels or shared
randomness like cryptographic keys, are made explicit. The goal of a crypto-
graphic protocol is then to construct, from certain existing resources, another
resource that can again be used by higher-level protocols or applications. For
example, the goal of an authentication scheme can be formalized as construct-
ing an authenticated channel from a shared secret key and an insecure channel.
The insecure channel allows a sender, say Alice, to send messages to a receiver,
say Bob, but entirely leaks the transmitted messages to the adversary and addi-
tionally allows the adversary to delete messages and inject arbitrary messages;
an authenticated channel still leaks the messages but only allows the adversary
to delete messages and to deliver the messages originally sent. A conventional
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encryption scheme is supposed to construct a secure channel from a shared secret
key and an authenticated channel, where the secure channel restricts the leakage
to the length of the transmitted messages. The composition theorem of construc-
tive cryptography guarantees that if two protocols achieve these constructions,
the composed protocol constructs a secure channel from two shared secret keys
and an insecure channel, i.e., the security of the overall construction follows from
the security of the individual construction steps. On the other hand, authenti-
cated encryption directly achieves the overall construction.

1.3 Our Contributions

In the vein of [1] and accounting for the associated data RAE schemes sup-
port, we formalize the goal of RAE as constructing an augmented secure channel
(ASC) from a shared secret key and an insecure channel. An ASC takes as input
from the sender a tuple (A,M), leaks A and the length of M to the adversary,
and allows the adversary to either deliver the pair (A,M) or to terminate the
channel. This channel provides authenticity for both A and M , but confiden-
tiality is only guaranteed for the message M . The value A can for example be
used to authenticate non-private header information; see [1] for an application
of ASC in the context of TLS 1.3.

Uniform Random Injection Resource. Instead of directly constructing
channels from a shared secret key and an insecure channel, we introduce an
intermediate system URI (uniform random injection) that provides the sender
and receiver access to the same uniform random injections and their inverses
chosen as follows: For each combination of N , A, λ, and message length �, an
injective function that maps strings of length � to strings of length �+λ is chosen
uniformly at random.

As we shall see, this resource can be constructed from a shared secret key
using an RAE scheme in a straightforward manner. We then construct several
channels from URI and an insecure channel. The advantage of this approach
is that all further constructions in this paper are information-theoretic, i.e., we
do not have to relate the security of each construction step to the RAE security
game. Instead, we can rely on the composition theorem to guarantee the security
of the overall construction.

Random Injection Channel. We show that one can construct a channel
we call RIC (random injection channel) from URI and an insecure channel by
fixing λ and using a counter as the nonce. RIC can be seen as a further inter-
mediate step towards constructing ASC, that in addition allows us to analyze
best-possible security.

The channel RIC takes as input a pair (A,M) from the sender and leaks A
and the length of M to the adversary. The adversary can deliver the pair (A,M),
and further at any point in time try to inject a new message of length � and some
value A. The probability with which such an injection is successful depends on
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λ and �. In case of a success, an almost uniform message of length � from the
message space together with A is delivered to the receiver. If an injection was suc-
cessful and the tuple (A,M) was received, and if the sender subsequently sends
exactly the pair (A,M), then the adversary is notified about this repetition.

Best Possible Authenticity and Confidentiality. If ASC is considered as
the ultimate goal of RAE and authenticated encryption in general, the only
shortcomings of RIC are that it is possible to inject messages with positive prob-
ability and that, if an attempted message injection was successful, the channel
leaks a certain repetition to the adversary. While the first shortcoming is a lack
of authenticity, the second one is a lack of confidentiality. While the type of leak-
age violating confidentiality might seem artificial, we describe an application in
which such leakage might be problematic. Briefly, the leakage can reveal hidden
information flow from the receiver to the sender.

We then analyze whether RAE really achieves the best-possible authenticity
and confidentiality by bounding the probabilities of successful message injec-
tions and of leaking this particular repetition pattern for arbitrary schemes for
achieving authenticity and confidentiality. While it is straightforward to see that
authenticity requires redundancy and therefore a large ciphertext expansion, one
might hope that the repetition leakage can be avoided. We prove that this is not
the case, i.e., we show that the probability of an adversary being able to observe
such a repetition is at least as high as in RIC, no matter what scheme is used
or which setup assumptions are made.

To illustrate this lack of confidentiality for a concrete scheme, consider the
following scenario in which the one-time pad is used over an insecure channel:
Assume the attacker injects a ciphertext to Bob who decrypts it using the shared
secret key and outputs the resulting message. Further assume Alice afterwards
sends a message to Bob which results in the attacker seeing the same cipher-
text. In that case, the attacker learns the fact that the message sent by Alice
equals the message output by Bob. This contradicts the understanding of con-
fidentiality as revealing nothing except the length of the transmitted message.1

Our results generalize this observation to arbitrary schemes. We thereby refine
the understanding of what symmetric cryptography can and cannot achieve by
showing that confidentiality, quite surprisingly, also requires redundancy in the
ciphertexts when only insecure channels and an arbitrary setup are assumed,
even if the protocol can keep state.

Augmented Secure Channels and Message Redundancy. Since the prob-
ability of successful message injections decreases exponentially with λ, RIC is
indistinguishable from ASC for large λ. We further provide a construction that

1 This also contradicts a prior result in [11] that claims that the one-time pad con-
structs a certain (fully) confidential channel, a so-called XOR-malleable channel,
from an insecure channel and a shared key. The proof in that paper is flawed in that
the simulation fails if more ciphertexts are injected than messages sent.
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incorporates an idea from [6] to exploit the redundancy in messages to achieve
a better bound. Our construction reveals the exact trade-off between ciphertext
expansion and redundancy to achieve a required security level.

Nonce-Reuse Resistance. It was claimed in [6] that reusing nonces only
results in leaking the repetition pattern of messages, but does not compromise
security beyond that. However, the claim was neither formalized nor proven.
We fill this gap by introducing the channel resource RASC (Repetition ASC)
that, aside of the length of each message, leaks the repetition pattern of the
transmitted messages to the adversary. Furthermore, the adversary can deliver
messages out-of-order and arbitrarily replay messages. We show that RASC can
be constructed from URI and an insecure channel if the used nonce is always the
same. This confirms the informal claim from [6] and makes explicit that some
authenticity is lost by allowing the adversary to reorder messages.

2 Preliminaries

2.1 Notation for Systems and Algorithms

We describe our systems with pseudocode using the following conventions: We
write x ← y for assigning the value y to the variable x. For a distribution X over
some set, x � X denotes sampling x according to X . For a finite set X, x � X
denotes assigning to x a uniformly random value in X.

We denote the empty list by [ ] and for a list L, L ‖ x denotes the list L with
x appended. Furthermore, |L| denotes the number of elements in L and the ith
element in L is denoted by L[i] for i ∈ {1, . . . , |L|}. For a FIFO queue Q, we
write Q.enqueue(x) to insert x into the queue and Q.dequeue() to retrieve (and
remove) the element of the queue that was inserted first among all remaining
elements.

For n,m ∈ N, Inj (Σn, Σm) denotes the set of injective functions Σn → Σm.
For an injective function f : X → Y , we denote by f−1 the function Y → X∪{⊥}
that maps y to the preimage of y under f if existing, and to the distinct element ⊥
otherwise.

Typically queries to systems consist of a suggestive keyword and a list of
arguments (e.g., (send,M) to send the message M). We ignore keywords in
writing the domains of arguments, e.g., (send,M) ∈ M indicates that M ∈ M.

2.2 Constructive Cryptography

Constructive cryptography makes statements about constructions of resources
from other resources. A resource is a system with interfaces via which the
resource interacts with its environment and which can be thought of as being
assigned to parties. All resources in this paper have an interface A for the sender
(Alice), an interface B for the receiver (Bob), and an interface E for the adver-
sary (Eve). In our security statements, we are interested in the advantage of a
distinguisher D in distinguishing two resources, say R and S which is defined as

ΔD (R,S) = Pr [DR = 1] − Pr [DS = 1] ,
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where Pr [DR = 1] denotes the probability that D outputs 1 when connected
to resource R. More concretely, DR is a random experiment, where the dis-
tinguisher repeatedly provides an input to one of the interfaces A, B, or E and
observes the output generated in reaction to that input before it decides on its
output bit.

Converters are systems that can be attached to an interface of a resource to
change the inputs and outputs at that interface, which yields another resource.
A converter is a system with two interfaces: the inner interface in is connected
to an interface of a resource and the outer interface out, becomes the new con-
nection point of that resource towards the environment. The protocols of the
honest parties and simulators correspond to converters.

We directly state the central definition of a construction of [9] and briefly
explain the relevant conditions.

Definition 1. Let R and S be resources and let noAtckR and noAtckS be con-
verters that describe the default behavior at interface E when no attacker is
present. Let ε be a function that maps distinguishers to a value in [−1, 1] and
let sim be a converter (the simulator). A protocol, i.e., a pair (conv1, conv2) of
converters, constructs resource S from resource R within ε and with respect to
the pair (noAtckR, noAtckS) and the simulator sim, if for all distinguishers D,

ΔD
(
conv1

Aconv2
BnoAtckR

E R, noAtckS
E S

)
≤ ε(D) (Availability)

ΔD
(
conv1

Aconv2
B R, simE S

)
≤ ε(D). (Security)

The first condition ensures that the protocol implements the required func-
tionality if there is no attacker. For example, for communication channels, all
sent messages have to be delivered when no attacker interferes with the protocol.

The second condition ensures that whatever Eve can do with the assumed
resource, she could do as well with the constructed resource by using the simula-
tor sim. Turned around, if the constructed resource is secure by definition, there
is no successful attack on the protocol.

The notion of construction is composable, which intuitively means that the
constructed resource can be replaced in any context by the assumed resource
with the protocol attached without affecting the security. This is proven in [9].

2.3 Robust Authenticated Encryption

Let Σ be an alphabet (a finite nonempty set). Typically an element of Σ is a bit
(Σ = {0, 1}) or a byte (Σ = {0, 1}8). For a string x ∈ Σ∗, |x| denotes its length.
We define the syntax of a robust authenticated encryption scheme following [6].

Definition 2. A robust authenticated encryption (RAE) scheme Π = (K, E ,D)
consists of a key distribution K, a deterministic encryption algorithm E that
maps a key K ∈ K, a nonce N ∈ N , associated data A ∈ A, ciphertext expan-
sion λ ∈ N, and a message M ∈ M to a ciphertext C ∈ C, and a deterministic
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decryption algorithm D that maps (K,N,A, λ,C) to an element in M ∪ {⊥}.
We assume the domains N , A, M, and C are equal to Σ∗. We write EN,A,λ

K and
DN,A,λ

K for the functions E(K,N,A, λ, ·) and D(K,N,A, λ, ·), respectively. We

require that DN,A,λ
K

(
EN,A,λ

K (M)
)

= M for all K,N,A, λ,M .

3 Shared Uniform Random Injections and RAE Security

In this section, we describe the resource URI that grants access to shared uni-
form random injections and their inverses at interfaces A and B, and no access at
interface E. We then use URI to define the security of RAE schemes and show
that any RAE scheme that satisfies this definition can be used to construct URI
from a shared secret key. Though syntactically different, it is easy to see that
our definition is equivalent to the security definition from [6]. We recall that
definition and prove the equivalence in the full version of this paper.

We first give a definition for the uniform random injection system URI.

Definition 3. The resource URI has interfaces A, B, and E and takes inputs of
the form (fun, N,A, λ, x) and (inv, N,A, λ, y) at interfaces A and B for N ∈ N ,
A ∈ A, λ ∈ N, x ∈ M, and y ∈ C. Any input at interface E is ignored. We
assume the domains N , A, M, and C are equal to Σ∗. On input (fun, N,A, λ, x)
at interface A or B, it returns fN,A,λ,|x|(x) at the same interface. On input
(inv, N,A, λ, y), it returns f−1

N,A,λ,|y|−λ(y) if |y| > λ, and ⊥ otherwise. The func-
tion fN,A,λ,� is chosen uniformly at random from the set Inj

(
Σ�, Σ�+λ

)
when

needed for the first time and reused for later inputs.

3.1 Definition of RAE Security and Construction of URI

We define a shared key resource SKK for some key distribution K. The resource
initially chooses a key according to K and outputs this key to interfaces A and B
while interface E remains inactive, see Fig. 1. Slightly abusing notation, we will
also refer to the key space by K whenever no confusion can arise. We further
define the converter raeΠ that is based on an RAE scheme Π = (K, E ,D). First,
raeΠ requests the key from SKK. For any input at the outer interface, it evaluates
E or D using that key (and the arguments provided in the input) and returns
the result. The code is given in Fig. 1.

We consider an RAE scheme secure if all efficient distinguishers have poor
advantage with respect to the following definition.

Definition 4. The advantage of a distinguisher D for an RAE scheme Π is
quantified as

Advrae
Π (D) := ΔD

(
raeΠ

A raeΠ
B SKK,URI

)
.

It is straightforward to see that the definition implies the following construc-
tion statement, where the converters sim and noAtck are defined as the converter
that blocks any interaction at the interface it is connected to.
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Fig. 1. Protocol that constructs URI from a shared secret key (left) and the shared
secret key resource (right). For the shared key resource, interface E remains inactive.

Lemma 1. The protocol (raeΠ , raeΠ) constructs URI from SKK within Advrae
Π

with respect to (noAtck, noAtck) and simulator sim defined above.

Proof. Since interface E of SKK and URI are inactive, the converters sim and
noAtck have no effect when connected to that interface, i.e., noAtckE SKK =
SKK and noAtckE URI = simE URI = URI. Thus, both the availability and
the security condition of the construction are equivalent to

ΔD
(
raeΠ

A raeΠ
B SKK,URI

) ≤ Advrae
Π (D)

for all distinguishers D, which trivially holds by definition of Advrae
Π . 	


4 Random Injection Channels: Security for any Expansion

The goal of the current section is to examine the exact security achieved by
RAE schemes when used to protect communication. We present constructions
of specific secure channels from insecure channels and resource URI where each
type of secure channel precisely captures the amount of leakage to an eaves-
dropper and the possible influence of an adversary interfering with the protocol
execution. As an additional result, we are able to answer what best-possible
communication security is and observe that RAE schemes achieve this level of
security.

The insecure channel IC allows messages m ∈ M to be input repeatedly at
interface A. Each message is subsequently leaked at the E-interface. At inter-
face E, arbitrary messages (including those that were previously input at inter-
face A) can be injected such that they are delivered to B. This channel does
not give any security guarantees to Alice and Bob. A formal description is pro-
vided in Fig. 2. For the rest of this paper, the message space of the insecure
channel is Σ∗.
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Fig. 2. The insecure channel resource.

4.1 Constructing Random Injection Channels

The Constructed Channel. The channel we construct in this section is
defined in Fig. 3 and can be roughly described as follows: It allows to repeatedly
send pairs (Ai,Mi) in an ordered fashion from a sender to a receiver. Each pair
consists of the associated data Ai and the message Mi. The attacker is limited
to seeing the associated data Ai and the length of the message |Mi| of each
transmitted pair. Additionally, the attacker learns whether the ith injected pair
equals the one that is currently sent.

The attacker can either deliver the next legitimate pair (Ai,Mi) or try to
inject a pair (A,M) that is different from (Ai,Mi). Such an injection is only
successful with a certain probability. The associated data A and the length � of
the message are chosen by the attacker and M is a uniformly random message
of length � if A �= Ai. Otherwise, M is a uniformly random message M �= Mi of
length �. If an injection attempt is not successful, the resource does not deliver
messages at interface B any more and signals an error by outputting ⊥. If the
adversary injects the ith message, the legitimate ith message cannot be delivered
anymore.2

The success probability of an injection attempt depends on the expansion λ
and the specified message length � and whether the sender’s queue S is empty
or not. The exact probabilities are quantified by the two sampling functions
Sample and SamplExcl. The function Sample first samples a bit according to
the probability that a fixed element from Σ�+λ has a preimage under a uniform
random injection Σ� → Σ�+λ. If the bit is 1, a uniform random preimage is
returned. The function SampleExcl essentially does the same, but the domain
and codomain are both reduced by one element.3

Protocol. We construct resource RICλ from [URI, IC] which denotes the
resource that provides at each interface access to the corresponding interface

2 This relates to the security of RAE schemes which ensures that the message cannot
be decrypted using a wrong nonce. In our construction, the nonce is implemented
as the sequence number.

3 This ensures that the injected message is different from the one that the sender
provided.
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Fig. 3. Description of RICλ. In the description, Bernoulli(p) denotes the distribution
over {0, 1}, where 1 has probability p and 0 has probability 1 − p.

of both resources. Our protocol specifies a particular but very natural usage of
URI where the nonce is implemented as a counter value.4 We present the pro-
tocol as pseudocode in Fig. 4. The converter for the sender, sndλ, accepts inputs
of the form (send, A,M) at its outer interface. It outputs (fun, i, A, λ,M) at the
inner interface to URI. The nonce is implemented as a counter and λ is the
parameter of the protocol. Once a ciphertext is received as a return value from
URI, it is output together with its associated data at the inner interface for the
insecure channel IC. The receiver converter rcvλ receives ciphertexts together
with the associated data at its inner interface from IC and decrypts C using
parameters A, i and λ. On success, the corresponding plaintext is output at the
outer interface. If decryption fails, the converter stops and signals an error by
outputting ⊥.

Construction Statement. In order to show that the protocol (sndλ, rcvλ)
constructs RICλ from [URI, IC], we prove both conditions of Definition 1.
4 Implementing the nonce as a counter allows to maintain the order of messages.
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Fig. 4. The converters for the sender (left) and the receiver (right) to construct RICλ.

For all channels, the converter noAtck corresponds to the converter dlv that on
any input at its inner interface, outputs deliver to the channel connected to its
inner interface and blocks any interaction at its outer interface.

Theorem 1. Let λ ∈ N. The protocol (sndλ, rcvλ) constructs resource RICλ

from [URI, IC] with respect to (dlv, dlv) and simulator simRIC as defined in
Fig. 5. More specifically, for all distinguishers D

ΔD
(
sndAλrcv

B
λdlv

E[URI, IC], dlvERICλ

)
= 0 (1)

and ΔD
(
sndAλrcv

B
λ[URI, IC], simE

RICRICλ

)
= 0. (2)

We prove Theorem 1 in the full version of this paper.

4.2 What is Best-Possible Security?

We observe that RICλ has two undesirable properties: messages can be injected
and the output at interface E leaks more than only the length of the payload in
that it reveals whether Alice sends the pair (A,M) that has been output by Bob
upon an adversarial injection. In contrast, a channel that only leaks the message
length is considered fully confidential.

We first illustrate an application in which this lack of full confidentiality
is problematic. The main purpose of our example is to show that one cannot
exclude the existence of an application where exactly this (intuitively small)
difference to full confidentiality yields a security problem.

Second, we show that a successful injection followed by the undesired infor-
mation leakage about the repetition is possible for any scheme, even if it is
stateful and uses an arbitrary setup before starting communication, and that
the probability of this is minimized if RICλ is used.
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Fig. 5. Simulator for the security condition of the construction of RICλ.

Sample Scenario: On the Difference to Full Confidentiality. Assume a
setting in which party A is allowed to send information to party B via a fully
confidential channel but not vice versa. Suppose now that B finds a possibility
to send information to A via a covert channel and the two parties use the con-
fidential channel for messages from A to B and the covert channel for messages
from B to A. Suppose now that the confidential channel is in fact a channel that
leaks the above repetition event instead of only the message length. This gives
an investigator E a means to test for the existence of a covert channel from B
to A as follows: At some point, E injects a random message M to B. Assuming
information flow from B to A, party B might start a discussion about M with
party A. As part of this conversation, A might send M to B, which would sig-
nal a repetition-event to E. For large message spaces, it is very unlikely that A
comes up with the exact same message that was randomly injected to B before,
unless there is a (hidden) flow of information. The occurrence of the event is
therefore a witness for the existence of a channel from B to A. In contrast, a
fully confidential channel would not reveal the existence of the covert channel.

RIC Provides Best-Possible Security. In RICλ, an injection attempt is
successful with probability at most |M|

|C| = |Σ|−λ and given a successful injection
and that Alice subsequently sends the corresponding output of Bob, the above
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described leakage occurs with probability 1. Overall, the total probability that
an undesired property can be observed is bounded by |Σ|−λ.

We show that this probability is optimal and that no protocol can achieve a
better bound. Hence, RICλ maximizes authenticity and confidentiality. We first
prove the following general lemma.

Lemma 2. Let M and C be finite nonempty sets and let E and D be random
variables over functions A × M → C and A × C → M ∪ {⊥}, respectively, such
that

∀m ∈ M, a ∈ A : Pr[D(a,E(a,m)) = m] ≥ p

for some p ∈ [0, 1]. We then have for all a ∈ A and any random variable C that
is distributed uniformly over C and independent from E and D,

Pr[D(a,C) �= ⊥ ∧ E(a,D(a,C)) = C] ≥ p · |M|
|C| .

Proof. We have for all a ∈ A

Pr[D(a,C) �= ⊥ ∧ E(a,D(a,C)) = C]

=
∑

m∈M

∑

c∈C
Pr[D(a, c) = m ∧ E(a,m) = c ∧ C = c]

=
1
|C|

∑

m∈M

∑

c∈C
Pr[D(a, c) = m ∧ E(a,m) = c]

︸ ︷︷ ︸
=Pr[D(a,E(a,m))=m] ≥ p

≥ p · |M|
|C| ,

where we used in the second step that C is distributed uniformly over C and
independent from E and D. 	


Lemma 2 can be applied to our usual setting encAλdec
B
λ[SKK, IC] for a generic

protocol (encλ, decλ) in a straightforward manner: we only have to observe that
for the ith input (send, Ai,Mi), for all i ∈ N, converter encλ is characterized by a
probabilistic map A×M → C, that may depend on previous inputs and outputs
and on the key k. Similarly, the converter decλ is characterized by a probabilistic
map A × C → M ∪ {⊥} for any i ∈ N.

Correctness of the protocol implies that if (send, Ai,Mi) is input to encλ as
the ith query and yields ciphertext Ci, then the probability that on the ith
input (Ai, Ci) to decλ, and if decλ has not halted yet, the converter decrypts the
ciphertext to Mi with probability p; note that p = 1 for RAE schemes. Hence,
Lemma 2 implies that the probability that any of the two undesirable properties
can be observed during protocol execution is at least |Σ|−λ.
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5 Augmented Secure Channels and Verifiable
Redundancy

Looking at the specification of RICλ, we observe that for large values λ, the
probability of successful injections becomes exponentially small, and so are the
repetition events at interface E. We are particularly interested in the resource
that specifies this abstraction: a channel that allows to securely transmit mes-
sages consisting of an associated data and a payload part such that an attacker is
limited to seeing the associated data and the length of the payload, to deliver the
next message, or to abort the whole communication. This channel abstraction
corresponds to an augmented secure channel. Such channels were introduced in
[1] and shown to be achievable by the AEAD notion of [12]. Not surprisingly,
this confirms that RAE and AEAD achieve the same security goals for large
ciphertext expansion.

Additionally, we formally show how redundancy in messages can be exploited
to improve authenticity, where redundancy restricts the set of valid messages to
a subset of M = Σ∗.

The following theorem provides the exact security bound in terms of redun-
dancy in the message space and ciphertext expansion λ. We thereby confirm a
conjecture of [6]. Let v : M �→ {true, false} be a predicate on the message space.
We define the subset Mv := {M | M ∈ M ∧ v(M)} which we call the set of
valid messages. Following [6], the density of Mv is defined as

dv := max
�∈N

|Σ� ∩ Mv|
|Σ�| .

The Constructed Channel. The augmented secure channel ASCMv
is

described in Fig. 6. The channel is derived from RICλ by requiring that M ∈ Mv

and by removing undesired capabilities that vanish due to the exponentially
small success probability for large λ.

Fig. 6. Description of ASC, an augmented secure channel.
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Protocol. The protocol for the sender, sndChkv, accepts inputs of the form
(send, A,M) at its outer interface and forwards the pair to the channel RICλ

if and only if v(M) (and otherwise ignores the request). The receiver converter
rcvChkv, on receiving the pair (A,M) from RICλ, outputs (A,M) at its outer
interface if and only if v(M). If rcvChkv receives ⊥ from RICλ or if ¬v(M), it
outputs ⊥ at its outer interface and halts.

Theorem 2. Let λ ∈ N. The protocol (sndChkv, rcvChkv) constructs ASCMv

from RICλ with respect to (dlv, dlv) and simulator simASC defined in Fig. 7.
More specifically, for all distinguishers D

ΔD
(
sndChkAv rcvChkv

BdlvERICλ, dlvEASCMv

)
= 0 (3)

and ΔD
(
sndChkAv rcvChkv

BRICλ, simE
ASCASCMv

)
≤ dv · |Σ|−λ

. (4)

Fig. 7. Simulator for the security condition of the construction of ASCMv .

Proof. The availability condition (3) is straightforward to verify. We only prove
the security condition (4). It is easy to see that the two systems behave identically
as long as no injection attempt is successful. This is because successful injections
are necessary for observing repeat: as long as no injection is successful, for any
send-query to RICλ, the condition i ≤ |R| is not satisfied after incrementing i.
We thus only have to bound this probability. We hence consider the event that
in an interaction of a distinguisher with the real system sndChkAv rcvChkv

BRICλ

the first attempt to inject a random message is successful (since in case of an
unsuccessful attempt, both channels stop delivering messages). In any interaction
of D with the resource, the probability of the event is determined by RICλ as one
out of two possibilities, see Fig. 3. For any i ∈ N, if the ith query at interface E is
the first attempt to inject a message, then the probability depends on whether the
specified associated data and the length coincides with the length of the message
and the associated data of the ith input at interface A. Both probabilities are
upper bounded by

max
{ |Σ|Ci|−λ ∩ Mv| − 1

|Σ|Ci|| − 1
,
|Σ|Ci|−λ ∩ Mv|

|Σ|Ci||
}

≤ |Σ|Ci|−λ ∩ Mv|
|Σ|Ci||

=
|Σ|Ci|−λ ∩ Mv|

|Σ|Ci|−λ| · |Σ|−λ ≤ dv · |Σ|−λ
,
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Fig. 8. Description of RASC.

Fig. 9. The converters for the sender (left) and the receiver (right).

Fig. 10. Simulator for the security condition of the construction of RASCMv .
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where we used x−1
y−1 ≤ x

y for x ≤ y in the first step, and the definition of dv in
the last step. 	


6 Guarantees for Nonce-Reuse

One goal of robust authenticated encryption is to provide resilience to the misuse
when nonces are repeated. While the expected security loss was only informally
stated in [6], we rigorously derive the exact guarantees that can still be expected
in such a scenario. To this end, we consider the extreme case where the nonce is
a constant value.

Repetition ASC. The channel that is achieved if the nonce is repeating is
denoted RASCMv

and its description is given in Fig. 8. There are two differences
to ASCMv

: First, not only the length of the message is leaked at interface E
but also the number i of the first transmitted message that equals the current
message. This leaks the repetition pattern of transmitted values. Second, the
adversary can replay messages and induce arbitrary out-of-order delivery.

Protocol. The protocol, which we denote by (rsnd, rrcv), invokes URI using
the constant nonce 0. Furthermore, the protocol verifies that all messages are
from the set Mv. The protocol is specified in Fig. 9.

Theorem 3. Let λ ∈ N. The protocol (rsndλ, rrcvλ) constructs RASCMv
from

[URI, IC] with respect to (dlv, dlv) and simulator simRASC defined in Fig. 10.
More specifically, we have for all distinguishers D

ΔD
(
rsndAλrrcv

B
λdlv

E[URI, IC], dlvERASCMv

)
≤ 2dv + q · (q − 1)

2
· |Σ|−λ (5)

and

ΔD
(
rsndAλrrcv

B
λ[URI, IC], simE

RASCRASCMv

)
≤ 2dv + q · (q − 1)

2
· |Σ|−λ

, (6)

where q is the total number of inputs made by D.

We prove Theorem 3 in the full version of this paper.
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Abstract. In this paper, we consider the following question: Does
composing protocols having game-theoretic security result in a secure
protocol in the sense of game-theoretic security? In order to discuss the
composability of game-theoretic properties, we study security of crypto-
graphic protocols in terms of the universal composability (UC) and game
theory simultaneously. The contribution of this paper is the following:
(i) We propose a compiler of two-party protocols in the local universal
composability (LUC) framework such that it transforms any two-party
protocol secure against semi-honest adversaries into a protocol secure
against malicious adversaries in the LUC framework; (ii) We consider
the application of our compiler to oblivious transfer (OT) protocols, by
which we obtain a construction of OT meeting both UC security and
game-theoretic security.

1 Introduction

1.1 Background

In recent years, game-theoretic security of cryptographic protocols has been stud-
ied. Generally, cryptographic security is defined so as to guarantee some basic
concrete properties when participants follow the designed algorithms, even if
facing an adversarial behavior. In contrast, game-theoretic security is defined
such that, by considering behaviors of rational participants in a protocol whose
goal is to achieve their best satisfactions, following the specifications of the pro-
tocol honestly is the most reasonable for the rational participants. This security
notion enables us to design protocols more realistically. In this way, these con-
cepts capture situations from different perspectives and it seems that there is
great difference between the cryptographic security and game-theoretic secu-
rity. Up to date, there are several works aiming at bridging the gaps between
the two kinds of security [9,13,17–19]. Recently, Asharov et al. [4] studied two-
party protocols in the fail-stop model in terms of game-theoretic security and
showed how the notion of game theory can capture cryptographic properties.
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Furthermore, the game-theoretic security for oblivious transfer [14] and bit com-
mitment [15] has been studied in the malicious model.

In addition to cryptographic security and game-theoretic security, compos-
able security has also been studied in order to guarantee security of protocols
even if they are composed with other ones. The previous frameworks of this line
of research are based on the ideal-world/real-world paradigm, and the paradigm
underlies universal composability (UC) by Canetti [6] and reactive simulata-
bility by Backes, Pfitzmann and Waidner [5]. In addition, a simple paradigm
for composable security was given by Maurer [21], and this approach is called
constructive cryptography. In this paper, we utilize the UC framework [6] to
consider composable security of cryptographic protocols, since this approach
has been utilized in discussing composability of protocols in many papers.

In this paper, we consider the following question: Does composing proto-
cols having game-theoretic security result in a secure protocol in the sense of
game-theoretic security? In order to discuss the composability of game-theoretic
properties, we need to consider protocols having both universally composable
(UC) and game-theoretic security. Although the UC framework achieves guar-
antee of composability of protocols, the framework models the attacker as a
centralized entity so that it can capture only the situation that the attacker is
like a dictator and corrupted parties are all cooperative. For this reason, some
other formalisms have been proposed in [1–3,8,16,20,22]. In these formaliza-
tions, the centralized adversary is shattered to plural adversaries and each of
them is limited to obtain only local information. This modeling seems to be
more realistic than existing ones and can capture many settings that are not
captured by centralized adversary approach. In particular, we focus on the local
universal composability (LUC) framework in [8] in this paper, and we try to
answer the question mentioned above.

1.2 Our Approach

In this paper, we study security of cryptographic protocols in terms of compos-
ability and game theory simultaneously. In particular, we consider realizing a
compiling mechanism which transforms a protocol that is not game-theoretically
secure into a protocol that achieves the composable and game-theoretic security.
Although the UC framework is a powerful theory to consider composability of
protocols, it cannot cover game-theoretic security since the UC framework con-
siders a centralized adversary and cannot deal with protocols as games among
plural rational participants. However, if we switch the framework to the local
universal composability (LUC) framework [8], we can analyze protocols in terms
of game-theoretic security by clarifying which strategy is in Nash equilibrium.

Besides the LUC framework, there is also a well-established framework with
a composition theorem and an application to game theory, called collusion-
preserving (CP) framework [2]. The reason for our choice of the LUC framework
over the CP framework is that, the compiler of two-party protocols which we
focus on in this paper was originally proposed on the basis of the UC framework
[7]. On that point, choosing the LUC framework whose modeling is a direct
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extension of the UC framework enables us to discuss the whole aspect of the
compiler simply and similarly to the case of UC.

Furthermore, we refer to a connection between the LUC framework and game-
theoretic security. At first sight, one may think that these two notions are not
well connected, since there is a difference in the requirement for security defini-
tions: game-theoretic security requires that all participants can get the highest
utility when each of them acts honestly, while LUC security requires the indis-
tinguishability between the real-world and the ideal-world. However, there is
an important point common to these two notions, namely, all participants are
allowed to behave in a malicious (or rational) way. Considering this point, if we
define an ideal functionality in the LUC framework accurately so that it cap-
tures the correct actions which each participant should essentially take, LUC
security will satisfy the desirable property that following the protocol specifi-
cations honestly is the most reasonable for rational participants. However, in
general, defining an ideal functionality in such a reasonable way may be a hard
work, if we target complicated protocols where participants communicate intri-
cately. If we can do it in such a way, we can say that LUC security implies
game-theoretic security. As an illustration, in this paper we target oblivious
transfer (OT), since its functionality is traditional and relatively simple. Specifi-
cally, we explicitly formalize the functionality of OT in the LUC framework in a
way mentioned above, and our resulting OT protocol will be proven to be secure
even in terms of game-theoretic security.

1.3 Our Results

(i) A Compiler for Both UC Security and Game-Theoretic Security.
First, we propose a compiler of two-party protocols in the LUC framework such
that it transforms any two-party protocol secure against semi-honest adversaries
into a protocol secure against malicious adversaries in the LUC framework. Our
compiler is constructed based on the compiler of [7] in the UC framework. In
other words, we try to adapt the compiler of [7] to the LUC framework. For
doing it, we define a commit-and-prove functionality, denoted by F̂CP , which
is a slight modification of the commit-and-prove functionality FCP in the UC
framework. And, we show that the compiled protocol is secure against malicious
adversaries in the F̂CP -hybrid model in the LUC framework (in Theorem1 in
Sect. 3.2).

(ii) Application of the Compiler to Oblivious Transfer. Second, we con-
sider the application of our compiler to oblivious transfer (OT) protocols. Since,
OT is an important primitive for secure multi-party computation, it is worth
exploring a practical construction. In particular, we consider the construction
of the OT protocol, denoted by SOT, in [7,11,12] which UC-realizes the OT
functionality in static and semi-honest adversarial model. For the protocol SOT,
we show that:
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(1) SOT LUC-realizes F̂OT in the presence of semi-honest and static adversaries,
where F̂OT is the OT functionality in the LUC framework (in Theorem2 in
Sect. 4.2);

(2) SOT is not game-theoretically secure in the presence of rational parties (in
Theorem 3 in Sect. 4.3); and

(3) The compiled protocol of SOT by our compiler is game-theoretically secure
in the presence of rational parties (in Theorem 3 in Sect. 4.3).

Since the functionality of OT is relatively simple, we will be able to define it in
the LUC framework so that (3) follows from (i) and (1). However, we directly
prove (3) in terms of the game theory in order to confirm that the compiled
protocol of SOT actually meets game-theoretic security, and the analysis of the
compiled protocol from the viewpoint of the game theory enables us to see how
Nash equilibrium is achieved in it.

2 Preliminaries

2.1 Framework of Universally Composable Security

In this section, we provide an overview of the universal composability framework
(UC framework for short) in [6]. This framework allows us to define the security
properties of given tasks, as follows. First, the process of executing a protocol π
with a realistic adversary A is formalized. Next, an ideal process with a simulator
S is formalized. In this process, the parties hand their inputs to a trusted party
that is programmed to capture the appropriate functionality and obtain their
outputs from it with no interaction. A protocol is said to securely realize an ideal
functionality F if the process of executing the protocol amounts to emulating the
ideal process. Formally, there is an environment Z whose task is to distinguish
these two worlds. We refer to [6] for a complete overview of this framework, as
well as the definition of the real-world ensemble REALπ,A,Z and the ideal-world
ensemble IDEALF,S,Z , and also the composition theorem. In this paper, we only
write down the basic definitions due to lack of spaces.

Definition 1. Two binary distribution ensembles X and Y are computationally
indistinguishable (written as X

c≈ Y ), if for any c ∈ N there exists k0 ∈ N
such that for all k > k0 and for all a we have |Pr(X(k, a) = 1) − Pr(Y (k, a) =
1)| < k−c.

Definition 2. Let n ∈ N. Let F be an ideal functionality and let π be an n-
party protocol. We say that π UC-realizes F , if for any adversary A there exists
an ideal-process simulator S such that for any environment Z, IDEALF,S,Z

c≈
REALπ,A,Z .

In general, a protocol is designed by considering a model of adversaries, which
depends on to what extent the designer wants to achieve security against the
adversaries. We outline the model of corruptions and adversarial behaviors as
follows.
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1. The model of corruptions.
(a) Static corruption model. The set of parties who are to be corrupted

by an adversary is fixed at the beginning of the computation and no more
corruptions will be happen after that.

(b) Adaptive corruption model. In contrast to the static corruption model,
an adversary is allowed to corrupt parties at any time throughout the
computation.

2. The model of adversarial behaviors.
(a) Semi-honest adversarial model. Even if parties are corrupted, they

follow the specification of the protocol. Therefore, the adversary is
restricted only to get read access to the states of corrupted parties.

(b) Malicious adversarial model. Once the adversary corrupts parties,
they follow all the instruction of the adversary. In particular, the adver-
sary can make the corrupted parties deviate from the specification of the
protocol.

2.2 Framework of Local Universally Composable Security

The notion of the local universal composability (LUC for short) was proposed by
Canetti and Vald [8]. Roughly speaking, instead of setting a single adversary as
in the UC framework, there can be plural local adversaries who can corrupt only
a single party according to their party IDs. In the ideal process, the simulator
is also shattered to plural local simulators, therefore, the simulation is done by
relying only on each entity’s local information. We describe the LUC model of
protocol execution as follows, and aside from some modifications, the underlying
computational model is identical to the UC model.

Protocol Execution in the LUC Framework. At first, a set P of party
IDs and session ID, denoted by pid and sid respectively, are chosen by the
environment. This is different from the UC model where the party IDs can be
chosen arbitrarily during protocol execution. Next, the adversaries are invoked
with identity id = ((i, j),⊥) and denoted by A(i,j) for ordered pairs (i, j) ∈ P2.
The purpose of this modeling is to capture locality properly. Each local adversary
comes to take charge of a different side of the communication line, and can
interfere with the parties’ communication only via this line. This means that the
centralized adversary no longer exists and many situations, in real-life, where an
adversary can only rely on restricted information are capturable.

Once an adversary A(i,j) is activated, it can send information to Z or deliver a
message to a party with pid = i where the sender’s pid must be j. The adversary
is also allowed to corrupt parties with pid = i throughout the computation. An
important point is that adversaries cannot communicate each other directly and
their communications must be done through the environment Z (or an ideal
functionality if any). This formalization enables us to represent different subsets
of adversaries, if there exists a trusted party (an ideal functionality in the hybrid
model) and it provides a specific communication interface.

Once a party is activated, it basically follows its code and may write an out-
put on its output tape or send a message to the adversary where the pid of the
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adversary must be sender’s pid = i and receiver’s pid = j. As in the UC model,
the protocol execution ends when the environment halts. Let LREALπ,A,Z(k, z)
be a random variable taking the output of Z and LREALπ,A,Z be the ensemble
as in the UC model. The random variable LIDEALF,S,Z(k, z) and the ensem-
ble LIDEALF,S,Z in the ideal process are defined as well. Then, we have the
following definition in the LUC model as well as that of the UC model.

Definition 3 ([8]). Let n ∈ N. Let F be an ideal functionality and let π be
an n-party protocol. We say that π LUC-realizes F , if for every adversary
A there exists an ideal-process simulator S such that for any environment Z,
LIDEALF,S,Z

c≈ LREALπ,A,Z

3 A Compiler in the LUC Framework

In this section, we analyze the protocol-compiler of [7] (i.e., the compiler in the
UC model) in the LUC framework. At the beginning, we describe it, and then
we point out that it does not work well in the LUC framework in general, and
show a condition that it works well even in LUC framework.

3.1 Previous Compiler in the UC Framework

In order to transform a protocol into one that is secure against malicious adver-
saries, it is necessary to enforce malicious corrupted parties to follow the pre-
scribed protocol in a semi-honest way. Canetti et al. [7] proposed a universally
composable compiler based on the work of [12]. The compiler uses the commit-
and-prove functionality FCP which is defined so that only correct statements
are received by a receiver and incorrect statements are rejected. In a nutshell,
the committer commits its input value w as a witness and forwards a statement
x to the verifier by using FCP . The statement x is received by the verifier only
when R(x,w) holds, where R is a predetermined relation. In the compiled pro-
tocol, there are two copies of the functionality, one for the case where P1 is the
committer and the other one for the case where P2 is the committer, denoted
by F1

CP and F2
CP respectively, and these are identified by session-identifiers sid1

and sid2. The definition of the ideal functionality FCP and the protocol-compiler
Comp() are given as follows (Fig. 1).

Description of Comp(·): A party P1 proceeds as follows (the code for a party
P2 is analogous).

1. Random tape generation. When activating Comp(π) for a protocol π for
the first time with a session-identifier sid, the party P1 (and P2) proceeds as
follows.
(a) Choosing a random tape for P1.

i. P1 chooses r11 ∈R {0, 1}k and sends (commit,sid1,r11) to F1
CP . Then,

P2 receives a (receipt, sid1), and P2 chooses r21 ∈R {0, 1}k and sends
(sid, r21) to P1.
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Functionality FCP

FCP , which is running with a committer C, a receiver V and an adversary S,
and is parameterized by a value k and a relation R, proceeds as follows:
• Commit phase. Upon receiving a message (commit, sid, w) from C where
w ∈ {0, 1}k, append the value w to the list w, and send the message (receipt,
sid) to V and S. (Initially, the list w is empty.)
• Prove phase. Upon receiving a message (CP-prover, sid, x) from C where
x ∈ {0, 1}poly(k), compute R(x,w): If R(x,w) = 1, then send V and S the
message (CP-proof, sid, x). Otherwise, ignore the message.

Fig. 1. The commit-and-prove functionality in the UC model.

ii. When P1 receives a message (sid, r21) from P2, it sets r1 := r11 ⊕ r21
(r1 serves as P1’s random tape for execution of π).

(b) Choosing a random tape for P2.
i. P1 waits to receive a message (receipt,sid2) from F2

CP (this occurs
after P2 sends a commit message (commit,sid2,r22) to F2

CP ). It then
chooses r12 ∈R {0, 1}k and sends (sid,r12) to P2.

2. Activation due to a new input. When activated with an input (sid, x),
the party P1 proceeds as follows.
(a) Input commitment. P1 sends (commit,sid1,x) to F1

CP and adds x to the
list of inputs x (this list is initially empty and contains P1’s inputs from
all the previous activations of π).

(b) Protocol computation. Let m1 be the series of π-messages that P1 received
from P2 in all the activations of π until now (m1 is initially empty). P1

runs the code of π on its input list x, messages m1, and the random tape
r1 (as generated above).

(c) Outgoing message transmission. For any outgoing message m that π
instructs P1 to send to P2, P1 sends (CP-prover,sid1,(m, r21, m1)) to
F1

CP where the relation Rπ for F1
CP is defined as follows:

Rπ = {((m, r21,m1), (x, r11)) | m = π(x, r11 ⊕ r21,m1)}.

In this step, P1 proves that m is truly the correct message generated by
π with the input list x, the random tape r1 = r11 ⊕ r21, and the series of
incoming π-messages m1.

3. Activation due to incoming message. When activated with an incoming
message (CP-proof, sid2, (m, r12, m2)) from F2

CP , P1 first verifies that the
following conditions hold (F2

CP is parameterized by the same relation Rπ as
F1

CP ):
(a) r12 is the string that P1 sent to P2 in the step of 1-(b)-i above.
(b) m2 equals the series of π-messages received by P2 from P1 in all the

activations until now.
If the conditions do not hold, then P1 ignores the message. Otherwise, P1

appends m to its list of incoming π-messages m1 and proceeds as in the steps
2-(b) and 2-(c).
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4. Output. Whenever π generates an output, Comp(π) generates the same
output.

In the UC framework, if a protocol π has UC security against semi-honest
adversaries, the compiled protocol Comp(π)-FCP is proved to be secure against
malicious adversaries. The proof can be shown by the following steps: First, let
A be a malicious adversary against the compiled protocol Comp(π) in the FCP -
hybrid model and let A′ be a semi-honest adversary against the plain protocol π,
then A′ runs a simulated copy of A internally and interacts with π. Recall that
A′ follows the specification of the protocol π, on the other hand, A is allowed
to behave arbitrarily. However, the malicious adversary A cannot cheat since
each message sent throughout the protocol is verified by FCP so that it has no
choice but to behave in a semi-honest manner. For this reason, the semi-honest
adversary A′ can simulate the behavior of A by delivering a message only when A
sends a correct message. In other words, from the view of the environment Z, it
is impossible to distinguish whether it is interacting with Comp(π) and A in the
FCP -hybrid model, or with the plain protocol π and A′. In the circumstances, it
is shown that the compiled protocol UC-realizes the target functionality in the
malicious model.

3.2 A Compiler in the LUC Framework

To utilize the compiler Comp(·) in the LUC framework, we need to similarly
complete the simulation mentioned in the previous subsection even in the LUC
framework. However, we cannot do that without any modification on the existing
process. The reason of this impossibility lies in the difference between the models
of UC and LUC. In the UC model, communications between parties are mediated
by the centralized adversary and it directly delivers a message to recipients. In
contrast, in the LUC model, plural adversaries mediate communications and
messages are supposed to go through the environment in the process. That means
the environment Z can tell whether parties communicate each other through the
ideal functionality, since if messages were delivered by the ideal functionality,
they would not go through the environment. Therefore, by focusing on this
point, the simulation will be distinguishable.

Based on the above point, we consider switching the interacting process of
an original protocol π from the one totally controlled by the environment to the
one which uses a subroutine so that the problem does not occur. Specifically, we
consider a message transmission functionality, denoted by F̂MT , below. Note that
this functionality can be realized in the LUC framework, though the functionality
is originally considered in the UC framework [6] (Fig. 2).

Subsequently, we show an adjusting point in regards to the commit-and-
prove functionality required for constructing the protocol compiler. In the UC
model, we can use the ideal functionality FCP since it has been proved that there
exists a protocol which UC-realizes it. However, to use such a functionality in
the LUC model, we first need to show an existence of a protocol which LUC-
realizes it. In this paper, we adopt the notion of the merger functionality in [8].
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Functionality F̂MT

F̂MT , which is running with parties P1, . . . , Pn and adversaries S(i,j), where
(i, j) ∈ P2 (i = j) and P is the set of identities, proceeds as follows:
• Upon receiving a message (Send, sid, m, Pj) from a party Pi, send a public
delayed output (Send, sid, m, Pi) to the party Pj .
• Upon receiving a message (Deliver, m, (l, k)) from an adversary S(i,j), where
l, k, i, j ∈ P, send the message (Delivered, m, (i, j)) to the adversary S(l,k).

Fig. 2. The message transmission functionality in the LUC model.

In short, we modify the functionality of [7] (in the UC model) artificially so
that the protocol will LUC-realize the resulting functionality. Unfortunately, this
modification allows adversaries to communicate freely when the modified ideal
functionality, denoted by F̂CP , is used as a subroutine of other protocols (hybrid
model). Concerning this point, if we demand collusion-freeness for designing
protocols, we cannot adopt this method. However, such a property is not needed
in this work. Generally, in two-party protocols, if both parties are corrupted
by the corresponding adversaries respectively and they coordinate their actions,
the mechanism of protocol compiler seems to be totally unnecessary. Considering
that, we should focus on the case where both adversaries are not cooperative.
(The situation either P1 or P2 is corrupted by the corresponding adversary can
be covered by the protocol compiler in the UC model, however, the situation
both parties are corrupted by different adversaries cannot be covered except if
we consider it in the LUC framework.) Therefore, the most important point is
whether the simulation can be completed in this framework. First, we propose
an ideal functionality F̂CP as follows (Fig. 3).

Then, we can show the following results.

Functionality F̂CP

F̂CP , which is running with a committer C, a receiver V and adversaries S(C,V )

and S(V,C), and being parameterized by a value k and a relation R, proceeds
as follows:
• Commit phase. Upon receiving a message (commit, sid,w) from C, where
w ∈ {0, 1}k, append the value w to the list w, and send a public delayed output
(receipt, sid) to V . (Initially, the list w is empty.)
• Prove phase. Upon receiving a message (CP-prover, sid,x) from C where
x ∈ {0, 1}poly(k), compute R(x,w); If R(x,w) = 1, then send a public delayed
output (CP-proof, sid,x) to V ; Otherwise, ignore the message.
• Upon receiving a message (Deliver, m, (j, i)) from the adversary S(i,j), if
S(i,j),S(j,i) ∈ {S(C,V ),S(V,C)}, send the message (Delivered, m, (i, j)) to the
adversary S(j,i).

Fig. 3. The commit-and-prove functionality in the LUC model.
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Theorem 1. Let π be a two-party protocol and let Comp(π-F̂MT ) be the protocol
obtained by applying the compiler to π in the F̂MT -hybrid model. Then, for every
malicious adversary A that interacts with Comp(π-F̂MT ) in the F̂CP -hybrid
model there exists a semi-honest adversary A′ that interacts with π-F̂MT , such
that for every environment Z,

LREALπ-F̂MT ,A′,Z ≡ LEXECF̂CP

Comp(π-F̂MT),A,Z .

Proof. Let A′
(1,2) be an adversary for P1’s side and A′

(2,1) be an adversary for
P2’s side. As in the UC case, A′

(1,2) and A′
(2,1) run a simulated copy of A(1,2)

and A(2,1) respectively, and their actions are utilized as a guide for the inter-
action with π-F̂MT and Z. We regard the communications of A′

(1,2) and A′
(2,1)

with Z and π-F̂MT as an external communication, and the communications of
A′

(1,2) and A′
(2,1) with the corresponding simulated A′

(1,2) or A′
(2,1) as an internal

communication. A′
(1,2) and A′

(2,1) proceed as follows.

– Simulating the communication with Z. Every input coming from Z is
sent to the corresponding simulated adversary A(1,2) or A(2,1) as if coming
from their own environment. In the same way, every output from internal
adversaries is treated as an output of corresponding simulator.

– Simulating the random tape generation phase. We consider the follow-
ing cases below.

1. Both parties are honest: We describe the simulation for the P1’s random
tape generation (the simulation for P2 is analogous). A′

(1,2) begins by pass-

ing the message (receipt, sid1) to A(1,2) as if coming from F̂1
CP , and after

A(1,2) approved, A′
(1,2) delivers this message to A′

(2,1) using F̂MT . Similarly,
A′

(2,1) passes the message (receipt, sid1) to A(2,1) and if it approves, then
chooses a random r21 and passes the value to A(2,1) as if coming from P2. Fur-
thermore, confirming that A(2,1) delivers this value to P1 using F̂MT , A′

(2,1)

actually delivers it to A′
(1,2) using F̂MT . Finally, A′

(1,2) receives an approval
from A(1,2).

2. P1 is honest and P2 is corrupted: At first, we consider the generation of
P1’s random tape. The simulation proceeds as in the case 1. A′

(2,1) receives
the message (receipt, sid1), then passes it to A(2,1). If A(2,1) delivers r21 to
P2 using F̂MT , A′

(2,1) actually delivers it to A′
(1,2) using F̂MT . The rest of

the process is the same as in the case 1. Next, we consider the generation of
P2’s random tape. A′

(2,1) obtains the message (commit, sid2, r22) from A(2,1)

which sends it to F̂2
CP on behalf of P2 in execution of Comp(π-F̂MT ). Now,

as the direction of this simulation, we must let the random tape of internal
P2 equal the random tape of P2 in external execution of π-F̂MT so that A(2,1)

is forced to use the same randomness throughout the computation. For that
reason, A′

(2,1) delivers the random tape of external P2, denoted by r2, to
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A′
(1,2) using F̂MT . Then A′

(1,2) simulates A(1,2)’s behavior as in the case 1,
and then delivers r12 = r2 to A′

(2,1). Finally, A′
(2,1) sets r12 = r2⊕r22 and passes

it to A(2,1).
3. P1 is corrupted and P2 is honest: This case can be simulated analogously

to the previous one. That is, the random tape of internal P1 corrupted by
A(1,2) becomes to be equal to that of external P1 corrupted by A′

(1,2).
4. Both parties are corrupted: Similarly, this case can be simulated by apply-

ing simultaneously the simulators of the cases 2 and 3 above.

– Simulating an activation due to a new input. We describe the simulation
from P1’s side (the simulation for P2 is analogous).

1. P1 is not corrupted: A′
(1,2) learns the fact that external P1 is given a new

input when it receives an approval request from F̂MT . Then, A′
(1,2) passes the

message (receipt, sid1) to A(1,2) as if coming from F̂1
CP and after receiving

an approval from A(1,2), A′
(1,2) delivers the same message to A′

(2,1) using

F̂MT . Subsequently, A′
(2,1) proceeds the rest process by checking whether

A′
(2,1) approves or not.

2. P1 is corrupted: A′
(1,2) receives the message (commit, sid1, x) from A(1,2).

Then, A′
(1,2) adds x to its list x and passes (receipt, sid1) to A(1,2), as

if coming from F̂1
CP . After receiving an approval from A(1,2), A′

(1,2) sets the
input tape of external P1 being equal to x (Note that a semi-honest adversary
is allowed to modify the input values of corrupted parties, which is mentioned
in [7] and this definition is due to the fact that there is no difference in terms
of security between the case where the semi-honest adversary can modify a
corrupted party’s input value and the case where it cannot). Furthermore,
A′

(1,2) delivers (receipt, sid1) to A′
(2,1) using F̂MT and A′

(2,1) proceeds the
rest process as in the case 1.

– Dealing with π-F̂MT messages sent externally by uncorrupted par-
ties. When external P1 who is not corrupted sends a message m to P2 using
F̂MT , A′

(1,2) internally passes A(1,2) the message (CP-proof, sid1, (m, r21,

m1)) as A(1,2) expects to receive from F̂1
CP ), where r21 is the value used in the

P1’s random tape generation phase, and m1 is the series of all messages P1

received in the execution of π-F̂MT so far. Similarly, if P2 sends a message m
to P1, A′

(2,1) would pass the message (CP-proof, sid2, (m, r12, m2)) to A(2,1).
Each simulator delivers a message to the recipients only when the internal
adversary approves of the message delivery.

– Dealing with Comp(π-F̂MT ) messages sent internally by corrupted
parties. Consider the case where P1 is corrupted. When A(1,2) sends the mes-
sage (CP-prover, sid1, (m, r′2

1, m′
1)) to F̂1

CP , A′
(1,2) can verify that m′

1 = m1

and r21 = r′2
1, besides, m = π-F̂MT (x, r11 ⊕ r21,m1), since P1 is corrupted so

that A′
(1,2) can obtain all the information needed for these checking. If no error

is found, A′
(1,2) passes (CP-proof, sid1, (m, r′2

1, m′
1)) to A(1,2) as if coming
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from F̂1
CP . Then, when A(1,2) approves of delivering this message, A′

(1,2) deliv-

ers m to A′
(2,1) using F̂MT . After that, A′

(2,1) passes (CP-proof,. . .) message
to A(2,1), and regardless of whether P2 is corrupted or not, A′

(2,1) approves
of message delivering only when A(2,1) approves. With this, the simulation is
completed and the simulation for P2 is analogous. ��

Corollary 1. Let F be a two-party functionality and let π be a non-trivial pro-
tocol that LUC-realizes F in the presence of semi-honest adversaries. Then,
Comp(π-F̂MT ) is a non-trivial protocol that LUC-realizes F in the F̂CP -hybrid
model and in the presence of malicious adversaries.

4 Oblivious Transfer with UC and Game-Theoretic
Security

4.1 Oblivious Transfer in the UC Framework

The oblivious transfer [10,23] is a two-party cryptographic functionality imple-
mented by a sender T who has input x1, x2, . . . , xl and a receiver R who has input
i ∈ {1, 2, . . . , l}. When they follow the given specifications correctly, R receives
the message xi such that R cannot obtain any more information, while T obtains
no information about the selection of R. We describe the ideal functionality FOT

in [7], and the protocol SOT (1-out-of-l) for the static and semi-honest adver-
sarial model in [7,11,12] as follows (Figs. 4 and 5).

Functionality FOT

FOT , which is parameterized with an integer l, and running with an sender T ,
a receiver R and an adversary S, proceeds as follows:
• Upon receiving a message (sender, sid, x1, . . . , xl) from T , where xi ∈
{0, 1}m, record the tuple (x1, . . . , xl).
• Upon receiving a message (receiver, sid, i) from R, where i ∈ {1, . . . , l},
send (sid, xi) to R and (sid) to S, and halt.

Fig. 4. Functionality of oblivious transfer in the UC model.

4.2 Oblivious Transfer in the LUC Framework

For game-theoretic analysis, we consider realizing functionality of oblivious trans-
fer in the LUC framework. To do so, we first investigate whether some modifi-
cation will be needed in changing the framework from UC to LUC as follows:
We consider the case that we use the previous ideal functionality FOT for the
protocol simulation in the LUC framework. If sender T is not corrupted, in the
ideal process, the corresponding dummy party T passes its own input value to
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Protocol SOT
Proceed with a security parameter k as follows.
• Given input (sender, sid, x1, . . . , xl), the party T chooses a trapdoor per-
mutation f over {0, 1}k, together with its inverse f−1, and sends (sid, f) to
the receiver R. (The permutation f is chosen uniformly from a given family of
trapdoor permutations.)
• Given input (receiver, sid, i), and having received (sid, f) from T , the
receiver R chooses y1, . . . , yi−1, r, yi+1, . . . , yl ∈R {0, 1}k, computes yi = f(r),
and sends (sid, y1, . . . , yl) to T .
• Having received (sid, y1, . . . , yl) from R, the sender T sends (sid, x1 ⊕
B(f−1(y1)), . . . , xl ⊕ B(f−1(yl))) to R, where B(·) is a hard-core predicate
for f .
• Having received (sid, b1, . . . , bl) from T , the receiver R outputs (sid, bi⊕B(r)).

Fig. 5. A static and semi-honest oblivious transfer protocol.

FOT automatically at the first step. Then, after receiving the value from T ,
FOT records it and enters a waiting state. Following that, the environment Z is
activated next and it is supposed to activate the receiver R with an input value.
On the other hand, in the real life protocol execution, the process of the first
message delivery is as follows. At first, the sender T passes its input value to
the corresponding adversary, denoted by A(T,R), and then A(T,R) delivers the
value to the opponent adversary, denoted by A(R,T ), through the environment
Z. Finally, the receiver R receives the value from A(R,T ). Therefore, the envi-
ronment Z can obviously tell whether it is facing the ideal process or the real
life protocol execution, since there is great difference between the two situations.

For this reason, we need to modify the definition of the previous ideal func-
tionality of OT by changing the framework so that the difference mentioned
above does not arise. We describe the modified ideal functionality F̂OT as fol-
lows (Fig. 6).

Then, we show that the protocol SOT meets the following security.

Theorem 2. Suppose that f in the protocol SOT is an enhanced trapdoor per-
mutation1. Then, SOT LUC-realizes F̂OT in the presence of semi-honest and
static adversaries.

Proof. As in the UC case, S(T,R) and S(R,T ) run a simulated copy of A(T,R) and
A(R,T ) respectively, and their actions are utilized as a guide for the interaction
with F̂OT and Z. S(T,R) and S(R,T ) proceed as follows.

– Simulating the communication with Z. Every input coming from Z is
sent to the corresponding simulated adversary A(T,R) or A(R,T ) as if coming

1 The enhanced trapdoor permutation has the property that a random element gener-
ated by the domain sampler is hard to invert, even given the random coins used by
the sampler. Note that any trapdoor permutation over {0, 1}k is clearly enhanced,
since this domain can be easily and directly sampled.
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Functionality F̂OT

F̂OT , which is parameterized with an integer l and running with a sender T ,
a receiver R and adversaries S(T,R) and S(R,T ), proceeds as follows:
• Upon receiving a message (sender, sid, x1, . . . , xl) from T , where xi ∈
{0, 1}m, record the tuple (x1, . . . , xl). If the message from R has already been
recorded, then send a private delayed output (sid, xi) to R, and halt. Other-
wise, send a public delayed output (receipt, sid) to R.
• Upon receiving a message (receiver, sid, i) from R, where i ∈ {1, . . . , l},
record the value i. If the message from T has already been recorded, then send
a private delayed output (sid, xi) to R, and halt. Otherwise, send a public
delayed output (receipt, sid) to T .
• Upon receiving a message (Deliver, m, (j, i)) from the adversary S(i,j), if
S(i,j),S(j,i) ∈ {S(T,R),S(R,T )}, send the message (Delivered, m, (i, j)) to the
adversary S(j,i).

Fig. 6. Functionality of oblivious transfer in the LUC model.

from their own environment. In the same way, every output from internal
adversaries is treated as an output of corresponding simulator.

– Simulating the case where no party is corrupted. At first, the simulator
S(T,R) is activated by receiving the message (receipt, sid) from F̂OT (S(T,R)

is demanded for approving of the message delivery). Then, S(T,R) randomly
chooses a trapdoor permutation f over {0, 1}k with its inverse f−1 and passes
(sid, f) to the simulated adversary A(T,R). When A(T,R) delivers the message
to the environment Z, S(T,R) actually delivers it to the opponent simulator
S(R,T ) through Z. Following that, S(R,T ) activates S(T,R) by using F̂OT , and
S(T,R) approves of F̂OT ’s message delivery at this timing. Then, S(R,T ) is
activated again with a request for an approval from F̂OT . S(R,T ) approves
after confirming that A(R,T ) delivers (sid, f) to R. Next, the dummy party
R receives (receiver, sid, i) from Z as an input and sends it to F̂OT . Then,
S(T,R) is activated with a request for an approval from F̂OT . At this timing,
S(T,R) approves of F̂OT ’s message delivery. After that, S(R,T ) is activated with
a request for an approval similar to the process of S(T,R). Then, S(R,T ) chooses
y1, . . . , yl ∈ {0, 1}k and passes these values to A(R,T ). After confirming that
A(R,T ) delivers the message (sid, y1, . . . , yl) to Z, S(R,T ) actually delivers it
to S(T,R) through Z. Similarly, S(T,R) simulates A(T,R) delivering the mes-
sage to T internally. Following that, S(T,R) chooses b1, . . . , bl uniformly, and
passes the message (sid, b1, . . . , bl) to A(T,R). If A(T,R) delivers the message
correctly, then S(T,R) actually delivers it to S(R,T ) through Z. Finally, S(R,T )

concludes the simulation by confirming that A(R,T ) delivers the message to R

and approving of F̂OT ’s message delivery.
– Simulating the case where only the sender T is corrupted. S(T,R)

begins by sending the message (sender, sid, x1, . . . , xl) to F̂OT and receives a
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request for an approval of message delivery. Before approving, S(T,R) activates
A(T,R) with an input value and receives (sid, f) that A(T,R) is supposed to
deliver R in a real life protocol execution. Furthermore, S(T,R) delivers the
message to S(R,T ) through Z as in the above case, and once activated next, it
approves the message delivery of F̂OT . The following process is analogous to
the above case. Next, after R sends its input to F̂OT , S(T,R) is activated with
a request for approving of F̂OT ’s message delivery. At the time when S(T,R)

receives (sid, y1, . . . , yl), it passes the message to A(T,R). Subsequently, after
receiving (sid, b1, . . . , bl) from A(T,R), S(T,R) delivers it to S(R,T ) through Z.
Finally, S(R,T ) concludes the simulation in the same way as in the above case.

– Simulating the case where only the receiver R is corrupted. The
simulation proceeds similar to the case where no party is corrupted until
S(R,T ), controlling R, is activated with an input (receiver, sid, i). Following
that, S(R,T ) passes it to A(R,T ) and receives (sid, y1, . . . , yl). Furthermore,
S(R,T ) delivers the message to S(T,R) through Z. After receiving that message,
S(T,R) delivers (sid, b1, . . . , bl) to S(R,T ) through Z, and S(R,T ) obtains f−1

by using F̂OT . Then, S(R,T ) sends (receiver, sid, i) to F̂OT and subsequently
both simulators approve of the message delivery (S(R,T ) receives xi). Next,
S(R,T ) sets bi = xi ⊕B(f−1(yi)) and passes (sid, b1, . . . , bl) to A(R,T ). Finally,
S(R,T ) concludes the simulation by outputting xi when A(R,T ) does so.

– Simulating the case where both parties are corrupted. This case can
be simulated by applying simultaneously the simulators of each case where
only one of the parties is corrupted. ��

4.3 Analysis of Game-Theoretic Security

Next, we consider the case where rational parties implement the protocol SOT
in the case l = 2 as in [14], since 1-out-of-2 OT is simple and fundamental. As
already mentioned, SOT is designed for the semi-honest adversarial model so
that its security does not concern the behaviors of rational parties. We investi-
gate whether SOT is game-theoretically secure, before and after being compiled,
respectively.

First, we define utility functions for two-message OT protocols similar to
the work of [14]. In [14], Higo et al. studied the game-theoretic concepts of
two-message OT protocols with reasonable utility functions, so it seems to be
appropriate to follow the previous definitions. For doing it, we consider sender’s
(i.e., T ’s) and receiver’s (i.e., R’s) preferences as follows:

– T does not prefer the receiver R to know the input bit x1−i, where the index
of the receiver’s selection is i ∈ {0, 1} (This explains the case where R obtains
x0 and x1 simultaneously),

– T prefers to complete the protocol execution,
– T prefers to know the input index of the receiver’s selection i ∈ {0, 1}; and
– R does not prefer the sender S to know its input index of the selection,
– R prefers to complete the protocol execution,
– R prefers to know the other sender’s input bit x1−i.
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Then, a formal definition of utility functions is given as follows.

Definition 4 (Utility Functions). Let π be an OT protocol having a sender
T with inputs x0, x1 ∈ {0, 1} and a receiver R with an input i ∈ {0, 1}. Let
αT , βT , γT , αR, βR, γR be positive constants. The utility functions UT for T and
UR for R are defined by

UT := −αT · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2)
+βT · (Pr{fin(T (x0.x1), R(i)) = 1} − 1)
+ γT · (Pr{i′ = i | guessT (T (x0, x1), R(i)) = i′} − 1/2) ,

UR := −αR · (Pr{i′ = i | guessT (T (x0, x1), R(i)) = i′} − 1/2)
+βR · (Pr{fin(T (x0.x1), R(i)) = 1} − 1)
+ γR · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2) ,

where guessT (·) and guessR(·) mean guessing by T and R, respectively, for the
opponent’s private value, and fin(·) represents the completion of the protocol
execution: fin(·) = 1 if the protocol satisfies the specifications correctly; other-
wise fin(·) = 0.

In addition, as in the work of [4,14,15], we consider Nash equilibrium as the
solution concept in terms of the game theory.

Definition 5 (Nash Equilibrium). For a pair of utility functions (UT , UR),
we say that a pair of strategies (σT , σR) is in Nash equilibrium, if for every
pair of strategies (σ∗

T , σ∗
R), it holds that UT (σT , σR) ≥ UT (σ∗

T , σR)−negl(n) and
UR(σT , σR) ≥ UR(σT , σ∗

R) − negl(n).

Definition 6 (Game-Theoretic Security for OT). Let π be an OT protocol
having a sender T and a receiver R. Let σT and σR be strategies planned to follow
all the specifications of π, respectively. We say that π is game-theoretically secure,
if the pair of strategies (σT , σR) is in Nash equilibrium with respect to the pair
of utility functions (UT ,UR).

Then, we can show the game-theoretic security of SOT before/after applica-
tion of the compiler in the LUC model below.

Theorem 3. The protocol SOT is not game-theoretically secure in the pres-
ence of rational parties, however, the compiled protocol Comp(SOT-F̂MT ) in the
F̂CP -hybrid model is game-theoretically secure in the presence of rational parties.

Proof. First, we show that the plain protocol SOT is not secure. Once both
parties are allowed to behave rationally, this protocol becomes quite imbalanced.
If the receiver R attempts to enhance its own utility more than that of the case
where it acts honestly, it takes action such as the following. In the step where R
is supposed to choose y1−i, r ∈R {0, 1}k and computes yi = f(r), it also applies
f for generating y1−i. For this, R can obviously obtain the T ’s private value
x1−i in addition to xi unless the sender T aborts the protocol execution. (Note
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that we take no account of the case where each party changes its own input
value, since it seems reasonable to assume so. Furthermore even if that occurs,
the result is not affected essentially.) In addition, since y1−i and r are randomly
chosen, R’s dishonest behavior is not detectable. Thus, this results in increasing
the value γR · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2).

On the sender T ’s side, he/she would think that R does wrong absolutely.
However, T has only two choices, either following the specifications of the pro-
tocol or aborting, since T obtains no information from the received values y0, y1
and there is no way to benefit in the subsequent process. The selection depends
on to which T gives much weight the completion of the protocol or protecting the
secret. If T prefers the completion of the protocol, it results in decreasing the
value −αT · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2) and increasing
the value βT ·(Pr{fin(T (x0.x1), R(i)) = 1}−1) in comparison with the latter. On
the contrary, if T prefers to protect the secret and chooses to abort, it results in
increasing the value −αT · (Pr{x′ = x1−i | guessR(T (x0, x1), R(i)) = x′} − 1/2)
and decreasing the value βT · (Pr{fin(T (x0.x1), R(i)) = 1} − 1) in compari-
son with the former. From the above discussion, at least the pair of strategies
(σT , σR) is not in Nash equilibrium.

Next, we show that the compiled protocol Comp(SOT-F̂MT )-F̂CP is secure.
Regarding the dishonest actions of R mentioned above, R cannot enhance its own
utility even if applying f for generating y0 and y1. Since the functionality F̂CP

rejects incorrect messages, the protocol execution would never be completed.
Therefore, it results in decreasing the value βR ·(Pr{fin(T (x0.x1), R(i)) = 1}−1)
compared to that of the case where R follows the protocol specifications. On the
T ’s side, there is no need to worry about the R’s dishonest actions, and hence T
can obtain the highest utility by following the protocol honestly. Similarly to the
R’s case, if T chooses to deviate from the protocol, T ’s total utility obviously
decreases. Thus, the pair of strategies (σT , σR) is in Nash equilibrium. ��

5 Concluding Remarks

In this paper, we have proposed a compiler of two-party protocols in the LUC
framework such that it transforms any two-party protocol secure against semi-
honest adversaries into a protocol secure against malicious adversaries. Then,
we have shown the application of our compiler to an oblivious transfer protocol
to achieve a primitive with both UC and game-theoretic security. We emphasize
that our main purpose was to address how protocols with security in the game-
theoretic model can be composed to obtain an overall game-theoretically secure
protocol. In this sense, our result is successful and the constructed protocol has
desirable properties.

An interesting line for future work is to address whether this resulting proto-
col carries over to the general multi-party computation protocols as a building
block in the game-theoretic setting.
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Abstract. In this work we introduce a new hard problem in lattices
called Isometric Lattice Problem (ILP) and reduce Linear Code
Equivalence over prime fields and Graph Isomorphism to this prob-
lem. We also show that this problem has an (efficient prover) perfect
zero-knowledge interactive proof; this is the only hard problem in lattices
that is known to have this property (with respect to malicious verifiers).
Under the assumption that the polynomial hierarchy does not collapse,
we also show that ILP cannot be NP-complete. We finally introduce
a variant of ILP over the rationals radicands and provide similar results
for this new problem.

1 Introduction

Zero-Knowledge interactive proof systems ZKIP [6] have numerous applications
in cryptography such as Identification Schemes, Authentication Schemes, Mul-
tiparty Computations, etc. Appart from cryptographic applications these proof
systems play an important part in the study of complexity theory. The first IP
for lattice problems (coGapCVPγ , coGapSVPγ) was presented by Goldreich
and Goldwasser [13]. However, these proofs are only honest-verifier Perfect Zero-
Knowledge and known to have inefficient provers. Micciancio and Vadhan [10]
presented Interactive Proofs for GapCVPγ and GapSVPγ . These proofs are
Statistical Zero-Knowledge and have efficient provers1 as well. In this paper we
introduce a new hard problem called ISOMETRIC LATTICE PROBLEM
(ILP). We present IP systems for the ILP. These proof systems are Perfect
Zero-Knowledge and have efficient provers. We show that a variant of ILP over
the integers is at least as hard as Graph Isomorphism (GI) [4,5] and Linear
Code Equivalence (LCE) [5,7]. This is the only hard problem known in lat-
tices that have a (malicious-verifier) Perfect Zero-Knowledge IP system with an
efficient prover. We also show that ILP is unlikely to be NP-complete. Finally
we also introduce another variant of ILP over the rational-radicands and provide
similar results for this problem.
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2 Notations

For any matrix A, we denote its transpose by At. Let O(n, R) = {Q ∈ R
n×n :

Q · Qt = I} denote the group of n × n orthogonal matrices over R. Let GLk(Z)
denote the group of k × k invertible (unimodular) matrices over Z. Let GLk(Fq)
denote the set of k × k invertible matrices over the finite field Fq. Let Pn denote
the set of n × n permutation matrices. Let σn be the set of all permutations
of {1, . . . , n}. For π ∈ σn, we denote Pπ the corresponding n × n permutation
matrix. P(n, Fq) denotes the set of n × n monomial matrices (there is exactly
one nonzero entry in each row and each column) over Fq. Dεn

is the set of diag-
onal matrices Dε = diag(ε1, . . . , εn), εi = ±1 for i = 1, . . . , n. For a real vector
v = (v1, . . . , vn) we denote its Euclidean norm by ‖v‖ =

√
v2
1 + · · · + v2

n and
max-norm ‖v‖∞ = maxn

i=1|vi| and for any matrix B = [b1|b2| . . . |bk] ∈ R
n×k

we define its norm by ‖B‖ = maxn
i=1‖bi‖. For any ordered set of linearly inde-

pendent vectors {b1,b2, . . . ,bk}, we denote {b̃1, b̃2, . . . , b̃k}, its Gram-Schmidt
orthogonalization.

2.1 Lattices

Let R
n be an n-dimensional Euclidean space and let B ∈ R

n×k be a matrix of
rank k. A lattice L(B) is the set of all vectors

L(B) =
{
Bx : x ∈ Z

k
}

.

The integer n and k are called the dimension and rank of L(B). A lattice is
called full dimensional if k = n. Two lattices L(B1) and L(B2) are equivalent if
and only if there exists a unimodular matrix U ∈ Z

k×k such that B1 = UB2.

2.2 q-ary Lattices

A lattice L is called q-ary, if it satisfies qZ
n ⊆ L ⊆ Z

n for a positive integer
q. In other words, the membership of a vector v ∈ L is given by v mod q. Let
G = [g1| . . . |gk] ∈ Z

n×k
q be a n×k matrix of rank k over Z

n×k
q . We define below

two important families of q-ary lattices used in cryptography

Λq(G) = {y ∈ Z
n : y ≡ G · s (mod q), for some vector s ∈ Z

k}

Λ�
q (G) = {y ∈ Z

n : y · G ≡ 0 (mod q)}.

A basis B of Λq(G) is

B = [g1| . . . |gk|bk+1| . . . |bn] ∈ Z
n×n

where bj = (0, ..., q, ..., 0) ∈ Z
n is a vector with its j-th coordinate equal to q and

all other coordinates are 0, k + 1 ≤ j ≤ n. A basis of Λ�
q is given by q · (B−1)t.
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2.3 Discrete Gaussian Distribution on Lattices

For any s > 0, c ∈ R
n, we define a Gaussian function on R

n centered at c with
parameter s.

∀x ∈ R
n, ρs,c(x) = e

−π‖x−c‖
s2 .

Let L be any n dimensional lattice and ρs,c(L) =
∑

y∈L
ρs,c(y). We define a

Discrete Gaussian distribution on L
∀x ∈ L, Ds,c,L(x) =

ρs,c(x)
ρs,c(L)

.

Theorem 1. Given a basis B = [b1| . . . |bk] ∈ R
n×k of an n-dimensional lattice

L, a parameter s ≥ ‖B̃‖·ω(
√

log n) and a center c ∈ R
n, the algorithm SampleD

([2], Sect. 4.2, p. 14) outputs a sample from a distribution that is statistically close
to Ds,c,L.

Theorem 2. There is a deterministic polynomial-time algorithm that, given an
arbitrary basis {b1, . . . ,bk} of an n-dimensional lattice L and a set of linearly
independent lattice vectors S = [s1|s2 . . . |sk] ∈ L with ordering ‖s1‖ ≤ ‖s2‖ ≤
· · · ≤ ‖sk‖, outputs a basis {r1 . . . rk} of L such that ‖r̃i‖ ≤ ‖s̃i‖ for 1 ≤ i ≤ k.

2.4 Orthogonal Matrices and Givens Rotations

A Givens rotation is an orthogonal n × n matrix of the form

G(i,j,θ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, i 
= j

The non-zero elements of a Givens matrix G(i,j,θ) are given by

gk,k = 1 for k 
= i, j and gi,i = gj,j = c

gi,j = s = −gj,i for i < j

where c = cos(θ) and s = sin(θ).
The product G(i,j,θ) · v represents a counter-clockwise rotation of the vector

v in the (i, j) plane by angle θ. Moreover, only the i-th and j-th entries of v
are affected and the rest remains unchanged. Any orthogonal matrix Q ∈ R

n×n

can be written as a product of n(n−1)
2 Givens matrices and a diagonal matrix

Dε ∈ Dεn

Q = Dε

(
G(1,2,θ1,2) · · · ·G(1,n,θ1,n)

) · (G(2,3,θ2,3) · · ·G(2,n,θ2,n)

) · · · (G(n−1,n,θn−1,n)

)
.

The angles θi,j ∈ [0, 2π], 1 ≤ i < j ≤ n are called angles of rotation.
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2.5 Properties of Givens Matrices

1. Additivity: For angles θ, φ ∈ [0, 2π] and any vector v ∈ R
n

G(i,j,φ) · G(i,j,θ)v = G(i,j,φ+θ)v.

2. Commutativity: For angles θi,j , θj,i, θy,z ∈ [0, 2π] and {i, j} ∩ {y, z} = ∅ or
{i, j} = {y, z}.

G(i,j,θi,j) · G(j,i,θj,i)v = G(j,i,θj,i) · G(i,j,θi,j)v

G(i,j,θi,j) · G(y,z,θy,z)v = G(y,z,θy,z) · G(i,j,θi,j)v.

3. Linearity: For any Givens matrix G(i,j,θi,j), any vector v ∈ R
n and any per-

mutation π ∈ σn

G(π(i),π(j),θπ(i),π(j))Pπ · v = PπG(i,j,θi,j) · v

Pπ is the corresponding permutation matrix of π.

2.6 The Set R
Computationally it is not possible to work over arbitrary real numbers as they
require infinite precision. However, there are reals that can be represented finitely
and one can add and multiply them without losing any precision. For example
we can represent numbers

√
7 and 4

√
5 as < 2, 7 > and < 4, 5 >. In, general, a

real number r that has the following form

r = a1
n11

√

x11 + n21

√
x21 + · · · + nk1

√
xk1 + a2

n12

√

x12 + n22

√
x22 + · · · + nk2

√
xk2

+ · · · + al
n1l

√

x1l + n2l

√
x2l + · · · + nkl

√
xkl.

where aj
′s, nij

′s ∈ Q, xij
′s ∈ Q

+ ∪{0} and l, k1 · · · kl ∈ N; can be represented as

r = a1 < n11, x11+ < n21, x21 + · · · + < nk1, xk1 >> · · · >

+ a2 < n12, x12+ < n22, x22 + · · · + < nk2, xk2 >> · · · >

+ · · · + al < n1l, x1l+ < n2l, x2l + · · · + < nkl, xkl >> · · · > .

We call such numbers rational radicands and denote the set of all rational
radicands R.2

2.7 The Set O(n,R)

Let O(n,R) denote a set of n×n orthogonal matrices over R. In this sub-section
we will define a subset O(n,R) ⊂ O(n,R) that has the following properties:

2 In this notation any rational number x can be represented as ± < 1, x >.
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– Any orthogonal matrix Q ∈ O(n,R) has finite representation.
– If Q ∈ O(n,R), then Qt ∈ O(n,R).
– O(n,R) is a finite set.

Let P be any desired publicly known positive polynomial in the size of the
input bases B1,B2 ∈ O(n,R) and δ = π

2P . We denote the set of angles C =
{0, δ, 2δ, . . . , θ, . . . , 2π − δ}. We denote O(n,R) to be the set of n×n orthogonal
matrices corresponding to C that can be written as a product of commuting
Givens rotations. More, precisely

O(n,R) = {G(1,2,θ1) · G(3,4,θ2) · · · G(x−1,x,θx/2) : θi ∈ C, 1 ≤ i ≤ x}.

where x = n if n is even, otherwise x = n − 1. Clearly O(n,R) is a finite set,
since C is a finite set. Furthermore for any integer P ≥ 2,

sin
( π

2P
)

=
1
2

< 2, 2− < 2, 2 + · · · + < 2, 2 >> · · · >
︸ ︷︷ ︸

P−1

cos
( π

2P
)

=
1
2

< 2, 2+ < 2, 2 + · · · + < 2, 2 >> · · · >
︸ ︷︷ ︸

P−1

.

For any integer 0 ≤ N ≤ 2P+1 sin(Nπ
2P ) and cos(Nπ

2P ) can be computed in
O(P) time (see Appendix A). Let Q ∈ O(n,R),

Q = G(1,2,θ1) · G(3,4,θ2) · · · G(x−1,x,θx/2) for some θ1, ..., θi, ..., θx/2 ∈ C.

We will show that Qt ∈ O(n,R). Let

Q′ = G(1,2,2π−θ1) · G(3,4,2π−θ2) · · · G(x−1,x,2π−θx/2).

Clearly if θi ∈ C, then 2π − θi ∈ C. Therefore, it follows that Q′ ∈ O(n,R).

Q · Q′ =
(
G(1,2,θ1)G(1,2,2π−θ1)

) · (G(3,4,θ2)G(3,4,2π−θ2)

) · · ·
(
G(x−1,x,θx/2)G(x−1,x,2π−θx/2)

)

= G(1,2,θ1+2π−θ1) · G(3,4,θ2+2π−θ2) · · · G(x−1,x,θx/2+2π−θx/2)

= G(1,2,2π) · G(3,4,2π) · · · G(x−1,x,2π)

but G(i,j,2π) = I therefore G(1,2,2π) · G(3,4,2π) · · · G(x−1,x,2π) = I.

3 Isometric Lattices

Definition 1. Let B1,B2 ∈ R
n×k be two bases of rank k. We say that two

lattices L(B1) ∼= L(B2) are isometric if there exists a matrix U ∈ GLk(Z) and
a matrix Q ∈ O(n, R) such that B2 = QB1U .

Decision Problem ILP: Given two matrices B1,B2 ∈ R
n×k, decide whether

L(B1) ∼= L(B2).
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3.1 Variants of ILP

Let S(B1,B2) = {B ∈ R
n×k : L(B) ∼= L(B1) ∼= L(B2)} be the set of bases

that are isometric to B1 and B2. The ILP seems to be very similar to LCE
[5,7]. Therefore, it is natural to ask if one can obtain a PZKIP for ILP by
mimicking the LCE proof system.3 However, if we try to mimic the proof system
for LCE we are faced with following problems. Recall that a proof system is
zero-knowledge if there exists a probabilistic polynomial time simulator that
can forge transcripts that are distributed identically (or statistically close to)
real transcripts.

– In the LCE proof system the prover picks uniformly and independently invert-
ible matrices from F

k×k
q . In comparison the corresponding set (GLk(Z)) in

ILP is countably infinite. Therefore there exists no uniform distribution on
GLk(Z).

– Computationally it is not possible to work over reals as they required infi-
nite precision and almost all elements in O(n, R), have infinite representation.
Whereas in LCE every element in the corresponding set P(n, Fq) can be
represented with O(n2 log q) bits. Note that in theory the uniform distribu-
tion exists on O(n, R) [14–16], but computationally it is not possible to pick
uniformly from O(n, R) as this would require infinite computational power.

A natural solution would be to define some finite subsets GLk(Z), O(n, R) of
GLk(Z), O(n, R) and pick uniformly from GLk(Z) and O(n, R). However, this
solution may not preserve the zero-knowledge property of the proof system. To
see this let B2 = QB1U, be two isometric bases that can be represented finitely,
where Q ∈ O(n, R) and U ∈ GLk(Z).

[B1] =
{

Q
′
B1U

′
: Q

′ ∈ O(n, R) and U
′ ∈ GLk(Z)

}

[B2] =
{

Q
′
B2U

′
: Q

′ ∈ O(n, R) and U
′ ∈ GLk(Z)

}
.

1. The prover picks uniformly i ∈ {1, 2}.
2. The prover picks uniformly B ∈ [Bi] and sends B to the receiver.
3. The verifier uniformly picks j ∈ {1, 2} and sends j to the prover.

Note that the zero-knowledge property requires that from B the verifier should
not be able to learn i except with probability 1

2 (for perfect zero-knowledge) or
1
2 + negl (for statistical zero-knowledge). This implies that [B1] = [B2] (for per-
fect zero-knowledge) or |[B1] ∪ [B2]| − |[B1] ∩ [B2]| = negl (for statistical zero-
knowledge). Note that any B ∈ [B1] can only be in [B2] if and only if Q

′ · Q
t ∈

O(n, R) and U
−1 · U

′ ∈ GLk(Z). Similarly, any B ∈ [B2] can only be in [B1] if
and only if Q

′ · Q ∈ O(n, R) and U · U
−1 ∈ GLk(Z). Therefore sets O(n, R) and

GLk(Z) must be a group under multiplication. But this seems unlikely to happen
in general. To see this lets try to construct a finite subgroup O(n, Q) ≤ O(n, Q).

3 The IP for LCE is PZKIP with an efficient prover see [5].
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– Let Q ∈ O(n, Q). We add Q in O(n, Q), therefore O(n, Q) ← O(n, Q) ∪ {Q}.
– Since O(n, Q) has to be a multiplicative group, we must add Q · Q and Qt to

it. Hence O(n, Q) ← O(n, Q) ∪ {Q · Q} ∪ {Qt}.
– By the same argument Q · Q · Q and Qt · Qt must also be added to O(n, Q).

Hence, this process may never end and O(n, Q) will become an infinite set.
Similarly if we try to construct a finite subgroup GLk(Z) ≤ GLk(Z) we will
face the same problem.

In order to deal with these issues we will present two variants of isometric
lattice problems. We will show that one of the variant are at least hard as GI
and LCE. We further show that both variants are unlikely to be NP-complete
unless the polynomial hierarchy collapses [18,19].

3.2 Isometric Lattices over Z

Definition 2. Let B1,B2 ∈ Z
n×k be two bases of rank k. We say that two

lattices L(B1) ∼=Z L(B2) are isometric over integers if there exists a matrix
U ∈ GLk(Z) and a matrix Q ∈ O(n, Z) such that B2 = QB1U .

Decision Problem ILPZ: Given two matrices B1,B2 ∈ Z
n×k, decide whether

L(B1) ∼=Z L(B2).

3.3 Isometric Lattices over R ⊂ R

Definition 3. Let B1,B2 ∈ Rn×k be two bases of rank k. We say that two
lattices L(B1) ∼=R L(B2) are isometric over R if there exists a matrix U ∈
GLk(Z) and a matrix Q ∈ O(n,R) such that B2 = QB1U .

Decision Problem ILPR: Given two matrices B1,B2 ∈ Rn×k, decide whether
L(B1) ∼=R L(B2).

4 Interactive Proof System for ILPZ

The set of n × n orthogonal matrices over integers O(n, Z) is finite and of cardi-
nality 2n · n!. In fact the set O(n, Z) is exactly equal to the set of n × n signed
permutation matrices. Therefore, any element Q ∈ O(n, Z) can be written as
a product Q = D · P for some D ∈ Dεn

and P ∈ Pn. Furthermore, for any
matrix B ∈ Z

k×n the Hermite normal form HNF(B) only depends on the lat-
tice L(B) generated by B and not on a particular lattice basis. Moreover, one
can compute HNF(B′) from any basis B′ of L in polynomial time [17]. Since
HNF(B) = HNF(B′), the Hermite normal form does not give any information
about the input basis. This will completely bypass the need for picking random
elements from the set GLk(Z).
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An Interactive Proof for ILPZ

– Input B1,B2 ∈ Z
n×k.

1. Repeat for l := poly(‖B1‖ + ‖B2‖) rounds.
(a) Prover picks uniformly an orthogonal matrix Q′ ∈ O(n, Z).
(b) Prover computes H ← HNF(Q′B1) and sends it to the verifier.
(c) Verifier randomly picks c ∈ {1, 2} and sends it to the prover.
(d) Prover sends the verifier an orthogonal matrix P ∈ O(n, Z).

i. if c = 1 then P = Q′.
ii. if c = 2 then P = Q′Qt.

2. Verifier will accept the proof if for all l rounds H = HNF(PBc).

Theorem 3. The proof system for ILPZ is a malicious verifier perfect-zero
knowledge interactive proof with an efficient prover.

Proof:

Completeness: Clearly, if L(B1) and L(B2) are isometric lattices over the
integers, then the prover will never fail convincing the verifier.

Soundness: If L(B1) and L(B2) are not isometric over integers, then the only
way for the prover to cheat is to guess c correctly in each round. Since, c is chosen
uniformly and independently from {1, 2}, the probability of prover guessing c in
all round is 2−l. Note that verifier’s computations are done in polynomial time.

Efficient Prover: The steps 1a and 1d can be done efficiently. The Hermite
normal forms can be computed in polynomial time using the algorithm presented
in [17]. Therefore the expected running time of the prover is polynomial.

Zero-Knowledge: Let V ∗ be any probabilistic polynomial time (possibly mali-
cious) verifier. Let T (V ∗) denote the set of all possible transcripts that could
be produced as a result of the prover P and V ∗ carrying out the interactive
proof with a yes instance (B1,B2) of ILPZ. Let S denote the simulator, which
will produce the possible set of forged transcripts T (S). We denote PrV ∗(T )
the probability distribution on T (V ∗) and we denote PrS(T ) the probability
distribution on T (S).

We will show that:

1. The expected running time of S is polynomial.
2. PrV ∗(T ) = PrS(T ) i.e. the two distributions are identical.
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Input: B1,B2 ∈ Z
n×k such that L(B1) ∼=Z L(B2).

1. T = (B1,B2).
2. for j = 1 to l = poly(‖B1‖ + ‖B2‖) do

(a) old state ← state(V ∗)
(b) repeat

i. Pick uniformly i ∈ {1, 2}.
ii. Pick uniformly Q′

j from O(n, Z).
iii. Compute H′

j ← HNF(Q′
jBi).

iv. Call V ∗ with input H′
j and obtain c′.

v. if i = c′ then
– Concatenate

(
H′

j , i, Q
′
j

)
to the end of T .

else
– Set state(V ∗) ← old state.

vi. until i = c′

Simulator S for ILPZ.

Since V ∗ runs in polynomial time and that the probability i = c′ is 1/2, on
average S will generate two triples

(
H′

j , i, Q
′
j

)
for every triple it concatenates to

the transcript T and hence, the average running time of S is polynomial.
Using induction we will show that PrV ∗(T ) = PrS(T ). Let PrV ∗(Tj) and

PrS(Tj) denote the probability distributions on the partial set of transcripts
that could occur at the end of the j-th round.

Base Case: If j = 0, then in both case T = (H1,H2), hence both probabilities
are identical.

Inductive Step: Suppose both distributions PrV ∗(Tj−1) and PrS(Tj−1) are
identical for some j ≥ 1.

Now let’s go back and see what happens at the j-th round of our interactive
proof for ILPZ. The probability that at this round V ∗ picks c = 1 is some number
0 ≤ p ≤ 1 and the probability that c = 2 is 1 − p. Moreover, the prover picks an
orthogonal matrix Q′ with probability 1

2nn! . This probability is independent of
how the verifier picks c ∈ {1, 2}. Therefore the probability that at the j-th round(
H′

j , i, Q
′
j

)
is on the transcript of the IP if c = 1 is p

2nn! and if c = 2 is 1−p
2nn!

The simulator S in any round will pick an orthogonal matrix Q′
j with prob-

ability 1
2nn! . The probability that i = 1 and c′ = 1 is p

2 and the probability i = 2
and c′ = 2 is 1−p

2 .
In both cases the corresponding triple

(
H′

j , i, Q
′
j

)
will be written to the tran-

script. Note with probability 1/2 nothing is added to the transcript. The proba-
bility that

(
H′

j , 1, Q′
j

)
is written on the transcript in j-th round during the m-th

iteration of the repeat loop is p
2m×(2nn!) . Therefore the total probability that

(
H′

j , 1, Q′
j

)
is written on the transcript in the j-th round is
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p

2 × (2nn!)
+

p

22 × (2nn!)
+ ... +

p

2m × (2nn!)
+ ...

=
p

2 × (2nn!)

(

1 +
1
2

+
1
4

+ ... +
1

2m−1
+ ....

)

=
p

2nn!
.

Similarly the total probability that
(
H′

j , 2, Q′
j

)
is written on the transcript

in the j-th round is 1−p
2nn! . Hence, by induction, the two probability distributions

are identical PrV ∗(T ) = PrS(T ).

5 Sampling a Lattice Basis in Zero-Knowledge and ILPR

Suppose B ∈ R
n×k is a basis of some lattice L(B). Recall that B′ is a basis of

L(B) if and only if B′ ∈ {BU : U ∈ GLk(Z)} and that the algorithm SampleD [2]
takes an input basis B = [b1|b2| . . . |bk] ∈ R

n×k, an appropriate parameters s ∈
R and c ∈ R

n and outputs a lattices point v ∈ L(B) that is distributed according
to the discrete Gaussian distribution Ds,c,L [2]. SampleD is zero-knowledge in a
sense that the output point v leaks almost no information about the input basis
B except the bound s with overwhelming probability [2]. Furthermore, for an
n dimensional L if we pick V = {v1,v2, . . . ,vn2} lattice points independently
according to Ds,L, then V contain a subset of k linearly independent vectors,
except with negl(n) probability ([12], Corollary 3.16).

Let B = {b1, · · · ,bk} be a basis of a lattice L and suppose S = {s1, · · · , sk}
is a set of linearly independent vectors that belong to L. There exists a deter-
ministic polynomial time algorithm that will output a basis T = {t1, · · · , tk} of
L such that ||ti||2 ≤ ||si||2 for 1 ≤ i ≤ k ([1], p. 129).

Using the above two algorithms we will present a probabilistic polynomial
time algorithm SampleL that will take an input basis B = {b1, . . . ,bk} of some
lattice L, c ∈ R

n, a parameter s ≥ ω(
√

log n) · ||B̃|| and outputs a basis T, such
that T leaks no information about the basis B, except s (the bound on the norm
of B) with overwhelming probability.

Protocol 1. SampleL
Input

(
B ∈ R

n×k
R , k, n, s

)

1. Sample V = {v1,v2, . . . ,vn2} points independently using the algorithm
SampleD(B, 0, s)).

2. Pick S = {s1, s2, . . . , sk} ⊂ V, such that S is a set of linearly independent vectors.
3. Using the deterministic algorithm output the basis T, such that L(T) = L(B).

It is easy to see that if B ∈ R
n×k
R then so T ∈ R

n×k
R . Since T and B are

bases of the same lattice, there exists a U ∈ GLk(Z) such that

T = BU.
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6 An Interactive Proof for ILPR

– Input B1,B2 ∈ Rn×k such that L(B1) ∼=R L(B2).
1. Prover set s = log n · max{‖B̃1‖, ‖B̃2‖}.
2. for i = 1 to l = poly(‖B1‖ + ‖B2‖) rounds do.

(a) Prover picks uniformly an orthogonal matrix Q′
j ← O(n,R).

(b) Prover picks B′
j ← SampleL (Q′

jB1, k, n, s
)
.

(c) Prover sends the basis B′
j to the verifier.

(d) Verifier randomly picks cj ∈ {1, 2} and sends it to the prover.
(e) Prover sends the verifier an orthogonal matrix Pj ∈ O(n,R).

i. if cj = 1, then Pj = Q′
j .

ii. if cj = 2 then Pj = Q′
jQ

t, where Q ∈ O(n,R) is such that
L(B2) = L(QB1).

3. Verifier will accept the proof if for all l rounds L(B) = L(PjBcj
).

Theorem 4. The proof system for ILPR is a statistical zero-knowledge inter-
active proof with an efficient prover.

Proof:

Completeness: If L(B1) and L(B2) are isometric lattices, then B2 = QB1U
for some Q ∈ O(n,R) and U ∈ GLk(Z). Clearly,

L(Q′
jB1) = L(B) = L(Q′

jQ
tB2)

since B′
j = Q′

jB1U
′
j and B′

j = Q′
jQ

tB2UU ′
j for some U ′

j ∈ GLk(Z). Therefore,
the prover will always be able to convince the verifier.

Soundness: If L(B1) and L(B2) are not isometric over R, then the only way for
the prover to deceive the verifier is for him to guess correctly cj in each round.
Since cj is chosen uniformly from {1, 2}, the probability of the prover guessing
cj in all rounds is 2−l. Hence, the protocol is sound.

Efficient Prover: Clearly the prover can perform steps 1, 2a, 2c and 2e in
expected polynomial-time. In step 2b the prover picks a lattice basis using
SampleL, which runs in expected polynomial time. Hence the total expected
running time of the prover is polynomial.

Zero-Knowledge: Let V ∗ be any probabilistic polynomial time (possibly mali-
cious) verifier. Let T (V ∗) denote the set of all possible transcripts that could be
produced as a result of P and V ∗ carrying out the interactive proof on a yes
instance (B1,B2) of ILPR. Let SR denote the simulator, which will produce
the possible set of forged transcripts T (SR). We denote PrV ∗(T ) the probabil-
ity distribution on T (V ∗) and we denote PrSR(T ) the probability distribution
on T (SR). We will prove that:
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1. SR is polynomial.
2. PrV ∗(T ) ∼ PrSR(T ) i.e. the two distributions are statistically close.

Input: B1,B2 ∈ Rn×k such that L(B1) ∼=R L(B2).

1. Set s = log n · max{‖B̃1‖, ‖B̃2‖}.
2. T = (B1,B2).
3. for j = 1 to l = poly(‖B1‖ + ‖B2‖) do

(a) old state ← state(V ∗)
(b) repeat

i. Pick uniformly ij ∈ {1, 2}.
ii. Pick uniformly Q′

j from ∈ O(n,R).
iii. Compute H′

j ← SampleL (Q′
jBij

, k, n, s
)
.

iv. Call V ∗ with H′
j and obtain i′.

v. if ij = i′ then
– Concatenate

(
H′

j , ij , Q
′
j

)
to the end of T .

else
– Set state(V ∗) ← old state.

vi. until ij = i′.

Simulator SR for ILPR.

Running Time of the Simulator: What is the probability that ij = i′? In other
words, on average how many triples

(
H′

j , ij , Q
′
j

)
will the simulator SR generate

for every triple it concatenates to T? We note that Q′Qt and Q′ are uniformly
distributed over O(n,R), and L(Q′B1) = L(Q′QtB2) therefore the probability
that the lattice L(H′

j) is obtained by rotating the lattice L(B1) is equal to
the probability that it is obtain by rotating L(B2). Furthermore the algorithm
SampleL ensures that as far as the parameters are chosen appropriately, H′

j will
leak almost no information (apart from the bound s) about the input basis except
with negligible probability. Hence, on the average the simulator will generate
roughly 2 triples for every triple it adds to T . Therefore the expected running
time of SR is roughly twice the running time of V ∗. By definition V ∗ runs in
probabilistic polynomial time. Hence the running time of SR is also expected
polynomial time.

We will prove that the two probability distributions PrV ∗(T ) and PrSR(T )
are statistically close as follows. We first prove that the two distributions are
statistically close for one round (l = 1). Then we will invoke the sequential com-
position Lemma 4.3.11 on page 216 of [9], which implies that an interactive proof
which is zero-knowledge for one round remains zero-knowledge for polynomially
many rounds.

Case l = 1: Let (B′
1, c1, P

′
1) denote a transcript produced as a result of an

interactive proof and (H′
1, i1, Q

′
1) denote a transcript produced by the simulator.

In the interactive proof P picks uniformly P ′
1 over O(n,R) and SR also picks Q′

1
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uniformly over O(n,R). Hence both P ′
1 and Q′

1 are identically distributed. Also
B′

1 and H′
1 are computed by SampleL. Therefore they are almost identically

distributed to Ds,c,L and thus to each other.
Let p be the probability that V ∗ picks c1 = 1 and 1 − p be the probability

that it picks c1 = 2 in the interactive proof. The probability may depend on
the state of V ∗. The simulator picks i1 ∈ {1, 2} uniformly and independent of
how V ∗ picks i′. Also given H′

1, the probability that V ∗ can guess the index i1
is at most 1

2 + negl. Therefore probability that V ∗ picks i′ = 1 is nearly p and
i′ = 2 is nearly 1 − p respectively. This means that i1 and c1 have nearly the
same distributions.

Therefore, it follows that (B′
1, c1, P

′
1) and (H′

1, i1, Q
′
1) are statistically close.

Hence for one round the two distributions are statistically close. Hence, by
Lemma 4.3.11 for any polynomially many rounds we have PrV ∗(T ) ∼ PrSR(T ).

7 Isometric Lattice Problem Is Not Easy

In this section we will show that ILPZ is at least as hard as Linear Code Equiv-
alence problem over prime fields Fp and Graph Isomorphism.

Theorem 5. ILPZ is at least as hard as LCE (Linear Code Equivalence prob-
lem) over prime fields Fp.

Proof: Let G = [g1| . . . |gk] ∈ F
n×k
p be a basis of some [k, n] linear code C

ψ : C −→ Λ2(G); G −→ B

where Λ2(G) be the corresponding p-ary lattice. Recall from Sect. 2 that B =
[g1| . . . |gk|bk+1| . . . |bn] ∈ Z

n×n is a basis of Λp(G). Where bj = (0, ..., p, ..., 0) ∈
Z

n and the j-th coordinate is equal to p, for k + 1 ≤ j ≤ n. Clearly the map
ψ can be computed in polynomial time. Let G1 = [g11| . . . |g1k] ∈ F

n×k
p and

G2 = [g21| . . . |g2k] ∈ F
n×k
p be two code generators.

=⇒ Suppose G1 and G2 generate linearly equivalent codes i.e. G2 = PG1M
for M ∈ GLk(Fp) and monomial matrix P ′ ∈ P(n, Fq). Note that we can write
P ′ as a product of a permutation matrix P ∈ Pn and an invertible diagonal
matrix D ∈ F

n×k
p . Write G2 = PG′

1M, where G′
1 = DG1 and let Λp(G′

1) and
Λp(G2) be corresponding lattices.

For any v ∈ Λp(G2) ⇐⇒ v ≡ G2 · s (mod p), for some s ∈ Z
k

=⇒ v ≡ PG′
1M · s (mod p) ≡ PG′

1 · s′ (mod p), s′ = Ms ∈ Z
k

=⇒ v ∈ Λp(PG′
1)

Hence, Λp(G2) ⊆ Λp(PG′
1). Since, PG′

1 = G2M
−1, by the same argument

Λp(PG′
1) ⊆ Λp(G2), we have Λp(PG′

1) = Λp(G2). Therefore, there exists a
U ∈ GLk(Z) such that

ψ(G2) = ψ(PG′
1)U = Pψ(G′

1)U
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⇐= Now suppose G1 and G2 are not linearly equivalent and suppose ψ(G2) =
Qψ(G1)U for Q ∈ O(n, Z) and U ∈ GLk(Z). Note we can write any Q ∈ O(n, Z)
as Q = PDε, for some Dε ∈ Dεn

and P ∈ Pn. But P ′ = PDε (mod p) is a
monomial matrix. Further U is also non-singular over Fp. Therefore, ψ(G2) =
Qψ(G1)U, which implies

G2 = P ′(G1)M mod pfor someM ∈ GLk(Fp) and M ≡ U (mod p)

This contradicts the assumption that G1 and G2 are not linearly equivalent.
Therefore ILPZ is at least as hard as LCE.

Theorem 6. ILPZ is at least as hard as the GI (Graph Isomorphism) problem.

Proof: Petrank and Roth [20] reduced GI to PCE (Permutation Code Equiva-
lence). More precisely they provided a polynomial time mapping φ from the set
of all graphs to the set of generator matrices over F2 such that two graphs G1

and G2 are isomorphic if and only if φ(G1) and φ(G2) are permutation equiv-
alent codes. We will prove that ILP is at least as hard as GI, by reducing the
PCE over F2 to ILP. Let G = [g1| . . . |gk] ∈ F

n×k
2 be a basis of some [k, n]

linear code C
ψ : C −→ Λ2(G); G −→ B

where Λ2(G) is the corresponding 2-ary lattice. Recall from Sect. 2 that B =
[g1| . . . |gk|bk+1| . . . |bn] ∈ Z

n×n is a basis of Λ2(G). Where bj = (0, ..., 2, ..., 0) ∈
Z

n and the j-th coordinate is equal to2, for k + 1 ≤ j ≤ n. Clearly the map
ψ can be computed in polynomial time. Let G1 = [g11| . . . |g1k] ∈ F

n×k
2 and

G2 = [g21| . . . |g2k] ∈ F
n×k
2 be two code generators and Λ2(G1) and Λ2(G2) be

corresponding lattices.
=⇒) Suppose G1 and G2 are permutation equivalent i.e. G2 = PG1M for

M ∈ GLk(F2) and P ∈ Pn. Let G′
1 = PG1. Therefore we can write G2 = G′

1M .
By definition for any v ∈ Λ2(G2), there exists an s ∈ Z

k such that

v ≡ G2 · s ≡ G′
1M · s (mod 2).

=⇒ v ≡ PG1 · s′ (mod 2), where s′ = M · s ∈ Z
k =⇒ v ∈ Λ2(PG1).

Hence, Λ2(G2) ⊆ Λ2(PG1). Since, P tG2M
−1 = G1 by the same argument

Λ2(PG1) ⊆ Λ2(G2). Hence, there exist a U ∈ GLk(Z) such that

ψ(G2) = ψ(PG1)U =⇒ B2 = PB1U

⇐=) Now suppose G1 and G2 are not permutation equivalent and suppose
ψ(G2) = Qψ(G1)U for Q ∈ O(n, Z) and U ∈ GLk(Z). Note that Q ≡ P
(mod 2), for some P ∈ Pn. For every v ∈ Λ2(G2) we have

v ≡ G2u (mod 2) for some u ∈ Z
k.

Since, Λ2(QG1) = Λ2(G2), we also have v ≡ (QG1)u ≡ (PG1)u (mod 2)
for some u ∈ Z

k. This means that PG1 and G2 have the same span over F2.
This contradicts the assumption that G1 and G2 are not permutation equivalent.
This proves that ILP is at least as hard as GI.
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7.1 ILP is unlikely to be NP-complete

In this sub-section we show that ILPS is unlikely to be NP-complete (where
S = Z or S = R see Sect. 3.1). We do this by constructing a constant round
interactive proof for the Non-Isometric Lattice problem (co-ILPS), i.e. the
complementary problem of ILPS. Then we invoke results from the field of com-
plexity theory, implying that if the complement of a problem Π has a constant
round interactive proof and Π is NP-complete then the polynomial hierarchy
collapses [18,19]. It is widely believed that the polynomial hierarchy does not
collapse, therefore we end up with the conclusion that ILP is unlikely to be
NP-complete.

Constant Round IP for co-ILPS

– Input B1,B2 ∈ S
n×k bases such that L(B1) �S L(B2).

1. Verifier sets l = poly(|B1| + |B2|).
2. Verifier picks uniformly j1, . . . , jl ∈ {1, 2}.
3. If S = Z then the verifier picks independent random orthogonal

matrices
Q1, . . . , Ql ∈ O(n, Z).

Else verifier picks independently random orthogonal matrices
Q1, . . . , Ql ∈ O(n,R).

4. For 1 ≤ i ≤ l, verifier computes a basis H′
i for the lattice L(QiBji

).
If S = Z, then H′

i ← HNF(QiBji
), otherwise H′

i is computed using
algorithm SampleL from Sect. 5.

5. For 1 ≤ i ≤ l, the all-powerful prover computes and sends j′
i such

that H′
i and Bj′

i
are isometric.

6. Verifier accepts the proof if ji = j′
i for all 1 ≤ i ≤ l.

Completeness: Clearly, if L(B1) and L(B2) are non-isometric lattices then the
prover will never fail convincing the verifier.

Soundness: Suppose L(B1) and L(B2) are isometric lattices. The probability
that prover can guess (i1, ..., il) given (H′

1, ...,H
′
l) is 2−l if S = Z and 2−l + negl

if S = R.

8 Conclusion and Acknowledgement

We conclude with an open problem related to our work. Construct a Malicious
verifier statistical zero-knowledge proof system with an efficient prover for the
Isometric Lattice Problem over rationals ILPQ. We would also like to thank
Professor Chris Peikert, for his help and patience, who always took time out of
his busy schedule to answer our questions.
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A Computing Sine and Cosine Efficiently

Let p(n) be any desired publicly known positive polynomial. Recall that

sin
( π

2p(n)

)
=

1
2

<
1
2
, 2− <

1
2
, 2 + · · · + <

1
2
, 2 >> · · · >

︸ ︷︷ ︸
p(n)−1

cos
( π

2p(n)

)
=

1
2

<
1
2
, 2+ <

1
2
, 2 + · · · + <

1
2
, 2 >> · · · >

︸ ︷︷ ︸
p(n)−1

.

Suppose we have to compute sin
(

l·π
2p(n)

)
for some 0 ≤ l ≤ 2p(n).

sin(α + β) = sin(α) cos(β) + sin(β) cos(α)
cos(α + β) = cos(α) cos(β) − sin(α) sin(β)

Write l =
∑k

i=0 xi · 2i, xi ∈ {0, 1} and k ≤ p(n). WLOG we can assume that
l is not even.

sin
(

l · π

2p(n)

)

= sin
( π

2p(n)−k
+ · · · +

π

2p(n)

)

= sin
( π

2p(n)−k

)
cos

⎛

⎝

[∑k−1
i=0 xi2i

]
π

2p(n)

⎞

⎠

+ sin

⎛

⎝

[∑k−1
i=0 xi2i

]
π

2p(n)

⎞

⎠ cos
( π

2p(n)−k

)
.

Note that sin
(

π
2p(n)−k

)
and cos

(
π

2p(n)−k

)
can be computed directly. Now we

can recursively compute cos
(

[∑k−1
i=0 xi2

i]π
2p(n)

)

and sin
(

[∑k−1
i=0 xi2

i]π
2p(n)

)

. But since

sin(θ)2 = 1 − cos2(θ), in recursion we will only have to compute either

cos
(

[∑k−1
i=0 xi2

i]π
2p(n)

)

or sin
(

[∑k−1
i=0 xi2

i]π
2p(n)

)

.

Clearly depth of the recursion is k ≤ p(n) and for each recursive step we will
have four values, with each value is of size O(p(n)). Hence in total running time
is at most O(p(n)) operations. Similarly, one can show that cos

(
l·π

2p(n)

)
for any

0 ≤ l ≤ 2p(n), can be computed in polynomial time as well.
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Abstract. In this paper, we implement the Successive Cancellation (SC)
decoding algorithm for Polar Codes by using Euclidean distance esti-
mates as the metric of the algorithm. This implies conversion of the
classic statistical recursive expressions of the SC decoder into a suitable
form, adapting them to the proposed metric, and properly expressing
the initialization values for this metric. This leads to a simplified version
of the logarithmic SC decoder, which offers the advantage that the algo-
rithm can be directly initialised with the values of the received channel
samples. Simulations of the BER performance of the SC decoder, using
both the classic statistical metrics, and the proposed Euclidean distance
metric, show that there is no significant loss in BER performance for the
proposed method in comparison with the classic implementation. Calcu-
lations are simplified at the initialization step of the algorithm, since nei-
ther is there a need to know the noise power variance of the channel, nor
to perform complex and costly mathematical operations like exponenti-
ations, quotients and products at that step. This complexity reduction
is especially important for practical implementations of the SC decoding
algorithm in programmable logic technology like Field Programmable
Gate Arrays (FPGAs).

Keywords: Soft distance · Successive cancellation decoding · Polar
codes

1 Introduction

Ever since Claude Shannon proved that there is a maximum rate at which infor-
mation can be reliably transmitted over a channel, a parameter that is known as
the channel capacity [1], researchers have looked for efficient error-control tech-
niques that can approach capacity. However, most of this research only addressed
heuristic methods. The design of structural capacity-achieving codes had to wait
until the appearance of Polar Codes, an error-control coding technique proposed
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 173–183, 2015.
DOI: 10.1007/978-3-319-27239-9 10
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by Arikan [2], who proved that polar codes can asymptotically achieve the capac-
ity of Binary-input discrete memoryless channels (B-DMCs).

Subsequent research also proved that Polar Codes achieve the capacity of any
discrete or continuous input alphabets in memoryless channels [3]. The construc-
tion of optimized Polar Codes depends on the characteristics of the channel. A first
method of constructing capacity-achieving codes for B-DMCs was presented in
[2], for the Binary Erasure Channel (BEC). The extension to channels like the
AWGN channel or the Rayleigh channel requires a more elaborate design. Arikan
proposed a heuristic approach in [4]. Another method, making use of density evo-
lution, was proposed in [5,6]. This last approach requires large amounts of memory
and involves a high computation complexity that increases with the code length.

An alternative method, used here in this paper, was presented in [8], where
Bhattacharyya parameters, involved in the determination of the best sub-channels
in the polarization process, are evaluated using a Gaussian approximation (GA).
This method leads to the construction of Polar Codes for the AWGN channel.

Arikan showed that these codes can be efficiently encoded and decoded with
complexity O (NlogN) where N is the code block length [2]. The decoding
method is called Successive Cancellation (SC) decoding, because in essence it
sequentially provides estimates of the received bits, in the order in which they
are input to the decoder. This process can be greatly simplified by taking advan-
tage of the recursive structure of polar codes. The metric used in the algorithm
is the Likelihood Ratio (LR), and a further simplification is obtained by using
calculations in the logarithmic domain, operating with Logarithmic Likelihood
Ratios (LLR).

Polar Codes need to operate with very long block lengths, in order to effec-
tively approach the capacity of the channel, which results in highly complex SC
decoders. Many simplification procedures have been applied to the SC decoding
algorithm in order to reduce its complexity, particularly for practical implemen-
tations that make use of programmable technology, such as in the case of FPGA
devices. Examples of such techniques include semi-parallel decoder implementa-
tions [7], and decomposition of Polar Codes into its constituent sub-codes which
are easier to decode [9].

In this paper we explore successive cancellation decoding of Polar Codes
using the non-statistical Euclidean Soft Distance (SD) metric. This metric, when
applied to the sum-product decoding algorithm for Low-Density Parity-Check
(LDPC) codes over AWGN and Rayleigh channels, provides a performance very
close to that obtained with the LLR metric, but with a significant reduction in
complexity in its logarithmic computational form [10]. In this case, the compu-
tational complexity reduction is given at the initialization step, and also for the
iterative part of the algorithm. This Soft Decision (SD) decoding algorithm does
not require the calculation of LLRs, and so it is not necessary to measure or esti-
mate the SNR at the receiver before decoding. The SD can be applied directly
to the recursive structure of the SC decoder of a polar code. Our investigation
is based on the notation and description of the construction and SC decoding of
Polar Codes presented in [2,7].
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2 Brief Description of Polar Codes

Polar Codes are linear block codes of length N = 2n that are constructed by
forming their generator matrix with K rows of the nth Kronecker power of the

root matrix F =
[

1 0
1 1

]

. The following is an example of the Kronecker matrix

for n = 3:

F⊗3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(1)

The corresponding encoder is seen in Fig. 1.
For this example, the input (information-bit) vector is denoted as u = u7

0,
whereas x = x7

0 represents the output (codeword bit) vector to be sent through
the channel. In this notation ub

a describes the sequence of bits ua, . . . , ub, of
the vector u. Input bits are encoded by the Kroenecker operation, resulting
in the codeword vector x. Each pair of input ui and output xi bits, where
i = 0, 1, . . . , N − 1, corresponds to a sub-channel in the channel polarisation
scheme. The transmitted word is a serial version of the output bits.

Polar Codes are usually decoded by the procedure called SC decoding, which
operates using a recursive butterfly-based SC decoder [2,7], to estimate an error
probability for each input bit ûi. As proved in [2], there is a phenomenon called
channel polarization, which for a large enough N means that some of the N
sub-channels transmit bits with error probability close to zero, whereas other
sub-channels transmit bits with error probability close to 0.5; that is, some sub-
channels become very reliable, whereas others become highly noisy. As indicated
by Arikan in [2], we can take advantage of this phenomenon, and devise an error
control coding technique, known as polar coding, by selecting the most reliable
sub-channels to transmit K input information bits, and by setting the remaining
N − K input bits to a known value, typically equal to 0. These bits are usually
known as the frozen bits.

Following transmission, which will be affected by noise and interference, a
sampling process at the receiver converts the transmitted codeword x into a
received vector y. Based on the received vector, a SC decoder generates estimates
of bits u0 to uN−1.

Bit ui requires, in order to be estimated, that bits ui−1
0 have been already

decoded. The bit to be decoded can be a frozen bit or not. If the bit is a frozen
bit, estimation does not take place, and the decoded value is set to be that of
the frozen bit. If the bit is not a frozen bit, its estimate is calculated as

ûl =

{
0 if

P(y,ui−1
0 ui=0)

P(y,ui−1
0 ui=1)

1 otherwise
(2)
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where P
(
y, ui−1

0 ui = b
)

is the probability of receiving the vectory with the con-
dition that the previous decoded bits are ui−1

0 , and that the current bit is in
either the state b = 0 or b = 1.

The selection of the best channels is done by determining the Bhattacharyya
coefficients [2], which are a measure of the transformation of the sub-channels to
be noise-free or completely noisy. In our example of the polar code with K = 4
and N = 8, the best sub-channels are those numbered 3, 5, 6 and 7, and channels
0, 1, 2 and 4 are the sub-channels for the frozen bits.

Fig. 1. Encoder of a polar code with K = 4, N = 8 [7]

Thus, rows 3, 5, 6 and 7 of the Kronecker matrix F⊗3 form the generator matrix
of the polar code, as they have the higher Bhattacharyya parameter values.

In general, the calculation of the Bhattacharyya parameters depends on the
characteristics of the channel. One method we will use is the construction method
of Arikan for the Binary Erasure Channel (BEC), where Bhattacharyya para-
meters are determined by using the following recursive expression [2,7]:

Z
(
W

(2i−1)
2N

)
= 2Z

(
W

(i)
N

)
− Z

(
W

(i)
N

)2

Z
(
W

(2i)
2N

)
= Z

(
W

(i)
N

)2

(3)

The initial value in this recursion is relevant to the calculation, and we have set
it to be 0.5. For comparison purposes we will apply this construction, labelled
A-BEC, to a polar code transmitting over both the Gaussian and the Rayleigh
channels.
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Another construction method is presented in [8] for the Gaussian channel,
which is shown to improve on the A-BEC construction. This method is based on
a Gaussian approximation for determining the Bhattacharyya parameters. We
have also adopted this method here, and we refer it to as the GA construction.
We have selected the two above described construction methods for polar codes
in order to evaluate the proposed decoding algorithm under different scenarios
of construction methods and of channel models.

In the analysis performed in [11] for determining a suitable recursion expres-
sion for generating the Bhattacharyya parameters, the conclusion in that paper
is that for the Rayleigh channel, expression (3) is the most suitable among three
possible recursions studied. Thus we have adopted this construction method for
the Rayleigh channel. We also have simulated the GA construction over the
Rayleigh channel, in order to show the dependence of the BER performance of
the polar code with respect to the relationship between channel characteristics
and the generator matrix of the code.

3 SC Decoding of Polar Codes Using Likelihood Ratio
Metrics

Arikan [2] simplified the decoding of Polar Codes by proposing a successive
cancellation (SC) decoder. This decoder is a butterfly-based decoder [7], and it
operates over a Fourier-like structure or graph over which recursive likelihood
ratio (LR) calculations are performed. The values passed in the decoder are LR
values denoted as Lj,i, where j and i correspond to the graph stage index and
the row index, respectively. At the message side of the graph the LR values are
L0,i = L (ûi), that is, the estimates of input bits, whereas Ln,i are LR values
calculated from the channel output side yi.

The decoding procedure starts with the yi values, and determines the input
bit estimations by recursively using the following expressions [2,7]:

Lj,i =

{
f

(
Lj+1,i;Lj+1,i+2j

)
= f (a, b) if B(j, i) = 0

g
(
ŝj,i−2j ;Lj+1,i−2j ;Lj+1,i

)
= g (ŝ, a, b) if B (j, i) = 1 (4)

Here, s is a modulo-2 partial sum of decoded bits, B (j, i) is defined as
B (j, i) Δ= i

2j mod 2. On the other hand, 0 ≤ j < n, and 0 ≤ i < N . In order to
calculate the LR values Lj,i, functions f and g in Eq. (4) are calculated with the
following expressions:

Lj,i =

{
f(a, b) 1+ab

a+b

g(ŝ, a, b) a1−2ŝb
(5)

Figure 2 shows the Butterfly graph for SC decoding [7].

4 A Successive Cancellation Decoder Based on the SD
Metric

As proposed in [10], iterative decoding algorithms like the sum-product (SP)
algorithm, which are used for decoding LDPC codes, can be implemented by
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Fig. 2. Butterfly graph for SC decoding

using SD estimates as the decoder metric, instead of using classic probability or
LR estimates. As shown in that paper, this brings both a complexity reduction
in the decoding algorithm, and also a quite lower complexity initialization step,
with the additional advantage of not requiring knowledge of the received signal-
to-noise ratio, thus avoiding the need for an SNR estimation process and the
possible significant loss of decoding performance due to inaccurate estimations
[12]. The same metric can be used for SC decoding of polar codes.

In order to implement this modification of the SC decoder, we first return to
the concept of LR values calculated in the logarithmic domain, and then analyse
how they propagate by using expressions (5) in this domain. This will allow us
to use SD values in this logarithmic version of the SC decoder. This resembles
the concept of the anti-log sum operation used in [10] for SP decoding of LDPC
codes.

The expressions for function f in Eq. (4) can be modified by using the fol-
lowing exponential expression, where we first set a = eλa , b = eλb , so:

f (a, b) =
1 + eλaeλb

eλa + eλb
=

e0 + eλa+λb

eλa + eλb
(6)

Here, λa and λb are logarithmic versions of LR values; that is, they are
Log-Likelihood Ratios (LLRs). We propose to replace these LLR values with
the difference between the squared distances of the channel samples to the two
possible received values xi = ±1, as will be shown in Sect. 5 below.
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First we calculate the LR ratios in the logarithmic domain:

f (λa, λb) = ln (f (a, b)) = ln
(
e0 + eλa+λb

) − ln
(
eλa + eλb

)
(7)

For a logarithm of a sum, we have:

eγ = eα + eβ

γ = ln
(
eα + eβ

)
= max (α, β) + ln

(
1 + e−|β−α|

)
(8)

then

f (λa, λb) = max (0, λa + λb) + ln
(
1 + e−|λa+λb−0|

)

−
[
max (λa, λb) + ln

(
1 + e−|λb−λa|

)]

By doing the following approximation, that discards the terms ln(
1 + e−|λa+λb−0|) and − ln

(
1 + e−|λb−λa|), we get:

f (λa, λb) � max (0,λa + λb) − max (λa, λb) (9)

error = ln
(
1 + e−|λa+λb|

)
− ln

(
1 + e−|λb−λa|

)

This error term can be discarded without a significant loss in BER perfor-
mance, a fact which we have verified in our BER performance simulations.

For the values of the g function in the logarithmic domain of Eq. (4) we
calculate ln (g (ŝ, a, b)):

g (ŝ, a, b) = a1−2ŝb

g (ŝ, λa, λb) = ln (g (ŝ, a, b)) = (1 − 2ŝ) ln (a) + ln (b) (10)

But since a = eλa , b = eλb , then we have λa = ln (a), λb = ln (b), so that:

g (ŝ, λa, λb) = (1 − 2ŝ) λa + λb (11)

Summarising:

Lj,i =
{

f (λa, λb) � max (0, λa + λb) − max (λa, λb)
g (ŝ, λa, λb) = (1 − 2ŝ) λa + λb

}

(12)

These expressions are equivalent to Eqs. (16) and (17) in [7], repeated here for
clarity:

Lj,i =
{

f (λa, λb) � sign (λa) sign (λb) min (|λa| , |λb|)
g (ŝ, λa, λb) = (−1)ŝ

λa + λb

}

The propagation of these estimates can now happen as in the case of the loga-
rithmic SC decoder. We now analyse the effect of initializing the logarithmic SC
decoder with SD values, to give form to a SD-metric-based SC decoder for polar
codes.
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5 SC Decoding of Polar Codes Over the AWGN Channel
Using Soft Distance Metrics

If we assume that transmitted values adopt a normalized polar format with
amplitudes in the range xi = ±1, LR values for the AWGN channel using
Arikan’s SC decoder [2] can be determined by using the following expressions:

W (yi/0) =
1√
2πσ

e
−(yi+1)2

2σ2

W (yi/1) =
1√
2πσ

e
−(yi−1)2

2σ2

Li =
W (yi/0)
W (yi/1)

(13)

Then the decision rule based on calculation of the LR value is:

u =
{

0 if L > 1
1 if L < 1

However, as indicated in the Introduction and Sect. 4 above, it is also possible
to decode Polar Codes by using soft distance metrics on the same butterfly
decoder structure as that for SC decoding using likelihood ratios.

Simplifying and re-labelling expression (13):

Li =
e

−(yi+1)2

2σ2

e
−(yi−1)2

2σ2

= e

[

−(yi+1)2

2σ2 +
(yi−1)2

2σ2

]

= e
(yi−1)2−(yi+1)2

2σ2 (14)

An additional simplification comes from the use of logarithmic domain cal-
culation of Li. We can determine the values d20,i = (yi + 1)2 and d21,i = (yi − 1)2,
which are the squared soft distances from the channel information values to the
two possible transmitted values xi = ±1. Then:

Li = e
d2
1,i−d2

0,i

2σ2

ln (Li) =
d21,i − d20,i

2σ2
(15)

û =
{

0 if ln (Li) > 0
1 if ln (Li) < 0 or û =

{
0 if d21,i > d20,i

1 if d21,i < d20,i

(16)

If we now have as the metric the parameter:

d21,i − d20,i = (yi − 1)2 − (yi + 1)2 = −4yi (17)

then

u =
{

0 if −4yi > 0
1 if −4yi < 0 (18)
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The idea is to apply Eq. (12) where the logarithmic values are the differences of
squared distances d21,i −d20,i by simply setting the initialization values Ln,i to be
equal to d21,i −d20,i = −4yi. This simplifies calculations of the initialization values
and avoids the need to estimate the noise level in the channel. On the other hand,
the determination of the initialization values of the classic SC decoder implies
squaring and quotient operations on the noise dispersion σ. These operations
are usually quite costly in terms of hardware implementations, but they can be
avoided by using the SD metric, without significant BER performance loss, as
we show below.

6 Simulation Results

Simulations of the BER performance of a polar code were done using Arikan’s
SC decoder [2,7] with the LLR metric, and the same polar code decoded using
the SD metric. These simulations were performed for both the AWGN channel
and the Rayleigh channel, and are intended to measure any possible loss in BER
performance as a result of the use of the SD metric. Since the construction of the
corresponding generator matrix is relevant to the BER performance, we compare
the classic construction of Arikan for Polar Codes over the BEC (A-BEC), and
the construction using the GA approach (GA) to determine the Bhattacharyya
parameters.

Simulation results for the BER performance of a polar code with parameters
(N,K) = (256, 128) over the AWGN channel are shown in Fig. 3. The simulated
transmission over the AWGN channel involves transmitting 100,000 messages
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Fig. 3. BER performance of a (256, 128) polar code for the AWGN channel
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Fig. 4. BER performance of a (256, 128) polar code for the Rayleigh channel

of 128 bits each, and is done for both the A-BEC and the GA code construc-
tions. For each construction both decoders, the classic SC decoder and the same
algorithm structure using the SD metric, are applied.

Simulation results of the BER performance of the same polar code (256,128)
over the Rayleigh channel are shown in Fig. 4. The simulated transmission over
the Rayleigh channel involves transmitting 50,000 messages of 128 bits each, and
is done for both the A-BEC and the GA construction, and both the SC and SD
decoders, as before.

Simulations have shown that removal of the constant 4 in the expression
d21,i − d20,i = −4yi has no influence on the BER performance, so we can set it
equal to 1 to simplify the decision rule calculations.

7 Conclusions

The loss in BER performance using the SD metric is very small for the AWGN
channel, and in the case of the Rayleigh channel, the SD metric performs better
than the classic LLR metric, but again with small differences. Given that this
loss is very small, there is a significant advantage in the use of the SD metric,
because it avoids calculations of products, quotients and exponentials (costly
operations for implementations in programmable logic technology like FPGAs)
in the initialization step of the algorithm. Thus the main processing complexity
improvement is in the initialization step of the SD algorithm. An additional sim-
plification in the initialization step is that we can initialize the SC decoder with
simple SD metrics that are directly the channel samples −yi or +yi, without any
significant loss in BER performance. Another major improvement in complexity
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arises because there is no need to estimate the variance of the channel noise,
which also means that any loss of performance due to inaccurate estimation is
avoided.

As expected, the GA polar code construction performs best over the Gaussian
channel. However, we note that the A-BEC construction performs slightly better
than the GA construction over the Rayleigh channel. This confirms the depen-
dence of polar code BER performance on the code construction method as well
as on the channel characteristics.

Finally, we point out that the simplified SC decoding methods proposed in
[7,9] can also make use of the SD metric, with all the advantages that this metric
gives.
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Abstract. A new variant of the Compressed Sensing problem is inves-
tigated when the number of measurements corrupted by errors is upper
bounded by some value l but there are no more restrictions on errors. We
prove that in this case it is enough to make 2(t+ l) measurements, where
t is the sparsity of original data. Moreover for this case a rather simple
recovery algorithm is proposed. An analog of the Singleton bound from
coding theory is derived what proves optimality of the corresponding
measurement matrices.

1 Introduction and Definitions

A vector x = (x1, . . . , xn) ∈ R
n in n-dimensional vector space R

n called
t-sparse if its Hamming weight wt(x) or equivalently its l0 norm ||x||0 is at
most t, where by the definition wt(x) = ||x||0 = |{i : xi �= 0}|. Let us recall that
the Compressed Sensing (CS) Problem [1,2] is a problem of reconstructing of an
n-dimensional t-sparse vector x by a few (r) linear measurements si = 〈h(i), x〉
(i.e. inner product of vectors x and h(i)), assuming that measurements (h(i), x)
are known with some errors ei, for i = 1, . . . , r. Saying in other words, one needs
to construct an r×n matrix H with minimal number of rows h(1), . . . , h(r), such
that the following equation

ŝ = HxT + e, (1)

has either a unique t-sparse solution or all such solutions are “almost equal”.
The compressed sensing problem was mainly investigated under the assumption
that the vector e = (e1, . . . , er), is called the error vector, has relatively small
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Euclidean norm (length) ||e||2. We consider another problem’s statement assum-
ing that the error vector e is also sparse but its Euclidean norm can be arbitrary
large. In other words, we consider the doubly sparse CS problem when ||x||0 ≤ t
and ||e||0 ≤ l. The assumption ||e||0 ≤ l was first time considered in [3] as a
proper replacement for discrete version of CS-problem of usual assumption that
an error vector e has relatively small Euclidean norm.

Definition 1. A real r × n matrix H called a (t, l)-compressed sensing (CS)
matrix if

||HxT − HyT ||0 ≥ 2l + 1 (2)

for any two distinct vectors x, y ∈ R
n such that ||x||0 ≤ t and ||y||0 ≤ t.

This definition immediately leads (see [3]) to the following

Proposition 1. A real r × n matrix H is a (t, l)-CS matrix iff

||HzT ||0 ≥ 2l + 1 (3)

for any nonzero vector z ∈ R
n such that ||z||0 ≤ 2t.

Our main result is an explicit and simple construction of (t, l)-CS matrices with
r = 2(t + l) for any n. We show this value of r is the minimal possible for (t, l)-
CS matrices by proving an analog of the well-known in coding theory Singleton
bound for the compressed sensing problem. Besides that we propose an efficient
recovery (decoding) algorithm for the considered double sparse CS-problem.

2 Optimal Matrices for Doubly Sparse Compressed
Sensing Problem

We start with constructing of (t, l)-CS matrices. Let a real r̃ × n matrix H̃ be a
parity-check matrix of an (n, n− r̃)-code code over R, correcting t errors, i.e. any
2t columns h̃i1 , . . . , h̃i2t of H̃ are linearly independent. And let G be a generator
matrix of an (r, r̃)-code over R of length r, correcting l errors. Let matrix H
consists of the columns h1, . . . , hn, where

hT
j = h̃T

j G (4)

and transposition T means, that vectors hj and h̃j are considered in (4) as row
vectors, i.e.

H = GT H̃ (5)

In other words, we encode columns of parity-check matrix H̃, which is already
capable to correct t errors, by a code, correcting l errors, in order to restore
correctly the syndrom of H̃.

Theorem 1. Matrix H = GT H̃ is a (t, l)-CS matrix.
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Proof. According to Proposition 1 it is enough to prove that ||HzT ||0 ≥ 2l + 1
for any nonzero vector z ∈ R

n such that ||z||0 ≤ 2t. Indeed, u = H̃zT �= 0 since
any 2t columns of H̃ are linear independent. Then HzT = GT H̃zT = GT u =
(uT G)T and uT G is a nonzero vector of a code over R, correcting l errors. Hence
||HzT ||0 = ||uT G||0 ≥ 2l + 1. �	

Now let us choose the well known Reed-Solomon (RS) codes (which are a
particular case of evaluation codes construction) as both constituent codes. The
length of the RS-code is restricted by the number of elements in the field so in the
case of R the length of evaluation code can be arbitrary large. Indeed, consider
the corresponding evaluation code RS(n,k) = {(f(a1, . . . , f(an)) : deg f(x) <
k}, where a1, . . . , an ∈ R are n different real numbers. The distance of the
RS(n,k) code d = n − k + 1 since the number of roots of a polynomial cannot
exceed its degree and hence d ≥ n − k + 1,but, on the other hand, the Singleton
bound states that d ≤ n − k + 1 for any code, see [4]. Therefore the resulting
matrix H is a (t, l)-CS matrix with r = 2(t + l). The next result, which is a
generalization of the Singleton bound for the doubly sparse CS problem, shows
these matrices are optimal in the sense having the minimal possible number r
of linear measurements.

Theorem 2. For any (t, l)-CS r × n-matrix

r ≥ 2(t + l). (6)

Proof. Let H be any (t, l)-CS matrix of size r × n, i.e., ||HzT ||0 ≥ 2l + 1 for any
nonzero vector z ∈ R

n such that ||z||0 ≤ 2t. And let H2t−1 be the (2t − 1) × n
matrix consisting of the first 2t−1 rows of H. There exists a nonzero vector ẑ =
(ẑ1, . . . , ẑ2t, 0, 0, . . . , 0) ∈ R

n such that HẑT = 0 (a system of linear homogenious
equations with the number of unknown variables larger than the number of
equations has a nontrivial solution). Then ||HẑT ||0 ≤ r − (2t − 1) and finally
r ≥ 2t + 2l since ||HẑT ||0 ≥ 2l + 1. �	

3 Recovery Algorithm for Doubly Sparse Compressed
Sensing Problem

Let us start from a simple remark that for e = 0 recovering of the original sparse
vector x, i.e., solving the Eq. (1), is the same as syndrome decoding of some
code (over R) defined by matrix H as a parity-check matrix. In general, syn-
drome s = HxT is known with some error, namely, as ŝ = s + e and therefore
we additionally encoded columns of H by some error-correcting code in order
to recover the original syndrome s and then apply usual syndrome decoding
algorithm. Therefore recovering, i.e., decoding algorithm for constructed in pre-
vious chapter optimal matrices is in some sense a “concatenation” of decoding
algorithms of constituent codes.

Namely, first we decode vector ŝ = s + e by a decoding algorithm of the
code with generator matrix G. Since ||e||0 ≤ l this algorithm outputs the correct
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syndrome s. After that we form the syndrome s̃ by selecting first r̃ coordinates
of s and then apply syndrome decoding algorithm (of the first code with parity-
check matrix H̃) for the following syndrom equation

s̃ = H̃xT . (7)

Now let us discuss a right choice of constituent codes. It is very convenient to
use the class of Reed-Solomon codes over R. There are well known algorithms of
their decoding up to half of the code distance (bounded distance decoding, see
[4]), for instance, Berlekamp-Massey algorithm, which in our case (codes over R)
is known also as Trench algorithm, see [5]. Hence the total decoding complexity
does not exceed O(n2) operations over real numbers. Moreover we can even
decode these codes over their half distances by application of Guruswami-Sudan
list decoding algorithm [6].

It is well known that encoding-decoding procedures of Reed-Solomon codes
become more simple in the case of cyclic codes, when the set a1, . . . , an is a
cyclic group under multiplication. In order to do it let us consider a1, . . . , an

as complex roots of degree n and define our codes through their “roots”, i.e.
our codes consist of polynomials f(x) over R such that f(e2πi m

n ) = 0 for m ∈
{−s, . . . ,−1, 0,+1, . . . ,+s} with s = t for the first constituent code and s = l
for the second. It easy to check that such codes achieve the Singleton bound
with d = 2s + 2, so the corresponding doubly sparse code has redundancy r =
2(t + l + 1) what is slightly larger than the corresponding Singleton bound, but
in return these codes can be decoded via FFT.

4 Discussion - No Small Errors Case and Slightly Beyond

Let us note that the initial papers on Compressed Sensing especially stated that
this new technique (application of l1 minimization instead of l0) allows to recover
information vector x ∈ R

n in case when not many coordinates of x were affected
by errors. For instance, “one can introduce errors of arbitrary large sizes and
still recover the input vector exactly by solving a convenient linear program...”,
see in [7]. To achieve such performance some special restriction on matrix H was
placed, called Restricted Isometry Property (RIP), as follows

(1 − δD)||x||2 ≤ ||HxT ||2 ≤ (1 + δD)||x||2, (8)

for any vector x ∈ R
n : ||x||0 ≤ D, where 0 < δD < 1. The smallest possible δD

called the isometry constant.
Then typical result in [7] (Theorem 1.1) is of the following form “if δ3t+3δ4t <

2 then the solution of linear programming problem is unique and equal to x”.
Let us note that the condition δ3t + 3δ4t < 2 implies δ4t < 2/3 (of course, it

implies that δ4t < 1/2, but for us enough to have δ4t < 1). Hence HxT �= 0 for
any nonzero x with wt(x) ≤ 4t, or in other words, an error-correcting code (over
reals) corresponding to such parity-check matrix H has the minimal distance at
least 4t + 1 and can correct 2t errors (instead of t). So we lost twice in error-
correction capability but maybe linear programming provides more easier way for
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decoding? In fact, NOT, since it is well known in coding theory that such problem
can be solved rather easily (in complexity) over any infinite field by usage of the
corresponding Reed-Solomon codes and known decoding algorithms. In case of
real number or complex number fields one can use just an RS code with Fourier
parity-check matrix, namely, hj,p = exp(2πi jp

n ), where for complex numbers
p ∈ {1, 2, ..., n}, j = a, a+d, a+2d, . . . , a+(r−1)d, and “reversible” RS-matrix
H for real numbers, where p ∈ {1, 2, ..., n}, j ∈ {−f,−f + 1, . . . , 0, 1, . . . , f} and
r = 2f + 1.

Fortunately, matrices with the RIP property allow to correct not only sparse
errors but also additional errors with arbitrary support but relatively small (up to
ε) Euclidean norm. Again, the RIP property is good for linear programming
decoding but is too strong in general. Namely, it is enough to have the following
property

λ2t||x||2 ≤ ||HxT ||2, (9)

for any vector x ∈ R
n : ||x||0 ≤ 2t, where λ2t > 0 and the largest such value we

call extension constant. Indeed, then for any two solutions x and x̃ of the Eq. (1)
we have that

||x − x̃||2 ≤ 2λ−1
2t ε, (10)

where ||e||2, ||ẽ||2 ≤ ε. Hence (10) shows that all solutions of the Eq. (1) are
“almost equal” if λ2t is large enough. Let us note that for RS-matrices any r
columns are linear independent and hence λ2t > 0, but λ2t tends to zero when
n grows and code rate is fixed. To find better class of codes over the field of real
(or complex) numbers is an open problem.

5 Conclusion

In this paper we extends technique, which was developed in [8] for error correc-
tion with errors in both the channel and syndrome, to the Compressed Sensing
problem. We hope this approach will help to find limits of the unrestricted (i.e.
without LP usage) compressed sensing.
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Abstract. Linear codes over Zq of length 2, correcting single errors of
size at most k, are considered. It is determined for which q such codes
exists and explicit code constructions are given for those q. One case
remains open, namely q = (k + 1)(k + 2), where k + 1 is a prime power.
For this case we conjecture that no such codes exist.

Keywords: Error correcting codes · Single errors · Limited size errors

1 Introduction

Flash memories are non-volatile, high density and low cost memories. Flash mem-
ories find wide applications in cell phones, digital cameras, embedded systems,
etc. and it is a major type of Non-Volatile Memory (NVM).

In order to improve the density of flash memories, multi- level (q-level) mem-
ory cells are used so that each cell stores log2 q bits. Even though multi-level
cells increase the storage density compared to single-level cells, they also impose
two important challenges. The first one is that the voltage difference between
the states is narrowed since the maximum voltage is limited. A natural conse-
quence is that reliability issues such as low data retention and read/write dis-
turbs become more significant. The errors in such cases are typically of limited
magnitude.

The second major challenge in flash memory systems is that the writing
mechanism is relatively very time consuming. A cell can be programmed from
a lower level to a higher level by injecting additional amount of electrons in the
floating gate. However, in order to program a cell from a higher level to lower
level, an entire block of cells needs to be erased to zero and then using many
iterations electrons are carefully injected to the floating gates of each and every
cell to achieve the desired levels. Thus, rewriting a cell from the higher voltage
level to a lower voltage level is quite expensive. The amount of time required for
write operation can be reduced by using error correcting codes. The overshoot
of voltage level while writing can be considered as asymmetric error of limited
magnitude. Using codes capable of correcting limited magnitude asymmetric
errors, the overshoot errors can be corrected. Because of this we do not need to
be very precise about achieving the desired voltage level and so, the number of
iterations required for charging the floating gates can be reduced, which in turn
will reduce the write operations time.
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 190–201, 2015.
DOI: 10.1007/978-3-319-27239-9 12
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2 Notations

We denote the set of integers by Z. For a, b ∈ Z, a ≤ b, we let

[a, b] = {a, a + 1, a + 2, . . . , b}.

For integers q > 0 and a, we let (a mod q) denotes the main residue of a
modulo q, that is, the least non-negative integer r such that q divides a − r.

Assume q is given. We denote modular addition of two integers a, b by a ⊕ b,
that is, a ⊕ b = ((a + b) mod q). Similarly, we define modular subtraction by
a � b = ((a − b) mod q) and modular multiplication by a ⊗ b = (ab mod q).

We define the channel more precisely. Let q and k be integers, where 1 ≤
k < q. The alphabet is Zq = [0, q − 1]. A symbol a in the alphabet Zq may
be modified during transmission into another symbol a ⊕ e ∈ Zq where e is
an integer such that |e| ≤ k. Error correcting codes for this channel have been
considered in e.g. in [1,5,6]. Most of these are linear and single error correcting.
The simplest non-trivial case are codes of length two. We consider this case in
detail in this note.

3 General Description of the Codes

We define the codes and the problem precisely. Let (a, b) ∈ Z
2. The correspond-

ing code is
C = Ca,b = {(u, v) ∈ Z

2
q | (a ⊗ u) ⊕ (b ⊗ v) = 0}.

When (u, v) is transmitted and (u′, v′) is received, the corresponding syndrom
is (a ⊗ u′) ⊕ (b ⊗ v′). We see that if (u′, v′) = (u ⊕ e, v), the syndrom is

(a ⊗ (u ⊕ e)) ⊕ (b ⊗ v) = (a ⊗ u) ⊕ (a ⊗ e) ⊕ (b ⊗ v) = a ⊗ e.

Similarly, if (u′, v′) = (u, v ⊕ e), the syndrom is b ⊗ e. Therefore, the code can
correct a single error of size at most k if and only if the 1 + 4k syndroms

{0} ∪ {a ⊗ e | e ∈ [−k,−1] ∪ [1, k]} ∪ {b ⊗ e | e ∈ [−k,−1] ∪ [1, k]} (1)

are all distinct. If this is the case, we say that (a, b) is a (q, k) check pair or just
a check pair if the values of q and k are clear from the context.

Our problem can now be precisely formulated as follows:

For which q and k does a (q, k) check pair exist?

At first glance, this may seem to be a rather trivial problem. However, this
appears not to be the case for all q and k. When a check pair exists, we also
want describe the corresponding code and its encoding and decoding.

The following reformulation will be usefull.

Proposition 1. For given q, k, (a, b) ∈ Z
2 is a check pair if and only if all the

following conditions are satisfied:
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1. a ⊗ e �= b ⊗ ε for e, ε ∈ [−k,−1] ∪ [1, k],
2. gcd(a, q) < q/(2k),
3. gcd(b, q) < q/(2k).

Proof. By the definitions, (a, b) is a check pair if and only if all the syndroms
are distinct, that is, all the following conditions are satisfied:

1. a ⊗ e �= b ⊗ ε for e, ε ∈ [−k,−1] ∪ [1, k],
2. a ⊗ e �= a ⊗ ε for −k ≤ ε < e ≤ k,
3. b ⊗ e �= b ⊗ ε for −k ≤ ε < e ≤ k.

We will show that second of these conditions is equivalent to the second condition
of the proposition and similarly for the third conditions. Let d = gcd(a, q). Then
gcd(a/d, q/d) = 1. Putting z = e − ε we get the following chain of equivalent
conditions:

(2) ⇔ a ⊗ z �≡ 0 (mod q) for all z ∈ [1, 2k]
⇔ (a/d) ⊗ z �≡ 0 (mod (q/d)) for all z ∈ [1, 2k]
⇔ z �≡ 0 (mod (q/d)) for all z ∈ [1, 2k]
⇔ 2k < q/d

⇔ d < q/(2k).

Similarly for the third condition.

Lemma 1. Let (a, b) be a (q, k) check pair. Then

1. (b, a) is a check pair.
2. (a,−b), (−a, b), and (−a,−b) are check pairs.
3. If z ∈ Z such that gcd(q, z) = 1, then (za, zb) is a check pair.

Proof. The syndroms of (b, a) are clearly the same as the syndroms of (a, b).
This proves case 1. Also for case 2 the syndroms are the same.

Now, consider case 3. Let z′ ⊗ z = 1. Multiplying by z′, we see that

(za) ⊗ e = (zb) ⊗ ε if and only if a ⊗ e = b ⊗ ε

for e, ε ∈ [−k,−1] ∪ [1, k]. Further, gcd(za, q) = gcd(a, q) and so

gcd(za, q) < q/(2k) if and only if gcd(a, q) < q/(2k).

4 The Case q ≤ (k + 1)2

In [5], the following result was shown.

Theorem 1. If k ≥ 1 and q ≤ (k + 1)2, then there are no (q, k) check pairs.

It was also shown that (1, k + 1) is a ((k + 1)2 + 1, k) check pair. In this
paper, we consider all q > (k + 1)2. We split the presentation into two parts:

The case q ≥ (k +1)2 +1, q �= (k +1)(k +2). For this case we show in Sect. 5
that there exists a simple check pair.

The case q = (k + 1)(k + 2). This is the hardest case. A check pair exists for
some k, but not all. We discuss this case in Sect. 6.



Codes of Length 2 Correcting Single Errors Of Limited Size 193

5 The Case q ≥ (k + 1)2 + 1, q �= (k + 1)(k + 2)

5.1 Check Pairs

We will give explicit check pairs for all q in this case.
First, consider the pair (1, k + 1). The corresponding syndrom set is

[0, k] ∪ [q − k, q − 1] ∪ {(k + 1)e | e ∈ [1, k]} ∪ {q − (k + 1)x | x ∈ [1, k]}.

If q−k(k+1) > k(k+1), that is, q ≥ 2k(k+1)+1, then clearly all the syndroms
are distinct and so (1, k + 1) is a check pair.

Similarly, if q ∈ [(k+1)2 +1, 2k(k+1)−1] but q �≡ 0 (mod k+1), then again
all the syndroms are distinct.

It remains to consider q ∈ {x(k + 1) | x ∈ [k + 3, 2k]}. For these q we have
q �≡ 0 mod (k + 2). By an argument similar to the one above, we see that that
(1, k + 2) is a check pair.

We summarize these results in a theorem.

Theorem 2. We have the following cases.

1. If q ≥ 2k(k + 1) + 1, then (1, k + 1) is a check pair.
2. If q ∈ [(k + 1)2 + 1, 2k(k + 1) − 1] but q �≡ 0 (mod k + 1), then (1, k + 1) is a

check pair.
3. If q ∈ {x(k + 1) | x ∈ [k + 3, 2k]}, then (1, k + 2) is a check pair.

5.2 The Corresponding Codes

We take a closer look at the codes corresponding to check pairs in the second
case. The other cases are very similar. The code is

C1,k+1 = {(u, v) | u, v ∈ Zq, u ⊕ ((k + 1) ⊗ v) = 0}
= {((−(k + 1)) ⊗ v, v) | v ∈ Zq}.

The most natural encoding for the information m ∈ Zq is to encode it into
((−(k + 1)) ⊗ m,m)). In particular, this gives a systematic encoding.

For decoding, we assume that (u′, v′) is received and that at most one of the
elements are in error, and by an amount e of size at most k. From this we want
to recover the sent information. We look at the possible syndroms.

– If there are no errors, the syndrom is 0.
– If u′ = u ⊕ e where e ∈ [1, k], then the syndrom is s = e. In this case the

second part is error free and so m = v′ = v.
– If u′ = u ⊕ e where e ∈ [−k,−1], then the syndrom is s = q + e. Also in this

case m = v′ = v.
– If v′ = v ⊕ e where e ∈ [1, k], then the syndrom is s = (k + 1)e and so

e = s/(k + 1). In this case m = v′ � e = v′ � s/(k + 1).
– If v′ = v ⊕ e where e ∈ [−k,−1], then the syndrom is s = q + (k + 1)e and so

e = (s − q)/(k + 1) and m = v′ � (s − q)/(k + 1).
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This gives the following decoding algorithm:

– if s ∈ [0, k] or s ∈ [q − k, q − 1], then m = v′,
– else if (s mod (k + 1) = 0, then m = v′ � s/(k + 1),
– else if ((s − q) mod (k + 1) = 0, then m = v′ � (s − q)/(k + 1).

This gives a correct answer for all errors of the type we consider. Of course, if
other types of errors have occurred, the decoding algorithm will either give a
wrong answer or no answer at all (when none of the conditions are satisfied).

For codes corresponding to the first and third cases in Theorem2, we get a
similar decoding algorithm.

6 The Case q = (k + 1)(k + 2)

This is the main case.

6.1 An Existence Result

Theorem 3. Let k ≥ 1 and q = (k + 1)(k + 2). For each integer a, 1 ≤ a ≤ q,
we have

gcd(a, q) > k

or there exists integers x ∈ [1, k] and y ∈ [−k,−1] ∪ [1, k] such that

y = a ⊗ x. (2)

Remark. We see that (2) is equivalent to

ax − tq = y (3)

for some integer t. We note that this implies that gcd(a, q) divides y. In partic-
ular, it implies that gcd(a, q) ≤ |y| ≤ k.

We will use Farey-sequences in the proof. For a discussion of Farey-sequences,
see e.g. [2, p. 23ff]. The Farey-sequence Fk is the sequence of fractions t/n, where
0 ≤ t ≤ n ≤ k and gcd(t, n) = 1, listed in increasing order. The size of Fk is
1 + Φk, where

Φ = Φk =
k∑

r=1

ϕ(r).

We denote the elements of Fk by ti/ni, where t0/n0 = 0/1 and tΦ/nΦ = 1/1.

Example 1. F6 is
0
1
,
1
6
,
1
5
,
1
4
,
1
3
,
2
5
,
1
2
,
3
5
,
2
3
,
3
4
,
4
5
,
5
6
,
1
1
.

We see that the elements are symmetric around 1/2, and this is clearly a
general property: we have

nΦ−i = ni and tΦ−i = ni − ti, that is, tΦ−i/nΦ−i = 1 − ti/ni.

for 0 ≤ i ≤ Φ.
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The following lemma contains Theorems 28 and 30 in [2].

Lemma 2. Let ti/ni and ti+1/ni+1 be consecutive elements in Fk. Then

ti+1ni − tini+1 = 1, (4)

and
ni + ni+1 ≥ k + 1. (5)

Let
si =

ti
ni

+
1

ni(ni + ni+1)
.

Lemma 3.

si =
ti
ni

+
1

ni(ni + ni+1)
=

ti+1

ni+1
− 1

ni+1(ni + ni+1)
. (6)

Proof.
( ti+1

ni+1
− 1

ni+1(ni + ni+1)

)
−

( ti
ni

+
1

ni(ni + ni+1)

)

=
( ti+1

ni+1
− ti

ni

)
−

( 1
ni+1(ni + ni+1)

+
1

ni(ni + ni+1)

)

=
ti+1ni − tini+1

nini+1
− 1

nini+1
= 0.

It is easy to show that Theorem 3 is true for k ≤ 3. Therefore, Theorem 3 is
equivalent to the following lemma (note that (8) is equivalent to (3)).

Lemma 4. Let k ≥ 4 and q = (k + 1)(k + 2). For each integer a, 1 ≤ a ≤ q,
such that gcd(a, q) ≤ k, there exists integers x, y, and t such that 1 ≤ x ≤ k,

1 ≤ |y| ≤ k, (7)

and
a

q
− t

x
=

y

xq
. (8)

We have
ti
ni

≤ a

q
<

ti+1

ni+1

for some i. We split the proof into cases. We first consider the cases when

ti
ni

≤ a

q
≤ si.

Case I, ti
ni

= a
q or, equivalently, nia = tiq. Since gcd(ni, ti) = 1, ni must divide

q. Hence a = ti(q/ni), and so

gcd(a, q) ≥ q

ni
≥ q

k
=

k2 + 3k + 1
k

> k + 3 > k.
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Case II, ti
ni

< a
q ≤ ti

ni
+ 1

ni(ni+ni+1)
. Then

0 < nia − tiq ≤ q

ni + ni+1
.

Subcase IIa, ni + ni+1 ≥ k + 3. Then

nia − tiq ≤ k2 + 3k + 2
k + 3

= k +
2

k + 3
< k + 1

and so 0 < nia − tiq ≤ k.
Subcase IIb, ni + ni+1 = k + 2. Then

nia − tiq ≤ q

k + 2
= k + 1.

Suppose that
nia − tiq = k + 1. (9)

Then

a =
ti(k + 2) + 1

ni
(k + 1). (10)

From (4) we get

1 = ti+1ni − tini+1 = ti+1ni − ti(k + 2) + tini

and so (ti + ti+1)ni = ti(k + 2) + 1. Hence gcd(ti + ti+1, k + 2) = 1. Further,
combining with (10) we get

a = (ti + ti+1)(k + 1).

Hence, gcd(a, q) = k + 1 > k.
Subcase IIc, ni + ni+1 = k + 1 is similar. First, from (4) we get, in this case,

1 = ti+1ni − tini+1 = ti+1ni − ti(k + 1) + tini

and so
(ti + ti+1)ni = ti(k + 1) + 1. (11)

Hence gcd(ti + ti+1, k + 1) = 1 and

gcd(ni, k + 1) = 1. (12)

Further
nia − tiq ≤ q

k + 1
= k + 2.

Subcase IIc-1,
nia − tiq = k + 2. (13)

Then, by (11) and (13),

a =
ti(k + 1) + 1

ni
(k + 2) = (ti + ti+1)(k + 2). (14)
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Hence, gcd(a, q) = k + 2 > k.
Subcase IIc-2,

nia − tiq = k + 1. (15)

In this case,
nia = (ti(k + 2) + 1)(k + 1),

and so, by (12), ni|(ti(k + 2) + 1). Further, by (11), ni|(ti(k + 1) + 1). Hence

ni|((ti(k + 2) + 1) − (ti(k + 1) + 1)) = ti.

Since gcd(ni, ti) = 1 and ti < ni, this is only possible if ni = 1 and ti = 0.
Therefore, by (15), we must have a = k + 1 and so gcd(a, q) = k + 1 > k.

Finally, we note that the cases where si < a
q < ti+1

ni+1
are similar. This com-

pletes the proof of Lemma 4 and so of Theorem 3.

Theorem 4. Let q = (k + 1)(k + 2). The pair (1, a) is not a (q, k) check pair
for any a.

Proof. Suppose that (1, a) is a check pair. By Proposition 1,

gcd(a, q) <
(k + 1)(k + 2)

2k
< k.

By Theorem 3, there exist e, ε ∈ [−k,−1] ∪ [1, k] such that e = a ⊗ ε. Hence, the
syndroms are not all distinct. This contradicts our assumption that (1, a) is a
check pair.

Lemma 5. Let q = (k + 1)(k + 2). If (a, b) is a (q, k) check pair, then

gcd(a, q) > 1 and gcd(b, q) > 1.

Proof. Suppose that gcd(a, q) = 1. Let a′ be defined by a′ ⊗ a = 1 and let
b′ = a′ ⊗ b. By Lemma 1 part 3, (1, b′) is a check pair. However this contradicts
Theorem 4. Hence, gcd(a, q) > 1. Similarly, gcd(b, q) > 1.

In contrast to this lemma, we have the following lemma.

Lemma 6. Let q = (k + 1)(k + 2). If (a, b) is a (q, k) check pair, then

gcd(a, b, q) = 1.

Proof. Suppose that gcd(a, b, q) = d > 1. Then we see that (a/d, b/d) is a (q/d, k)
check pair:

– If (a/d) ⊗ e ≡ (b/d) ⊗ ε (mod q/d) where e, ε ∈ [−k,−1] ∪ [1, k], then a ⊗ e ≡
b ⊗ ε (mod q), but this is not possible since (a, b) is a (q, k) check pair.

– We have

gcd
(a

d
,
q

d

)
=

gcd(a, q)
d

<
q/(2k)

d
=

q/d

2k
.
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– Similarly,

gcd
( b

d
,
q

d

)
<

q/d

2k
.

However,
q

d
≤ (k + 1)(k + 2)

2
< (k + 1)2,

and so no (q/d, k) check pair exists by Theorem 1, a contradiction.

6.2 Check Pairs When k + 1 Is Not a Prime Power

Theorem 5. Let q = (k + 1)(k + 2). If k + 1 = σρ where gcd(σ, ρ) = 1, then
(σ, ρ(k + 2 − σ)) is a (q, k) check pair.

Proof. Suppose that k + 1 = σρ where gcd(σ, ρ) = 1. Then

q = (k + 1)(k + 2) = σρ(k + 2).

We break the proof up into three parts.

1. We have gcd(σ, q) ≤ σ = (k + 1)/ρ < (k + 2)/2 < q/(2k).
2. We have

gcd(ρ(k + 2 − σ), q) = ρ gcd(k + 2 − σ, σ(k + 2)) = ρ d.

We will show that d = 1. Since σ|(k + 1), we have gcd(σ, k + 2) = 1. Hence,

gcd(k + 2 − σ, σ) = gcd(k + 2, σ) = 1

and
gcd(k + 2 − σ, k + 2) = gcd(−σ, k + 2) = 1.

Therefore d = 1 and so

gcd(ρ(k + 2 − σ), q) = ρ < (k + 2)/2 < q/(2k).

3. Suppose that
σe ≡ ρ(k + 2 − σ)ε (mod σρ(k + 2)), (16)

where e, ε ∈ [−k,−1] ∪ [1, k]. Without loss of generality, we can assume that
ε ∈ [1, k]. From (16) we get σe ≡ 0 (mod ρ) and so e ≡ 0 (mod ρ), that is
e = ρe′. Since |e| ≤ k = σρ − 1, we have 1 ≤ |e′| ≤ σ − 1. Similarly, we get
ε = σε′ where 1 ≤ ε′ ≤ ρ − 1. Substituting these in (16) we get

σρe′ ≡ ρ(k + 2 − σ)σε′ (mod σρ(k + 2))

and so
e′ ≡ (k + 2 − σ)ε′ (mod k + 2).

This implies that
− e′ ≡ σε′ (mod k + 2). (17)
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However, since

(−e′) mod (k + 2) ∈ [1, σ − 1] ∪ [k + 3 − σ, k + 1]

and
σ ≤ σε′ ≤ σ(ρ − 1) = k + 1 − σ,

(17) is not possible. Hence, (16) is not possible.

6.3 Corresponding Codes

We look closer at the codes corresponding to the check pairs of Theorem 5 and
their encoding and decoding. The code is

C = {(u, v) | u, v ∈ [0, q − 1], σu ⊕ ρ(k + 2 − σ)v = 0}.

Lemma 7. We have

C = {(ρU, σV ) | U ∈ [0, σ(k+2)−1], V ∈ [0, ρ(k+2)−1], U+V ≡ 0 (mod k+2)}.

Proof. Since σu + ρ(k + 2 − σ)v ≡ 0 (mod σρ(k + 2)), we get σu ≡ 0 (mod ρ).
Since gcd(σ, ρ) = 1, this implies that u ≡ 0 (mod ρ). Hence u = ρU where
U ∈ [0, σ(k + 2) − 1].

Since k+2 = σρ+1, we similarly get ρv ≡ 0 (mod σ) and so v ≡ 0 (mod σ)
and v = σV where V ∈ [0, ρ(k + 2) − 1]. Finally, (ρU, σV ) ∈ C if and only if

σρU ⊕ ρ(k + 2 − σ)σV ≡ 0 (mod σρ(k + 2))

which is equivalent to
U + V ≡ 0 (mod k + 2). (18)

Corollary 1. We have |C| = q.

Proof. Let V ∈ [0, ρ(k + 2) − 1]. By (18), we have (ρU, σV ) ∈ C if and only if
U ≡ (−V ) (mod σ(k + 2)). Hence,

U ≡ (−V + z(k + 2)) (mod σ(k + 2))

for some z ∈ [0, σ − 1]. Hence for each value of V there are σ possible values of
U . Therefore, |C| = σρ(k + 2) = q.

Theorem 4 showed that no systematic code exists in this case. However, also
for the code given above there is an efficient bijection between Zq and C.

The encoding (that is, the mapping from Zq to C) can be done as follows:
any integer m ∈ [0, q − 1] can be represented as

m = σμ + ν where μ ∈ [0, ρ(k + 2) − 1], ν ∈ [0, σ − 1].
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We encode m into ((ρ(−μ + ν(k + 2)) mod q), σμ).
The information can easily be recovered from the representation (ρU, σV ).

First, we let μ = V . Then we know that

ρ(−μ + ν(k + 2)) ≡ ρU (mod ρσ(k + 2)),

and so
−μ + ν(k + 2) ≡ U (mod σ(k + 2)),

which in turn implies that U + μ ≡ 0 (mod (k + 2)) and so

ν =
(U + μ

k + 2
mod σ

)
and m = σV + ν.

We next consider the correction of errors. A codeword is (u, v) = (ρU, σV )
where (18) is satisfied.

– If u′ = u + e where e ∈ [0, k], then the syndrom is s = σe and so e = s/σ.
– If u′ = u + e where e ∈ [−k,−1], then s = q + σe and so e = (s − q)/σ.
– If v′ = v + e, where e ∈ [−k,−1] ∪ [1, k], then

s ≡ ρ(k + 2 − σ)e (mod ρσ(k + 2))

and so ρ divides s and

s

ρ
≡ (k + 2 − σ)e (mod σ(k + 2)).

We see that gcd(k + 2 − σ, σ(k + 2)) = 1. Hence

e ≡ f
def= ((k + 2 − σ)−1 s

ρ
mod σ(k + 2)),

where the inverse is modulo σ(k+2). If f ≤ k, then e = f . If f ≥ σ(k+2)−k,
then e = f − σ(k + 2).

From this, we get the following decoding algorithm.

– if s ≡ 0 (mod σ) and s/σ ∈ [0, k], then decode into (u � (s/σ), v)
– else if s ≡ 0 (mod σ) and s/σ ∈ [ρ(k + 2) − k, ρ(k + 2) − 1], then decode into

(u � ((s − q)/σ), v)
– else if s ≡ 0 (mod ρ), let

f = ((k + 2 − σ)−1 s

ρ
mod σ(k + 2)),

– if f ≤ k, then decode into (u, v � f),
– else decode into (u, (v � (f − σ(k + 2)) mod q)).

For k ≤ 100 and q = (k + 1)(k + 2), a complete search has shown that there
are no check pairs when k + 1 a prime power. Possibly this is the case for all k
and we formulate this a conjecture.
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Conjecture 1. If k + 1 a prime power, then there are no ((k + 1)(k + 2), k) check
pairs.

When k + 1 ≤ 42 is not a prime power, all the (q, k) check pairs are those
given by Theorem 5, combined with Lemma 1. Possibly this is the case in general.

Conjecture 2. If k + 1 a not prime power and q = (k + 1)(k + 2), then all (q, k)
check pairs are congruent (cσ, cρ(k + 2 − σ)) or (−cσ, cρ(k + 2 − σ)) modulo q,
where k + 1 = σρ, gcd(σ, ρ) = 1, and gcd(c, q) = 1.

7 Summary

In this paper we have considered linear codes of length two over the alphabet
Zq = {0, 1, . . . , q − 1}, correcting single errors at size at most k. It was well
known [5] that for q ≤ (k +1)2 no such codes exist. For q = (k +1)2 +1 a simple
code construction is known.

In this paper, we have studied the cases when q ≥ (k +1)2 +1. In Sect. 5, we
considered q �= (k +1)(k +2). We show that a simple code construction exists in
all cases. We describe codes and their encoding and decoding, both quite simple.

In Sect. 6 we considered q = (k+1)(k+2). If k+1 is not a prime power, then
we have found a code construction and again describe the codes, their encoding
and decoding. This is the main result in this paper. For k +1 a prime power, we
conjecture that no codes exist.
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1 ASELSAN Inc., Ankara, Turkey
2 Institute of Applied Mathematics, Middle East Technical University,

Ankara, Turkey
nesekocak@aselsan.com.tr

3 Department of Mathematics, University of Paris VIII, Paris, France
4 University of Paris XIII, LAGA, UMR 7539, CNRS, Paris, France

5 Telecom ParisTech, Paris, France
smesnager@univ-paris8.fr

6 Department of Mathematics, Middle East Technical University, Ankara, Turkey
ozbudak@metu.edu.tr

Abstract. The paper is dealing with two important subclasses of
plateaued functions: bent and semi-bent functions. In the first part of
the paper, we construct mainly bent and semi-bent functions in the
Maiorana-McFarland class using Boolean functions having linear struc-
tures (linear translators) systematically. Although most of these results
are rather direct applications of some recent results, using linear struc-
tures (linear translators) allows us to have certain flexibilities to con-
trol extra properties of these plateaued functions. In the second part of
the paper, using the results of the first part and exploiting these flexi-
bilities, we modify many secondary constructions. Therefore, we obtain
new secondary constructions of bent and semi-bent functions not belong-
ing to the Maiorana-McFarland class. Instead of using bent (semi-bent)
functions as ingredients, our secondary constructions use only Boolean
(vectorial Boolean) functions with linear structures (linear translators)
which are very easy to choose. Moreover, all of them are very explicit
and we also determine the duals of the bent functions in our construc-
tions. We show how these linear structures should be chosen in order to
satisfy the corresponding conditions coming from using derivatives and
quadratic/cubic functions in our secondary constructions.

Keywords: Boolean functions · Bent functions · Semi-bent functions ·
Walsh-hadamard transform · Linear structures · Linear translators and
derivatives

1 Introduction

The classes of bent and semi-bent functions are special subclasses of the so-called
plateaued functions [25]. They are studied in cryptography because, besides
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having low Walsh-Hadamard transform magnitude which provides protection
against fast correlation attacks and linear cryptanalysis, they can also possess
other desirable properties. For their relations to coding theory and applications
in cryptography bent and semi-bent functions have attracted a lot of research.

Bent functions are nice combinatorial objects. They are maximally nonlin-
ear Boolean functions with an even number of variables. They were defined by
Rothaus [23] in 1976 but already studied by Dillon [15] since 1974. Open prob-
lems on binary bent functions can be found in [6]. A very recent survey on bent
functions can be found in [7]. A book devoted especially to bent functions and
containing a complete survey on bent functions (including its variations and gen-
eralizations) is [22]. The term semi-bent function was introduced by Chee, Lee
and Kim at Asiacrypt’ 94 [14]. These functions had been previously investigated
under the name of 3-valued almost optimal Boolean functions. A survey con-
taining open problems on semi-bent functions can be found in [20]. Despite the
amount of research in the theory of bent and semi-bent functions, the classifica-
tion of those functions is still elusive, therefore, not only their characterization,
but also their construction are challenging problems. Several constructions of
explicit bent and semi-bent functions have been proposed in the literature but
investigation of such kind of functions is still needed.

The concept of a linear translator exists of p-ary function (see for instance
[16]) but it was introduced in cryptography, mainly for Boolean functions (see
for instance [10]). Functions with linear structures are considered as weak for
some cryptographic applications. For instance, a recent attack on hash functions
proposed in [1] exploits a similar weakness of the involved mappings. All Boolean
functions using a linear translator have been characterized by Lai [17]. Further,
Charpin and Kyureghyan have done the characterization for the functions in
univariate variables from Fpn to Fp of the form TrFpn/Fp

(F (x)), where F (x) is a
function over Fpn and TrFpn/Fp

denotes the trace function from Fpn to Fp. The
result of Lai in [17] has been formulated recently by Charpin and Sarkar [13].

For a Boolean map, linear structures or linear translators are not desirable
and are generally considered as a defect. In this paper, we show that one can
recycle such Boolean functions to get Boolean functions with optimal or very high
nonlinearity. More precisely, we show that one can obtain primary constructions
of bent and semi-bent functions from Boolean maps having linear structures or
linear translator in Sects. 3, 4 and 5. All the primary constructions proposed in
the paper belong to the well-known class of Maiorana-McFarland. However, an
important feature of the bent functions presented in this paper is that their dual
functions can be explicitly computed. Next, we focus on secondary constructions
presented in [3] and in [4] (see also [19]). Note that several primary constructions
have been derived in [19] and in [21] from the Carlet’s result ([4], Theorem 3)
which has been completed in ([19], Theorem 4). We show how to obtain new
secondary constructions by reusing bent functions presented in the paper. Our
new secondary constructions are very explicit and they use Boolean functions
(vectorial Boolean functions) with certain linear structures (linear translators) as
ingredients instead of bent or semi-bent functions. The conditions on such linear
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structures (linear translators) in our secondary constructions are easily satisfied.
Finally, we show that one can construct bent functions from bent functions of
Sects. 3 and 4 by adding a quadratic or cubic function appropriately chosen.

This paper is organized as follows: We provide a short background in Sect. 2.
We present explicit constructions of bent and semi-bent functions in Maiorana-
McFarland type in Sects. 3, 4 and 5. We give various secondary constructions in
Sects. 6, 7 and 8.

2 Notation and Preliminaries

For any set E, E� = E \{0} and #E will denote the cardinality of E. A Boolean
function on the finite field F2n of order 2n is a mapping from F2n to the prime
field F2 . Recall that for any positive integers k, and r dividing k, the trace
function from F2k to F2r , denoted by Trk

r , is the mapping defined for every
x ∈ F2k as Trk

r (x) := x + x2r + x22r + · · · + x2k−r

. For a Boolean function f
on F2n , the Walsh-Hadamard transform of f is the discrete Fourier transform
of the sign function χf := (−1)f of f , whose value at ω ∈ F2n is defined as
χ̂f (ω) =

∑
x∈F2n

(−1)f(x)+Trn
1 (ωx).

Definition 1. Let n be an even integer. A Boolean function f on F2n is said to
be bent if its Walsh transform satisfies χ̂f (a) = ±2

n
2 for all a ∈ F2n .

Bent functions come in pairs. For a bent function f on F2n , we define its dual
function f̃ as a Boolean function on F2n satisfying the equation : (−1) ˜f(x)2

n
2 =

χ̂f (x) for all x ∈ F2n .
The dual f̃ of a bent function is also bent.

Definition 2. Let n be an even integer. A Boolean function f on F2n is said to
be semi-bent if its Walsh transform satisfies χ̂f (a) ∈ {0,±2

n+2
2 } for all a ∈ F2n .

Definition 3. [25] A Boolean function f on F2n is said to be k-plateaued if its
Walsh transform satisfies χ̂f (a) ∈ {0,±2

n+k
2 } for all a ∈ F2n and for some fixed

k, 0 ≤ k ≤ n.

When n is even, bent functions correspond to 0-plateaued functions and semi-
bent functions correspond to 2-plateaued functions.

We refer to [5] for further background and important notions like algebraic
representation, trace representation and bivariate representation of Boolean func-
tions. We will mainly use bivariate representation of bent and semi-bent func-
tions in this paper.

Next we recall definitions of linear translator and linear structure.

Definition 4. Let n = rk, 1 ≤ k ≤ n. Let f be a function from F2n to F2k ,
γ ∈ F

∗
2n and b be a constant of F2k . Then γ is a b-linear translator of f if

f(x) + f(x + uγ) = ub for all x ∈ F2n and u ∈ F2k . If f(x) + f(x + γ) = b for
all x ∈ F2n , then γ is called a b-linear structure of f .
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The notion of b-linear translator is well known in the literature (see for example
[16]). The notion of b-linear structure is usually given for functions f : F2n → F2 ,
that is k = 1 (see for example [9]).

Remark 1. Note that being b-linear translator is stronger than being b-linear
structure if k > 1 and they are the same if k = 1. For example, let f : F24 → F22

be a function defined as f(x) = Tr42(x
2 + γx) where γ ∈ F24\F22 . Then, γ is a

0-linear structure of f but it is not a 0-linear translator of f as f(x+uγ) �= f(x)
for u ∈ F22\F2 .

The notions of linear structures, linear translators and derivatives are related.

Definition 5. Let F : F2n → F2m . For a ∈ F2n , the function DaF given by
DaF (x) = F (x)+F (x+a),∀x ∈ F2n is called the derivative of F in the direction
of a.

Note that Dγf(x) = b for each x ∈ F2n if and only if γ is a b-linear structure
of f . Similarly, Duγf(x) = ub for each x ∈ F2n and each u ∈ F2k if and only if
γ is a b-linear translator of f .

In the literature, usually, Boolean functions are denoted by small letters
(like f) and vector Boolean functions are denoted by capital letters (like F ).
Nevertheless, for the sake of simplicity of notation, we also denote Boolean func-
tions (vector Boolean functions) by capital letters (small letters) when it seems
more appropriate in this paper.

3 Constructions of Bent and Semi-bent Boolean
Functions from the Class of Maiorana-McFarland
Using One Linear Structure

A function H : F2m ×F2m → F2 is said to be in the class of Maiorana-McFarland
if it can be written in bivariate form as

H(x, y) = Trm
1 (xφ(y)) + h(y) (3.1)

where φ is a map from F2m to F2m and h is a Boolean function on F2m . It is
well-known that we can choose φ so that H is bent or H is semi-bent. Indeed, it
is well-known that bent functions of the form (3.1) come from one-to-one maps
while 2-to-1 maps lead to semi-bent functions.

Proposition 1. ([5,15,18]) Let H be defined by (3.1). Then,

1. H is bent if and only if φ is a permutation and its dual function is H̃(x, y) =
Trm

1

(
yφ−1(x)

)
+ h(φ−1(x)).

2. H is semi-bent if φ is 2-to-1.

As a first illustration of Proposition 1, let us consider a first class of maps
from F2m to itself: φ : y �→ y + γf(y) where γ is a linear structure of f . This
class has the property that it only contains one-to-one maps or 2-to-1 maps.
Therefore, by Proposition 1, one can obtain the following infinite families of
bent and semi-bent functions.
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Proposition 2. Let f and h be two Boolean functions over F2m . Let H be the
Boolean function defined on F2m × F2m by

H(x, y) = Trm
1 (xy + γxf(y)) + h(y), γ ∈ F2m .

H is bent (resp. semi-bent) if and only if γ is a 0-linear (resp. 1-linear) structure
of f . Furthermore, if H is bent, then its dual is

H̃(x, y) = Trm
1

(
yx + γyf(x))

)
+ h(x + γf(x)).

Proof. Properties of φ : y �→ y + γf(y) are well-known and firstly developed in
[8,9] (see also [11,16]). Bijectivity is given by Theorem 2 of [8]. For the 2-to-
1 property, see Theorems 3, 6 in [9]. The proof is then immediately obtained.
Also, note that since φ is an involution (see also [11,12,16]), we have H̃(x, y) =
Trm

1

(
yφ(x))

)
+ h(φ(x)).

In order to show that the hypotheses of Proposition 2 hold in certain cases, we
give the following examples which are direct applications of Theorems 3, 4 in [8].

Example 1. Let γ ∈ F
�
2m and β ∈ F2m such that Trm

1 (βγ) = 0 (resp. Trm
1 (βγ) =

1). Let H : F2m → F2m be an arbitrary mapping and h be any Boolean function
on F2m . Then the function g defined over F2m × F2m by

g(x, y) = Trm
1 (xy + γxTrm

1 (H(y2 + γy) + βy)) + h(y)

is bent (resp. semi-bent).

Example 2. Let 0 ≤ i ≤ m − 1, i �∈ {0, m
2 } and δ, γ ∈ F2m such that δ2

i−1 =
γ1−22i . Let h be any Boolean function on F2m and g be the Boolean function
defined on F2m × F2m by

g(x, y) = Trm
1 (xy + γxTrm

1 (δy2i+1)) + h(y).

If Trm
1 (δγ2i+1) = 0 (resp. Trm

1 (δγ2i+1) = 1) then g is bent (resp. semi-bent).

Observe that if we compose φ at left by a linearized permutation polynomial
L, any output has the same number of preimages under φ than under L ◦ φ.
Hence, one can slightly generalize Proposition 2 as follows.

Proposition 3. Let f and h be two Boolean functions over F2m and γ ∈ F2m .
Let L be a linearized permutation polynomial of F2m . The Boolean function H
defined by

H(x, y) = Trm
1 (xL(y) + L(γ)xf(y)) + h(y)

is bent (resp. semi-bent) if and only if γ is a 0-linear (resp. 1-linear) structure
of f . Moreover, if H is bent then its dual function H̃ is given by

H̃(x, y) = Trm
1 (yL−1(x) + γyf(L−1(x)) + h(L−1(x) + γf(L−1(x))).
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4 Constructions of Bent and Semi-bent Boolean
Functions from the Class of Maiorana-McFarland
Using Two Linear Structures

In this section we consider the functions H of the form (3.1):

H(x, y) = Trm
1 (xφ(y)) + h(y) with φ(y) = π1 (π2(y) + γf(π2(y)) + δg(π2(y)))

(4.1)
where f , g and h are Boolean functions over F2m , γ, δ ∈ F

�
2m , γ �= δ and π1,

π2 are permutations of F2m (not necessarily linear). The class (4.1) contains the
functions involved in Proposition 1 and in Proposition 3 (which corresponds to
the case where f = g). In the line of Sect. 3, we study the cases where γ and
δ are linear structures of the Boolean functions involved in φ. Then one can
exhibit conditions of bentness or semi-bentness as those of Propositions 1 and 3
that we present in the following two propositions. We indicate that, despite their
similarities with Propositions 1 and 3, we obtain bent functions that do not fall
in the scope of Propositions 1 and 3.

Proposition 4. Let H be defined by Eq. (4.1). Then H is bent if one of the
following conditions holds:

(i) γ is a 0-linear structure of f , δ is a 0-linear structure of f and g,
(ii) γ is a 0-linear structure of f , δ is a 1-linear structure of f and δ + γ is a

0-linear structure of g,
(iii) δ is a 0-linear structure of g, γ is a 0-linear structure of f and g,
(iv) δ is a 0-linear structure of g, γ is a 1-linear structure of g and δ + γ is a

0-linear structure of f ,
(v) δ is a 1-linear structure of f , γ is a 1-linear structure of f and g,
(vi) γ is a 1-linear structure of g, δ is a 1-linear structure of f and g.

Moreover, if H is bent then its dual is H̃(x, y) = Trm
1

(
yφ−1(x)

)
+ h(φ−1(x))

where φ−1 = π2
−1 ◦ ρ−1 ◦ π1

−1 and ρ−1 is given explicitly in the Appendix as
Proposition 8. In particular, choosing π1(x) = L(x) as a linearized permutation
polynomial and π2 as the identity, we get that

H(x, y) = Trm
1 (xL(y) + L(γ)xf(y) + L(δ)xg(y)) + h(y) (4.2)

is bent in the conditions above and H̃(x, y) = Trm
1

(
yρ−1(L−1(x))

)

+ h(ρ−1(L−1(x)).

Proof. We give the proof for only case (i) since the proofs for the other cases are
very similar. It suffices to show that ρ : y �→ y + γf(y) + δg(y) is a permutation.
Suppose that ρ(y) = ρ(z), i.e.,

y + γf(y) + δg(y) = z + γf(z) + δg(z). (4.3)
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Taking f of both sides we obtain f
(
y + γf(y) + δg(y)

)
= f

(
z + γf(z) + δg(z)

)
.

Since γ and δ are 0-linear structures of f , we have

f(y) = f(z). (4.4)

Combining Eqs. (4.3) and (4.4), we get y + δg(y) = z + δg(z). Taking g of both
sides we obtain g(y + δg(y)) = g(z + δg(z)). Since δ is a 0-linear structure of g,
we conclude

g(y) = g(z). (4.5)

Combining Eqs. (4.3), (4.4) and (4.5), we reach that y = z. For the dual function,
ρ−1 is written explicitly in the Appendix as Proposition 8 and the proof for ρ−1

for case (i) is given.

Remark 2. The converse of Proposition 4 is not always true. For example, for
f(x) = Tr31(x

3 + α5x), g(x) = Tr31(αx3 + α5x), γ = α and δ = α3 where α is a
primitive element of F23 , φ is a permutation but none of the conditions given in
Proposition 4 is satisfied.

The following result shows in which cases φ is 2-to-1 and hence H is
semi-bent.

Proposition 5. Let H be defined by (4.1). Then H is semi-bent if one of the
following conditions holds:

(i) γ, δ are 1-linear structures of f and γ is a 0-linear structure of g,
(ii) δ is a 1-linear structure of f and γ, δ are 0-linear structures of g,
(iii) γ, δ are 0-linear structures of f and δ is a 1-linear structure of g,
(iv) δ is a 0-linear structure of f and γ, δ are 1-linear structures of g,
(v) γ is a 0-linear structure of f , δ is a 1-linear structure of f and γ + δ is a

1-linear structure of g,
(vi) γ is a 1-linear structure of g, δ is a 0-linear structure of g and γ + δ is a

1-linear structure of f .

In particular, choosing π1(x) = L(x) as a linearized permu-
tation polynomial and π2 as the identity, we get that H(x, y) =
Trm

1 (xL(y) + L(γ)xf(y) + L(δ)xg(y)) + h(y) is semi-bent in the conditions
above.

Proof. We give the proof for case (i) only since the proofs for other cases are
similar. Now, we need to show that ρ(y) : y �→ y + γf(y) + δg(y) is 2-to-1. Let
ρ(y) = a for some a ∈ F2m . Then, y ∈ {a, a + γ, a + δ, a + γ + δ}. As γ is a
1-linear structure of f and 0-linear structure of g, we have ρ(a) = ρ(a + γ) and
ρ(a + δ) = ρ(a + γ + δ). Moreover, ρ(a + δ) = a + δ + γf(a + δ) + δg(a + δ) =
a + δ + γ + γf(a) + δg(a + δ) where we use that δ is a 1-linear structure of f .
We observe that ρ(a) = a + γf(a) + δg(a) �= ρ(a + δ). Indeed, otherwise if the
equality holds, then γ+δ+δ

(
g(a)+g(a+δ)

)
= 0. This is a contradiction as γ �= δ

and γ �= 0. This implies that ρ−1(a) = {a, a + γ} or ρ−1(a) = {a + δ, a + γ + δ}
which shows that ρ is 2-to-1.
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Remark 3. The converse of Proposition 5 is not always true. For example, for
f(x) = Tr31(α

4x3 + α4x), g(x) = Tr31(αx3 + α2x), γ = α and δ = α3 where
α is a primitive element of F23 , φ is 2-to-1 but none of the conditions given in
Proposition 5 is satisfied.

5 Constructions of Bent and k-Plateaued Functions
Using Linear Translators

In the preceding sections, we have shown that one can construct bent and semi-
bent functions from Boolean functions having linear structures, that is, having
constant derivatives. An extension of these constructions is to consider Boolean
maps taking its values in a subfield of the ambient field instead of Boolean
functions in (3.1). In that case, the natural notion replacing linear structures
is the notion of linear translators. We still adopt the approach of the preceding
sections and aim to construct bent functions in the class of Maiorana-McFarland.
To this end, one can apply results on permutations constructed from Boolean
maps having linear translators presented in [16] and obtain the following infinite
families of bent and plateaued functions.

Proposition 6. Let m be a positive integer and k be a divisor of m. Let f be
a function from F2m to F2k and h be a Boolean function on F2m . Let H be the
function defined on F2m × F2m by

H(x, y) = Trm
1 (xy + γxf(y)) + h(y), γ ∈ F

�
2m .

(i) If γ is a c-linear translator of f where c ∈ F2m and c �= 1, then H is bent
and its dual function is given as

H̃(x, y) = Trm
1

(

y

(

x + γ
f(x)
1 + c

))

+ h

(

x + γ
f(x)
1 + c

)

.

Moreover, H(x, y) = Trm
1 (xL(y) + L(γ)xf(y)) + h(y) where L is an F2k -

linearized permutation polynomial, is also bent under these conditions and
its dual is

H̃(x, y) = Trm
1

(

y

(

L−1(x) + γ
f(L−1(x))

1 + c

))

+h

(

L−1(x) + γ
f(L−1(x))

1 + c

)

.

(ii) If γ is a 1-linear translator of f and h = 0 then H is k-plateaued with Walsh
transform values

χ̂H(a, b) =
{±2m+k if Trm

k (bγ) = 0,
0 otherwise.

Note that Proposition 6 generalizes partially Proposition 2 (extending the
condition 0-linear structure to c-linear translator with c �= 1). Furthermore, one
can derive from Propositions 4 and 5 similar statements if f : F2m → F2k instead
of being a Boolean function. Indeed, it suffices to change the 0-linear structures
(resp. 1-linear structures) with 0-linear translators. (resp. 1-linear translators).
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6 Bent Functions Not Belonging to the Class
of Maiorana-McFarland Using Linear Translators

In the following we are now interested in investigating constructions of bent
functions that do not necessarily belong to the class of Maiorana- McFarland
contrary to the preceding sections. To this end, we are particularly interested
in the secondary construction of the form f(x) = φ1(x)φ2(x) + φ1(x)φ3(x) +
φ2(x)φ3(x) presented in [4] and next completed in [19]. More precisely, it is
proven in [4] that if φ1, φ2 and φ3 are bent, then if ψ := φ1 + φ2 + φ3 is bent
and if ψ̃ = φ̃1 + φ̃2 + φ̃3, then f is bent, and f̃ = φ̃1φ̃2 + φ̃1φ̃3 + φ̃2φ̃3. Next, it is
proven in [19] that the converse is also true: if φ1, φ2, φ3 and ψ are bent, then
f is bent if and only if ψ̃ + φ̃1 + φ̃2 + φ̃3 = 0 (where ψ := φ1 + φ2 + φ3). In this
section, we show that one can reuse Boolean functions of the shape presented in
the preceding sections in the construction of [19,21].

Firstly, one can derive easily bent functions f , whose dual functions are very
simple, by choosing functions Hi in the class of Maiorana-McFarland such that
the permutation involving in each Hi is built in terms of an involution and a
linear translator. More explicitly, each Hi is a Boolean function over F2m defined
by Hi(y) = Trm

1

(
L(y) + L(γi)h(g(y))

)
where L is a F2k -linear involution on

F2m (k being a divisor of m); carefully chosen according to the hypothesis of
[12, Corollary 2], g is a function from F2m to F2k , h is a mapping from F2k to
itself, and γ1, γ2 and γ3 are three pairwise distinct elements of F�

2m which are
0-linear translators of g such that γ1+γ2+γ3 �= 0. Bent functions f are therefore
obtained from a direct application of [19, Theorem 4], [12, Corollary 2].

Secondly, we extend a result from [21] by considering two linear structures
instead of one. This result uses linear structures as in the first case of
Proposition 4. Similarly, for the other five cases we can construct bent func-
tions and their duals. Due to space limitations these results are presented in the
Appendix as Propositions 9, 10, 11, 12 and 13.

Proposition 7. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) δ1, δ2, δ3 are elements of F�
2m which are 0-linear structures of f and g;

(ii) γ1, γ2 and γ3 are elements of F�
2m which are 0-linear structures of f ;

(iii) γ1 + γ2 and γ1 + γ3 are 0-linear structures of g.

Then the function h defined on F2m × F2m by h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1
(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)
+ Trm

1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)
is bent

and the dual of h is given by h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+

Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x + γif(x) + δi

[
g(x)

(
1 + f(x)

)
+ g(x + γi)f(x)

]
.
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Proof. Let ψi(x, y) = Trm
1

(
xφi(y)

)
. Then by Proposition 4, ψi is bent for i =

1, 2, 3. Let γ = γ1 + γ2 + γ3 and δ = δ1 + δ2 + δ3. Then, ψ(x, y) = Trm
1

(
x(y +

γf(y) + δg(y))
)

is bent since γ is a 0-linear structure of f and δ is a 0-linear

structure of f and g. Now, it remains to show that ψ̃ = ψ̃1 + ψ̃2 + ψ̃3. ψ̃ =
Trm

1

(
xφ−1(y)

)
and φ−1(x) is given in Proposition 8 in the Appendix.

Note that ψ̃ = ψ̃1 + ψ̃2 + ψ̃3 if and only if g(x + γ1) = g(x + γ2) =
g(x + γ3) = g(x + γ1 + γ2 + γ3) which means γ1 + γ2 and γ1 + γ3 are 0-linear
structures of g.

7 A Secondary Construction of Bent and Semi-bent
Functions Using Derivatives and Linear Translators

In this section, we consider a new kind of secondary construction. That con-
struction has been proposed by Carlet and Yucas [3] and is presented below.

Theorem 1. Let f and g be two bent functions over F2n . Assume that there
exists a ∈ F2n such that Daf = Dag. Then the function h : F2n → F2 defined
by h(x) = f(x) + Daf(x)

(
f(x) + g(x)

)
is bent and its dual is h̃(x) = f̃(x) +

Trn
1 (ax)(f̃(x) + g̃(x)).

In the line of Theorem 1 and of the preceding sections, we shall derive from
Theorem 1 new secondary constructions of bent and semi-bent functions in The-
orems 2 and 3. To this end, we will use the following lemma.

Lemma 1. Let b ∈ F2m and W ⊆ F2m be an m − 1 dimensional linear subspace
with b /∈ W. Let μ : F2m → F2 be a Boolean function such that b is a 0-linear
structure of μ. Choose arbitrary functions h1 : F2m → F2 and u : W → F2

and define the Boolean function h2 : F2m → F2 by h2(w) = u(w) + h1(w) and
h2(w+b) = u(w)+h1(w+b)+μ(w) for w ∈ W. Then Dbh1(y)+Dbh2(y) = μ(y)
for all y ∈ F2m .

Proof. We observe that h2(w + b) + h2(w) = h1(w + b) + h1(w) + μ(w) for all
w ∈ W by definition. Using the fact that b is a 0-linear structure of μ we complete
the proof.

Note that Lemma 1 gives a construction of a Boolean function h2 : F2m → F2

with the property Dbh1(y) + Db(h2(y) = μ(y) for all y ∈ F2m for given b ∈ F2m ,
h1 : F2m → F2 and μ having b with 0-linear structure. The construction uses
m − 1 free variables in the form of the function u : W → F2 .

Using Lemma 1, Theorem 1 and results from Sect. 5, we present below a new
secondary construction of bent functions.

Theorem 2. Let 1 ≤ k < m be integers with k | m. Let f , g be functions
from F2m to F2k . Assume that γ, δ ∈ F

�
2m are 0-linear translators of f and g,
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respectively. Further assume that b ∈ F2m is a 0-linear structure of f and g. Let
a ∈ F2m be an arbitrary element. For arbitrary function h1 : F2m → F2 construct
h2 : F2m → F2 satisfying Dbh1(y) = Dbh2(y) + Trm

1

(
a(γf(y + b) + δg(y + b))

)

for all y ∈ F2m using Lemma 1. Set F (x, y) := Trm
1 (xy + γxf(y)) + h1(y) and

G(x, y) := Trm
1 (xy + δxg(y)) + h2(y). The function defined by

H(x, y) = F (x, y) + Da,bF (x, y)
(
F (x, y) + G(x, y)

)

is bent and its dual is

H̃(x, y) = Trm
1

(
yx + γyf(x)

)
+ h1(x + γf(x))

+Trm
1 (ax + by)

[
Trm

1

(
y(γf(x) + δg(x))

)
+ h1(x + γf(x))

+h2(x + δg(x))] .

Proof. F and G are bent by Proposition 6. Using the fact that b is a 0-linear
structure of f and g we get that Da,bF (x, y) = Trm

1

(
xb + a(y + b + γf(y +

b))
)

+ Dbh1(y) and Da,bG(x, y) = Trm
1

(
xb + a(y + b + δg(y + b))

)
+ Dbh2(y).

Hence Da,bF (x, y) = Da,bG(x, y) and the proof follows from Theorem 1 and
Proposition 6.

Using [24, Theorem 16] instead of Theorem 1 we obtain the following sec-
ondary construction of semi-bent functions.

Theorem 3. Under notation and assumptions of Theorem 2 we construct h2 :
F2m → F2 satisfying Dbh1(y) = Dbh2(y) + Trm

1

(
a(γf(y + b) + δg(y + b))

)
+ 1

(instead of Dbh1(y) = Dbh2(y)+Trm
1

(
a(γf(y+b)+δg(y+b))

)
) for all y ∈ F2m .

Set F and G in the same way. Then the function defined by H(x, y) = F (x, y)+
G(x, y) + Da,bF (x, y) + Da,bFG(x, y) is semi-bent.

Note that Theorem 3 gives a secondary construction of semi-bent functions
of high degree by choosing the arbitrary function h1 : F2m → F2 of large degree.
Moreover it gives a different construction than the one given in [20, Sect. 4.2.5]
and hence it is an answer to Problem 4 of [20].

8 A Secondary Construction of Bent Functions Using
Certain Quadratic and Cubic Functions Together
with Linear Structures

In this section we consider Boolean functions that are the sum of a bent function
of Sects. 3 or 4 and a quadratic or cubic function. We show that one can choose
appropriately the quadratic and cubic function so that those Boolean functions
are bent again. Furthermore, the dual functions of those bent functions can be
explicitly computed as in the preceding sections. The main results are Theorems
4, 5, 6 and 7.

Theorem 4 is based on [2, Lemma 1]. We note that the bent functions of
Theorem 4 is different from the two classes of plateaued functions in Sect. 6 of
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[2]. First of all we obtain bent functions while two classes of functions in Sect. 6
of [2] produce only plateaued functions.

Theorem 6 is a further generalization of Theorem 4 using cubic functions
instead of quadratic functions.

Lemma 2. [2] Let w1, w2, u ∈ F2m with {w1, w2} linearly independent over F2m .
We have

∑

x∈F2m

(−1)Trm
1 (w1x)Trm

1 (w2x)+Trm
1 (ux)

=

⎧
⎨

⎩

0 if u /∈ 〈w1, w2〉 = {0, w1, w2, w1 + w2} ,
2m−1 if u ∈ {0, w1, w2} ,

−2m−1 if u = w1 + w2.

In Lemma 2, for any given F2 -linearly independent set, the Boolean function
on F2m given by x �→ Trm

1 (w1x)Trm
1 (w2x) is a quadratic function.

Theorem 4. Let w1, w2, γ ∈ F2m with {w1, w2} linearly independent over F2 .
Assume that f, h : F2m → F2 are Boolean functions such that w1 and w2 are 0-
linear structures of f and h. Moreover, we assume that γ is a 0-linear structure
of f . Then the Boolean function F defined on F2m × F2m by

F (x, y) = Trm
1 (xw1)Trm

1 (xw2) + Trm
1

(
xy + γxf(y)

)
+ h(y) (8.1)

is bent and its dual function is

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2) + Trm
1

(
yx + γyf(x)

)
+ h(x + γf(x)).

Moreover, F (x, y) = Trm
1 (xw1)Trm

1 (xw2) + Trm
1

(
xL(y) + L(γ)xf(y)

)
+ h(y)

where L is a linearized permutation polynomial of F2m is also bent under the
same conditions and its dual function is

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2) + Trm
1

(
yL−1(x) + γyf(L−1(x))

)

+ h(L−1(x) + γf(L−1(x))).

Proof. One has for every (a, b) ∈ F2m × F2m ,

χ̂F (a, b) =
∑

y∈F2m

(−1)h(y)+Trm
1 (by)

∑

x∈F2m

(−1)Trm
1 (xw1)Trm

1 (xw2)+Trm
1

(
xy+γxf(y)+ax

)

Let φ(y) = y+γf(y) and S =
∑

x∈F2m
(−1)Trm

1 (xw1)Trm
1 (xw2)+Trm

1

(
x(φ(y)+a)

)

.
Then by Lemma 2, we have

S =

⎧
⎨

⎩

0 if φ(y) + a /∈ {0, w1, w2, w1 + w2} ,
2m−1 if φ(y) + a ∈ {0, w1, w2} ,

−2m−1 if φ(y) + a = w1 + w2.

Now, f(a) = f(a + w1) = f(a + w2) = f(a + w1 + w2) since w1 and w2 are
0-linear structures of f . We have two cases, namely f(a) = 0 and f(a) = 1. Here,
only the proof for the case f(a) = 0 is given since the proof for the other case is
very similar.

Assume f(a) = 0. Then φ(y) + a ∈ {0, w1, w2} when y ∈ A =
{a, a + w1, a + w2} and φ(y) + a = w1 + w2 when y = a + w1 + w2. Hence,
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χ̂F (a, b) = 2m−1

⎡

⎣
∑

y∈A
(−1)h(y)+Trm

1 (by) − (−1)h(a+w1+w2)+Trm
1 (b(a+w1+w2))

⎤

⎦ .

Since w1 and w2 are 0-linear structures of h, we obtain

χ̂F (a, b) = 2m−1
[
(−1)h(a)+Trm

1 (ba)
]
S1

where

S1 =
[
1 + (−1)Trm

1 (bw1) + (−1)Trm
1 (bw2) − (−1)Trm

1 (b(w1+w2))
]
. (8.2)

Note that

S1 =
{

2 if Trm
1 (bw1)Trm

1 (bw2) = 0,
−2 if Trm

1 (bw1)Trm
1 (bw2) = 1.

Combining these we obtain that F is bent and its dual F̃ satisfies that

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2) + Trm
1

(
yx + yγf(x)

)
+ h(x + γf(x)).

Remark 4. In Theorem 4, for given F2 -linearly independent subset {w1, w2},
the Boolean function on F2m × F2m given by (x, y) �→ Trm

1 (xw1)Trm
1 (xw2) is

a quadratic function, which is used as the first summand in the definition of
F (x, y) in Eq. (8.1). In the proof of Theorem 4, we apply Lemma 2 for this
quadratic function. Note that if γ �= 0 and 1+deg(f), deg(h) and 2 are distinct,
then the degree of F (x, y) is max {1 + deg(f), deg(h), 2}, which may be much
larger than 2.

In the following we present a straightforward generalization of Theorem 4.

Theorem 5. Let w1, w2, γ, δ ∈ F2m with {w1, w2} linearly independent over F2 .
Assume that f, g, h : F2m → F2 are Boolean functions such that w1 and w2

are 0-linear structures of f , g and h. Moreover, we assume that γ is a 0-linear
structure of f and δ is a 0-linear structure of f and g. Then the Boolean function
F defined on F2m × F2m by

F (x, y) = Trm
1 (xw1)Trm

1 (xw2) + Trm
1

(
x(L(y) + L(γ)f(y) + L(δ)g(y))

)
+ h(y)

is bent and its dual function is

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2) + Trm
1

(
yρ−1(x)

)
+ h(ρ−1(x)) where

ρ−1(x) = L−1(x) + γf(L−1(x)) + δ
[
g(L−1(x))

(
1 + f(L−1(x))

)
+ g(L−1(x)

+ γ)f(L−1(x))
]
.

We now give the analogue of Lemma 2 which improves Lemma 1 of [2].

Lemma 3. Let w1, w2, w3, u ∈ F2m with {w1, w2, w3} linearly independent over
F2m . We have
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∑

x∈F2m

(−1)Trm
1 (w1x)Trm

1 (w2x)Trm
1 (w3x)+Trm

1 (ux)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 if u /∈ 〈w1, w2, w3〉 ,
3.2m−2 if u = 0,
2m−2 if u ∈ {w1, w2, w3, w1 + w2 + w3} ,
−2m−2 if u ∈ {w1 + w2, w1 + w3, w2 + w3} .

Proof. Let T denotes the sum in the statement of the lemma. Let T1 and T2 be
the sums as

T1 =
∑

x∈F2m |Trm
1 (w1x)=0

(−1)Trm
1 (ux)

and
T2 =

∑

x∈F2m |Trm
1 (w1x)=1

(−1)Trm
1 (w2x)Trm

1 (w3x)+Trm
1 (ux).

We have that T = T1 + T2. It is clear that

T1 =
{

0 if u /∈ 〈0, w1〉 = {0, w1} ,
2m−1 if u ∈ {0, w1} .

Using Lemma 2 we obtain that

T2 =

⎧
⎨

⎩

0 if u /∈ 〈w1, w2, w3〉 ,
2m−2 if u ∈ {0, w1, w2, w3, w1 + w2 + w3} ,

−2m−2 if u ∈ {w1 + w2, w1 + w3, w2 + w3} .

Combining T1 and T2 we complete the proof.

Remark 5. This remark is analogous to Remark 4. In Theorem 6, for given
F2 -linearly independent subset {w1, w2, w3}, the Boolean function on F2m ×F2m

given by
(x, y) �→ Trm

1 (xw1)Trm
1 (xw2)Trm

1 (xw3)

is a cubic function, which is used as the first summand in the definition of
F (x, y) in Eq. (8.3). In the proof of Theorem 6, we apply Lemma 3 for this cubic
function. As in Remark 4, the degree of F (x, y) is max {1 + deg(f), deg(h), 3}
under suitable conditions, which may be much larger than 3.

Theorem 6. Let f and h be two Boolean functions on F2m . Let w1, w2, w3 ∈
F2m be linearly independent and γ ∈ F2m . Assume that γ is a 0-linear structure
of f , and w1, w2, w3 are 0-linear structures of f and h. Then, the function F
defined on F2m × F2m by

F (x, y) = Trm
1 (xw1)Trm

1 (xw2)Trm
1 (xw3) + Trm

1

(
x(L(y) + L(γ)f(y))

)
+ h(y)

(8.3)
is bent and its dual is

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2)Trm
1 (yw3) + Trm

1

(
y(L−1(x) + γf(L−1(x)))

)

+ h(L−1(x) + γf(L−1(x))).
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Proof. Let φ(y) = y + γf(y). For every (a, b) ∈ F2m × F2m ,

χ̂F (a, b) =
∑

y∈F2m

(−1)h(y)+Trm
1 (by)

∑

x∈F2m

(−1)Trm
1 (w1x)Trm

1 (w2x)Trm
1 (w3x)+Trm

1

(
x(φ(y)+a)

)

.

For the case f(a) = 0,

– φ(y) + a = 0 when y = a,
– φ(y) + a ∈ {w1, w2, w3, w1 + w2 + w3} when

y ∈ A1 = {a + w1, a + w2, a + w3, a + w1 + w2 + w3}
– φ(y) + a ∈ {w1 + w2, w1 + w3, w2 + w3}

when y ∈ A2 = {a + w1 + w2, a + w1 + w3, a + w2 + w3}.

Then, following the steps in proof of Theorem 4 and using Lemma 3, we get

χ̂F (a, b) = 3.2m−2(−1)Trm
1 (ba)+h(a) + 2m−2

∑

y∈A1

(−1)Trm
1 (by)+h(y)

−2m−2
∑

y∈A2

(−1)Trm
1 (by)+h(y)

= 2m−2
[
(−1)Trm

1 (ba)+h(a)
]
S

where

S = [3 + S1 + S2] , (8.4)

S1 = (−1)Trm
1 (bw1) + (−1)Trm

1 (bw2) + (−1)Trm
1 (bw3) + (−1)Trm

1 (b(w1+w2+w3) and
S2 = (−1)Trm

1 (b(w1+w2)) + (−1)Trm
1 (b(w1+w3)) + (−1)Trm

1 (b(w2+w3)).
Let (−1)Trm

1 (bwi) = ci where ci ∈ F2 , for i = 1, 2, 3. Then, 3 + S1 + S2 = ±4 and
hence χ̂F (a, b) = ±2m.

The proof for the case f(a) = 1 is very similar.

As in Theorem 5, in the following we get a modification of Theorem 6 using
two linear structures instead of one linear structure.

Theorem 7. Let f , g and h be Boolean functions on F2m . Let w1, w2, w3 ∈
F2m be linearly independent and γ, δ ∈ F2m , γ �= δ. Assume that γ is a 0-
linear structure of f , δ is a 0-linear structure of f and g. Moreover, assume that
w1, w2, w3 are 0-linear structures of f , g and h. Then, the function F defined
on F2m × F2m by

F (x, y) = Trm
1 (xw1)Trm

1 (xw2)Trm
1 (xw3) + Trm

1

(
x(L(y) + L(γ)f(y)

+ L(δ)g(y))
)

+ h(y)

is bent and its dual is

F̃ (x, y) = Trm
1 (yw1)Trm

1 (yw2)Trm
1 (yw3) + Trm

1

(
yρ−1(x)

)
+ h(ρ−1(x)) where

ρ−1(x) = L−1(x) + γf(L−1(x)) + δ
[
g(L−1(x))

(
1 + f(L−1(x))

)
+ g(L−1(x)

+ γ)f(L−1(x))
]
.
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A Appendix

The following proposition is related to Proposition 4 in Sect. 4.

Proposition 8. Let H be defined by Eq. (4.1), γ and δ be defined as in Propo-
sition 4. Then the dual of H is H̃(x, y) = Trm

1

(
yφ−1(x)

)
+ h(φ−1(x)) where

φ−1 = π2
−1 ◦ ρ−1 ◦ π1

−1 and ρ−1(x) is given as follows.

(i) If γ is a 0-linear structure of f , δ is a 0-linear structure of f and g, then

ρ−1(x) = x + γf(x) + δ [g(x)(1 + f(x)) + g(x + γ)f(x)] .

(ii) If γ is a 0-linear structure of f , δ is a 1-linear structure of f and δ + γ is
a 0-linear structure of g, then

ρ−1(x) = x + γ
[
g(x) + f(x)

(
1 + g(x) + g(x + γ)

)]
+ δ [g(x)(1 + f(x))

+ g(x + γ)f(x)] .

(iii) If δ is a 0-linear structure of g, γ is a 0-linear structure of f and g, then

ρ−1(x) = x + γ [f(x)(1 + g(x)) + f(x + δ)g(x)] + δg(x).

(vi) If δ is a 0-linear structure of g, γ is a 1-linear structure of g and δ + γ is
a 0-linear structure of f , then

ρ−1(x) = x + γ [f(x)(1 + g(x)) + f(x + δ)g(x)] + δ [f(x)(1 + g(x))

+
(
1 + f(x + δ)

)
g(x)

]
.

(v) If δ is a 1-linear structure of f or δ is a 0-linear structure of g, then

ρ−1(x) = x + γ
[
f(x)(1 + g(x + δ)) +

(
1 + f(x)

)
g(x)

]
+ δf(x).

(vi) If γ is a 1-linear structure of g, δ is a 1-linear structure of f and g, then

ρ−1(x) = x + γg(x) + δ [f(x)(1 + g(x)) + f(x + γ)g(x)] .

Proof. We give only the proof for the case (i). Assume that γ is a 0-linear
structure of f , δ is a 0-linear structure of f and g, then we claim that

ρ−1(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x if f(x) = 0 and g(x) = 0
x + δ if f(x) = 0 and g(x) = 1
x + γ if f(x) = 1 and g(x + γ) = 0
x + γ + δ if f(x) = 1 and g(x + γ) = 1

(A.1)



Bent and Semi-bent Functions via Linear Translators 221

Let ρ(y) = a. Then,

y + γf(y) + δg(y) = a (A.2)

Taking f of both sides gives f(y + γf(y) + δg(y)) = f(a). Since γ and δ are
0-linear structures of f , we get

f(y) = f(a). (A.3)

Note that,
(
f(a), g(a)

) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. These four cases correspond
to the cases in Eq. (A.1). We prove only the first case in Eq. (A.1) and the proofs
of other cases are similar. Hence, we assume that (f(a), g(a)) = (0, 0). Then, by
Eq. (A.3), f(y) = 0 and by Eq. (A.2), y + δg(y) = a. Taking g of both sides and
using that δ is a 0-linear structure of g, we obtain that g(y+δg(y)) = g(y) = g(a).
As g(a) = 0 by our assumption, we get g(y) = 0 and putting f(y) = g(y) = 0 in
Eq. (A.2) we conclude that y = a.

Finally, the Eq. (A.1) can be written in the form

ρ−1(x) = x + γf(x) + δ [g(x)(1 + f(x)) + g(x + γ)f(x)] .

The following five propositions are related to Proposition 7 in Sect. 6.

Proposition 9. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F�
2m which are 0-linear structures of f ;

(ii) δ1, δ2 and δ3 are elements of F�
2m which are 1-linear structures of f ;

(iii) γ1 + δ1, γ2 + δ2, γ3 + δ3 are 0-linear structures of g;
(vi) γ1 + γ2 and γ1 + γ3 are 0-linear structures of g.

Then the function h defined on F2m × F2m by

h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)

+ Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)

is bent and the dual of h is given by

h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+ Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where

φ−1
i (x) = x + γ

[
g(x) + f(x)

(
1 + g(x) + g(x + γ)

)]

+ δ [g(x)(1 + f(x)) + g(x + γ)f(x)] .

Proposition 10. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where
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(i) γ1, γ2, γ3 are elements of F�
2m which are 0-linear structures of f and g;

(ii) δ1, δ2 and δ3 are elements of F�
2m which are 0-linear structures of g;

(iii) δ1 + δ2 and δ1 + δ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)

+ Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)

is bent and the dual of h is given by

h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+ Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x + γ [f(x)(1 + g(x)) + f(x + δ)g(x)] + δg(x).

Proposition 11. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F�
2m which are 1-linear structures of g;

(ii) δ1, δ2 and δ3 are elements of F�
2m which are 0-linear structures of g;

(iii) γ1 + δ1, γ2 + δ2, γ3 + δ3 are 0-linear structures of f ;
(vi) δ1 + δ2 and δ1 + δ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)

+ Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)

is bent and the dual of h is given by

h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+ Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where

φ−1
i (x) = x + γ [f(x)(1 + g(x)) + f(x + δ)g(x)]

+ δ
[
f(x)(1 + g(x)) +

(
1 + f(x + δ)

)
g(x)

]
.

Proposition 12. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F�
2m which are 1-linear structures of f and g;

(ii) δ1, δ2 and δ3 are elements of F�
2m which are 1-linear structures of f ;

(iii) δ1 + δ2 and δ1 + δ3 are 0-linear structures of g.
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Then the function h defined on F2m × F2m by

h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)

+ Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)

is bent and the dual of h is given by

h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+ Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x + γ

[
f(x)(1 + g(x + δ)) +

(
1 + f(x)

)
g(x)

]
+ δf(x).

Proposition 13. Let f and g be functions from F2m to F2 . For i ∈ {1, 2, 3} set
φi(y) := y + γif(y) + δig(y) where

(i) γ1, γ2, γ3 are elements of F�
2m which are 1-linear structures of g;

(ii) δ1, δ2 and δ3 are elements of F�
2m which are 1-linear structures of f and g;

(iii) γ1 + γ2 and γ1 + γ3 are 0-linear structures of f .

Then the function h defined on F2m × F2m by

h(x, y) = Trm
1

(
xφ1(y)

)
Trm

1

(
xφ2(y)

)
+ Trm

1

(
xφ1(y)

)
Trm

1

(
xφ3(y)

)

+ Trm
1

(
xφ2(y)

)
Trm

1

(
xφ3(y)

)

is bent and the dual of h is given by

h̃(x, y) = Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

2 (x)
)

+ Trm
1

(
yφ−1

1 (x)
)
Trm

1

(
yφ−1

3 (x)
)

+ Trm
1

(
yφ−1

2 (x)
)
Trm

1

(
yφ−1

3 (x)
)

where φ−1
i (x) = x + γg(x) + δ [f(x)(1 + g(x)) + f(x + γ)g(x)].
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Abstract. We generalise the cube attack of Dinur and Shamir (and the
similar AIDA attack of Vielhaber) to a more general higher order differ-
entiation attack, by summing over an arbitrary subspace of the space of
initialisation vectors. The Moebius transform can be used for efficiently
examining all the subspaces of a big space, similar to the method used
by Fouque and Vannet for the usual cube attack.

Secondly we propose replacing the Generalised Linearity Test pro-
posed by Dinur and Shamir with a test based on higher order differen-
tiation/Moebius transform. We show that the proposed test provides all
the information provided by the Generalised Linearity Test, at the same
computational cost. In addition, for functions that do not pass the lin-
earity test it also provides, at no extra cost, an estimate of the degree of
the function. This is useful for guiding the heuristics for the cube/AIDA
attacks.

Finally we implement our ideas and test them on the stream cipher
Trivium.

Keywords: Cube/AIDA attack · Trivium · Linearity testing · Moebius
transform · Higher order differentiation

1 Introduction

The cube attack introduced by Dinur and Shamir [3] and the similar AIDA
attack introduced by Vielhaber [11] have received much attention over the last
few years. They can be viewed as higher order differential attacks (see [5,9]).
The idea of higher order differentials was introduced in cryptography by Lai [10]
and was used in many different attacks, most of them being statistical attacks,
whereas the cube/AIDA attacks are primarily algebraic.

Several techniques were proposed in order to make the cube attack more
efficient. Of particular interest to the present work are the Moebius transform
used by Fouque and Vannet [7] and the Generalised Linearity Test introduced
by Dinur and Shamir [4].

We propose generalising the cube attack by using higher order differentiation
in its general form. In other words, rather than summing over a “cube”, we sum
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 225–238, 2015.
DOI: 10.1007/978-3-319-27239-9 14
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over an arbitrary subspace of the space of public (tweakable) variables. The usual
cube attack becomes then the particular case where the subspace is generated by
vectors from the canonical basis. The Moebius transform can again be used to
make computations more efficient, by reusing values to compute the summations
over many subspaces at once.

Secondly we propose an alternative to the Generalised Linearity Test pro-
posed by Dinur and Shamir [4]. Given a set of t linearly independent keys,
our linearity test computes the higher order derivatives of order 2, 3, . . . , t with
respect to any subset of keys and then checks whether all the results are zero. If
a function fails this linearity test, the lowest order of a non-zero derivative gives
a lower bound for the degree of the function, so we obtain extra information at
no extra cost. We show that the set of functions that pass the General Linearity
Test in [4] is exactly the same as the set of functions that pass our proposed
test. The extra information about the degree is useful for guiding the heuristics
in the cube attack, as it gives us information as to whether we are close or not to
obtaining a linear function. Also, in some implementations of the cube attack,
quadratic equations are used if insufficient linear equations are found.

We implemented our ideas and tested the implementation on the stream
cipher Trivium [1], which is a popular candidate for testing cube attacks. We
looked at between 640 and 703 initialisation rounds. We tested several spaces
of initialisation vectors of dimension 28 (including the space corresponding to a
usual cube attack), and all their subspaces, using the Moebius transform. We
estimated the degrees of the results using our proposed linearity test.

We found one particular vector spacewhich, compared to the usual cube attack,
produces significantly more linear equations, but at a slightly higher dimension of
subspaces. However for most vector spaces the results are significantly worse than
the usual cube attack, which leads us to believe that the success of the usual cube
attack on Trivium is not only due to the relatively low degree of the polynomial,
but also to the fact that the monomials of that polynomial are not uniformly dis-
tributed, as would be expected if it was a random polynomial. In other words, the
polynomials in Trivium are “aligned” with the canonical basis rather than being
in a generic position. We suggest therefore that preceding Trivium by a (secret)
linear change of coordinates on the initialisation vectors would improve its resis-
tance to cube attacks. We did some preliminary experimental testing of this idea,
but a full exploration would be a topic of future work.

2 Preliminaries

2.1 Cube Attack

The Cube attack was originally proposed by Dinur and Shamir in [3] and is
closely related to the AIDA attack introduced by Vielhaber in [11].

Let f : Fn
2 → F2 be a Boolean function in variables x1 . . . xn. Any Boolean

function can be written in Algebraic Normal Form, i.e. as a polynomial func-
tion of degree at most one in each variable. Choosing a subset of indices I =
{i1 . . . ik} ⊆ {1, 2, . . . , n}, the “cube” CI is defined by choosing the 2k possible
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0/1 combinations for the variables with indices in I, with the other variables left
undetermined. Summing over all vectors in CI we obtain a function

fI =
∑

v∈CI

f(v).

which depends only on the variables which are not in I.
Factoring out the term tI = xi1 · · · xik

, we can write f as

f(x1, . . . , xn) = tIfS(I) + r(x1, . . . , xn).

where fS(I) is a polynomial that shares no common variables with tI , whereas r
is a polynomial in which each term misses at least one variable in tI . The main
results on which the cube attack is based are:

Theorem 1 ([3, Theorem1]). For any polynomial f and subset of variables I,
fI ≡ fS(I) (mod 2).

Corollary 1. If deg(f) = d and I contains d − 1 elements, then fI has degree
at most one.

When mounting an actual attack, we have two types of variables, the secret
variables x1, . . . , xn and the public, or “tweakable” variables v1, . . . , vm, which
the attacker can control. The cipher consists of a “black box” function g : Fn

2 ×
F

m
2 → F2. The attacker chooses a set I of indices of the public variables, sets the

other public variables to constant values (usually zero) and computes gI , which
will now only depend on the secret variables. In the preprocessing phase, the
attacker studies the cipher, so they can evaluate gI for any chosen values of the
secret variables. It is hoped that, for suitable choices of I (particularly the ones
of cardinality approaching deg(g) − 1, assuming deg(g) ≤ m), gI is linear (but
not constant) in the secret variables. Linearity tests are discussed in the next
section.

If the preprocessing phase found a large number of sets I for which gI is
linear and non-constant (ideally n linearly independent gI), one can then use
this information in the online phase. Now the secret variables are unknown,
but the attacker can still control the public variables. The attacker computes
gI for the values of I identified in the preprocessing phase, and then they can
determine the secret variables by solving a system of linear equations.

2.2 Generalised Linearity Test

Consider a function f : F
n
2 → F2. We want to decide whether f is an affine

function, i.e. it is a polynomial of degree one or less. We assume n is large and
evaluations of f are costly, so we cannot evaluate f for all its inputs. We are
looking therefore for a probabilistic test.
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In the original cube attack paper [3], Dinur and Shamir used the BLR test, i.e.
the textbook definition of linearity: test whether f(a)+f(b) = f(a + b)+f(0).
If f fails this test, then it is not an affine function. If it passes the test for
“sufficiently many” pairs a,b, then we conclude that f is probably affine.

Since the test above needs 3 evaluations of f for each test (assuming we store
and reuse f(0)), in [4, Sect. 4], Dinur and Shamir proposed the following Gener-
alised Linearity Test, which has the advantage that it reuses many evaluations
of f so it is overall much more computationally efficient.

Consider a set {b1, . . . ,bt} ⊆ F
n
2 of linearly independent elements. The Gen-

eralised Linearity Test consists of the following set of 2t − t − 1 equations:
{

f(
t∑

i=0

cibi) +
t∑

i=0

cif(bi) + ((w(c) − 1)) mod 2)f(0) = 0|c ∈ F
n
2 ,w(c) ≥ 2

}

(1)
where w( ) denotes the Hamming weight. Again, if there are equations which are
not satisfied by f , then f is not affine, otherwise we conclude that f is probably
affine (assuming t is “large enough”). Note that here we need 2t evaluations of
f for 2t − t − 1 tests, so an amortised cost of just over one evaluation per test,
compared to 3 evaluations for the previous test.

Remark 1. In the original description of this test in [4] there is a mistake, in
that the term (w(c) − 1) mod 2 is missing. This would make the test incorrect
whenever the weight is odd, so affine functions with non-zero constant term
would wrongly fail the test.

2.3 Moebius Transform

Let f : Fn
2 → F2. The Moebius transform of f is a function fM : Fn

2 → F2 defined
as fM (y) =

∑
x�y f(x) where x = (x1, . . . , xn) and the partial order relation

� is defined as (x1, . . . , xn) � (y1, . . . , yn) iff xi ≤ yi for all i = 1, . . . , n. It is
well known that the Moebius transform has the property that for any a ∈ F

n
2 ,

fM (a) equals the coefficient of the term xa1
1 . . . xan

n in f . Further details about
the Moebius transform can be found, for example, in [8]. An efficient algorithm
which, given the truth table of f computes the truth table of fM in-place in
n2n−1 operations is also given in [8].

In connection with the cube attack, note that when choosing a set of variable
indices I = {i1, . . . , ik}, if we define a as having ones in the positions in I and
zeroes elsewhere, we have fI(0) = fM (a). Hence the algorithm for computing
the Moebius transform can also be used for efficiently computing fJ for all the
subsets J of a large set I.

The idea of making the cube attack more efficient by reusing computations
for cubes which are all subcubes of a very large cube was sketched by Dinur and
Shamir [4]. Fouque and Vannet [6] fully developed this powerful technique via
Moebius transforms, thus obtaining results for Trivium for a larger number of
initialisation rounds than previous cube attacks.
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2.4 Higher Order Differentiation

The notion of higher order derivative (or higher order differentiation) was intro-
duced in the cryptographic context by Lai [10].

Definition 1. Let f : F
n
2 → F2 be a function in n variables x1, . . . , xn. Let

a = (a1, . . . , an) ∈ F
n
2 \ {0}. The differentiation operator (or finite difference

operator) along a vector a associates to each function f the function Δaf (the
derivative of f) defined as

Δaf(x1, . . . , xn) = f(x1 + a1, . . . , xn + an) + f(x1, . . . , xn).

Denoting x = (x1, . . . , xn) we can also write Δaf(x) = f(x + a) + f(x).

Higher order differentiation (higher order derivative) refers to repeated applica-
tion of this operator and will be denoted as:

Δ(k)
a1,...,ak

f = Δa1Δa2 . . . Δak
f

where a1, . . . ,ak ∈ F
n
2 \ {0} are linearly independent. An explicit expression for

computing higher order derivatives follows directly from the definition:

Δ(k)
a1,...,ak

f =
∑

(c1,...,ck)∈{0,1}k

f(x + c1a1 + . . . + ckak) (2)

Differentiation decreases the degree of polynomials:

Theorem 2 [10]. Let f : F
n
2 → F2 and a ∈ F

n
2 \ {0}. Then deg(Δaf) ≤

deg(f) − 1.

The main construction of the cube attack can be reformulated in terms of higher
order differentiation, see [5,9]. Namely for a set of indices I = {i1, . . . , ik}

fI = Δ(k)
ei1

,...,eik
f

where ei are the vectors of the canonical basis, i.e. they have a one in position i
and zeroes elsewhere.

3 General Differentiation Attack

As in Subsect. 2.1 we assume the cipher consists of a “black box” function g(x,v)
with g : Fn

2 × F
m
2 → F2 and x denoting secret variables and v denoting pub-

lic variables. We generalise the cube/AIDA attacks by choosing an arbitrary
subspace V ⊆ F

m
2 of the space of public variables and defining a function gV as

gV (x) =
∑

v∈V

g(x,v).
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Denote by k the dimension of V and let {v1, . . . ,vk} be a basis for V . Using
Eq. (2) we can give an equivalent formula for gV using higher order differen-
tiation, namely gV (x) = (Δ(k)

v1,...,vkg)(x,0). Note that the usual cube attack
becomes a particular case of this attack, for V = 〈ei1 , . . . , eik

〉, where ei are the
vectors of the canonical basis, and I = {i1, . . . , ik} are the positions chosen for
the usual cube attack.

Using Theorem 2 we have that deg(gV ) ≤ deg(g) − dim(V ). Hence, as in the
cube attack (see Corollary 1), if the dimension of V is k = deg(g) − 1 we are
guaranteed that gV is linear or constant.

We can therefore search for spaces V such that the resulting gV is a linear
function in the secret variables. Linearity tests can detect whether the result is
linear, like in the usual cube attack. This search space is a superset of the search
space of the usual cube attack.

Moebius transform can be used here again for improved efficiency. Namely we
start with a large vector space V = 〈v1, . . . ,vk〉 For any fixed value x of the secret
variables we compute the truth table of the function h(y1, . . . , yk) = g(x, y1v1 +
. . . + ykvk). We then apply the Moebius transform to h. For any subspace
V ′ = 〈vi1 , . . . ,vij

〉 of V let a be the vector with ones in exactly the positions
i1, . . . , ij and zeroes elsewhere. We have hM (a) =

∑
(c1,...,cj)∈{0,1}j g(x, c1vi1 +

. . .+ cjvij
) =

∑
v′∈V ′ g(x,v′) = gV ′(x,0). Hence, again, the Moebius transform

hM computes simultaneously all the gV ′(x,0) for all subspaces V ′ of V .

Remark 2. In [3] Dinur and Shamir also consider the possibility of setting some
of the non-cube public variables to 1 rather than zero. That is not the same as
our approach, as the set to sum over in that case is no longer a vector space. We
can include that generalisation in our approach as follows. Let c be a fixed vector
of public variables and V a vector space. Instead of computing fV as before, we
can compute instead the sum

∑

v∈V

g(x, c + v)

which, using Eq. (2), can be proved to equal (Δ(k)
v1,...,vkg)(x, c). The attack can

work equally well in this scenario.

4 Proposed Linearity Test

We propose an alternative to the Generalised Linearity Test presented in Sub-
sect. 2.2. Again, let f : Fn

2 → F2 and let {b1, . . . ,bt} ⊆ F
n
2 be a set of t linearly

independent elements. (The question of how to choose a suitable value for t is, as
we shall see, exactly the same as in [3], and a further discussion of this choice is
beyond the scope of this paper.) For each d with 1 ≤ d ≤ t consider the following
set of equations:

Ld =

⎧
⎨

⎩

∑

u�c

f(
t∑

i=0

uibi) = 0|c ∈ F
t
2,w(c) = d

⎫
⎬

⎭
(3)
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where u � c means ui ≤ ci for all i = 1, . . . , t, as defined in Sect. 2.3. Each Ld

has
(

t
d

)
equations. Each equation can alternatively be written using higher order

derivatives:

Ld =
{

Δ
(d)
bi1 ,...,bid

f(0) = 0|{i1, . . . , id} ⊆ {1, . . . , t}
}

.

Note that the equations in L2 correspond to the usual (BLR) linearity tests.
The equations in L3 have been proposed for testing whether the function is
quadratic in [4, Sect. 4]. The following result is quite straightforward but we
prove it for completeness.

Proposition 1. If f has degree d, then it satisfies all the equations in the sets
Ld+1, . . . , Lt.

Proof. By Theorem 2, deg(Δ(j)
bi1 ,...,bij

f) ≤ deg(f)−j = d−j. Hence for all j > d

we have Δ
(j)
bi1 ,...,bij

f ≡ 0, so the equations Lj are satisfied for all j > d.
One can give an alternative proof of this result using the Moebius transform.

Based on the result above we propose an alternative to the Generalised Linearity
Test. Namely we test whether a function f has degree one or less by testing
whether it satisfies the equations in the sets L2, . . . , Lt. An advantage of this
test is that if a function fails the test (i.e. has degree more than one), we can
get, at no additional cost, an indication of its degree. Namely, if d is the highest
number for which some equations in Ld are not satisfied, then we know that
deg(f) ≥ d. We will estimate the degree of f as being d.

The proposed test contains the same number of equations (namely 2t − t−1)
and needs the same number of evaluations of f (namely 2t) as the Generalised
Linearity Test. If the function f is affine (has degree at most one), then it passes
both types of test, so there are no false negatives. If f has degree 2 or more it
might still pass one of the types of tests (i.e. we can have false positives). We
can ask ourselves whether some functions can pass our proposed test but fail the
Generalised Linearity Test or vice-versa. We show that this is not possible, in
other words the tests are equivalent. More precisely:

Proposition 2. A function f satisfies the Generalised Linearity Test (1) iff it
satisfies the sets of equations L2, L3, . . . Lt.

Proof. We rename y{i1,...,ij} = f(bi1 + . . .+bij). Both the Generalised Linearity
Test and the set of equations L2, L3, . . . Lt can be rewritten as homogeneous sys-
tems of 2t − t − 1 linear equations in the 2t unknowns yJ for all J ⊆ {1, . . . , t}.
Both sets of equations are in triangular form, so both solution spaces have dimen-
sion t + 1. To prove that the two solution spaces are equal, it suffices therefore
to prove one inclusion. We show that a solution of the first set of equations is
also a solution for the second. The first system gives immediately the solution

y{i1,...,ij} =
j∑

�=1

y{i�} + ((j − 1) mod 2)y∅. (4)
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Consider now an equation from the second set corresponding to a vector c of
weight d ≥ 2. Let I = {i1, . . . , id} be the positions of the non-zero entries of c.
The equation becomes

∑
J⊆I yJ = 0. Substituting the solution (4) of the first

system of equations in this equation we obtain an equation that only contains
the variables y{i1}, . . . , y{id} and y∅. We count how many times each of these
variables appears: y{i1} will appear a number of times equal to the number of
subsets J of I that contain y{i1}; this is half of the subsets, i.e. 2d−1 times.
The variable y∅ appears once for each subset J ⊆ I of even cardinality, i.e.
∑�s/2	

�=0

(
s
2�

)
= 2d−1 times. Hence the left hand side of the equation becomes

2d−1(y{i1} + . . . + y{i1} + y∅). Since d ≥ 2 and we are in F2, we have 2d−1 = 0 so
the equation is satisfied.

Finally note that the Moebius transform can again be used for efficiency. Namely
putting h(y1, . . . , yt) = f(y1b1 + . . . + ytbt) and computing the Moebius trans-
form hM of h, the set of equations Ld are precisely the equations hM (y1, . . . , yt) =
0 for all (y1, . . . , yt) of weight d. Moreover we obtain automatically the sets of
equations L1 and L0. If f satisfies L1 then f is a constant, which is another test
needed in the cube attack.

5 Implementation

We implemented our ideas and tested them on the stream cipher Trivium [1]. The
public variables are in this case the initialisation vector and the secret variables
are the key.

To test the cube attack over different vector spaces, as described in Sect. 3 we
generated a large vector space V of initialisation vectors of dimension 28 giving
us

(
28
k

)
subspaces of each dimension k = 0, . . . , 28. Linearity testing is performed

as described in Sect. 4 using a basis of 6 linearly independent keys, meaning we
evaluate at 26 keys for a total of 26 − 6 − 1 evaluations. This will allow us to
detect results that are constant, of estimated degree 1 to 5 or degree 6 or more.

We utilised a 64-bit parallelised implementation of Trivium in order to analyse
64 rounds simultaneously. The first bit of output represents round 640, with the
64th bit of output representing round 703. This allows us to compare our results
with the results presented by Dinur and Shamir in their original cube paper [3]
which found cubes of size 12 between 672 and 680 rounds. We also used paral-
lelisation to implement the preprocessing phase of the cube attack. We utilised a
multicore machine so that each core receives one of the 26 keys and runs Trivium
for the given key and all the 228 initialisation vectors in the large vector space.
Each core then applies the Moebius transform on the data it computed. This
significantly improved the efficiency of the preprocessing phase.

The vector space V is specified by a basis of 28 vectors, and it will be helpful
to think of them as the rows of a 28 × 80 matrix A. The implementation can
run the standard cube attack, by choosing 28 variable indices i1, . . . , i28 and
setting the entries of A so that columns i1, . . . , i28 form a diagonal matrix and
the remaining columns are all zero. When running the attack on an arbitrary
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vector space, we again choose 28 variable indices i1, . . . , i28, set the columns
i1, . . . , i28 to form a diagonal matrix, but specify two probabilities p and q which
define whether the entries in the remaining 80 − 28 = 52 columns set to 0 or 1.

We define q as the probability that a column in matrix A will follow the
probability p or be set to all zeroes. The probability p defines the probability
that an entry will be set to 1 in matrix A. This means that when p is set to 0, q
becomes irrelevant and when q is set to 0, p becomes irrelevant. Setting either p
or q to 0 is the equivalent of running the standard cube attack.

We run the attack where q = 1 and p = 0, 0.03, 0.5, 0.97, 1, meaning that all
columns in the basis which don’t correspond to any of the i1, . . . , i28 indices are
chosen according to the probability p (for p = 1, all the remaining 52 columns
are set to all ones in the basis). A further test is run where q = 0.0625 and
p = 0.5 which generates a fairly sparse matrix A as the probability of a column
of variables being chosen using probability p is low therefore most variables are
set to 0. We kept the choice of i1, . . . , i28 the same in all cases.

6 Discussion

Figures 1 and 2 show how many subspaces of each dimension (as a percentage
of all subspaces of that dimension) were found to return constant results where
q = 1 and p = 0 or p = 1.

Multiple lines show the results over different numbers of rounds, from 641
to 703. Predictably there are fewer constant results found at smaller dimensions
as the number of rounds increases, indicating that the degree of the underlying
polynomial is increasing.

Fig. 1. Percentage of Constant Vector Spaces where p = 0, q = 1 for selected rounds

When comparing the two figures, it is clear that constant results are found
at smaller dimensions when p = 0 compared to p = 1. There were no constant
results found for 703 rounds when p = 1 whereas constant results were found in
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Fig. 2. Percentage of Constant Vector Spaces where p = 1, q = 1 for selected rounds

Fig. 3. Percentage of Linear Vector Spaces where p = 0, q = 1 for selected rounds

Fig. 4. Percentage of Linear Vector Spaces where p = 1, q = 1 for selected rounds
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Fig. 5. Percentage of Degree 2 Vector Spaces where p = 0, q = 1 for selected rounds

Fig. 6. Percentage of Degree 2 Vector Spaces where p = 1, q = 1 for selected rounds

cubes as small as 19 when p = 0. This shows that changing the vector space can
have a negative effect on an attacker’s ability to find linear results.

This result is confirmed by Figs. 3 and 4, which are similar to Figs. 1 and 2
but show the percentages of subspaces that produce linear (rather than constant)
results. For each of the rounds presented, the peak dimension where linear results
are most frequent is slightly larger (by 3 to 5 units) when p = 1 (Fig. 4) compared
to where p = 0 (Fig. 3).

There are however some benefits to changing the vector space, as shown in
Fig. 7. When analysed on the same scale, we can see that a higher percentage of
subspaces produce linear results when we increase the search space by changing
the vector space of the cube attack. Across all rounds, the test where p = 1
consistently showed a 3 to 4 times higher percentage of linear results being
found as compared to where p = 0 (Fig. 5).

Furthermore, the percentage of subspaces found at dimension 14 where p = 1
in Fig. 7 is equivalent to the percentage of cubes found at cube size 12 and 13
where p = 0. While again reinforcing the result that the required dimension does
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increase, this shows that it is not always of significant detriment to the attacker
(Fig. 6).

The trend of increasing the required vector space dimension continues when
we test using a small value for q. Figure 7 shows a large increase in the percentage
of linear cubes found when p = 0.5, q = 0.0625 compared to p = 1, q = 1 although
these linear results are found at a significantly higher dimension.

Fig. 7. Percentage of Linear Vector Spaces where q = 1 when p = 0 and p = 1, and
q = 0.0625 when p = 0.5

When the value of p is set to a value other than 0 or 1 while q = 1, the attack
becomes significantly less effective. We tested with both very dense set of basis
vectors (p = 0.97) and very sparse (p = 0.03) as well as uniform (p = 0.5) and
the results were nearly identical in all cases. Table 1 shows that in these cases
there were no constant, linear or degree 2 results found, as well as an insignificant
number of degree 3 results using 641 rounds. The similar behaviour between all
values of p in this range when q = 1 could be due to the fact that although we
controlled the density of the basis vectors, the rest of the vectors in the space
will have quite high density irrespective of the density of the basis vectors due
to the high value of q. This is in contrast to the result presented in Fig. 7 which
showed a significant number of linear results when p = 0.5 and q is small.

Table 1. Percentage of Vector Spaces of degree 0 to 6 when 0 < p < 1 and q = 1

Degree 0 1 2 3 4 5 6

Percentage 0 0 0 <0.001 % 0.78 % 49.21 % 50 %

The fact that for Trivium the cube attack over arbitrary vector spaces V
performs in general worse than the usual cube attack when q is large is, on
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one hand, disappointing from an attacker’s point of view. However on the other
hand it offers insights into the properties of Trivium. Namely it shows that
cube attacks work for Trivium not only because the degree increases relatively
slowly through the rounds, but also because for the degree that is achieved, the
distribution of the monomials is not uniform, as would be expected for a random
function. This phenomenon has been observed in other contexts, for example the
density of terms of each degree is estimated by Fouque and Vannet [6]. Another
manifestation of this phenomenon is that out of all the linear equations that
were found by different cube attacks on Trivium reported in the literature, the
vast majority contain only one or two secret key variables, instead of around 40
variables as would be expected.

An alternative way to look at this would be to create a new, enhanced “black
box” for Trivium, which contains a multiplication of the vector of public IV
variables by an arbitrary fixed invertible matrix. The result of the multiplication
is fed into the usual Trivium black box function. It is expected that the usual
cube attack on this enhanced black box would have a much reduced chance of
success, as it would be, in effect, equivalent to running our generalised cube
attack on the usual Trivium black box. Obviously, the matrix needs to be secret,
as otherwise the attacker could undo its effect. Preliminary tests on small cubes
seem to confirm this idea, but a full investigation will be the subject of future
work.

Acknowledgements. The authors would like to thank the referees for useful com-
ments. One of the referees brought to our attention the recent paper [2] that we had
not been aware of, and in which higher order derivatives with respect to an arbitrary
vector space (as explored in Sect. 3) were used for statistical attacks on the NORX
cipher.
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Abstract. For vectorial Boolean functions, the behavior of iteration has
consequence in the diffusion property of the system. We present a study
on the diffusion property of iterated vectorial Boolean functions. The
measure that will be of main interest here is the notion of the degree
of completeness, which has been suggested by the NESSIE project. We
provide the first (to the best of our knowledge) two constructions of
(n, n)-functions having perfect diffusion property and optimal algebraic
degree. We also obtain the complete enumeration results for the con-
structed functions.

Keywords: Boolean functions · Degree of completeness · Perfect diffu-
sion property · Algebraic degree · Balancedness

1 Introduction

Vectorial Boolean functions have been extensively studied for their applications
in cryptography, coding theory, combinatorial design etc., see [4] for a survey.
Let F

n
2 denote the n-dimensional vector space over the finite field F2 with two

elements. Vectorial Boolean functions are functions from the vector space F
n
2 to

the vector space F
m
2 , for given positive integers n and m. These functions are

called (n,m)-functions and include the single-output Boolean functions (which
correspond to the case m = 1).

In 1949, Shannon [16] used the term diffusion to denote the quantitative
spreading of information. For an (n,m)-function, the diffusion property describes
the influence of input bits on the output bits. The exact meaning of diffusion
relates strongly to the methods of cryptanalysis. An intuitive measure related

This work is supported by the National Key Basic Research Program of China under
Grant 2013CB834204.

c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 239–253, 2015.
DOI: 10.1007/978-3-319-27239-9 15



240 J. Liu et al.

to diffusion is of considerable importance for vectorial Boolean functions: the
degree of completeness, denoted by Dc, which is given by the comments from
the NESSIE project [15]. In [10], Kam and Davida introduced the concept of
complete functions, which means that every output bit depends on every input
bit (also see [7,9]). For a vectorial Boolean function, the degree of completeness
quantifies the rate of input bits that the output bits depend on. A complete func-
tion possesses optimal degree of completeness, i.e., Dc = 1. In this paper, we use
the notion of the degree of completeness to indicate the diffusion property of a
vectorial Boolean function. In this sense, by perfect diffusion property we mean
iterated vectorial Boolean functions which possess optimal degree of complete-
ness. There are other indicators of diffusion property which shall not be discussed
here. For instance, the branch number of diffusion layers (see [6]) relates closely
to differential cryptanalysis [2] and linear cryptanalysis [12] on block ciphers.
The diffusion factor (see [6]) quantifies the average number of changed output
bits when a single input bit is changed. The degree of completeness can be seen
as some kind of weakened version of diffusion factor.

The investigation on the degree of completeness of iterated (n, n)-functions
helps in general the understanding of the evolution of diffusion property of cryp-
tographic systems. Some methods of cryptanalysis on cryptosystems are based
on the idea of identifying the relation between a particular output bit with
the input bits. If every output bit depends on only a few of the input bits,
there may exist some potential attacks, such as algebraic attacks [1,5], since one
may convert the cipher-text into a system of polynomial equations and solve it
directly. For example, in a product cryptosystem [16] such as block cipher and
hash function, the degrees of completeness of iterated round functions (seen as
vectorial Boolean functions) have consequence in the diffusion property of the
whole system. A round function is preferable to have perfect diffusion property
for providing complete diffusion, see the general model in Sect. 3.2. In the con-
text of stream ciphers, the model of augmented functions should be considered
(see [8]), where an update function L is iterated to generate keystreams by com-
posing an output function. If the degrees of completeness of the iterated update
functions L(i), i = 1, 2, . . ., are very low, then the algebraic attack is expected
to be efficient. Other potential applications of functions with perfect diffusion
property could be found.

Though the degree of completeness has been observed from a cryptographic
point of view, it seems that as a mathematical object, vectorial Boolean function
with good diffusion property has rarely been studied in the literature. In this
paper, we mainly study the diffusion property of vectorial Boolean functions.
A function is called to have perfect diffusion property (see Definition 2) if the
degree of completeness always attains 1 (under the affine permutations) after the
function has been iterated some number of times. We provide two constructions
of vectorial Boolean functions which have perfect diffusion property, and prove
that the iterated functions always have optimal algebraic degree. To the best of
our knowledge, this is the first time when such constructions are proposed. We
first construct a class of rotation symmetric (n, n)-functions (see Definition 3)
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with perfect diffusion property. These functions are generalizations of rotation
symmetric Boolean functions, which have practical advantages that the evalua-
tions are efficient and the representations are short. In our second construction,
a class of almost balanced (n, n)-functions with perfect diffusion property is
given. Moreover, complete enumeration results for the constructed functions are
obtained, which show that there are many (n, n)-functions with perfect diffusion
property.

This paper is organized as follows. Formal definitions and necessary prelimi-
naries are introduced in Sect. 2. In Sect. 3, two constructions of vectorial Boolean
functions with perfect diffusion property are proposed for the first time, and the
complete enumeration results for these functions are presented. To avoid being
too theoretical, we give an explicit example to show that it is possible to con-
struct recursive round functions to provide complete diffusion. We summarize
this paper in the last section.

2 Background and Preliminaries

In this paper, additions and multiple sums calculated modulo 2 will be denoted
by ⊕ and

⊕
i respectively, additions and multiple sums calculated in charac-

teristic 0 or in the additions of elements of the finite field F2n will be denoted
by + and

∑
i respectively. The functions from the vector space F

n
2 to F2 are

called n-variable Boolean functions, and the set of all the n-variable Boolean
functions is denoted by Bn. For f ∈ Bn, the Hamming weight (in brief, weight)
of f is wt(f) =

∣
∣{x ∈ F

n
2

∣
∣ f(x) = 1}∣∣, and the (0, 1)-sequence defined by

(f(v0), f(v1), . . . , f(v2n−1)) is called the truth table of f , where v0 = (0, . . . , 0,
0),v1 = (0, . . . , 0, 1), . . . ,v2n−1 = (1, . . . , 1, 1) are ordered by lexicographical
order. An n-variable Boolean function f can be uniquely represented in the
algebraic normal form (in brief, ANF ) that

f(x) =
⊕

v∈F
n
2

cvxv1
1 xv2

2 · · · xvn
n ,

where x = (x1, . . . , xn) ∈ F
n
2 , v = (v1, . . . , vn) ∈ F

n
2 , cv ∈ F2. Let wt(v) denote

the Hamming weight (or weight) of a vector v, that is the number of its nonzero
coordinates, then deg(f) = maxv∈F

n
2
{wt(v) | cv �= 0} is called the algebraic

degree of f .

Proposition 1. [3] Let f ∈ Bn and f(x) =
⊕

v∈F
n
2

cvxv1
1 xv2

2 · · · xvn
n . Then,

cv =
⊕

x∈F
n
2 ,x�v f(x), where x � v means that x = (x1, . . . , xn) is covered by

v = (v1, . . . , vn), i.e., for any i = 1, . . . , n, xi = 1 implies vi = 1. In particular,
deg(f) = n if and only if wt(f) is odd.

An affine permutation L on F
n
2 is defined as L(x) = xM ⊕ a, where M is

a nonsingular n × n matrix over F2 and a ∈ F
n
2 . Moreover, if a = 0, then L is

called a linear permutation.
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Proposition 2. [3] The algebraic degree of an n-variable Boolean function f
is affine invariant, i.e., for every affine permutation L, we have deg(f ◦ L) =
deg(f).

For i = 1, . . . , n, denote by ei the vector in F
n
2 whose ith component equals 1,

and 0 elsewhere. The degree of completeness of an n-variable Boolean function
f is defined as

Dc(f) = 1 − |{i | ai = 0, 1 � i � n}|
n

, (1)

where ai = |{x ∈ F
n
2 | f(x) ⊕ f(x ⊕ ei) = 1}|, i = 1, . . . , n. Equivalently, let

V(f) =
{
i
∣
∣ ∃x ∈ F

n
2 such that f(x) ⊕ f(x ⊕ ei) = 1, 1 � i � n

}
, (2)

be the set of indices of the variables appearing in the ANF of f , then Dc(f) =
|V(f)|/n.

Let n and m be two positive integers. The functions from F
n
2 to F

m
2 are

called (n,m)-functions (or vectorial Boolean functions). Such a function F is
given by F = (f1, . . . , fm), where the Boolean functions f1, . . . , fm are called
the coordinate functions of F . An (n,m)-function is called balanced if for any
b ∈ F

m
2 , the size of the pre-image set |F−1(b)| = 2n−m. The derivative of F at

direction a is defined as

�aF (x) = F (x) ⊕ F (x ⊕ a), a ∈ F
n
2\{0}.

The algebraic degree of F , denoted by Deg(F ), is defined as

Deg(F ) = max
1�i�m

deg(fi).

The degree of completeness of F is defined as

Dc(F ) =
1
m

(Dc(f1) + · · · + Dc(fm)). (3)

Since the degree of completeness of an n-variable Boolean function can also be
described as Dc(f) = |V(f)|/n, where V(f) is defined as in (2), then for an (n,m)-
function F = (f1, . . . , fm), we have Dc(F ) = (|V(f1)| + · · · + |V(fm)|) /nm. Also,
the following equivalent definition is easy to obtain, which is originally given by
the NESSIE project [15].

Definition 1. [15] For an (n,m)-function F = (f1, . . . , fm), the degree of com-
pleteness is defined as

Dc(F ) = 1 − |{(i, j) | aij = 0, 1 � i � n, 1 � j � m}|
mn

,

where aij = |{x ∈ F
n
2 | fj(x) ⊕ fj(x ⊕ ei) = 1}|, i = 1, . . . , n, j = 1, . . . , m.
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For an (n,m)-function F , it is obvious that 0 � Dc(F ) � 1, and F is called
complete if Dc(F ) = 1 (see [10]), which provides the highest possible level of
diffusion. Note that Dc(F ) defined in (3) takes the mean value of all the Dc(fi)’s
with i = 1, . . . , m, while the following two meaningful measures are also intuitive,

Dmax
c (F ) = max

1�i�m
{Dc(fi)}, Dmin

c (F ) = min
1�i�m

{Dc(fi)}.

Clearly, Dmin
c (F ) � Dc(F ) � Dmax

c (F ), and Dmin
c (F ) = 1 if and only if Dc(F ) =

1. Hence, Dmin
c is the strongest measure of completeness for vectorial Boolean

functions. In this paper, we mainly discuss the measure Dc suggested by the
NESSIE project [15].

For an n-variable Boolean function f , since for any b ∈ F
n
2 ,

ai = |{x ∈ F
n
2 | f(x)⊕f(x⊕ei) = 1}| = |{x ∈ F

n
2 | f(x⊕ b)⊕f(x⊕ b⊕ei) = 1}|,

where i = 1, . . . , n, then from (1), we have Dc(f(x)) = Dc(f(x ⊕ b)). In general,
the degree of completeness is not invariant under composition on the right by
linear permutations. For example, let f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn ∈ Bn, and
L(x1, . . . , xn) = (x1 ⊕ · · · ⊕ xn, x2, . . . , xn) which is a linear permutation on F

n
2 ,

then f ◦ L(x1, . . . , xn) = x1, and thus Dc(f) = 1 > Dc(f ◦ L) = 1/n. For a

positive integer r, let F (r) =

r
︷ ︸︸ ︷
F ◦ · · · ◦ F denote the rth iterated function of F .

Definition 2. An (n,m)-function F is called non-degenerate if for every linear
permutation L on F

n
2 , Dc(F◦L) = 1. Moreover, F is said to have perfect diffusion

property if m = n and for any positive integer k, F (k) is non-degenerate.

Theorem 1. For an (n,m)-function F = (f1, . . . , fm), if for all i = 1, . . . , m,
deg(fi) = n, then F is non-degenerate.

Proof. According to Proposition 2, one gets that for every linear permutation L
on F

n
2 and every 1 � i � m, deg(fi ◦L) = deg(fi) = n, thus Dc(fi ◦L) = 1. From

(3), we have that Dc(F ◦ L) = (Dc(f1 ◦ L) + · · · + Dc(fm ◦ L)) /m = 1. Hence,
F is non-degenerate. 	

Remark 1. When we choose a basis {α1, . . . , αn} of F2n over F2, then the vector
space Fn

2 can be endowed with the structure of finite field F2n by an isomorphism
π : x = (x1, . . . , xn) ∈ F

n
2 → x1α1 + · · · + xnαn ∈ F2n . For a Boolean function f

on F2n , we identify Dc(f) with Dc(f ◦ π). Since for any i = 1, . . . , n,

ai = |{x ∈ F
n
2 | f ◦ π(x) + f ◦ π(x ⊕ ei) = 1}|

= |{x ∈ F
n
2 | f(π(x)) + f (π(x) + π(ei)) = 1}|

= |{x ∈ F2n | f(x) + f (x + αi) = 1}|,
then from (1), one gets that Dc(f) = Dc(f ◦ π) = 1 if and only if for any
i = 1, . . . , n, the derivative Δαi

f(x) is not a zero function (i.e., there exists
x ∈ F2n such that Δαi

f(x) = 1). Note that L is a linear permutation on F
n
2

if and only if π ◦ L ◦ π−1 is an additive automorphism on F2n . Hence, from
Definition 2, a Boolean function f is non-degenerate if for any i = 1, . . . , n and
any additive automorphism L of F2n , Δαi

f ◦ L(x) is not a zero function.
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Remark 2. The trace function from F2n to F2 is defined as

Trn
1 (x) = x + x2 + x22 + · · · + x2n−1

,

where x ∈ F2n . Given a basis {α1, . . . , αn} of F2n over F2, a function F from
F2n to itself can be written as F (x) = f1(x)α1 + · · · + fn(x)αn, where fi(x) =
Trn

1 (βiF (x)), i = 1, . . . , n, are the n-variable coordinate Boolean functions of F ,
and {β1, . . . , βn} is the dual basis of {α1, . . . , αn} satisfying

Trn
1 (αiβj) =

{
0 for i �= j,
1 for i = j.

It is known that for any basis of F2n over F2, there exists a dual basis (see [11,
Chap. 2]). From Definition 2, we know that an (n, n)-function F has perfect
diffusion property if and only if for every k, every coordinate function of F (k)

is non-degenerate, which is equivalent to saying that, for any j ∈ {1, . . . , n},
f
(k)
j (x) = Trn

1

(
βjF

(k)(x)
)

is non-degenerate. From Remark 1, we have that

f
(k)
j (x) is non-degenerate if and only if for any i ∈ {1, . . . , n} and any additive

automorphism L of F2n ,

Δαi
f
(k)
j ◦ L(x) = f

(k)
j ◦ L(x) + f

(k)
j ◦ L(x + αi)

= Trn
1

(
βjF

(k) ◦ L(x)
)

+ Trn
1

(
βjF

(k) ◦ L(x + αi)
)

= Trn
1

(
βj�αi

F (k) ◦ L(x)
)

is not a zero function. As a consequence, from Definition 2, an (n, n)-function F
is said to have perfect diffusion property if for any positive integer k, any i, j ∈
{1, . . . , n}, and any additive automorphism L of F2n , Trn

1

(
βj�αi

F (k) ◦ L(x)
)

is
not a zero function.

3 Constructions of Vectorial Boolean Functions
with Perfect Diffusion Property

In this section, we construct two classes of (n, n)-functions which have perfect
diffusion property. Moreover, the enumeration results for the constructed func-
tions are obtained.

3.1 Rotation Symmetric (n, n)-Functions with Perfect Diffusion
Property

Let (x1, x2, . . . , xn) ∈ F
n
2 . For 1 � k � n − 1, define

ρk
n(x1, x2, . . . , xn) = (xk+1, . . . , xn, x1, . . . , xk) ,

and ρ0n(x1, x2, . . . , xn) = (x1, x2, . . . , xn). Inspired by the concept of rotation
symmetric Boolean functions used in fast hashing algorithms [14], we present
the following definition of rotation symmetric (n, n)-functions.
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Definition 3. Let f be an n-variable Boolean function. An (n, n)-function F is
called rotation symmetric (in brief, RS) if it has the form

F (x) =
(
f(x), f ◦ ρ1n(x), f ◦ ρ2n(x), . . . , f ◦ ρn−1

n (x)
)
. (4)

Let f ∈ Bn and F = (f, f ◦ρ1n, . . . , f ◦ρn−1
n ). For any x ∈ F

n
2 and any integer

l � 1,

F ◦ ρl
n(x) =

(
f ◦ ρl

n(x), f ◦ ρl+1
n (x), . . . , f ◦ ρl−1

n (x)
)

= ρl
n

(
f(x), f ◦ ρ1n(x), . . . , f ◦ ρn−1

n (x)
)

= ρl
n ◦ F (x). (5)

An (n, n)-function F satisfying Eq. (5) is called shift-invariant in [6]. Recall that
an n-variable rotation symmetric Boolean function f is defined as f ◦ ρ1n(x) =
f(x) for any x ∈ F

n
2 (see [14]). By Eq. (5), the following equivalent definition of

RS (n, n)-functions is easy to obtain.

Proposition 3. An (n, n)-function F is RS if and only if for any x ∈ F
n
2 ,

F ◦ ρ1n(x) = ρ1n ◦ F (x).

Proposition 4. If F is an RS (n, n)-function, then for any integer k � 1, F (k)

is an RS (n, n)-function.

Proof. We prove it by induction on k. The result is already true for k = 1.
Suppose that F (k) is RS for k = s, where s � 1, then F (s) has the form

F (s)(x) =
(
f(x), f ◦ ρ1n(x), . . . , f ◦ ρn−1

n (x)
)
,

which implies that

F (s+1)(x) = F (s)(F (x)) =
(
f (F (x)) , f ◦ ρ1n (F (x)) , . . . , f ◦ ρn−1

n (F (x))
)

=
(
f ◦ F (x), f ◦ F ◦ ρ1n(x), . . . , f ◦ F ◦ ρn−1

n (x)
)
, (6)

where Eq. (6) follows from Eq. (5) since F is RS. Hence, for k = s+1, F (k) is an
RS (n, n)-function. By the mathematical induction, we get that for k � 1, F (k)

is RS. 	

Remark 3. From Propositions 3 and 4, one can see that rotation symmetric
(n, n)-functions possess many desirable properties like (i) the algebraic represen-
tations are short; (ii) the evaluation of the functions is efficient (since a circular
shift of the input bits leads to the corresponding shift of the output bits); (iii) the
iterated functions are still rotation symmetric.

Under the action of ρk
n, 0 � k � n − 1, the orbit generated by the vector

x = (x1, x2, . . . , xn) is defined as

On(x) =
{
ρk

n(x1, x2, . . . , xn)
∣
∣ 0 � k � n − 1

}
. (7)

It is easy to check that the cardinality of an orbit generated by x = (x1, . . . , xn) is
a factor of n. In fact, let |On(x)| = t, and suppose that n = p·t+r for p, r ∈ Z and
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0 < r < t. Then ρt
n(x) = x, which implies that ρp·t

n (x) = x, thus ρn−p·t
n (x) = x,

i.e., ρr
n(x) = x, a contradiction to the fact that |On(x)| = t > r. Clearly, all the

orbits generate a partition of Fn
2 . Every orbit can be represented by its lexico-

graphically first element, called the representative element. It is proved that (see
e.g. [6, Appendix A.1]) the number of distinct orbits is Ψn = 1

n

∑
k|n φ(k)2n/k,

where φ(k) is the Euler’s phi -function. Let
{
Λ
(n)
1 , Λ

(n)
2 , . . . , Λ

(n)
Ψn

}
denote the set

of all the representative elements in lexicographical order, where Λ
(n)
1 = 0 and

Λ
(n)
Ψn

= 1, and we use {Λ1, Λ2, . . . , ΛΨn
} for short if there is no risk of confusion.

For f ∈ Bn and 1 � i � Ψn, let f |On(Λi) denote the restriction of f to On(Λi),
i.e., for x ∈ On(Λi), f |On(Λi)(x) = f(x). Then, we have the following theorem.

Theorem 2. For any n-variable Boolean function f satisfying the following con-
ditions:

(i) For i = 1, 2, . . . , Ψn − 1, wt
(
f |On(Λi)

)
= ti · wt(Λi)/n, where ti = |On(Λi)|;

(ii) f(1) = 0,

the RS (n, n)-function F (x) =
(
f(x), f ◦ ρ1n(x), . . . , f ◦ ρn−1

n (x)
)

has perfect dif-
fusion property, and for every k � 1, Deg

(
F (k)

)
= n.

Proof. For i = 1, 2, . . . , Ψn −1, let F |On(Λi) denote the ti ×n matrix over F2 that

F |On(Λi) =

⎛

⎜
⎜
⎜
⎝

F (Λi)
F
(
ρ1n(Λi)

)

...
F
(
ρti−1

n (Λi)
)

⎞

⎟
⎟
⎟
⎠

ti×n

=

⎛

⎜
⎜
⎜
⎝

F (Λi)
ρ1n (F (Λi))

...
ρti−1

n (F (Λi))

⎞

⎟
⎟
⎟
⎠

ti×n

,

where ti = |On(Λi)| and the last equality is from Eq. (5). It is obvious that the
number of 1’s in every column (as well as every row) of F |On(Λi) is the same.
Since wt

(
f |On(Λi)

)
= ti · wt(Λi)/n, then every row of F |On(Λi) has the same

weight that
wt
(
f |On(Λi)

) · n

ti
=

ti · wt(Λi) · n

n · ti
= wt(Λi).

Hence, for x = ρl
n(Λi), where i = 1, 2, . . . , Ψn − 1 and l = 0, . . . , |On(Λi)| − 1,

wt(F (x)) = wt
(
F
(
ρl

n(Λi)
))

= wt (Λi) = wt
(
ρl

n(Λi)
)

= wt(x),

i.e., for every x ∈ F
n
2\{1}, wt(F (x)) = wt(x). Therefore, for every k � 1 and

every x ∈ F
n
2\{1}, we have

wt
(
F (k)(x)

)
= wt(x). (8)

Thanks to Proposition 4, we know that F (k) is still an RS (n, n)-function, thus
we can write F (k) as

(
f (k), f (k) ◦ ρ1n, . . . , f (k) ◦ ρn−1

n

)
, where f (k) ∈ Bn. From
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Eq. (8), we have that for i = 1, 2, . . . , Ψn − 1, every column of the matrix

F (k)
∣
∣
On(Λi)

=

⎛

⎜
⎜
⎜
⎝

F (k) (Λi)
F (k)

(
ρ1n(Λi)

)

...
F (k)

(
ρti−1

n (Λi)
)

⎞

⎟
⎟
⎟
⎠

ti×n

=

⎛

⎜
⎜
⎜
⎝

F (k) (Λi)
ρ1n
(
F (k) (Λi)

)

...
ρti−1

n

(
F (k) (Λi)

)

⎞

⎟
⎟
⎟
⎠

ti×n

has weight ti · wt(Λi)/n. Since
⋃Ψn

i=1 On(Λi) = F
n
2 , then it is easy to prove that

Ψn∑

i=1

ti · wt(Λi)
n

= 2n−1.

Condition (ii) implies wt
(
F (k)(1)

)
= 0, then we have

wt
(
f (k)

)
=

Ψn−1∑

i=1

ti · wt(Λi)
n

= 2n−1 − 1.

Hence, according to Proposition 1, deg
(
f (k)

)
= n, which leads to Deg

(
F (k)

)
=

n. Note that for l = 0, . . . , n − 1, ρl
n is an affine permutation on F

n
2 , then from

Proposition 2, we have deg
(
f (k) ◦ ρl

n

)
= deg(f (k)) = n. Thus, Theorem 1 implies

that F (k) is non-degenerate. Therefore, F (x) has perfect diffusion property. 	

In Theorem 3, we will calculate the number of all the functions constructed

in Theorem 2. Before that, we introduce the following lemma which is given by
Maximov [13, Lemma 1].

Lemma 1. [13] For F
n
2 , the number of orbits with t elements of weight w is

ηn,t,w =

⎧
⎨

⎩

1
t

∑
k|t,qk|w μ(t/k) · (n/qk

w/qk

)
, for t, w = 1, . . . , n, where qk = n

gcd(n,k) ,

1, for t = 1, w = 0,
0, otherwise,

(9)

where μ(·) is the Möbius function, i.e., for integer t � 1, μ(t) = 1, if t = 1;
μ(t) = (−1)m, if t = p1p2 · · · pm, where p1, . . . , pm are distinct primes; μ(t) = 0,
for all other cases.

Theorem 3. The number of distinct RS (n, n)-functions constructed in Theo-
rem 2 is

Nn =
n−1∏

w=1

n∏

t=1

(
t

t·w
n

)ηn,t,w

, (10)

where ηn,t,w = 1
t

∑
k|t,qk|w μ(t/k) · (n/qk

w/qk

)
, qk = n

gcd(n,k) , and μ(·) is the Möbius
function.
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Proof. In Theorem 2, for any i = 1, 2, . . . , Ψn − 1, wt
(
f |On(Λi)

)
= ti · wt(Λi)/n,

which implies that one can construct
(

ti
ti·wt(Λi)/n

)
distinct f |On(Λi)’s. Moreover,

Lemma 1 claims that the number of orbits with t = ti elements of weight w =
wt(Λi) is ηn,t,w. Then, one can get that the number of distinct RS (n, n)-functions
constructed in Theorem 2 is Nn in Eq. (10). 	

Example 1. For F

6
2, all the orbits and the values of η6,t,w in Eq. (9) are listed in

Table 1, where t and w are respectively the number and the weight of elements
in an orbit.

Then, from Theorem 3, we have

N6 =
5∏

w=1

6∏

t=1

(
t

t·w
6

)η6,t,w

= 2.6244 × 1011 ≈ 237.9,

while the number of all the (6, 6)-functions is 22
6·6 = 2384.

Table 1. All the orbits of F6
2 and the values of η6,t,w

t w t w

O6(000000) 1 0 O6(010011) 6 3
O6(000001) 6 1 O6(010101) 2 3
O6(000011) 6 2 O6(001111) 6 4
O6(000101) 6 2 O6(010111) 6 4
O6(001001) 3 2 O6(011011) 3 4
O6(000111) 6 3 O6(011111) 6 5
O6(001011) 6 3 O6(111111) 1 6

η6,t,w t 1 2 3 4 5 6

w
0 1 0 0 0 0 0
1 0 0 0 0 0 1
2 0 0 1 0 0 2
3 0 1 0 0 0 3
4 0 0 1 0 0 2
5 0 0 0 0 0 1
6 1 0 0 0 0 0

Example 2. In Example 1, we have shown all the orbits {O6(Λi), i = 1, . . . , 14}
of F6

2. Let f be a 6-variable Boolean function defined as

f |O6(000000) = (0), f |O6(010011) = (1, 0, 0, 1, 0, 1),
f |O6(000001) = (0, 0, 0, 1, 0, 0), f |O6(010101) = (0, 1),
f |O6(000011) = (0, 0, 1, 1, 0, 0), f |O6(001111) = (1, 1, 0, 1, 1, 0),
f |O6(000101) = (0, 1, 0, 1, 0, 0), f |O6(010111) = (0, 1, 1, 1, 0, 1),
f |O6(001001) = (1, 0, 0), f |O6(011011) = (1, 0, 1),
f |O6(000111) = (0, 1, 0, 0, 1, 1), f |O6(011111) = (1, 1, 1, 1, 0, 1),
f |O6(001011) = (1, 0, 0, 1, 0, 1), f |O6(111111) = (0),
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where the binary vectors on the right-hand side denote the truth tables of the
restriction functions f |O6(Λi), i = 1, . . . , 14, i.e.,

f |O6(Λi) =
(
f(Λi), f ◦ ρ16(Λi), . . . , f ◦ ρti−1

6 (Λi)
)
,

where ti = |O6(Λi)|. Since the function f satisfies the conditions in Theorem 2,
then the RS (6, 6)-function

F =
(
f, f ◦ ρ16, . . . , f ◦ ρ56

)

has perfect diffusion property. Due to Proposition 4, the iterated function F (k) is
RS for k � 2. Let f (k) = f

(
F (k−1)

)
, then F (k) =

(
f (k), f (k) ◦ ρ16, . . . , f

(k) ◦ ρ56
)
.

By Proposition 1, the ANFs of the following Boolean functions can be obtained
from the truth tables of f , f (2), f (3), f (4) respectively.

f(x1, . . . , x6)
=x1x2x3x4x5x6 ⊕ x1x2x3x4x5 ⊕ x2x3x4x5x6 ⊕ x1x2x3x4 ⊕ x1x2x3x5

⊕ x1x2x4x5 ⊕ x1x2x4x6 ⊕ x1x2x5x6 ⊕ x1x3x4x6 ⊕ x2x3x4x5 ⊕ x2x3x4x6

⊕ x2x4x5x6 ⊕ x3x4x5x6 ⊕ x1x2x5 ⊕ x1x2x6 ⊕ x1x3x4 ⊕ x1x3x6 ⊕ x1x5x6

⊕ x3x4x5 ⊕ x3x4x6 ⊕ x4x5x6 ⊕ x4,

f (2)(x1, . . . , x6)
=x1x2x3x4x5x6 ⊕ x1x2x3x5x6 ⊕ x1x2x4x5x6 ⊕ x1x2x3x5 ⊕ x1x2x3x6

⊕ x1x2x4x5 ⊕ x1x3x4x6 ⊕ x2x4x5x6 ⊕ x3x4x5x6 ⊕ x1x2x3

⊕ x1x3x4 ⊕ x2x4x5 ⊕ x3x4x5 ⊕ x1,

f (3)(x1, . . . , x6)
=x1x2x3x4x5x6 ⊕ x1x2x3x4x5 ⊕ x1x2x3x4x6 ⊕ x1x3x4x5x6 ⊕ x2x3x4x5x6

⊕ x1x2x3x5 ⊕ x1x2x4x5 ⊕ x1x2x4x6 ⊕ x1x2x5x6 ⊕ x1x3x4x5 ⊕ x1x3x4x6

⊕ x2x3x4x5 ⊕ x2x4x5x6 ⊕ x1x2x5 ⊕ x1x2x6 ⊕ x1x3x4 ⊕ x1x3x6 ⊕ x1x5x6

⊕ x2x3x4 ⊕ x3x4x6 ⊕ x4x5x6 ⊕ x4,

f (4)(x1, . . . , x6) = f (2)(x1, . . . , x6).

The ANFs of the functions directly show that the RS (6, 6)-function F has
perfect diffusion property, and for every k � 1, Deg

(
F (k)

)
= 6.

3.2 Almost Balanced (n, n)-Functions with Perfect Diffusion
Property

We have presented a construction of RS (n, n)-functions with perfect diffusion
property. These functions are of interest from a practical point of view as their
representations are short and the evaluations are efficient. In this part, we pro-
pose a large set of almost balanced (n, n)-functions with perfect diffusion prop-
erty. Here we call an (n,m)-function F almost balanced, if for every b ∈ F2m ,
|F−1(b)−2n−m| takes a small value. For a finite set E with cardinality |E| = N ,
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the set of all the permutations on E forms a symmetric group SN whose group
operation is the function composition.

Note that for n � 2, there is no balanced (n, n)-function (i.e., permutation
on F

n
2 ) with perfect diffusion property. In fact, let F be a permutation on F

n
2 ,

then since all the permutations on F
n
2 form a finite symmetric group, there must

exist some i � 1 such that F (i) = id, where id denotes the identity permutation.
Hence, we have F (i)(x) = x for every x ∈ F

n
2 , which implies Dc

(
F (i)

)
= 1/n <

1. Thus, F cannot have perfect diffusion property. Therefore, finding almost
balanced (n, n)-functions with perfect diffusion property is attractive.

Theorem 4. For any σ that belongs to the symmetric group on the set F
n
2\

{0,1}, the almost balanced (n, n)-function

F (x) =
{

0, x = 0 or 1,
σ(x), otherwise,

(11)

has perfect diffusion property, and for every k � 1, Deg
(
F (k)

)
= n.

Proof. From Eq. (11), one gets that for any k � 1,

F (k)(x) =
{

0, x = 0 or 1,
σ(k)(x), otherwise.

Since σ(k) is a permutation on F
n
2\{0,1}, then it is easy to see that every coor-

dinate function of F (k) has weight 2n−1 − 1, which implies from Proposition 1
and Theorem 1 that Deg

(
F (k)

)
= n and F (k) is non-degenerate. Therefore, F

has perfect diffusion property. 	

The following enumeration result is obvious.

Theorem 5. The number of distinct almost balanced (n, n)-functions constructed
in Theorem 4 is Pn = (2n − 2)!.

Example 3. The number of almost balanced (6, 6)-functions with perfect diffu-
sion property constructed in Theorem 4 is P6 = (26 − 2)! ≈ 2284, compared with
the enumeration result in Example 1 that the number of RS (6, 6)-functions with
perfect diffusion property constructed in Theorem 2 is N6 ≈ 237.9.

Remark 4. Denote by Fn, Gn the sets of all the (n, n)-functions constructed in
Theorems 2 and 4 respectively. Then, it is easy to check that F2 = G2, F3 ⊆ G3,
and for n � 4, Fn

⋂
Gn �= ∅ but neither Fn ⊆ Gn nor Gn ⊆ Fn.

As an application in product cryptosystems, we consider the following model.

Model. Let G be an (n, n)-function, Ki, i = 0, 1, . . ., be vectors in F
n
2 . Then, in

a product cryptosystem, the ith round function Fi is

Fi(x) =
{

G(x ⊕ K0), if i = 1,
G(Fi−1(x) ⊕ Ki−1), if i � 2.

(12)
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Suppose that K0 = K1 = · · · = K, and we define F (x) = G(x ⊕ K). Then,
by (12), we have for i � 1, Fi(x) = F (i)(x). The function F is preferable to have
perfect diffusion property, which leads to Dc(Fi) = 1 for each i � 1. If the Ki’s
are not identical, then the case is more complicated. In the following, we use a
simple example to illustrate that by using (n, n)-functions in (11), one can get
Dc(Fi) = 1 for i odd. The example given here is suggestive if not very practical.

Example 4. In the above model, let

G(x) =
{

0, x = 0 or 1,
σ(x), otherwise,

be an almost balanced function in (11), where σ is a permutation on E =
F

n
2\{0,1} satisfying {0,1}⋃U(σ) is a F2-subspace of Fn

2 , where U(σ) = {x ∈
E | σ(x) = x} is the set of fixed points of σ. Let Ki−1, Fi, i � 1, be defined in
(12). We now prove that if U(σ) �= ∅ and for i � 1, Ki ∈ U(σ)\Ai, where A1 = ∅
and

Ai =

{
k⊕

j=1

Ki−j ,

k⊕

j=1

Ki−j ⊕ 1

∣
∣
∣
∣
∣

k = 1, . . . , i − 1

}

, i � 2,

then Deg(Fi) = n and Dc(Fi) = 1 for all odd i. One can easily check that for
i � 2, Ai is a set, i.e., all the elements in Ai are distinct.

For i � 1, let f
(i)
l be the lth coordinate function of Fi, where 1 � l � n.

It is clear that wt
(
f
(1)
l

)
= 2n−1 − 1 which is odd, then from the proof of

Theorem 4, we have Deg(F1) = n and Dc(F1) = 1. Moreover, there exist exactly
two x ∈ F

n
2 such that F1(x) = 0, and for each y ∈ E\A1, there exists exactly

one x ∈ F
n
2 such that F1(x) = y. By calculating iteratively, one can get that for

every i � 2 and every k = 1, . . . , i − 1, there exist exactly two x ∈ F
n
2 such that

Fi(x) =
⊕k

j=1 Ki−j or 0, and for each y ∈ E\Ai, there exists exactly one x ∈ F
n
2

such that Fi(x) = y. Since for i � 1, Ki �∈ Ai, then Ki ⊕ 1 ∈ E\Ai, thus there
exists exactly one x ∈ F

n
2 , denoted by xi,0, such that Fi(xi,0) = Ki ⊕ 1, which

implies G(Fi(xi,0) ⊕ Ki) = 0. Recall that {0,1}⋃U(σ) is a F2-subspace of Fn
2 ,

then for i � 1, since Ki ∈ U(σ), we have Ai ⊆ U(σ). From the above discussion,
we obtain that for i � 1, the multiset {∗ G(Fi(x) ⊕ Ki) | x ∈ F

n
2\{xi,0} ∗} is

equal to the multiset {∗ Fi(x) ⊕ Ki | x ∈ F
n
2\{xi,0} ∗}. Hence, for i � 1, denote

by g
(i)
l the lth coordinate function of Fi(x) ⊕ Ki, where 1 � l � n, then we have

wt
(
f
(i+1)
l

)
= wt

(
g
(i)
l

)
− 1.

It is obvious that wt
(
f
(i)
l

)
and wt

(
g
(i)
l

)
have the same parity, which leads to

that wt
(
f
(i)
l

)
and wt

(
f
(i+1)
l

)
have different parities. Therefore, if i � 1 is odd,

then wt
(
f
(i)
l

)
is odd, thus we have Deg(Fi) = n and Dc(Fi) = 1.
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4 Concluding Remarks

In this paper, we construct two classes of (n, n)-functions with perfect diffusion
property and optimal algebraic degree. These functions provide complete diffu-
sion after iterations. The enumeration results for the constructed functions show
that there are many (n, n)-functions which have perfect diffusion property.

The functions constructed in Theorems 2 and 4 represent a theoretical inter-
est, which may have weak resistance to different cryptanalysis. Further improve-
ments in the design of (n, n)-functions with perfect diffusion property are of
interest. In addition, the RS (n, n)-functions defined in this paper may be worth
discussing in the future for their efficient evaluations and short representations.

Acknowledgments. The authors would like to thank the anonymous referees for their
helpful comments.
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Abstract. We provide a new inequality that links two important entropy
notions: Shannon Entropy H1 and collision entropy H2. Our formula
gives the worst possible amount of collision entropy in a probability dis-
tribution, when its Shannon Entropy is fixed. While in practice it is easier
to evaluate Shannon entropy than other entropy notions, it is well known
in folklore that it does not provide a good estimate of randomness quality
from a cryptographic viewpoint, except very special settings. Our results
and techniques put this in a quantitative form, allowing us to precisely
answer the following questions:
(a) How accurately does Shannon entropy estimate uniformity? Con-

cretely, if the Shannon entropy of an n-bit source X is n− ε, where ε
is a small number, can we conclude that X is close to uniform? This
question is motivated by uniformity tests based on entropy estima-
tors, like Maurer’s Universal Test.

(b) How much randomness can we extract having high Shannon entropy?
That is, if the Shannon entropy of an n-bit source X is n−O(1), how
many almost uniform bits can we retrieve, at least? This question is
motivated by the folklore upper bound O(log(n)).

(c) Can we use high Shannon entropy for key derivation? More precisely,
if we have an n-bit source X of Shannon entropy n − O(1), can
we use it as a secure key for some applications, such as square-
secure applications? This is motivated by recent improvements in
key derivation obtained by Barak et al. (CRYPTO’11) and Dodis
et al. (TCC’14), which consider keys with some entropy deficiency.

Our approach involves convex optimization techniques, which yield the
shape of the “worst” distribution, and the use of the Lambert W func-
tion, by which we resolve equations coming from Shannon Entropy con-
straints. We believe that it may be useful and of independent interests
elsewhere, particularly for studying Shannon Entropy with constraints.
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1 Introduction

1.1 Entropy Measures

Entropy, as a measure of randomness contained in a probability distribution,
is a fundamental concept in information theory and cryptography. There exist
many entropy definitions and they are not equally good for all applications.
While the most famous (and most liberal) Shannon Entropy [Sha48], which quan-
tifies the encoding length, is extremely useful in information theory, more conser-
vative measures, like min-entropy (which quantifies unpredictability) or collision
entropy (which bounds collision probability between samples), are necessary in
cryptographic applications, like extracting randomness [NZ96,HILL99,RW05]
or key derivation [DY13,BDK+11]. Any misunderstanding about what is a
suitable entropy notion may be a serious problem not only of a theoretical
concern, because it leads to vulnerabilities due to overestimating security. In
fact, when entropy is overestimated, security of real-world applications can be
broken [DPR+13]. Standards [BK12,AIS11] recommend to use more conser-
vative entropy metrics in practical designs, but in the other hand Shannon
entropy is easier to evaluate [AIS11] (in particular when the distribution of
the randomness source is not exactly known) and moreover Shannon entropy
estimators have already been relatively well studied and are being used in prac-
tice [Mau92,Cor99,BL05,LPR11].

1.2 Motivations and Goals of this Work

The aim of this paper is to provide sharp separation results between Shan-
non entropy and Renyi entropy (focusing on collision entropy and min-entropy).
Under certain conditions, for example when consecutive bits of a given random
variable are independent (produced by a memoryless source), they are compara-
ble [RW05,Hol11] (this observation is closely related to a result in information
theory known as the Asymptotic Equipartition Property [Cac97]). Such a sim-
plifying assumption is used to argue about provable security of true random
number generators [BKMS09,VSH11,LPR11], and may be enforced in certain
settings, for example when certifying devices in a laboratory [BL05]. But in
general (especially from a theoretical viewpoint) neither min-entropy (being of
fundamental importance for general randomness extraction [RW05,Sha11]) nor
collision entropy, useful for key derivation [DY13,BDK+11,Shi15], randomness
extraction [HILL99], and random number generating [BKMS09,BST03]) cannot
be well estimated by Shannon entropy. Still, in practice Shannon entropy remains
an important tool for testing cryptographic quality of randomness [AIS11]. In
this paper we address the natural question

How bad is Shannon entropy as an estimate of cryptographic quality of
randomness?

and answer it in a series of bounds, focusing on three important cryptographic
applications, which require entropy estimation: (a) uniformity testing, (b) gen-
eral randomness extraction and (c) key derivation.
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1.3 Our Results and Techniques

Brief Summary. We investigate in details the gap between Shannon Entropy
and Renyi Entropy (focusing on smooth collision entropy and smooth min-
entropy) in a given entropy source. We impose no restrictions on the source
and obtain general and tight bounds, identifying the worst case. Our results are
mostly negative, in the sense that the gap may be very big, so that even almost
full Shannon Entropy does not guarantee that the given distribution is close to
uniform or that it may used to derive a secure key. This agrees with folklore.
However, to the best of our knowledge, our analysis for the first time provides
a comprehensive and detailed study of this problem, establishing tight bounds.
Moreover, our techniques may be of independent interests and can be extended
to compare Renyi entropy of different orders.

Results and Corollaries. Bounding Renyi Entropy by Shannon Entropy. Being
interested in establishing a bound on the amount of extractable entropy in terms
of Shannon Entropy only, we ask the following question

Q: Suppose that the Shannon Entropy H1(X) of an n-bit random vari-
able X is at least k. What is the best lower bound on the collision entropy
H2(X)?

We give a complete answer to this question in Sect. 3.1. It is briefly summarized
in Table 1 below.

Table 1. Minimal collision entropy given Shannon entropy constraints.

Domain of X H1(X) Region Max. �2-
distance to
uniform

Min. value of H2(X)

{0, 1}n n − Δ 2nΔ � 13 Θ
(

Δ
log(2nΔ)

)
n − log2

(
1 + Θ

(
2nΔ2 log−2(2nΔ

))

2nΔ � 13 O (Δ) n − log2
(
1 + O

(
2nΔ2

))

The Shape of the Worst-case Distribution. Interestingly, the description of the
“worst” distribution X is pretty simple: it is a combination of a one-point heavy
mass with a flat distribution outside. In fact, it has been already observed in
the literature that such a shape provides good separations for Shannon Entropy
[Cac97]. However, as far as we know, our paper is the first one which provides a
full proof that this shape is really best possible.

Infeasibility of Uniformity Tests Based on Entropy Estimators. If an n-bit ran-
dom variable X satisfies H1(X) = n then it must be uniform. It might be
tempting to think that a very small entropy gap Δ = n − H1(X) (when entropy
is very “condensed”) implies closeness to the uniform distribution. Clearly, this
is a necessary condition. For example, standards for random number generat-
ing [AIS11] require the Shannon entropy of raw bits to be at least 0.997 per bit
on average.
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Q: Suppose that the Shannon Entropy H1(X) of an n-bit random vari-
able X is at least n − Δ, where Δ ≈ 0. What is the best upper bound
on the distance between X and the uniform distribution Un?

There are popular statistical randomness tests [Mau92,Cor99] which are based
on the fact that very small Δ is necessary to a very small statistical distance.
Theoretically, they can detect any deviation at any confidence level. In this paper
we quantify what is well known in folklore, namely that this approach cannot be
provable secure and efficient at the same time. Based on the results summarized
in Table 1, we prove that for the statistical distance (the �1 distance) the gap Δ
can be as small as ε but still the source is ε/n-far from the uniform distribution.
Putting this statement around, to guarantee ε-closeness we need to estimate
the entropy up to a tiny margin nε. This shows that an application of entropy
estimators to test sequences of truly random bits may be problematic, because
estimating entropy within such a small margin is computationally inefficient.
Having said this, we stress that entropy estimators like Maurer’s Universal Test
[Mau92] are powerful tools capable of discovering most of defects which appear
within a broader margin of error.

Large Gap Between Shannon and Smooth Collision Entropy. Many constructions
in cryptography require min-entropy. However, the weaker notion of collision
entropy found also many applications, especially for problems when one deals
with imperfect randomness. The collision entropy of a distribution X constitutes
a lower bound on the number of extractable almost-uniform bits, according to the
Leftover Hash Lemma [HILL99,RW05]. Moreover, the recent improvements in
key derivation [DY13,BDK+11] show that for some applications we can use high
collision entropy to generate secure keys, wasting much less entropy comparing
to extractors-based techniques (see Sect. 2.5). For example, consider the one-
time MAC with a 160-bit key over GF (280), where the key is written as (a, b)
and the tag for a message x is ax + b. The security is ε = 2−80 when the
key is uniform [DY13]. We also know that it is ε = 2−70-secure when the key
has 150 = 160 − 10 bits of collision entropy. Suppose that a Shannon entropy
estimator indicates 159 bits of entropy. Is our scheme secure? This discussion
motivates the following question

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈
{0, 1}n is at least n − Δ where Δ � 1. What is the best lower bound on
H2(X)? Does it help if we consider only H2(X ′) where X ′ is close to X?

As a negative result, we demonstrate that the gap between the Shannon Entropy
and Renyi Entropy could be almost as big as the length of the entropy source
output (that is almost maximal possible). Moreover, smoothing entropy, even
with weak security requirements, does not help. For example, we construct a
256-bit string of more than 255 bits of Shannon Entropy, but only 19 bits of
(smooth) Renyi entropy. This is just an illustrative example, we provide a more
general analysis in Corollary 4 in Sect. 4.

Large Gap Between Shannon and Extractable Entropy. Min entropy gives only
a lower bound on extractable entropy. However, its smooth version can be used



Shannon Entropy Versus Renyi Entropy from a Cryptographic Viewpoint 261

to establish an upper bound on the amount of almost random bits, of required
quality, that can be extracted from a given source [RW05].

Q: Suppose that the Shannon Entropy H1(X) of a random variable X ∈
{0, 1}n is at least n − Δ where Δ < 1. How many bits that are close to
uniform can be extracted from X?

Again, analogously to the previous result, we provide a separation between
Shannon and extractable entropy, where the gap is almost as big as the length
of the random variable. For example, we construct a 256-bit string of more than
255.5 bits of Shannon Entropy, but only 10 bits of extractable entropy, even if we
allow them to be of very weak quality, not really close to uniform! This is just
an illustrative example, we provide a more precise and general statement. To
our knowledge, the concrete tight bounds we provide are new, though a similar
“extreme” numerical example can be found in [Cac97]. The separation is again
a straightforward application of ideas behind the proof of the results in Table 1

Converting Shannon Entropy into Renyi Entropy. Even though the gap in our
separations are almost as big as the length of the source output, there might be
small amount of Renyi Entropy in every distribution of high Shannon Entropy.

Q: Suppose that the Shannon Entropy of an n-bit random variable X is
at least n − Δ where Δ � 1. Does X have some non-trivial amount of
collision entropy?

This question may be relevant in settings, when one would like to check whether
some (not really big though) collision entropy is present in the source. For exam-
ple, there are necessary conditions on security of message authentication codes in
terms of collision entropy [Shi15]. We establish a simple and tight bound on this
amount: it is about 2 log2 n−2 log2 Δ. For example, in the concrete case of a 256-
bit string of Shannon Entropy 255 we find that the necessary amount of Renyi
entropy is 15. We also establish an interesting rule of thumb: for much more than
one bit of Renyi entropy in the output of a source, its Shannon Entropy must
be bigger than the half of its length. Again, besides this numerical example we
provide detailed and general bounds.

Techniques. To prove our main technical results, we use standard convex opti-
mization techniques combined with some calculus which allows us to deal with
implicit equations. In particular, we demonstrate that the Lambert-W function
is useful in studying Shannon Entropy constraints.

1.4 Organization of the Paper

We start with necessary definitions and explanations of basic concepts in Sect. 2.
Our main result is discussed in Sect. 3. Further applications are given in Sect. 4.
We end with the conclusion in Sect. 5. The proofs of main results, which are
technical and complicated a bit, appear in Sect. 5.
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2 Preliminaries

2.1 Basic Notions

By US we denote the uniform distribution over a set S, and Un is a shortcut
for the uniform n-bit distribution. The probability mass function of a random
variable X is denoted by PX .

2.2 Quantifying Closenes of Distributions

The closeness of two distributions X,Y over the same domain Ω is most com-
monly measured by the so called statistical or variational distance SD(X;Y ). It
is defined as the half of the �1-distance between the probability mass functions
SD(X;Y ) = 1

2d1(PX ;PY ) = 1
2

∑
x |Pr[X = x] − Pr[Y = x]|. In this paper we use

also the �2-distance between probability distributions, defined as d2(PX ;PY ) =√∑
x (Pr[X = x] − Pr[Y = x])2. These two �p distances are related by d2(·) <

d1(·) �
√|Ω| · d2(·). In information theory the closeness of two distributions

is often measures using so called divergences. The Kullback-Leibler divergence
between X and Y is defined as KL(X ‖ Y ) = −∑

x PX(x) log PX(x)
PY (x) , and the

Renyi divergence of order 2 equals D2 (X ‖ Y ) =
∑

x
(PX(x)−PY (x))2

PX(x) . We have
D2 (X ‖ US) = H2(US) − H2(X) = log2 (|S|CP(X)).

For convenience we define also the collision probability of X as the probability
that two independent copies of X collide: CP(X) =

∑
x Pr[X = x]2.

2.3 Entropy Definitions

Below we define the three key entropy measures, already mentioned in the intro-
duction. It is worth noting that they all are special cases of a much bigger
parametrized family of Renyi entropies. However the common convention in
cryptography, where only these three matter, is to slightly abuse the terminol-
ogy and to refer to collision entropy when talking about Renyi entropy, keeping
the names for Shannon and Min-Entropy.
Definition 1 (Entropy Notions). The Shannon Entropy H(X) = H1(X), the
collision entropy (or Renyi entropy) H2(X), and the Min-Entropy H∞(X) of a
distribution X are defined as follows

H(X) =
∑

x

Pr[X = x] log Pr[X = x] (1)

H2(X) = − log

(
∑

x

Pr[X = x]2
)

(2)

H∞(X) = − log max
x

Pr[X = x]. (3)

Remark 1 (Comparing Different Entropies). It is easy to see that we have

H(X) � H2(X) � H∞(X),

with the equality if and only if X is uniform.
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2.4 Entropy Smoothing

The Concept. Entropy Smoothing is a very useful concept of replacing one
distribution by a distribution which is very close in the statistical distance (which
allows keeping its most important properties, like the amount of extractable
entropy) but more convenient for the application at hand (e.g. a better structure,
removed singularities, more entropy).

Applications of Smooth Entropy. The smoothing technique is typically
used to increase entropy by cutting off big but rare “peaks” in a probability
distribution, that is point masses relatively heavy comparing to others. Proba-
bly the most famous example is the so called Asymptotic Equipartition Property
(AEP). Imagine a sequence X of n independent Bernoulli trials, where 1 appears
with probability p > 1/2. Among all n-bit sequences the most likely ones are
those with 1 in almost all places. In particular H∞(X) = −n log p. However, for
most of the sequences the number of 1’s oscillates around pn (these are so called
typical sequences). By Hoeffding’s concentration inequality, the number of 1’s
is at most pn + h with probability 1 − exp(−2h2/n). For large n and suitably
chosen h, the distribution of X approaches a distribution X ′ of min-entropy
H∞(X ′) ≈ −n(p log p + (1 − p) log(1 − p)) ≈ H(X) (the relative error here is
of order O(n−1/2)), much larger than the min-entropy of the original distrib-
ution! A quantitative version of this fact was used in the famous construction
of a pseudorandom generator from any one-way function [HILL88]. Renner and
Wolf [RW04] revisited the smoothing technique in entropy framework and came
up with new applications.

Definition 2 (Smooth Entropy, [RW04]). Suppose that α ∈ {1, 2,∞}. We
say that the ε-smooth entropy of order α of X is at least k if there exists a
random variable X ′ such that SD(X;X ′) � ε and Hα(X ′) � k.

For shortness, we also say smooth Shannon Entropy, smooth Renyi entropy or
smooth min-entropy. We also define the extractable entropy of X as follows

Definition 3 (Extractable Entropy, [RW05]). The ε-extractable entropy of
X is defined to be

Hε
ext(X) = max

U : ∃f∈Γ ε(X→U)
log |U| (4)

where Γ ε(X → U) consists of all functions f such that SD(f(X,R);UU , R) � ε
where R is uniform and independent of X and UU .

2.5 Randomness Extraction and Key Derivation

Roughly speaking, an extractor is a randomized function which produces an
almost uniform string from a longer string but not of full entropy. The random-
ization here is necessary if one wants an extractor working with all high-entropy
sources; the role of that auxiliary randomness is similar to the purpose of cata-
lysts in chemistry.
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Definition 4 (Strong Extractors [NZ96]). A strong (k, ε)-extractor is a func-
tion Ext : {0, 1}n × {0, 1}d → {0, 1}k such that

SD(Ext(X,Ud), Ud;Uk+d) � ε. (5)

A very simple, efficient and optimal (with respect to the necessarily entropy loss)
extractor is based on universal hash functions. Recall that a class H of functions
from n to m bits is universal [CW79] if for any different x, y there are exactly
|H|/2m functions h ∈ H such that h(x) = h(y).

Lemma 1 (Leftover Hash Lemma). Let H be a universal class of functions
from n to random m bits, let H be chosen from H at random and let X be an
n-bit variable. If H2(X) � k, then SD(H(X),H;Um,H) � 1

2 · 2
m−k

2 .

By Lemma 1 and the properties of the statistical distance we obtain

Corollary 1 (Bound on Extractable Entropy, [RW05]). We have Hε
∞(X) �

Hε
ext(X) � H

ε/2
2 (X) − 2 log(1/ε) − 1.

Note that to extract k bits ε-close to uniform we need to invest k+2 log(1/ε) bits
of (collision) entropy; the loss of 2 log(1/ε) bits here is optimal [RTS00]. While
there are many other extractors, the Leftover Hash Lemma is particularly often
used in the TRNG design [BST03,BKMS09,VSH11] because it is simple, effi-
cient, and provable secure. Extractors based on the LHL are also very important
in key derivation problems [BDK+11]. Note that the LHL uses only collision
entropy, weaker than min-entropy.

To get an illustrative example, note that deriving a key which is ε-close to
uniform with ε = 2−80 requires losing L = 2 log(1/ε) = 160 bits of entropy.
Sometimes we can’t afford to lose so much. In special cases, in particular for so
called square-friendly applications [BDK+11,DY13] we can get an improvement
over Corollary 1. In particular, for these applications (which include message
authentication codes or digital signatures), we can apply X of collision entropy
k < m, still achieving some non-trivial security.

Theorem 1 (Beating the 2 log(1/ε) Entropy Loss for Some Applica-
tions. [BDK+11]). Let P be an ε-secure and σ-square-secure application (when
keyed with Um). Let H be a universal class of functions from n to random m
bits, let H be chosen from H at random. Then for any X of length n and
collision-entropy k, the application P keyed with H(X) given H is ε′-secure
when ε′ � ε +

√
σ · 2

m−k
2 .

In particular, when σ = ε we get around of the RT-bound, achieving ε′ ≈ 2ε
with only k = m + log(1/ε). This way we save log(1/ε) ≈ 80 bits.

3 Main Result

In this section we calculate what is the minimal collision entropy in a distrib-
ution having a certain amount of Shannon entropy. First, by means of convex
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optimization, we show in Sect. 3.1 that the uniform distribution with one extra
heavy mass is the “worst” shape. Next, using some facts about Lambert W
function, in Sect. 3.2 we solve the corresponding implicit equation and derive a
closed-form answer.

3.1 Maximizing Collisions Given Shannon Entropy

Below we answer the posted question on the best bound on H2 in terms of H1.
The “worst case” distribution, which minimizes the gap, is pretty simple: it is
a combination of a one-point mass at some point and a uniform distribution
outside.

Theorem 2. Let X be a random variable with values in a d-element set. If
H(X) = k, then

H2(X) � − log2

(

b2 +
(1 − b)2

d − 1

)

(6)

where b is the unique solution to

H(b) + (1 − b) log2(d − 1) = k (7)

under the restriction b � 1
d (H(b) denotes the entropy of a bit equal 1 with

probability b). The bound in Eq. (6) is best possible.

Remark 2 (The Implicit Equation in Theorem 2). The number b is defined nondi-
rectly depending on d and k. In Sect. 3.2, we will show how to accurately approx-
imate the solution of this equation.

The proof of Theorem2 appears in AppendixA. The main idea is to write down
the posted question as a constrained optimization problem and apply standard
Lagrange multipliers techniques.

3.2 Closed-Form Bounds for Solutions

Below we present a tight formula approximating the solution to Eq. (7). We will
substitute it to Eq. (6) in order to obtain a closed-form expression.

Lemma 2 (The solution for Moderate Gaps). Let b be the solution to
Eq. (7) and let Δ = log2 d − k be the entropy gap. Suppose dΔ � 13. Then we
have

0.84Δ

log2(dΔ) − 1.52
� b � 1.37Δ

log2(dΔ) − 1.98
(8)

The proof is referred to AppendixB. The main idea is to solve Eq. (8) approx-
imately using the so called Lambert W function, that matches Shannon-like
expressions of the form y log y. Here we discuss the lemma and its applications.
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Remark 3 (Establishing Tighter Constants). The inspection of the proof shows
that the numerical constants in Lemma 2 can be made sharper, if needed. Under
the mild assumption that Δ−1 = 2o(log2 d) one can get

b =
(1 + o(1))Δ

log2(dΔ) − log2 e − log2 log2 e + o(1)
(9)

The gap between 1.52 and 1.98 is self-improving, in the sense that knowing in
advance a better upper bound on b one can make it closer to 0. In turn, the gap
between 0.84 and 1.37 can be made closer to 0 by choosing in the proof a more
accurate approximation for the Lambert W function.

Now we are ready to compute minimal collision entropy given Shannon Entropy.

Corollary 2 (Minimal Collision Entropy, General Case). Let X∗ min-
imizes H2(X) subject to H(X) � n − Δ where X takes its values in a given
d-element set. If dΔ � 13 then

0.55Δ

log2(dΔ)
� d2(X∗;U) � 3.24Δ

log2(dΔ)
, (10)

where U is uniform over the domain of X. If dΔ < 13 then

d2(X∗;U) < 0.88Δ. (11)

The collision entropy is obtained as H2(X∗) = − log2
(
1
d + d2(X∗;U)2

)
.

Proof (Proof of Corollary 2). We will consider two cases.

Case I: dΔ � 13. By Lemma 2 we get

0.84Δ

log2(dΔ)
� b � 2.95Δ

log2(dΔ)
(12)

By the last inequality and the fact that x → x
log2 x is increasing for x � e we get

bd � 0.84dΔ

log2(dΔ)
� 2.95

Let b0 = 1
d . By the last inequality we get b − b0 � 0.66b. Since

b2 +
(1 − b)2

d − 1
= b0 +

d

d − 1
· (b − b0)2,

by the identity d2(X;U)2 =
∑

x Pr[X = x]2 − 1
d and the definition of collision

entropy we get

d2(X∗, U)2 = CP(X∗) − b0 =
d

d − 1
· (b − b0)2.
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Note that dΔ � 13 implies d log2 d � 13 (because Δ � log2 d) and hence d > 5.
By this inequality and b − b0 � 0.66b we finally obtain

0.43b2 � d2(X∗;U)2 � 1.2b2 (13)

and the result for the case dΔ � 13 follows by combining Eqs. (12) and (13).

Case II: dΔ < 13. We do a trick to “embed” our problem into a higher dimension.
If p ∈ R

d is the distribution of X, define p′ ∈ R
d+1 by p′

i = (1 − γ)p′
i for i � d

and p′
d+1 = γ. It is easy to check that H1(p′) = −(1−γ) log2(1−γ)−γ log2 γ +

(1 − γ)H1(p). Setting γ = 1
1+2H1(p) we get

H1(p′) − H1(p) = −(1 − γ) log2(1 − γ) − γ log2 γ − γH1(p)

− (1 − γ) log2(1 − γ) − γ log2
(
2H1(p)γ

)

= log2
2H1(p) + 1

2H1(p)

� log2
d + 1

d

� (1 − b) log2
d

d − 1

where the first inequality follows by H1(p) � log2 d, and the second inequality
follows because b � 1

d implies that is suffices to prove log2
d+1

d �
(
1 − 1

d

)
log2

d
d−1

or equivalently that d log2
d+1

d � (d − 1) log2
d

d−1 ; this is true because the map
u → u log2(1 + u−1) is increasing in u for u > 0 (we skip an easy argument,
which simply checks the derivative). Since H1(p′) − H1(p) = 0 for γ = 0 and
since H1(p′) − H1(p) � (1 − b) log2

d
d−1 > (1 − b) log2

d+1
d for 1

1+2H1(p) for
� (1 − b) log2

d
d−1 , by continuity we conclude that there exists γ = γb, between

0 and 1
1+2H1(p) , such that p′ satisfies

(1 − b) log2
d + 1

d
= H1(p′) − H1(p).

Adding this Eq. (7) by sides, we conclude that also b solves 7 with the dimension
d replaced by d′ = d + 1 and the constraint k replaced by k′ = H1(p′). By
H1(p′) − H1(p) � log2

d+1
d we conclude that Δ′ = log2(d + 1) − H1(p′) �

log2 d − H1(p) = Δ so the entropy gap is even smaller. After a finite number of
step, we end with Δ′ � Δ, the same b and d′Δ′ � 13. Then by the first case we
get that the squared distance is at most O(Δ′2) = O(Δ2).

4 Applications

4.1 Negative Results

The first result we provide is motivated by uniformness testing based on Shannon
entropy. We hope that n-bit distribution with entropy n − Δ where Δ ≈ 0, that
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is with an extremely small entropy defficency, is close to uniform. We show that
for this to be true, Δ has to be negligible.

Corollary 3 (Shannon Entropy Estimators are Inefficient as Unifor-
mity Tests). Suppose that n � 1 and ε > 2−0.9n. Then there exists a distribu-
tion X ∈ {0, 1}n such that H1(X) � n − ε but SD(X;Un) = Ω(ε/n).

Remark 4. Note that typically one estimates Shannon Entropy within an addi-
tive error O(1). However here, to prove that the distribution is ε-close to uniform,
one has to estimate the entropy with an error O(nε), which is much tighter! The
best known bounds on the running time for an additive error O(ε) are polynomial
in ε [AOST14,Hol06]1. With ε secure (meaning small) enough for cryptographic
purposes, such a precision is simply not achievable within reasonable time.

Proof (Proof of Corollary 3). Take d = 2n in Corollary 2 and Δ = ε. Suppose
that Δ = Ω(2−0.9n). We have d2(X;Un) = Θ(Δn−1). In the other hand we
have the trivial inequality d2(X;Un) � 4 ·SD(X;Un) (which is a consequence of
standard facts about �p-norms) and the result follows.

Corollary 4 (SeparatingSmoothRenyiEntropyandShannonEntropy).
For any n,δ such that 2−n < δ < 1

6 , there exists a distribution X ∈ {0, 1}n

such that H(X) � (1 − 2δ)n + log2(1 − 2−n), H2(X) � 2 log2(1/δ) − 2 and
Hε

2(X) � H2(X) + 1 for every ε � δ. For a concrete setting consider n = 256
and δ = 2−10. We have H(X) > 255 but H2(X) � 18 and Hε

2(X) � 19 for every
ε < 2−9!

Proof. We use a distribution of the same form as the optimal distribution as
for problem (15). Denote N = 2n and define pi = 1−2δ

N−1 for i = 2, . . . , N , and
p1 = 2δ. It is easy to see that H(p) � (1 − 2δ)n + log2(1 − 2n) and H2(p) <
log(1/δ)−2. Consider now arbitrary distribution p′ such that SD(p;p′) � ε. We
have p′

i = pi + εi where
∑

i εi = 0 and
∑

i |εi| = 2ε. Note that
∑

i>1

p′2
i −

∑

i>1

p2
i > 2

∑

i>1

piεi

> −2(1 − 2δ)ε
N − 1

= − 2ε

1 − 2δ
·
∑

i>1

pi
2,

and p′2
1 − p2

1 � −δ2 = − 1
2p

2
1. Thus, for 2ε + δ < 1

2 it follows that
∑

i�1 p
′2
i �

(
1 − 1

2

) ∑
i�1 p

2
i and the result follows.

Corollary 5 (Separating Extractable Entropy and Shannon Entropy).
For any n � 1, ε ∈ (0, 1) and δ > 2−n, there exists a random variable X ∈ {0, 1}n

such that H(X) � (1 − ε − δ)n + log2(1 − 2−n) but Hε
ext(X) � log(1/δ). For a

concrete setting consider n = 256 and δ = 2−10. We have H(X) > 255.5 but
Hε

ext(X) � 10 for every ε < 2−10!
1 More precisely they require poly(ε−1) independent samples.
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Proof (Proof of Corollary 5). We use a distribution of the same form as the
optimal distribution as for problem (15). Fix ε, δ (we can assume ε + δ < 1) and
denote N = 2n. We define pi = 1−ε−δ

N−1 for i = 2, . . . , N , and p1 = ε + δ. Note
that pi < δ for i 	= 1. It follows then that Hε

∞(p) � log(1/ε). In the other hand,
note that p is a convex combination of the distribution uniform over the first
N − 1 points (with the weight 1 − ε − δ and a point mass at N (with the weight
ε + δ. It follows that Shannon Entropy of p is at least (1 − ε − δ) · log2(N − 1).

4.2 Positive Results

Now we address the question what happens when Δ > 1. This is motivated by
settings where keys with entropy deficiency can be applied (cf. Theorem1 and
related references).

Corollary 6 (Collision Entropy When the Shannon Gap is Moderate).
Let k � n−1 and let X∗ ∈ {0, 1}n minimizes H2(X) subject to H(X) � k where
X ∈ {0, 1}n. Then

2 log2 n − 2 log2(n − k) � H2(X∗) � 2 log2 n − 2 log2(n + 1 − k) + 1. (14)

For instance, if k = 255 then 15 < H2(X∗) < 16.

Proof (Proof of Corollary 6). Let b be the solution to Eq. (7) (here we have
d = 2n). Since 0 � H(b) � 1 we have k

log2(d−1) � 1 − b � k−1
log2(d−1) . We improve

the left-hand side inequality a little bit

Claim. We have 1 − k−1
log2 d � b � 1 − k

log2 d .

Proof (Proof of Sect. 4.2). Since b � 1
d we have log2(d − 1) − log(1 − b) � log2 d

and therefore

k = −b log2 b − (1 − b) log2(1 − b) + (1 − b) log2(d − 1)
� −b log2 b + (1 − b) log2 d

from which it follows that 1 − b � k
log2 d . The left part is already proved.

The result now easily follows by observing that (1−b)2

d−1 � b2 holds true for b �
−1+

√
d−1

d−2 � 1
2 , also for d = 2. This is indeed satisfied by Sect. 4.2 and k �

log2 d − 1.

4.3 Bounds in Terms of the Renyi Divergence

Our Corollary 2 gives a bound on the �2-distance between X and U . Note that

d2(X;U)2 = CP(X) − d−1 = d−1 (dCP(X) − 1) = d−1
(
2D2(X‖U) − 1

)

and thus our bounds can be expressed in terms of the Renyi divergence D2. Since
we find the distribution X with possibly minimal entropy, this gives an upper
bound on the divergence in terms the Shannon entropy.
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5 Conclusion

Our results put in a quantitative form the well-accepted fact that Shannon
Entropy does not have good cryptographic properties, unless additional strong
assumptions are imposed on the entropy source. The techniques we applied may
be of independent interests.

Acknowledgment. The author thanks anonymous reviewers for their valuable
comments.

A Proof of Theorem2

Proof (Proof of Theorem 2). Consider the corresponding optimization problem

minimize
p∈Rd

− log2

(
d∑

i=1

p2
i

)

subject to 0 < pi, i = 1, . . . , d.

d∑

i=1

pi − 1 = 0

d∑

i=1

−pi log2 pi = k

(15)

The Lagrangian associated to (15) is given by

L(p, (λ1, λ2)) = − log2

(
d∑

i=1

p2
i

)

− λ1

(
d∑

i=1

pi − 1

)

− λ2

(

−
d∑

i=1

pi log2 pi − k

)

(16)

Claim. The first and second derivative of the Lagrangian (16) are given by

∂L

∂pi

= −2 log2 e · pi

p2
− λ1 + λ2 log2 e + λ2 log2 pi (17)

∂2L

∂pipj

= 4 log2 e · pipj

(p2)2
+ [i = j] ·

(

−2 log2 e
p2

+
λ2 log2 e

pi

)

(18)

Claim. Let p∗ be a non-uniform optimal point to 15. Then it satisfies p∗
i ∈ {a, b}

for every i, where a, b are some constant such that

−2 log2 e
p∗2 +

λ2 log2 e
a

> 0 > −2 log2 e
p∗2 +

λ2 log2 e
b

(19)
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Proof (Proof of AppendixA). At the optimal point p we have ∂L
∂pi

= 0 which
means

−2 log2 e · pi

p2
− λ1 + λ2 log2 e + λ2 log2 pi = 0, i = 1, . . . , d. (20)

Think of p2 as a constant, for a moment. Then the left-hand side of Eq. (20) is of
the form −c1pi+c2 log2 pi+c3 with some positive constant c1 and real constants
c2, c3. Since the derivative of this function equals −c1 + c2

pi
, the left-hand side is

either decreasing (when c2 � 0) or concave (when c2 > 0). For the non-uniform
solution the latter must be true (because otherwise pi for i = 1, . . . , d are equal).
Hence the Eq. (20) has at most two solutions {a, b}, where a < b and both are
not dependent on i. Moreover, its left-hand side has the maximum between a
and b, thus we must have −c1 + c2

a > 0 > −c1 + c2
b . Expressing this in terms of

λ1, λ2 we get Eq. (19).

Claim. Let p∗ and a, b be as in AppendixA. Then pi = a for all but one index i.

Proof (Proof of AppendixA). The tangent space of the constraints
∑d

i=1 pi −
1 = 0 and −∑d

i=1 pi log2 pi − k = 0 at the point p is the set of all vectors h ∈ R
d

satisfying the following conditions
∑d

i=1 hi = 0
∑d

i=1 −(log2 pi + log2 e)hi = 0
(21)

Intuitively, the tangent space includes all infinitesimally small movements that
are consistent with the constraints. Let D2L =

(
∂2L

∂pipj

)

i,j
be the second deriv-

ative of L. It is well known that the necessary second order condition for the
minimizer p is hT (D2)Lh � 0 for all vectors in the tangent space (21). We have

hT · (D2L) · h = 4 log2 e ·
(∑d

i= pihi

)2

(p2)2
+

d∑

i=1

(

−2 log2 e
p2

+
λ2 log2 e

pi

)

h2
i .

Now, if the are two different indexes i1, i2 such that p∗
i1

= p∗
i2

= b, we can define
hi1 = −δ, hi2 = δ and hi = 0 for i 	∈ {i1, i2}. Then we get

hT · (D2L) · h = 2
(

−2 log2 e
p2

+
λ2 log2 e

b

)

δ2

which is negative according to Eq. (19). Thus we have reached a contradiction.

Finally, taking into account the case of possibly uniform p∗ and combining it
with the last claim we get

Claim. The optimal point p∗ satisfies p∗
i0

= b and p∗
i = 1−b

d−1 for i 	= i0, for some
b � 1

d . Then we have H(p∗) = H(b) + (1 − b) log2(d − 1) and H2(p∗) = −
log2

(
b2 + (1−b)2

d−1

)
.
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It remains to take a closer look at Eq. (7). It defines b as an implicit function of
k and d. Its uniqueness is a consequence of the following claim

Claim. The function f(b) = H(b) + (1 − b) log2(d − 1) is strictly decreasing and
concave for b � 1

d .

Proof (Proof of AppendixA). The derivative equals ∂f
∂b = − log2

b
1−b −log2(d−1)

and hence, for 1
d < b < 1, is at most − log2

1
d

1− 1
d

− log2(d − 1) = 0. The second

derivative is ∂2f
∂b2 = − log2 e

b(1−b) . Thus, the claim follows.
The statement follows now by Appendices A and B.

B Proof of Lemma2

Proof. Let Δ = log2 d − k be the gap in the Shannon Entropy. Note that from
Eq. (7) and the inequality −2 � d(log2(d − 1) − log2 d) � − log2 e it follows that

−b log2 b − (1 − b) log2(1 − b) − b log2 d = −Δ + C1(d) · d−1

where log2 e � C1 � 2. Note that f
(
1
2

)
= −1 + 1

2 log2(d − 1) < log2 d − 1.
Since Δ � 1 implies f(b) � log2 d − 1, by AppendixA we conclude that b < 1

2 .
Next, observe that 1 � −(1−b) log2(1−b)

b � log2 e, for 0 < b < 1
2 . This means

that −(1 − b) log2(1 − b) = −b log2 C2(d) where 1
e � C2(d) � 1

2 . Now we have

−b log2(C2(d) · d · b) = −Δ + C1(d) · d−1.

Let y = C2(d)·d·b. Our equation is equivalent to y ln y = C3(d)·d·Δ−C1(d)C3(d).
where C3 = C2/ log2 e. Using the Lambert-W function, which is defined as
W (x) · eW (x) = x, we can solve this equations as

b =
eW (C3(d)dΔ−C3(d)C1(d))

C2(d)d
. (22)

For x � e we have the well-known approximation for the Lambert W function
[HH08]

ln x − ln lnx < W (x) � lnx − ln lnx + ln(1 + e−1). (23)

Provided that C3(d)dΔ−C3(d)C1(d) � 1, which is satisfied if dΔ � 6, we obtain

b =
C3(d)dΔ − C3(d)C1(d)

C3(d)d · log2 (C3(d)dΔ − C3(d)C1(d))
· C4(d) (24)

where 1 � C4(d) � 1 + e−1. Since the function x → x
log2 x is increasing for x � e

and since for dΔ � 13 we have C3(d)dΔ − C3(d)C1(d) � e, from Eq. (24) we get

b � C3(d)dΔ

C3(d)d · log2 (C3(d)dΔ)
· C4(d) =

C4(d)Δ
log2 (C3(d)dΔ)

(25)
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from which the right part of Eq. (8) follows by the inequalities on C3 and C4.
For the lower bound, note that for dΔ � 13 we have C3(d)dΔ − C3(d)C1(d) �
C3(d)dΔ · 1113 because it reduces to C1(d) � 2, and that C3(d)dΔ · 1113 � 13 · 1

e log2 e ·
11
13 > e. Therefore, by Eq. (24) and the mononicity of x

log2 x we get

b �
11
13C3(d)dΔ

C3(d)d · log2
(
11
13C3(d)dΔ

) · C4(d) =
11
13C4(d)Δ

log2
(
11
13C3(d)dΔ

) , (26)

from which the left part of Eq. (8) follows by the inequalities on C3 and C4.
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Abstract. Security models for two-party authenticated key exchange
(AKE) protocols have developed over time to capture the security of
AKE protocols even when the adversary learns certain secret values.
Increased granularity of security can be modelled by considering partial
leakage of secrets in the manner of models for leakage-resilient cryptog-
raphy, designed to capture side-channel attacks. In this work, we use the
strongest known partial-leakage-based security model for key exchange
protocols, namely continuous after-the-fact leakage eCK (CAFL-eCK)
model. We resolve an open problem by constructing the first concrete
two-pass leakage-resilient key exchange protocol that is secure in the
CAFL-eCK model.

Keywords: Key exchange protocols, Side-channel attacks, Security
models, Leakage-resilience, After-the-fact leakage

1 Introduction

During the past two decades side-channel attacks have become a familiar method
of attacking cryptographic systems. Examples of information which may leak
during executions of cryptographic systems, and so allow side-channel attacks,
include timing information [6,8,18], electromagnetic radiation [15], and power
consumption [21]. Leakage may reveal partial information about the secret para-
meters which have been used for computations in cryptographic systems. In
order to abstractly model leakage attacks, cryptographers have proposed the
notion of leakage-resilient cryptography [1,4,7,13,14,16,17,20]. In this notion
the information that leaks is not fixed, but instead chosen adversarially, so as to
model any possible physical leakage function. A variety of different cryptographic
primitives have been developed in recent years. As one of the most widely used
c© Springer International Publishing Switzerland 2015
J. Groth (Ed.): IMACC 2015, LNCS 9496, pp. 277–294, 2015.
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cryptographic primitives, it is important to analyze the leakage resilience of key
exchange protocols.

Earlier key exchange security models, such as the Bellare–Rogaway [5],
Canetti–Krawczyk [9], and extended Canetti–Krawczyk (eCK) [19] models, aim
to capture security against an adversary who can fully compromise some, but
not all, secret values. This is not a very granular form of leakage, and thus is not
suitable for modelling side-channel attacks in key exchange protocols enabled by
partial leakage of secret keys. This motivates the development of leakage-resilient
key exchange security models [3,4,11,22,23]. Among them the generic security
model proposed by Alawatugoda et al. [3] in 2014 facilitates more granular leak-
age.

Alawatugoda et al. [3] proposed a generic leakage-security model for key
exchange protocols, which can be instantiated as either a bounded leakage vari-
ant or as a continuous leakage variant. In the bounded leakage variant, the total
amount of leakage is bounded, whereas in the continuous leakage variant, each
protocol execution may reveal a fixed amount of leakage. Further, the adversary
is allowed to obtain the leakage even after the session key is established for the
session under attack (after-the-fact leakage). In Sect. 3 we review the continuous
leakage instantiation of the security model proposed by Alawatugoda et al.

Alawatugoda et al. [3] also provided a generic construction for a protocol
which is proven secure in their generic leakage-security model. However, when
it comes to a concrete construction, the proposed generic protocol can only be
instantiated in a way that is secure in the bounded version of the security model.
Until now there are no suitable cryptographic primitives which can be used to
instantiate the generic protocol in the continuous leakage variant of the security
model.

Our aim is to propose a concrete protocol construction which can be proven
secure in the continuous leakage instantiation of the security model of Alawatu-
goda et al. Thus, we introduce the first concrete construction of continuous and
after-the-fact leakage-resilient key exchange protocol.

Bounded Leakage and Continuous Leakage. Generally, in models assuming
bounded leakage there is an upper bound on the amount of leakage information
for the entire period of execution. The security guarantee only holds if the leakage
amount is below the prescribed bound. Differently, in models allowing continuous
leakage the adversary is allowed to obtain leakage over and over for a polynomial
number of iterations during the period of execution. Naturally, there is a bound
on the amount of leakage that the adversary can obtain in each single iteration,
but the total amount of leakage that the adversary can obtain for the entire
period of execution is unbounded.

After-the-Fact Leakage. The concept of after-the-fact leakage has been
applied previously to encryption primitives. Generally, leakage which happens
after the challenge is given to the adversary is considered as after-the-fact leak-
age. In key exchange security models, the challenge to the adversary is to
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distinguish the session key of a chosen session, usually called the test session,
from a random session key [5,9,19], After-the-fact leakage is the leakage which
happens after the test session is established.

Our Contribution. Alawatugoda et al. [3] left the construction of a continu-
ous after-the-fact leakage-resilient eCK secure key exchange protocol as an open
problem. In this paper, we construct such a protocol (protocol P2) using exist-
ing leakage-resilient cryptographic primitives. We use leakage-resilient storage
schemes and their refreshing protocols [12] for this construction.

Table 1 compares the proposed protocol P2, with the NAXOS protocol [19],
the Moriyama-Okamoto (MO) protocol [22] and the generic Alawatugoda et al.
[3] protocol instantiation, by means of computation cost, security model and the
proof model.

Table 1. Security and efficiency comparison of leakage-resilient key exchange protocols

Protocol Initiator cost Responder cost Leakage Feature After-the-fact Proof model

NAXOS [19] 4 Exp 4 Exp None None Random oracle

MO [22] 8 Exp 8 Exp Bounded No Standard

Alawatugoda et al. [3] 12 Exp 12 Exp Bounded Yes Standard

Protocol P2 (this paper) 6 Exp 6 Exp Continuous Yes Random oracle

In protocol P2, the secret key is encoded into two equal-sized parts of some
chosen size, and the leakage bound from each of the two parts is 15% of the
size of a part, per occurrence. Since this is a continuous leakage model the total
leakage amount is unbounded. More details of the leakage tolerance of protocol
P2 may be found in Sect. 5.3.

2 Preliminaries

We discuss the preliminaries which we use for the protocol constructions.

2.1 Diffie–Hellman Problems

Let G be a group generation algorithm and (G, q, g) ← G(1k), where G is a cyclic
group of prime order q and g is an arbitrary generator.

Definition 1 (Computational Diffie–Hellman (CDH) Problem). Given

an instance (g, ga, gb) for a, b
$←− Zq, the CDH problem is to compute gab.

Definition 2 (DecisionDiffie–Hellman (DDH)Problem).Given an instance

(g, ga, gb, gc) for a, b
$←− Zq and either c

$←− Zq or c = ab, the DDH problem is to
distinguish whether c = ab or not.

Definition 3 (Gap Diffie–Hellman (GDH) Problem). Given an instance

(g, ga, gb) for a, b
$←− Zq, the GDH problem is to find gab given access to an

oracle O that solves the DDH problem.
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2.2 Leakage-Resilient Storage

We review the definitions of leakage-resilient storage according to Dziembowski
et al. [12]. The idea behind their construction is to split the storage of elements
into two parts using a randomized encoding function. As long as leakage is then
limited from each of its two parts then no adversary can learn useful information
about an encoded element. The key observation of Dziembowski et al. is then to
show how such encodings can be refreshed in a leakage-resilient way so that the
new parts can be re-used. To construct a continuous leakage-resilient primitive
the relevant secrets are split, used separately, and then refreshed between any
two usages.

Definition 4 (Dziembowski-Faust Leakage-Resilient Storage Scheme).
For any m,n ∈ N, the storage scheme Λn,m

Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

) effi-
ciently stores elements s ∈ (Z∗

q)
m where:

– Encoden,m
Z∗
q

(s) : sL
$←− (Z∗

q)
n\{(0n)}, then sR ← (Z∗

q)
n×m such that sL ·sR = s

and outputs (sL, sR).
– Decoden,m

Z∗
q

(sL, sR) : outputs sL · sR.

In the model we expect an adversary to see the results of a leakage function
applied to sL and sR. This may happen each time computation occurs.

Definition 5 (λ-limited Adversary). If the amount of leakage obtained by
the adversary from each of sL and sR is limited to λ = (λ1, λ2) bits in total
respectively, the adversary is known as a λ-limited adversary.

Definition 6 ((λΛ, ε1)-secure leakage-resilient storage scheme). We say

Λ = (Encode,Decode) is (λΛ, ε1)-secure leakage-resilient, if for any s0, s1
$←−

(Z∗
q)

m and any λΛ-limited adversary C, the leakage from Encode(s0) = (s0L, s0R)
and Encode(s1) = (s1L, s1R) are statistically ε1-close. For an adversary-chosen
leakage function f = (f1, f2), and a secret s such that Encode(s) = (sL, sR), the
leakage is denoted as

(
f1(sL), f2(sR)

)
.

Lemma 1 ([12]). Suppose that m < n/20. Then Λn,m
Z∗
q

= (Encoden,m
Z∗
q

,Decoden,m
Z∗
q

)
is (λ, ε)-secure for some ε and λ = (0.3 · n log q, 0.3 · n log q).

The encoding function can be used to design different leakage resilient schemes
with bounded leakage. The next step is to define how to refresh the encoding so
that a continuous leakage is also possible to defend against.

Definition 7 (Refreshing of Leakage-Resilient Storage). Let (L′, R′) ←
Refreshn,m

Z∗
q

(L,R) be a refreshing protocol that works as follows:

– Input : (L,R) such that L ∈ (Z∗
q)

n and R ∈ (Z∗
q)

n×m.
– Refreshing R :

1. A
$←− (Z∗

q)
n\{(0n)} and B ← non singular (Z∗

q)
n×m such that A·B = (0m).
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2. M ← non-singular (Z∗
q)

n×n such that L · M = A.
3. X ← M · B and R′ ← R + X.

– Refreshing L :
1. Ã

$←− (Z∗
q)

n\{(0n)} and B̃ ← non singular (Z∗
q)

n×m such that Ã·B̃ = (0m).
2. M̃ ← non-singular (Z∗

q)
n×n such that M̃ · R′ = B̃.

3. Y ← Ã · M̃ and L′ ← L + Y .
– Output : (L′, R′)

LetΛ = (Encode,Decode) be a (λΛ, ε1)-secure leakage-resilient storage scheme
and Refresh be a refreshing protocol. We consider the following experiment Exp,
which runsRefresh for � rounds and lets the adversary obtain leakage in each round.
For refreshing protocol Refresh, a λRefresh-limited adversary B, � ∈ N and s

$←−
(Z∗

q)
m, we denote the following experiment by Exp(Refresh,Λ)(B, s, �):

1. For a secret s, the initial encoding is generated as (s0L, s0R) ← Encode(s).
2. For j = 1 to � run B against the jth round of the refreshing protocol.
3. Return whatever B outputs.

We require that the adversary B outputs a single bit b ∈ {0, 1} upon performing

the experiment Exp using s
$←− {s0, s1} ∈ (Z∗

q)
m. Now we define leakage-resilient

security of a refreshing protocol.

Definition 8 ((�,λRefresh, ε2)-secure Leakage-Resilient Refreshing Proto-
col). For a (λΛ, ε1)-secure Leakage-Resilient Storage Scheme Λ = (Encode,
Decode) with message space (Z∗

q)
m, Refresh is (�,λRefresh, ε2)-secure leakage-

resilient, if for every λRefresh-limited adversary B and any two secrets s0, s1 ∈
(Z∗

q)
m, the statistical distance between Exp(Refresh,Λ)(B, s0, �) and Exp(Refresh,Λ)

(B, s1, �) is bounded by ε2.

Theorem 1 ([12]). Let m/3 ≤ n, n ≥ 16 and � ∈ N. Let n,m and Z
∗
q be such

that Λn,m
Z∗
q

is (λ, ε)-secure leakage-resilient storage scheme (Definitions 4 and 6).
Then the refreshing protocol Refreshn,m

Z∗
q

(Definition 7) is a (�,λ/2, ε′)-secure
leakage-resilient refreshing protocol for Λn,m

Z∗
q

(Definition 8) with ε′ = 2�q(3qmε+
mq−n−1).

3 Continuous After-the-Fact Leakage eCK Model
and the eCK Model

In 2014 Alawatugoda et al. [3] proposed a new security model for key exchange
protocols, namely the generic after-the-fact leakage eCK ((·)AFL-eCK) model
which, in addition to the adversarial capabilities of the eCK model [19], is
equipped with an adversary-chosen, efficiently computable, adaptive leakage
function f , enabling the adversary to obtain the leakage of long-term secret keys
of protocol principals. Therefore the (·)AFL-eCK model captures all the attacks
captured by the eCK model, and captures the partial leakage of long-term secret
keys due to side-channel attacks.
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The eCK Model. In the eCK model, in sessions where the adversary does not
modify the communication between parties (passive sessions), the adversary is
allowed to reveal both ephemeral secrets, long-term secrets, or one of each from
two different parties, whereas in sessions where the adversary may forge the
communication of one of the parties (active sessions), the adversary is allowed
to reveal the long-term or ephemeral secret of the other party. The security
challenge is to distinguish the real session key from a random session key, in an
adversary-chosen protocol session.

Generic After-the-Fact Leakage eCK Model. The generic (·)AFL-eCK
model can be instantiated in two different ways which leads to two security mod-
els. Namely, bounded after-the-fact leakage eCK (BAFL-eCK) model and con-
tinuous after-the-fact leakage eCK (CAFL-eCK) model. The BAFL-eCK model
allows the adversary to obtain a bounded amount of leakage of the long-term
secret keys of the protocol principals, as well as reveal session keys, long-term
secret keys and ephemeral keys. Differently, the CAFL-eCK model allows the
adversary to continuously obtain arbitrarily large amount of leakage of the long-
term secret keys of the protocol principals, enforcing the restriction that the
amount of leakage per observation is bounded.

Below we revisit the definitions of the CAFL-eCK model, and we also recall
the definitions of the eCK model as a comparison to the CAFL-eCK definitions.

3.1 Partner Sessions in the CAFL-eCK Model

Definition 9 (Partner Sessions in the CAFL-eCK Model). Two oracles
Πs

U,V and Πs′
U ′,V ′ are said to be partners if all of the following hold:

1. both Πs
U,V and Πs′

U ′,V ′ have computed session keys;
2. messages sent from Πs

U,V and messages received by Πs′
U ′,V ′ are identical;

3. messages sent from Πs′
U ′,V ′ and messages received by Πs

U,V are identical;
4. U ′ = V and V ′ = U ;
5. Exactly one of U and V is the initiator and the other is the responder.

The protocol is said to be correct if two partner oracles compute identical session
keys.

The definition of partner sessions is the same in the eCK model.

3.2 Leakage in the CAFL-eCK Model

A realistic way in which side-channel attacks can be mounted against key exchange
protocols seems to be to obtain the leakage information from the protocol compu-
tations which use the secret keys. Following the previously used premise in other
leakage models that “only computation leaks information”, leakage is modelled
where any computation takes place using secret keys. In normal protocol mod-
els, by issuing a Send query, the adversary will get a protocol message which is
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computed according to the normal protocol computations. Sending an adversary-
chosen, efficiently computable adaptive leakage function with the Send query thus
reflects the concept “only computation leaks information”.

A tuple of t adaptively chosen efficiently computable leakage functions f =
(f1j , f2j , . . . , ftj) are introduced; j indicates the jth leakage occurrence and the
size t of the tuple is protocol-specific. A key exchange protocol may use more
than one cryptographic primitive where each primitive uses a distinct secret key.
Hence, it is necessary to address the leakage of secret keys from each of those
primitives. Otherwise, some cryptographic primitives which have been used to
construct a key exchange protocol may be stateful and the secret key is encoded
into number of parts. The execution of a stateful cryptographic primitive is split
into a number of sequential stages and each of these stages uses one part of the
secret key. Hence, it is necessary to address the leakage of each of these encoded
parts of the secret key.

Note that the adversary is restricted to obtain leakage from each key part
independently: the adversary cannot use the output of f1j as an input parameter
to the f2j and so on. This prevents the adversary from observing a connection
between each part.

3.3 Adversarial Powers of the CAFL-eCK Model

The adversary A controls the whole network. A interacts with a set of oracles
which represent protocol instances. The following query allows the adversary to
run the protocol.

– Send(U, V, s,m, f) query: The oracle Πs
U,V , computes the next protocol mes-

sage according to the protocol specification and sends it to the adversary A,
along with the leakage f(skU ). A can also use this query to activate a new
protocol instance as an initiator with blank m.

In the eCK model Send query is same as the above except the leakage function f .
The following set of queries allow the adversary A to compromise certain

session specific ephemeral secrets and long-term secrets from the protocol prin-
cipals.

– SessionKeyReveal(U, V, s) query: A is given the session key of the oracle
Πs

U,V .
– EphemeralKeyReveal(U, V, s) query: A is given the ephemeral keys (per-session

randomness) of the oracle Πs
U,V .

– Corrupt(U) query: A is given the long-term secrets of the principal U . This
query does not reveal any session keys or ephemeral keys to A.

SessionKeyReveal, EphemeralKeyReveal and Corrupt (Long-term key reveal)
queries are the same in the eCK model.

Once the oracle Πs
U,V has accepted a session key, asking the following query

the adversary A attempt to distinguish it from a random session key. The Test
query is used to formalize the notion of the semantic security of a key exchange
protocol.



284 J. Alawatugoda et al.

– Test(U, s) query: When A asks the Test query, the challenger first chooses

a random bit b
$←− {0, 1} and if b = 1 then the actual session key is returned

to A, otherwise a random string chosen from the same session key space is
returned to A. This query is only allowed to be asked once across all sessions.

The Test query is the same in the eCK model.

3.4 Freshness Definition of the CAFL-eCK Model

Definition 10 (λ − CAFL-eCK-freshness). Let λ = (λ1, . . . , λt) be a vector
of t elements (same size as f in Send query). An oracle Πs

U,V is said to be
λ − CAFL-eCK-fresh if and only if:

1. The oracle Πs
U,V or its partner, Πs′

V,U (if it exists) has not been asked a
SessionKeyReveal.

2. If the partner Πs′
V,U exists, none of the following combinations have been

asked:
(a) Corrupt(U) and EphemeralKeyReveal(U, V, s).
(b) Corrupt(V ) and EphemeralKeyReveal(V,U, s′).

3. If the partner Πs′
V,U does not exist, none of the following combinations have

been asked:
(a) Corrupt(V ).
(b) Corrupt(U) and EphemeralKeyReveal(U, V, s).

4. For each Send(U, ·, ·, ·, f) query, size of the output of |fij(skU i)| ≤ λi.
5. For each Send(V, ·, ·, ·, f) queries, size of the output of |fij(skV i)| ≤ λi.

The eCK-freshness is slightly different from the λ − CAFL-eCK-freshness by
stripping off points 4 and 5.

3.5 Security Game and Security Definition of the CAFL-eCK
Model

Definition 11 (λ − CAFL-eCK Security Game). Security of a key exchange
protocol in the CAFL-eCK model is defined using the following security game,
which is played by the adversary A against the protocol challenger.

– Stage 1: A may ask any of Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries to any oracle at will.

– Stage 2: A chooses a λ − CAFL-eCK-fresh oracle and asks a Test query.
The challenger chooses a random bit b

$←− {0, 1}, and if b = 1 then the actual
session key is returned to A, otherwise a random string chosen from the same
session key space is returned to A.

– Stage 3: A continues asking Send, SessionKeyReveal, EphemeralKeyReveal
and Corrupt queries. A may not ask a query that violates the λ−CAFL-eCK-
freshness of the test session.

– Stage 4: At some point A outputs the bit b′ ← {0, 1} which is its guess of
the value b on the test session. A wins if b′ = b.
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The eCK security game is same as the above, except that in Stage 2 and Stage
3 eCK-fresh oracles are chosen instead of λ − CAFL-eCK-fresh oracles. SuccA
is the event that the adversary A wins the security game in Definition 11.

Definition 12 (λ − CAFL-eCK-security). A protocol π is said to be λ −
CAFL-eCK secure if there is no adversary A that can win the λ − CAFL-eCK
security game with significant advantage. The advantage of an adversary A is
defined as Advλ−CAFL-eCK

π (A) = |2Pr(SuccA) − 1|.

3.6 Practical Interpretation of Security of CAFL-eCK Model

We review the relationship between the CAFL-eCK model and real world attack
scenarios.

– Active adversarial capabilities: Send queries address the powers of an
active adversary who can control the message flow over the network. In the
previous security models, this property is addressed by introducing the send
query.

– Side-channel attacks: Leakage functions are embedded with the Send query.
Thus, assuming that the leakage happens when computations take place in
principals, a wide variety of side-channel attacks such as timing attacks, EM
emission based attacks, power analysis attacks, which are based on continuous
leakage of long-term secrets are addressed. This property is not addressed in
the earlier security models such as the BR models, the CK model, the eCK
model and the Moriyama-Okamoto model.

– Malware attacks: EphemeralKeyReveal queries cover the malware attacks
which steal stored ephemeral keys, given that the long-term keys may be
securely stored separately from the ephemeral keys in places such as smart
cards or hardware security modules. Separately, Corrupt queries address mal-
ware attacks which steal the long-term secret keys of protocol principals. In
the previous security models, this property is addressed by introducing the
ephemeral-key reveal, session-state reveal and corrupt queries.

– Weak random number generators: Due to weak random number gen-
erators, the adversary may correctly determine the produced random num-
ber. EphemeralKeyReveal query addresses situations where the adversary can
get the ephemeral secrets. In the previous security models, this property is
addressed by introducing the ephemeral-key reveal query or the session-state
reveal query.

4 Protocol P1: Simple eCK-Secure Key Exchange

The motivation of LaMacchia et al. [19] in designing the eCK model was that an
adversary should have to compromise both the long-term and ephemeral secret
keys of a party in order to recover the session key. In this section we look at
construction paradigms of eCK-secure key exchange protocols, because our aim
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is to construct a CAFL-eCK-secure key exchange protocol using a eCK-secure
key exchange protocol as the underlying primitive.

In the NAXOS protocol, [19], this is accomplished using what is now called
the “NAXOS trick”: a “pseudo” ephemeral key ẽsk is computed as the hash of
the long-term key lsk and the actual ephemeral key esk: ẽsk ← H(esk, lsk). The
value ẽsk is never stored, and thus in the eCK model the adversary must learn
both esk and lsk in order to be able to compute ẽsk. The initiator must compute
ẽsk = H(esk, lsk) twice: once when sending its Diffie–Hellman ephemeral public
key g

˜esk, and once when computing the Diffie–Hellman shared secrets from the
received values. This is to avoid storing a single value that, when compromised,
can be used to compute the session key.

Moving to the leakage-resilient setting requires rethinking the NAXOS trick.
Alawatugoda et al. [3] have proposed a generic construction of an after-the-fact
leakage eCK ((·)AFL-eCK)-secure key exchange protocol, which uses a leakage-
resilient NAXOS trick. The leakage-resilient NAXOS trick is obtained using
a decryption function of an after-the-fact leakage-resilient public key encryp-
tion scheme. A concrete construction of a BAFL-eCK-secure protocol is possible
since there exists a bounded after-the-fact leakage-resilient public key encryp-
tion scheme which can be used to obtain the required leakage-resilient NAXOS
trick, but it is not possible to construct a CAFL-eCK-secure protocol since
there is no continuous after-the-fact leakage-resilient scheme available. There-
fore, an attempt to construct a CAFL-eCK-secure key exchange protocol using
the leakage-resilient NAXOS approach is not likely at this stage.

4.1 Description of Protocol P1

Our aim is to construct an eCK-secure key exchange protocol which does not use
the NAXOS trick, but combines long-term secret keys and ephemeral secret keys
to compute the session key, in a way that guarantees eCK security of the protocol.
The protocol P1 shown in Table 2 is a Diffie–Hellman-type [10] key agreement
protocol. Let G be a group of prime order q and generator g. After exchanging
the public values both principals compute a Diffie–Hellman-type shared secret,
and then compute the session key using a random oracle H. We use the random
oracle because otherwise it is not possible to perfectly simulate the interaction
between the adversary and the protocol, in a situation where the simulator does
not know a long-term secret key of a protocol principal.

In order to compute the session key, protocol P1 combines four components
(Z1 ← Ba, Z3 ← Y a, Z4 ← Y x, Z2 ← Bx) using the random oracle function H.
These four components cannot be recovered by the attacker without both the
ephemeral and long-term secret keys of at least one protocol principal, which
allows a proof of eCK security.

Though the design of protocol P1 is quite straightforward, we could not
find it given explicitly in the literature: most work on the design of eCK-secure
protocols seeks to create more efficient protocols than this naive protocol, but the
naive protocol is more appropriate for building into a leakage-resilient protocol.
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Table 2. Protocol P1

Alice (Initiator) Bob (Responder)

Initial Setup

a
$←− Z

∗
q , A ← ga b

$←− Z
∗
q , B ← gb

Protocol Execution

x
$←− Z

∗
q , X ← gx

Alice,X−−−−−→ y
$←− Z

∗
q , Y ← gy

Bob,Y←−−−−
Z1 ← Ba, Z2 ← Bx Z′

1 ← Ab, Z′
2 ← Xb

Z3 ← Y a, Z4 ← Y x Z′
3 ← Ay, Z′

4 ← Xy

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y ) K ← H(Z′
1, Z

′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y )

K is the session key

Leakage-Resilient Rethinking of Protocol P1. Moving to the leakage-
resilient setting requires rethinking the exponentiation computation in a leakage-
resilient manner. Since there exist leakage-resilient encoding schemes and
leakage-resilient refreshing protocols for them (Definitions 4 and 7) our aim is
computing the required exponentiations in a leakage-resilient manner using the
available leakage-resilient storage and refreshing schemes. For now we look at
the eCK security of protocol P1, and later in Sect. 5 we will look at the leakage-
resilient modification to protocol P1 in detail.

4.2 Security Analysis of Protocol P1

Theorem 2. If H is modeled as a random oracle and G is a group of prime
order q and generator g, where the gap Diffie–Hellman (GDH) problem is hard,
then protocol P1 is secure in the eCK model.

Let U = {U1, . . . , UNP
} be a set of NP parties. Each party Ui owns at most

NS number of protocol sessions. Let A be an adversary against protocol P1.
Then, B is an algorithm which is constructed using the adversary A, against the
GDH problem such that the advantage of A against the eCK-security of protocol
P1, AdveCK

P1 is:

AdveCK
P1 (A) ≤ max

(
N2

P N2
S

(
PrGDH

g,q (B)
)
, N2

P

(
PrGDH

g,q (B)
)
, N2

P NS

(
PrGDH

g,q (B)
)
,

N2
P NS

(
PrGDH

g,q (B)
)
, N2

P NS

(
PrGDH

g,q (B)
)
, N2

P

(
PrGDH

g,q (B)
))

.

Proof Sketch: Let A denote the event that A wins the eCK chal-
lenge. Let H denote the event that A queries the random oracle
H with (CDH(A∗, B∗),CDH(B∗,X∗),CDH(A∗, Y ∗),CDH(X∗, Y ∗), initiator,X,
responder, Y ), where A∗, B∗ are the long-term public-keys of the two partners
to the test session, and X∗, Y ∗ are their ephemeral public keys for this session.
Note that when A = ga, B = gb,CDH(A,B) = gab; also initiator is the initiator
of the session and responder is the responder of the session.

Pr(A) ≤ Pr(A ∧ H) + Pr(A ∧ H̄).
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Without the event H occurring, the session key given as the answer to the
Test query is random-looking to the adversary, and therefore Pr(A|H̄) = 1

2 .
Pr(A ∧ H̄) = Pr(A|H̄) Pr(H̄), and therefore Pr(A ∧ H̄) ≤ 1

2 . Hence,

Pr(A) ≤ 1
2

+ Pr(A ∧ H),

that is Pr(A ∧ H) = AdveCK
P1 (A). Henceforth, the event (A ∧ H) is denoted

as A∗.

Note 1. Let B be an algorithm against a GDH challenger. B receives L = g�,W =
gw as the GDH challenge and B has access to a DDH oracle, which outputs 1 if
the input is a tuple of (gα, gβ , gαβ). Ω : G×G → G is a random function known
only to B, such that Ω(Φ,Θ) = Ω(Θ,Φ) for all Φ,Θ ∈ G. B will use Ω(Φ,Θ)
as CDH(Φ,Θ) in situations where B does not know logg Φ and logg Θ. Except
with negligible probability, A will not recognize that Ω(Φ,Θ) is being used as
CDH(Φ,Θ).

We construct the algorithm B using A as a sub-routine. B receives L =
g�,W = gw as the GDH challenge. We consider the following mutually exclusive
events, under two main cases:

1. A partner to the test session exists: the adversary is allowed to corrupt both
principals or reveal ephemeral keys from both sessions of the test session.
(a) Adversary corrupts both the owner and partner principals to the test

session - Event E1a

(b) Adversary corrupts neither owner nor partner principal to the test ses-
sion - Event E1b

(c) Adversary corrupts the owner to the test session, but does not corrupt
the partner to the test session - Event E1c

(d) Adversary corrupts the partner to the test session, but does not corrupt
the owner to the test session - Event E1d

2. A partner to the test session does not exist: the adversary is not allowed to
corrupt the intended partner principal to the test session.
(a) Adversary corrupts the owner to the test session - Event E2a

(b) Adversary does not corrupt the owner to the test session - Event E2b

In any other situation the test session is no longer fresh. If event A∗ happens at
least one of the following event should happen.

[(E1a ∧ A∗), (E1b ∧ A∗), (E1c ∧ A∗), (E1d ∧ A∗), (E2a ∧ A∗), (E2b ∧ A∗)]

Hence,

AdveCK
P1 ≤ max

(
Pr(E1a ∧ A∗),Pr(E1b ∧ A∗),Pr(E1c ∧ A∗),

Pr(E1d ∧ A∗),Pr(E2a ∧ A∗),Pr(E2b ∧ A∗)
)
.

Complete security analysis of each event is available in the full version of this
paper [2]. �	
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5 Protocol P2: A Leakage-Resilient Version of P1

Protocol P1 is an eCK-secure key exchange protocol (Theorem 2). The eCK
model considers an environment where partial information leakage does not take
place. Following the concept that only computation leaks information, we now
assume that the leakage of long-term secret keys happens when computations
are performed using them. Then, instead of the non-leakage eCK model which
we used for the security proof of protocol P1, we consider the CAFL-eCK model
which additionally allows the adversary to obtain continuous leakage of long-
term secret keys.

Our idea is to perform the computations which use long-term secret keys
(exponentiation operations) in such a way that the resulting leakage from the
long-term secrets should not leak sufficient information to reveal them to the
adversary. To overcome that challenge we use a leakage-resilient storage scheme
and a leakage-resilient refreshing protocol, and modify the architecture of proto-
col P1, in such a way that the secret keys s are encoded into two portions sL, sR,
Exponentiations are computed using two portions sL, sR instead of directly using
s, and the two portions sL, sR are being refreshed continuously. Thus, we add
leakage resiliency to the eCK-secure protocol P1 and construct protocol P2 such
that it is leakage-resilient and eCK-secure.

Obtaining Leakage Resiliency by Encoding Secrets. In this setting we
encode a secret s using an Encode function of a leakage-resilient storage scheme
Λ = (Encode,Decode). So the secret s is encoded as (sL, sR) ← Encode(s). As
mentioned in the Definition 2.4.1 the leakage-resilient storage scheme randomly
chooses sL and then computes sR such that sL · sR = s. We define the tuple
leakage parameter λ = (λ1, λ2) as follows: λ-limited adversary A sends a leakage
function f = (f1j , f2j) and obtains at most λ1, λ2 amount of leakage from each
of the two encodings of the secret s respectively: f1j(sL) and f2j(sR).

As mentioned in Definition 7, the leakage-resilient storage scheme can contin-
uously refresh the encodings of the secret. Therefore, after executing the refresh-
ing protocol it outputs new random-looking encodings of the same secret. So for
the λ-limited adversary again the situation is as before. Thus, refreshing the
encodings will help to obtain leakage resilience over a number of protocol exe-
cutions.

The computation of exponentiations is also split into two parts. Let G be a
group of prime order q with generator g. Let s

$←− Z
∗
q be a long-term secret key

and E = ge be a received ephemeral value. Then, the value Z needs to be com-
puted as Z ← Es. In the leakage-resilient setting, in the initial setup the secret
key is encoded as sL, sR ← Encoden,1

Z∗
q

(s). So the vector sL = (sL1, · · · , sLn)
and the vector sR = (sR1, · · · , sRn) are such that s = sL1sR1 + · · · + sLnsRn.
Then the computation of Es can be performed as two component-wise computa-
tions as follows: compute the intermediate vector T ← EsL = (EsL1 , · · · , EsLn)
and then compute the element Z ← T sR = EsL1sR1EsL2sR2 · · · EsL1sR1 =
EsL1sR1+···+sLnsRn = Es.
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5.1 Description of Protocol P2

Using the above ideas, by encoding the secret using a leakage-resilient storage
scheme, and refreshing the encoded secret using a refreshing protocol, it is pos-
sible to hide the secret from a λ-limited adversary. Further, it is possible to
successfully compute the exponentiation using the encoded secrets. We now use
these primitives to construct a CAFL-eCK-secure key exchange protocol, using
an eCK-secure key exchange protocol as an underlying primitive.

Let Λn,1
Z∗
q

= (Encoden,1
Z∗
q

,Decoden,1
Z∗
q

) be the leakage-resilient storage scheme

which is used to encode secret keys and Refreshn,1
Z∗
q

be the (�,λ, ε)-secure leakage-

resilient refreshing protocol of Λn,1
Z∗
q

.
As we can see, the obvious way of key generation (initial setup) in a protocol

principal of this protocol is as follows: first pick a
$←− Z

∗
q as the long-term secret

key, then encode the secret key as (a0
L, a0

R) ← Encoden,1
Z∗
q

(a), then compute the
long-term public key A = ga using the two encodings (a0

L, a0
R), and finally erase

a from the memory. The potential threat to that key generation mechanism
is that even though the long-term secret key a is erased from the memory, it
might not be properly erased and can be leaked to the adversary during the key
generation. In order to avoid such a vulnerability, we randomly picks two values
a0

L
$←− (Z∗

q)
n\{(0n)}, a0

R
$←− (Z∗

q)
n×1\{(0n×1)} and use them as the encodings

of the long-term secret key a of a protocol principal. As explained earlier, we
use a0

L, a0
R to compute the corresponding long-term public key A in two steps as

a′ ← ga0
L and A ← a′a0

R . Thus, it is possible to avoid exposing the un-encoded
secret key a at any point of time in the key generation and hence avoid leaking
directly from a at the key generation step. Further, the random vector a0

L is
multiplied with the random vector a0

R, such that a = a0
L · a0

R, which will give a
random integer a in the group Z

∗
q . Therefore, this approach is same as picking

a
$←− Z

∗
q at first and then encode, but in the reverse order. During protocol

execution both a0
L, a0

R are continuously refreshed and refreshed encodings aj
L, aj

R

are used to exponentiation computations.
Table 3 shows protocol P2. In this setting leakage of a long-term secret key

does not happen directly from the long-term secret key itself, but from the two
encodings of the long-term secret key (the leakage function f = (f1j , f2j) directs
to the each individual encoding). During the exponentiation computations and
the refreshing operation collectively at most λ = (λ1, λ2) leakage is allowed to the
adversary from each of the two portions independently. Then, the two portions of
the encoded long-term secret key are refreshed and in the next protocol session
another λ-bounded leakage is allowed. Thus, continuous leakage is allowed.

5.2 Security Analysis of Protocol P2

Theorem 3. If the underlying refreshing protocol Refreshn,1
Z∗
q

is (�,λ, ε)-secure

leakage-resilient refreshing protocol of the leakage-resilient storage scheme Λn,1
Z∗
q
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Table 3. Concrete construction of Protocol P2

Alice (Initiator) Bob (Responder)

Initial Setup

a0
L

$←− (Z∗
q)

n\{(0n)}, a0
R

$←− (Z∗
q)

n×1\{(0n×1)} b0L
$←− (Z∗

q)
n\{(0n)}, b0R $←− (Z∗

q)
n×1\{(0n×1)}

a′ ← ga
0
L , A ← (a′)a

0
R b′ ← gb

j
L , B ← (b′)b

0
R

Protocol Execution

x
$←− Z

∗
q , X ← gx

Alice,X−−−−−→ y
$←− Z

∗
q , Y ← gy

Bob,Y←−−−−

T1 ← Ba
j
L , Z1 ← T

a
j
R

1 T3 ← Ab
j
L , Z′

1 ← T
b
j
R

3

Z2 ← Bx T4 ← Xb
j
L , Z′

2 ← T
b
j
R

4

T2 ← Y a
j
L , Z3 ← T

a
j
R

2 Z′
3 ← Ay

Z4 ← Y x Z′
4 ← Xy

(aj+1
L , aj+1

R ) ← Refreshn,1
Z∗
q

(aj
L, a

j
R) (bj+1

L , bj+1
R ) ← Refreshn,1

Z∗
q

(bjL, b
j
R)

K ← H(Z1, Z2, Z3, Z4, Alice,X,Bob, Y ) K ← H(Z′
1, Z

′
2, Z

′
3, Z

′
4, Alice,X,Bob, Y )

K is the session key

and the underlying key exchange protocol P1 is eCK-secure key exchange proto-
col, then protocol P2 is λ-CAFL-eCK-secure.

Let A be an adversary against the key exchange protocol P2. Then the advan-
tage of A against the CAFL-eCK-security of protocol P2 is:

Advλ−CAFL-eCK
P2 (A) ≤ NP

(
AdveCK

P1 (A) + ε
)
.

Proof. The proof proceeds by a sequence of games.

– Game 1. This is the original game.
– Game 2. Same as Game 1 with the following exception: before A begins,

an identity of a random principal U∗ $←− {U1, . . . , UNP
} is chosen. Challenger

expects that the adversary will issue the Test for a session which involves the
principal U∗ (Π ·

U∗,· or Π ·
·,U∗). If not the challenger aborts the game.

– Game 3. Same as Game 2 with the following exception: challenger picks a
random s

$←− Z
∗
q and uses encodings of s to simulate the adversarial leakage

queries f = (f1j , f2j) of the principal U∗.

We now analyze the adversary’s advantage of distinguishing each game from
the previous game. Let AdvGame x(A) denote the advantage of the adversary A
winning Game x.

Game 1 is the original game. Hence,

AdvGame 1(A) = Advλ−CAFL-eCK
P2 (A). (1)

Game 1 and Game 2. The probability of Game 2 to be halted due to incorrect
choice of the test session is 1 − 1

NP
. Unless the incorrect choice happens, Game

2 is identical to Game 1. Hence,

AdvGame 2(A) =
1

NP
AdvGame 1(A). (2)
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Game 2 and Game 3. We construct an algorithm B against a leakage-resilient
refreshing protocol challenger of Refreshn,1

Z∗
q

, using the adversary A as a subrou-
tine.

The (�,λ, ε)-Refreshn,1
Z∗
q

refreshing protocol challenger chooses s0, s1
$←− Z

∗
q

and sends them to the algorithm B. Further, the refreshing protocol challenger
randomly chooses s

$←− {s0, s1} and uses s as the secret to compute the leakage
from encodings of s. Let λ = (λ1, λ2) be the leakage bound and the refreshing
protocol challenger continuously refresh the two encodings of the secret s.

When the algorithm B gets the challenge of s0, s1 from the refreshing pro-
tocol challenger, B uses s0 as the secret key of the protocol principal U∗ and
computes the corresponding public key. For all other protocol principals B sets
secret/public key pairs by itself. Using the setup keys, B computes answers to all
the queries from A and simulates the view of CAFL-eCK challenger of protocol
P2. B computes the leakage of secret keys by computing the adversarial leakage
function f on the corresponding secret key (encodings of secret key), except the
secret key of the protocol principal U∗. In order to obtain the leakage of the
secret key of U∗, algorithm B queries the refreshing protocol challenger with the
adversarial leakage function f , and passes that leakage to A.

If the secret s chosen by the refreshing protocol challenger is s0, the leakage
of the secret key of U∗ simulated by B (with the aid of the refreshing proto-
col challenger) is the real leakage. Then the simulation is identical to Game 2.
Otherwise, the leakage of the secret key of U∗ simulated by B is a leakage of a
random value. Then the simulation is identical to Game 3. Hence,

|AdvGame 2(A) − AdvGame 3(A)| ≤ ε. (3)

Game 3. Since the leakage is computed using a random s value, the adversary
A will not get any advantage due to the leakage. Therefore, the advantage A will
get is same as the advantage that A has against eCK challenger of protocol P1.
Because both P1 and P2 are effectively doing the same computation, regardless
of the protocol P2, and with no useful leakage the CAFL-eCK model is same as
the eCK model. Hence,

AdvGame 3(A) = AdveCK
P1 (A). (4)

We find,
Advλ−CAFL-eCK

P2 (A) ≤ NP

(
AdveCK

P1 (A) + ε
)
. �	

5.3 Leakage Tolerance of Protocol P2

The order of the group G is q. Let m = 1 in the leakage-resilient storage scheme
Λn,1
Z∗
q

. According to the Lemma 1, if m < n/20, then the leakage parameter for
the leakage-resilient storage scheme is λΛ = (0.3n log q, 0.3n log q). Let n = 21,
then λΛ = (6.3 log q, 6.3 log q) bits. According to the Theorem 1, if m/3 ≤ n and
n ≥ 16, the refreshing protocol Refreshn,1

Z∗
q

of the leakage-resilient storage scheme
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Λn,1
Z∗
q

is tolerant to (continuous) leakage up to λRefresh = λΛ/2 = (3.15
log q, 3.15 log q) bits, per occurrence.

When a secret key s (of size log q bits) of protocol P2 is encoded into two
parts, the left part sL will be n · log q = 21 log q bits and the right part sR will
be n · 1 · log q = 21 log q bits. For a tuple leakage function f = (f1j , f2j) (each
leakage function f(·) for each of the two parts sL and sR), there exists a tuple
leakage bound λ = (λ, λ) for each leakage function f(·), such that λ = 3.15 log q

bits, per occurrence, which is 3.15 log q
21 log q × 100% = 15% of the size of a part. The

overall leakage amount is unbounded since continuous leakage is allowed.

6 Conclusion

In this paper we answered that open problem of constructing a concrete
CAFL-eCK secure key exchange protocol by using a leakage-resilient storage
scheme and its refreshing protocol. The main technique used to achieve after-
the-fact leakage resilience is encoding the secret key into two parts and only
allowing the independent leakage from each part. As future work it is worth-
while to investigate whether there are other techniques to achieve after-the-fact
leakage resilience, rather than encoding the secret into parts. Moving to the
standard model is another possible research direction. Strengthening the secu-
rity model, by not just restricting to the independent leakage from each part,
would be a more challenging research direction.
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Abstract. We put forward the first practical message authentication
code (MAC) which is provably secure against continuous leakage under
the Only Computation Leaks Information (OCLI) assumption. Within
the context of continuous leakage, we introduce a novel modular proof
technique: while most previous schemes are proven secure directly in the
face of leakage, we reduce the (leakage) security of our scheme to its
non-leakage security. This modularity, while known in other contexts,
has two advantages: it makes it clearer which parts of the proof rely
on which assumptions (i.e. whether a given assumption is needed for
the leakage or the non-leakage security) and it also means that, if the
security of the non-leakage version is improved, the security in the face
of leakage is improved ‘for free’. We conclude the paper by discussing
implementations; one on a popular core for embedded systems (the ARM
Cortex-M4) and one on a high end processor (Intel i7), and investigate
some performance and security aspects.

Keywords: Leakage resilience · Message authentication code · Provable
security · Side channels · Implementation

1 Introduction

Side channel leakage (e.g. via timing, power or EM side channels) enables the
extraction of secret data out of cryptographic devices, as initially demonstrated
by Kocher (et al.) in 1996 and 1999 [17,18]. The engineering community reacted
quickly by developing a variety of countermeasures that are commonly described
as masking and hiding (see [20]). Such countermeasures intend to reduce the
overall exploitable leakage via techniques that are cheap to implement.

Initially with hesitance, but more lately with much enthusiasm, the theory
community picked up on the fact that schemes are needed which can tolerate
some leakage. Complementary to the engineering approach, the aim is to design
schemes which do not reduce leakage but cope with it, normally via updating
the keys. The most compelling property of this approach is that the security
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definitions intrinsically incorporate leakage and hence security proofs then hold
even in the presence of leakage. The main drawback of having theoretical backing
of security seems to be that the resulting schemes are typically considerably less
efficient than other schemes. A prime example of such a scheme is the stream
cipher by Dziembowski and Pietrzak [5].

Despite the fact that almost all real word cryptographic protocols require
some form of authentication, there is a distinct gap in the literature when it
comes to leakage resilient message authentication codes (MACs). Hazay et al. [14]
produce a MAC from minimal assumptions (existence of a one way function).
While only relying on minimal assumptions is an advantage from a theoretical
perspective, the scheme has a major drawback in that it only allows a bounded
amount of leakage (this bound relates to the total leakage of the device). This
makes the scheme unsuitable for practice. In his Master’s thesis, Schipper [30]
discusses a MAC construction in yet another security model. However unfor-
tunately this MAC is also undesirable for practice as the number of AES calls
used by verification grows logarithmically in the number of tag queries. Pereira
et al. [28] create a leakage resilient MAC in the simulatable leakage model, fol-
lowing on from the work of Standaert et al. [33]. However due to the use of
components which are not allowed to leak, and that the simulator given has
been shown to be insecure by Longo et al. [19], it is not clear what practical
guarantees it will provide when implemented.

1.1 Our Contribution

Inspired by the bilinear ElGamal cryptosystem by Kiltz and Pietrzak [15], we
propose a MAC scheme that is secure within the continuous leakage model, using
the Only Computation Leaks Information assumption (discussed in Sect. 2). To
our knowledge this is the first MAC scheme to be given within this model, which
has become one of the more desirable models due to its closer link with practical
side channel scenarios.

In Sect. 3 we give our basic MAC construction and prove it secure in the ran-
dom oracle model without leakage. Unlike previous work (where schemes have to
be completely re-proven when considering leakage), we can construct our proof
when considering leakage by a reduction to the non-leaky version (see Sect. 4).
This is the first proof to achieve such a clean reduction, which has several advan-
tages. Firstly it shows more clearly how much the leakage is impacting on the
security of a scheme. This also implies if the security of the basic MAC construc-
tion is tightened, the security of the MAC construction with leakage is tightened
‘for free’. This manifests itself (as seen in the theorem statement) by having
the leakage security bound in terms of the security without leakage. Secondly it
becomes clearer which further assumptions are required to prove security when
assuming leakage: for example the basic MAC construction requires a Random
Oracle assumption, while the Generic Group Model is required when leakage is
added.

In Sect. 5 we discuss an implementation of our leakage resilient MAC when
instantiated over a suitable, pairing supporting, elliptic curve using a well known
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library (MIRACL). We show that in practice (by compiling our implementation
on two very different platforms, an embedded ARM core and a high end INTEL
processor) we are reasonably efficient and the cost of providing provable leakage
resilience, is not nearly as high as often believed.

In the full version [21] we compare our MAC to the other leakage resilient
authentication schemes. We show that compared to the majority of other prov-
ably secure schemes we are considerably more efficient. The only scheme which is
comparable with regards to efficiency is a signature scheme [12]. We also further
elaborate on the leakage of the Jacobi symbol and provide more detailed/formal
proofs for the security of the MAC.

1.2 Related Work

Kiltz and Pietrzak [15] combine two techniques that are commonly used within
both communities to build a key encapsulation mechanism on top of a key update
scheme. The first technique is masking (or secret sharing as it is known by
the theoretical community), which involves splitting the key into two parts and
then working on each share separately. The second technique is frequent rekey-
ing. Unlike other proposals (e.g. [16] or [1]), which are stateful (and thus need
to be synchronised) or ones which needs to transmit a clue [23] to ‘synchro-
nise’ parties, the proposal by Kiltz and Pietrzak [15] can leverage the algebraic
properties of the underlying system such that the resulting system requires no
synchronisation. This is achieved by changing the representation of the shares
rather than changing the secret itself. Using the same techniques, Galindo and
Vivek [12], and Tang et al. [34] create leakage resilient signature schemes. These
constructions are proven secure in the continuous leakage model using the OCLI
assumption [24] (see also Sect. 2).

Dodis and Pietrzak [4] create a leakage resilient PRF where the leakage func-
tions are chosen non-adaptively before any queries to the PRF are made. Faust
et al. [6] construct a simpler leakage resilient PRF, which is achieved at the
expense of having to make both the input to the PRF and the leakage non-
adaptive. All known PRFs in the continual leakage model have the restriction
of being non-adaptive (in the leakage), while MACs do not have this restriction.
This shows a separation between PRFs and MACs which does not exist in the
non-leakage model but PRFs will still serve as an interesting comparison.

2 Modelling Leakage

In this section we discuss what assumptions we make when modelling leakage.
Clearly some restrictions are required on the leakage, otherwise the adversary
will be able to win because he can just ask for the key. One of the first decisions
to be made is how to define a bound for the leakage (i.e. how many bits about
a secret does the adversary get via some side channel). For instance, one could
define there to be an overall bound, i.e. the adversary gets at most a certain
number of bits, irrespective of how often the construction is actually called (this
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is called bounded leakage in the literature). Another option would be to impose
a per call bound. In this latter case, each call to the construction delivers at
most a certain number of bits, while the overall leakage remains unbounded.
This type of model is called continuous leakage model and fits best to real world
leakage such as power or EM traces.

Whilst some previous works [5,7] make an a priori assumption about the
computational complexity of the leakage function, we opted for a concrete secu-
rity statement. This means that the adversarial advantage is explicitly bounded
in the complexity of the leakage function as expressed in the number of queries
to the generic group oracles (see Sect. 2.2).

Finally we need to restrict the scope of the leakage function because otherwise
(given our choices of assumptions above) no security would be possible (because
of the infamous ‘future computation attack’ [15]). We discuss our choice of how
to restrict the leakage function in the following.

2.1 Only Computation Leaks Information

Micali and Reyzin [24] introduced the Only Computation Leaks Information
(OCLI) assumption. It states that data leakage only occurs on data that is
currently being computed on and that data at rest will not leak. Whilst this
assumption might not strictly hold in practice (it has been shown to be invalid
for some technologies an gate level [29]), it sufficiently captures the behaviour
of many state of the art devices.

Application of the OCLI assumption requires splitting a large computation
into smaller components that each only operate on a subset of the data available,
thus restricting the scope of what can be leaked on. OCLI will be modelled in
this paper by splitting a function F into two parts F

��

and F �� . The part of the
sensitive/exploitable input S used by F

��

will be denoted S

��

while the parts of
the sensitive input used by F �� will be denoted S �� . Without OCLI, a leakage
query could potentially leak on both shares jointly, and thus reveal information
about S. However due to OCLI, any leakage query can only ever leak on S

��

and
S �� independently, but never jointly on both.

Concretely, in our model the adversary may adaptively (per function call)
choose leakage functions l

��

, l �� which will leak up to λ bits (this is a security
parameter) on F

��

and F �� respectively. The adversary also gets the output
l

��

(S

��

, x

��

, r

��

) and l �� (S �� , x �� , r �� ) where x

��

, x �� is the input to the functions
and r

��

, r �� is the randomness that they use.
Note that while the leakage functions l

��

and l �� can be chosen adaptively
from query to query, they do have to be chosen at the same time for a single
query. This restriction—that the leakage function l �� is not allowed to depend
on the leakage obtained by l

��

—is quite common in the literature [12,15], and
reflects the abilities of a real world adversary (they can’t change the measurement
set-up mid measurement).

If this leakage process is iterated multiple times an index is used to specify
which iteration we are on, for example we use l

��

i , l ��

i , S

��

i , S ��

i , r

��

i , r ��

i .
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2.2 Bilinear Generic Group Model

We briefly recall the definition of bilinear groups and of bilinear maps, where
we adhere to asymmetric pairings (see Galbraith et al. [9] for an overview). Let
G1,G2, and G3 be cyclic groups all of prime order p with generators g1, g2, and g3,
respectively. A bilinear map is a function e : G1 × G2 → G3 with the following
properties; bilinearity states that ∀u ∈ G1, v ∈ G2, a, b ∈ Zp : e(ua, vb) =
e(u, v)ab, while non-degeneracy e(g1, g2) �= 1, stops the construction of trivial
maps. From this point onwards we define the generator g3 of G3 to be e(g1, g2).

The generic group model [22,26,32] is well established to prove the security
of protocols involving elliptic curves. Its goal is to restrict the adversary in such
a way that structure of the underlying group cannot be exploited (beyond what
follows from the group axioms). This is achieved by representing each element
within the group as a random string and providing oracles for the various group
operations. As a consequence, given only a representation of a group element,
the only ability the adversary has is to check equality (i.e. the adversary must
use an oracle to perform any required group operations).

In the Generic Bilinear Group (GBG) model each of the three groups (or two
when using a symmetric pairing) has its own randomised encoding. Each of these
encodings will be represented by an injective encoding function ξ1 : Zp → Ξ1,
ξ2 : Zp → Ξ2, ξ3 : Zp → Ξ3 for G1,G2,G3 respectively, where Ξ1, Ξ2, Ξ3 are sets
of bitstrings. The adversary has access to the following 4 oracles:

– O1(ξ1(a), ξ1(b)) = ξ1(a + b mod p)
– O2(ξ2(a), ξ2(b)) = ξ2(a + b mod p)
– O3(ξ3(a), ξ3(b)) = ξ3(a + b mod p)
– Oe(ξ1(a), ξ2(b)) = ξ3(a · b mod p)

for all a, b ∈ Zp. Each of the 4 oracles will return ⊥ if either of the inputs is not a
invalid encoding of an underlying group element. O1,O2,O3 perform the group
operations of G1,G2,G3 respectively, while Oe performs the pairing operation.
To work with these groups an adversary only needs to be given ξ1(1) and ξ2(1)
(corresponding to the generators of G1 and G2 respectively) plus access to the
four oracles, from which any group element can be computed.

Leaking on generic group elements only reveals information about their repre-
sentation. In some proofs (without leakage) that use the generic group model, the
representation of group elements can be chosen in such a way that even sampling
a random group element is hard (for an adversary). This is typically achieved by
representing group elements as ‘long’ random strings. When leakage is included
in proofs, such a strategy would not make sense because it would imply that
only ‘large’ amounts of leakage1 would strengthen the adversary. We instanti-
ate the generic group model using compact representations instead. By setting
Ξi = {0, 1}n where n = �log p� we get the unique representations required. This
gives the adversary the ability to sample group elements efficiently and directly.

1 Typically one would need to leak significantly more than log p bits, where p would
be the size of the group.
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proc KG():

K
$←− G1

Return K

proc TAG(K, m):
W ← H(m)
T ← e(K, W )
Return T

proc V RFY (K, T, m):
W ← H(m)
T ← e(K, W )
Return T = T

Fig. 1. Our bilinear MAC scheme M

In contrast, Kiltz and Pietrzak [15] (and similarly, Galindo and Vivek [12])
use indirect sampling by raising some generator to a random exponent. They
allow leakage on both the random representations, as well as their discrete loga-
rithms (with respect to some generator), in order to model the adversary’s abil-
ity to leak on the sampling computation itself. Our proof can be seen as more
restrictive and our proofs only hold for implementing the sampling directly. We
remark that it is possible to sample random elliptic curve points efficiently with-
out performing an exponentiation with an unknown exponent, as discussed in
more detail in Sect. 5.

3 A MAC Scheme

We define a MAC as a tuple of algorithms M = (KG,TAG, V RFY ) such that:

K
$←− KG()

σ
$←− TAG(K, m)

b ← V RFY (K, σ, m).

For correctness we require for all valid keys K that V RFY (K, TAG(K, m),m) =
1. We use the standard definition of EUF-CMA security for the rest of this section
(it is hard to forge a tag on a message which has not been passed to the tagging
oracle before).

We now define our basic MAC construction. Using a hash function H :
{0, 1}∗ → G2 our basic MAC scheme M = (KG,TAG, V RFY ) is defined in
Fig. 1. It can be shown to provide EUF-CMA security (Theorem 2). The scheme
can be understood as follows; key generation consists of generating a random
group element of G1. Tag generation first hashes the message, then takes the
resulting hash as input to a bilinear map, using the secret key as other input.
The MAC consists of a message, and its tag. Verification simply reconstructs the
tag T and checks the correctness.

Before we provide the proof of the MAC we introduce a new Bilinear Diffie–
Hellman problem, which we will use in the reduction to show the security of the
MAC. This new DH problem will have its security ‘sandwiched’ between two
other well known DH problems.
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3.1 A New Bilinear Diffie–Hellman Problem

In Definition 1 we introduce a bilinear problem, which we coin the target bilinear
Diffie–Hellman (TBDH) problem. In Theorem 1 we give a reduction to show if
Co-Bilinear Diffie–Hellman (CBDH) is assumed to be a hard problem,2 then so
is the TBDH problem. Similarly, it can be shown that if the standard Diffie–
Hellman (CDH) Problem is easy in G3 then the TBDH Problem is easy.

Definition 1 (Target Bilinear Diffie–Hellman Problem). Given G1,G2,
G3 with a bilinear map e between them, we say the Target Bilinear Diffie–
Hellman (TBDH) Problem is hard if given gx

2 , gy
3 it is hard to compute gxy

3 , where
x, y are sampled uniformly at random from Zp. Given an adversary A we define
its advantage of winning this game as Advtbdh(A) = Pr [A = gxy

3 : A ← A(g1, g2,
gx
2 , gy

3 )].

Before relating the TBDH problem to other Diffie–Hellman problems, we
recall the CBDH Problem [35]. The CBDH problem states that given gx

2 , gy
2 ,

(x, y are sampled uniformly at random from Zp) find gxy
3 .

Theorem 1. Let A be an adversary against the TBDH Problem, then there
exists an adversary B (with approximately the same runtime as A) against the
CBDH Problem, such that:

Advtbdh(A) ≤ Advcbdh(B).

The element gy
2 can be easily can be converted to the element gy

3 by pairing it
with the generator g1, therefore any adversary who can solve the TBDH problem
can be used to solve the CBDH problem. A formal reduction is given in the full
version of the paper [21].

Theorem 2. Let H : {0, 1}∗ → G2 be modelled as a random oracle and A be an
EUF-CMA adversary against M who makes qh queries to the hash function and
qv verification queries, then there exists an adversary B (of similar complexity)
against the TBDH problem such that:

Adveufcma
M (A) ≤ (qh + 1)(qv + 1)Advtbdh(B).

Proof Intuition. The proof works by reducing the problem of forging the MAC to
the problem of solving the TBDH problem. The reduction constructs tags in such
a way that it simulates having the key as gy

1 . If the adversary subsequently forges
on a point whose hash is gx

2 , the resulting tag will be the answer to the TBDH
problem (gxy

3 ). To answer an adversary’s verification queries, we introduce a
slight variation of the TBDH problem called the TBDHwO problem (given in
the full version) which gives the adversary access to an oracle test(C) to check
if C = gxy

3 . ��

2 It is possible to modify our results to the usual notions of negligible advantages
against probabilistic polynomial-time adversaries.
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4 A Leakage Resilient MAC

We start this section by introducing the definition of a key update mechanism.
Kiltz and Pietrzak [15] implicitly constructed and used a key update mechanism
within their KEM. This key update mechanism was then used again in the
signature scheme by Galindo and Vivek [12] and the signature scheme by Tang
et al. [34]. After showing that our definition aligns with the KP key update
mechanism, we define what it means for a scheme to be compatible with a key
update mechanism. We show this is the case for our MAC given in the previous
section and then go on to prove our MAC secure in the face of leakage.

4.1 Key Update Mechanism

We define a key update mechanism as a set of tuples KU = (Share,Recombine,

U

��

, U �� ) such that:

(S

��
0 , S ��

0 ) $←− Share(K)

(S
��

i+1, ru) $←− U

��

(S

��

i )

S ��

i+1
$←− U �� (S ��

i , ru)

Ki ← Recombine(S

��

i , S ��

i )

For correctness we require that Recombine(Share(K)) = K.
We define an equivalence class as follows; we say (S

��

i , S ��

i ) ≡ (S

��

j , S ��
j ) if

Recombine(S

��

i , S ��

i ) = Recombine(S

��

j , S ��

j ). Then the final requirement is that
the algorithms U

��

, U �� preserve the equivalence class of the shares (and thus

∀i : Ki = K). Formally we require (S

��

i , S ��

i ) ≡ (S

��

i+1, S

��

i+1) where (S

��

i+1, Oi)
$←−

U

��
(S

��

i ), S ��

i
$←− U �� (S ��

i , Oi).
The KP key update mechanism used within the KEM [15] can be seen to

fit within this framework. This is due to the fact that the key is initially split
into two shares which multiply together to give back the original key. The first
share is updated by multiplying it by a random value, while the second share
is updated by multiplying it by the inverse of the random value. This forms
our equivalence class and thus when the two shares are multiplied together we
will recover the original key, regardless of how many times the shares have been
updated. The KP key update mechanism will be used for the remainder of this
paper (and denoted KU).

Definition 2 (Key Update Splittable). We say that a tuple of functions
(F

��

, F �� ) is a split of F conforming to key update mechanism KU if the following
two properties hold. Firstly:

{F (K, x)}R = {F ∗(Share(K), x)}R∗
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where F ∗ is defined in Fig. 2, the equivalence is over the randomness from sets
R,R∗ used by F, F ∗ respectively. Secondly, that for all sharings (S

��
0 , S ��

0 ) the
joint distribution on (S

��

1 , S ��

1 ) after F ∗ has been called once is the same as if
(S

��

0 , S ��
0 ) had been updated using (U

��

, U �� ).

proc F ∗(Si , Si , x):

(Si+1, O)
$←− F (Si , x)

(Si+1, y)
$←− F (Si , O)

Return y

Fig. 2. The algorithm F ∗

Claim. The MAC M given in Sect. 3 is Key Update Splittable conforming to
the KP Key Update Mechanism KU .

Proof. M can be converted into M∗ which is given in Fig. 3. Since we have that:

Tag∗(S

��
i , S ��

i ,m) = T

= t

��

· t ��

= e(S

��

i ,H(m)) · e(S ��

i ,H(m))

= e(S

��

i · S ��

i ,H(m))
= e(K, H(m))
= Tag(K, m).

Since the MAC uses the key update function to update the key, the distributions
will be the same. Hence M is Key Update Splittable. ��

There are three algorithms in our leakage resilient MAC: Key Generation,
Tag and Verify. Our security definition only allows leakage on Tag, and we now
explain why this is necessary. The Key Generation must not leak because it
would leak on the original key. In practice, typical (security) devices would be
shipped with their keys preinstalled and only the update would be done on the
device. This leaves us to consider whether Tag (EUF-CMA-LT) or Verify (EUF-
CMA-LV), or both (EUF-CMA-LTV) are allowed to leak. This question has not
been considered before in the continual leakage model in the case of symmetric
schemes, as all previous schemes in this model were public-key in which the
question simply does not arise.

Making Verify leakage resilient is problematic, due to the leakage being adap-
tive: assume the adversary takes a random group element and a message and
sends both to Verify. In our construction (which follows a typical design) Verify
has to calculate the correct tag first, and then compare it against the submitted
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proc KG():

K
$←− G1

S0
$←− G1

S0 ← K · (S0 )−1

Return (S0 , S0 )

proc V RFY (K, T, m):
W ← H(m, w)
T ← e(K, W )
Return (T = T )

proc TAG (Si , m):
W ← H(m)

ti ← e(Si , W )

ri+1
$←− G1

si+1 ← Si · ri+1

Return (Si+1, ri+1, ti , W )

proc TAG (Si , ti , W, ri+1):

ti ← e(Si , W )

Si+1 ← Si · r−1
i+1

T ← ti · ti

Return (Si+1, T

Fig. 3. Leakage resilient MAC M∗

tag. The adversary can keep submitting the same message until he has com-
pletely leaked the tag created for comparison. This tag can then be submitted
as a forgery since it was never requested from the Tag oracle. This attack will
work against any MAC construction which requires reconstruction of the tag as
part of verify (it is not specific to our MAC). We leave it as a question for future
research how to construct a leakage resilient Verify theoretically. In practice,
Verify will leak and whilst we cannot formally include it in the security proof,
we can assume that practical countermeasures can be put in place.

Definition 3 (Existential Unforgability Under Chosen Message Attack
with Tag Leakage (EUF-CMA-LT)). LetM∗ = (KU , TAG

��

, TAG �� , V RFY )
be a Message Authentication Code. Then Fig. 4 defines the EUF-CMA-LT security
game. The advantage of an adversary A winning the game is defined as
Adveufcmalt

M (A) = Pr[Expeufcmalt
M (A) = 1].

Theorem 3. The MAC M∗ is EUF-CMA-LT secure in the Generic Group
Model. The advantage of a q-query (to the generic group oracles) adversary who
is allowed λ bits of leakage is given by:

Adveufcmalt
M∗ (A) ≤ 24·λ · Adveufcma

M (B) +
q2

p
.

Proof Intuition. This proof is given in the Generic Group Model (GGM) and
shows that even with the use of leakage the adversary cannot get any elements
that they could not get when no leakage was involved. After this has been shown,
it is reasonably straightforward to argue that without learning any new elements
from the leakage then the leakage can increase the adversary’s advantage by at
most the number of bits that is leaked on for a single element. By showing that
each element is only leaked on four times we get that the advantage can only
be increased by at most 24λ over the advantage in the game where no leakage is
involved. ��
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experiment Expeufcmalt
M (A):

K
$←− KG()

(S0 , S0 )
$←− SHARE(K)

S ← {}
(σ∗, m∗) ← ATag(·),V erify(·,·)

if m∗ ∈ S then
return 0

end if
Return V RFY (K, σ∗, m∗)

proc V erify(σ, m):
b ← V RFY (K, σ, m)
Return b

proc Tag(m, li , li ):
S ← S ∪ {m}

(Si+1, Oi)
ri←−− TAG (Si , m)

Λi ← li (Si , ri )

(Si+1, σ)
ri←−− TAG (Si , Oi)

Λi ← li (Si , ri , Oi)

Return (σ, Λi , Λi )

Fig. 4. EUF-CMA-LT experiment

5 Practical Aspects of Our Scheme

For our implementation we selected the Barreto-Naehrig (BN) [2] family of
pairing-friendly curves. BN curves are defined over a prime field Fp, with prime
order and are given by the equation E : y2 = x3 + b, with b �= 0 (we select
b = 2). The common feature of this family is their embedding degree of k = 12,
which to some extent, dictates the security level achieved on the curve. For our
implementation we focused on a security level equivalent to 128-bit and 192-bit
AES (this security level is before leakage is considered), for which BN curves are
ideally suited.

The prime p is given by polynomial p(u) = 36u4 + 36u3 + 24u2 + 6u + 1.
For efficiency we set u = −(262 + 255 + 1) and u = −(2190 + 219 + 217 + 215 +
213 + 212 + 211 + 29 + 28 + 27 + 25 + 24 + 23 + 1) for 128 and 192 bits security
level respectively [27]. That determines the size of the operands in the groups
G1, G2 and G3, which are over Fp, Fp2 and Fp12 respectively. In case of the 128
bit security level, operations are carried out on operands of length 254, 508 and
3048 bits, whereas for 192 bits security level are carried out on operands of 766,
1532 and 9192 bits.

All algorithms in our scheme were implemented using the MIRACL software
library [31], which is a portable C/C++ library that supports a wide-rage of differ-
ent platforms including embedded ones. The advantage of the selected library is the
extensive support for highly efficient pairing operations. In addition we extended
and adopted functionality provided by the library to our particular case, when-
ever required. For the underlying pairing operations,MIRACLuses thewell-known
Miller algorithm [25]. Furthermore, it also applies theGalbraith-Scottmethod [10],
which allows computing amappingbetween the groupsG2 andG3 efficiently.These
mappings are further used to speed up arithmetic computations in G2 and G3 by
applying Gallant-Lambert-Vanstone method [13] (which works when a suitable
group mapping is given). All mentioned optimisation strategies increase efficiency
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of pairing computations, thus speeding up our proposed scheme and making it suit-
able for more resource-constrained environments.

We implemented and measured execution times of the schemes on both an
embedded platform and a high-end device. For the former case, as a target
platform, we selected a popular STM32F4Discovery board, which houses 32-bit
ARM Cortex-M4 CPU. For the latter case, we utilised the 64-bit Intel Core i7
CPU. The internal clock of the Cortex-M4 was set to available maximum, i.e.,
168MHz, whereas the Intel i7 ran with a 3GHz clock. We ran our benchmarks
several times to derive median timings.

Table 1. Performance comparison of random point generation methods.

Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

Random Sampler 36 588 96 1159

Try and Increment 34 569 76 1119

Random Scalar 173 2827 389 5186

SWEncoding 30 616 121 1217

5.1 Generating Random Curve Points

Generating random group elements securely is vital for key generation and key
updates (which happen in TAG). We found four options (see the full version
for algorithmic descriptions [21]) for this purpose, which we now discuss in turn.
The first one, the Random Sampler procedure, randomly selects an x-coordinate
and checks if it is on the curve. In case of success, the procedure computes
an associated y-coordinate, otherwise randomly selects another x-coordinate.
The second key generation procedure, Try and Increment is very similar to the
first one. It differs only in re-selection of x-coordinate in which the procedure
increments x-coordinate by 1 and repeats the assessment of whether a new x is on
the curve. The third one, Random Scalar selects a scalar at random and performs
a scalar multiplication using a fixed group generator. The last procedure uses
the encoding to BN curve [8], where a random element t ∈ Fp is transformed
into an element of the curve E(Fp), which was used by Galindo et al. [11]. Note
that when using this encoding one has to perform it twice in order to generate
a point distributed uniformly at random [11]. Hence in practice the timings are
effectively twice as long.

Performance. For a fair comparison of timings, all procedures were imple-
mented without blinding. Applying blinding to the Random Sampler,
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Try and Increment and Random Scalar methods requires one additional mul-
tiplication. A more involved blinding method for the BN encoding have been
proposed in [8]. Table 1 shows that Random Sampler and Try and Increment
are by far the most efficient (recall that the SWEncoding method needs to be
performed twice for uniformly distributed points), and it is clear that this advan-
tage would also hold when blinding is included. This is good news as the Ran-
dom Scalar method is not only slow, but also known to be very vulnerable to
power analysis attacks [3].

Table 2. Performance comparison

Device Cortex-M4 Intel i7

Operation Time (ms) Time (µs)

128-bits 192-bits 128-bits 192-bits

TAG 2146 30317 7935 68692

V RFY 2146 30317 7958 68687

KG∗ 72 1126 170 2128

TAG∗ 4059 57274 15473 130612

V RFY ∗ = V RFY 2146 30317 7958 68687

Share 34 566 94 1082

TAG

��
2183 30883 7974 69650

TAG �� 1874 26382 7162 60841

Recombine 2 11 <1 <1

Attack Vectors. It has been shown practically that the Random Scalar method
can completely leak the entire secret randomness and hence strictly speaking,
it cannot be used for schemes proved secure in the continual leakage model.
Security aspects of the SWEncoding scheme have been discussed by Galindo
et al. [11]. They conclude that the SWEncoding might leak via the Jacobi symbol.
The security of the other two methods w.r.t. the continual leakage model has not
yet been investigated. Hence we will now discuss the security considerations here.

The Try and Increment method leaks information about the number of incre-
ments via its overall execution time (e.g. via power traces). It is not obvious how
this information could be utilised efficiently. However it will contribute to the
amount of leakage per call for the λ security bound.

The Random Sampler method chooses values for x independently of previous
choices and hence does not leak any additional information on the x from its
high level functionality. The only part which may reveal information about the
point is the calculation of the Jacobi symbol.

Since for both the SWEncoding and the Random Sampler any leakage will
be from the Jacobi Symbol we now discuss the leakage that may be available
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during its computation. The Jacobi computation has a conditional operation
which swaps the numerator and denominator when certain conditions are met.
See the full version [21] for the results of capturing power traces of the Jacobi
symbol and the analysis of if there is any information within them which can be
exploited. While it is not clear how much use this information is or how it can
be exploited, it is recommended to use blinding (with r2) to hide the point since
if x3 + b is square, r2(x3 + b) will also be square for all random r.

5.2 Performance of the Overall Scheme

Finally we give the performance of the high level functions of the MAC con-
structions (Table 2). The basic MAC scheme had identical operations in the
TAG and VRFY procedures (bar the additional equality check in VRFY which
is extremely fast), hence the resulting identical timings.

Switching then to the leakage resilient version, it is clear that the cost essen-
tially doubles for the TAG computation. Since we had to assume VRFY was
not leaking (recall that our construction, like other MAC constructions requires
the reconstruction of TAG during VRFY, which is seemingly impossible to do
securely allowing adaptive adversaries in the continual leakage model), the tim-
ings for VRFY in the leakage resilient scheme are the same as for the scheme
without leakage.
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Abstract. We provide a framework for constructing leakage-resilient
identification (ID) protocols in the bounded retrieval model (BRM) from
proofs of storage (PoS) that hide partial information about the file. More
precisely, we describe a generic transformation from any zero-knowledge
PoS to a leakage-resilient ID protocol in the BRM. We then describe a
ZK-PoS based on RSA which, under our transformation, yields the first
ID protocol in the BRM based on RSA (in the ROM). The resulting pro-
tocol relies on a different computational assumption and is more efficient
than previously-known constructions.

Keywords: Leakage resilience · Bounded retrieval model · Proof of
storage · Identification scheme · Generic transformation · RSA security

1 Introduction

Cryptographic schemes are traditionally designed under the assumption that
the adversary cannot learn any information about the secret key. In practice,
however, this assumption does not always hold as the adversary could recover
information about the key through various means such as side-channel attacks
[6,20,21,24,27], memory leakage attacks [17] or by compromising the system
on which the keys are stored. These attacks, commonly referred to as leak-
age attacks, have motivated the design of leakage-resilient cryptosystems which
remain secure even against adversaries that may obtain partial information
about the secret state (clearly, under some limitations on the kind of leakage
allowed). Several models of leakage-resilience have been proposed and many
cryptographic primitives have been realized under gradually stronger models
[1,11,13,15,19,23,25]. In what follows we discuss only the most relevant to our
work, specifically, we focus on the bounded retrieval model (BRM). In this model,
there is an absolute upper bound λ on the total amount of information the adver-
sary can recover about the secret key. In the BRM this bound is independent of
k, the security parameter, thus security can only be achieved if the key is larger
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than λ. Since the latter can be very large, we require that the efficiency of the
scheme be related only to the security parameter. The BRM model was intro-
duced by Di Crescenzo et al. [9] and by Dziembowski [12]. The former showed
how to construct password-based key agreement protocols while the latter pro-
posed a symmetric-key authenticated key agreement (AKA) protocol. In this
work, we consider the problem of identification in the BRM. More precisely, we
are interested in practical identification schemes that support large secret keys
and whose efficiency is independent of the key length. The problem was first
considered by Alwen et al. [1], our contribution provides a new and different
perspective, which results in a practical scheme based on RSA.

1.1 Our Contributions

We provide a framework for constructing leakage-resilient ID protocols in the
BRM from publicly-verifiable proofs of storage (PoS) that are computationally
zero-knowledge (ZK). PoS are interactive protocols allowing a client to verify
that a server faithfully stores its file. A PoS is publicly verifiable if anyone with
access to the client’s public-key can verify the server’s storage and it is computa-
tionally ZK if, roughly speaking, its verification phase leaks no useful information
about the file to a bounded adversary. We show how to construct such a scheme
based on the RSA assumption.

PoS were introduced independently by Ateniese et al. [2] and Juels and
Kaliski [18]. Publicly verifiable PoS were first considered in [2] with extensions
and improvements given in [4,28]. We summarize the contributions of this work
as follows:

1. (Generality). We provide a transformation from any zero-knowledge (ZK)
PoS to a BRM identification scheme.

2. (Efficiency). Our ZK-PoS-to-BRM-ID transformation is very efficient, lead-
ing to BRM-ID schemes that are practical and more efficient than prior work.

3. (Security). We show how to build ZK-PoS under standard cryptographic
assumptions. In particular, we propose a novel BRM-ID scheme based on the
standard RSA assumption in the random oracle model (ROM).

1.2 Related Work

Leakage-resilient identification schemes in the BRM were first considered in
[1] which proposed a scheme based on the generalized Okamoto scheme (see
Okamoto [26]) and the pairing-based public-key homomorphic linear authenti-
cator of Shacham and Waters [28]. In [1], a transformations is also given from
absolute leakage-resilient ID schemes to leakage-resilient signature schemes and
AKA protocols. The transformation relies on parallel-repetition and consists in
taking n independent copies of the basic relative-leakage scheme. Since n is large,
this yields complex and relatively inefficient schemes, thus a more efficient trans-
formation is described by the authors that employs subset selection and reduces
both communication and time complexity.
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For a detailed comparison between the constructions of [1] and our own, we
refer the reader to Sect. 4.1. Here, we just mention that the framework of [1]
works only for an extension of the Okamoto ID scheme [26] and is not generaliz-
able. Also, the BRM-ID scheme based on the Okamoto ID scheme relies on BLS
signatures [7] and thus on the Gap Diffie-Hellman assumption. For the same level
of security, we provide schemes that rely on weaker computational assumptions
and that are more efficient in terms of computation.

While zero-knowledge PoS can be designed from general-purpose zero-know-
ledge proofs by having the server prove knowledge of the file, such an approach
would not be efficient. The first practical ZK-PoS scheme was proposed by Wang
et al. [29] who extended the pairing-based PoS construction of Shacham and
Waters [28] to be zero-knowledge. In comparison, our RSA-based ZK-PoS relies
on a weaker computational assumption and, as far as we know, is the first con-
struction to have a full proof of security.

1.3 Overview of Our Technique

At a high level, our framework works as follows. The secret key of the identifi-
cation protocol is the encoding of a randomly-generated file and the public key
is the state information generated by encoding the file together with the public
key for the PoS. To identify itself, the prover executes the verification phase of
the PoS with the verifier to prove that it indeed holds the file. Note that while
(in the context of a BRM leakage attack) the verifier can learn λ bits about the
key/file, the properties of the PoS allow us to increase the file size beyond λ
without increasing the communication complexity of the verification phase.

One problem with the above approach is that standard PoS do not necessarily
hide information about the file from the verifier and, therefore, the ID scheme
verifier above could learn the remaining n−λ bits of the key from the verification
phase. To address this, we need a zero-knowledge PoS; that is, a PoS with a
verification phase that hides all partial information about the file.

More formally, for the identification scheme we consider the security notion
of pre-impersonation leakage-resistance, in which an attacker, in a test stage of
the experiment, can interact with an honest prover and leak arbitrary functions
of the secret key. We model the latter with a leakage oracle that on input an effi-
ciently computable (and adaptively chosen) function fi outputs the value fi(sk).
The restriction is that the total length of the leaked information is bounded by
some a-priori fixed value λ.

For the PoS, we phrase the soundness definition using the paradigm of
“witness-extended emulation” (see Lindell [22]). Intuitively, this guarantees that
there exists an expected polynomial time extractor that, for any adversary that
convinces the verifier with some probability, outputs the original file with approx-
imately the same probability.

The main intuition is that even after the test stage, an adversary cannot
have full knowledge of the secret key/file. It follows then by the (knowledge)
soundness of the PoS that the adversary cannot convince the verifier. In the
intuition above we have not defined the meaning of knowledge of the adversary
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after the test stage. At first glance, one might consider the average conditional
min-entropy of the secret key/file after the test stage. This measure, however, is
insufficient for two reasons:

1. The PoS is only computationally zero knowledge so, in principle, all the min-
entropy of the file could be lost after the test stage.

2. The conditional average min-entropy is not “smooth” with respect to
statistically-close distributions. Specifically, given a random variable X and
two statistically-close random variables Y and Y ′, there could be an arbitrary
gap between H̃∞(X | Y ) and H̃∞(X | Y ′). Therefore, even if we considered
the stronger notion of statistical zero-knowledge PoS, we might run into the
same problem.

We overcome the above problems by considering a slightly different experiment. In
the new experiment the prover oracle is substituted by the simulator guaranteed to
exist by the zero knowledge property of the PoS. The crux is that a polynomially-
bounded adversary cannot distinguish the two experiments and, therefore, it can
convince the verifier with approximately the same probability. Now we can give
a meaningful lower bound on the average conditional min-entropy of the secret
key/file after the test stage. The adversary cannot guess the original secret with
probability roughly more than 2−|sk|+λ ≤ 2−ω(log k) so, by soundness of the PoS,
it cannot convince the verifier with noticeable probability.

Concretely, the proof proceeds in two steps. First, we establish a lower bound
on the conditional average min-entropy of an encoding f ′ of a uniformly random
file f when the adversary is given access to a leakage oracle parameterized with
f ′, and the randomness necessary to encode f . We then show that if there
exists a probabilistic polynomial time (ppt) adversary A that succeeds in the
pre-impersonation leakage experiment with a noticeable probability, then, by
the soundness of the PoS, the lower bound on the average conditional min-
entropy mentioned above is violated. This follows because we can simulate the
pre-impersonation leakage experiment and then successfully extract from the
adversary the file f during the impersonation stage. Furthermore, the experiment
provides the information necessary to reconstruct f ′ from f . This leads to a
predictor that guesses the encoded file f ′ with noticeable probability.

A Comparison. Consider the proof of security of the identification schemes
presented in [1]. Briefly, their proof technique relies on a collision resistant hash
(CRH) function and the identification scheme is a proof of knowledge of a preim-
age x (the secret key) for an element y (the public key) in the co-domain of the
hash function. The reduction samples a secret key x in the domain of the CRH
function h and given the secret key, the reduction can easily reply to all the
leakage queries. If the adversary succeeds in the pre-impersonation experiment
then the reduction can extract a pre-image x′. Their analysis shows that the
uncertainty of x is high even after the test stage and therefore with high proba-
bility x′ �= x and y = h(x′) = h(x). In comparison with our work, they present
a direct reduction to the computational problem of breaking a CRH function.
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Our proof has a similar interpretation. Given a successful adversary for the
pre-impersonation leakage experiment we define a new adversary for the PoS
security experiment. This new adversary “forgets” part of the file (namely it has
only λ bits of information about it) and convinces the verifier of the PoS scheme,
therefore breaking the knowledge soundness of the proof of storage. However,
since we cannot directly argue that a forgetful adversary that convinces the
verifier breaks the security of PoS, we formalize it providing the two bounds
mentioned before. A similar technique, although based on a different measure of
min-entropy, was recently used in the context of fully leakage-resilient signature
(see Faonio et al. [14]).

2 Definitions

2.1 Preliminaries

If x is a string, we denote its length by |x|; if X is a set, |X| represents the
number of elements in X. When x is chosen randomly in X, we write x ← X.
When A is an algorithm, we write y ← A(x) to denote a run of A on input x and
output y; if A is randomized, then y is a random variable and A(x; r) denotes
a run of A on input x and randomness r; sometimes, when A is deterministic
we write y := A(x). An algorithm A is probabilistic polynomial-time (ppt) if
it is randomized and for any input x, r ∈ {0, 1}∗ the computation of A(x; r)
terminates in at most poly(|x|) steps.

Throughout the paper we let k denote the security parameter. We say that
a function ν : N → R is negligible in the security parameter k if ν(k) = k−ω(1).
A positive function f is noticeable if there exist a positive polynomial p and a
number n0 such that f(n) ≥ 1/p(n) for all n ≥ n0.

We start by recalling the notion of conditional min-entropy. We adopt the
definition given in [1], where the authors generalize the notion of conditional
min-entropy to interactive predictors that participate in some randomized exper-
iment E. The (average) conditional min-entropy of random variable X given any
randomized experiment E is defined as follows:

H̃∞ (X | E) = max
B

(− log Pr
[B()E = X

])
,

where the maximum is taken over all predictors without any requirement on
efficiency. Note that w.l.o.g. the predictor B is deterministic, in fact, we can
derandomize B by hardwiring the random coins that maximize his outcome.
Sometimes we write H̃∞(X|Y ) for a random variable Y , in this case we mean
the average conditional min-entropy of X given the random experiment that
gives Y as input to the predictor.

We recall the definition of δ-indistinguishability for ensembles of distribution,
both in the computational and statistical flavors.
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Definition 1 (Indistinguishability). Given a function δ : N → R and two
distribution ensembles {Xk}k≥0 and {Yk}k≥0 such that |Xk| ≤ p(k) and |Yk| ≤
p(k) for a polynomial p(k), we say that the ensemble {Xk}k≥0 is δ-indistin-
guishable from {Yk}k≥0 if for any non-uniform polynomial time distinguisher D
the following holds:

|Pr
[D(1k,Xk) = 1

] − Pr
[D(1k, Yk) = 1

] ≤ δ(k).

When we refer to statistical δ-indistinguishability, the equation above holds for
all distinguishers without any bound on the running time.

2.2 Proofs of Storage

Publicly-verifiable PoS consist of two phases: a setup phase where the client
encodes the file and sends it to the server; and a verification phase where a
verifier (which may or may not be the original client) engages in an interactive
protocol with the server to determine if it indeed possesses the file. The encoding
algorithm also outputs a “state information” which represents a pointer to the
encoded file and has size independent of the file size. Moreover, we require that
knowledge of the state information doesn’t help a malicious server to violate the
soundness property. Later, we formalize this notion by giving to the adversary
oracle access to the encoding algorithm.

We consider PoS in which the verification phase requires three moves (as
opposed to two as in previous work [2,4,28]): the server generates the first mes-
sage a using the public key pk and randomness r; the verifier sends a random
challenge c; and the server returns a proof π using pk, the encoded file, the
challenge and the randomness used to generate the first message a.

Definition 2 (Proof of Storage). A publicly-verifiable proof of storage (PoS)
is a tuple of six ppt algorithms Π = (Gen,Enc,Comm,Chall,Prove,Vrfy) such
that:

(pk, sk) ← Gen(1k) is a probabilistic algorithm that is run by the client to set
up the scheme. It takes as input a security parameter, and outputs a public
and private key pair (pk, sk).

(f′, st) ← Encsk(f) is a probabilistic algorithm that is run by the client in order
to encode the file. It takes as input the secret key sk, and a file f viewed as an
n-dimensional vector over a block space B = {0, 1}p(k) for some polynomial
p(k) (let p be the block size of Π). It outputs an encoded file f′ and public
state information st in {0, 1}�st(k) (let �st be the state information size of Π).

a ← Comm(pk) is a probabilistic algorithm run by the server to generate the first
message. It takes as input the public key and outputs an initial message a.

c ← Chall(pk) is a probabilistic algorithm that takes as input the public key and
outputs a challenge c.

π ← Prove(pk, f′, r, c) is a probabilistic algorithm that takes as input the public
key pk, an encoded file f′, a string r, and a challenge c. It outputs a proof π.
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b := Vrfy(pk, st, a, c, π) is a deterministic algorithm that takes as input the public
key pk, the state information st, the first message a, a challenge c, and a
proof π. It outputs a bit, where ‘1’ indicates acceptance and ‘0’ indicates
rejection.

We say that Π is correct if for all k ∈ N , all (pk, sk) output by Gen(1k), all
n ∈ N and f ∈ Bn, all (f′, st) output by Encsk(f), and all c output by Chall(pk),
it holds that

Pr
rc,rp

[
Vrfy

(
pk, st,Comm(pk; rc), c,Prove(pk, f′, rc, c; rp)

)
= 1

]
= 1.

An important characteristic of a PoS is locality which requires that the running
time of the Prove algorithm be polynomial in the security parameter (indepen-
dent of the parameter n).

Locality effectively captures the server-side efficiency guarantee provided by
a PoS and, as we will show in Sect. 3, is what allows us to meet the efficiency
requirements of the BRM.

Informally, soundness of a PoS guarantees that if the verifier accepts the proof
then the prover indeed has sufficient information to recover the entire original
file f . As noted in [2,10,18,28], soundness can be formalized using the notion
of a knowledge extractor [5,16]. As in [4], we phrase our definition using the
paradigm of “witness-extended emulation” [22].

Definition 3 (Soundness for a Publicly-Verifiable PoS). Let Π = (Gen,
Enc,Comm,Chall,Prove,Vrfy) be a publicly-verifiable PoS. We say that Π is
sound with knowledge error ε(k) if there exists an expected polynomial-time
knowledge extractor K such that for all adversaries A = (A0,A1) where A0

is an oracle ppt algorithm and A1 is an interactive ppt algorithm involved in the
following probabilistic experiment:

1. Key Stage: The challenger computes (pk, sk) ← Gen(1k). The adversary A0

takes as input pk and gets oracle access to Encsk(·). Eventually, A0 outputs
a tuple (f, stA) and the challenger computes (f′, st) ← Encsk(f).

2. Extraction Stage: The extractor K takes as input pk and st and gets access
to the oracle A1(stA, f′, st, · ; · ) modeled as an interactive oracle. Finally
K outputs the tuple ((a, c, π), f∗).

3. The output of the experiment is the tuple (pk, st, (a, c, π), f∗, f).

The properties listed below hold:

(i) The following probability is at most ε(k):

Pr
[
Vrfy(pk, st, a, c, π) = 1

∧
f∗ �= f

]
, (1)

where the probability is over the outputs of the experiment above.
(ii) For any pk and st, the distribution (a′, c′, π′) induced by an execution of

A1(stA, f′, st) with an honest verifier and the distribution (a, c, π) as output
by the extractor K in the experiment above are identically distributed.

We say that Π is sound if ε(k) is negligible.
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For simplicity, we consider only PoS Π where the function Enc is injective
for any sk and for any assignment of the internal randomness. This assumption
is made without loss of generality, in fact any PoS scheme can be converted into
one with this property by “appending the missing data” in the encoded file. By
the soundness property, the procedure is efficient and the average size of the
encoded file increases only by a negligible factor1.

We now turn to our definition of zero-knowledge. Namely, we consider the
notion of black-box zero-knowledge which guarantees that there exists a simula-
tor for any adversary and the simulator has only black-box oracle access to the
adversary’s algorithm.

Definition 4 (Zero-Knowledge). Let Π = (Gen,Enc,Comm,Chall,Prove,Vrfy)
be a publicly-verifiable PoS. Π is δ-zero-knowledge (δ-ZK) if there is an expected
polynomial time transcript simulator S such that for all non-uniform polynomial
time adversaries A, for any n ≥ 0, for any f ∈ Bn and for any infinite sequence
L = {(pk, sk, f′, st)}k≥0 indexed by the security parameter k and where (pk, sk)
is output by Gen(1k) and (f′, st) is output by Encsk(f), the distribution ensemble

{
(a′, c′, π′) ← SA(st, pk, sk)

}
(pk,sk,f′,st)∈L

is δ(k)-indistinguishable from the following distribution ensemble:
⎧
⎨

⎩
(a, c, π) :

r ← {0, 1}∗; a := Comm(pk; r);
c ← A(pk, st, a);
π ← Prove(pk, f′, r, c)

⎫
⎬

⎭
(pk,sk,f′,st)∈L.

In the definition above, the secret key for the PoS is given as input to the
simulator. We could consider a stronger definition where the secret key is given
to the distinguisher, but we dismissed this option since a weaker zero-knowledge
requirement makes our final compiler more general.

2.3 Identification Protocols

An identification protocol allows a prover P in possession of a secret key sk to
prove its identity to a verifier V that holds the corresponding public key pk.

We consider 3-move identification protocols where the prover generates the
first message α using the public key pk and randomness r; the verifier sends a
random challenge β; and the prover then computes a response γ using (pk, sk),
the randomness r and the verifier’s challenge β. Given the transcript of the pro-
tocol, the verifier decides whether to accept or not. The prover algorithm of any
identification scheme in the BRM must have efficiency essentially independent
of the size of the secret key. This is captured by the following definition.
1 To see this, consider the procedure that first encodes using Enc, then runs internally

the extractor with oracle access to the honest prover and, if the extractor fails,
appends the original file to the encoding. Since the extractor fails only with negligible
probability the average size of the encoded file increases only by a negligible factor.
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Definition 5 (Identification Protocol in BRM). A 3-move identification
protocol is a protocol between a ppt prover P and a ppt verifier V that consists of
five polynomial-time algorithms Σ = (Setup,Comm,Chall,Resp,Vrfy) such that:

(pk, sk) ← Setup(1k, 1s) is a probabilistic algorithm that takes as input the secu-
rity parameter and the key-size parameter and outputs a public and private
key pair (pk, sk) such that |pk| = poly(k) and |sk| = poly(k, s).

α ← Comm(pk) is a probabilistic algorithm run by the prover P to generate
the first message. It takes as input the public key and outputs an initial
message α.

β ← Chall(pk) is a probabilistic algorithm run by the verifier V that takes as
input the public key and outputs a challenge β.

γ ← Resp(pk, sk, r, β) is a probabilistic algorithm that is run by the prover P to
generate the second message. It takes as input the public key pk, the secret
key sk, the randomness r, and a challenge β (from some associated challenge
space), and outputs a response γ.

b := Vrfy(pk, α, β, γ) is a deterministic algorithm run by the verifier V to decide
whether to accept the interaction. It takes as input the first message α, the
public key pk, a challenge β, and a response γ. It outputs a bit b, where ‘1’
indicates acceptance and ‘0’ indicates rejection.

The following properties hold:

Correctness. For all k ∈ N , all s ∈ N , all (pk, sk) output by Setup(1k, 1s),
and β output by Chall(pk), it holds that

Pr
r,r′

[
Vrfy

(
pk,Comm(pk; r), β,Resp(pk, sk, r, β; r′)

)
= 1

]
= 1.

Efficiency. The prover P has running time poly(k, log s). We call the locality
of the protocol the number of bits of the secret key read as a function of the
security parameter k.

By saying “run the protocol Σ” we refer to the execution of the protocol between
P and V.

As in previous work [1,19], we model leakage attacks by providing the adver-
sary with access to a leakage oracle that returns arbitrary bits of information
related to the secret key. Since we are working in the BRM, we require that the
oracle returns at most λ bits.

Definition 6 (Leakage Oracle). A leakage oracle Leakλ,k
sk (·) is parameterized

by a secret key sk, a security parameter k and a leakage parameter λ. It takes
as input a function f (specified as a circuit) and returns f(sk) subject to the
restriction that the total output length of all its replies is at most λ, otherwise it
outputs ⊥.
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Roughly speaking, security for identification schemes requires that an adver-
sary should not convince an honest verifier to accept an interaction unless it
knows the secret key corresponding to a given public key. In the case of security
against impersonation under active attacks, this should hold even if the adversary
is previously allowed to interact with the honest prover a polynomial number
of times. In [1], Alwen et al. extend this notion to capture leakage attacks by
providing the adversary with a Leakλ,k

sk (·) oracle. This leads to two definitions:
security against pre-impersonation leakage, where the adversary can only access
the oracle before interacting with the verifier; and security against anytime leak-
age, where the adversary can access the oracle even during the interaction with
the verifier.

Definition 7 (Security Against Pre-impersonation Leakage [1]). Let Σ
be an identification protocol and A = (A0,A1) be an adversary. Consider the
following experiment:

1. Key Stage: The challenger computes (pk, sk) ← Setup(1k, 1s).
2. Test Stage: The adversary A0 takes as input pk and gets oracle access to

Leakλ,k
sk (·) and to an honest prover P(sk, pk), modeled as an oracle that runs

(arbitrarily many) proofs upon request; access to proofs is sequential. Finally
A0 outputs stA.

3. Impersonation Stage: A1(stA) executes Σ as a prover with an honest ver-
ifier (running with pk).

4. The adversary succeeds if the honest verifier accepts the interaction.

Σ is ε(k)-secure against pre-impersonation leakage λ(k, s) if the success probabil-
ity of every ppt adversary A and for infinitely many positive integer s in the above
experiment is at most ε(k). We say that Σ is secure against pre-impersonation
leakage λ(k, s) if ε(k) is negligible.

3 From Proofs of Storage to Leakage-Resilient ID
Protocols

In this section we show how to transform any computationally ZK publicly-
verifiable proof of storage into a leakage-resilient identification protocol in the
BRM. The basic idea is to use the file as the secret key of the identification
protocol and the state information as its public key. A basic version of this
approach would work as follows. The honest prover generates a public and private
key pair for the PoS. A file is chosen at random and encoded. The encoded file
f ′ serves as the identification secret key, and the state information st together
with the public key of the PoS serves as the public key. To identify itself, the
prover executes the verification phase of the PoS with the verifier.

One problem with the above approach is that, in the context of a pre-imper-
sonation leakage attack, the adversary receives access to a Leakλ,k

f ′ (·) oracle and
to an honest prover. The effect of the leakage oracle can be mitigated somewhat
by increasing the size of the file to be larger than λ. Since the communication
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complexity of the PoS is effectively constant, this will not degrade the efficiency
of the protocol. However, to prevent the adversary’s interaction with the honest
prover from revealing too much information about the file, we will require the
verification phase of the PoS to be zero-knowledge.

Let Π = (Gen,Enc,Comm,Prove,Vrfy) be a PoS with block
size p(k). Construct a leakage-resilient ID protocol Σ =
(Setup,Comm,Resp,Vrfy) as follows:

– Setup(1k, 1s):
Set n = s/p(k);
Compute (pk , sk ) ← Π.Gen(1k) and sample a file f ← Bn;
Compute (f , st) ← Π.Encsk(f) and
set sk = f and pk = (pk , st); Delete sk and f .

– Comm(pk; r): Output α := Π.Comm(pk; r).

– Chall(pk): Output β ← Π.Chall(pk).

– Resp(pk, sk, r, β): Output γ := Π.Prove(pk ,f , r, β).

– Vrfy(pk, α, β, γ): Output b := Π.Vrfy(pk , st, α, β, γ).

Fig. 1. Transforming a ZK PoS with block size p(k) into a leakage-resilient ID protocol.

The compiler is shown in Fig. 1. If the Prove algorithm of Π is local then
the resulting scheme is an identification scheme in the BRM. We recall here a
lemma from [1] that we make use of.

Lemma 1. For any random variable X and for any experiment E with oracle
access to Leakλ

X(·), consider the experiment E′ which is the same as E except
that the predictor does not have oracle access to Leakλ

X(·), then H̃∞ (X | E) ≥
H̃∞ (X | E′) − λ.

Let E be the following randomized experiment:

1. It generates a key pair (pk′, sk′) for Π, samples a file f uniformly at random,
samples random coins ωenc and computes (f ′, st) := Encsk′(f ;ωenc).

2. The predictor takes as input pk = (pk′, st), sk′ and ωenc and gets oracle access
to Leakλ,k

f ′ (·).

Lemma 2. Let �st be the size of the state of Π. Then, H̃∞(f′ | E) ≥ |f|−λ−�st.

Proof. Consider the experiment E′ which is the same as E except that B’s oracle
access to Leakλ,k

f ′ is removed. We apply Lemma 1:

H̃∞
(
f ′ | E

) ≥ H̃∞
(
f ′ | E′) − λ,
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Consider the experiment E′′ which is the same as E′ but where the predictor
does not get the state information st as input. We apply Lemma 1:

H̃∞
(
f ′ | E′) ≥ H̃∞

(
f ′ | E′′) − �st.

Notice that in the experiment E′′ the information about f ′ is limited to sk and
ωenc and recall that Encsk(·;ωenc) is injective, thus any predictor guesses f ′ with
probability 2−|f |.

�

In the next lemma we give an upper bound on the average conditional min
entropy of f ′ given the experiment E that depends on the winning probability
of a ppt adversary in the pre-impersonation leakage experiment.

Lemma 3. Let Π be a δ-ZK PoS with knowledge error εΠ and let εA be the
probability with which an adversary A succeeds in the pre-impersonation leakage
experiment. If δ is negligible then

H̃∞(f′ | E) ≤ log(1/εA) + 2
εΠ

εA
+ 1.

Proof. Consider the predictor B that, given the public key pk = (pk′, st) and
sk′, ωenc works as follows during the experiment E:

1. Setup Stage: It chooses a string ω for A0 that maximizes the winning
probability of A in the pre-identification leakage experiment. Let Aω be the
algorithm A0 with the randomness fixed to ω.

2. Test Stage: It executes Aω(pk) and answers its leakage queries using its own
leakage oracle. At the i-th oracle call of Aω to the prover oracle, it executes
the simulator (a′

i, c
′
i, π

′
i) ← SAω

i (sk), where Aω
i is a copy of the adversary Aω

where the machine state is set as the machine state of Aω just before the
i-th call. The messages a′

i and π′
i are sequentially fed to the adversary Aω.

Eventually, Aω outputs stA.
3. Extraction Stage: It uses the extractor K(pk′, st), guaranteed to exist by

the soundness of Π, with A1(stA) to recover a file f ∗. It returns as its output
Encsk(f ∗;ωenc).

Aω is deterministic thus, for all i at the i-th interaction with the prover, Aω will
reply with the challenge message ci equal to the one in the simulated transcript.
To bound the probability that the extractor K outputs the correct file, we first
argue that the probability with which A1 succeeds in the impersonation stage
is roughly the same whether it receives its state from a Aω that was executed
with oracle access to an honest prover or to a simulator.

Proposition 1. Let q(k) (resp. q′(k)) be an upper bound on the number of
queries made by Aω to the prover oracle (resp. leakage oracle). The view of
Aω in the Test Stage of the predictor B, as described below,

{
pk,

(
a′

i, c
′
i, π

′
i

)
i∈[q(k)]

,
(
fi(f′)

)
i∈[q′(k)]

}
,
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and the view of Aω in the Test Stage of the pre-impersonation leakage experiment
{

pk,
(
ai, ci, πi

)
i∈[q(k)]

,
(
fi(f′)

)
i∈[q′(k)]

}
,

where, for all i ∈ [q(k)], the tuple (ai, ci, πi) is a transcript of the interaction
between Aω

i and the honest prover, are (q(k)δ(k))-indistinguishable.

The proposition can be proved with a hybrid argument based on the zero-
knowledge property of the PoS. Indeed, the zero-knowledge property holds for
any non-uniform polynomial-time adversary A.

Recall that Aω at the end of the test stage outputs the state information
stA. The probability that A1(stA) succeeds in the impersonation stage is at
least εA − qδ ≥ εA

2 . This holds because δ is negligible in k and by Proposition 1.
In fact, if this were not the case, the concatenation of Aω and A1(stA) executing
Π as prover with an honest verifier would distinguish the two distributions with
noticeable probability.

Now, we can bound the probability that the extractor K outputs the correct
file. From the soundness of Π, the extractor K outputs a tuple ((a, c, π), f ∗)
such that Vrfy(pk, a, c, π) = 1 and f ∗ �= f with probability at most εΠ(k). But
note that

Pr[Vrfy(pk, a, c, π) = 1 ∧ f ∗ �= f ]
≥ Pr[Vrfy(pk, a, c, π) = 1] − Pr[f ∗ = f ] ≥ εA

2 − Pr[f ∗ = f ].

Hence, it follows that

Pr[f ∗ = f ] ≥ εA
2 − εΠ = εA

2

(
1 − 2εΠ

εA

)
> εA

2 · 2−2
εΠ

εA = εA · 2−2
εΠ

εA
−1

,

where we used (1 − x) ≥ e−x > 2−2x. The lemma follows because of Eq. (2)
below and by taking the log:

2−˜H∞(f ′|E) ≥ Pr
[BE = f ′] ≥ Pr

[
Encsk(f ∗;ωenc) = f ′] = Pr [f ∗ = f ] . (2)

�
We are now ready to prove our main theorem which establishes the security

of our transformation.

Theorem 1. Let Π be a proof of storage that is sound with knowledge error
εΠ(k), computational δ(k)-zero-knowledge and with state information size �st(k).
If δ(k) and εΠ(k) are negligible in k and if |f | > λ + �st + ω(log k), then Σ as
in Fig. 1 is secure against pre-impersonation leakage λ.

Proof. Let εA be the pre-impersonation leakage winning probability of an adver-
sary A, since εΠ and δ are negligible in k, by Lemma 3:

H̃∞(f ′|E) ≤ − log (1/εA) + negl(k) + 1.

It follows then that if εA is noticeable in k, there exists a constant c such that

H̃∞(f ′|E) ≤ c · log(k) (3)

for infinitely many k. Thus, if |f | > λ + �st + ω(log k), Eq. 3 contradicts
Lemma 2. �
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4 A ZK-PoS Based on RSA

We now describe a (statistical) zero-knowledge proof of storage. The scheme,
described in Fig. 2, is an extension of the RSA-based construction of Ateniese
et al. [2]. It relies on a modulus generator GenQ that takes as input a security
parameter 1k and outputs a tuple (N, p′, q′) such that N = (2p′ +1) · (2q′ +1) =
p · q, where p′ and q′ are random primes such that p′q′ ∈ [2k−1, 2k −1] and p and
q are primes.

Abstractly, the scheme can be seen as a witness-indistinguishable Sigma pro-
tocol (see Cramer [8]) for the relation:

R =
{(

(pk, st, c), (t̃, f̃)
) ∣

∣
∣
∣

t̃e
∏

i H(st, i)ci
≡ gf̃

1 mod N

}

,

where pk = (N, g1, g2, e,H) as defined in Fig. 2, and where the equation that
defines the relation R is essentially the verification procedure of the PoS pre-
sented in [2]. We note that for any file f ∈ Bn and any challenge c ∈ Z

n
2k̄ , let

f ′, st ← Encsk(f ) where f ′ = (f , t), a witness for the instance (pk, st, c) can be
derived as

t̃ =
∏

i

tci
i and f̃ =

∑

i

ci · fi. (4)

The witness indistinguishability property of the Sigma protocol is enough to
derive the zero-knowledge property of the PoS. Witness indistinguishability
means that the distributions of the transcript for two distinct witnesses are
indistinguishable, even when the verifier is malicious. Recall that the simulator
of ZK-PoS takes as input the secret key sk = (N, d,H), and thus it can effi-
ciently derive a valid witness (t′, f ′) for the instance (pk, st, c) for any challenge
c chosen by the adversary. Specifically, it can encode an uniformly random file
(or even a fixed one) using the same state information and compute an honest
proof of storage for the challenge c and the encoded file2. Notice that we are
assuming that the first message of the Sigma protocol is independent from the
witness, which is usually true for Sigma protocols.

The locality of the scheme depends on how the challenges are generated.
In fact, to make the scheme local it is enough to use “probabilistic checking”
and make the server generate a proof for a random subset of the blocks. More
concretely, we define a distribution Sparse(Z2k̄ , n,m) by sampling a vector c such
that for all i ∈ [n]: (1) with probability m/n the element ci is chosen uniformly
at random from Z2k̄ ; otherwise (2) ci is set to 0. For locality m the challenge
is sampled from the distribution Sparse(Z2k̄ , n,m). This ensures that Prove and
Vrfy have locality m on average. If the scheme needs to be always local, the
honest-prover can just discard the challenge if the number of non-zero locations
in c is not in the range {(1 ± ε)m}, for a constant ε. The behavior will be
indistinguishable from the original scheme with all but negligible probability in k.

Theorem 2. The scheme described in Fig. 2 is statistical zero-knowledge.
2 The actual simulator does it implicitly, without sampling the entire file.
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Gen(1k): Set k̄ = ω(log k) and generate (N, p , q ) ← GenQ(1k+5k̄).

Choose a prime e such that e > 2k+5k̄ and d such that ed = 1
(mod p q ). Let g1 and g2 be generators of the unique cyclic sub-
group QN of order p q (i.e., the set of quadratic residues modulo
N). Let H : {0, 1}∗ → QN be a RO. Set pk = (N, g1, g2, e, H)
and sk = (N, d, H).
The block space B is Z2k and the challenge space C for n-block
long file is Z

n
2k̄

× Z2k̄ .

Encsk(f):
1. sample st ← {0, 1}k.

2. for 1 ≤ i ≤ n:
(a) set ri := H(st, i).

(b) compute ti := ri · gfi
1

d

mod N .

3. let t := (t1, . . . , tn)

4. output the encoded file f := (f , t) and state information st.

Comm(pk):
sample z1 ← Z2k+4k̄ and z2 ← Z2k+8k̄ and
output a := gz1

1 · ge·z2
2 mod N

Chall(pk):
sample c ← Sparse(Z2k̄ , n, m) and v ← Z2k̄ and
output c := (c, v).

Prove(pk,f , a, c):
1. parse c as c ∈ Z

n
2k̄

and v ∈ Z2k̄

2. sample ρ ← Z2k+6k̄

3. compute τ := gρ
2 · Πit

ci
i mod N

4. compute μ := z1 + v · i ci · fi

5. compute σ := z2 + v · ρ

6. output π := (τ, μ, σ)

Vrfy(pk, st, c, π):
1. for 1 ≤ i ≤ n, set ri := H(st, i)

2. output 1 iff μ < 2k+5k̄ and a · (τe/Πir
ci
i )v ?≡ gμ

1 · ge·σ
2 (mod N)

Fig. 2. A statistical ZK PoS based on RSA with locality parameter m.

Proof. For any adversary A, consider the simulator SA that on input the key pair
(N, g1, g2, e, d,H) samples a ← Comm(pk), then executes (c, v) ← A(pk, st, a).
If A aborts then the simulator returns the special symbol ⊥. Otherwise, with
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the knowledge of the secret key, the simulator computes v′ := v−1 mod p′q′ and
samples an element μ in Z2k+4k̄ , an element σ in Z2k+8k̄ and sets

τ :=
((

gμ
1 · gσ

2 · a−1
)v′

· Πir
ci
i

)d

mod N

where ri := H(st, i), and outputs the tuple (st, a, (c, v), (τ, μ, σ)).
The output of SA is statistically close to a real transcript since a, v and c are

distributed exactly as they would be in a real transcript, and since τ , μ, and σ
are statistically close to elements from a real transcript. Moreover by definition
v < p′ and v < q′, thus the element v−1 mod p′q′ is well defined. �

Theorem 3. For locality parameter m = ω(log k), the scheme described in
Fig. 2 is sound if the RSA assumption holds with respect to GenQ.

The proof defines an extraction strategy and analyzes the expected running time
and the probability of successfully retrieve the original file. We follow the blue-
print of the extractor given in [2], however, there are some extra complications
due to the outer sigma protocol and the locality of the scheme. The proof is
deferred in the full version [3].

4.1 Efficiency Comparison with Previous Work

We compare the identification scheme derived by applying our transformation
to the RSA-based ZK PoS from Sect. 4 with the third (and most efficient) con-
struction of Alwen et al. [1].

In the following, we denote our construction by RSA-ID and that of Alwen
et al. by GDH-ID.

We consider multiplications and additions as constant-time operations and
denote by te the time for an exponentiation, by ts the time for an exponentiation
with a small (i.e., o(k)) exponent, and by tp the time for a pairing operation.
For the same security level, modular exponentiations in RSA groups are more
expensive than modular exponentiations in groups for which GDH seems to
hold, therefore we distinguish them by using the upper scripts RSA and GDH
to indicate in which group the operations are carried out. We can assume that
tGDH
e < tRSAe � tp.

In GDH-ID, the prover needs Ω(� · m · tGDH
e ) work to generate each of its

two messages (the first and third) while the verifier needs Ω(m · tGDH
e + tp)

time to verify the interaction3. For our construction, on the other hand, the
prover needs only O(tRSAe ) (i.e., two exponentiations and one multiplication)
and O(tRSAe + m · tRSAs ) work for the first and third messages, respectively, and
the verifier requires only O(tRSAe +m·tRSAs ) time to verify the interaction. We also
note that while the locality m in RSA-ID can be any function that is ω(log k),
in GDH-ID m must be at least Ω(k). In particular, to get approximately 1/2
tolerance of relative leakage, m must be 12 times larger than k.
3 The integer parameter � ≥ 2 in their construction can be arbitrarily set.
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With respect to communication complexity, the third message of GDH-ID
requires roughly � times the number of group element as the third message of
RSA-ID—though GDH-ID works in smaller groups than RSA-ID for the same
security parameter.

There are two negative aspects of RSA-ID compared with GDH-ID: The first
is that, for the same security level, RSA groups are bigger than groups for which
GDH seems to hold; The second is the ratio between the secret-key size and the
leakage tolerated. However, the difference is relevant only when � is ω(1) and m
is ω(k) in which case the time complexity of GDH-ID becomes much worse than
that of RSA-ID.
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