
123

Leszek A. Maciaszek
Joaquim Filipe (Eds.)

9th International Conference, ENASE 2014
Lisbon, Portugal, April 28–30, 2014
Revised Selected Papers

Evaluation
of Novel Approaches
to Software Engineering

Communications in Computer and Information Science 551

Communications
in Computer and Information Science 551

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Dominik Ślęzak, and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Xiaoyong Du
Renmin University of China, Beijing, China

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Orhun Kara
TÜBİTAK BİLGEM and Middle East Technical University, Ankara, Turkey

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Ting Liu
Harbin Institute of Technology (HIT), Harbin, China

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Leszek A. Maciaszek • Joaquim Filipe (Eds.)

Evaluation
of Novel Approaches
to Software Engineering
9th International Conference, ENASE 2014
Lisbon, Portugal, April 28–30, 2014
Revised Selected Papers

123

Editors
Leszek A. Maciaszek
Wroclaw University of Economics
Wroclaw
Poland

Joaquim Filipe
INSTICC
Polytechnic Institute of Setúbal
Setúbal
Portugal

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-27217-7 ISBN 978-3-319-27218-4 (eBook)
DOI 10.1007/978-3-319-27218-4

Library of Congress Control Number: 2015955869

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The present book includes extended and revised versions of a set of selected papers from
the 9th International Conference on Evaluation of Novel Approaches to Software
Engineering (ENASE 2014), held in Lisbon, Portugal, during April 28–30 2014, which
was sponsored by the Institute for Systems and Technologies of Information, Control
and Communication (INSTICC) and technically co-sponsored by the IEEE Computer
Society and IEEE Computer Society’s Technical Council on Software Engineering
(TCSE).

The mission of ENASE is to be a prime international forum for discussing and
publishing research findings and IT industry experiences related to the evaluation of
novel approaches to software engineering. By comparing novel approaches with
established traditional practices and by evaluating them against software quality criteria,
ENASE conferences advance the knowledge and research in software engineering,
identify the most promising trends, and propose new directions for consideration by
researchers and practitioners involved in large-scale software development and
integration.

We received 58 submissions, from 28 countries in all continents, of which 33 %
were orally presented and 16 % presented as posters, and their authors were invited to
submit extended versions of their papers for this book. In order to evaluate each
submission, double-blind reviewing was performed by the Program Committee.
Finally, only the best 11 papers were included in this book.

We would like to highlight that ENASE 2014 included five plenary keynote lec-
tures, given by internationally distinguished researchers, namely: Kecheng Liu
(University of Reading, UK), Jan Dietz (Delft University of Technology, The
Netherlands), Antoni Olivé (Universitat Politècnica de Catalunya, Spain), José Tribolet
(INESC-ID/Instituto Superior Técnico, Portugal) and Hans-J. Lenz (Freie Universität
Berlin, Germany). We must acknowledge the invaluable contribution of all keynote
speakers who, as renowned researchers in their areas, have presented cutting-edge
work, thus contributing toward enriching the scientific content of the conference.

We especially thank the authors, whose research and development efforts are
recorded here. The knowledge and diligence of the reviewers were essential to ensure
the quality of the papers presented at the conference and published in this book.
Finally, a special thanks to all members of the INSTICC team, whose involvement was
fundamental for organizing a smooth and successful conference.

April 2015 Joaquim Filipe
Leszek Maciaszek

Organization

Conference Chair

Joaquim Filipe Polytechnic Institute of Setúbal/INSTICC, Portugal

Program Chair

Leszek Maciaszek Wroclaw University of Economics, Poland and
Macquarie University, Sydney, Australia

Organizing Committee

Marina Carvalho INSTICC, Portugal
Helder Coelhas INSTICC, Portugal
Bruno Encarnação INSTICC, Portugal
André Lista INSTICC, Portugal
Andreia Moita INSTICC, Portugal
Raquel Pedrosa INSTICC, Portugal
Vitor Pedrosa INSTICC, Portugal
Cátia Pires INSTICC, Portugal
Susana Ribeiro INSTICC, Portugal
Mara Silva INSTICC, Portugal
José Varela INSTICC, Portugal
Pedro Varela INSTICC, Portugal

Program Committee

Guglielmo de Angelis CNR - IASI, Italy
Marko Bajec University of Ljubljana, Slovenia
Alexandre Bergel Pleiad Lab, University of Chile, Santiago, Chile
Maria Bielikova Slovak University of Technology in Bratislava, Slovak

Republic
Wojciech Cellary Poznan University of Economics, Poland
Rebeca Cortazar University of Deusto, Spain
Massimo Cossentino National Research Council, Italy
Bernard Coulette University of Toulouse 2- Le Mirail/IRIT Laboratory,

France
Mariangiola Dezani Università di Torino, Italy
Angelina Espinoza Universidad Autónoma Metropolitana, Iztapalapa

(UAM-I), Spain
Vladimir Estivill-Castro Griffith University, Australia

Joerg Evermann Memorial University of Newfoundland, Canada
Maria João Ferreira Universidade Portucalense, Portugal
Maria Ganzha SRI PAS and University of Gdansk, Poland
Juan Garbajosa Technical University of Madrid, UPM, Spain
Cesar Gonzalez-Perez Institute of Heritage Sciences (Incipit), Spanish

National Research Council (CSIC), Spain
Philipp Haller Typesafe, Switzerland
Mahmoud EL Hamlaoui University of Med V Souissi, ENSIAS, SIME

Laboratory, IMS Team, Morocco
Rene Hexel Griffith University, Australia
Benjamin Hirsch EBTIC/Khalifa University, UAE
Robert Hirschfeld Hasso-Plattner-Institut, Germany
Charlotte Hug Université Paris 1 Panthéon-Sorbonne, France
Zbigniew Huzar Wroclaw University of Technology, Poland
Slinger Jansen Utrecht University, The Netherlands
Monika Kaczmarek Poznan University of Economics, Poland
Diana Kirk Auckland University of Technology, New Zealand
Robert S. Laramee Swansea University, UK
George Lepouras University of the Peloponnese, Greece
Pericles Loucopoulos Harokopio University of Athens, Greece
Jian Lu Nanjing University, China
André Ludwig University of Leipzig, Germany
Ivan Lukovic University of Novi Sad, Serbia
Leszek Maciaszek Wroclaw University of Economics, Poland and

Macquarie University, Sydney, Australia
Lech Madeyski Wroclaw University of Technology, Poland
Sascha Mueller-Feuerstein Ansbach University of Applied Sciences, Germany
Johannes Müller University of Leipzig, Germany
Andrzej Niesler Wroclaw University of Economics, Poland
Janis Osis Riga Technical University, Latvia
Mourad Oussalah University of Nantes, France
Marcin Paprzycki Polish Academy of Sciences, Poland
Dana Petcu West University of Timisoara, Romania
Naveen Prakash MRCE, India
Elke Pulvermueller University of Osnabrück, Germany
Rick Rabiser Johannes Kepler University, Linz, Austria
Lukasz Radlinski University of Szczecin, Poland
Radoslaw Rudek Wroclaw University of Economics, Poland
Francisco Ruiz Universidad de Castilla-La Mancha, Spain
Krzysztof Sacha Warsaw University of Technology, Poland
Motoshi Saeki Tokyo Institute of Technology, Japan
Ioana Sora Politehnica University of Timisoara, Romania
Jakub Swacha University of Szczecin, Poland
Stephanie Teufel University of Fribourg, Switzerland
Rainer Unland University of Duisburg-Essen, Germany
Olegas Vasilecas Vilnius Gediminas Technical University, Lithuania

VIII Organization

Krzysztof Wecel Poznan University of Economics, Poland
Igor Wojnicki AGH University of Science and Technology, Poland
Kang Zhang The University of Texas at Dallas, USA

Additional Reviewers

Amine Benelallam AtlanMod Inria Mines Nantes, France
Jessica Diaz Fernandez Universidad Politécnica de Madrid, Spain
Marko Jankovic University of Ljubljana, Slovenia
Patrizia Ribino ICAR- CNR, Italy
Luca Sabatucci National Research Council - Italy, Italy
Sergiusz Strykowski Poznan University of Economics, Poland
Javier Tuya University of Oviedo, Spain
Slavko Žitnik University of Ljubljana, Slovenia

Invited Speakers

Kecheng Liu University of Reading, UK
Jan Dietz Delft University of Technology, The Netherlands
Antoni Olivé Universitat Politècnica de Catalunya, Spain
José Tribolet INESC-ID/Instituto Superior Técnico, Portugal
Hans-J. Lenz Freie Universität Berlin, Germany

Organization IX

Contents

Reducing the Level of Complexity of Working with Model
Transformations . 1

Iván Santiago, Juan M. Vara, Valeria de Castro, and Esperanza Marcos

Learning from the Current Status of Agile Adoption 18
Georgia M. Kapitsaki and Marios Christou

A Case Study Investigation of a Lightweight, Systematic Elicitation
Approach for Enterprise Architecture Requirements 33

Nicholas Rosasco and Josh Dehlinger

Using a Domain Specific Language for Lightweight Model-Driven
Development . 46

Christopher Jones and Xiaoping Jia

A Study of the Relationship Between Class Testability
and Runtime Properties . 63

Amjed Tahir, Stephen MacDonell, and Jim Buchan

Online Testing: A Passive Approach for Protocols 79
Xiaoping Che, Jorge Lopez, and Stephane Maag

Experiences of Use of a Multi-domain Tool for Collaborative Software
Engineering Tasks. 93

Jesús Gallardo, Ana Isabel Molina, Crescencio Bravo,
and Fernando Gallego

Taking Seriously Software Projects Inception Through Games 109
Miguel Ehécatl Morales-Trujillo, Hanna Oktaba,
and Juan Carlos González

Natural Language Generation Approach for Automated Generation
of Test Cases from Logical Specification of Requirements 125

Richa Sharma and K.K. Biswas

Visualization, Simulation and Validation for Cyber-Virtual Systems 140
Jan Olaf Blech, Maria Spichkova, Ian Peake, and Heinz Schmidt

Mobile Application Estimate the Design Phase . 155
Laudson Silva de Souza and Gibeon Soares de Aquino Jr.

Author Index . 169

http://dx.doi.org/10.1007/978-3-319-27218-4_1
http://dx.doi.org/10.1007/978-3-319-27218-4_1
http://dx.doi.org/10.1007/978-3-319-27218-4_2
http://dx.doi.org/10.1007/978-3-319-27218-4_3
http://dx.doi.org/10.1007/978-3-319-27218-4_3
http://dx.doi.org/10.1007/978-3-319-27218-4_4
http://dx.doi.org/10.1007/978-3-319-27218-4_4
http://dx.doi.org/10.1007/978-3-319-27218-4_5
http://dx.doi.org/10.1007/978-3-319-27218-4_5
http://dx.doi.org/10.1007/978-3-319-27218-4_6
http://dx.doi.org/10.1007/978-3-319-27218-4_7
http://dx.doi.org/10.1007/978-3-319-27218-4_7
http://dx.doi.org/10.1007/978-3-319-27218-4_8
http://dx.doi.org/10.1007/978-3-319-27218-4_9
http://dx.doi.org/10.1007/978-3-319-27218-4_9
http://dx.doi.org/10.1007/978-3-319-27218-4_10
http://dx.doi.org/10.1007/978-3-319-27218-4_11

Reducing the Level of Complexity of Working
with Model Transformations

Iván Santiago(B), Juan M. Vara, Valeria de Castro, and Esperanza Marcos

Grupo de Investigacin Kybele, Universidad Rey Juan Carlos,
Avda. Tulipán S/N, 28933 Móstoles, Madrid, Spain

{ivan.santiago,juanmanuel.vara,valeria.decastro,esperanza.marcos}@urjc.es
http://www.kybele.es

Abstract. Valuable information can be obtained from the relationships
that hold between the elements involved in any Model-Driven Engineer-
ing (MDE) process. This information can be then used to support impact
change analysis, validation of requirements, etc. However, dealing with
traceability is a complex and error-prone task if no tool support is pro-
vided to that end. The adoption of MDE can definitely alleviate such
complexity. For instance, MDE techniques such as models transforma-
tions, matching or weaving, can be used to automate the production and
management of traceability, without requiring an extra effort from any of
the stakeholders involved in the project. In this line, this work presents
the different visualization mechanisms for traceability information sup-
ported by iTrace, a framework for the management of traceability in
the context of MDE. They provide insights into how the elements of a
given project relate to each other, offering simple and intuitive repre-
sentations of such relationships with different granularity levels. These
visualizations help to reduce the inherent complexity of dealing working
with model transformations, making it possible for instance to under-
stand the typology of the elements processed by a particular mapping
rule without mastering the entire transformation language or even the
transformation under study.

Keywords: Model-driven engineering · Traceability · Program compre-
hension

1 Introduction

Traceability [1] has always been a relevant topic in Software Engineering [2].
Maintaining links from requirement to analysis, design artifacts, working-code
or test cases has been acknowledged as one of the best ways to perform impact
analysis, regression testing, validation of requirements, etc. Likewise, the appro-
priate management of traceability information is key to control the evolution of
the different system components during the software development life cycle [3].

Unfortunately, maintaining links among software artifacts is a tedious, time-
consuming and error-prone task if no tooling support is provided to that end
c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 1–17, 2015.
DOI: 10.1007/978-3-319-27218-4 1

2 I. Santiago et al.

[4]. As a consequence, traceability data use to become obsolete very quickly
during software development. Even sometimes it is completely omitted. Never-
theless, the advent of Model-Driven Engineering [5] can drastically change this
landscape. The key role of models positively influences the management of trace-
ability since the traces to maintain are simply the links between the elements of
the different models handled along the process. Furthermore, such traces can be
collected in other models to process them using any model processing technique,
such as model transformation, model matching or model merging [6].

One of the areas where appropriate management of traceability has been
acknowledged to help decisively is software comprehension [7]. This statement
gains strength in the context of Model-Driven Engineering [5], where software
(in the shape of model transformations) is responsible for driving forward the
development process. In fact, any MDE project consists basically of a chain of
model transformations that consume input models to produce output models [8].
Being able to keep trace of the relationships between the elements of such models
implies complete control over the transformations that implemented them and
thus over the development process itself [9].

Therefore, in previous works [10] a systematic review was conducted to assess
the state of the art on traceability management in the context of MDE. The
review showed that despite the maturity reached by MDE tools for some spe-
cific tasks, such as model edition or transformation [11], the area of traceability
management presents some serious limitations, like the absence of proposals to
support the analysis of the information produced when traceability is considered
or the lack of appropriate tooling to visualize traceability data. Regarding the
latter, the review revealed that there are very few tools providing ad-hoc mech-
anisms to deal with trace models AMW [12], ModeLink [13], MeTaGeM-Trace [14]
and none of them supports both model-to-model (m2m) traces and model-to-
text (m2t) traces. Besides, the huge amount of data collected during an MDE
project where the production of traceability information is enabled, makes it
very convenient to provide some kind of aggregated view over such data.

To deal with these issues, this work introduces the visualization mechanisms
supported by iTrace [15], a framework for traceability management in MDE
projects. On the one hand, it bundles an editor for trace models that supports
both m2m and m2t traces. On the other hand, it leans on Business Intelligence
(BI) [16] tools to provide a set of dashboards for traceability data1 that can be
used to produce high-level overviews of the relationships between the artefacts
involved in the development process.

The rest of this paper is structured as follows: Sect. 2 introduces existing
works in the field, highlighting the contributions of this work. The running
example used to illustrate the proposal can be found in this URL2. Section 3
illustrates the production of trace models from legacy projects, while Sect. 4
presents our proposal for the visualization of the data collected in such models.
1 A dashboard is a visual interface that provides at-a-glance views into key measures

relevant to a particular objective or business process [17].
2 http://www.kybele.etsii.urjc.es/itracetool/publications/lncs-2015/.

http://www.kybele.etsii.urjc.es/itracetool/publications/lncs-2015/

Reducing the Level of Complexity of Working with Model Transformations 3

Finally, Sect. 5 summarizes the main conclusions derived from this work and
provide some directions for further work.

2 Related Works

It is worth noting that there are several works dealing with the use of traceability
matrix or reports to present the traceability information gathered during an MDE
project. However, this work focuses on more elaborated visualizations based on
some kind of graphical abstraction, such as graphs, editors or dashboards.

First of all, most of the existing works in the context of MDE lean on the
Eclipse Modeling Framework (EMF) [18] to implement their proposals [19]. One
of the main features of EMF is the ability to generate simple yet fully func-
tional tree-based editors from a given metamodel. These editors are consequently
widely used by MDE tools. Nevertheless, their generic nature do not always
fit with the specific nature of some scenarios. For instance, trace models are
eminently relational models, i.e. models whose main purpose is to collect the
relationships between the elements of some other models [20].

A few works have previously addressed this issue by providing multi-panel
editors for EMF models. This is the case of AMW, ModeLink, MeTaGeM-Trace
or iTrace [21]. However, although they improve the capabilities of the generic
EMF editors to display relational models, they still own some generic nature
that results in some limitations when used to display trace models.

The main limitation of AMW when it is used to display trace models is that it
hampers the distinction between source and target models when dealing with more
than two related models. This results in related models being misplaced regard-
ing their role in the traceability relationship. For instance, contrary to the most
intuitive idea, source models would be placed on the right of the traces model.

ModeLink in turn just supports the visualization of two/three models, includ-
ing the relationships (traces) model. Therefore, the user can only define relation-
ships between the elements of one source and one target model. As a consequence,
a limitation arises when traces between elements of several source and/or target
models are needed.

Finally, although MeTaGeM-Trace overcame these limitations, it does not sup-
port the definition of traces between model elements and source-code (blocks),
i.e. m2t traces.

By contrast, Acceleo [22] provides a solution to the last issue. In fact, it
is a m2t transformation language which support traces generation. Every time
an Acceleo transformation is run, a traces model between the input model and
the code generated is produced. Unfortunately, due to its functionality, it is
obviously limited to work with m2t trace models. Besides, such models are just
transient models. They can only be used for debugging purposes but they are
not persisted when the IDE is closed.

From the visual point of view, the graph-based visualizations supported by
GEF3D [23], TraceViz [24] or TraVis [25], are probably more appealing. However,
while GEF3D is mainly a extension to support 3D diagramming atop of Eclipse-
GEF, TraceViz and TraVis are general-purpose tools for traceability manage-
ment. That is, none of them were devised to work with models, what results in

4 I. Santiago et al.

a number of issues when used in the context of MDE. The most immediate is
the need to serialize the trace models produced in MDE projects according to
the input format required by such tools.

Regarding iTrace its editor for trace models solve the different issues of the
multi-panel editors mentioned before: it displays n models that are correctly
placed regarding their role in the traceability relationship. Besides, it supports
m2m or m2t trace models. Nevertheless, the most outstanding feature of iTrace
regarding existing works is the use of BI tools to provide a set of dashboards
for traceability data. They support the tracking of traces from high-level models
to source-code and the selection of different granularity levels, either showing
or abstracting from technical details. As a result, simpler and more intuitive
visualizations are provided.

To summarize the main findings of this section, Table 1 compares the main
features of iTrace regarding visualization of traceability data against those of
reviewed proposals. In particular, the following features are reviewed:

– Nature of the traced artifacts (NaT): the tool can be used to display (m2m)
traces, (m2t) traces or both.

– Cardinality (#Art): the tool supports (Sim)ple traces, which can reference ele-
ments from just two artifacts (either models or source-code files) or (Mul)tiple
traces, which can reference elements from more than two artifacts.

– Type of Visualization supported (Vsl): graph-based (G), tree-like editor (TL),
multipanel editor (M), dashboard (D).

– MDE-oriented (MDE): either the tool was developed to work in the context
of MDE (✓) or not (✗).

– Aggregated views (AGG): either the tool provides aggregated views of trace-
ability data (✓) or not (✗).

3 Generation of Trace Models

First step towards the appropriate management of traceability is to dispose
of traceability data. Unfortunately many projects do not collect such data.

Table 1. Tools supporting traces visualization.

Tool NaT #Art Vsl MDE AGG

Acceleo m2t Sim TL ✓ ✗

AMW m2m Sim M ✓ ✗

GEF3D m2m Mul Ga ✗ ✗

ModeLink m2m Sim M ✓ ✗

TraceViz m2t Sim G ✗ ✗

TraVis m2m Mul G ✗ ✗

MeTaGeM-Trace m2m Mul M ✓ ✗

iTrace Both Mul M/D ✓ ✓
aGEF3D models

Reducing the Level of Complexity of Working with Model Transformations 5

However, one of the advantages of MDE is the ability to run the project any
number of times since it is mostly automated. iTrace takes advantage from this
feature to gather traceability data from legacy MDE projects. These data are
persisted in trace models which conform to the iTrace metamodel, which is
briefly introduced in the following.

3.1 The iTrace Metamodel

The iTrace metamodel, shown in Fig. 1, is defined to support the modeling of the
low-level traceability information obtained from transformations and weaving
models.

An iTraceModel (root class) contains (software) Artifacts, TraceLinks
and/or SpecificFeatures. The latter serve to collect the ad-hoc features of the
project under study which might be of interest for the subsequent analysis. Since
the information to gather about each project might be completely different, each
particular feature is a simple key-value pair, thus leaving complete freedom to
the storage of any type of data considered relevant.

Fig. 1. The iTrace metamodel.

The class Artifacts represents the building blocks of the MDE project,
i.e. models and source-code, while the TraceLink class represents the traces
between them. Actually, such traces connect their components, represented by
TraceLinkElement objects in the case of models and Blocks in the case of
source-code. TraceLinkElement objects own an EObject reference to point to a
particular model element.

Each TraceLink owns a type property whose value defines how was the
trace produced: either from a model Transformation or from an Annotation
model. Each TraceLink is in turn a M2MLink or a M2TLink. While the former
relates two or more model elements (at least a TraceLinkSourceElement and a
TraceLinkTargetElement), the latter relates one or more model elements with
source-code blocks (M2TLink.codeTarget.blockCode).

6 I. Santiago et al.

3.2 Generation Process

iTrace supports the production of trace models in two different scenarios. On the
one hand, it supports the enrichment of model transformations that were devel-
oped with model transformation languages which do not support the generation
of traces. On the other hand, it bundles a set of transformations to normalize
existing traces models to a common metamodel: the iTrace metamodel. In this
paper, only the first scenario is considered, i.e., the production of trace models
by enriching existing model transformations. More specifically, we focus on the
generation of trace models from enriched ATL transformations.

ATL provides limited access to the target elements generated by running a
transformation, e.g. in the current version of the ATL virtual machine (ATL-
VM), target elements cannot be selected according to their type. Besides, the
ATL-VM discards the tracing information after the transformation is run. This
implies that ATL model transformations should be refactored to support the
production of trace models [26]. However, such refactoring can be automated
by using High-Order Transformations (HOT) [27], i.e. “a model transformation
such that its input and/or output models are themselves transformation model”.

This way, HOTs are used to enrich existing m2m transformations so that
they are able to produce not only the corresponding target models, but also
trace models. This idea was first proposed by Jouault in [28] that introduced
an initial prototype to support the enrichment of ATL transformations. The
enrichment process bundled in iTrace is a little bit more complex than the one
from [28], due to the increased complexity of iTrace metamodels.

Figure 2 depicts graphically the enrichment process for m2m transformations
supported by iTrace: first, the TCS [29] injector/extractor for ATL files bundled
in the AMMA platform3 produces a transformation model from a given ATL
transformation (a); next, such transformation model is enriched by a HOT (b)
and finally the resulting transformation models is again serialized into an ATL
model transformation (c). As mentioned before, the execution of such enriched
transformation will produce not only the corresponding target models, but also
a traces model.

Fig. 2. Adding traceability capabilities in ATL transformations - adapted from [28].

The result of this enrichment process is partially illustrated by Listings 1.1
and 1.2 which show a transformation rule and its refactored version. More
concretely, Listing 1.1 shows the MemberEnd2NotNullOnTT mapping rule while
Listing 1.2 shows the version of such rule produced by the enrichment process.
Note that LOC 1–15 (in both versions) and 16–19 (original) and 42–47 (refac-
tored) remain invariant.
3 The Atlas Model Management Architecture Platform. Available in: http://www.

sciences.univ-nantes.fr/lina/atl/AMMAROOT/.

http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/
http://www.sciences.univ-nantes.fr/lina/atl/AMMAROOT/

Reducing the Level of Complexity of Working with Model Transformations 7

By contrast, lines 16–41 in the refactored correspond to the statements incor-
porated with the aim of producing iTrace objects. More concretely, lines 17–
26 correspond to the generation of a TraceLink; next, mirror source (27–36)
and target (37–41) objects are also generated and latter related with the target
objects produced by the mapping rule (44–46).

Listing 1.1. Original version of MemberEnd2NotNullOnTT transformation rule.

1 r u l e MemberEnd2NotNullOnTT {
2 f r o m
3 prop : UML! Property ,
4 c : UML! Class
5 (
6 (prop . isAssociationLowerMoreThanZero ()) a n d
7 (c . generatesTypedTable ()) a n d
8 (c . ownsMemberEnd(prop)) a n d
9 (n o t c . i sAbs t rac t)

10)
11 t o
12 notNul l : SQL2003 ! NotNull (
13 tab l e <− t h i s M o d u l e . resolveTemp (c , ’ t t ’) ,
14 columns <− prop
15)
16 d o {
17 prop . name . debug (’ r u l e MemberEnd2NotNullOnTT ’) ;
18 }
19 }

Listing 1.2. Refactored version of MemberEnd2NotNullOnTT transformation rule.

1 r u l e MemberEnd2NotNullOnTT {
2 f r o m
3 prop : UML! Property ,
4 c : UML! Class
5 (
6 (prop . isAssociationLowerMoreThanZero ()) a n d
7 (c . generatesTypedTable ()) a n d
8 (c . ownsMemberEnd(prop)) a n d
9 (n o t c . i sAbs t rac t)

10)
11 t o
12 notNul l : SQL2003 ! NotNull (
13 tab l e <− t h i s M o d u l e . resolveTemp (c , ’ t t ’) ,
14 columns <− prop
15)
16 −− Begin Added by iTrace
17 , TraceLink : iTrace !M2MLink (
18 ruleName <− ’MemberEnd2NotNullOnTT ’ ,
19 comment <− ’ Automatic generat ion by iTrace ’ ,
20 createdOn <− ’ 15−02−2013 ’ ,
21 mode <− ’ Automatic ’ ,
22 techn i ca lB ind ing <− ’ATL ’ ,
23 createdBy <− ’ iTrace Tool ’ ,
24 type <− ’ Transformation ’ ,
25 iTraceModel <− t h i s M o d u l e . getTraceModelRoot
26) ,
27 elementSource prop : iTrace ! SourceElement (
28 type <− prop . oclType () . t oS t r ing () ,
29 traceLink <− TraceLink ,
30 model <− t h i s M o d u l e . getModel UML
31) ,
32 e lementSource c : iTrace ! SourceElement (
33 type <− c . oclType () . t oS t r ing () ,
34 traceLink <− TraceLink ,
35 model <− t h i s M o d u l e . getModel UML
36) ,
37 e lementTarget notNul l : iTrace ! TargetElement (
38 type <− notNul l . oclType () . t oS t r ing () ,
39 traceLink <− TraceLink ,
40 model <− t h i s M o d u l e . getModel SQL2003
41)
42 d o {
43 prop . name . debug (’ r u l e MemberEnd2NotNullOnTT ’) ;
44 elementSource prop . r e fSetVa lue (’ ob j e c t ’ , prop) ;
45 e lementSource c . r e fSetVa lue (’ ob j e c t ’ , c) ;
46 e lementTarget notNul l . r e fSetVa lue (’ ob j e c t ’ ,
47 notNul l) ;
48 } }

8 I. Santiago et al.

4 iTrace Visualization Mechanisms

Once traceability data has been persisted in the shape of trace models, being able
to visualize such links is valuable, at least as an exploratory aid [30]. However,
the development of tool support to that end is a non-trivial task and considerable
effort is needed to recover, browse and maintain traces [24].

In the following, the visualization mechanisms for traceability data supported
by iTrace are introduced. A multipanel editor for trace models is first presented
and then the use of dashboards providing aggregated and non-aggregated views
of traceability data is described. The former can be seen as a tool for low-level
management of traces whereas the latter provides high-level information from
such traces.

4.1 Multipanel Editor for Trace Models

iTrace bundles an ad-hoc EMF-based multipanel editor for trace models. Such
editor supports the management (visualization and edition) of the EMF trace
models generated from the execution of model transformations. Note that such
transformations are previously enriched by iTrace to support the generation of
traces.

Figure 3 provides a high-level overview of the planned structure for the editor.
In order to overcome the limitations described in Sect. 2 the editor was devised
to support the following set of functionalities:

– It should bundle three different panels to show separately the source models,
the trace model and the target models. If there are several source or target
models, they should be co-located vertically in their corresponding panel. Even
the same model could appear in both panels if it is referenced both as source
and target model by any set of traces.

– The panel for target models should be adapted to the nature of the models
displayed, i.e. a proper set of models or source-code files. Note that, in the
end, a source-code file is another model, this one with the lowest level of
abstraction. Thus, the term models might be used as well to refer to source-
code files in the following.

– The user should be able to drag elements from source and target models and
drop them on the traces model to create new trace-link objects.

– If the user selects a trace-link object, the editor has to highlight automatically
the elements referenced by the selected link, either model elements or source-
code blocks, in the corresponding model or source-code file.

– If the user selects a source or target element, the editor must highlight the
trace-link objects that reference it.

In the following, two of the traces models produced in the running example
are displayed in the multipanel editor bundled in iTrace to illustrate the final
result.

Reducing the Level of Complexity of Working with Model Transformations 9

Fig. 3. Desired behavior for the iTrace multipanel editor.

Fig. 4. UML2SQL2003 m2m traces model displayed in the iTrace multipanel editor.

Running Example. When the UML2SQL2003 model transformation is run using
the OMDB class diagram as input, an SQL:2003 ORDB model plus a traces
model between both models are generated.

Figure 4 shows an excerpt of such traces model displayed in the multipanel
editor of iTrace. Note that as the Property persons source element is selected,
the trace-links referencing it are automatically highlighted: M2M Link generate-
AtributteRef. The target elements referenced by those traces are highlighted as
well in the SQL2003 model: attribute persons, Reference Type Ref Person Type

y MULTISET Ref Person Type.
To illustrate the visualization of m2t traces models, Fig. 5 shows an excerpt

of the traces model produced by the ORDB4ORA2CODE transformation in the run-
ning example. In this case, the right panel shows the SQL script generated to
implement the ORDB schema modeled in the source model (ORDB4ORA model).
The selection of the first trace-link (M2T Link generateAttribute) results in
the automatic highlighting of the corresponding source elements (Attribute
country) and associated source-code (country column in line 6 of the SQL
script).

10 I. Santiago et al.

Fig. 5. ORDB4ORA2CODE m2t traces model displayed in the iTrace multipanel editor.

Notice for instance the utility of the editor for change impact analysis since
it eases enormously tracking dependencies between source and target elements
and the other way round.

4.2 Dashboards for Traceability Data

A quick look at the traces model shown in the previous section serves to give an
idea of the number of traces that can be generated by any MDE project. The
multipanel editor introduced supports efficiently edition of such traces. Never-
theless, working at this level of abstraction might not fit to all the stakeholders
involved in the project. Aggregated views providing with high-level information
of the raw data (trace-links) would be welcome in this context.

To address this issue, iTrace leans on BI tools to support the multidimen-
sional analysis of traces models. The aim is to elicit knowledge from the trace-
links gathered during the project. To that end, traces models are first denormal-
ized and then used to populate QlikView [31] dashboards. As a result, high-level
overviews of the relationships between the artefacts involved in the development
process are obtained. In the following, three particular dashboards produced in
the running example are used to illustrate the proposal.

Running Example: Project Overview Dashboard. The Project overview
dashboard shows all the model elements involved in the project under study
(including source-code blocks), as well as their relationships. Besides, it allows
assessing the contribution of each element to the project by identifying the
#LOC directly related with it. Figure 6 shows an screen capture of the dashboard
which is divided into two main blocks:

Upper part allows tracking all the relationships of a given element along the
project. To that end, it shows all the model elements so that when a given element
is selected, related elements in the rest of models are automatically highlighted
while the rest of elements are greyed-out. For instance, the figure shows that the
selection of a UML element results in the highlighting of related elements in the
SQL2003 and ORACLE models, as well as the corresponding source-code blocks.
Currently the framework uses the unique identifier of every model element to
display them in the dashboard. However, more intuitive identifiers will be used
in future versions.

Reducing the Level of Complexity of Working with Model Transformations 11

Fig. 6. Project overview dashboard.

Lower part of the dashboard (Most Impacted Elements by Model) shows the
elements of each model which are associated with the highest #LOC. In this
case, the UML is related to 4.44 % of the total #LOC generated in the project.

Model transformations are inherently complex [32]. They get even more com-
plex when they aim at lowering the level of abstraction at which software is
modelled to support code generation since the semantic gap between the models
involved implies making assumptions and adding extra machinery to consider
all the possible scenarios. In this context, the Project overview dashboard
abstracts from such complexity providing a quick overview of the relationships
between the different elements of the project without having to look at the source
code that implements the model transformations connecting them.

Running Example: Mapping Rules Overview Dashboard. The Mapping
rules overview dashboard shown in Fig. 7 goes a step further, since it provides
a closer look at the transformations involved in the project. In particular, it
allows identifying which are the rules involved in a given transformation and
which is their role in the project. The latter refers to the workload of such
rules, i.e. the amount of objects effectively mapped by the mapping rule under
consideration. To that end, upper side of the dashboard bundles a set of controls
to define high-level criteria for the analysis. This way, the traces that will be
analyzed can be filtered according to:

– Transformations: only traces produced by the select model transformations
will be considered.

– Type: only model-to-model or model-to-text traces will be considered.
– Mapping Rules: only traces produced by the selected mapping rules will be

considered.

Likewise, the model elements that will be object of consideration can be
filtered according to another set of criteria:

12 I. Santiago et al.

Fig. 7. Mapping rules overview dashboard.

– Artefact: only elements included in the selected models or source-code files
will be considered.

– Relation Type: depending on the selection, only model elements used that
were either as source or target objects of the selected transformations will be
considered.

– Abstraction Level: only model elements belonging to models defined at the
selected abstraction levels will be considered.

– Artefact Type: depending on the selection, only model elements or source-code
blocks will be considered.

Obviously, none of the criteria above are mandatory. That is to say, the user
might set no values for any of them. If so, no filtering is applied and every trace
(respectively model element) is considered in the analysis.

Once the criteria have been fixed (if any), the central and lower part of
the dashboard collects aggregated data regarding the number of traces, model
elements (referred to as traced elements) and source-code blocks, which fulfill
the criteria. In this case, the table in the middle shows which are the mapping
rules producing more traces. In particular, it shows the top 8 rules, while the
rest are blended into the Others row.

Reducing the Level of Complexity of Working with Model Transformations 13

First and second columns show respectively the transformations and mapping
rules under consideration (those that meet the filtering criteria). Next columns
show the number of trace links produced by each mapping rule and the per-
centage over total number of traces produced by the mapping rules selected.
Following columns show also the number of model elements and source-code
blocks referenced by each mapping rule.

For instance, second row of the table states that the MemberEnd2Not-Null-
OnTT of the UML2SQL2003 transformation generates 16 trace links (15.38 % over
the total number of trace links produced by the selected mapping rules) and
such links refer to 48 model elements (note that not every trace link represents
a one-to-one relationship).

Finally, lower side of the dashboard provides different views of these data.
The bar graph on the left summarizes the number of trace links produced by each
transformation rule, while the pie chart on the right represents the distribution
of traced elements by transformation rule.

The information collected in this dashboard could be used by model-transfor-
mation developers to locate candidates for refining. For instance, the data pre-
sented in Fig. 7 highlights the importance of the ClassProperty2UDTAttribute
mapping rule, which generates more than 30 % of the trace links produced by
the UML2SQL2003 transformation. Thus, this rule might be object of study if
transformation developers aims at optimizing the overall performance of the
transformation.

Running Example: Mapping Rules Detail Dashboard. Model transfor-
mations are inherently complex [32]. Therefore, dealing with legacy transforma-
tions might be even more complex. The analysis of trace models can be used to
raise the abstraction level at which we think about model transformations. In
addition, it allows the developer to abstract from the particular model transfor-
mation language used and provide him with simple and comprehensible infor-
mation regarding the mapping rules that compose the different transformations.

For instance, Listing 1.1 showed a code excerpt from the UML2SQL2003 trans-
formation. In particular, it shows the MemberEnd2NotNullOnTT mapping rule.
To understand the functionality of this rule and what type of elements it maps,
a minimum knowledge of ATL is needed.

By contrast, a quick look at the dashboard shown in Fig. 8 let us know at first
sight which the purpose of the mapping rule is. Indeed, no previous knowledge
of ATL is needed. The information displayed on the upper side of the dashboard
reveals that the rule is part of the UML2SQL2003 transformation and it maps
UML objects into SQL2003 objects (recall that the name of the transformations
are now always as intuitive as here). More revealing is a look at the lower side
of the dashboard which shows that the rule is responsible for mapping pairs of
Class and Property objects into NotNull objects.

Note that the dashboard provides this type of information for all the transfor-
mations bundled in the project under study. To move through them, the upper
side of the dashboard provides a set of filters that allow the user to select a

14 I. Santiago et al.

Fig. 8. Mapping rules detailed dashboard.

particular transformation, source model, target model or mapping rule/s (non-
selected filtering values are greyed-out). The bottom part of the dashboard shows
the type of elements transformed by the mapping rules that meet the criteria
established by the user. Note also that this analysis may be useful in order to
document not only m2m transformations, but also m2t ones.

To sum up, iTrace supports a number of different visualizations with dif-
ferent granularity levels: transformations, transformation rules and model (ele-
ments). For the sake of space just some of them have been introduced here to
illustrate the utility and potential of the proposal.

5 Conclusion and Future Works

Despite the prominent role played by traceability in SE has been widely acknowl-
edged, it is commonly omitted since dealing with traceability is a task inherently
complex. The main principles of MDE, where models, model transformations
and automation act as main actors, might contribute to boost the actual usage
of traceability data [10]. In this sense, huge effort is still needed to recover,
browse and maintain trace-links [24]. Nevertheless, even though MDE tooling
has reached certain levels of maturity during the last years [11] the management
of traceability leaves still much room for improvement [33].

In particular, this work has first introduced the main issues related with
the visualization of traceability data to later introduce the solutions provided
by iTrace an EMF-based framework for the management of traceability data
in MDE projects. On the one hand, the framework bundles a multipanel panel
editor for trace models (both m2m or m2t trace models) that can be used to
support low-level management of traceability data. On the other hand, such data
is denormalized in order to populate different dashboards that provide high-level
views of the traceability information.

The dashboards from the running example have shown that the information
provided can be used to produce a high-level overview of the transformations

Reducing the Level of Complexity of Working with Model Transformations 15

involved in a project, to explain the purpose of a particular mapping rule or to
identify the rules that should be optimized in order to improve the execution of
a given transformation. Besides, it is worth noting that, once the data has been
denormalized, ad-hoc dashboards can be defined at will for different purposes.

Three main lines are distinguished regarding directions for further work.
First, we are working to support the extraction of partial trace models. The
idea is to produce trace models attending to the criteria previously defined by
the user by selecting a number of trace-links from a given trace model. Besides,
support for text-to-model transformations is also being integrated in the frame-
work, so that Model-Driven Reverse Engineering projects can be also object of
study. Therefore, the visualization of text-to-model traces will be tackled as well.
Finally, we would like to emphasize the fact that we are currently working on
the evaluation of the tool with external MDE developers.

Acknowledgements. This research has been partially funded by the Regional
Government of Madrid under project SICOMORo-CM (S2013/ICE-3006), in the frame-
work of the MASAI project (TIN-2011-22617) and the Technical Support Staff Sub-
program (MICCINN-PTA-2009), which are partially financed by the Spanish Ministry
of Science and Innovation.

References

1. IEEE: IEEE Standard Glossary of Software Engineering Terminology. Technical
report, Institute of Electrical and Electronics Engineers (1990)

2. Asunción, H.U.: Towards practical software traceability. In: Companion of the 30th
International Conference on Software Engineering, ICSE Companion 2008, pp.
1023–1026. ACM, New York (2008)

3. Ramesh, B., Stubbs, C., Powers, T., Edwards, M.: Requirements traceability: the-
ory and practice. Ann. Softw. Eng. 3, 397–415 (1997)

4. Oliveto, R.: Traceability management meets information retrieval methods -
strengths and limitations. In: 12th European Conference on Software Maintenance
and Reengineering (CSMR’2008), pp. 302–305 (2008)

5. Schmidt, D.: Model-driven engineering. IEEE Comput. 39, 25–31 (2006)
6. Bernstein, P.: Applying model management to classical meta data problems. In: 1st

Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA,
pp. 1–10 (2003)

7. De Lucia, A., Oliveto, R., Zurolo, F., Di Penta, M.: Improving comprehensibility of
source code via traceability information: a controlled experiment. In: Proceedings
of the 14th IEEE International Conference on Program Comprehension (ICPC
2006), pp. 317–326. IEEE (2006)

8. Sendall, S., Kozaczynski, W.: Model transformation: the heart and soul of model-
driven software development. IEEE Softw. 20, 42–45 (2003)

9. Mohagheghi, P., Dehlen, V.: An overview of quality frameworks in model-driven
engineering and observations on transformation quality. In: Workshop on Quality
in Modeling, pp. 3–17 (2007)

10. Santiago, I., Jiménez, A., Vara, J.M., De Castro, V., Bollati, V., Marcos, E.: Model-
driven engineering as a new landscape for traceability management: a systematic
review. Inf. Softw. Technol. 54, 1340–1356 (2012)

16 I. Santiago et al.

11. Volter, M.: From programming to modeling - and back again. IEEE Softw. 28,
20–25 (2011)

12. AMW: Atlas Model Weaver. http://www.eclipse.org/gmt/amw/ (2008). Accessed
28 January 2013

13. ModeLink: ModeLink Project. http://www.eclipse.org/epsilon/doc/modelink/
(2010). Accessed 26 October 2013

14. MetagemTrace: Metagem-Trace Website. http://www.kybele.etsii.urjc.es/
metagem-trace/ (2012). Accessed 26 April 2013

15. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the effective use of
traceability in model-driven engineering projects. In: Ng, W., Storey, V.C., Trujillo,
J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 429–437. Springer, Heidelberg (2013)

16. Kimball, R.: The Data Warehouse Lifecycle Toolkit. Wiley, New York (1998)
17. Alexander, M., Valkenbach, J.: Excel Dashboards and Reports. Wiley Publishing,

Inc., Hoboken (2010)
18. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Eclipse Series. Addison-Wesley Professional, Boston (2009)
19. Vara, J.M., Marcos, E.: A framework for model-driven development of information

systems: technical decisions and lessons learned. J. Syst. Softw. 85, 2368–2384
(2012)

20. Jiménez, A., Vara, J.M., Bollati, V., Marcos, E.: Developing a multi-panel editor
for EMF traces models. In: 1st Workshop on ACademics Modelling with Eclipse
(ACME), Kgs. Lyngby (Dinamarca) (2012)

21. iTrace: iTrace Tool. http://www.kybele.etsii.urjc.es/itracetool/ (2012). Accessed
17 January 2014

22. Obeo: Acceleo. http://www.obeo.fr/pages/acceleo/en (2008). Accessed 17 April
2013

23. von Pilgrim, J.: Graphical Editing Framework 3D (GEF3D). http://gef3d.org
(2008). Accessed 26 April 2013

24. Marcus, A., Xie, X., Poshyvanyk, D.: When and how to visualize traceability links?
In: 3rd International Workshop on Traceability in Emerging Forms of Software
Engineering, TEFSE 2005, pp. 56–61. ACM, New York (2005)

25. de Souza, C.R.B., Hildenbrand, T., Redmiles, D.F.: Toward visualization and
analysis of traceability relationships in distributed and offshore software devel-
opment projects. In: Meyer, B., Joseph, M. (eds.) SEAFOOD 2007. LNCS, vol.
4716, pp. 182–199. Springer, Heidelberg (2007)

26. Yie, A., Wagelaar, D.: Advanced traceability for ATL. In: 1st International Work-
shop on Model Transformation with ATL (MtATL 2009), Nantes, France, pp. 78–87
(2009)

27. Tisi, M., Cabot, J., Jouault, F.: Improving higher-order transformations support in
ATL. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229.
Springer, Heidelberg (2010)

28. Jouault, F.: Loosely coupled traceability for ATL. In: 1st European Conference on
Model-Driven Architecture: Traceability Workshop (ECMDA 2005), Nuremberg,
Germany, vol. 91, pp. 29–37 (2005)

29. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: 5th International Conference on Gener-
ative Programming and Component Engineering, GPCE 2006, pp. 249–254. ACM,
New York (2006)

30. Kerren, A.: Information Visualization: Human-Centered Issues and Perspectives,
1st edn. Springer, Heidelberg (2008)

http://www.eclipse.org/gmt/amw/
http://www.eclipse.org/epsilon/doc/modelink/
http://www.kybele.etsii.urjc.es/metagem-trace/
http://www.kybele.etsii.urjc.es/metagem-trace/
http://www.kybele.etsii.urjc.es/itracetool/
http://www.obeo.fr/pages/acceleo/en
http://gef3d.org

Reducing the Level of Complexity of Working with Model Transformations 17

31. QlikTech International AB: QlikView. http://www.qlikview.com (1993). Accessed
15 Febrary 2013

32. Bollati, V., Vara, J.M., Jiménez, A., Marcos, E.: Applying MDE to the (semi-)
automatic development of model transformations. Inf. Softw. Technol. 55, 699–
718 (2013)

33. Kuhn, A., Murphy, G.C., Thompson, C.A.: An exploratory study of forces and fric-
tions affecting large-scale model-driven development. In: France, R.B., Kazmeier,
J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS, vol. 7590, pp. 352–367.
Springer, Heidelberg (2012)

http://www.qlikview.com

Learning from the Current Status
of Agile Adoption

Georgia M. Kapitsaki(B) and Marios Christou

University of Cyprus, University Avenue 1, 2109 Aglantzia, Cyprus
gkapi@cs.ucy.ac.cy, marios 2c@hotmail.com

Abstract. Software processes have evolved significantly since the first
formal appearance of software engineering. The academia and the indus-
try have introduced, embraced or rejected various methodologies that
are more or less efficient in theory and in practice. A current popular
trend can be found in Agile methodologies widely adopted in the last
decade. Since software processes are constantly evolving, it is vital to
see how they evolve over time. This work presents the current state of
the adoption of Agile methodologies with an emphasis on Scrum devel-
opment method. Study results from 44 different countries were collected
during the months of March and April 2012. The results are enlighten-
ing in order to understand how Agile development and Scrum are viewed
today, to see where their success factors lie, discover if they offer ben-
efits in comparison to heavyweight approaches and discuss their future
evolution.

Keywords: Agile · Software process · Adaptive development · Scrum

1 Introduction

As organizations become global and modular new software paradigms derive
with some being embraced from the software community and others still lacking
wider acceptance. The most widely adopted processes that have gained a strong
momentum in the last years can be found in Agile development. Agile method-
ologies have been adopted by many industry leaders worldwide including Yahoo,
Microsoft, Oracle, HP, IBM, Motorola, Xerox, Federal Reserve Bank and Capital
One [6]. Adaptive methodologies are generally considered to perform better in
terms of increase in productivity, quality improvement, cost reduce, maintain-
able and extensible code, collaboration and customer satisfaction. Nevertheless,
since nothing comes without drawbacks, in Agile methodologies these are usually
found in the need for constant customer participation, the difficulty to scale in
large projects and the need for training on the use of Agile methodologies [15].

This paper presents a field study conducted on the current adoption of Agile
methodologies in the software industry with a specific focus on Scrum [18]. Moti-
vated by this global spread of adaptive software development and our personal
experience in a Scrum industrial environment it is interesting to see where Agile
c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 18–32, 2015.
DOI: 10.1007/978-3-319-27218-4 2

Learning from the Current Status of Agile Adoption 19

and more specifically Scrum stand in the software engineering world today. The
main objectives of the survey we conducted were to:

– Demonstrate where Agile adoption lies today globally in terms of quantities.
– Discover the success or failure rate of and Agile- and Scrum-driven projects.
– Perform a comparison among the results of using Scrum- or Agile-based tech-

niques and of following traditional development approaches (i.e., heavyweight,
such as the waterfall model).

– Studydevelopmentaspects relevant today(e.g., teamgeographicaldistribution).

The third point indicated was the most important, since many software engi-
neering books and research works [13] enumerate the differences between Agile
and traditional ways of development, in terms of advantages and disadvantages.
Since theory may not reflect the real situation, a view in the state of our days is
necessary and useful. Although many Agile-related surveys have been conducted,
since the introduction of Agile in the industry (the first one dates back in 2003),
the reality in the software industry is constantly evolving. Moreover, to the best
of our knowledge this is the first survey with an emphasis on Scrum. The initial
goal was to concentrate solely on Scrum with its backlog, the burndown chart,
the retrospective, the customer review process and the Scrum Master. However,
in order to keep contact with the big picture viewing Scrum in the framework
of Agile, we decided to study both perspectives: (1) Agile in general and (2)
Scrum more specifically. Participants were informed that some questions would
concern only Scrum. Those with experience with more than one Agile method-
ologies were asked to base their answers on Scrum. The majority of participants
(76.9 %) indicated Scrum as the employed Agile methodology, which makes the
results obtained more applicable on this specific case of Scrum.

The rest of the paper is structured as follows. Section 2 analyzes the moti-
vation and execution of the survey, whereas Sect. 3 presents the survey results
in detail: the participants views concerning Agile and its comparison with tra-
ditional heavyweight methodologies are demonstrated and discussed. In Sect. 4
information specific to Scrum is given, whereas Sect. 5 presents an overview of
previous Agile studies Sect. 6 indicates limitations of the study, and, finally,
Sect. 7 concludes the paper discussing briefly the future trends observed through
the survey.

2 Research Methodology

For the survey management and execution a procedure typical followed for con-
ducting surveys was used [9] with decisions taken at each step:

1. Formulation of the Statement of Objectives: The survey motivation was deter-
mined, the objectives were set and the following research questions were iden-
tified: R1. Does Agile or Scrum adoption provide better results in software
development? R2. Do people follow strictly the guidelines? R3. Have com-
panies tried to think out-of-the-box by experimenting with Agile and Scrum
variants? R4. Do engineers like Scrum?

20 G.M. Kapitsaki and M. Christou

2. Selection of a Survey Frame and Determination of the Determination of
Sample Design: A request for participation was distributed to employees of
various organizations and individual Agile practitioners. The potential sam-
ple members were selected among Agile practitioners instead of targeting
software engineering companies in general. We searched for companies of
various sizes with an active role in the software industry, sent email requests
to over 200 companies with an Agile profile including personal emails to spe-
cific employees and requests for distribution within the organization through
Human Resources departments. We also sent notifications to members of
Agile-related groups (e.g., Scrum Alliance) exploiting relevant mailing lists
and exploited Online Social Networks (OSNs) with announcements on the
Facebook group of Scrum alliance and LinkedIn contacts.

3. Questionnaire Design: In order to keep the time necessary for the comple-
tion of the questionnaire to a minimum, the majority of questions were of
closed type. However, there were some open questions and the possibility of
general comments, in order to allow the participants to express their opinion
more freely. Indeed this proved useful as we gained useful insights from these
comments. The length of the questionnaire was restricted to 35 questions. In
order to increase the validity of our results attentions was paid on the survey
design making sure that we are asking questions that measure what we want
to measure referring here mainly to the research questions posed. In partic-
ular, these were divided into the following groups with group (a) covering
questions R2 and R3 and group (b) reflecting questions R1 and R4.
(a) Agile questions including a set of Scrum-specific questions
(b) Comparison of Agile and traditional development approaches
(c) Organization profile (e.g., organization type, location, size) and demo-

graphics
4. Data Collection: The web-based survey was open for a period of two months

(March-April 2012). All potential participants were informed that approxi-
mately 10 min would be required to complete the survey.

5. Data Capturing and Coding, Editing and Imputation: The survey manage-
ment was done through SurveyMonkey1.

The preliminary version of the study analysis with an emphasis on Scrum can
be found in a previous publication [11]. This paper focuses on the presentation of
the results for drawing useful conclusions on Agile adoption in general. Detailed
results of the study along with the complete set of questions are also available
online (website of first author).

3 Results

We gathered a total of 335 responses during the months of March and April 2012.
The initial questions on demographics were completed by all participants, but
from the point on where the questions concerned development methodologies
1 http://www.surveymonkey.com.

http://www.surveymonkey.com

Learning from the Current Status of Agile Adoption 21

many participants skipped the remaining questions. As a result not all par-
ticipants completed all survey steps, which resulted to a total number of 233
complete questionnaires.

3.1 Organization Profile

We obtained answers from more than 126 companies distributed geographically
in 44 different countries: North and South America (40 %), Europe (35 %), com-
panies with a global presence, i.e., presence in more than one continent (4 %),
Africa, Asia and Australia (total of 13 %), while in 8 % of the cases no country
was specified. The participants are working in enterprises of different sizes: one
third is coming from enterprises with over 1000 employees (30.6 %), one quarter
with 101 to 1000 employees (25.5 %), whereas the rest is employed in smaller
companies.

When it comes to new technologies and methods most of the participating
organizations do not hesitate to adopt new technologies (62.4 %), some are more
conservative (30.3 %), since they follow the approach only when the technology
is proven, and a smaller percentage prefers more traditional approaches (7.3 %).
We calculated that the ones open to new technologies follow in most cases Agile
techniques (62.4 %), whereas the adopters of traditional approaches follow in
most cases the waterfall model (91.7 %). This observation supports the fact that
Agile development is usually embraced by innovative people [14].

3.2 Demographics

Most of our participants were between the age of 30 and 40 (41.1 %), 28.1 %
between 40 and 50, 14.3 % between 50 and 60, 12.1 % between 18 and 30 and
4.5 % above 60. Men mostly responded to the survey (90.5 %) opposed to women
(9.5 %). The education level of the participants was high with the majority pos-
sessing masters degree (42.5 %), bachelor or diploma (38.9 %) and others in pos-
session of technical degree (8.0 %), PhD (4.4 %) or college degrees (2.2 %).

The results cover a wide range of practitioners. 27 % indicated themselves
as software engineers, 25.2 % as IT managers, 23.0 % as project managers, while
the remaining 23.8 % of the participants are active in other roles, such as quality
assurance engineers (or testers), business stakeholders, data professionals and
analysts. The fact that the majority of participants have a direct involvement
in the development process is an advantage for the accuracy of the results. Con-
cerning the participants specific experience in teams working with Agile tech-
niques most are quite experienced with their involvement ranging from 3 to over
10 years.

3.3 Popularity Among Agile

Participants were asked about their choice on both heavyweight and lightweight
approaches. Our survey showed that the most popular among heavyweight alter-
natives is, as expected, the waterfall model (36.5 %), whereas enterprises tend

22 G.M. Kapitsaki and M. Christou

Fig. 1. Traditional methodology
mostly used.

Fig. 2. Agile methodology mostly used.

to adopt also hybrid approaches or reject traditional methodologies completely
heading directly for adaptive techniques (36.9 %) (Fig. 1). Among Agile method-
ologies the big winner is Scrum (76.9 %), whereas Agile combinations are also to
be found (Fig. 2). In these combinations increasing importance is given to Kan-
ban, which is based on building the production of software on customer demand.
Scrum was the most popular Agile methodology also in a Forrester Research sur-
vey of 2010. Earlier back in 2003 XP had the dominant role (the majority of the
131 survey participants in the survey of the Australian Shine Technologies [19]
were referring to adoption of XP and around 8 % to the adoption of Scrum).

These results constitute an indication of a tendency moving from XP to
Scrum. Scrum is also the preferred way of the participants for constructing
software systems: 64.9 % indicated Scrum, 14.9 % chose XP, 4.4 % FDD, 1.8 %
DSDM, 0.9 % Open Unified Process, 0.4 %, Crystal Clear and the remaining
12.7 % hybrid approaches.

3.4 How Big Is the Team, How Long Is the Iteration

According to Agile practices the team size should be relatively small (less than
10 members). For Scrum it is often indicated that teams larger than 7 members
should be split into more Scrum teams resulting to Scrums of Scrums, for XP
ideal teams range between 3 and 20 members, whereas for Crystal Clear even
smaller teams comprising of up to 6 developers are suggested [1]. The most
famous answer we received from participants is 6–10 team members (45.4 %),
whereas some have successfully used larger teams of 11–20 members (22.7 %)
(Fig. 3). Dr. Dobbs Journal survey conducted with 168 participants in 2011 also
indicated small teams: 63.1 % of successful teams had less than 11 members [3].

Iteration duration is also an important issue. Many factors affect the ideal
duration including team experience and time devoted to reviews and planning.
Iterations are also relevant to the time the customer has defined in order to
assess the progress of the development of the system. Agile iterations usually
have a duration of 2–3 weeks. Scrum iterations range from 2 to 4 weeks, while

Learning from the Current Status of Agile Adoption 23

Fig. 3. Largest team size used with
success.

Fig. 4. Length of most recent project
iteration.

XP iterations are 1 or 2 weeks long [7]. Having iterations that are longer than
one month is generally very random. This was also verified in our case: for most
Agile adopters iterations are restricted to 2 weeks (48.1 %), whereas it is usual
to have longer ones of 3 (21.6 %) or 4 weeks (12.1 %) (Fig. 4).

3.5 Where Do Teams Work

Team collocation is very important in Agile development. One of the twelve prin-
ciples of the Agile manifesto states that: “The most efficient and effective method
of conveying information to and within a development team is face-to-face con-
versation.” As organizations become global, it is usual for distant teams to col-
laborate despite being placed in different cities, countries or even continents;
this is applied even on Agile projects [16]. Offshore development with engineers
operating from different countries, is gaining on importance lately mainly due to
the significant cost reduce. At a previous survey on the geographical distribution
of Agile teams with 642 participants it was observed that teams are generally
collocated [2]. In our survey success rates are very high for collocated teams,
while the possibility for a successful project reduces significantly for offshore
development (Fig. 5).

3.6 Agile and Tradition

Agile focuses on four main principles found in the Agile manifesto published
11 years ago:

1. Individuals and interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan

The principle that is valued most by practitioners is 4, while many are
intrigued by 1 and 2 (Fig. 6). Indeed adaptation to change is one of the main

24 G.M. Kapitsaki and M. Christou

Fig. 5. Overall success rate for different types of distributed Agile teams.

Fig. 6. Appealing Agile aspects com-
pared to heavyweight methodologies.

Fig. 7. Most common problem experienced
while practicing Agile methodologies.

characteristics of Agile [13]. However, there are also elements that people dis-
like in Agile as the lack of project structure given as the most typical answer
(38.2 %), the low documentation (35.2 %), although some see it as an advantage,
the low planning (16.6 %) and the less management control (10.1 %).

Agile adoption is not always easy and seamless within an organization. Agile
drawbacks are usually found in the need for constant customer participation,
the difficulty to scale in large projects and the need for training on the Agile use
[15]. This lack of experience with Agile methods and the company culture are
indicated as project failure reasons in previous surveys [20]. The lack of skilled
people who can follow Scrum is one important reason for failure according to
our survey answers (Fig. 7). Indeed motivated people are needed, since Agile in
general requires discipline in order to be successful. In order to motivate their
employees organizations undertake educational activities; for instance IBM has
introduced an Agile night school program in order to educate staff members on

Learning from the Current Status of Agile Adoption 25

the use of Agile [22]. Project size/complexity is also a problem. It is true that as
project size grows, so does the need for people participation, which introduces
more complexity in communication among team members. Other participants
see the lack of customer collaboration as a major problem. Customers may find
it hard to comply with Agile principles that state the importance of the active
participation of the customer throughout the development process. Customer
involvement is, however, vital in order to have guarantees that the correct prod-
uct will be delivered. Other problems noted are the lack of top management
support and the project team size. Team size is also linked with project com-
plexity, although in many cases Agile teams are structured hierarchically when
large projects are considered. With large team sizes used to cover the needs of
large projects non-neglecting communication overhead is added to the software
process.

In comparison to traditional approaches adaptive methodologies are consid-
ered to perform better in terms of increase in productivity, quality improvement,
cost reduce, maintainable and extensible code, collaboration and customer satis-
faction. Companies have seen positive results of Agile over Heavyweight, such as
in the adoption of XP by Motorola that led to a significant increase in engineer
productivity [8]. We also wanted to see whether there was an improvement in the
four elements of: productivity, quality, cost of development and stakeholder satis-
faction. The majority of participants indicated a more or less significant increase
in productivity, much higher or somewhat higher quality of the product, much
lower or somewhat lower development cost and much higher or somewhat higher
stakeholder satisfaction (Table 1). The percentages of users that found Agile tech-
niques less effective than heavyweight methodologies were significantly low. The
rest of the participants did not provide any answer, which may indicate that
they did not have access to this kind of information (e.g., software engineers
may not have a view of the overall development cost). The only point, where
Agile methodologies may be problematic was from the perspective of cost, which
appeared slightly increased in many cases (22.4 %). This is justifiable for organi-
zations that adopted Agile for the first time, since any changes come with time
needed for the transition, training activities and the general learning curve. All
these aspects increase the costs and may also affect the development procedure.

Table 1. Outcome of Agile techniques in comparison with traditional approaches.

Project measure Higher No change Lower No answer

Productivity 89.6 % 6.12 % 4.1 % 0.18 %

Quality 84.8 % 11.7 % 3.2 % 0.3 %

Development cost 22.4 % 23.3 % 54.2 % 0.1 %

Stakeholder satisfaction 86.5 % 9.2 % 4.3 % 0%

The earlier survey of Shine Technologies [19] shares more or less the same
views (49 % of the participants stated that costs were reduced, 93 % that

26 G.M. Kapitsaki and M. Christou

productivity was better, 83 % that business satisfaction was better and 88 % that
the quality of the software was better). Also in a 2008 survey [21] the increased
productivity, job satisfaction, improved predictability of costs and quality and
the knowledge transfer were the main benefits observed, whereas the lack of
Agile knowledge and the individual resistance were seen as the main challenges.

4 Scrum-Specifics

As aforementioned the Agile practitioners of the survey employ mostly Scrum.
More specifically, most of them were quite experienced with its use: Scrum is
either the normal way the organization uses to build software (32.5 %), one of
the standard ways (27.3 %) indicating that it is usually employed in combination
with other techniques, the method that has just been adopted for development
across the organization (14.7 %) or a method that has been piloted without
taking any adoption decision yet (10.8 %). Some are currently piloting Scrum
(9.5 %), whereas only 5.2 % have not used Scrum. This last result provides a
rough estimation on the non-Agile practitioners contacted during the distribu-
tion of the questionnaire. Regarding the specific use of Scrum in the organization
development projects, Scrum is generally used a lot (61.1 % answered that Scrum
is used for a percentage around 50 % and higher) (Fig. 8) showing a tendency of
applying Scrum organization wide.

As aforementioned the Scrum Master is one of the main players in Scrum.
Many participants indicated themselves as Scrum Masters. The Scrum Master
does not have a pure technical role but provides rather guidance assisting in
problem solving in the Scrum team. We wanted to see how people see the Scrum
Master: most find the role useful (73.7 %) or useful to some extend (19.2 %),

Fig. 8. Development work performed by Scrum.

Learning from the Current Status of Agile Adoption 27

Table 2. Overall satisfaction with Scrum.

Answer options Response percentage (%)

Very pleased with Scrum 38.0

Scrum exceeds my expectations 10.9

Scrum is adequate for my needs 38.0

Disappointing outcome 3.1

Not at all pleased with Scrum 3.9

I don’t know yet 2.6

Not applicable 3.5

Table 3. Outcome of Scrum in comparison with traditional approaches.

Project measure Higher No change Lower No answer

Productivity 87.5 % 6,8 % 5.5 % 0.18 %

Quality 84,3 % 13,1 % 2.5 % 0.3 %

Development cost 26 % 25.4 % 48.5 % 0.1 %

Stakeholder satisfaction 85.4 % 9,5 % 5.15 % 0%

whereas some find it redundant (4.2 %) or not useful (2.8 %). It might be that
the role cannot be fully perceived by players involved in the Scrum development
process that are not, however, part of the development team that is in constant
contact with the Scrum Master.

Investigating how practitioners see Scrum in general most appear satisfied,
whereas a small percentage is not sure or does not find Scrum suitable for their
needs (Table 2). Roughly 1 out of 10 is either not satisfied or has not made up
his/her mind yet Regarding the comparison of the Scrum development success in
comparison with traditional approaches, Table 3 presents the results on produc-
tivity, quality, cost of development and stakeholder satisfaction as exported for
the case of Scrum adopters from the general results (i.e., Agile vs. traditional).
The results are very close to the general observations on Agile versus heavy-
weight processes. The increase in quality and productivity was also observed in
the adoption of Scrum in Primavera [17]: it resulted in an increase of 30 % in
quality in terms of number of customer defects compared to the traditional soft-
ware process and an improvement in time to market with the product delivered
in 10 months instead of the original plan of 14 months. Similar improvements
were indicated by Yahoo [5], Amazon [4] and Microsoft [23], where the impres-
sive productivity increase of 250 % was observed (measured by the number of
lines produced in each Scrum Sprint). Many of the above experience reports
indicated the importance of the organization culture for the successful adoption
of Scrum. The adoption constitutes a big challenge for companies that are rather
traditional than Agile-oriented. Unsuccessful Scrum adoption cases are also to
be found proving that Scrum is not a priori successful in any environment [10].

28 G.M. Kapitsaki and M. Christou

In summary, the main Scrum characteristics in comparison to traditional
techniques as collected can be found in the following points:

– Respond to Change Rather than Following a Plan: 47.1 % of the Scrum prac-
titioners believe that this is the main asset of Scrum. Scrum can assist in
rapid reorganization, allowing sudden project changes without introducing
significant losses in time and cost management.

– People-Centric and Not Process-Centric: The most significant advantage of
Scrum for 22.4 % of the participants.

– Emphasis on Code Writing Instead of Documentation: The most important
aspect for 21.3 % of the participants.

– Increase in Team Productivity was observed for 87.5 % of the participants.
– Product Quality: The quality has been increased for 84.3 % of the cases.
– Decrease in Project Cost: This is considered true for 48.5 % of the participants,

although cost increase was also observed in many cases.
– Stakeholder Satisfaction: An increased customer satisfaction is considered true

for 85.4 % of the participants. Another positive aspect of Scrum that was
not verified directly through the survey concerns the personal relation with
the customer. Despite the above, Scrum comes with flaws sharing the ones
indicated for Agile in general (Fig. 7).

5 Related Surveys

Apart from the ones aforementioned in the analysis of the previous section (e.g.,
[2,3,19,21]), various other surveys have been conducted on Agile development
processes or software processes in general after the formal appearance of adaptive
processes in 2001 expressed through the Agile manifesto. We are interested in
global surveys and not cases applicable in specific countries, which can also be
found in the literature. One of the earliest surveys on Agile, already mentioned,
was conducted by the Australian Shine Technologies in 2003 [19]. Although a
rather early survey, when Agile experience had not been not gained yet, the
results from the Agile use are in accordance with the outcome of the survey
presented in this work. However, as aforementioned XP was much more popular
than Scrum. The survey of Digital Focus of 2006 was based on responses from
136 executives across 128 organizations and showcased the main advantages and
disadvantages of adaptive software processes.

A survey of 2008 focusing again on Agile adoption indicated among others
the benefits and problems of adopting Agile techniques [21]. However, this sur-
vey approaches Agile from the perspective of individuals view within the team
focusing on knowledge and data exchange opposed to the survey presented in
this work. The adoption of Agile methods and on the applicability degree of the
Agile principles is also discussed in [12]. From this survey it is interesting to see
that the majority of employees and customers are satisfied with the adoption
of Agile practices. The most recent survey on Agile adoption and success or
failure project results was published by Version One in 2013 [20]. Among the

Learning from the Current Status of Agile Adoption 29

main failure reasons the lack of experience with Agile methods and the company
philosophy or culture were indicated by the participants with higher percentage.

A more specialized survey on the degree of adoption of Scrum was announced
to be performed in Carnegie Melon University in 2011, but its results or whether
it was conducted were never reported. The questions used in the questionnaire
concerned only the adoption of Scrum and were not referring to any comparisons
to other approaches.

In summary, many Agile studies have been conducted in the last decade. In
contrast to those, the focus of our work is to give an emphasis on Scrum, present
the view of technical users and view whether improvements in comparison to
heavyweight processes were observed.

6 Threats to Validity

In terms of threats to validity encountered in case study research [24] the main
issues of our study were detected in relation to external validity; related specifi-
cally to what extent we can generalize our findings. The communication on the
emphasis on Scrum to the participants may have affected the outcome giving
less accuracy to the obtained results for general Agile: participants may have
responded based only on Scrum even if they also adopted other Agile techniques
(e.g., XP, Dynamic Systems Development Method/DSDM, FDD). The number
of incomplete questionnaires poses an additional threat (233 questionnaires were
complete out of the 335 that were partially answered). This was an observed dis-
advantage of the procedure selected for the collection, since the survey would
allow participants to skip some questions. The high number of incomplete ques-
tionnaires is attributed to either the lack of adoption of Agile methodologies
from the specific participant or the inadequacy of the participants organization
as a representative case for the survey goals. This lack of adoption of Agile tech-
niques was an undesirable characteristic of the potential participants that we
tried to avoid from the beginning through the selected dissemination to practi-
tioners with wide or limited Agile expertise. Judging from the survey results the
questionnaire apparently reached also non-agile practitioners; it is unfortunate
that it was impossible to determine their exact number. Lastly, we did not per-
form any analysis on the participants distribution among the companies, i.e., if
there was a higher participation rate of employees inside specific companies.

Despite these remarks, the conclusions validity is not largely affected. The
number of responses and comments we gathered can be considered representative
of the current state on the use of Agile methodologies. Regarding reliability
validity related with whether the study can be replicated we have made the
study results available online (website of first author).

Construct validity refers to whether the explanation provided for the results
is indeed the correct one. In our study one threat is linked with whether we
are asking the correct questions (in terms of Research Questions). In order to
increase the validity attention was paid on the survey design making sure that
we are asking questions that measure what we want to measure.

30 G.M. Kapitsaki and M. Christou

7 Where We Are and Conclusions

In this paper a field study on the effectiveness Agile methodologies in the
industry with an emphasis on Scrum was presented. The study was conducted
through an online questionnaire and gathered 233 participants from organiza-
tions spread in different countries around the globe. The survey indicated a
significant increase in the adoption of Scrum with many successful project exe-
cutions in small-sized teams. Agile projects in general are used in teams of 6–10
people with iterations of 2 weeks for most cases, whereas highest project success
rates appear with collocated teams. The participants valued the main character-
istics of Agile processes that generally assist in achieving increased productivity
and products of higher quality.

The participants answers in the survey were indicative of the current state of
Agile compared to traditional approaches, whereas the opinions or experience on
Agile development expressed by many participants through dedicated comments
were useful for drawing further conclusions on software engineering practice. The
most useful outcome was the wide adoption of Kanban or the combination of
Kanban with Scrum, namely Scrumban. This hybrid method is indicative of the
future trends in software process evolution, whereas the combination of Scrum
with other Agile practices, such as XP, is also usual [20]. A general observation
is that the efficiency from the adoption of Agile and Scrum depends heavily on
the nature of the software product and the organization culture that can assist
in the transition from waterfall to Agile. When it comes to specific techniques
the adherence degree to the defined principles comes also to play.

In terms of initial research questions introduced the field study assists in
expressing the following remarks:

R1. Does Agile or Scrum Adoption provide better Results in Software Develop-
ment?

The general answer is yes. In addition to our results it has been observed in
specific case studies that Agile assists in the quality and productivity increase,
but this cannot be identified in the short term, i.e. in a pilot Agile adoption.
The problematic part is this initial cost required for investing time on learning
Scrum and getting used to Agile processes in general integrating them in coding
activities.

R2. Do People follow Strictly the Guidelines?
Although not a direct result of the survey, many companies adopt Agile in

a wider sense: they follow its principles (i.e., Agile manifesto) without adhering
to a specific Agile methodology. Many Agile processes leave some degrees of
freedom and may not be adopted strictly but rather in a more flexible way,
however, it is important to adhere to the principal rules.

R3. Have Companies tried to think out-of-the-box by experimenting with Scrum
and Agile Variants?

Companies do experiment (the survey showed that 62.4 % do not hesitate to
adopt new technologies). When it comes to Agile they mainly experiment with

Learning from the Current Status of Agile Adoption 31

large engineering teams, distributed environments, different sprint durations. All
these are vital in order to understand which is the most ideal choice for each
environment supported by the fact that the software process lifecycle is closely
related to the organizational culture, the management structure and the adopted
business processes.

R4. Do Engineers like Scrum?
In principle they do. Of course the answer depends also on the personality,

the organization and its effect on the execution of the daily activities of the
engineer. Another issue is specific roles as the Scrum Master introduced in Scrum
that is not present in other lifecycle models. Is the Scrum master a manager or
can a manager become a Scrum master? The answer is no. Indeed one of the
participants indicated for Scrum that “You need a team that is open minded with
a strong scrum master who does not over-manage.” The way roles are viewed
depends again on the daily interaction of the engineer; interpersonal relationships
are also relevant here.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods: Review and Analysis. VTT Publications, Espoo (2002)

2. Ambler, S.W.: The distributed agile team (2008). http://www.drdobbs.com/
architecture-and-design/the-distributed-agile-team/212201434. Accessed 18 Janu-
ary 2015

3. Ambler, S.W.: Agile Adoption Strategies: Survey Results (2011). http://www.
ambysoft.com/surveys/agileStateOfArt201111.html. Accessed 18 January 2015

4. Atlas, A.: Accidental adoption: the story of scrum at amazon.com. In: Agile
Conference, AGILE 2009, pp. 135–140. IEEE (2009)

5. Benefield, G.: Rolling out agile in a large enterprise. In: Proceedings of the 41st
Annual Hawaii International Conference on System Sciences, pp. 461–461. IEEE
(2008)

6. Bhardwaj, D.: Scrumming it up, A Survey on current software industry practices
(2010)

7. Biju, S.M.: Agile software development methods and its advantages. In: Elleithy,
K., Sobh, T., Iskander, M., Kapila, V., Karim, M.A., Mahmood, A. (eds.) Edu-
cation and Automation Technological Developments in Networking, pp. 603–607.
Springer, Heidelberg (2010)

8. Drobka, J., Noftz, D., Raghu, R.: Piloting XP on four mission-critical projects.
IEEE Softw. 21(6), 70–75 (2004)

9. Franklin, S., Walker, C.: Survey Methodology. Statistics Canada, Ottawa (2003)
10. Hajjdiab, H., Taleb, A.S., Ali, J.: An industrial case study for scrum adoption. J.

Softw. 7(1), 237–242 (2012)
11. Kapitsaki, G.M., Christou, M.: Where is scrum in the current agile world? In:

Proceedings of the 9th International Conference on Evaluation of Novel Approaches
to Software Engineering, ENASE 2014, Lisbon, Portugal, 28–30 April 2014, pp.
101–108 (2014). http://dx.doi.org/10.5220/0004867701010108

12. Kurapati, N., Manyam, V.S.C., Petersen, K.: Agile software development prac-
tice adoption survey. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 16–30.
Springer, Heidelberg (2012)

http://www.drdobbs.com/architecture-and-design/the-distributed-agile-team/212201434
http://www.drdobbs.com/architecture-and-design/the-distributed-agile-team/212201434
http://www.ambysoft.com/surveys/agileStateOfArt201111.html
http://www.ambysoft.com/surveys/agileStateOfArt201111.html
http://dx.doi.org/10.5220/0004867701010108

32 G.M. Kapitsaki and M. Christou

13. Leau, Y.B., Loo, W.K., Tham, W.Y., Tan, S.F.: Software development life cycle
agile vs traditional approaches. In: International Conference on Information and
Network Technology, vol. 37, pp. 162–167 (2012)

14. Moore, G.: Crossing the Chasm: Marketing and Selling Disruptive Products to
Mainstream Customers (rev. edn.). HarperBusiness Essentials, New York (2002)

15. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. J. Syst.
Softw. 82(9), 1479–1490 (2009)

16. Phalnikar, R., Deshpande, V., Joshi, S.: Applying agile principles for distributed
software development. In: International Conference on Advanced Computer Con-
trol, ICACC 2009, pp. 535–539. IEEE (2009)

17. Schatz, B., Abdelshafi, I.: Primavera gets agile. IEEE Softw. 3, 7 (2005)
18. Schwaber, K.: Agile Project Management with Scrum, vol. 7. Microsoft Press,

Redmond (2004)
19. Technologies, S.: Agile methodologies survey results (2003). http://www.shinetech.

com/attachments/104 ShineTechagileSurvey2003-01-17.pdf. Accessed 18 January
2015

20. VersionOne: 8th annual state of Agile survey (2013). http://www.versionone.com/
pdf/2013-state-of-agile-survey.pdf. Accessed 18 January 2015

21. Vijayasarathy, L., Turk, D.: Agile software development: a survey of early adopters.
J. Inf. Technol. Manage. 19(2), 1–8 (2008)

22. West, D.: Agile Systems Integrators: Plausible or Paradoxical? (2010). Accessed
18 January 2015

23. Williams, L., Brown, G., Meltzer, A., Nagappan, N.: Scrum+ engineering prac-
tices: experiences of three microsoft teams. In: 2011 International Symposium on
Empirical Software Engineering and Measurement (ESEM), pp. 463–471. IEEE
(2011)

24. Yin, R.K.: Case Study Research: Design and Methods (Applied Social Research
Methods). Sage Publication, California (1989)

http://www.shinetech.com/attachments/104_ShineTechagileSurvey2003-01-17.pdf
http://www.shinetech.com/attachments/104_ShineTechagileSurvey2003-01-17.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf
http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

A Case Study Investigation of a Lightweight,
Systematic Elicitation Approach for Enterprise

Architecture Requirements

Nicholas Rosasco1(&) and Josh Dehlinger2

1 Department of Computing and Information Sciences,
Valparaiso University, 219 Gellersen Hall, Valparaiso, IN 46383, USA

nicholas.rosasco@valpo.edu
2 Department of Computer and Information Sciences,

Towson University, 7800 York Road, Towson, MD 21252, USA
jdehlinger@towson.edu

Abstract. Enterprise architectures (EA) try to develop an alignment between an
enterprise’s technology infrastructures with its business objectives and are often
facilitated by an EA framework (EAF). EAFs provide the processes to create
and govern an EA and have been used to understand both strategy and business
architecture to synthesize a supporting information system infrastructure.
However, existing EAFs do not provide lightweight, systematic process for
eliciting the needed inputs to develop an EA. The contribution of this work is a
lightweight, systematic approach for eliciting the enterprise vision, mission and
objective requirements necessary as input to an EAF. We make two basic claims
for this idea. First, the utilization of the Vision-Mission-Objectives-Strategy-
Tactics (VMOST) queries provides a lightweight approach for eliciting required
EA knowledge from stakeholders. Second, the use of the Grounded Theory
Method, a qualitative analysis technique, provides a structured, systematic
approach for analyzing and documenting elicited EA requirements. To illustrate
these claims, we apply our lightweight, EA elicitation approach to a real world
enterprise using the case study approach as a research methodology.

Keywords: Enterprise architecture � Grounded Theory Method � Requirements
engineering

1 Introduction

An enterprise architecture (EA) enables an “organizational structure, business pro-
cesses, information systems and infrastructure” to form a “coherent whole of principles,
methods, and models” [11]. The integration, alignment and goal governance for an
institution and its information systems (IS) and information technology (IT) is aided in
an EA by the use of an EA framework (EAF) [10, 24]. Many EAFs exist, including The
Open Group’s Architecture Framework (TOGAF) [15] and the European Space
Agency Architectural Framework (ESAAF) [7]. EAFs have evolved to assist in
aligning the vision, mission and goals of an enterprise resulting in an asset portfolio.

© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 33–45, 2015.
DOI: 10.1007/978-3-319-27218-4_3

The accuracy of this alignment is the principal factor on the effectiveness of use of an
EA, making the correction of any misalignment best done earlier in its creation.

Ownership of an IS portfolio is now the reality for many enterprises that have
accumulated a variety of IT systems and solutions to support their operations and
structure. Through emphasis on a overall, high-level, abstract conception of both goals
and motivations, an EA can provide urgently needed scope and context for decision
making, service and platform selection and needs assessment [14]. An enterprise
considering the use of an EA is then faced with the question of which of the various
EAF approaches, tools and techniques to employ [14, 15].

Literature for EA applications, like the EAFs themselves, is focused on the original
community that used them. These were typically large enterprises with large work-
forces that included large number of IS/IT specialists [7, 15, 24]. The evolution of
EAFs reflects this background, as well, presenting a wealth of options and largely
non-prescriptive regarding employment and approach. A lightweight, more systematic
approach could, potentially, lower the learning curve. This, in turn could put the
knowledge and benefits of EAs/EAFs within reach of a larger community of institu-
tions that have become heavy users of IS/IT systems but lack the specialist knowledge.
This would decrease their difficulties in navigating the ecology both of EAs and a
rapidly evolving range of systems, devices and applications. To present the results of a
response to this idea, this paper addresses two research questions:

• Can a general purpose elicitation technique that is lightweight gather data suitable
for use in shaping an enterprise vision and mission?

• Can the quantity and quality of data gathered be sufficient to begin the population of
an enterprise architecture framework?

This paper presents the conclusions of the experiment conducted to consider and
answer these questions and also presents the structure and process devised to handle
both the data and experimental conditions. The tools used for the initial elicitation [16,
18] a vehicle for business strategic investigations, the Vision-Mission-Objectives-
Strategy-Tactics (VMOST) elicitation approach [19], the Zachman framework [24] as a
representative EAF, and as the processing engine for sensemaking [21]) and compre-
hension of qualitative data, the Grounded Theory Method [20].

To provide procedural structure, this work was conducted using a case study
research methodology, as outlined by Yin [22, 23] and Eisenhardt [6]. This allows for
demonstration of the ease of use of the selected lightweight elicitation technique and
for evaluation of the tool itself. The example this provides can increase the utility of EA
tools and methods for institutions like the one under consideration. Should this work
result in increased adoption various benefits for engaged enterprises can be expected,
including potential maintenance pitfalls will be reduced, the need for costly changes
lessened, and potential stakeholder frustration reduced through the adoption of EA. The
encouragement of discussion with stakeholders inside and outside of an enterprise will
improve overall strategic plans, craft better goals and objectives for the enterprise, and
a greater sense of purpose with accompanying improvements in function and morale
are like to stem from the adoption.

34 N. Rosasco and J. Dehlinger

This work provides several contributions, extending and expanding on the work in
[16], which was largely focused on the methodology and tools used to arrive at both the
data and evolved theory. This work also provides a full discussion of the results of the
analysis performed as well as additional considerations for reuse and possible gener-
alizations of the experimental results. A broader presentation of the overall process and
experiment is also included.

The experimental work in the case study demonstrates a possible path for guiding
and structuring EA approaches. The use of the GTM shows how qualitative data and
techniques can be a systemic approach and mechanism for EA and the needs of
software engineering generally. Additionally, the lightweight elicitation technique will
demonstrate the collection of data for use as initial EAF input. This work is part of a
larger effort to develop systematic requirements engineering approaches, utilizing
qualitative methods, to elicit, analyze and operationalize functional and non-functional
software requirements within the information systems development process.

The remainder of this paper is organized as follows. Section 2 reviews related work
on the GTM, the VMOST strategy approach, and EA. Section 3 details our approach
and evaluation. Section 4 presents the general conclusions from the study. Section 5
provides evaluation results, discussion and caveats of our evaluation. Finally, Sect. 6
has the concluding remarks and a discussion of future research directions.

2 Related Work

The process used for this work combines techniques from several areas, including
enterprise architecture (EA), EA frameworks (EAF), business strategy studies, the
Vision-Mission-Objectives-Strategy-Tactics (VMOST) elicitation approach [1, 2, 19]
and components taken from the Grounded Theory Method (GTM) [20].

2.1 Enterprise Architecture Frameworks

Developed in 1987 and then elaborated into an EAF, the Zachman framework provides
a way to organize and analyze the views of an enterprise [24]. The Zachman framework
provides a taxonomy to document the “building blocks of enterprises” [13] and is based
on six interrogatives (i.e., what, how, where, who, when, and why) and six general
stakeholder-derived perspectives (i.e., planner, owner, designer, builder, implementer
and worker) and is shown in Fig. 1 [24]. The resulting structure provides an overall
view of the enterprise that is extremely flexible. Little guidance, however, is provided
on how to elicit the necessary enterprise requirements. For the more abstract goal and
process areas, this is challenging because the strategic aspects must align with the final
plans for the EA to be effective.

The lack of lightweight and systematic procedures to guide enterprise architects in
eliciting and analyzing the requirements for an EA is not unique to the Zachman
framework. For example, the 780 pages of The Open Group’s Architectural Framework
(TOGAF) core document poses a similar problem for the user looking for answers
about structured procedures for the enterprise architect to elicit and analyze an

A Case Study Investigation of a Lightweight 35

enterprise’s mission, goals and objectives [15]. This gap creates a significant barrier to
the application of the processes and methods, forestalling the use of these powerful EA
concepts outside arenas similar to the original adopting communities. This barrier, in
turn firewalls enterprises the insights that can come from viewing a technology
infrastructure in the context of items in a portfolio. The evolution of EAFs raise
questions of increased specificity and length, increasing the difficulty of understanding
and applying these tools.

2.2 Vision-Mission-Objectives-Strategy-Tactics Method

EAs depend on having an enterprise’s vision, mission and business strategy in hand as
the beginning of integrating, aligning and governing its technology infrastructure with
its business architecture using an EAF [14]. The VMOST approach [19] is used by the
business community to understand and improve strategic comprehension within
commercial enterprises. VMOST is built for the needs of the business community and
enables those in management to assess institutional situations so as to rigorously define
and explore options in complex situations. While providing a hierarchy of considera-
tions, VMOST is only a scaffold for eliciting and understanding the layout of an
enterprise [19].

2.3 The Grounded Theory Method

Elicited requirements typically result in large tracts of qualitative data to be analyzed.
GTM is a qualitative analysis technique that facilitates discovery and crafting of theory
supported by qualitative data [20]. The method, as originally proposed by Strauss and
Corbin [20], includes a three-stage coding process that affords rigorous analysis that
can enable full informational comprehension even when faced with a variety of

Fig. 1. Zachman framework, as a grid [24].

36 N. Rosasco and J. Dehlinger

sources. This manner of data handling is especially adept in circumstances where
specialist information sources are involved. By enabling technical data to be processed
and considered in a discipline-independent fashion, a fuller and more comprehensive
view of the context (i.e., the enterprise) becomes more likely.

GTM has been used in a variety of contexts and aligns with EA effectively; there is
has a demonstrated use within the wider arena of software engineering and its processes
relate well to their paradigms as shown in Table 1. It has been used to analyze
requirements in the development of UML class diagrams, to shape of non-functional
requirement goal trees, and help understand software maintenance processes in small
organizations [3, 4, 9]. In this work, GTM is utilized in refining the goals, missions and
objectives elicited for use in a Zachman EAF (see Fig. 1).

3 Research Methodology

To address the considerations arising from the use of human subjects and an operating
enterprise, Eisenhardt and Yin’s case study research approach was used [6, 23]. This
approach has been influenced by other disciplines, and helps deal with concerns
regarding reproducibility and specific versus general cases. This approach generates
illustrative examples and feedback, and allows for the method itself to be studied, and
is frequently employed in circumstances where variable isolation is difficult or effec-
tively impossible. It also provides overall structure and guidance for design, planning,
and method. The combination of this structure with an overlay of the Grounded Theory

Table 1. Relating qualitative methods, requirements engineering, enterprise architecture,
adapted and extended from [3, 4].

Qualitative methods Requirements
engineering

Enterprise architecture

Input Text, such as
interviews, field
observation notes,
documents

Qualitative text such as
interviews, use cases,
ethnography,
specifications,
standards, references

Stakeholders,
enterprise/institution
IT/IS assets, goals

Analysis
objective

Synthesis of
multiple
perspectives into
single description

Elicitation of viewpoints
into specifications and
system models

Understand goals,
context, constraints.
Apply that
information in way
that places data in
appropriate layers

Output Representations
using narrative
methods and
process diagrams,
theory

Representations of
specifications in
semi-formal models
(UML), ER diagrams,
SysML, requirements
docs

Enterprise architecture
plans: strategic
enterprise plan,
strategic information
systems plan

A Case Study Investigation of a Lightweight 37

Method (GTM) is shown in Fig. 3. This overlay creates a solid structure for managing
freeform, unpredictable data while preserving experimental and procedural integrity,
and implements a robust solution for both qualitative data and live enterprise
circumstances.

3.1 Research Process Design and Case Selections

To conduct the study and gather both observational and response data for the theory
development stage, a design phase is necessary. This includes the selection of the actual
case to study, in this instance an enterprise, as well as participants and the actual
instruments used and processes followed. The entity selected had to meet certain
research needs, principally a willingness to participate and a readiness to allow staff
time to participate. For this research, a staff member of a regional U.S. public university
library suggested an interest in participating during an unrelated discussion. The use of
an institution of this sort had numerous advantages, including a large staff and a
complex internal committee management system. The environment also included a
wide variety of roles, specializations, and functions in a very contained geographical

Fig. 2. VMOST questions, as adapted by Bleistein et al. [1, 2, 19].

Fig. 3. Elicitation and analysis methodology, set within the case study approach and employing
GTM.

38 N. Rosasco and J. Dehlinger

location with a variety of computing assets and systems. By the completion of the
study, over 40 % of the professional staff participated, spread across all of the divisions
of the internal structure and every layer of the organizational hierarchy.

The Vision-Mission-Objectives-Strategy-Tactics (VMOST) questions, discussed in
[19] and adapted by Bleistein et al. [1] and shown in Fig. 2, were used in a one-on-one,
closed interview format as the primary elicitation tool for this study. The VMOST
questions are general in nature and intended to capture business strategic goals and
constructs. The interviews that employed these questions during the fieldwork phase
generated seven and half hours of recordings. The responses of the 23 participants
formed a broad base of responses both to the original questions as well as reactions to
the questions themselves. The full results of the elicitation include more than 100 pages
of professionally transcribed text along with the interviewer’s notes from each session;
these were later reviewed by a second person experienced in the application of qual-
itative analysis. The VMOST questions also have been used previously in IT/business
contexts, providing some prior history in similar context.

3.2 Data Analysis and Hypotheses Shaping

With selection, instrumentation and fieldwork complete, analysis is the next step in
Eisenhardt [6] and Yin’s case study research approach [22, 23]. To deal with the
essentially qualitative nature of the data, a subset of the GTM was employed. This
subset takes the coding phases – open, axial, and selection – as defined by Glaser and
Strauss [8] for GTM. Open coding entailed taking the interviews and identifying key
concepts, ideas, and phases. This also, due to the nature of the data, assists in the
removing of unintended or conservational artifacts from consideration. In this study,
more than 500 open codes were found. These codes were recorded, alongside excerpts
from which they originated and with metadata for tracking. Some of the codes reflect
reactions to the questions or process, most are derived from responses to the questions.
The spreadsheet was used in the next parts of the coding sequence and permitted
traceability across the full process of data handling. The axial coding stage locates
repeated ideas and collects information into overall categories, “sensemaking” the
overall picture from the pieces [21]. Looping back is permitted under the GTM process,
allowing overlooked information and codes to be captured. From this phrase, collec-
tions like stakeholders and assessment emerged as shown in the subset presented in
Table 2. This can be seen in the “where they turn” response, which becomes the first
open code, ‘research center’, which is then grouped under ‘larger goal’ during axial
coding. Once the groupings, patterns, and themes emerged from this intense immersion
in the result set, selective coding was then performed. This required the choosing of one
code group as the core, the concept(s) to which all others relate.

With sense made of the data, the case study approach expects hypotheses to be
shaped from the overall data. This theory development becomes a set of preliminary
conclusions. Chief among these conclusions was that these 10 highly-general, VMOST
questions, were remarkably effective at eliciting information for EAF completion,
exceeding the initial expectations. Additionally, the timing of the study afforded an
opportunity to compare results against a conventionally conducted, concurrent strategic

A Case Study Investigation of a Lightweight 39

capture effort that had been in preparation during the same period by the enterprise
under study. This side-by-side view of the same enterprise provided the basic agree-
ment on strategy and some confirmation of the impressions garnered in the interview.
In the large difference of information collected, the same comparison provided an
indication of the success of this work’s overall data collection process in terms of
variety and spread of content.

3.3 The Story and Enfolding Literature

With the data-driven hypotheses created, in this instance that the provided services and
related decision making and metrics define the library to stakeholders and to itself, and
that various considerations inform and shape this reality, GTM expects the creation of a
story to elaborate on the linkages found in the data. With this story, as illustration and as
tangible output, artifacts are frequently created to generate conversation and demon-
strate the overall understanding. An example artifact is provided in Fig. 4, as an illus-
tration of the complexity of the overall story and comprehension generated. This also
shows where the overall understanding created would place the example code previ-
ously mentioned. The processed data and codes were also viewed in the context of
population of the Zachman framework. Additionally, this artifact can be handed back to
the enterprise for consideration and even validation, thereby sparking additional feed-
back and discussion. The data collected covered represented, to widely varying degrees,
components of four of the Zachman columns, which exceeded the expected two.

The Eisenhardt-described research approach for case study execution allows for
consideration of “enfolding literature” – data text and artefacts that inform the
understanding of the research team [6]. In a commercial, governmental or other
structured entity, these will often include various external and internal documents. This

Table 2. Example data subset, in Grounded Theory Method three-stage coding.

40 N. Rosasco and J. Dehlinger

sort of input can include organizational charts, process diagrams and asset inventories,
for example, as well as regulatory and oversight data.

The enterprise in this study has a parent enterprise and participates in several larger
arrangements and possesses a well-defined internal structure. Consideration of various
governing, strategic and planning materials related to these larger and complex entities
may yet prove relevant as feedstock for theory and context capture. This investigation
and research, as a part of the longer-term project, is still underway. Successful eval-
uation and identification of these items, if any, may prove useful for other entities, in
terms of determining either inputs into an EA process or overall consideration of
questions of operational control, scope, stakeholder expectations and general
accountability.

4 Primary Results

The data collected was far ranging, rich in both detail and more abstract concepts. The
artifacts built from the story realized from this data collection have been found by
representatives of the studied enterprise to be interesting, useful and compelling. The
coverage and elicitation of the Zachman framework by the data, both in the initial
collection and particularly after coding-based qualitative analysis, far exceeded the
expectations for the exercise. VMOST derived qualitative data passed through a subset
of the GTM’s methods has the ability to seed an EAF in an effective way.

The overall chain of techniques, as deployed, does so at relatively low impact in
terms of time or cost, and demonstrates that guidance without excessive prescription can
open the door to the benefits of EA in a way cost-beneficial for institutions with IS/IT
complexity but without the deep expertise bench customarily available to the usual class
of institutions that deploy these methods. Lightweight data elicitation, when combined
with qualitative methods, shows great promise for leveraging these tools more widely.
The conversational process, in particular, additionally fosters a consultative and engaged

Fig. 4. Sample from a data presentation artifact, after GTM application.

A Case Study Investigation of a Lightweight 41

approach to both strategic capture and IS/IT related data collection, and the engagement
thus created is likely a long-term benefit as well.

All of this combines to create away to accumulate inputs for anEAF. The results, even
prior toGTMuse, provided considerations that would have sped the population of anEAF
through providing indicators for future investigation. When combined with GTM as a
handling method for this highly context-aware and contextual data, the coverage –

Zachman cells that can have relevant data in them – becomes truly striking when viewed
against the relatively brief overall time staff of the enterprise provided [17, 18].

5 Generalization and Limitations Discussion

In this instance, some circumstances merit consideration as potential limiting factors to
various success points in both the overall experiment and for the data collection
generally. The interview process was made significantly simple to execute by virtue of
the ‘one building’ proximity of the participants. The ease of interviewing might prove
difficult to replicate in an entity whose personnel are more spread out.

The enterprise, as an institution, was largely accustomed to self-study, partly
inspired by a long-standing professional customs [5, 12, 25]. This enterprise was
somewhat coincidentally engaged in such self-study at the time of the experiment,
which could both advantage and detriment to the overall experimental results. In this
instance, the perception of the interview as an ‘alert outsider’ was another difficult to
isolate consideration. The nature of the bulk of the enterprise staff - largely profes-
sionals of a highly-communicative nature who were accustomed to research may also
limit the generalizations that can be made.

The receptivity of the participants to involvement may also have in part been
influence by the human subjects research reassurances that this was informational and
not evaluative may have been key. The nature of this enterprise could also mean that less
articulate staff may have, by style of process, been marginalized in terms of contribution.

It is apparent that, whatever the limitations of the experimental parameters deriving
from the variability of working under non-laboratory conditions, the coding operations
taken from the Grounded Theory Method (GTM) proved apt for the type of data
collected. The immersive and abstract expectations of employing this may itself be a
limit to reuse, as the focus and engagement with the results required to achieve artifacts
that enable discovery and fully present information requires some time and detachment
not necessarily available to all personnel. Lastly, identification of common points and
discoveries that are reusable may empower greater reuse of these techniques.
That VMOST as a lightweight elicitation mechanism worked well is, again with regard
to the overall limitations of this work, a reasonable takeaway from this case study.

6 Conclusions

Lightweight guidance and approaches, specifically regarding technique selection, for
initial data elicitation and analysis for EA shows promise. The VMOST queries as
interview scaffolding proved effective for data collection. That qualitative data, when

42 N. Rosasco and J. Dehlinger

viewed as a whole and in parts with application of the Grounded Theory Method
(GTM), can be used to begin a locally-tailored enterprise architecture (EA) plan that
can deliver the benefits of this area of software engineering practice, and create overall
objectives and context awareness that can be used to effectively shape requirements and
decision making. The case study approach provided useful results for investigation of
these approaches and tools, and has detailed the use of EA outside of the customary
large institution and specialist regions of application.

The work has shown that the initial expectations – that vision and mission could be
understood via simple tools – have far exceeded the initial forecast. The use of the
Vision-Mission-Objectives-Strategy-Tactics (VMOST) queries to elicit EA knowledge
from stakeholders was found to be a lightweight elicitation approach that yielded the
qualitative data needed to feed into the Zachman framework. Paired with the structured
qualitative analysis as a part of the Grounded Theory Method to analyze and under-
stand the elicited data, the data collected and analyzed far outstripped the anticipated
and modest coverage that was originally expected. The accumulated information, given
in response to VMOST derived queries, provides way to satisfy the input needs for
enterprise strategic vision, mission, and objectives that are requisites for use of an
EAFs. From that demonstration, GTM’s coding operations provide a structured and
lightweight approach to analyzing and documenting elicited EA information and
requirements.

The richness of the resulting artifacts and overall scope of information show real
promise and potential, and will be investigated further and with other contexts. Further
investigations regarding repeatability and differing scopes, including utilization of
different forms of elicitation like surveys to replace interviews for dispersed institu-
tions, are also under consideration. Planned future work will include soliciting addi-
tional feedback on those constructed artefacts and assembly of the various stages into a
fuller presentation of the process, to better assess their impact will be done. Further
investigation of the capabilities and operational considerations for the application of
this lightweight methodology are merited, to test the utility of the approach with other
enterprises and institutional contexts. The utility of this process and EA generally for
prioritization of security needs, meeting the challenges of complex system integration
also merit investigation. This approach and technique chain may afford a middle path
between “heavy” and “lightweight” techniques for overall enterprise decision making,
especially given the modern trend towards mashups and high flexilibity environments.

Acknowledgements. Earlier work in the studies for this paper was partially supported by
Towson University and this research was conducted under its Institutional Review Board for the
Protection of Human Subjects, exemption number 11-0X14. The authors would like to thank the
Towson University’s Cook Library for their help and the reviewers for their comments and
insights.

A Case Study Investigation of a Lightweight 43

References

1. Bleistein, S.J., Cox, K., Verner, J.: Strategic alignment in requirements analysis for
organizational IT. In: Proceedings of the 2005 ACM Symposium on Applied Computing -
SAC 2005, p. 1300 (2005)

2. Bleistein, S., Cox, K., Verner, J.: Validating strategic alignment of organizational IT
requirements using goal modeling and problem diagrams. J. Syst. Softw. 79(3), 362–378
(2006)

3. Chakraborty, S., Dehlinger, J.: Applying the grounded theory method to derive enterprise
system requirements. In: 10th ACIS International Conference on Software Engineering,
Artificial Intelligences, Networking and Parallel/Distributed Computing, 2009. SNPD 2009,
pp. 333–338 (2009)

4. Chakraborty, S., Rosenkranz, C., Dehlinger, J.: A grounded theoretical and linguistic
analysis approach for non-functional requirements analysis. In: Proceedings of the
International Conference on Information Systems (ICIS) (2012)

5. Dewey, M.: Library notes: improved methods and labor-savers for librarians, readers and
writers, vol. 2–3, Library Bureau (1893)

6. Eisenhardt, M.: Building theories from case study research. Acad. Manag. Rev. 14(4),
532–550 (1989)

7. Gianni, D., Lindman, N., Fuchs, J., Suzic, R.: Introducing the European space agency
architectural framework for space-based systems of systems engineering. In: Hammami, O.,
Krob, D., Voirin, J.-L. (eds.) Complex Systems Design and Management SE - 24,
pp. 335–346. Springer, Berlin (2012)

8. Glaser, B., Strauss, A.: Discovery of Grounded Theory - Strategies for Qualitative Research.
Sociology Press, Mill Valley (1967)

9. Hasan, R., Chakraborty, S., Dehlinger, J.: Examining software maintenance processes in small
organizations: findings from a case study. In: Lee, R. (ed.) Software Engineering Research,
Management andApplications 2011. SCI, vol. 377, pp. 129–143. Springer, Heidelberg (2012).
SERA (selected papers)

10. Jarvis, R.: Enterprise Architecture: Understanding the Bigger Picture - A Best Practice Guide
for Decision Makers in IT. The UK National Computing Centre, Manchester (2003)

11. Lankhorst, M.: Enterprise Architecture at Work (The Enterprise Engineering Series).
Springer, Berlin (2012)

12. Leimkuhler, F.F.: Systems analysis in university libraries. In: American Society for
Engineering Education (Annual Meeting). College And Research Libraries, Chicago (1965,
reprint)

13. Luftman, J.N., Lewis, P.R., Oldach, S.H.: Transforming the enterprise: the alignment of
business and information technology strategies. IBM Syst. J. 32(1), 198–221 (1993)

14. Minoli, D.: Enterprise Architecture A to Z: Frameworks, Business Process Modeling, SOA,
and Infrastructure Technology. CRC Press, Boca Raton (2008)

15. The Open Group Architecture Forum (Forde, C.). The Open Group Architecture Framework
(TOGAF). 9th edn, Reading, Berkshire, UK (2009)

16. Rosasco, N., Dehlinger, J.: Application of a lightweight enterprise architecture elicitation
technique using a case study approach. In: 9th International Conference Evaluation of Novel
Approaches to Software Engineering (2014)

17. Rosasco, N., Dehlinger, J.: Eliciting business architecture information in enterprise
architecture frameworks using VMOST. In: 2011 1st ACIS/JNU International Conference
on Computers, Networks, Systems and Industrial Engineering (CNSI), pp. 474–478 (2011)

44 N. Rosasco and J. Dehlinger

18. Rosasco, N., Dehlinger, J.: Business architecture elicitation for enterprise architecture:
VMOST versus conventional strategy capture. In: 2011 9th International Conference on
Software Engineering Research, Management and Applications (SERA), pp. 153–157
(2011)

19. Sondhi, R.K.: Total Strategy, p. 272. Airworthy Publications International, Kirkby Stephen
(1999)

20. Strauss, A., Corbin, J.: Grounded Theory Methodology: An Overview. Sage Publications,
Thousand Oaks (1998)

21. Weick, K.E., Sutcliffe, K.M., Obstfeld, D.: Organization science and the process of
sensemaking. Organ. Sci. 16(4), 409–421 (2013)

22. Yin, R.K.: Applications of Case Study Research. Sage Publications, Thousand Oaks (2011)
23. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thousand Oaks

(2014)
24. Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3),

276–292 (1987)
25. Zwickey, L.: Writing a library’s mission and vision statement. In: Future Ready 365/Special

Libraries Association, Alexandria (2011)

A Case Study Investigation of a Lightweight 45

Using a Domain Specific Language
for Lightweight Model-Driven Development

Christopher Jones(B) and Xiaoping Jia

School of Computing, DePaul University, 243 S. Wabash Ave., Chicago, IL, USA
{cjones,xjia}@cdm.depaul.edu

Abstract. Model-driven development (MDD) emphasizes platform-
independent models. Approaches such as the Object Management
Group’s Model Driven Architecture (MDA) are built on a foundation of
standards and specifications, but require significant effort to encode and
interpret the models during the transformation to the final application.
A second approach to MDD uses domain-specific languages (DSLs) as
a means of simplifying the models and transformations for applications
within that domain. In this paper we look at AXIOM, a DSL for mobile
application development, and how it allows for platform-independent
models to be used to generate native code in a lightweight manner.

Keywords: Model-driven development · Domain-specific languages

1 Introduction

Mobile applications are increasingly sophisticated yet must still address
platform-specific challenges and constraints such as responsiveness, limited mem-
ory and low energy consumption. The most common mobile platforms, Google’s
Android and Apple’s iOS, are similar in capability, but differ in their program-
ming languages and APIs, making it expensive to port a mobile application from
one to the other. For developers, it is desirable that their mobile software run on
all major mobile platforms without re-engineering. Model-driven development
(MDD) aligns well with this desire.

MDD generally refers to any approach that emphasizes software models as the
primary artifact from which applications are built. The nature of these models
varies widely, from UML in the case of MDA, to domain-specific languages such
as Canappi1. The goal of MDD is to shift the development focus away from
a code-centric application representation [27] and toward a model-centric one
instead.

One approach to MDD is MDA [22], which creates applications by transform-
ing platform-independent models (PIMs) into platform-specific models (PSMs)
and ultimately into native code. Despite some early successes [24], MDA, with
its foundation of UML, OCL, and MOF, has seen only limited industry adoption

1 http://www.canappi.com.

c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 46–62, 2015.
DOI: 10.1007/978-3-319-27218-4 4

http://www.canappi.com

Using a Domain Specific Language for Lightweight MDD 47

with mixed results [1,9]. Common challenges include: limitations of UML [5,8];
inadequate tool support; and model transformation complexity. It has been
argued that differences between modeling and implementation languages make
MDD adoption challenging [29]. Another approach to MDD involves domain-
specific languages (DSLs), which concisely represent concepts from a particular
domain. DSLs trade the flexibility of a general-purpose language for the con-
ciseness provided by a special-purpose language. This leads to the following
question: can we use a DSL to model cross-platform applications in a platform-
independent way and then transform those models into working implementations
that can use each platform’s full native capabilities?

In this paper we present a practical and scalable DSL-based MDD approach
for developing cross-platform mobile applications: AXIOM (Agile eXecutable
and Incremental Object-oriented Modeling). AXIOM’s major features include:

(a) A completely generative process that produces native implementations using
a single model without any manual coding in the native platform and SDK.

(b) An emphasis on platform-independence that allows full access to all of the
features and capabilities for each native platform.

(c) Highly reusable and customizable transformation rules for architecture,
design, and styling decisions, as well as reusable templates for code gen-
eration that can be easily customized on a per-screen, per-application, and
per-platform basis.

The rest of this paper examines AXIOM in more detail. Section 2 exam-
ines AXIOM’s approach and key architectural elements. Sections 3–5 examine
AXIOM’s models and explores its transformation process. Section 6 provides
the results of our evaluation of AXIOM in both small- and mid-scale tests.
Sections 7–9 offer some thoughts about how AXIOM compares to other MDD
approaches.

2 The AXIOM Approach

AXIOM [10–12,16] retains the key elements of MDD such as model-centricity
and model transformations to generate executable code. Whereas approaches
that rely on UML often use MOF [23] meta-models to drive model transforma-
tion, AXIOM instead provides a DSL written in the dynamic language, Groovy.

As shown in Fig. 1, the AXIOM approach is divided into three stages: Con-
struction, Transformation, and Translation. Each stage emphasizes different
models and activities that are unified by a single representation: the Abstract
Model Tree.

2.1 Abstract Model Trees

Abstract Model Trees (AMTs) capture the logical structure and other essential
elements of the AXIOM models. For example, each logical UI view and control is

48 C. Jones and X. Jia

Fig. 1. The AXIOM approach.

represented as a node in the AMT. A key feature of AXIOM is that the models
are represented as trees rather than graphs, as in MOF. This enables simpler
transformation and code generation processes, as well as simpler transformation
rule definitions. AMTs provide a versatile means of supporting different kinds
of transformations.

Definition 1. An abstract model tree, AMT , is formally defined as a 3-tuple:

AMT = (N,E,A)

where N is the set of nodes within the model, E is the set of edges connecting
those nodes to form a tree, and A is a set of mappings from the nodes in N to
a set of attributes in the form of key-value pairs.

Each node in an AMT contains a set of attributes defined as key-value pairs
making the AMT similar to an attribute syntax tree used in an attribute gram-
mar [18]. However, AMTs differ from attribute syntax trees in two important
respects. First, AMTs allow cross-node relationships and references to be rep-
resented as attributes of the nodes. Second, AMTs not only support the simple
data types of traditional attribute grammars, but also support complex types
such as collections and closures.

3 Construction

During the Construction stage the business requirements, application logic, and
user interface are captured in a platform-independent Requirements model using
AXIOM’s DSL. The DSL aims to maximize the ease of modeling by allowing the
Requirements model to be represented in a simple, abbreviated form whenever
possible.

Applications are defined as a set of related views. Transitions are defined
as attributes on UI controls that trigger the transition and may have optional

Using a Domain Specific Language for Lightweight MDD 49

guard conditions and actions. Views contain logical UI controls such as Label,
Button, ListView, Item, and Panel. Views support both platform-independent
and platform-specific widgets. One interesting feature of AXIOM is the ability
to define dynamic views, that is, views that are created programmatically at run
time.

Because AXIOM is based on a dynamic language it has access to a rich set
of libraries and frameworks that traditional MDD notations like UML do not
provide.

4 Transformation

Once the Requirements model has been defined, it is transformed into an Appli-
cation model using an intelligent model builder. This model is further refined
during a canonicalization step that simplifies the model as much as possible mak-
ing it suitable for subsequent transformation and translation. The model builder
uses a preprocessed representation of the iOS and Android APIs to expose a
platform-independent version of many of the common widgets between the two
platforms. This allows the Requirements model to specify a platform-specific
widget if desired even though this will constrain the platform of the finished
application.

4.1 Transformation Rules

AXIOM’s transformation rules were designed with platform-specificity in mind.
We followed a bottom-up approach to the abstraction of the different platform
APIs, preserving the original APIs so that they may be used when appropriate,
while abstracting common features into the core DSL to simplify the develop-
ment of cross-platform mobile applications. Transformation rules can be applied
across an entire application or changed screen-by-screen. This allows them to be
reused across different applications and to be customized for different screens
within the same application.

Definition 2. A transformation rule has one of the following forms:

LHS → LHS′ (1)
LHS → N1, ..., Nk (2)
LHS → ε (3)

where LHS represents a node to which the transformation rules will be applied.
The LHS can be matched based on node types and attribute values. Rule (1)
allows a node’s attributes to be modified. Rule (2) allows a node to be replaced
by a sequence of nodes N1, ..., Nk. Rule (3) allows a node to be removed.

The Transformation stage thus results in a series of successive models:

M0,M1, ...,MI

50 C. Jones and X. Jia

For k = 1, 2, ..., I, Transform(Mk−1, Rk) = Mk, where Rk is the rule set used at
the k-th phase of the transformation. M0 is the initial Application model, M1..I−1

are intermediate, partially-transformed models, and MI is the final Implemen-
tation model. The model transformation process, Transform(M,R), is given
by:

Transform(M,R)
1 Traverse the source AMT, M , depth-first
2 while there are more nodes
3 if the node matches the LHS of any rule in R
4 if a single match is found
5 apply the matching rule
6 else
7 apply the highest-precedence rule

AXIOM first calls Transform against the AMT with a set of platform-
independent rules. It then executes Transform again, applying the rules for
the target platform. This multi-pass transformation process uses two kinds of
transformation rules: structural and styling. Each pass of the transformation
process may apply zero or more transformation rules. While it is possible that
an ill-defined rule could result in non-termination because of infinite recursion,
thus far the rules defined for the evaluation prototype (see Sect. 6) have been
simple enough to avoid deep nesting or recursion.

4.2 Structural Transformations

Structural transformations define the macro-organization of the application as
the result of a series of architecture and design decisions. These transforma-
tions address both platform-independent and platform-specific issues. Struc-
tural transformations change the AMT by adding and removing nodes and node
attributes, splitting one node into multiple nodes, and merging multiple nodes
into a single node.

Definition 3. A structural transformation on an abstract model tree, AMT ,
results in a new abstract model tree, AMT ′, such that:

AMT ′ = (N ′, E′, A′) (4)

where N ′, E′ and A′ result from the application of the transformation rules from
R on the original AMT’s N , E and A respectively.

Structural transformations are rule-based and generally reusable. They may
alter both the structure of the AMT as well as the attributes of its nodes yielding
a new AMT that is functionally isomorphic to the Application model. Common
examples of structural transformations include target platform and language, the
use of architecture and design patterns, and code distribution. These choices will
yield very different implementations when the resulting Implementation model
is translated into native code.

Using a Domain Specific Language for Lightweight MDD 51

4.3 Styling Transformations

In contrast to structural transformations, styling transformations preserve the
underlying structure of the AMT but alter its nodes to address intra-class, micro-
organizational decisions.

Definition 4. A styling transformation on an abstract model tree, AMT , results
in a new abstract model tree, AMT ′, such that:

AMT ′ = (N,E,A′) (5)

where N and E are the same sets that were defined for the original AMT, and
A′ results from the application of transformation rules from R on A.

Styling transformations modify node attributes but not the set of nodes or
their edges. Examples of styling transformations include implementation idioms,
visual layout, and theme. Styling transformations are usually application-neutral
and are highly reusable. One common use for this kind of transformation is the
handling of platform-specific widgets to address the following three cases:

Case 1. The same widget exists in both platforms. Examples include text fields,
labels, and buttons.

Case 2. The same widget does not exist on both platforms, but can be sim-
ulated. For example, radio button groups exist natively on Android,
but must be simulated or replaced on iOS.

Case 3. The widget does not exist in both platforms and cannot be effec-
tively simulated. Examples include Android’s ImageButton and iOS’s
PageView. The widget can be encoded within the DSL but the appli-
cation cannot be made cross-platform without changing the transfor-
mation rules and code generation templates to use, for example, a new
widget library.

Styling transformations can modify the approach to widget generation and
embed those decisions within the Implementation model. Deferring these lower-
level decisions until model transformation enables us to make selections that are
appropriate for the desired characteristics of the target runtime environment. For
example, while it may be a functional requirement that a list of items be sortable
within the UI, we can further refine the approach to emphasize the characteristics
of one sort algorithm over another depending on the target runtime environment
and its particular constraints.

5 Translation

The Translation stage is used to convert AXIOM’s Implementation model into
native code for the target mobile platforms. The Implementation model is a
design of the application with the modules, classes, and their relations deter-
mined. It defines three key aspects of the application’s organization:

52 C. Jones and X. Jia

Modules. The macro-organizational aspects of the application.
Resources. The files that comprise the completed application. This includes

not only source files but any descriptors that are required by the
target platform.

Fragments. The fragments of content that are used to construct the final
resources.

Modules are composed of resources, which are in turn composed of fragments.
The Implementation model does not directly contain these elements but contains
the information needed to generate them in the form of injection descriptors.

5.1 Injection Descriptors

Each element in the Implementation model is associated with one or more injec-
tion descriptors, D = {d1, d2, ..., dk}. It is the combination of the Implementa-
tion model’s organization, combined with the injection descriptors that enables
AXIOM to successfully generate native code for the target platform.

Definition 5. An injection descriptor, di, is a tuple:

di = (target, template-ref, binding) (6)

where target refers to an Implementation model element, template-ref is a ref-
erence to the code template to be used to generate the code for this element,
and binding is a map of key-value pairs that are used within the code templates
during code generation.

5.2 Native Code Generation

The Implementation model, MI , contains nodes and attributes that will
be mapped to specific implementation artifacts such as project, class, and
resource files. During the Translation stage AXIOM’s code generation process,
Generate(M), uses the injection descriptors on the Implementation model’s
AMT, MI , combined with a set of code templates to generate complete native
code:

Generate(M)

1 Traverse the AMT, M , depth-first

2 for each node n ∈ N in the AMT of M

3 for each injection descriptor di of n

4 Get the code template, di[template-ref]

5 for each parameter, p, in the template

6 Substitute p = di[binding][p]

7 Inject the code to di[target] at the point specified by the template.

8 for each item in the native implementation

9 Assemble the code fragments into a linear source code file

Using a Domain Specific Language for Lightweight MDD 53

As shown by the Generate algorithm, AXIOM is template-based [4]. Its code
templates capture knowledge and information about the target platform’s native
language and SDK. Each code template contains a parametric code fragment and
an injection point, the location where the code fragment can be inserted. This
combination drives the code generation process.

Listing 1 shows a partial code template that generates the Java source for
the views in the Requirements model. This template’s placeholders, such as

PACKAGE , correspond to keys within the injection descriptor being applied to
the node in the AMT. Javadoc-like placeholders such as /**IMPORT INJECTION
POINT**/ indicate additional injection points with their own code templates.
Each injection point has its own injection descriptors and is processed during
the execution of the Generate algorithm.

package ___PACKAGE___;

/** IMPORT INJECTION POINT **/

public class ___VIEWNAME___

extends ___SUPERCLASS___ {

/** DECLARATION INJECTION POINT **/

@Override

public void onCreate(Bundle state) {

super.onCreate(state);

/** ONCREATE INJECTION POINT **/

}

/** METHOD INJECTION POINT **/

}

Listing 1. Partial template for Java view implementation.

AXIOM has symbol tables containing information about many of the core
widgets of both the iOS and Android platforms. When AXIOM generates the
native code for a target platform these tables are consulted and any property
not located in them is ignored. This allows a model to contain both Android and
iOS properties but to only translate the properties for the target platform. This
keeps with AXIOM’s goal of enabling the models to be as platform-specific or
platform-neutral as desired.

Each platform has its own default configuration that is used during the code
generation process. These defaults include aspects of UI design including font
size, style and color. These platform defaults act like a CSS style when they are
applied during code generation. These templates can be modified to meet new
and changing needs, making them application-independent and reusable.

6 Evaluation

A proof-of-concept prototype tool has been developed to demonstrate the fea-
sibility of AXIOM. The prototype tool transforms AXIOM models into native
implementations for the Android and iOS platforms. The design of the generated
code follows the common MVC architecture. While only a subset of the native

54 C. Jones and X. Jia

iOS and Android APIs are currently supported, the prototype tool adequately
demonstrates the feasibility and the potential benefits of the AXIOM approach.

6.1 Approach

Using the prototype tool, we conducted two kinds of analyses. The first evaluated
the initial AXIOM Requirements model against the code generated from that
model. The second compared the code generated from the Requirements model
to hand-written code provided by experienced software developers.

Small-Scale Analysis. In this analysis we assessed more than 100 small-scale
tests, each of which models a working mobile application that can be success-
fully built and deployed on iOS and Android devices and which demonstrate
functionality common to many mobile applications including screen navigation
and assorted widgets – some cross-platform, others not.

The sample applications were developed by Masters students from DePaul’s
Software Engineering program. These students were all experienced software
developers, although there were significant differences in their mobile application
development expertise. None of them had used AXIOM before and were provided
training on the DSL.

Mid-Scale Analysis. For this analysis, five mid-sized applications were devel-
oped featuring a variety of navigation and user interactions. Table 1 describes
the applications and some aspects of their structure and complexity.

The native-code versions of these applications were developed by Masters
students from DePaul’s Software Engineering program. The AXIOM models
were developed by the authors. To ensure consistency, each application had a
pre-defined set of requirements that needed to be met by both the AXIOM and
hand-written implementations.

6.2 Metrics

Both analyses emphasized metrics for representational power and information
density.

Table 1. Description of mid-scale applications.

App. Description Screen Transition

count count

CAR Shop for cars by makes and models 6 8

CVT Unit conversions for weight, volume, etc 8 7

EUC Data about EU member countries 3 2

MAT A memory game where players must match pictures 1 1

POS A simple restaurant point-of-sale system 8 9

Using a Domain Specific Language for Lightweight MDD 55

Representational Power. Representational power measures how much code
in one language is required to produce the same application in another language.
This provides a rough indication of the relative effort expended by a developer
to produce an application using different languages.

Our evaluation compared the source lines of code (SLOC) of the AXIOM
Requirements models to the generated SLOC for both iOS and Android. For
the comparative evaluation of the SLOC, we used CLOC2 with Groovy as the
source language for AXIOM. The Android and iOS platforms were accounted
for using Java and Objective-C respectively. The SLOC counts do not include
“non-essential” code such as comments or block delimiters such as braces.

While SLOC is not ideal in terms of representing application complexity
because of the potential size differences introduced by developer ability, in this
case we felt the metric to be appropriate. First, the applications were straight-
forward enough that developer ability was likely not a significant factor. Second,
we had a limited number of developers perform the actual coding, which helped
to control for the inevitable variation in ability. Third, had we chosen to ana-
lyze story or function points, we would likely have seen significant clustering of
the data owing to the comparative simplicity of the applications. By focusing
on SLOC we were able to see relative differences in the sizes of the different
representations of the applications.

Our analysis of SLOC assumes that developer productivity measured in
source lines-of-code per person-hour (SLOC/PH) is roughly constant regardless
of languages used. Research by Jiang [15] suggests that while language genera-
tion can significantly affect developer productivity, differences between languages
in the same generation are less pronounced. Since we focus on platforms using
Objective-C and Java, both of which are 3GL, we believe our assumption to be
reasonable.

Like Jiang, Kennedy [17] identifies language as a significant component of
productivity. Kennedy’s relative power metric, ρL, based on SLOC, measures
the relative expressiveness of one language to another.

Definition 6. Kennedy’s Relative Power Metric is given by:

ρL/L0 = I(ML0)/I(ML) (7)

where I(ML0) is the SLOC required to implement model M in native code and
I(ML) is the SLOC required to implement M in AXIOM.

Information Density. Information density is a measure of a language’s con-
ciseness. Languages with high information densities have more compact repre-
sentations. To evaluate comparative information densities, we created ZIP files
using gzip, which is based on the DEFLATE algorithm, excluding all files that
were not generated by AXIOM. We then compared the compression ratios, CRL,
derived using:

2 http://cloc.sourceforge.net.

http://cloc.sourceforge.net

56 C. Jones and X. Jia

CRL =
Uncompressed I(ML)
Compressed I(ML)

(8)

where L is the language in question. While compression ratios will vary from
model to model, a large number of samples can serve to provide a typical value
for CRL. We then used the compression ratios to derive the language density.

Definition 7. Language Density, δ, is defined as:

δL/L0 = CRL0/CRL (9)

Language density is similar to Kennedy’s relative power metric, but it relates
one language to another based on their respective compression ratios. This is dif-
ferent than measuring how many lines of code are required in different languages
for similar representations since one language might use a verbose syntax and
the other a very concise one even though their SLOC measurements are the
same.

6.3 Results

Table 2 summarizes the results of our analysis of representational power and
information density based on the median SLOC from the small- and mid-scale
tests. To simplify the analysis, we treat all generated code for each platform as a
single “language” even though the generated code may comprise several different
languages. For example the Android “language” includes XML and Java whereas
the iOS “language” includes XML and Objective-C.

Each of our metrics requires one or two languages depending on whether or
not it is nominal or ratio. Nominal metrics, such as compression ratio, refer to
language L0 which can be any of iOS, Android or AXIOM. Ratio metrics, such
as relative power or language density, compare two languages, L0 and L. L0 is
the base language and is either Android or iOS. L is the target language, which
is always AXIOM for our purposes.

Table 2. Comparison of median small-scale and mid-scale test case metrics.

Metric Small-scale comparison of Mid-scale comparison of

AXIOM to an L0 of AXIOM to an L0 of

iOS Android AXIOM iOS Android AXIOM

Representational power

Source LOC 171.50 106.00 15.00 293.00 311.00 64.00

Relative power 11.43 7.07 1.00 4.58 4.86 1.00

Information density

Compression ratio 12.01 16.71 1.88 10.30 16.27 4.43

Language density 6.39 8.89 1.00 2.33 3.67 1.00

Using a Domain Specific Language for Lightweight MDD 57

Table 3. Comparison of mid-scale test case metrics.

Metric Comparison of AXIOM Comparison of AXIOM

to a Generated L0 of to a Hand-Written L0 of

iOS Android AXIOM iOS Android AXIOM

Representational power Source LOC

CAR 435 488 — 594 889 62

CVT 1,384 1,125 — 431 538 365

EUC 726 506 — 559 913 46

MAT 293 311 — 193 245 64

POS 1,953 1,849 — 677 957 165

Relative power

CAR 11.45 12.84 — 9.58 14.34 1.00

CVT 3.79 3.08 — 1.18 1.47 1.00

EUC 15.78 11.00 — 12.15 19.85 1.00

MAT 4.58 4.86 — 3.02 3.83 1.00

POS 11.84 10.89 — 4.10 5.80 1.00

Information density Compression ratio

CAR 9.18 10.82 — 9.53 10.59 4.82

CVT 6.87 7.54 — 9.95 12.87 7.33

EUC 9.69 9.03 — 10.72 11.47 4.94

MAT 10.30 16.27 — 10.96 15.83 4.43

POS 7.35 8.97 — 10.17 10.71 5.93

Language density

CAR 1.90 2.24 — 1.98 2.20 1.00

CVT 0.94 1.03 — 1.36 1.76 1.00

EUC 1.96 1.83 — 2.17 2.32 1.00

MAT 2.33 3.67 — 2.47 3.57 1.00

POS 1.24 1.51 — 1.72 1.81 1.00

The reduction in the size of the AXIOM Requirements models compared to
the size of the generated code represents a significant reduction in development
time and hence an increase in developer productivity. Since the median relative
power of AXIOM is between 4.58 and 11.43 that of iOS and between 4.86 and
7.07 that of Android, we conclude that AXIOM is more representationally pow-
erful than either iOS or Android. Similarly, the median compression ratio for
AXIOM’s models, 1.88 for the small-scale tests and 4.43 for the mid-scale tests,
is significantly smaller than either iOS or Android, suggesting that AXIOM’s
DSL is more compact. The median iOS and Android language densities suggest
that both languages may involve greater complexity and wordiness to represent
the same model than AXIOM although the values seem to gradually converge as

58 C. Jones and X. Jia

the applications get larger. We believe that at that scale, the percentage of the
model that is concerned with the mobile-ness of the application is outweighed
by the percentage of the application that is concerned with the business logic.

Table 3 shows a more detailed analysis of the individual applications that
comprised the mid-scale tests. The preliminary results show that the AXIOM-
generated code is often comparable to, if not smaller than, hand-written Android
and iOS code. In the cases of the CVT and POS applications, there was signif-
icantly less hand-written code than generated code. These differences in SLOC
result in similar differences in the languages’ representational powers and infor-
mation densities for those tests. In the case of the CVT application, AXIOM
produced several views whereas the hand-written version used only one. Sim-
ilarly, for the POS application there were 9 hand-written Java files for the
Android platform, but 13 for the AXIOM-generated code. Further refinement
of the prototype could make the translation more effective by reducing instances
of duplicated code and incorporating more concise syntactic structures, thereby
bringing the amount of generated code closer to that of the hand-written code.

The compression ratios and language densities suggest that as the size of the
application increases, AXIOM becomes more and more comparable to the native
languages in terms of its ability to succinctly represent the models. This is not
surprising given that the AXIOM syntax uses Groovy as its core syntax.

7 Discussion

The use of a language to represent functionality and requirements is hardly new.
However, approaches such as xUML that rely on fUML and ALF [25], use a
general-purpose language. While this provides significant flexibility, it remains a
least-common denominator approach; the language makes no assumptions about
what it will model. AXIOM fixes the target domain to mobile applications and
provides a DSL to simplify models in that domain. Because the AXIOM DSL is
written in a JVM-based language, it has access to any library that is available
to the JVM.

The deviation of the final code from the source model because of the
hand-written developer-contributed code makes partially-generative approaches
unattractive. AXIOM is completely generative, so developers need not edit the
generated code to incorporate additional logic because all such logic is specified
in the Requirements model. Since AXIOM models are just source code, they can
be managed using existing development tools such as IDEs and source code man-
agement systems and do not require specialized software to support concurrent
model development.

AXIOM’s transformation rules and templates can be used across multiple
applications. From a practical perspective, this means that it will likely take
longer to develop the rules and templates for new technologies than it might
to simply use their APIs directly, but once they have been created, they are
usable by any other application that requires them. For one-offs or proofs-of-
concept this up-front cost may be significant enough that other, more common

Using a Domain Specific Language for Lightweight MDD 59

approaches, such as incremental prototypes built with hand-written code, may
prove to be more economical.

Because AXIOM’s transformation process divides the transformations into
two discrete types, structural and styling, and because those transformations
can be applied at either the application or view scope, it is possible for us to
overcome the “least common denominator” problem that arises with some cross-
platform development efforts. AXIOM was designed with platform-specificity in
mind, even as it attempts to provide platform-independent abstractions that can
help simplify the modeling process. Thus, AXIOM is not constrained to work
with only the small subset of features that are common across all platforms.
Because the Application model defers low-level implementation decisions until
structural and styling transformations have produced the Implementation model,
it is possible, through the use of the transformation rules and appropriate code
templates, to generate virtually any kind of code output.

AXIOM can scale to mobile applications that are similar in size and complex-
ity to those that are developed manually. This is because the process of model
transformation and code generation is one of composition from smaller, simpler
elements and can thus work at different scales with equal facility.

AXIOM can improve developer productivity because it emphasizes up-front
modeling and because the transformation rules and templates can be changed
and reused. For these productivity gains to be realized the templates and trans-
formation rules must be designed and implemented up front. These rules and
templates need not provided by the development team. For example, the third-
party provider of a persistence framework could provide the templates and trans-
formation rules that they believe best reflect the use of their framework. If
application-specific changes are required, they can be made as the application is
modeled and without being required to start ex nihilo.

Our preliminary results with respect to AXIOM’s representational power and
conciseness are promising. While tests have been conducted on a comparatively
small sample of mobile applications, those applications reflect common require-
ments such as cross-screen navigation and the use of a variety of user interface
widgets. Some of the capabilities are easy to model in a platform-independent
way, while others are not. Our results may be due in part to natural variability
in developer skill, although AXIOM embeds much of that domain knowledge in
its DSL, reducing its overall impact. There are doubtless more efficient imple-
mentations than those submitted during our tests.

Thus far we have not found any inherent limitations in AXIOM’s approach,
although we have found several in our prototype and in the current DSL. For
example, the DSL does not currently have a formalized entity model, relying
instead on available Groovy types such as maps. This limits the automatic dis-
covery and layout of data fields since there is not enough type information avail-
able to enable AXIOM to accurately determine which graphical widget is appro-
priate for each data element. Similarly, as we have seen, the prototype does not
always generate the most optimal code. Finally, the prototype currently uses

60 C. Jones and X. Jia

only a subset of the iOS and Android APIs although AXIOM’s DSL can be
extended by importing additional libraries.

8 Related Work

Executable UML (xUML) uses UML models as the primary mechanism by which
applications are built [21], but the process of writing a model compiler requires
significant effort. There are publicly available xUML compilers such as xUml-
Compiler [2], but each compiler targets specific technologies for code generation.
fUML [26] improves on this approach by incorporating ALF [25], a platform-
independent imperative language, but fUML suffers from many of the same
limitations as UML.

Mayerhofer [20] describes xMOF as a means of specifying the behavioral
semantics of models so that they can be incorporated into MOF-based transfor-
mation processes. AXIOM avoids MOF in favor of developer-driven semantics
in the code templates and transformation rules.

Research on the encoding and accessing of the native platform APIs within
models has been done by Cuadrado [3] in describing a process whereby a meta-
model is used to generate an intermediate language that produces Java byte-
code that references the API. AXIOM relies instead on pre-defined mappings of
objects and their properties.

Mobl [6] is a DSL targeting mobile applications. It does not address the
model-driven aspects of MDD. Thus while its DSL code may be transformed into
executable code, the models are not major artifacts of the software development
process.

Vaupel [28] defines an MDD tool for mobile development consisting of com-
plementary meta-models, each with its own notation. Provider models define an
implementation of those meta-models. AXIOM uses only a single language and
does not suffer from potential inconsistencies between the provider models and
the meta-models.

md2 [7] is similar to AXIOM in principle, but differs in its orientation.
AXIOM takes a developer-centric, bottom-up approach to its DSL design, while
md2 was developed top-down and with a business-centric focus. Both approaches
generate native code though with differences in the role of the developer in advis-
ing the transformation process. Unlike AXIOM, md2 suffers from certain limi-
tations such as the inability to easily provide scrollable lists of data, a common
user experience in data-driven mobile applications.

AXIOM is partly based on the ZOOM [13,14,19] project.

9 Conclusion

AXIOM is a practical, model-driven approach for developing cross-platform
mobile applications. AXIOM uses a DSL to represent an entirely platform-
independent Requirements model that gradually acquires platform-specific ele-
ments through a series of successive structural and stylistic transformation rules.

Using a Domain Specific Language for Lightweight MDD 61

This resulting model is translated into native code for the target platform using
reusable code templates.

AXIOM separates the complexity of the transformation process from the
definition of the rules and templates that drive that process. This allows new
rules and templates to be defined without complex transformation frameworks or
model compilers. The rules and templates have full access to all native APIs for
the target platform. This allows them to be modified to accommodate changing
technologies, best practices, and organizational standards as needed.

Our initial test results are promising. In small-scale and mid-scale tests we
have seen significant improvements in representational power and information
density when compared to hand-writing native iOS and Android code. This
reflects the AXIOM DSL’s concise and mobile-centric syntax.

AXIOM has the potential to scale to large mobile applications, which, when
combined with its completely generative nature, enables cost-effective cross-
platform mobile development. The transformation process itself is fixed, but its
rules and code templates can be changed at will, making AXIOM an extremely
flexible approach to MDD.

References

1. Aranda, J., Damian, D., Borici, A.: Transition to model-driven engineering. In:
France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 2012. LNCS,
vol. 7590, pp. 692–708. Springer, Heidelberg (2012)

2. xUML Compiler: xUML Compiler- Java Model compiler Based on “Executable
UML” profile (2009). http://code.google.com/p/xuml-compiler/

3. Sánchez Cuadrado, J., Guerra, E., de Lara, J.: The program is the model : enabling
transformations@run.time. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012. LNCS,
vol. 7745, pp. 104–123. Springer, Heidelberg (2013)

4. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
2nd OOPSLA 2003 Workshop on Generative Techniques in the Context of MDA,
Anaheim, CA, USA, pp. 1–17 (2003)

5. France, R.B., Ghosh, S., Dinh-Trong, T., Solberg, A.: Model-driven development
using UML 2.0: promises and pitfalls. Computer 39(2), 59–66 (2006)

6. Hammel, Z., Visser, E., et al.: Mobl: the new language of the mobile web (2010).
http://www.mobl-lang.org

7. Heitkötter, H., Majchrzak, T.A., Kuchen, H.: Cross-platform model-driven devel-
opment of mobile applications with MD2. In: Proceedings of the 28th Annual
ACM Symposium on Applied Computing, SAC 2013, pp. 526–533. ACM, New
York (2013). http://doi.acm.org/10.1145/2480362.2480464

8. Henderson-Sellers, B.: UML - the good, the bad or the ugly? perspectives from a
panel of experts. Softw. Syst. Model. 4(1), 4–13 (2005)

9. Hutchinson, J., Rouncefield, M., Whittle, J.: Model-driven engineering practices in
industry. In: Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, pp. 633–642. ACM, New York (2011)

10. Jia, X., Jones, C.: Dynamic languages as modeling notations in model driven engi-
neering. In: ICSOFT 2011, Seville, Spain, pp. 220–225, July 2011

11. Jia, X., Jones, C.: AXIOM: a model-driven approach to cross-platform application
development. In: ICSOFT 2012, Rome, Italy, pp. 24–33, July 2012

http://code.google.com/p/xuml-compiler/
http://www.mobl-lang.org
http://doi.acm.org/10.1145/2480362.2480464

62 C. Jones and X. Jia

12. Jia, X., Jones, C.: Cross-platform application development using AXIOM as an
agile model-driven approach. In: Cordeiro, J., Hammoudi, S., van Sinderen, M.
(eds.) ICSOFT 2012. CCIS, vol. 411, pp. 36–51. Springer, Heidelberg (2013)

13. Jia, X., Liu, H., et al.: A model transformation framework for model driven engi-
neering. In: MSVVEIS-2008, Barcelona, Spain, June 2008

14. Jia, X., et al.: Executable visual software modeling: the ZOOM approach. Softw.
Qual. J. 15(1), 27–51 (2007)

15. Jiang, Z., Naudé, P., Comstock, C.: An investigation on the variation of software
development productivity. Int. J. Comput. Inf. Sci. Eng. 1, 461–470 (2007)

16. Jones, C., Jia, X.: The AXIOM model framework: transforming requirements to
native code for cross-platform mobile applications. In: ENASE 2014, Lisbon, Por-
tugal, pp. 26–37, April 2014

17. Kennedy, K., Koelbel, C., et al.: Defining and measuring the productivity of pro-
gramming languages. Int. J. High Perform. Comput. Appl. 18(4), 441–448 (2004)

18. Knuth, D.E.: Semantics of context-free languages. Math. Syst. Theory 2(2), 127–
145 (1968)

19. Liu, H., Jia, X.: Model transformation using a simplified metamodel. J. Softw. Eng.
Appl. 3, 653–660 (2010)

20. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 56–75. Springer, Heidelberg (2013)

21. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model-Driven Archi-
tectures. Addison-Wesley Publishing Co., Inc., Boston (2002)

22. Object Management Group: MDA guide, June 2003. http://www.omg.org/mda
23. Object Management Group: OMG’s MetaObject Facility, January 2006. http://

www.omg.org/spec/MOF/2.0/PDF/
24. Object Management Group: Success stories. http://www.omg.org/mda/products

success.htm (2011)
25. Object Management Group: Concrete syntax for a UML action language: Action

language for foundational UML (ALF), version 1.0.1. Specification, October 2013.
http://www.omg.org/spec/ALF/1.0.1/PDF

26. Object Management Group: Semantics of a foundational subset for executable
UML models (FUML), version 1.1. Specification, August 2013. http://www.omg.
org/spec/FUML/1.1/PDF

27. Selic, B.: The pragmatics of model-driven development. IEEE Softw. 20(5), 19–25
(2003)

28. Vaupel, S., Taentzer, G., Harries, J.P., Stroh, R., Gerlach, R., Guckert, M.: Model-
driven development of mobile applications allowing role-driven variants. In: Dingel,
J., Schulte, W., Ramos, I., Abrahão, S., Insfran, E. (eds.) MODELS 2014. LNCS,
vol. 8767, pp. 1–17. Springer, Heidelberg (2014)

29. Volter, M.: From programming to modeling - and back again. IEEE Softw. 28(6),
20–25 (2011)

http://www.omg.org/mda
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.omg.org/mda/products_success.htm
http://www.omg.org/mda/products_success.htm
http://www.omg.org/spec/ALF/1.0.1/PDF
http://www.omg.org/spec/FUML/1.1/PDF
http://www.omg.org/spec/FUML/1.1/PDF

A Study of the Relationship Between Class
Testability and Runtime Properties

Amjed Tahir1(&), Stephen MacDonell1,2, and Jim Buchan2

1 Department of Information Science, University of Otago,
Dunedin, New Zealand

amjed.tahir@otago.ac.nz
2 SERL, School of Computer and Mathematical Sciences,

Auckland University of Technology, Auckland, New Zealand
{smacdone,jbuchan}@aut.ac.nz

Abstract. Software testing is known to be expensive, time consuming and
challenging. Although previous research has investigated relationships between
several software properties and software testability the focus has been on static
software properties. In this work we present the results of an empirical inves-
tigation into the possible relationship between runtime properties (dynamic
coupling and key classes) and class testability. We measure both properties
using dynamic metrics and argue that data gathered using dynamic metrics are
both broader and more precise than data gathered using static metrics. Based on
statistical analysis, we find that dynamic coupling and key classes are signifi-
cantly correlated with class testability. We therefore suggest that these properties
could be used as useful indicators of class testability.

Keywords: Testability � Unit testing � Dynamic metrics � Dynamic coupling �
Program comprehension

1 Introduction

Software testing activities typically require significant time and effort in both planning
and execution. Testing is thus acknowledged to be expensive [1] as it can consume up
to 50 % of the total cost and effort in a software development project [2]. Although
software systems have been growing larger and more complex [3], testing resources, by
comparison, have remained limited and constrained [4]. Software components with
low-level testability may be less trustworthy, even after successful testing [1].
Understanding and reducing testing effort have therefore been enduring fundamental
goals for both academic and industrial research.

The notion that a software product has properties that are related to the effort
needed to validate that product is commonly referred to as the ‘testability’ of that
product [5]. Binder [6] coined the phrase “Design for Testability” to describe software
construction that considers testability from the early stages of development. The core
expectation is that software components with a high degree of testability are easier to
test and consequently will be more effectively tested, raising the software quality
compared to software that has lower testability. Improving software testability should

© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 63–78, 2015.
DOI: 10.1007/978-3-319-27218-4_5

help to reduce testing cost, effort, and demand for resources. If components are difficult
to test, then the size of the test cases designed to test those components, and the
required testing effort, will necessarily be larger [7]. Components with poor testability
are also more expensive to repair when problems are detected late in the development
process. In contrast, components and software with good testability can dramatically
increase the quality of the software as well as reduce the cost of testing [8].

While clearly a desirable trait, testability has been recognized as being an elusive
concept, and its measurement and evaluation are acknowledged as being challenging
endeavors [4]. Researchers have therefore identified numerous factors that (may) have
an impact on the testability of software. For instance, software testability is claimed to
be affected by the extent of the required validation, the process and tools used, and the
representation of the requirements, among other factors [9]. Given their diversity it is
challenging to form a complete and consistent view on all the potential factors that may
affect testability as well as the degree to which these factors are present and influential
under different testing contexts. Several are considered here to illustrate the breadth of
factors that potentially influence testability.

A substantial body of work has addressed a diversity of design and code charac-
teristics that can affect the testability of a software product. For example, the relation-
ships been internal class properties in Object Oriented (OO) systems and characteristics
of the corresponding unit tests have been investigated in several previous studies (e.g.,
[9, 10]). In these studies, several OO design metrics (drawn mainly from the C&K suite
[11]) have been used to investigate the relationship between class/system structure and
test complexity. Some strong and significant relationships between several complexity-
and size-related metrics of production code and internal test code properties have been
found [9] in such research.

In their research, Bruntink and van Deursen [9] used only static software measures,
and this is the case for all previous work in this area. Others, such as Basili et al. [12],
take the view that traditional static software metrics may be necessary but not sufficient
for characterizing, assessing and predicting the quality profile of OO systems. In this
paper we build on that view and propose the use of dynamic metrics to represent further
quality characteristics. Dynamic metrics are the sub-class of software measures that
capture the dynamic behavior of a software system and have been shown to be related
to software quality attributes [13, 14]. Consideration of this group of metrics provides a
more complete insight into the multiple dimensions of software quality when compared
to static metrics alone [15]. Dynamic metrics are usually computed based on data
collected during program execution (i.e. at runtime). Therefore they can directly reflect
the quality attributes of that program, product or system in operation. This paper
extends the investigation of software characteristics as factors in code testability by
characterizing the code using dynamic metrics. A fuller discussion of dynamic metrics
and their relative advantages over static metrics is presented in [16].

The work presented here extends our previous work [17] by adding one more
system to the original three systems analyzed [17]. We also improve our analysis and
discussion by using a different statistical test of correlation and by providing additional
graphical representations of the data.

The rest of the paper is structured as follows. Section 2 provides the research
context for this paper by reviewing related work, and confirms the potential of relating

64 A. Tahir et al.

dynamic code metrics to testability. Section 3 argues for the suitability of the dynamic
coupling and key classes concepts as appropriate dynamic metrics to characterize the
code in relation to testability. These metrics are then used in the design of a set of
experiments to test our hypotheses on specific case systems, as described in Sects. 4
and 5. The results of these experiments are then presented in Sect. 6 and their impli-
cations are discussed in Sect. 7. Threats to the study’s validity are noted in Sect. 8.
Finally, the main conclusions from the study and some thoughts on related future work
are presented in Sect. 9.

2 Related Work

Several previous works have investigated the relationships between properties of
software production code components and properties of their associated test code, with
an emphasis on unit tests. The focus of that work has varied from designing measures
for testability and testing effort to assessing the strength of the relationships between
them. Given constraints on space, we consider a few typical studies here. Our intent is
to be illustrative as opposed to exhaustive, and these studies are representative of the
larger body of work in this research domain.

Bruntink and van Deursen [9] investigated the relationship between several OO
metrics and class testability for the purpose of planning and estimating later testing
activities. The authors found a strong correlation between class-level metrics, such as
Number of Methods (NOM), and test level metrics, including the number of test cases
and the lines of code per test class. Five different software systems, including one open
source system, were traversed during their experiments. However, no evidence of
relationships was found between inheritance-related metrics, e.g., Coupling Between
Objects (CBO), and the proposed testability metrics. This is likely to be because the test
metrics were considered at the class level. These inheritance-related metrics are
expected to have a strong correlation with testability at the integration and/or system
level, as polymorphism and dynamic binding increase the complexity of a system and
the number of required test cases, and contribute to a consequent decrease in testability
[4]. This suggestion can only be confirmed through evaluation at the object level using
dynamic metrics. In a similar study, Badri et al. [10] investigated the relationship
between cohesion and testability using the C&K static Lack of Cohesion metric. They
found a significant positive correlation between static cohesion and software testability,
where testability was measured using the metrics suggested by [9]. More recently,
Zhou et al. [18] found that most structural code metrics that are obtained from static
analysis are statistically correlated with class testability, with class size being the
strongest indicator of class testability.

In other work related to testability, Arisholm et al. [19] found significant rela-
tionships between dynamic coupling measures, especially Dynamic Export Coupling,
and change-proneness. Export Coupling appears to be a significant indicator of
change-proneness and likely complements existing coupling measures based on static
analysis (i.e., when used with size and static coupling measures).

Relationship Between Class Testability and Runtime Properties 65

3 Testability Concepts

In this work we investigate two runtime properties that we contend are related to class
testability, and in the following we describe these and justify their suitability.

3.1 Dynamic Coupling

In this study dynamic coupling has been selected as one of the system characteristics to
measure and investigate regarding its relationship to testability. Coupling has been
shown in prior work to have a direct impact on the quality of software, and is also related
to the software quality characteristics of complexity and maintainability [20, 21]. It has
been shown that, all other things being equal, the greater the coupling level, the greater
the complexity and the harder it is to maintain a system [22, 23]. This suggests that it is
reasonable to expect that coupling will be related to testability. Dynamic rather than
static coupling has been selected for our investigation to address some shortcomings of
the traditional static measures of coupling. For many years coupling has been measured
statically, based on the limited structural properties of software [24]. This misses the
coupling at runtime between different components at different levels (classes, objects,
packages, and so on), which should capture a more complete picture and so relate better
to testability. This notion of measuring dynamic coupling is quite common in the
emergent software engineering research literature. In our recent systematic mapping
study of dynamic metrics, dynamic coupling was found to be the most widely inves-
tigated system characteristic used as a basis for dynamic analysis [16].

For the purposes of this work the approach taken by [19] is followed, and dynamic
coupling metrics that capture coupling at the object level are used. Two objects are
coupled if at least one of them acts upon the other [11]. The measure of coupling used
here is based on runtime method invocations/calls: two classes, class A and class B, are
said to be coupled if a method from class A (caller) invokes a method from class B
(callee), or vice versa. Details of the specific metrics used to measure this form of
coupling are provided in Sect. 4.2.

3.2 Key Classes

The notion of a Key Class is introduced in this study as a new production code property
to be measured and its relationship to class testability investigated. OO systems are
formed around groups of classes some of which are linked together. As software
systems grow in size, so the number of classes used increases in these systems. To
analyze and understand a program or a system, how it works and the potential for
decay, it is important to know where to start and which aspects should be given
priority. From a maintenance perspective, understanding the roles of classes and their
relative importance to a system is essential. In this respect there are classes that could
have more influence and play more prominent roles than others. This group of classes
is referred to here as ‘Key Classes’. We define a Key Class as a class that is executed
frequently in the typical use profile of a system. Identifying these classes should inform

66 A. Tahir et al.

the more effective planning of testing activities. One of the potential usages of these
classes is in prioritizing testing activities – testers could usefully prioritize their work
by focusing on testing these Key Classes first, alongside consideration of other factors
such as risk and criticality information.

The concept of Key Classes is seen elsewhere in the literature but has an important
distinction in meaning and usage in this research. For example, in [24], classification as
a Key Class is based on the level of coupling of a class. Therefore, Key Classes are
those classes that are tightly coupled. In contrast, our definition is based on the usage of
these classes: Key Classes are those classes that have high execution frequency at
runtime. A metric used to measure Key Classes is explained in Sect. 4.2.

4 Study Design

In this section we explain our research questions and the hypotheses that the work is
aimed at testing. We also define the various metrics used in operational terms and our
analysis procedures.

One of the key challenges faced when evaluating software products is the choice of
appropriate measurements. Metric selection in this research has been determined in a
goal-oriented manner using the GQM framework [25] and its extension, the GQM/
MEDEA framework [26]. Our goal is to better understand what affects software
testability, and our objective is to assess the presence and strength of the relationship
between dynamic coupling and key classes on the one hand and code testability on the
other. The specific purpose is to measure and ultimately predict class testability in OO
systems. Our viewpoint is as software engineers, and more specifically, testers,
maintainers and quality engineers. The targeted environment is Java-based open source
systems.

4.1 Research Questions and Hypotheses

We investigate two factors that we contend are, in principle, related to system testa-
bility: dynamic coupling and key classes. For this purpose, we have two research
questions to answer:

RQ1: Is dynamic coupling of a class significantly correlated with the class testability
of its corresponding test class/unit?

RQ2: Are key classes significantly correlated with the class testability of their
corresponding test classes/units?

The following two research hypotheses are investigated to answer the research
questions:

H0: Dynamic coupling has a significant correlation with class testability.
H1: Key classes have a significant correlation with class testability.

Relationship Between Class Testability and Runtime Properties 67

The corresponding null hypotheses are:

H2: Dynamic coupling has no significant correlation with class testability measures.
H3: Key Classes have no significant correlation with class testability.

4.2 Measurements

In Sect. 3 we described the dynamic coupling and key classes concepts. In this section
we define specific dynamic metrics that can be used to measure these concepts. We also
explain the metrics used to measure class testability.

Dynamic Coupling Metrics. As stated in Sect. 3.1, dynamic coupling is intended to be
measured in two forms - when a class is accessed by another class at runtime, and when a
class accesses other classes at runtime (i.e., to account for both callers and callees). To
measure these levels of coupling we select the previously defined Import Coupling (IC)
and Export Coupling (EC) metrics [19]. IC measures the number of method invocations
received by a class (callee) from other classes (callers) in the system. EC measures the
number of method invocations sent from a class (caller) to other classes (callees) in the
system. Note that both metrics are collected based on method invocations/calls. More
detailed explanations of these metrics are provided in [19].

Key Classes Metrics. The concept of Key Classes is explained in Sect. 3.2. The goal
here is to examine if those Key Classes (i.e., those classes with higher frequency of
execution) have a significant relationship with class testability (as defined in the next
subsection). We define the Execution Frequency (EF) dynamic metric to identify those
Key Classes. EF for class C counts the number of executions of methods within class
C. Consider a class C, with methods m1, m2,….. mn. Let EF(mi) be the number of
executions of method m of class C, then:

EF Cð Þ ¼
Xn

i¼1

EF mið Þ ð1Þ

where n is the number of executed methods within class C.

Class Testability Measures. The testability of a class is considered here in relation to
unit tests. In this work, we utilize two static metrics to measure unit test characteristics:
Test Lines of Code (TLOC) and the Number of Test Cases (NTC). These metrics are
motivated by the test suite metrics suggested by [9]. TLOC, derived from the classic
Lines of Code (LOC) metric, is a size measure that counts the total number of physical
lines of code within a test class or classes. NTC is a test design metric that counts the
total number of test cases in a test class. Our hypotheses thus reflect an expectation that
the dynamic coupling and key classes of production code classes are related to the size
and scope of their associated test classes.

Our data collection methods are explained in more detail in the following section.

68 A. Tahir et al.

5 Data Collection

The collection of dynamic metrics data can be accomplished in various ways. The most
common (and most accurate) way is to collect the data by obtaining trace information
using dynamic analysis techniques during software execution. Such an approach is
taken in this study and is implemented by collecting metrics using the AspectJ
framework, a well-established Java implementation of Aspect Oriented Programming
(AOP). Previous works (including [23, 27, 28]) have shown that AOP is an efficient
and practical approach for the objective collection of dynamic metrics data, as it can
enable full runtime automatic source-code instrumentation to be performed.

Testability metrics data, including LOC, TLOC, and Number of Classes (NOC), are
collected using the CodePro Analytix1 tool and the values were later checked and
verified using the Eclipse Metrics Plugin2. Values for the NTC metric are collected
from the JUnit framework and these values were verified manually by the first author.

We used the two different traceability techniques suggested by [29] to identify unit
test classes and link them to their corresponding production classes. First, we used the
Naming Convention technique to link test classes to production classes following their
names. It has been widely suggested (for instance, in the JUnit documentation) that a
test class should be named after the corresponding class(es) that it tests, by adding
“Test” to the original class name. Second, we used a Static Call Graph technique,
which inspects method invocations in the test case. The latter process was carried out
manually by the first author. The effectiveness of the Naming Convention technique is
reliant on developers’ efforts in conforming to a coding standard, whereas the Static
Call Graph approach reveals direct references to production classes in the test classes.

It is important to note here that we only consider core system code: only production
classes that are developed as a part of the system are assessed. Additional classes
(including those in jar files) are excluded from the measurement process. These files are
generally not part of the core system under development and any dependencies could
negatively influence the results of the measurement process.

5.1 Case Studies

To consider the potential relationships between class testability and the chosen
dynamic metrics we selected four different open source systems to be used in our
experiments. Selection of these systems was conducted with the goal of examining
applications of reasonable size, with some degree of complexity, and easily accessible
source code. The main criteria for selecting the applications are: (1) each application
should be fully open source, i.e., source code for both production code and test code is
publicly available; (2) each application must be written in Java, as we are using the
JUnit and AspectJ frameworks, which are both written for Java; (3) each application

1 https://developers.google.com/java-devtools/codepro/doc/
2 http://metrics2.sourceforge.net/

Relationship Between Class Testability and Runtime Properties 69

https://developers.google.com/java-devtools/codepro/doc/
http://metrics2.sourceforge.net/

should come with test suites; and (4) each application should comprise at least 25 test
classes.

The systems selected for our experiments are: FindBugs, JabRef, Dependency
Finder and MOEA. Table 1 reports particular characteristics and size information of
both the production and test code of the four systems.

The size classification used in Table 1 is adapted from the work of [30], where
application size is categorized into bands based on the number of kilo LOC (KLOC):
small (fewer than 1 KLOC), medium (1–10 KLOC), large (10–100 KLOC) and
extra-large (more than 100 KLOC).

5.2 Execution Scenarios

In order to arrive at dynamic metrics values that are associated with typical, genuine
use of a system the selected execution scenarios must be representative of such use.
Our goal is to mimic ‘actual’ system behavior, as this will enhance the utility of our
results. The scenarios are therefore designed to use key system features, based on the
available documentation and user manuals for the selected systems, as well as our prior
knowledge of these systems. Further information on the selected execution scenario for
each system now follows. Note that all four systems have GUI access, and the
developed scenarios assume use via the GUI.

FindBugs: The tool is run to detect bugs in a large scale OSS (i.e., JFreeChart) by
analyzing the source code and the associated jar files. The web plugin has been
installed during the execution and data were uploaded to the FindBugs webserver.
Results were stored using all three file formats supported.

JabRef: the tool is used to generate and store a list of references from an original
research report. We included all reference types supported by the tool (e.g., journal
articles, conference proceedings, reports, standards). Reports were then extracted using
all available formats (including XML, SQL and CSV). References were managed using
all the provided features. All additional plugins provided at the tool’s website were
added and used during this execution.

Dependency Finder: this scenario involves using the tool to analyze the source code of
four medium-large sized systems one after another, namely, FindBugs, JMeter, Ant and
Colossus. We computed dependencies (dependency graphs) and OO metrics at all
layers (i.e., packages, classes, features). Analysis reports on all four systems were
extracted and saved individually.

Table 1. Characteristics of the selected systems.

System Version KLOC Size NOC # Unit Tests Test KLOC

FindBugs 2.0.3 117 Large 1245 46 2.683
JabRef 2.9.2 90.4 Medium 616 55 5.392
Dependency finder 1.2.1 beta4 58 Medium 450 258 32.095
MOEA 1.17 42 Medium 407 280 16.694

70 A. Tahir et al.

MOEA: MOEA has a GUI diagnostic tool that provides access to a set of 6 algorithms,
57 test problems and search operators. We used this diagnostic tool to apply those
different algorithms on the predefined problems. We applied each of these algorithms at
least once on each problem. We displayed metrics and performance indicators for all
results provided by those different problems and algorithms. Statistical results of these
multiple runs were displayed at the end of the analysis.

6 Results

As we are interested in the potential associations between variables, a statistical test of
correlation is used in the evaluation of our hypotheses. After collecting our metrics data
we first apply the Shapiro-Wilk (S-W) test to check the normality of each data dis-
tribution. This is necessary as selection of the relevant correlation test should be
informed by the nature of the distributions, being normal or non-normal. The null
hypothesis for the S-W test is that data is normally distributed.

After applying the S-W test the evidence led us to reject the null hypothesis
regarding their distribution, and so we accepted that the data were not normally dis-
tributed (boxplots of the data are shown in Figs. 1 and 2). We therefore decided to use
Spearman’s rho (r) rank correlation coefficient test. Spearman’s r is a non-parametric
statistical test that measures the association between two measured quantities when
ordered and ranked. In our work Spearman’s r is calculated to assess the degree of
association between each dynamic metric of the production code (i.e., IC, EC and EF)
and the class testability metrics, defined in Sect. 4.2.

Fig. 1. Boxplots of TLOC in all four systems.

Relationship Between Class Testability and Runtime Properties 71

We used the classification of Cohen [31] to interpret the degree of association
between variables. The value of r indicates the association between two ranked vari-
ables, and it ranges from −1 (perfect negative correlation) to +1 (perfect positive
correlation). We interpret that variables are independent when r = 0, that there is a low
direct association when r < 0.3, a medium direct association when 0.3 ≤ r < 0.5, and a
high direct association when 0.5 ≤ r. This interpretation also applies to negative cor-
relations, but the association is inverse rather than direct [32]. The p-value (p) repre-
sents the statistical significance of the relationship. We consider an association to be
statistically significant where p ≤ 0.05.

The number of observations considered in each test varies in accordance with the
systems’ execution scenarios described in Sect. 5.2. Observation points, in fact, rep-
resent the number of tested classes that were traversed in the execution (i.e., classes that
have corresponding tests and that were captured during the execution by any of the
dynamic metrics used). The number of observations for FindBugs is 23, JabRef is 26,
80 for Dependency Finder and 76 for MOEA.

Table 2 shows the Spearman’s r results for the two dynamic coupling metrics
against the test suite metrics. Corresponding results for the EF metric against the test
suite metrics are presented in Table 3. For all analyses we interpret that there is a
significant correlation between two variables if there is statistically significant evidence
of such a relationship in at least three of the four systems examined.

For dynamic coupling, a mix of results is found from the collected metrics (Table 2).
EC is observed to have a significant (medium to high) correlation with the TLOC metric
in all four systems. The correlation was found to be high in Dependency Finder and
medium direct in FindBugs, JabRef and MOEA. A similar significant correlation
between EC and NTC is evident in three of the four systems: FindBugs (high associ-
ation), JabRef and Dependency Finder systems (both are medium associations).

Fig. 2. Boxplots of NTC in all four systems.

72 A. Tahir et al.

In terms of relationships with the IC metric (Table 2), the correlation between IC
and TLOC is evident only in one system (high association in Dependency Finder). For
the relationship between IC and NTC, a direct medium correlation was found only in
one system i.e., Dependency Finder. A low inverse association between IC and NTC is
evident for the MOEA system.

As shown in Table 3, positive significant associations were found between EF and
the class testability metrics in three of the four systems (the exception being MOEA).
A significant medium correlation between EF and TLOC was found in FindBugs,
JabRef and Dependency Finder. Also, a medium correlation between EF and NTC was
found in JabRef, where a low correlation is found in Dependency Finder.

7 Discussion

Based on our analysis H0 is accepted and H2 is rejected; that is, there is evidence of a
significant association between dynamic coupling (either EC or IC) and the two
class-testability metrics for all four systems. As EF is also found be significantly
associated with the testability metrics for three of the four systems considered, H1 is
also accepted and H3 is rejected on the balance of evidence. The relationships between
coupling and class-testability metrics are shown in Figs. 3 and 4. Due to space con-
straints we show only Scatter Plot graphs from systems that have the highest

Table 2. Spearman r correlation between dynamic coupling metrics and class testability
metrics.

Systems Metrics TLOC NTC
r p r p

FindBugs EC .43 .04 .58 .00
IC −.07 .77 −.09 .69

JabRef EC .35 .04 .33 .05
IC .28 .09 .23 .13

Dependency Finder EC .52 .00 .41 .00
IC .52 .00 .33 .00

MOEA EC .30 .01 .12 .16
IC −.08 .24 −.24 .02

Table 3. Spearman r correlation between EF metrics and class testability metrics.

Systems Metrics TLOC NTC
r p r p

FindBugs EF .42 .05 .37 .09
JabRef EF .44 .01 .38 .03
Dependency Finder EF .33 .00 .22 .03
MOEA EF .03 .41 −.10 .19

Relationship Between Class Testability and Runtime Properties 73

correlations (i.e., r values) between metrics. Figure 3 shows the relationship between
EC and NTC in FindBugs and Fig. 4 shows the relationship between EC and TLOC in
Dependency Finder.

An additional test of relevance in this study is to consider whether the dynamic
metrics used are themselves related, since this may indicate that only a subset of these
metrics needs to be collected. Therefore, a further correlation analysis was performed to
investigate this. The results indicate that the two dynamic coupling metrics are cor-
related with EF (Table 4) to varying degrees for the four systems investigated. High
direct and medium direct associations between EC and the EF metric are evident in
three systems (the only exception is FindBugs). IC is correlated with EF in only two
systems (high correlation in Dependency Finder and low in MOEA).

It is evident that dynamic coupling measures are associated with class-testability
metrics. EC is found to be more significantly correlation with both testability metrics.
IC association with class testability metrics is not consistence across systems. These
results can be interpreted as indicating that dynamic coupling, in some form, has a
significant correlation with class testability. A similar inference is drawn regarding key
classes; this property is also significantly associated with class testability or unit test
size. Additionally, the two dynamic testability concepts studied here, i.e., dynamic
coupling and key classes, are found to be themselves significantly correlated. Such
results can be helpful for testers and maintainers as they provide empirical evidence
regarding the relationship between two important dynamic properties and class

Fig. 3. Scatter plot of the relationship between EC and NTC metrics in FindBugs.

Table 4. Spearman r results for the correlation between coupling and EF.

Systems IC EC

r p r p

EF FindBugs .32 .14 .31 .15
JabRef .27 .09 .81 .00
Dependency Finder .56 .00 .51 .00
MOEA .29 .01 .40 .00

74 A. Tahir et al.

testability. We recommend that similar dynamic information should be taken into
consideration when developing unit tests or maintaining existing test suites.

In revisiting the list of the investigated research questions, dynamic coupling is
found to have a significant (although not very strong) direct association with testability
(RQ1). A more significant correlation was found between key classes (i.e., frequently
executed classes) and class testability metrics. By answering RQ1 and RQ2, this
suggests that dynamic coupling and key classes can act, to some extent, as comple-
mentary indicators of class testability (i.e., unit test size). It is contended here that a
tightly coupled or frequently executed class would need a large corresponding test class
(i.e., higher numbers of TLOC and NTC). This expectation has been found to be
evidenced in at least three of the four systems examined.

8 Threats to Validity

We acknowledge the following threats that could affect the validity of our results.
One of the possible threats to the validity of this study is the limited number of

systems used in the analysis. The results discussed here are derived from the analysis of
four open source systems. The consideration of a larger number of systems, perhaps
also including closed-source systems, could enable further evaluation of the associa-
tions revealed in this study and so lead to more generalizable conclusions.

Unit test selections can be another validity threat. We only considered production
classes that have corresponding test classes, which may lead to a selection bias. Classes
that are extremely difficult to test, or are considered too simple, might have no asso-
ciated test classes. Such production classes are not considered in our analyses. Due to
their availability, we only included classes that had associated JUnit test classes, and
ignored all others.

The selection of the execution scenarios is another possible threat to the validity of
our results. We designed execution scenarios that mimic as closely as possible ‘actual’
system behavior, based on the available system documentation and, in particular,
indications of each system’s key features. We acknowledge, however, that the selected
scenarios might not be fully representative of the typical uses of the systems. Analyzing

Fig. 4. Scatter plot of the relationship between EC and TLOC metrics in Dependency Finder.

Relationship Between Class Testability and Runtime Properties 75

data that is collected based on different scenarios might give different results. This is a
very common threat in most dynamic analysis research. However, we tried to mitigate
this threat by carefully checking user manuals and other documentation of each of the
examined systems and deriving the chosen scenarios from these sources. Most listed
features were visited (at least once) during the execution. More scenarios will be
considered in the future in order to extend our analyses.

Finally, we acknowledge that only available test information from the selected
systems was used. We did not collect or have access to any information regarding the
testing strategy of the four systems. Test strategy and criteria information could be very
useful if combined with the test metrics, given that test criteria can inform testing
decisions, and the number of test cases designed is highly influenced by the imple-
mented test strategy.

9 Conclusions and Future Work

In this work we set out to investigate the presence and significance of any associations
between two runtime code properties, namely Dynamic Coupling and Key Classes, and
the testability of classes in four open source OO systems. Testability was measured
based on the systems’ production classes and their associated unit tests. Two different
metrics were used to measure class testability, namely TLOC and NTC. As we were
interested in the relationships between system characteristics at runtime, dynamic
coupling and key classes were measured using dynamic software metrics collected via
AOP. Results were then analyzed statistically using the Spearman’s r correlation
coefficient test to study the associations.

The resulting evidence indicates that there is a significant association between
dynamic coupling and internal class testability. We found that dynamic coupling
metrics and especially the Export Coupling metric have a significant direct association
with TLOC. A less significant association was found between dynamic Import Cou-
pling and NTC. Similarly, Key Classes are also shown to be significantly associated
with our test suite metrics in at least three of the four systems examined.

The findings of this work contribute to our understanding of the nature of the
relationships between characteristics of production and test code. The use of dynamic
measures can provide a level of insight that is not available using static metrics alone.
These relationships can act as an indicator for internal class level testability, and should
be of help in informing maintenance and reengineering tasks.

Several future directions are suggested by the outcomes of this research. This work
can be extended by examining a wider range of systems (such as closed-source sys-
tems) to enable further evaluation of the findings. Another research direction would be
to investigate whether dynamic coupling and key classes information can be used
together to predict the size and structure of test classes. Predicting class-level testability
should improve the early estimation and assessment of the effort needed in testing
activities. This work could also be extended to an investigation of the association
between other source code factors and testability using runtime information. It would
also be potentially beneficial to incorporate the current information about class testa-
bility with other testing information such as test coverage and test strategy.

76 A. Tahir et al.

References

1. Bertolino, A., Strigini, L.: On the use of testability measures for dependability assessment.
IEEE Trans. Softw. Eng. 22(2), 97–108 (1996)

2. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing, p. 240. Wiley Publishing,
New York (2011)

3. Sommerville, I., et al.: Large-scale complex IT systems. Commun. ACM 55(7), 71–77
(2012)

4. Mouchawrab, S., Briand, L.C., Labiche, Y.: A measurement framework for object-oriented
software testability. Inf. Softw. Technol. 47(15), 979–997 (2005)

5. ISO, Software engineering - Product quality-Part 1. In: Quality model 2001, International
Organization for Standardization Geneva

6. Binder, R.V.: Design for testability in object-oriented systems. Commun. ACM 37(9), 87–
101 (1994)

7. Traon, Y.L., Robach, C.: From hardware to software testability. In: International Test
Conference on Driving Down the Cost of Test, pp. 710–719. IEEE Computer Society (1995)

8. Gao, J.Z., Jacob, H.-S., Wu, Y.: Testing and Quality Assurance for Component-Based
Software. Artech House Publishers, Norwood (2003)

9. Bruntink, M., van Deursen, A.: An empirical study into class testability. J. Syst. Softw. 79
(9), 1219–1232 (2006)

10. Badri, L., Badri, M., Toure, F.: An empirical analysis of lack of cohesion metrics for
predicting testability of classes. Int. J. Softw. Eng. Appl. 5(2), 69–86 (2011)

11. Chidamber, S.R., Kemerer, C.F.: A metrics suite for object oriented design. IEEE Trans.
Softw. Eng. 20(6), 476–493 (1994)

12. Basili, V.R., Briand, L.C., Melo, W.L.: A validation of object-oriented design metrics as
quality indicators. IEEE Trans. Softw. Eng. 22(10), 751–761 (1996)

13. Cai, Y.: Assessing the effectiveness of software modularization techniques through the
dynamics of software evolution. In: 3rd Workshop on Assessment of COntemporary
Modularization Techniques, Orlando (2008)

14. Scotto, M., et al.: A non-invasive approach to product metrics collection. J. Syst. Architect.
52(11), 668–675 (2006)

15. Dufour, B., et al.: Dynamic metrics for java. In: 18th Annual ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications, pp. 149–168.
ACM, Anaheim (2003)

16. Tahir, A., MacDonell, S.G.: A systematic mapping study on dynamic metrics and software
quality. In: International Conference on Software Maintenance. IEEE Computer Society
(2012)

17. Tahir, A., MacDonell, S.G., Buchan, J.: Understanding class-level testability through
dynamic analysis. In: 9th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), pp. 38–47, Lisbon (2014)

18. Zhou, Y., et al.: An in-depth investigation into the relationships between structural metrics
and unit testability in object-oriented systems. Sci. China Inf. Sci. 55(12), 2800–2815 (2012)

19. Arisholm, E., Briand, L.C., Foyen, A.: Dynamic coupling measurement for object-oriented
software. IEEE Trans. Softw. Eng. 30(8), 491–506 (2004)

20. Offutt, J., Abdurazik, A., Schach, S.: Quantitatively measuring object-oriented couplings.
Softw. Qual. J. 16(4), 489–512 (2008)

21. Al Dallal, J.: Object-oriented class maintainability prediction using internal quality
attributes. Inf. Softw. Technol. 55(11), 2028–2048 (2013)

Relationship Between Class Testability and Runtime Properties 77

22. Chaumun, M.A., et al.: Design properties and object-oriented software changeability. In:
European Conference on Software Maintenance and Reengineering, p. 45. IEEE Computer
Society (2000)

23. Tahir, A., Ahmad, R., Kasirun, Z.M.: Maintainability dynamic metrics data collection based
on aspect-oriented technology. Malays. J. Comput. Sci. 23(3), 177–194 (2010)

24. Zaidman, A., Demeyer, S.: Automatic identification of key classes in a software system
using webmining techniques. J. Softw. Maintenance Evol. 20(6), 387–417 (2008)

25. Basili, V.R., Weiss, D.M.: A methodology for collecting valid software engineering data.
IEEE Trans. Softw. Eng. 10(6), 728–738 (1984)

26. Briand, L.C., Morasca, S., Basili, V.R.: An operational process for goal-driven definition of
measures. IEEE Trans. Softw. Eng. 28(12), 1106–1125 (2002)

27. Cazzola, W., Marchetto, A.: AOP-HiddenMetrics: separation, extensibility and adaptability
in SW measurement. J. Object Technol. 7(2), 53–68 (2008)

28. Adams, B., et al.: Using aspect orientation in legacy environments for reverse engineering
using dynamic analysis–an industrial experience report. J. Syst. Softw. 82(4), 668–684
(2009)

29. Rompaey, B.V., Demeyer S.: Establishing traceability links between unit test cases and units
under test. In: European Conference on Software Maintenance and Reengineering, pp. 209–
218. IEEE Computer Society, Kaiserslautern (2009)

30. Zhao, L., Elbaum, S.: A survey on quality related activities in open source. SIGSOFT Softw.
Eng. Notes 25(3), 54–57 (2000)

31. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2nd edn. Lawrence
Erlbaum Associates, London (1988)

32. Daniel, W.W.: Applied Nonparametric Statistics. KENT Publishing Company, Boston
(2000)

78 A. Tahir et al.

Online Testing: A Passive Approach
for Protocols

Xiaoping Che1(B), Jorge Lopez2, and Stephane Maag2

1 Beijing Jiaotong University, Beijing, China
xpche@bjtu.edu.cn

2 Institut Mines-Telecom/Telecom SudParis, CNRS UMR 5157, Evry, France
{Jorge.eleazar.lopez coronado,stephane.maag}@telecom-sudparis.eu

Abstract. Online testing approaches are becoming crucial in today’s
complex systems. By that way, testing a protocol at run-time has to
be performed during a normal use of the system without disturbing the
process. The traces are observed and analyzed on-the-fly to provide test
verdicts and no trace sets should be studied as a posteriori to the test-
ing process. In this process, it is a challenging work to keep the same
preciseness in conformance testing and the same efficiency in perfor-
mance testing. In this paper, aiming to find a solution, we present a
novel online passive testing approach based on Horn-Logic. In order to
evaluate and assess our approach, we also developed a prototype and
experimented it with a set of Session Initiation Protocol properties in
a real IP Multimedia Subsystem environment. Finally, the preliminary
results and discussions are provided.

Keywords: Online testing · Passive testing · Formal methods

1 Introduction

Testing is a crucial activity in the evaluation process of a system or an imple-
mentation under test (IUT). Among the well known and commonly applied
approaches, the passive testing techniques (also called monitoring or run-time
verification) are today gaining efficiency and reliability [1]. These techniques are
divided in two main groups: online and offline testing approaches. Offline test-
ing aims at collecting set of protocol traces while running (through interfaces,
ports or points of observations (P.O)) and then checking some properties through
these traces afterwards. Several model based offline testing techniques have been
studied by the community in order to passively test systems or protocol imple-
mentations [2,12,14,16]. Nevertheless, though offline testing still raises many
interesting issues [10], online testing approaches bring out these same issues
plus the challenges that are inherent to online testing. Among these inherent
constraints, we shall cite the non-collection of traces. Indeed, in passive online
testing, the traces are observed (through an eventual sniffer), analyzed on-the-fly
to provide test verdicts and no trace sets are studied a posteriori to the testing
c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 79–92, 2015.
DOI: 10.1007/978-3-319-27218-4 6

80 X. Che et al.

process. In our work, we focus on the online testing of an IUT using passive
testing technique.

Testing an implementation of a protocol is often associated to the checking
of its conformance and performance. Conformance testing is a functional test
which verifies whether the behaviors of the protocol satisfy defined requirements.
Performance testing is a qualitative and quantitative test which checks whether
the performance requirements of the protocol have been satisfied under certain
conditions. They are mainly applied to validate or verify the scalability and
reliability of the system. Many benefits can be brought to the testing process if
conformance and performance testing inherit from the same approach and can
be applied online.

Our main objective is then to propose a novel passive online testing approach
based on formal conformance and performance testing techniques [3,4]. Although
some crucial works have been done in run-time conformance testing area [1],
they study run-time verification of properties expressed either in linear-time
temporal logic (LTL) or timed linear-time temporal logic (TLTL). Different from
their work focusing on testing functional properties based on formal models, our
work concentrates on formally testing functional and non-functional properties
without formal models, through real protocols in an online manner.

In this work, we firstly extend one of our previous proposed methodologies
to present a passive testing approach for checking the conformance and per-
formance requirements of communicating protocols. Furthermore, we design an
online testing framework to test these requirements in real-time, with new ver-
dicts definitions of ‘Pass’, ‘Fail’, ‘Time-Fail’ and ‘Inconclusive’. Finally, since
several protocol conformance and performance requirements need to be tested
in order to verify the efficiency of our online approach, we perform our app-
roach in a real IP Multimedia Subsystem (IMS) communicating environment for
assessing its preciseness and efficiency.

Our paper’s primary contributions are:

– A formal approach is proposed for formally expressing the conformance and
performance requirements, and data portions are taken into account.

– An online testing framework is designed for testing conformance and perfor-
mance requirements in real-time, and new definition of testing verdicts are
introduced.

The reminder of the paper is organized as follows. In Sect. 2, a short review
of the related works are provided. In Sect. 3, a brief description of the syntax and
semantics used to describe the tested properties is presented. In Sect. 4, we illus-
trate our online testing framework and relevant algorithms. Our approach has
been implemented and experimented in Sect. 5. It has been performed through
a real IMS framework to test Session Initiation Protocol (SIP) properties. The
real-time communications of the IMS allow to evaluate our approach efficiently.
Finally, we conclude and provide interesting perspectives in Sect. 6.

Online Testing: A Passive Approach for Protocols 81

2 Related Works

While a huge number of papers are dedicated to online testing. In this section
we present the prior works in these fields.

Model Based Online Testing. Model based testing is a crucial technique in the
testing research domain. In [11], the authors present T-UPPAAL– a tool for
online black-box testing of real-time embedded systems from non-deterministic
timed automata specifications. They describe a sound and complete random-
ized online testing algorithm and implement it by using symbolic state repre-
sentation and manipulation techniques. They propose the notion of relativized
timed input/output conformance as the formal implementation relation. Like-
wise, some other researchers describe a practical online testing algorithm that is
implemented in the model-based testing tool called Spec Explorer [16], which is
being used daily by several Microsoft product groups. They formalize the model
programs as interface automata, and use the interface automata for conformance
testing. The conformance relation between a model and an implementation under
test is formalized in terms of refinement between interface automata. Besides,
in [14], the authors describe how timed automata can be used as a formalism
to support efficient online monitoring of timeliness, reliability and throughput
constraints expressed in web service SLAs. And they present an implementation
to derive on-line monitors for web services automatically form SLAs using an
Eclipse plugin and Apache AXIS handlers. The readers would notice that all
these works are based on modeling the system by automata or timed automata,
due to the convenience that the constructed models can be handled by existing
verification tools. However, when the system can not be accessed or modeled,
our work will be a complementary to these techniques since we do not need to
formalize the system by any automata.

Online Conformance Testing. In the online testing area, there are lots of work
focus on conformance testing. In [2], the authors present a framework that auto-
matically generates and executes tests “online” for conformance testing of a
composite of Web services described in BPEL. The proposed framework con-
siders unit testing and it is based on a timed modeling of BPEL specification,
and an online testing algorithm that generates, executes and assigns verdicts to
every generated state in the test case. Nevertheless, in [13], the authors defined
a formal model based on Symbolic Transition Graph with Assignment (STGA)
for both peers and choreography with supporting complex data types. The local
and global conformance properties are formalized by the Chor language in their
works. The local properties are used to test behaviors of one isolated peer with
respect to its specification model, while the global properties test the collabora-
tion of a set of peers with respect to its choreography model. Inspired from all
these works, our work does not require to model the IUT and tackles not only
conformance requirements, but also the performance requirements.

Moreover, another similar work is provided by the authors of [8]. They pre-
sented analgorithm for the runtimemonitoring of data-awareworkflowconstraints.

82 X. Che et al.

Sample properties taken from runtime monitoring scenarios in existing literature
were expressed using LTL-FO+, an extension of Linear Temporal Logic that
includes first-order quantification over message contents. Similarly to our work,
data are a more central part of the definition of formulas, and formulas are defined
with quantifiers specific to the labels. Although the syntax of the logic they used
is flexible, it can quickly lose clarity as the number of variables required increases.
Our work improves on this by allowing to group constraints with clause definitions.

Online Performance Testing. Many studies have investigated the performance
of online systems. A method for analyzing the functional behavior and the per-
formance of programs in distributed systems is presented in [9]. In the paper, the
authors discuss event-driven monitoring and event-based modeling. However, no
evaluation of the methodology has been performed. In [5], the authors present
a distributed performance-testing framework, which aimed at simplifying and
automating service performance testing. They applied Diperf to two GT3.2 job
submission services, and several metrics are tested, such as Service response time,
Service throughput, Offered load, Service utilization and Service fairness.

Besides, in [17], the authors propose two online algorithms to detect 802.11
traffic from packet-header data collected passively at a monitoring point. The
algorithms have a number of applications in real-time wireless LAN manage-
ment, they differ in that one requires training sets while the other does not.
Moreover, in [18], the authors present a monitoring algorithm SMon, which con-
tinuously reduces network diameter in real time in a distributed manner. Nev-
ertheless, most of these approaches are based on monitoring techniques, they do
not provide a formalism to test a specific performance requirement. Our app-
roach allows to formally specified protocol performance requirements in order to
check whether the real-time performance of the protocol remains as expected in
its standard.

Although lots of works have been done in the online testing area. Inspired
from and based on their works, our work is different from focusing on using
model-driven techniques, evaluating the performance of the system. We concen-
trate on how to formally and passively test the conformance and performance
requirements written in the standard. And also we are trying to converge the
online conformance and performance testing by using the same formal approach.

3 Formal Approach

We will provide in this section basic definitions, syntax and semantics of our
formalism which are necessary for the understanding of our approach.

3.1 Basics

A communication protocol message is a collection of data fields of multiple
domains. Data domains are defined either as atomic or compound [3]. An atomic
domain is defined as a set of numeric or string values. A compound domain is
defined as follows.

Online Testing: A Passive Approach for Protocols 83

Definition 1. A compound value v of length n > 0, is defined by the set of pairs
{(li, vi) | li ∈ L ∧ vi ∈ Di ∪ {ε}, i = 1...n}, where L = {l1, ..., ln} is a predefined
set of labels and Di are sets of values, meaningful from the application viewpoint,
and called data domains. Let D be a Cartesian product of data domains, D =
D1×D2× ...×Dn. A compound domain is the set of pairs (L, d), where d belongs
to D.

Once given a network protocol P , a compound domain Mp can generally be
defined by the set of labels and data domains derived from the message format
defined in the protocol specification/requirements. A message m of a protocol
P is any element m ∈ Mp.

For each m ∈ Mp, we add a real number tm ∈ R
+ which represents the time

when the message m is received or sent by the monitored entity.

Example 1. A possible message for the SIP protocol, specified using the pre-
vious definition could be

m = {(method, ‘INVITE’), (time, ‘210.400123000’),
(status, ε), (from, ‘alice@a.org’), (to, ‘bob@b.org’),
(cseq, {(num, 7), (method, ‘INVITE’)})}

representing an INVITE request from alice@a.org to bob@b.org. The value of time
‘210.400123000’ (t0 +210.400123000) is a relative value since the P.O started its
timer (initial value t0) when capturing traces.

A trace is a sequence of messages of the same domain containing the inter-
actions of a monitored entity in a network, through an interface (the P.O), with
one or more peers during an arbitrary period of time. The P.O also provides the
relative time set T ⊂ R

+ for all messages m in each trace.

3.2 Syntax and Semantics of Our Formalism

In our previous work, a syntax based on Horn clauses is defined to express
properties that are checked on extracted traces. We briefly describe it in the
following. Formulas in this logic can be defined with the introduction of terms
and atoms, as it follows.

Definition 2. A term is defined in BNF as term ::= c | x | x.l.l...l where c is
a constant in some domain, x is a variable, l represents a label, and x.l.l...l is
called a selector variable.

Definition 3. A substitution is a finite set of bindings θ = {x1/term1, ...,
xk/termk} where each termi is a term and xi is a variable such that xi �= termi

and xi �= xj if i �= j.

84 X. Che et al.

Definition 4. An atom is defined as

A ::= p

k
︷ ︸︸ ︷

(term, ..., term)
| term = term
| term �= term
| term < term
| term + term = term

where p(term, ..., term) is a predicate of label p and arity k. The timed atom is

a particular atom defined as p

k
︷ ︸︸ ︷

(termt, ..., termt), where termt ∈ T .

The relations between terms and atoms are stated by the definition of clauses.
A clause is an expression of the form

A0 ← A1 ∧ ... ∧ An

where A0 is the head of the clause and A1 ∧ ... ∧ An its body, Ai being atoms.
A formula is defined by the following BNF:

φ ::= A1 ∧ ... ∧ An | φ → φ | ∀x φ | ∀y>x φ

| ∀y<x φ | ∃x φ | ∃y>x φ | ∃y<x φ

where A1, ..., An(n ≥ 1) are atoms, x, y represent for different messages of a trace
and {<,>} indicate the order relation of messages.

In our approach, while the variables x and y are used to formally specify the
messages of a trace, the quantifiers commonly define “it exists” (∃) and “for all”
(∀). Therefore, the formula ∀x φ means “for all messages x in the trace, φ holds”.

The semantics used in our work is related to the traditional Apt–Van Emdem–
Kowalsky semantics for logic programs [6], from which an extended version has
been provided in order to deal with messages and trace temporal quantifiers.
Based on the above described operators and quantifiers, we provide an interpre-
tation of the formulas to evaluate them to � (‘Pass’), ⊥ (‘Fail ’) or ‘?’ (‘Incon-
clusive’) [3].

Then the truth values {�,⊥, ?} are provided to the interpretation of the
obtained formulas on real protocol execution traces. However, different from
offline testing, definite verdicts should be immediately returned in online testing.
Which indicates that only � (‘Pass’) and ⊥ (‘Fail ’) should be emitted in the final
report, and the indefinite verdict ‘?’ (‘Inconclusive’) will be used as temporary
unknown status, but finally must be transformed to one of the definite verdicts.

4 Online Testing Framework

In this section, we will introduce our novel online testing framework and provide
the relevant algorithm for testers.

Online Testing: A Passive Approach for Protocols 85

4.1 Framework

For the aim of testing conformance and performance requirements in an online
way, we design and use a passive online testing architecture. As Fig. 1 depicts,
the testing process consists of five following parts.

Fig. 1. Core functions of our testing framework.

1. Formalization: Initially, the informal protocol requirements are formalized
to formulas by using Horn-logic based syntax and semantics mentioned in
Sect. 3. Due to the space limitation, we will not go into details. The interested
readers may have a look at the papers [3,10].

2. Setup: When all the requirements are formalized to formulas, they will be
sent to the Tester with the definition of verdicts.
– Pass: The message or trace satisfies the requirement.
– Fail: The message or trace does not satisfy the requirement.
– Time-Fail: Since we are testing on-line, a timeout is used to stop searching

target message in order to provide the real-time status. The timeout value
should be the maximum response time written in the protocol. If we can
not observe the target message within the timeout time, then a Time-Fail
verdict will be assigned to this property. It has to be noticed that this
kind of verdict is only provided when no time constraint is required in the
requirement. If any time constraint is required, the violation of require-
ments will be concluded as Fail, not as a Time-Fail verdict.

– Inconclusive: Uncertain status of the properties. It only exists at the begin-
ning of the test or at the end of the test.

3. Capturing: The monitor consecutively captures the traces of protocols to be
tested from the IUT. When the messages have been captured, each message
will be tagged with a time-stamp in order to test the properties with time
requirements.

86 X. Che et al.

4. Transfer: The tagged messages are transferred to the Tester when the Tester
is capable for testing. Since we optimize our algorithm in order to have the
best effort, the tester is always capable for testing when dealing with less than
20 million packages per minute.

5. Evaluation: The Tester checks whether or not the incoming traces satisfy
the formalized requirements and provide the final verdicts. Based on different
results and the definition of verdicts, we conclude the verdicts as: Pass, Fail
or Time-Fail.

4.2 Testing Algorithm

The online testing algorithm is described in Algorithm 1. Algorithm 1 describes
the behaviors of an online tester. Firstly, the tester will capture packets from
the predefined interface by using libpcap1, and it will tag time stamps to all the
captured packets at the same time (Line 1–3).

Secondly, it will load all the properties (formalized requirements) have to be
tested, and match each packet with the properties in chronological order. In this
step, only the packets needed for the current property will be saved and tackled.
The other irrelevant packets will be discarded in order to accelerate the testing
process (Line 4–15). This process will keep running until all the properties have
been checked.

When finishing the checking process, it will report the testing result and
empty the buffer immediately in order to make good use of the limited memory
(Line 16–29).

5 Experiments

After introducing our novel framework, we will describe the testing environment
and interpret the experiments results in this section.

5.1 Environment

The IP Multimedia Subsystem is a standardized framework for delivering IP
multimedia services to users in mobility. It aims at facilitating the access to
voice or multimedia services in an access independent way, in order to develop
the fixed-mobile convergence. The core of the IMS network consists on the Call
Session Control Functions (CSCF) that redirect requests depending on the type
of service, the Home Subscriber Server (HSS), a database for the provisioning of
users, and the Application Server (AS) where the different services run and inter-
operate. Most communication with the core network and between the services is
done using the Session Initiation Protocol [15].

The Session Initiation Protocol is an application-layer protocol that relies on
request and response messages for communication, and it is an essential part
1 http://www.tcpdump.org/.

http://www.tcpdump.org/

Online Testing: A Passive Approach for Protocols 87

Algorithm 1. Algorithm of online tester.
Input: open live capture on interface(INTERFACE NAME) //Using libpcap
Output: property verdicts report
thread init(report live status) //thread to report the live1

for each packet on live capture do2

last observed packet time ← get time(packet);3

for each prototype on prototype packets do4

property ← get prototype property(prototype);5

if match properties of(prototype, packet) then6

prototype list ← get prototype list(prototype);7

for each prototype dependency on dependencies(prototype) do8

matched dependency ← FALSE;9

for each stored packet on10

get dependency prototype list(prototype dependency) do
if match properties dependency(prototype dependency,11

packet, stored packet) then
associate(packet, stored packet, property),12

matched dependency ← TRUE;
goto next dependency;13

end14

end15

if !matched dependency then16

goto next prototype17

end18

end19

if prototype determines property(prototype) then20

associations list ← get associations(packet)21

report property pass(property, packet, associations list)
delete from prototype lists(associations list)

end22

else23

push(prototype list, packet)24

end25

end26

next prototype;27

end28

end29

for communication within the IMS framework. Messages contain a header which
provides session, service and routing information, as well as an body part to
complement or extend the header information. Several RFCs have been defined
to extend the protocol to allow messaging, event publishing and notification.
These extensions are used by services of the IMS such as the Presence service
and the Push to-talk Over Cellular (PoC) service.

For our experiments, communication traces were obtained through ZOIPER2.
ZOIPER softphone is a VoIP soft client, meant to work with any IP-based
2 http://www.zopier.com/softphone/.

http://www.zopier.com/softphone/

88 X. Che et al.

Fig. 2. Environment for experiments.

communications systems and infrastructure. It provides secure high-quality voice
calls and conference, fax sending and receiving functionality, and enhanced IP-
calling features wrapped in a compact interface and small download size.

As Fig. 2 shows, a simple environment is constructed for our experiments.
We run two ZOIPER VoIP clients on the virtual machines using VirtualBox for
Mac version 4.2.16. The virtual machines have 4 GB of RAM, one processor Intel
i5 @2.3 GHz and the software being used is Zoiper 3.0.19649. On the other side,
the server is provided by Fonality3, which is running Asterisk PBX 1.6.0.28-
samy-r115. The P.Os are placed on the client side. Tests are performed using a
prototype implementation of the formal approach above mentioned, using the
algorithm introduced in the previous section.

5.2 Tests Results

In our approach, the conformance and performance requirement properties are
formalized to formulas. These formulas will be tested through the testers in real-
time. Simultaneously, not only ‘Pass’, ‘Fail ’, ‘Time-Fail ’ and ‘Inconclusive’ ver-
dicts are returned, but also Np, Nf , Ntf and Nin will be given to the tester, which
represent the accumulated number of ‘Pass’, ‘Fail ’, ‘Time-Fail ’ and ‘Inconclu-
sive’ verdicts respectively. We may write:

Np(φ) =
∑

[eval(φ, θ, ρ) = ‘�’]

Nf (φ) =
∑

[eval(φ, θ, ρ) = ‘ ⊥ ’]

Ntf (φ) =
∑

[
eval(φ, θ, ρ) = ‘ ⊥ ’
termt /∈ φ, timeout ∈ θ

]

Nin(φ) =
∑

[eval(φ, θ, ρ) = ‘?’]

3 http://www.fonality.com.

http://www.fonality.com

Online Testing: A Passive Approach for Protocols 89

Table 1. Online testing result for Client1 and Client2.

P.O φ1 φ2 ψ1

Pass Fail Time-Fail Incon Pass Fail Time-Fail Incon Pass Fail Time-Fail Incon

Client1 50 0 0 0 43 0 7 0 645 240 0 0

Client2 36 0 0 0 34 0 2 0 473 6 0 0

Properties: In order to formally design the properties to be passively tested
online, we got inspired from the TTCN-3 test suite [7] and the RFC 3261 of
SIP [15]. Several properties relevant to session establishment are designed.

Conformance requirements φ1,φ2 (“Every INVITE request must be
responded”, “Every successful INVITE request must be responded with a suc-
cess response”) and a performance requirement ψ1 (“The response time for each
request should not exceed T1 = 8s”) are tested. They can be formalized as the
following formulas:

φ1 =
{∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)))

φ2 =
{∀x(request(x) ∧ x.method = ‘INVITE’

→ ∃y>x(success(y) ∧ responds(y, x)))

ψ1 =

⎧

⎨

⎩

∀x(request(x) ∧ x.method! = ‘ACK’

→ ∃y>x(nonProvisional(y) ∧ responds(y, x)

∧withintime(y, x, T1)))

The two hours online testing results are illustrated in Table 1. A number
of ‘Fail ’ and ‘Time-Fail ’ verdicts can be observed when testing φ2 and ψ1.
Let’s have a look at the ‘Time-Fail ’ verdicts in φ2. They indicate that during
the testing, the tester can not detect some successful responses to ‘INVITE’
requests within the maximum response time. However, there is no time constraint
required in φ2, we have to conclude these verdicts as ‘Time-Fail ’. Which means
probably the server refused some ‘INVITE’ requests, the responses are lost
during the transmission or the responses will arrive later than the timeout time.
Combining the results of φ1, we can know that it was due to the first reason.

Similarly, we can observe some ‘Fail ’ verdicts when testing ψ1, they are
caused by the same reason that the tester can not find the target message within
the required time. On the contrary, there is a specific time constraint required in
ψ1, which is 8 seconds. It shows some responses exceeded the required time 8s,
they exactly violated the requirement and we have to conclude them as ‘Fail ’.

These testing results successfully show that our approach can detect both the
usual and unusual faults. Moreover, by using the verdicts obtained from these
properties. We can also test the performance issues of session establishment in
real-time, which can be defined as:

– Session Attempt Number: Np(φ1)
– Session Attempt Rate: Np(φ1)/tslot

90 X. Che et al.

– Session Attempt Successful Rate: Np(φ2)/Np(φ1)
– Session establishment Number: Np(φ2)
– Session establishment Rate: Np(φ2)/tslot
– Session Packets Delay: Np(ψ1).

Fig. 3. Session Attempt Number, Rate and Successful Rate.

Figure 3 illustrates the testing results of Session Attempt Number, Rate and
Successful Rate in each hour. We can observe that in the 4th and 5th hour,
the successful attempt rates are zero while the attempts numbers/rates are not,
which denotes that in those two periods, all the session attempts (‘INVITE’
requests) were refused. And it returned to normal in the 6th hour. In this way,
we can have a clear view of the protocol performance during online testing. It
has to be noticed that when the tester receive an incoming trace, it will apply
the formalized requirements on the trace and get the verdicts in a short time.
During our experiments, all the testing results for requirements without time
constraints are obtained in 1s, which proves the efficiency of our approach.

6 Perspectives and Conclusion

This paper introduces a novel online approach to test conformance and per-
formance of network protocol implementation. Our approach allows to define
relations between messages and message data, and then to use such relations
in order to define the conformance and performance properties that are evalu-
ated on real protocol traces. The evaluation of the property returns a Pass, Fail,
Time-Fail or Inconclusive result, derived from the given trace.

The approach also includes an online testing framework. To verify and test
the approach, we design several SIP properties to be evaluated by our approach.
Our methodology has been implemented into an environment which provides the
real-time IMS communications, and the results from testing several properties
online have been obtained successfully.

Furthermore, our approach can not only test requirements and return rele-
vant verdicts, but also it can reflect current protocol performance status based on

Online Testing: A Passive Approach for Protocols 91

these verdicts. We extended several performance measuring indicators for SIP.
As Fig. 3 shows, these indicators are used for testing the performance of session
establishment in SIP. The real time updated results displayed in the screen can
precisely reflect the performance of the protocol in different time periods.

Consequently, extending more testers in a distributed environment based on
the work [4] and building an online testing system for all the network protocols
would be the work we will focus on in the future. In that case, the efficiency and
processing capacity of the system would be the crucial point to handle, leading
to an optimization of our algorithms to severe situations.

References

1. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL.
ACM Trans. Softw. Eng. Methodol. 20(4), 14 (2011)

2. Cao, T.-D., Félix, P., Castanet, R., Berrada, I.: Online testing framework for web
services. In: Third International Conference on Software Testing, Verification and
Validation, pp. 363–372 (2010)

3. Che, X., Lalanne, F., Maag, S.: A logic-based passive testing approach for the
validation of communicating protocols. In: Proceedings of the 7th International
Conference on Evaluation of Novel Approaches to Software Engineering, Wroclaw,
Poland, pp. 53–64 (2012)

4. Che, X., Maag, S.: A formal passive performance testing approach for distributed
communication systems. In: ENASE 2013 - Proceedings of the 8th International
Conference on Evaluation of Novel Approaches to Software Engineering, Angers,
France, 4–6 July, 2013, pp. 74–84 (2013)

5. Dumitrescu, C., Raicu, I., Ripeanu, M., Foster, I.: DiPerF: an automated dis-
tributed performance testing framework. In: 5th International Workshop in Grid
Computing, pp. 289–296. IEEE Computer Society (2004)

6. Emden, M.V., Kowalski, R.: The semantics of predicate logic as a programming
language. J. ACM 23(4), 733–742 (1976)

7. ETSI: Methods for testing and specification (MTS); conformance test specification
for SIP (2004)

8. Hallé, S., Villemaire, R.: Runtime enforcement of web service message contracts
with data. IEEE Trans. Serv. Comput. 5(2), 192–206 (2012)

9. Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M.: Distributed performance
monitoring: methods, tools and applications. IEEE Trans. Parallel Distrib. Syst.
5, 585–597 (1994)

10. Lalanne, F., Maag, S.: A formal data-centric approach for passive testing of com-
munication protocols. IEEE/ACM Trans. Netw. 21, 788–801 (2013)

11. Larsen, K.G., Mikucionis, M., Nielsen, B.: Online testing of real-time systems using
Uppaal. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp.
79–94. Springer, Heidelberg (2005)

12. Lee, D., Miller, R.: Network protocol system monitoring-a formal approach with
passive testing. IEEE/ACM Trans. Netw. 14(2), 424–437 (2006)

13. Nguyen, H.N., Poizat, P., Zäıdi, F.: Online verification of value-passing chore-
ographies through property-oriented passive testing. In: 14th International IEEE
Symposium on High-Assurance Systems Engineering, pp. 106–113 (2012)

92 X. Che et al.

14. Raimondi, F., Skene, J., Emmerich, W.: Efficient online monitoring of web-service
slas. In: Proceedings of the 16th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pp. 170–180 (2008)

15. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J.: SIP:
Session initiation protocol (2002)

16. Veanes, M., Campbell, C., Schulte, W., Tillmann, N.: Online testing with model
programs. In: Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pp. 273–282 (2005)

17. Wei, W., Suh, K., Wang, B., Gu, Y., Kurose, J.F., Towsley, D.F., Jaiswal, S.:
Passive online detection of 802.11 traffic using sequential hypothesis testing with
TCP ACK-pairs. IEEE Trans. Mob. Comput. 8(3), 398–412 (2009)

18. Yuen, C.-H., Chan, S.-H.: Scalable real-time monitoring for distributed applica-
tions. IEEE Trans. Parallel Distrib. Syst. 23(12), 2330–2337 (2012)

Experiences of Use of a Multi-domain Tool
for Collaborative Software Engineering Tasks

Jesús Gallardo1(&), Ana Isabel Molina2, Crescencio Bravo2,
and Fernando Gallego2

1 Escuela Universitaria Politécnica de Teruel, Universidad de Zaragoza,
Ciudad Escolar, s/n, Teruel, Spain
jesus.gallardo@unizar.es

2 Escuela Superior de Informática, Universidad de Castilla-La Mancha,
Paseo Universidad, 4, Ciudad Real, Spain

{anaisabel.molina,crescencio.bravo}@uclm.es,

fgallego82@gmail.com

Abstract. Many processes in Software Engineering, and specifically in the
Unified Software Development Process, require the participation of several
actors who may play different roles. Collaborative software (groupware) can
solve the problems that arise when trying to deal with such processes. Within
this scope, we have developed a domain independent synchronous collaborative
tool that can be specialized to work with several types of diagrammatical
domains. Among those domains, the diagrams used in the Unified Process can
be found. In this paper we describe how we have instantiated this model-based
tool to work with some diagrams in the Unified Process. Also, in the paper we
explain how we have carried out some studies with this tool to obtain conclu-
sions regarding several issues, including the analysis of the communication and
coordination among users, and the relationship between them and the quality of
the work.

Keywords: Use cases � Groupware � Collaborative modeling � Empirical study

1 Introduction

Currently, many fields in industry, research and education are taking advantage of the
advances in collaborative software applications and systems. These applications have
been classified in the so-called field of groupware [1]. Groupware is defined as those
computer-based systems that give support to a group of people who work together on a
shared task, and that provide an interface to a shared environment [2]. By means of
computer networks and groupware systems, shared workspaces are created and group
tasks of several kinds can be carried out.

Software Engineering is one of the fields that can take advantage of the boom in the
groupware area. Specifically, many processes within the Unified Software Develop-
ment Process require the participation of several actors with different or equal roles.
Thus, such actors may create or modify the diagrams integrated in the Unified
Modeling Language (UML) in a collaborative way. This leads us to the fact that a

© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 93–108, 2015.
DOI: 10.1007/978-3-319-27218-4_7

groupware tool can assist in the development of such work and allow higher quality
diagrams to be developed. Another way in which groupware contributes to Software
Engineering is distributed collaborative programming, in which several programmers
work on the same source code when solving problems [3].

In this work, we focus on the use of synchronous collaborative tools. By means of
these tools, several users who are physically separated are able to work on the same
diagram at the same time. This is also known as real time collaboration in the literature.
As explained in Sect. 2, the synchronous collaborative building of several UML dia-
grams using groupware tools is an area in which there is a lack of relevant works. In
synchronous collaborative settings, participants are usually grouped in work sessions in
which they work together on a given goal. In order to help the collaborative work be
done, these tools should integrate several widgets or components for the support of
communication and coordination among the members of the collaborative work
session.

In processes such as software development, developers usually have to face the use
of tools that handle several types of artifacts, particularly diagrams that make models
visible. Thus, developers may have problems when adapting themselves to the use of
different tools with different user interfaces and ways of operation. A possible solution
to this is the use of a multi-domain system. This type of system includes a configuration
process in which an administrator carries out a setup process from which a tool for
working with a specific domain is generated. Therefore, all tools generated within this
process own the same user interface and are used in the same way, so that users only
have to learn once how they are used. This can imply an important saving of time and
higher work productivity. In this paper, we are going to deal with some multi-domain
tools we have developed and instantiated for several domains in the field of Software
Engineering.

The tool we have chosen to give support to our study is SPACE-DESIGN [4].
SPACE-DESIGN is a domain-independent synchronous groupware tool that can be
specialized to a wide set of application domains by means of a simple process of
configuration. In this case, we have configured the tool to support the development of
use case diagrams and some other UML diagrams. In order to analyze how a group of
users’ use such tools and whether they accept that as a feasible option, several
empirical studies have been carried out. In this paper we will describe in detail one of
them. In it, we have analyzed the development of a collaborative work task in the
domain of use case diagrams. Thus, our goals have been, on the one hand, to prove that
the development of use case diagrams in a synchronous collaborative way by using a
groupware tool is feasible, and, on the other hand, to analyze how the different pos-
sibilities of communication and coordination users were provided with have an effect
on the process and also on the results of the work.

The remaining part of this work is organized as follows: in Sect. 2, we deal with
some systems and approaches related to the work described in this paper. Then, the
SPACE-DESIGN collaborative tool and its evolution are described. In Sect. 4, we
explain the empirical study we have carried out in detail and we discuss the results
obtained. Lastly, we present some conclusions and future work.

94 J. Gallardo et al.

2 Related Work

In this section, we tackle systems and technologies related to the work approached.
Firstly, in Subsect. 2.1 we discuss those tools that support synchronous collaborative
modeling in any domain. Afterwards, in Subsect. 2.2 we mention some tools that are
used for the development of use case diagrams.

2.1 Tools for Synchronous Collaborative Modeling

A few tools that support the synchronous collaborative modeling of diagrams and
artifacts in several application domains exist. Some of them are specific of a given
domain and some others are generic or domain independent, with this meaning that
they can be adapted to work on different domains by means of a configuration process.

Some examples of domain independent collaborative modeling tools are Cool
Modes and Synergo. Cool Modes [5] is a cooperative modeling system that contains a
workspace including a set of plug-ins. These plug-ins are actually palettes that contain
the objects that can be placed over the shared workspace and the links to create
relationships between the objects. In Cool Modes it is not possible for users to
reconfigure or extend the functionality of the tool by adding new palettes that support
new application domains. Synergo [6] is also a tool for the design on a shared
whiteboard. Synergo contains a predefined set of objects that can be placed on that
whiteboard. This set cannot be extended. Another feature included in Synergo is a
powerful communication system in the form of a chat for the discussion among the
members of the work session. This chat includes the possibility of sending predefined
messages that can direct the communication. Such messages usually deal with making
proposals and accepting or denying them. Thus, Synergo introduces the concept of
structured chat, about which we will talk later.

SPACE-DESIGN [4] is a synchronous collaborative modeling tool. It is recon-
figurable and extensible. In order to configure it for a specific application domain,
XML-based files are used. This tool includes some widgets for awareness and coor-
dination support, which are implemented as reusable components. One of those wid-
gets is a structured chat, as explained in Sect. 3. The presence of the chat is one of the
main reasons for the selection of this tool for the empirical study. The usefulness of
chats and similar communication mechanisms has been proved in diverse collaborative
tasks [7], and specifically in requirements elicitation in software engineering [8]. In
fact, we have used SPACE-DESIGN in our research group for other works in which we
have needed a synchronous collaborative tool [9]. Of course, we have specialized
SPACE-DESIGN in order to make it work over the use case diagrams domain. Other
systems, such as the aforementioned Cool Modes and Synergo, could not have been
configured in such a way. Further explanations about SPACE-DESIGN can be found in
Sect. 3.

Now, we go back to the concept of structured chat. The usual way to support
communication in synchronous collaborative tools is to include a chat that allows users
to communicate to each other. The use of a chat is especially important in tasks such as
creating artifacts or diagrams on a synchronous way, as it allows communication

Experiences of Use of a Multi-domain Tool 95

during the work sessions. A special kind of chat is the structured chat, in which users
can use specific sentence openers that are used to have a more directed conversation.
Usually, sentence openers are related to the specific domain of the tool.

Synergo and SPACE-DESIGN are examples of tools that include a structured chat.
Another one is COLER [10]. This system is a web based collaborative environment for
the learning of Entity-Relationship diagrams. Some other interesting tools that use
structured communication are C-CHENE [11], which deals with the building of energy
chains, and EPSILON [12], for object-oriented design with OMT diagrams.

2.2 Collaborative Tools for the Development of UML Diagrams

There exist several tools for the development of UML diagrams, both collaborative and
non-collaborative ones. In the scope of our higher education institution, Rational Rose
and Visual Paradigm are the ones that have been used in the recent times, both of them
being non-collaborative tools. Next, we are going to talk about some collaborative tools
that have been developed in the scientific and commercial spheres.

An interesting approach to UML diagram collaborative edition is CUML [13]. In
this approach, each user works on a copy of the model that is synchronized with a
central server. A group of users can work together or different users can lock different
parts of the model for exclusive editing while the changes are visible to all other users.
Therefore, both synchronous and asynchronous editing is allowed.

These kinds of tools are often used for learning purposes. For example,
COLLECT-UML [14] is a constraint-based intelligent tutoring system that teaches
object-oriented analysis and UML-based design. This system teaches users how to
design UML class diagrams and provides them with feedback on collaboration.

As the study in this paper is focused on use case diagrams, we are going to review
now some tools for the collaborative development of such diagrams. Fuenzalida and
Antillanca [15] two tools for the textual edition of use cases. One of these tools is
synchronous, whereas the other one is an asynchronous tool. Neither tool handles
diagrams, but they allow the textual edition of the use cases and the relationships
among them. The comparison between the tools is done by calculating some metrics.
Most metrics give best values to the asynchronous tool, but the synchronous modeling
seems to have some relevant advantages. For instance, it takes less time to obtain the
final model.

Most existing systems that implement some kind of collaboration to edit use cases
or to build use case diagrams actually implement asynchronous collaboration. Even this
collaboration is sometimes just a mere management of group work or a kind of version
control system. Some tools implementing such approaches are CaseComplete [16] or
Visual Use Case [17]. Another category is that of those tools that deal with software
lifecycle in a wider sense and contain specific components for the management of use
cases. This is the case of the Rommana system [18]. This tool includes requirements
management, tests management and so on, together with a use cases management unit.

Summarizing, we can conclude that synchronous collaborative use cases modeling
is a field that has not been explored enough and that can provide some advantages
when carrying out the modeling tasks. In the following section, the SPACE-DESIGN

96 J. Gallardo et al.

tool is described in detail. SPACE-DESIGN is the tool used to carry out the collab-
orative use case diagrams modeling in the empirical study described in Sect. 4. As
mentioned in Sect. 2.1, this tool has been chosen because it presents some features that
make it more suitable than other tools.

3 The SPACE-DESIGN Tool

The SPACE-DESIGN tool (Fig. 1) is a system that is the first version of the instru-
mental part of a methodological approach for the model-driven development of col-
laborative modeling systems [19]. In particular, SPACE-DESIGN supports distributed
synchronous work, allowing users to build models collaboratively. It is
domain-independent since the system processes the domain specification, expressed by
means of an XML-based language, and spawns the user interface and the necessary
functionality to support that specific type of modeling, including specific interaction
and awareness design aspects in the groupware user interface. Thus, it is a
multi-domain system of the type we dealt with in the introduction.

As shown in Fig. 1, SPACE-DESIGN has a shared whiteboard (A) where users can
work with the different elements that make up the application domain. These elements
can be one of two types: objects (B) and relationships (C). Both types are instantiated

Fig. 1. The SPACE-DESIGN tool working with the domain of digital circuits.

Experiences of Use of a Multi-domain Tool 97

from the toolbars that are located on the left-hand side of the user interface (D, E).
These toolbars will vary according to the domain in which the system is working, and
the objects and relationships will be those that appear in the domain specification.

An important characteristic of SPACE-DESIGN are the elements for awareness
[20] and collaboration support that are included by default. These elements are: a
session panel that shows the users who is participating in the design session and
identifies them by means of a specific color (F), the identification of the elements that
users select by means of colors, the tele-pointers that indicate where the other users are
pointing to (G), a structured chat feature for communication between the participants
(H), and a list of interactions indicating what actions have taken place and who has
carried them out (I).

The presence of these awareness and collaboration support elements is one of the
features that make SPACE-DESIGN different from other similar systems, such as
Synergo or CoolModes. However, the main differences between SPACE-DESIGN and
these systems are that, while the former adapts itself in a flexible way to new domains,
incorporates awareness mechanisms, and stores the developed models in XML files
(Fig. 2), the other systems have difficulty incorporating new domains, have fewer
awareness mechanisms and, in the case of CoolModes, store the models in a propri-
etary format [21].

Fig. 2. Excerpt from the specification of the use cases domain and its translation to the user
interface.

98 J. Gallardo et al.

Concerning the supported domains, the aforementioned systems allow for the
modeling of several domains from a series of specifications programmed in the system
itself, whereas SPACE-DESIGN defines the domains in a way that is external to the
system, by means of specifications that can be built by end users. This means that any
domain made up of objects and relationships between them, and actions to manipulate
them can be modeled in this way, and as such, SPACE-DESIGN can be used to work
with this domain in a collaborative way. Specifically, in this work, starting from the use
cases domain specification, SPACE-DESIGN adapts its user interface to give support
to use case diagram modeling.

As stated before, communication is a very important issue when performing col-
laborative tasks, especially in real time working environments; the most usual com-
munication mechanism is the exchange of textual messages. SPACE-DESIGN supports
three types of synchronous textual. The first one is free communication, which is the
kind of communication that happens in traditional chats. That is, communication that is
based on the free exchange of textual messages among the members of the work team.
No constraints are defined in this sense. A second approach is communication with
references to objects. In this kind of chat, the conversation is enriched with some
references to the domain objects in the collaborative modeling task in which the work
is being done. The different domain objects (e.g., actors and use cases in the domain of
use case diagrams) that can be placed in the shared context can be selected and
included in the conversation. The third and last kind of chat is the structured chat. This
kind of chat provides users with a set of predefined messages with which the user can
show the kind of contribution or message, as well as its intention. Thus, the organi-
zation of the talk is favored. The categories of the messages can be defined according to
the particular needs of the collaborative task to support and to the specific domain in
which work is being done. Moreover, this technique allows reusing structures from
previous conversations. In the case of SPACE-DESIGN, messages have been classified
regarding their type (statement, question or answer) and their position in the conver-
sation (some of them are conversation starters, such as “Why…” and others are reactive
ones, such as “Because…”). Table 1 depicts the generic sentence openers in
SPACE-DESIGN. In this kind of chat, references to objects are also possible. In fact,
SPACE-DESIGN offers the possibility to have a structured chat with references to
objects.

The SPACE-DESIGN tool has been instantiated for several application domains
that are made up by nodes and connections among them. For example, digital circuits,
conceptual maps, Bayesian networks, etc [4]. Some studies have been developed in
order to test the suitability and usefulness of our approach [9]. Software Engineering
has been one of the fields in which SPACE-DESIGN has been found as an interesting
and promising tool. Therefore, the tool has been configured by instantiating the cor-
responding models so that it allows the work with several diagrams of the Unified
Process, such as use cases diagrams, class diagrams, state transition diagrams, package
diagrams, etc. In Fig. 3 we show some screenshots of the SPACE-DESIGN tool
working with some of these diagrams. The screenshots are of an early version of the
tool, so the user interface is slightly different from the one in other screenshots in this
paper.

Experiences of Use of a Multi-domain Tool 99

The SPACE-DESIGN tool has been improved from its initial version, which is the
one we have shown in previous subsections. The current version of SPACE-DESIGN
is called SpacEclipse and it has been fully integrated in the model-driven development
method [22]. Specifically, the new version improves certain elements, such as the way
in which the domain is specified, the extension of the working process to cover new
tasks, and the reusability and extensibility of the generated tool. We have integrated

Table 1. Sentence openers in SPACE-DESIGN.

Sentence opener Type Position in the conversation

I think that… Statement Conversation starter
Why… Question Conversation starter
I miss a… Statement Conversation starter
There’s a mistake in… Statement Conversation starter
I think so Statement Reactive
I don’t think so Statement Reactive
I don’t know Answer Reactive
Because… Answer Reactive

Fig. 3. The SPACE-DESIGN tool instantiated for the domains of class diagrams (upper left),
state transition diagrams (upper right) and package diagrams (bottom).

100 J. Gallardo et al.

several technologies from the Eclipse Modeling Project1 and extended them to obtain
collaborative functionality. Therefore, Eclipse is used as a container platform for the
developed modeling tools. Its use has some additional advantages, for example
developers may be familiar with Eclipse-based systems, as it is a common platform in
the Software Development field. An example of tool generated using the new version
of the method is the one shown in Fig. 4.

4 Empirical Study

In this section, we describe in depth a empirical study carried out to evaluate the
SPACE-DESIGN. We have considered it interesting to analyze how users collaborate
using the different communication mechanisms, and how such mechanisms have an
influence on the work performed and the results obtained. In this sense, we have tested
the three kinds of chat in SPACE-DESIGN. We have tried to state whether there is an
influence of the kind of chat on the work carried out. In addition, we have an interest in
knowing the subjective perception users have regarding the usefulness of the mecha-
nisms, as well as their preference for one or another kind of communication. Regarding

Fig. 4. New version of the collaborative modeling tool working with the use case diagram
domain.

1 http://eclipse.org/modeling/.

Experiences of Use of a Multi-domain Tool 101

http://eclipse.org/modeling/

communication issues, we have also asked users for their preference between the three
kinds of chats.

Thus, the research questions we contemplate in this scenario are the following:

• Does the choice of a certain communication mechanism have an influence on the
fluency of the communication?

• Does the communication mechanism have an influence on coordination?
• What relationship between the communication mechanism and the quality of the

use cases models exists?

4.1 The Study

A total number of 28 students of the Escuela Superior de Informática in the University
of Castilla-La Mancha (Spain) took part in the study voluntarily. All of them were
taking a course on Software Engineering in the third year of a Computer Science
degree. The collaborative task to be carried out by the participants consisted in building
a use case diagram making use of the SPACE-DESIGN collaborative tool. Students
were given a textual specification of the problem to be solved, which was of an
intermediate difficulty. Two different problems were proposed, so not all the groups
solved the same problem. Specifically, the problems were: (P1) the modeling of the
system of a tour operator that had to manage trips and travelers, and (P2) the modeling
of the system of a harbor, which had to deal with the management of ships, the arrival
of boats, etc. Figure 5 shows a screenshot obtained during the study. In the figure, the
work done by a group of participants that had to solve P2 can be seen. The screenshot
corresponds to a user who is not editing the diagram. The tele-pointer of the user who is
editing can be partially seen in the bottom of the diagram. The last messages exchanged
by the users can be seen in the chat.

For the design of this empirical study, several steps were followed. Firstly, the
students who were to take part in it attended a seminar about the SPACE-DESIGN tool.
There, students could try the tool and learn how it works, which features it includes and
what it can be used for.

Then, the 28 participants were divided into two groups of 10 members and one
group of 8 members. Two groups worked on problem P1, whereas the remaining group
worked on problem P2. Participants in each group were then grouped in pairs whose
participants were physically separated while carrying out the study. Each group was
randomly assigned a different communication mechanism. Thus, 4 pairs (8 participants)
used the traditional chat, 5 pairs (10 participants) used the chat with references to
objects, and 5 pairs (10 participants) used the structured chat.

During the problem solving, in which the modeling task was carried out, partici-
pants were allowed to look up the help manual of the tool, as well as the formulation of
the problem to be solved. Each participant was provided with a unique user name and
password so that they could use the tool and access the work session they should join.
The structure of sessions and groups is depicted in Table 2.

Once the task was completed, the participants in the study went to fill out a test
made up of 10 questions with a five-point Likert scale format. This test allowed users to

102 J. Gallardo et al.

evaluate the usefulness of the tools, as well as of the different communication mech-
anisms included in it. The test also included a section for additional remarks, in which
participants could express their opinion or make suggestions for the improvement of
the tool and the study.

This empirical testing was designed with the aim to lighten some threats to internal
and external validity. For example, each group was randomly assigned a different com-
munication mechanism. In addition, the universe of discourse of the problem to be solved

Table 2. Structure of sessions and groups in the empirical study.

Problem Chat Participants Groups

P1 Chat with reference to objects 10 2
Traditional chat 1
Structured chat 2

P2 Chat with reference to objects 8 1
Traditional chat 2
Structured chat 1

P1 Chat with reference to objects 10 2
Traditional chat 1
Structured chat 2

Fig. 5. Screenshot of the use of SPACE-DESIGN during the empirical study.

Experiences of Use of a Multi-domain Tool 103

was well known by the participants. Regarding fatigue effects, the average time spent in
completing the designing tasks was approximately 60 min. Hence, we consider that
fatigue did not have an influence on the result obtained. In relation to subject motivation,
we have to mention that subjects were highly committed to this research. In relation to
external validity, one issue that could affect the validity of the conclusions of this study is
the size of the sample data. We are aware of this, so we will consider carrying out
replications of this study with a larger sample size. Other issue to analyze is the sample
nature. In order to guarantee the external validation of empirical studies, it is recom-
mendable to recruit representative participants. Because of the difficulty of obtaining
professional subjects, we used undergraduate students from a software engineering
course. This fact threatens the validity of conclusions and external validity. However, if
we consider that students can be considered future professionals and had enough capacity
to participate in this task, these experimental subjects can be considered appropriate.

4.2 Results and Discussion

Now, we are going to show the results of the empirical study, discuss them and state the
conclusions that have been drawn from them. We are going to start by talking about the
metrics we have calculated for the groups taking part in the study. Firstly, we are going
to consider the amount of information exchanged by the groups, which we have
measured by means of the number of messages exchanged, the average number of
words per message and the total number of words exchanged. In these three metrics,
when grouping the values considering the kind of chat, the chat with references to
objects obtained better values (Table 3).

In addition to this analysis of the amount of information exchanged, we have also
analyzed the content of the messages and their nature. From these data, we calculated
the number and percentage of interrogative messages as well as the number of domain

Table 3. Statistics on messages and words communicated during the study. Each cell includes
the mean value (M) and, in parentheses, the standard deviation (SD).

Traditional
chat

Chat with
references
to objects

Structured chat

Total number of messages per
group

104.25 (45.26) 151.40 (48.86) 98.60 (48.94)

Average number of words per
message

5.10 (0.91) 5.98 (1.33) 5.06 (0.55)

Total number of words 61.25 (33.89) 106.00 (24.38) 70.40 (46.26)
Number of interrogative messages 16.50 (13.08) 24.40 (5.46) 12.60 (6.88)
Percentage of interrogative
messages

14.39 (6.93) 18.72 (11.24) 12.73 (5.12)

Number of domain dependent
words

51.25 (31.08) 76.60 (20.68) 53.60 (38.89)

104 J. Gallardo et al.

dependent words exchanged between the members of the group (see Table 3).
We classify domain dependent words as those that refer to use case diagrams (“use”,
“case”, “actor”, “extends”, etc.) as well as those which are specific to the problem
formulation. In this sense, the values were again higher when calculating the totals and
averages for the chat with references to objects. Thus, we can state that the commu-
nication was more fluent in the groups working with that kind of chat.

Regarding coordination needs, we measured the number of turn changes accom-
plished by each group. Groups using the traditional chat obtained higher values
(M = 7.25; SD = 2.06), whereas groups with the chat with references to objects received
smaller values (M = 5.80; SD = 1.92).

Taking into account all the data collected up to this point, we can conclude that the
possibility of including references to domain objects seems to cause the users to focus
on the conversation and make longer contributions, which are centered on the problem
to be solved. In addition, it seems that with this chat it is less necessary to move the
conversation between the members of the group. At the very least, we have detected
fewer turn changes than in other cases.

Next, we are going to match these results with the performance of the groups when
solving the modeling problem. The teacher evaluated the models developed during the
study by giving each one a grade on the solution given to the problem. The grade was
later divided into two separate grades regarding use cases and relationships. All these
grades were calculated with 0 as the lowest and 10 the highest value. In this sense,
again those that made use of the chat with references to objects obtained better grades
(M = 6.21; SD = 1.35), whereas those who used the structured chat obtained the worst
ones (M = 4.31; SD = 2.21). To check whether these results were influenced by the
previous knowledge of the participants, their teacher was asked about the previous
grades they had obtained in the course. Taking all of this into account, it was dis-
covered that some groups were made up by students with similar previous grades
(homogeneous groups), whereas some other groups consisted of two students with
significant differences in their previous grades (heterogeneous groups). As we did not
intentionally arrange the groups in this way, it is difficult to draw definitive conclusions
about how this difference affected the other variables being analyzed. Thus, in future
studies we will study the influence of the distribution in homogeneous and heteroge-
neous groups on the performance.

In addition to the descriptive analysis of the data collected, we also carried out a
correlation analysis between the variables. Next, we are going to discuss the main
correlations that appeared. The first correlation we detected was that those groups
whose members had higher previous grades used more domain dependent words when
using the chat (r = 0.60; p = 0.05). It can be deduced from this correlation that those
groups whose members performed better in the course were more focused on carrying
out the activity. In addition, these groups were those that exchanged a higher number of
messages (r = 0.64; p = 0.05). The correlation with the number of interrogative
messages was also positive (r = 0.69; p = 0.05).

On the other hand, a negative correlation (r = −0.57; p = 0.05) was detected
between the number of turn changes and the number of exchanged words. This makes
us think of two styles of working between the members of the group: a style in which
one of the two members is working most of the time and the collaboration is made by

Experiences of Use of a Multi-domain Tool 105

means of the chat, and a second style in which members make less use of the chat and
prefer to frequently change turns.

Lastly, it is worth noting a correlation that is not related to communication issues,
but is specific to the domain of use case diagrams. Specifically, a positive correlation
between the size of the model and the grade given by the teacher to the model regarding
the suitability of the use cases chosen was detected (r = 0.69; p = 0.05). From this
correlation, we can infer that, in those cases in which users did not select the proper set
of use cases, the usual situation was that they used fewer uses cases than the amount
included in the solution of the problem, and not the inverse situation in which they had
used too many use cases.

To finish with the analysis of the study, we are going to talk about the results
related to the subjective perception of the participants concerning the use of the tool
and its communication mechanisms. In order to collect the information, participants
filled out a test made up of some questions with a Likert scale (1 to 5). Some questions
were meant to find out the opinion of the participants about the usefulness of
SPACE-DESIGN for the collaborative modeling of use case diagrams. Participants
gave a mean value of 3.6 (SD = 0.4) to that variable. This led us to think that users
expressed their interest for the use of a collaborative tool such as SPACE-DESIGN for
the collaborative design of use case diagrams. Thus, we could state that users would
choose SPACE-DESIGN or a similar tool when willing to carry out such collaborative
tasks instead of using single user tools shared by means of any software mechanism.
This is a preference we have found in previous works [9].

In addition, the test contained some questions about the preference of the partici-
pants on the different communication mechanisms. In this sense, most users preferred
the traditional chat, being the chat with references to objects the second one most
valued and the structured chat the one which was least valued by the participants.
However, in the case of these two kinds of chat, the possibility of referring domain
objects during the conversations was given high values (M = 3.4; SD = 0.34).

4.3 Other Evaluation Studies

Some other evaluation studies have been carried out in order to validate our approach.
We may highlight the studies we have performed with the new version of our approach
fully integrated with Eclipse [22]. This study was made up of some activities that tested
the different frameworks in the development method. Regarding the use of the tool
itself, the activity consisted of making the participants use a collaborative tool to work
with the COMO-UML notation defined in the AMENITIES approach [23].

Participants in this study were randomly organized in pairs and they performed a
task with the aforementioned notation. After the activity was completed, participants
answered some questions so that their opinions about the tool and the study were
reflected. The results of the questionnaires are quite satisfactory as users evaluated most
items with high values. A remarkable result is that users gave high values to all
awareness support elements, so this seems to be a strong point of the tool. As a weak
point, participants did not find the user interface self-explanatory enough. We have
already performed a more detailed analysis of the study that can be read in order to
know more about it [22].

106 J. Gallardo et al.

5 Conclusions and Future Work

In this paper, we have introduced an approach to generate synchronous collaborative
tools that can be specialized to work with several modeling domains. In this case, we
have instantiated the tool to make it work with UML diagrams, and we have used it to
do some studies so that we can draw some conclusions about how users carry out
collaborative tasks.

The first conclusion we can draw from all the work done with the different versions
of the tool and the method is that users find interesting our approach. Some items that
are found especially interesting are the multi-domain approach and the awareness and
communication support in the generated tools. In this paper, we have detailed one of
the studies carried out. In it, we have drawn some interesting conclusions about the
variables being studied. For example, it has been possible to identify a difference
between two potential styles of collaborative work: one in which collaboration occurs
at a communication level, and another in which there are frequent turn changes.

To conclude, it will be necessary in further studies to improve the weak points that
have arisen in the studies that have already been carried out. For example, we will try to
modify the communication mechanisms, as the structured chat features have not been
widely accepted. We may change sentence openers in order to select a set of them more
interesting for users. Also, some other elements in the user interface may be changed so
that they become more self explanatory.

Acknowledgements. This research has been partially supported by the Ministerio de Economía
y Competitividad (Spain) in the TIN2011-29542-C02-02 project and by the Junta de Comu-
nidades de Castilla-La Mancha (Spain) in the PPII11-0013-1219 and PPEII-2014012-A projects.

References

1. Guareis de Farias, C.R.: Architectural design of groupware systems: a component-based
approach. Ph.D. thesis (2002)

2. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Commun. ACM
34(1), 39–58 (1991)

3. Bravo, C., Duque, R., Gallardo, J.: A groupware system to support collaborative
programming: design and experiences. J. Syst. Softw. 86(7), 1759–1771 (2013)

4. Duque, R., Gallardo, J., Bravo, C., Mendes, A.J.: Defining tasks, domains and
conversational acts in CSCW systems: the SPACE-DESIGN case study. J. Univ. Comput.
Sci. 14(9), 1463–1479 (2008)

5. Pinkwart, N., Hoope, U., Gassner, K.: Integration of domain-specific elements into visual
language based collaborative environments. In: Proceedings of the Seventh International
Workshop on Groupware. IEEE Computer Society (2001)

6. Avouris, N., Margaritis, M., Komis, V.: Modelling interaction during small-groups
synchronous problem-solving activities: the Synergo approach. In: Proceedings of the 2nd
International Workshop on Designing Computational Models of Collaborative Learning
Interaction, pp. 13–18 (2004)

Experiences of Use of a Multi-domain Tool 107

7. Lund, K., Baker, M.J., Baron, M.: Modelling dialogue and beliefs as a basis for generating
guidance in a CSCL environment. In: Lesgold, A.M., Frasson, C., Gauthier, G. (eds.) ITS
1996. LNCS, vol. 1086, pp. 206–214. Springer, Heidelberg (1996)

8. Calefato, F., Damian, D., Lanubile, F.: Computer-mediated communication to support
distributed requirements elicitations and negotiations tasks. Empirical Softw. Eng. 17(6),
640–674 (2012)

9. Gallardo, J., Molina, A.I., Bravo, C., Redondo, M.A., Collazos, C.: Empirical and
heuristic-based evaluation of collaborate modeling systems: an evaluation framework.
Group Decis. Negot. 20(5), 535–562 (2011)

10. Constantino-González, M., Suthers, D.: Coaching web-based collaborative learning based
on problem solution differences and participation. In: Moore, J.D., Redfield, C.L., Lewis
Johnson, W. (eds.) Proceedings of the International Conference on AI-ED 2001, pp. 176–
187 (2001)

11. Baker, M.J., Lund, K.: Flexibly structuring the interaction in a CSCL environment. In: Brna,
P., Paiva, A., Self, J. (eds.) Proceedings of the EuroAIED Conference, pp. 401–407 (1996)

12. Soller, A., Lesgold, A.: Knowledge acquisition for adaptive collaborative learning
environments. In: Proceedings of the AAAI Fall Symposium: Learning How to Do
Things, Cape Cod, MA (2000)

13. Chan, S.C.F., Lee, P.S.H., Ng, V.T.Y., Chan, A.T.S.: Synchronous collaborative
development of UML models on the internet. Concurrent Eng. Res. Appl. 9(2), 111–119
(2011)

14. Baghaei, N., Mitrovic, A., Irwin, W.: Supporting collaborative learning and problem-solving
in a constraint-based CSCL environment for UML class diagrams. Int. J. Comput. Supported
Collaborative Learn. 2(2–3), 159–190 (2007)

15. Fuenzalida, C.M., Antillanca, H.B.: Synchronous versus asynchronous interaction between
users of two collaborative tools for the production of use cases. CLEI Electron. J. 13(1)
(2010)

16. Serlio Software. www.casecomplete.com. Accessed 24 July 2013
17. TechnoSolutions Corporation. www.visualusecase.com. Accessed 24 July 2013
18. Rommana Software. www.rommanasoftware.com. Accessed 24 July 2013
19. Gallardo, J., Molina, A.I., Bravo, C., Redondo, M.A., Collazos, C.: An ontological

conceptualization approach for awareness in domain-independent collaborative modeling
systems: application to a model-driven development method. Expert Syst. Appl. 38(2),
1099–1118 (2011)

20. Dourish, P., Bellotti, V.: Awareness and coordination in shared workspaces. In: Proceedings
of the Conference on Computer Supported Cooperative Work CSCW 1992, pp. 107–114
(1992)

21. Gallardo, J., Bravo, C., Redondo, M.Á.: Developing collaborative modeling systems
following a model-driven engineering approach. In: Meersman, R., Tari, Z., Herrero,
P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 442–451. Springer, Heidelberg (2008)

22. Gallardo, J., Bravo, C., Redondo, M.A.: A model-driven development method for
collaborative modeling tools. J. Netw. Comput. Appl. 35(3), 1086–1105 (2012)

23. Garrido, J.L., Noguera, M., González, M., Hurtado, M.V., Rodríguez, M.L.: Definition and
use of computation independent models in an MDA-based groupware development process.
Sci. Comput. Program. 66, 25–43 (2007)

108 J. Gallardo et al.

http://www.casecomplete.com
http://www.visualusecase.com
http://www.rommanasoftware.com

Taking Seriously Software Projects Inception
Through Games

Miguel Ehécatl Morales-Trujillo1(&), Hanna Oktaba1,
and Juan Carlos González2

1 KUALI-KAANS Research Group,
National Autonomous University of Mexico, Mexico City, Mexico

{migmor,hanna.oktaba}@ciencias.unam.mx
2 ENTIA, Av. López Mateos 2077-Z16, Col. Jardines de Plaza del Sol,

Guadalajara, Mexico
jgonzalez@entia.com.mx

Abstract. Inherent properties of games, such as rules, goals and interaction,
have made them popular to address challenges and sort obstacles in a wide
variety of contexts. Within Software Engineering, a challenging activity of the
software development process is the Inception phase, in which stakeholders’
needs, required functionalities, objectives, risks and constraints of a software
product are established. An alternative to optimize stakeholders’ participation
during the Inception phase and make more efficient its outcomes is to do it
through games.
Taking into account the uncommonness of games in Software Engineering

development process and the lack of complex methods that include games, this
paper presents ActiveAction, a method that combines classical requirements
specification techniques with games. ActiveAction resulted in a successful
game-based strategy that has improved the Inception phase of the software
development projects based on the fact that stakeholders express their ideas
freely in an unstressed environment; real-life scenarios are simulated to identify
exceptions; requirements and risks are determined in a collaborative manner. It
is concluded that the inclusion of games in such a challenging activity as
software projects inception, is feasible and reported promising results that
benefit both stakeholders and software developer organizations.

Keywords: Games � Inception phase � Requirements specification �
Stakeholders’ involvement � Software project � Workshop

1 Introduction

A game could be defined informally as an amusement activity with rules, undertaken
for entertainment but still pursuing a goal. A game can be seen as an activity in which a
player must learn new skills and apply them to overcome challenges, getting rewards or
punishments, depending on their success or failure, respectively. The application of
games in education, government or military areas has become an important and feasible
alternative to face challenges. Since the entertainment is not the main purpose of these
games, they are labeled as serious games.

© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 109–124, 2015.
DOI: 10.1007/978-3-319-27218-4_8

A serious game is a game that does not have entertainment, enjoyment or fun as
their primary purpose [1]. Even thought, according to [2] games may be played seri-
ously or casually, it does not mean that serious games are not, or should not be,
entertaining.

Nowadays, serious games are becoming more popular and have a broad scope of
usage solving business problems and challenges that face the public sector [3]. The
ludic and playful aspects inherent to games, serious or not, can be used as a strategy to
address different kind of challenges and sorting obstacles. Enclosing to Software
Engineering, it can be asserted that developing software and systems is a challenging
activity. In 2010, Standish Group, through CHAOS Report [4], revealed that only 32 %
of software projects were successful, 44 % challenged and 24 % were cancelled.
Comparing these data with that of other industries, Construction for example, 94
percent of the customers were satisfied with the results of their projects, which suggests
that construction projects have much lower failure rates than software projects [5].

But, why is developing software different to producing any other product? Why is it
so difficult to develop good products in a consistent way from their inception phase and
on? The purpose of the Inception phase of a software projects is establish the business
case for the system and delimit the project scope [6]. The stakeholders’ involvement in
this phase is inherent and fundamental.

This necessity for stakeholders’ involvement becomes evident if we analyze the
CHAOS reports. Since 1994 the top three main success factors in projects are:

• Executive Support.
• User Involvement.
• Clear Business Objectives.

The three of them are evidently related to the stakeholders and the Inception phase
of the project.

However, including stakeholders as part of the team, but in the real sense, requires
time and money. With that in mind this paper presents ActiveAction, a workshop used
as an alternative into the software project’s Inception phase. ActiveAction combines
classical with game-based techniques to improve stakeholders’ involvement in the
Inception phase of a project and increase its effectiveness.

The paper is organized as follows: Sect. 2 presents main success factors in IT
projects, while Sect. 3 expands on the strategies to conceptualize projects using tradi-
tional, agile and game-based techniques. Section 4 then goes on to introduce and analyze
the ActiveAction workshop, while Sect. 5 presents results of the usage of this method,
its advantages and disadvantages. Conclusions and future work are provided in Sect. 6.

2 Success Factors in Software Projects

Are software projects different to other projects? According to [5] the main difference
relies on the characteristics of software and technology. On one hand, software is
abstract and complex while the requirements to be developed are incomplete. On the
other hand, the vast domain of technology changes rapidly, causing lack of technical
experience and immaturity of best practices.

110 M.E. Morales-Trujillo et al.

According to Gartner [7] the most common “anti-success” project factors are: poor
quality, cancelling after launch, high cost variance, substantially late delivery and
functionality issues. Determining if a project is successful or not could be hard, the
success can be determined by a combination of factors like scope, time or cost, but
another one could be ROI, quality or the healthiness of the workplace [8].

However, failure aspects related to technical issues are not a critical factor [9].
It means that improving technical aspects of projects will not always lead to higher
ratios of success. Moreover, studies like [10] found that:

• Business is usually or always out of sync with project requirements.
• Stakeholders need to be more involved and engaged in the requirements process.
• Business objectives are fuzzy.
• Requirements definition processes do not reflect business needs.

As it can be noticed, the “theory” of what to look for is clear, the problem is how to
achieve it.

Building robust business-oriented requirements can be half of the solution;
according to [11] one group of success factor is to manage strategy and stakeholders. In
other words, the focus should be on obtaining clear business objectives, well-defined
business cases, major stakeholders’ alignment, a stable scope and executive support
instead of concentrating on budget and scheduling. Taking these ideas into account, a
first approach is to focus on the very beginning of the project, and increase the
stakeholders’ involvement in order to improve business modeling and specification of
requirements.

Nevertheless, the stakeholders’ involvement implies investing time, money,
experience and patience from both parties: software developer organization and
stakeholders.

Furthermore, one of the major problems with most business engineering efforts, is
that the Software Engineering and the Business Engineering community do not com-
municate properly with each other [6]. If this is true, increasing the stakeholders’
participation won’t be a solution. But, what happened if both communities started to
talk in another language? For example using games as a way of communication.

We believe that inclusion of games is a beneficial strategy to conceptualize a
project together with the stakeholders and increase the success rate of projects.

3 Software Projects Inception Phase

Conceptualization begins at the early steps of projects, in the words of RUP [6], it
occurs during the Inception phase. At the Inception phase the business process is
documented in order to assure a common understanding among all stakeholders, the
system is described determining the required functionalities, objectives, risks and
constraints, to deliver, successfully, a product which meets the stakeholders’ needs.

The Inception phase includes two core process workflows: Business Modeling and
Requirements. And one core supporting workflow: Project Management.

During the Business Modeling workflow, the business process is documented using
use cases in order to assure a common understanding among all stakeholders.

Taking Seriously Software Projects Inception Through Games 111

The Requirements workflow is in charge of describing what the system should do
and allows the developers and the stakeholders to agree on that description. To achieve
this, the required functionalities and constraints should be elicited, organized and
documented.

Lastly, Project Management workflow is the art of balancing competing objectives,
managing risks, and overcoming constraints to deliver, successfully, a product which
meets the stakeholders’ needs [6].

The outcomes of the Inception phase, defined by RUP, are:

• A vision document: a general vision of the core project’s requirements, key features,
and main constraints.

• An initial use-case model.
• An initial project glossary may optionally be partially expressed as a domain model.
• An initial business case, which includes business context, success criteria, and

financial forecast.
• An initial risk assessment.
• A project plan showing phases and iterations.
• A business model, if necessary.
• One or several prototypes.

In order to achieve and create these outcomes, during an ordinary Inception phase,
development teams deal with plenty of meetings with different stakeholders, final users
and management staff getting a broad idea of their sometimes contradictory needs.
Business analysts start to mediate inconsistent requests and the work that was intended
to take a couple of weeks becomes longer.

A feasible solution, applied during Inception phase, could be to elicit, envision,
design and prioritize the business needs until a minimal viable product is clearly seen
by key stakeholders involved in the project, collaborating with the development team.

In light of this, three approaches to manage activities during the Inception phase are
presented in the next subsections.

3.1 Agile Approach

Small releases and stakeholders’, users’ and customers’ involvement in day-to-day
activities are part of the philosophy of agile practices to face the requirements elici-
tation and prioritizing.

According to agile practices, conceptualization and development of a project occurs
almost at the same time. It is achieved thanks to the Product Owner (PO), a role in
charge of having a vision of what to build: they create and prioritize a list of desired
features, the Product Backlog. PO must have a solid understanding of users, market
place, competition, and future trends for the domain or type of system being developed.
Also the PO requires working closely with key stakeholders [12].

An important complication of agile approach is that the PO could be more than one
person, and most important, not all of them are ready or available to be involved in a
day-to-day dynamic.

112 M.E. Morales-Trujillo et al.

3.2 Traditional Approach

The traditional approach is a process-centered way of working. First, adequate stake-
holders are identified. Later, fixed interviews with clients and stakeholders are held in
order to identify their needs. The input of this process is obtained from meetings, focus
groups, questionnaires or user observations. The information is transformed by the
development team until a business model or requirements specification is created and
agreed upon with stakeholders.

This approach is expensive and demands an arduous effort from both parties.

3.3 Game-Based Approach

Inception is a suitable phase to include stakeholders as a real part of the team and not
only as a source of needs. They can be involved in depth because of the non-technical
nature of the phase activities.

Key concepts of games such as goals, rules, challenge and interaction are also
present in several real-world activities, for example a structured software development
process [13].

On the other hand, developing software is a challenging activity that is seldom
regarded as fun. Just like many other types of activities, it can be organized as a set of
hierarchical and partially ordered challenges that must be overcome, often requiring
several different skills from developers, and lots of teamwork effort [14].

In fields of industry, such as marketing and sales, games are used to help to
understand customers, market, business opportunities and to improve everyday
employee-related issues within an organization [15]. The application of these games
has a broad spectrum: some examples taken from [16] define their variety. For instance,
Empathy Map’s objective is to gain insight and understanding for a targeted public
image; How-Now-Wow Matrix pursuits the goal of selecting the best ideas as a group;
Job or Joy aims at improving working environment of the organization; lastly, there are
classical techniques, such as SWOT analysis and Pros/Cons adapted as games.

On the other hand, the application of such games tends to be isolated strategies in
order to accomplish specific goals that may not be related to Software Engineering.
Besides, they are not organized as a interrelated set of activities that reuses the result of
a previous activity as an input for the next, thus making difficult to compose a method
to attack more complex problems.

Few reports of games that support approaches to perform Software Engineering
activities with objectives not related to education nor training can be found. One of those
games is Software Quantum Metaphor, a game that makes an allusion to the chemical
units known as quantum. The requirements of the software project are visualized as a bag
of balls. Each ball visualizes one requirement or quantum. There are balls of different
colors, each color representing a different state of analysis of the requirements [17].

Another game is the Labor Game Method, described in [18]. In this game the
requirements are presented through cards on a board. Each card can be changed, or
some cards can be added or removed from the board. This game permits to visualize all
the requirements of the project, their structure and priorities.

Taking Seriously Software Projects Inception Through Games 113

Taking into account the uncommonness of games in Software Engineering
development process and the lack of a method that puts together games in order to
accomplish complex goals, the next section presents a method that combines a set of
classical techniques with games, and is intended to improve the Inception phase of
software projects.

4 ActiveAction Workshop

Entia [19] is a Mexican IT organization established in 2003 as a software developer
organization conformed at the beginning by 4 employees, now 20. Entia has executed
projects to construct custom software related to finance, retail, manufacturing and
service sectors. They can be classified into “process systematization” and “business
venture”. The former consists in developing a software system that automates a specific
process in the stakeholder’s organization. The latter is aiming at adding a new service
or product that will be offered to the stakeholder’s clients.

In order to increase the projects’ success rate and, consequently, the number of
projects, Entia developed Innocamp strategy. Innocamp consisted in an intense
workshop where all stakeholders collaboratively design their new custom software
development project. This envisioning strategy was created in order to avoid continual
coming and going between customers and Entia work team, caused by the lack of
definition, clarity and consensus in their needs.

The Innocamp workshop let the organization achieve such benefits as: bringing all
of the stakeholders to the organization at the same time and place; stakeholders and
work team invested quality time during the workshop; complexity and size of a project
was better understood by the stakeholders; and both parties developed synergy and
emotional attachment to the project.

Since 2007 Innocamp has evolved into ActiveAction workshop. The evolution
started with the inclusion of games as a way of entertaining the stakeholders during the
workshop. Over the time the work team noticed that games helped to decrease resis-
tance and increase concentration level of the stakeholders, causing an important impact
on the results of each workshop.

ActiveAction is a game-based workshop focused on the software project concep-
tualization. It consists of the following activities:

• Pre-Day: It enables Entia to figure out stakeholders’ real motivations that made the
new project feasible. It includes negotiations between the customer and the orga-
nization, calendar planning for the rest –Days and collecting relevant customer
information. The organization chooses adequate participants to take part in the
following –Days.

• Intensive-Day: It is the actual method that gathers stakeholders and consultants
during 8-12 h in the same place. 5 roles are required for the consultant team: Coach,
Analyst, Process Engineer, Logistics and Customer Service and Support. The
purpose of the Intensive-Day is to extract expectations, objectives, needs, risks, and
functional and non-functional requirements from stakeholders using a collaborative
and game-based strategy.

114 M.E. Morales-Trujillo et al.

• Post-Day: The information gathered during Pre- and Intensive-Day is structured in
order to create an IT strategy to deal with the project.

• Action-Day: on this –Day a meeting takes place in which the context, technological
strategy and supplier proposals are discussed with the stakeholders in order to
define the path that a project will take.

For the purposes of this paper, the Intensive-Day is presented in detail in the next
subsection.

4.1 Intensive-Day Method

To carry out the Intensive-Day practices the following requirements and material are
supplied: a room with 4.5 square meters per participant; speakers, a whiteboard, a glass
wall or canvas, a projector, a TV, a special table for personal belongings and toys, such
as little balls and office supplies like post-its, tacks, pencils and markers. Additionally
each consultant needs a computer, Internet connection, source of electrical power and
connection to the projector. All participants are seated in circle.

Intensive-Day method is composed by 19 practices that can be classified in two
groups:

• Core practices produce meaningful outcomes for the Inception phase of the project
and have a defined order.

• Auxiliary practices are focused on keeping order, reducing stress and maintaining
high entertainment level. They have no special order to follow.

Figure 1 presents the Intensive-Day method where the game-based practices are
marked with a “balero” icon, which is a traditional Mexican toy. The core practices are
colored in light green, while the auxiliary are dark green. Flows between practices
indicate the order of their execution.

The Intensive-Day method was expressed as a composition of practices using
KUALI-BEH approach [20]. This approach establishes that a practice provides a
systematic and repeatable way of work focused on the achievement of an objective.
Each practice pursues the objective of producing a result that originates from an input.

Using these three elements, objective, input and result, the Intensive-Day
game-based practices are described below.

4.2 Game-Based Practices

This section presents 10 game-involving practices.

Cover Story and Product Box (Core). The objective of the practice called Cover
Story and Product Box [21] is to identify and express the stakeholders’ objectives. An
interesting fact is that the identified objectives should be expressed as if they had
already been achieved.

Taking Seriously Software Projects Inception Through Games 115

The practice of Cover Story is suitable when the stakeholders’ objectives belong to
the area of improving their companies’ image, functioning or prestige. The practice of
Product Box is more appropriate if the stakeholders’ objective is to own and sell a
particular product.

In the former the stakeholders have to design a cover story for a magazine that
would be published in the future and would narrate their success story; while in the
latter they design a box that would contain the final product.

The input of these practices is objectives provided by the stakeholders, while the
results are the cover story or the product box with comprehensive objectives.

Persons (Core). The objective of Persons is to identify priorities of cost, time and
scope and their control strategy.

Three persons from the stakeholders’ team portray each one of those variables,
highlighting the pros and cons in order to clarify the importance of reducing or
increasing their values. The stakeholders listen and watch the game and have to make a
decision at the end, putting the three variables in a priority order.

The input of the practice is an example of a variable control matrix while the result
is a matrix with the agreed values of cost, time and scope.

Role Play (Core). The Role Play objective is to simulate the organization’s everyday
process. The simulation consists in role-playing performed by stakeholders.

The role-play scenario is based on a frequent, but complex episode from everyday
business-oriented activities in the stakeholders’ organization. It also should have
exceptions or miscommunication issues and needs to be rebuilt from a happy path.

The input of this practice is the actual process of the organization used as a role
play script. The results are: a matrix of involved roles and a successful criteria list of an
everyday process. It also provides contextual information of the stakeholders’
organization.

Metaphor (Core). The Metaphor practice is based on the well-known game Lego
Serious Play, developed by LEGO [22]. It is a structured process, where participants
use LEGO bricks to create models that express their thoughts, reflections and ideas
[23]. Here the prime objective is to obtain product expectations from every member of
the stakeholders’ organization.

The input is the matrix of involved roles and a metaphor to motivate generation of
ideas that will be expressed as a LEGO figure. Each person of the stakeholders team
builds a figure, explains its meaning and all of them are put together to interpret their
relationships and interactions working as one team.

The results are: an interpretation of each LEGO figure and a better understanding of
relationships among the roles in the matrix and within the process through the set of
LEGO figures.

Speedboat (Core). The game practice of Speedboat is adapted from the game
designed by Luke Hohmann [21] and its objective is to identify the project’s potential
risks by and for the whole stakeholders’ team.

A speed boat is drawn on the top part of a whiteboard while the participants write
any risks that can affect the project on post-its. Then they place them on the white board
as if they were anchors. The lower a post-it is placed, the heavier the anchor is, which

116 M.E. Morales-Trujillo et al.

means a high risk that will impact the project the most. After all the “anchors” are set, a
moderator groups similar ones together and the participants discuss the identified risk
factors. The probability of occurrence is determined by the number of repeated risks
and the impact by the lowest position.

The input of this practice is post-its used by each person, while the result is the list
of identified risks associated with their probability of occurrence and impact.

AVAX Storming (Core). Based on the popular brainstorming technique [24], the
practice of AVAX Storming is focused on finding the desired functional requirements
for the system. All the participants write a one functional requirement on a piece of
paper named Added Value Actionable Items (AVAX). Later AVAXes are grouped in
order to sketch the system future modules.

This practice helps users to figure out the size of their project because soon the
walls start to be filled up and the size of the project starts to grow. It is a visual way to
show users that each need has its complexity and weight. If the project has a limited
budget, each AVAX has a section where each person chooses if the requirement is
“Needed” or “Desired”. When all AVAX are posted on the wall, each person explains
in detail their AVAX to the rest of the team opening it to discussion.

The result of the practice is a mind map of the identified AVAXes.

Buy a Feature (Core). The objective of the practice called Buy a Feature is to
determine the scope of what will be built by the end of a single iteration. Buying a
feature with a fixed budget is oriented to identify the top-rated requirements. The
stakeholders’ team has to buy the most necessary requirements and define the Mini-
mum Viable Product (MVP).

The input of the practice is the list of required functionalities or AVAX, each with a
price tag and fake bills for each stakeholder.

The result is the MVP or a list of AVAXes bought by the stakeholders’ team.
The MVP is also helpful to validate the project’s feasibility.

Gunfight (Auxiliary). During ActiveAction there are “rules” to be followed, such as
not to use smart phones or not to leave the room except during breaks. If anybody
disobeys the rule, the rest of the participants can shoot at them with NERF guns until
the “order” is restored, which is actually the objective of the practice.

Time Police (Auxiliary). The stakeholders’ team chooses a person who will play the
Time police role. He or she has a vuvuzela (horn) that is blown when somebody is
talking about a closed topic or is digressing. The objective of the practice is to maintain
discussions focused and to watch the time.

Circle of Trust (Auxiliary). The practice of Circle of Trust pursuits the objective that
anybody in the room is allowed to express their opinions. To start a circle of trust, the
interested person rings a bell and puts forward a topic. Every single person in the room
has to express their sincere opinion on the question without being pressured.

Taking Seriously Software Projects Inception Through Games 117

4.3 Non-ludic Practices

This section presents the rest of the practices carried out during the Intensive-Day.
Making a total of 9, they have no ludic aspects included.

• Preparation: planning and organizing the logistics required for the Intensive-Day.
• Opening and Welcoming: opening the day and presenting schedule, rules and

logistics to the stakeholders.
• Team Roles: introducing the teams and explaining the roles to be used.
• Concepts: explaining concepts, dynamics and supporting tools to be used during

the -Day.
• Enclosing: stakeholders define initial objectives, individual expectations and

expand on the actual reasons for being there.
• Packages: categorizing needs and requirements expressed by the stakeholders.

Identified packages are used to initially group desired functionalities obtained
during AVAX Storming practice.

• Non-functional Requirements: determining the non-functional requirements of the
desired system. Consultants use a fixed questionnaire based on the Pre-Day
information.

• Final Agreements: closing all open topics, dispelling doubts and getting the last
comments.

• Closure and Raising a Toast: applying a satisfaction survey of the -Day and
making a farewell toast.

Fig. 1. Intensive-day method diagram.

118 M.E. Morales-Trujillo et al.

4.4 Intensive-Day Work Products

During Intensive-Day the Coach guides practices’ execution while the Analyst and the
Process Engineer are responsible for concentrating the results of each practice in the
following work products:

• Contextual information and Everyday Process.
• Stakeholders’ expectations.
• Objectives and priorities.
• Functional requirements.
• Strategy and work to be done.
• Non-functional requirements.
• Risks analysis.
• Consequences of undertaking the project for the developing organization.
• Minimum Viable Product.
• Supplier proposals summary.

A summary of the work products is concentrated in a mind map. The left part of the
mind map provides a description of each work product, while the right part summarizes
the Functional Requirements as AVAXes, see Figs. 2 and 3.

Based on the objective of each practice, the generated work products can be
associated to the Inception phase outcomes defined earlier. Table 1 shows the asso-
ciation between outcomes and work products. The Intensive-Day practice that gener-
ates the respective work product is shown between parentheses.

In an intent to verify the usefulness of the Intensive-Day products, RUP evaluation
criteria were taken into account. According to [6] the following criteria were identified:

• Stakeholder concurrence on scope definition and cost/schedule estimates.
• Requirements understanding as evidenced by the fidelity of the primary use cases.
• Credibility of the cost/schedule estimates, priorities, risks and development process.

The mapping between outcomes shows that the stakeholders agree on the scope
definition through Functional requirements and Minimum Viable Product, also top
requirements are prioritized. Besides, an initial cost and schedule estimation can be
derived from Strategy and work to be done.

Fig. 2. ActiveAction mind map.

Taking Seriously Software Projects Inception Through Games 119

Understanding of requirements is achieved through the AVAXes, which are ini-
tially defined by the stakeholders’ team. Priorities are obtained using Objectives and
priorities which are expressed directly by stakeholders. Identified objectives and pri-
orities consequently affect the selection of features of the Minimum Viable Product.
Later, risks are identified and weighed during Risk Analysis. Finally the credibility of
the resulting work products predicts to be high due to the fact that they were created
with active participation of the stakeholders.

4.5 AVAX Mind Map for Project Tracking

The AVAX mind map, in particular its right part which contains the functional
requirements in the form of AVAXes, is used along the project as a tool to track its
health and progress.

For this purpose each AVAX has a set of valid states:

• Identified: applies to all AVAXes identified during the Intensive-Day.
• Posterior: applies to AVAXes that are added by the stakeholder after the

Intensive-Day. A “light bulb” icon is used to represent it.
• Deleted: applies to an AVAX which is not needed anymore or is outside the

priorities of scope, cost or time. A “No trespassing” icon is used to represent it.
• Delivered: applies to an AVAX which is passed on to the stakeholders. A “check”

icon is used to represent it.
• Validated: applies to an AVAX which is approved by the stakeholders and gets a

“smiley face” icon.
• Externally Done: applies to an AVAX which is provided by an external organi-

zation. An “exclamation mark” icon represents this state.

Table 1. Mapping of outcomes.

Inception phase outcomes Intensive-day outcomes

A vision of the project’s core
requirements, key features, and main
constraints

Contextual information (metaphor)

An initial use-case model Functional requirements (AVAX storming)
An initial project glossary or a domain
model

Contextual information (metaphor)
Stakeholders’ expectations (persons)

An initial business case, which includes
business context, success criteria, and
financial forecast

Objectives and priorities (cover story or product
box)

Stakeholders’ expectations (Persons)
An initial risk assessment Risks analysis (speedboat)
A project plan showing phases and
iterations

Strategy and work to be done (mind map)

A business model, if necessary Everyday process (role play)
One or several prototypes Minimum viable product (buy a feature)

120 M.E. Morales-Trujillo et al.

Figure 3 shows Invoices package (in green) that contains the AVAXes Create
invoice and Show Invoices (in blue) which is decomposed into three branches: Cancel
invoice, Send invoice and Export invoice (in red). The branch Cancel invoice generates
three more branches: Cancel payment, Send cancelation to seal it and Send notification
(in black). Their states with their respective icons can be observed in the map.

To maintain trustworthy relationships between stakeholders and development team,
the AVAX Mind Map used by the organization for project development and tracking
must be exactly the same as the one generated during the Intensive-Day.

5 Results

ActiveAction workshop resulted in a successful game-based strategy that has improved
the Inception phase of the software development projects based on the fact that:
stakeholders express their ideas freely in an unstressed environment; simulate real-life
scenarios to identify exceptions; prioritize risks and identify requirements in a col-
laborative manner.

ActiveAction has been applied in 19 projects with the following time distribution of
the Intensive-Day: 65 % dedicated to game-based core practices, 17 % of resting time
and 18 % of non-ludic practices.

5.1 ActiveAction Advantages and Disadvantages

ActiveAction has resulted in a powerful tool for Entia, which started to sell it as a
separate service, giving the customer the right to choose Entia or another organization
for further construction.

The following are ActiveAction workshop benefits identified by Entia:

• Software products’ origin and rationale are known and understood by stakeholders.
• Each and every of the stakeholders’ points of view are taken into account.
• The whole team takes the project as something of its own, not something imposed.
• Relatively relaxed in-game environment helps to come to agreements among many

people.
• Applying games helps to establish rules, objectives and behaviors in a natural way.
• Customer satisfaction and emotional engagement is easily achieved.
• The Inception phase is completed within three weeks.
• The Entia successful project rate has grown 25 percentage points, from the initial

56 % up to 81 %.

Fig. 3. AVAX detail and status.

Taking Seriously Software Projects Inception Through Games 121

On the other hand, ActiveAction requires a high demand of skills, concentration
and knowledge from the Coach, Analyst and Process Engineer roles. 12 h in-a-row,
independently of the activity to do, requires a lot of effort and concentration, so finding
adequate pace is important. Besides, the organization must distribute carefully their key
personnel, consultant team members, between their daily work and the ActiveAction
Days, which can compromise other projects of the organization.

The following are drawbacks identified by Entia:

• Difficulty in getting stakeholders together if they are geographically distributed.
• Difficulty involving stakeholders in the –Day’s activity due to their passivity.
• Uneasiness to share opinions when the “boss” is present.
• Including stakeholders’ clients into the Intensive-Day may not always be possible.

5.2 Validation and Improvement Suggestions

In order to get feedback on limitations and identify opportunities of improvement, three
surveys are applied both to stakeholders and consultants. A scale from 1 to 5 is used to
rate each item, also a free comment section is also considered.

Two of the surveys are applied at the end of the Intensive-Day with the objective to
measure stakeholders and consultants’ satisfaction. The third survey is applied to
stakeholders at the end of the Action-Day. The grades average from the last 10 Acti-
veActions is summarized in Table 2.

To improve ActiveAction stakeholders have expressed a number of suggestions: to
split the Intensive-Day into two sessions; add ambient music; reduce the duration of
breaks but increase their number and make a summary at the end of each practice,
mainly in Buy a Feature practice.

Consultants have observed that: information about stakeholders is fundamental to
prepare Intensive-Day; a list of pre-prepared questions about the stakeholders’ business
is useful to “re-activate” discussions; more “standing-up” practices should be added;
playing with LEGOs is not fun for everybody; AVAXes could be created and reviewed

Table 2. Surveys’ results summary.

Intensive-day stakeholders’ survey Average
Overall experience 4.8
Achievement of expectations 4.8
Intensive-day consultants’ survey Average
Overall experience 4.4
Stakeholders team involvement 4.7
Consultants team performance 4.7
ActiveAction stakeholders’ survey Average
Proposed solution 4.6
Has ActiveAction benefited your organization? 4.7
Would you use ActiveAction again? 4.8

122 M.E. Morales-Trujillo et al.

in teams instead of individually; Non-Functional Requirements practice could be
omitted if the stakeholders do not have technical background; and lastly, if the product
owners are not present Intensive-Day must be postponed.

6 Conclusions and Future Work

Considering the non-technical nature of software project Inception activities, stake-
holders can be involved in depth and join software developer organization at this
particular moment. In fact, addressing factors like executive support, engagement of
key stakeholders and clearly defined needs increases the success rate of a project.
However, stakeholders’ involvement is a complex action that requires investment of
extra effort and time and be intrusive for both parties.

The strategy of using games within software developing projects in order to address
and improve collaboration between stakeholders and development teams can be con-
sidered as a novel and beneficial approach. Consequently, game-based approach has
been adopted as a strategy to improve the Inception phase outcomes.

ActiveAction is a workshop service which objective is to clarify and process
stakeholders’ needs and priorities. During the Intensive-Day, game-based activities
provide a favorable environment in which stakeholders and development teams col-
laborate and produce results of great importance for the Inception phase of a project.

Two lines are identified as future work: (i) to replicate the workshop in affiliates and
(ii) to define a continuous improvement process for ActiveAction. At the moment one
affiliate has replicated its first three ActiveActions with promising results. Moreover,
documenting the method will reduce the possibility of variation and find ways to
improve.

Finally we can conclude that the inclusion of games in such a challenging and
over-whelming activity as software projects inception, is feasible and reported
promising results which benefit both stakeholders and software developer
organizations.

Acknowledgements. The authors thank Miriam Eréndira Jiménez-Hernández and Roberto
Azrael Medina-Díaz for on-site observation and initial analysis of the data.

This work has been funded by the GEODAS-BC project (Ministerio de Economía y Com-
petitividad and Fondo Europeo de Desarrollo Regional (FEDER), TIN2012-37493-C03-01);
GLOBALIA project (Consejería de Educación, Ciencia y Cultura (Junta de Comunidades de
Castilla — La Mancha) and FEDER, PEII11-0291-5274); SDGear project (TSI-100104-2014-4),
framed under the ITEA 2 Call 7, and co-funded by “Ministerio de Industria, Energía y Turismo
(Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica 2013-2016) and
FEDER”; the Graduate Science and Engineering Computing (PCIC-UNAM) and the grant
scholarship program of CONACYT.

Taking Seriously Software Projects Inception Through Games 123

References

1. Michael, D., Chen, S.: Serious Games: Games That Educate, Train, and Inform, 1st edn.
Muska & Lipman/Premier-Trade, Cincinnati (2005)

2. Abt, C.: Serious Games. Viking Press, New York (1970)
3. Serious game initiative. http://www.seriousgames.org/
4. The Standish Group International, Inc., CHAOS Summary for 2010 (2010)
5. Stepanek, G.: Software Project Secrets: Why Software Projects Fail, 1st edn. Apress, New

York (2005)
6. Kruchten, P.: Rational Unified Process – An Introduction, 3rd edn. Addison-Wesley, Boston

(2003)
7. Gartner survey shows why projects fail. http://thisiswhatgoodlookslike.com/2012/06/10/

gartner-survey-shows-why-projects-fail/
8. Ambler, S.: Defining success. Dr. Dobb’s J. (2007). http://www.drdobbs.com/architecture-

and-design/defining-success/202800777
9. Ibrahim, R., Ayazi, E., Nasrmalek, S., Nakhat, S.: An investigation of critical failure factors

in information technology projects. J. Bus. Manage. IOSR 10(3), 87–92 (2013). ISSN
2319-7668

10. Geneca, LLC: Doomed from the start? Why a majority of business and IT teams anticipate
their software development projects will fail. Geneca Industry Survey (2011)

11. Bloch, M., Blumberg, S., Laartz, J.: Delivering Large-Scale IT Projects on Time, on Budget,
and on Value. Insights & Publications, McKinsey & Company, New York (2012)

12. Mountain goat. http://www.mountaingoatsoftware.com/scrum/product-owner/
13. Passos, E., Medeiros, D., Neto, P., Clua, E.: Turning real-world software development into a

game. In: Proceedings of the Brazilian Symposium on Games and Digital Entertainment,
pp. 260–269 (2011). ISBN: 978-0-7695-4648-3

14. Claypool, K., Claypool, M.: Teaching software engineering through game design. In:
Proceedings of the Innovation and Technology in Computer Science Education Conference,
vol. 37, no. 3, pp. 123–127 (2005). ISBN: 1-59593-024-8

15. Gamestorming. http://www.gogamestorm.com/
16. Innovation games. http://innovationgames.com/
17. Knauss, E., Schneider, K., Stapel K.: A game for taking requirements engineering more

seriously. In: Proceedings of the International Workshop on Multimedia and Enjoyable
Requirements Engineering, pp. 22–26 (2008). ISBN: 978-0-7695-3626-2

18. Torvinen, V.: The labour game method. In: Proceedings of the International Workshop on
Database and Expert Systems Applications, pp. 382–386 (1999). ISBN: 0-7695-0281-4

19. Entia. http://www.entia.com.mx/
20. Morales, M., Oktaba, H.: KUALI-BEH kernel extension. Annex B (informative). In:

Essence – Kernel and Language for Software Engineering Methods. Object Management
Group (2012)

21. Hohmann, L.: Innovation Games: Creating Breakthrough Products through Collaborative
Play, 1st edn. Addison-Wesley Professional, Boston (2006)

22. LEGO: LEGO Serious Play: Open Source. The LEGO Group, Billund (2010)
23. Cantoni, L., Faré, M., Frick, E.: User Requirements with LEGO. University of Lugano.

webatelier.net & NewMinE Lab, version 1.0 (2011)
24. Osborn, A.: Applied Imagination: Principles and Procedures of Creative Problem Solving,

3rd edn. Charles Scribner’s Sons, New York (1993)

124 M.E. Morales-Trujillo et al.

http://www.seriousgames.org/
http://thisiswhatgoodlookslike.com/2012/06/10/gartner-survey-shows-why-projects-fail/
http://thisiswhatgoodlookslike.com/2012/06/10/gartner-survey-shows-why-projects-fail/
http://www.drdobbs.com/architecture-and-design/defining-success/202800777
http://www.drdobbs.com/architecture-and-design/defining-success/202800777
http://www.mountaingoatsoftware.com/scrum/product-owner/
http://www.gogamestorm.com/
http://innovationgames.com/
http://www.entia.com.mx/

Natural Language Generation Approach
for Automated Generation of Test Cases

from Logical Specification of Requirements

Richa Sharma1(&) and K.K. Biswas2

1 School of Information Technology, IIT, Delhi, India
Sricha@Gmail.Com

2 Department of Computer Science, IIT, Delhi, India
Kkb@Cse.Iitd.Ernet.in

Abstract. The quality of the delivered software relies on rigorous testing
performed and testing is as good as the test-cases. However, designing good
test-cases is a challenging task. The challenges are multi-fold and designing
test-cases is often delayed towards the end of implementation phase during
software development. In this paper, we propose an approach to automatically
generate the test-cases from logical form of the requirements specifications
during early phases of software development. Our approach is based on cour-
teous logic representation of requirements. The knowledge stored in the cour-
teous logic representation of requirements is used to automatically generate
trivial as well as functional test-cases. We present an evaluation of the effec-
tiveness of our generated test-cases through the case-studies conducted. We
further report our observations for the empirical study conducted with subjects
from different backgrounds.

Keywords: Test cases � Logical specification � Courteous logic � Natural
language generation

1 Introduction

Software testing is an important and integral activity of the software development. The
testing process entails designing effective test-cases; generating test-data; executing
test-cases for the test-data and comparing the results of execution against actual results
mentioned in test cases [1]. Amongst these activities, designing effective test-cases, that
can uncover crucial functional faults, remains a key-challenge. Test cases can be
derived from requirements specifications, design artifacts or the source code [1].
Requirements Specifications provide useful pointers for designing functional test cases
and conducting functional testing; the design artifacts influence architectural testing
and, the source code provides technical know-how for test case design as well as for the
requisite test data formats. The research effort towards automation of testing has
resulted in some very useful tools like JUnit, Visual test, SQA test, Testmate [2] etc.
However, designing functional test cases based on requirements is still a hard problem.
Several authors have proposed approaches for designing functional test cases from
UML diagrams like [4–8]; from use-case specifications [9, 10] and also, from

© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 125–139, 2015.
DOI: 10.1007/978-3-319-27218-4_9

user-stories used in Agile development [11]. These suggested approaches assist test
engineers by providing them with automatically generated test-cases. These test cases
can be further refined by manual intervention, if required, thereby reducing the effort
and time spent on writing the test-cases. However, the challenge involved with these
approaches arises from the fact that the use-cases and user-stories are expressed in
Natural Language (NL) and, the UML diagrams also depend on requirements speci-
fications expressed using NL. The inherent ambiguities and inconsistencies, present in
NL specifications of requirements, often lead to misinterpretations and difference of
understanding between the client and the development team.

In this paper, we propose an approach to generate test cases automatically from
logical specification of requirements to circumvent these challenges. Logical specifi-
cations are formal in nature and, have the advantage of automated analysis and vali-
dation [3]. Our test cases generation approach is based on courteous logic based
representation of the software requirements; the adequacy of these representations of
the software requirements for inconsistency resolution has been shown in [12]. We use
these representations of requirements for automated generation of test cases. Since
formal representations are not the preferred form of representation in industry, there-
fore, we have also proposed semi-automated approach towards the generation of
courteous logic form of representation of requirements from their corresponding NL
representations in our work [13]. This increases applicability of courteous logic based
requirements representations in industry. This work is an extension of our preliminary
investigation of using Natural Language Generation (NLG) approach for generating
test cases from courteous logic based representation of requirements [15]. We have
extended our earlier work [15] of generating trivial test cases to functional test cases. In
this work, we have further validated the effectiveness of our approach through an
empirical study conducted with 9 subjects – 5 of these subjects are graduate students
having taken course on Software Engineering and, the 4 subjects are software pro-
fessional having experience from 2 to 4 year in industry.

Our approach involving test case generation from courteous logic representation of
requirements borrows heavily from semantic head-driven approach for NL Generation
[14]. NL generation has its own challenges for generating meaningful NL text.
However our main focus is not NL generation, we have adopted and modified Shieber
et al.’s approach in our work to formulate functional test cases.

The rest of the paper is organized as follows: Sect. 2 presents an overview of the
courteous logic form of requirements specifications along with the related work done.
Section 3 presents our approach of automated test-case generation followed by the case
studies and the empirical study conducted in Sect. 4. In Sect. 5, we present discussion
and conclusion.

2 Related Work

2.1 Courteous Logic Representation of Requirements

Courteous Logic, as proposed by Grosof, is a non-monotonic logic form [18]. Cour-
teous Logical representation is an expressive subclass of ordinary logical representation
with which we are familiar and, it has got procedural attachments for prioritized

126 R. Sharma and K.K. Biswas

conflict handling. First Order Logic (FOL) has not become widely popular for two
main reasons: it is pure belief language and, secondly it is logically mono-tonic; it can
not specify prioritized conflict handling which are logically non-monotonic.

Our motivation behind using Courteous Logic representation of requirements is that
real-world knowledge and system requirements for any system in real-world corre-
spond to common-sense form of reasoning. This common-sense reasoning is
non-monotonic in nature and, therefore there is a need for non-monotonic logic for
representing real-world requirements. Of various available forms of non-monotonic
logic like default logic [16, 17], we preferred courteous logic for its simplicity, ease of
use and English-like constructs. Our Courteous Logic representations for requirements
are based on IBM’s CommonRules, available under free trial license from IBM alpha
works [19]. In these representations, prioritization is handled by assigning optional
labels to the rules (or predicates) and, specifying priority relationship between the rules
using in-built “overrides” predicate. The scope of‘what is conflict’ is specified by
pair-wise mutual exclusion statements called “mutex’s”. For example: a mutex may
specify that the grades of student can have only one value at one point of time. There is
an implicit mutex between a rule (or predicate p) and its classical negation.

An illustration of requirements representation in Courteous Logic:
Let us consider a scenario of book issue in a library. The requirements are often

expressed with inconsistent and, possibly repetitive statements as we observed:

• If a person is a library member, then he can borrow the book.
• If a book is available, then library member can borrow the book.

These two statements of specifying the above-mentioned scenario are contradictory
to each-other – the second statement adds one more condition for borrowing the book
in addition to a person’s being library member, namely: ‘availability of the book’. We
have considered such a simple scenario to illustrate how minor mistakes in expressing
the requirements can result in faulty software. One may consider that everyone knows
about the library rules; however, it is not always possible that requirements analysts as
well as test engineers are familiar with the domain knowledge under study. In the
absence of formal specifications, requirements cannot be validated in the early phases
of software development, nor an appropriate set of test cases be generated. Ambiguity
and inconsistency in requirements may percolate to the test cases as well. We have
looked for solution to such a scenario in our earlier work. The above-mentioned
requirements statements, when translated to courteous logic representations appear as:

These two rules correspond to the two requirements statements stated above. Both
of these rules are labeled as <rule1> and <rule2> respectively. Without any additional
information, rule 1 may allow a book to be issued even if it is not available. This is
contrary to real-world supposition that only an available book can be issued to a library
member. The result of inference engine indicates that these requirements are

Natural Language Generation Approach for Automated Generation 127

inconsistent in nature and the requirements are corrected in consultation with domain
experts. The suggested correction to these requirements can be added as another rule to
above courteous logic representation of requirements as:

Having obtained formal and consistent set of requirements specifications, we can
design better test-cases; the process of which, we have automated in this work.

2.2 Test-Case Generation

Automated functional test generation has been an intriguing problem in research arena.
Significant amount of effort towards test case generation has been reported in survey
reports too like [20, 21]. Kaur and Vig [20] have attempted to find the most widely
used UML diagrams for automated test case generation and the corresponding
advantages. In addition to this, they have explored the type of testing addressed in
various works and what are the challenges involved. Their findings indicate that
activity diagrams, state diagrams and a combination of use-case diagram and activity
diagram have been mostly used for generating test cases. They observe that functional
testing has been the extensively studied; however, the challenges involved are
incomplete or incorrect requirements specifications and UML diagrams. The survey
conducted by Gutierrez et al. [21] also suggests that UML models and use-case
specifications have been mostly used for automatically generating the test cases.

Survey reports summarize that UML diagrams and requirements specifications in
the form of use-cases (an NL representation) have been explored most for automated
test case generation. Activity Diagrams have been used for the purpose in the works of
[4–6]. The fact that activity diagrams represent the behavior of the real-world system
for a given scenario can be attributed to the use of activity diagrams for test case
generation. State charts form the basis of generation of test cases in the works of [7, 8].
Use-cases also describe the expected behavior of the system. Therefore, use cases have
also been used for test case generation as reported in the works of [9, 10]. The
user-stories used in agile development have also been considered for automatically
generating test cases [11]. However as reported in the survey of Kaur and Vig [20], the
challenge involved with these approaches is that of the representation of requirements.
NL requirements representation results in ambiguity, incompleteness and inconsistency
of requirements and consequently, generation of incorrect test cases.

However, there are few instances where test cases have been generated from either
formal representation of requirements or using approaches or formal intermediate
requirements representation like [22, 23]. Pretschner [22] propose test case generation
from constraint logical representation of the behavior of reactive (embedded) systems.
Mandrioli et al. [23] suggest an interactive tool for semi-automated generation of
functional test cases for real-time systems using the formal specification language,
TRIO. We also support formalism in requirements representation and our focus is on
business applications for which we have found courteous logic a suitable choice. In our
work, we have made use of courteous logic based representation of requirements for
automatically generating test cases as discussed in the following section.

128 R. Sharma and K.K. Biswas

3 Our Approach

Our approach borrows from semantic-head- generation algorithm for unification-based
formalisms as proposed by Sheiber et al. [14]. However, our goal is different from NLG
that has its own challenges. NLG requires “glue-word” in addition to the grammar rules
followed for generating NL expressions from the source input [24]. Our interest lies
only in generating the test-cases from courteous logic representations of requirements.
Our courteous logic representations have been generated semi-automatically (only
override predicates have been added manually), therefore the variable names and the

Fig. 1. Algorithm for Test-Case Generation.

Natural Language Generation Approach for Automated Generation 129

predicate names are more meaningful and self-understood. This makes the generated
test cases more readable and comprehensible. We have conducted an empirical study
in order to validate the comprehensibility and readability of the test case generated
using our approach. The algorithm for generating test-cases is shown in Fig. 1.

We first identify the pivot element for the input rule like Shieber et al.’s approach
but we are not interested in considering it as semantic head unlike their approach. In
our case, the pivot element is the predicate or the rule-head of the given rule. For
example: for the library rules discussed in Sect. 2.1, the pivot element is ‘borrow’. Next
we consider the body of the rule, which can simply be another predicate or clause (like
rule-head) or conjunction of two or more predicates. We process each of these pred-
icates one by one as described in the algorithm above. Test cases are first laid out for
null checks, invalid as well as valid values of the variables in each of the predicate of
the requirements expression. We, then, generate functional test cases by combining the
predicates in the rule-body and also by considering the rules that are relevant to a given
scenario. The step of functional test case generation needs to take into account
conflicting, prioritizing as well as exceptional scenarios too. For this purpose, our
algorithm takes into account the labels for each of the rules and generates all the
possible combinations of those labels. It is possible that all the generated combinations
are not semantically correct. Nevertheless, such combinations indicate pointers to the
possibilities that need to be taken care of.

NL generation is performed only for expressing the actual output. Since the actual
outputs of test-cases are in terms of the pivot elements, which have been earlier
generated from NL document only, we need not have to refer to any ‘glue-words’ in
between. This reduces the complexity considerably in our approach.

4 Case-Study

We conducted our case-study for test case generation on requirements from various
business domains like banking, academics and corporate action. In this Section, we will
consider same examples as illustrated in our earlier work [12] so that establishing the
relationship between the requirements studied and the generated test-cases will be easy.
In this current work, we have modified the previous algorithm for generating the
courteous logic representations to generate predicates and variable with complete
words instead of mnemonics. This modification has been done to reduce number of
look-ups in mnemonics database for test case generation. Therefore, the representations
of requirements illustrated in following sub-sections will slightly differ in having
complete words instead of mnemonics.

4.1 Test-Cases Generated Using Our Proposed Algorithm

Example 1 - Representing and Prioritizing Conflicting Views (Academic Grade
Processing). This example is about the specifications of students’ grade approval
process where the students’ grades are approved by the course-coordinator, the
department head and the dean. The expected behavior of the system refers to the fact

130 R. Sharma and K.K. Biswas

that at any point in time, approval from department head holds higher priority over
course-coordinator; and approval from dean higher priority over department head and
in turn, the course coordinator. In order to capture this observable behavior, we have
earlier suggested the use of courteous logic representations as shown below:

Natural Language Generation Approach for Automated Generation 131

The test cases generated corresponding to above requirements for nullness, validity
checks and for functional test-cases have been presented in Table 1 below:

In the above table, the test cases 1 to 4 are examples of null checks; the cases - 5 to 7 are
examples of validity test cases whereas, 8th and 9th test-cases represent trivial functional
test cases. The points 10 to 14 illustrate few of the possible functional test-cases for the
given scenario of grade assignment and approval. The 10th test case corresponds to
combination of two labels; similarly, 12th and 14th test cases respectively represent the

Table 1. Test Cases – Example 1.

Sl.
No.

Test case Action performed Actual result

1. Null Checks for
‘assignGrades’

Enter null value of
RegistrationNumber

Error Message displayed

2. Enter null value of Year Error Message displayed
3. Enter null value of Semester Error Message displayed
4. Enter null value of GradePoint Error Message displayed
5. Validity Checks

for
‘assignGrades’

Enter invalid value of
RegistrationNumber

Error Message displayed

6. Enter invalid value of Year Error Message displayed
7. Enter invalid value of GradePoint Error Message displayed
8. Execute

assignGrades
Enter valid values for variables:
RegistrationNumber, Year,
Semester, Group, Subject,
GradePoint

Value of Status is new

9. Execute
approvedby
(under label –
cdn)

Enter valid values for variables
such that both the
‘assignGrades’ and
‘approvedby’ hold good

Value of Status is
coordinatorApproved

10. If cases: cdn and
hod have
executed

Enter valid values for variables
such that the rules under label:
cdn and hod hold good

Priority Relationship exists and hod
has higher priority over cdn.
Value of Status is hodApproved

11. If cases: new and
dean have
executed

Enter valid values for variables
such that the rules under label:
new and dean hold good

Priority Relationship exists and dean
has higher priority over cdn.
Value of Status is deanApproved

12. If cases: new,
cdn and hod
have executed

Enter valid values for variables
such that the rules under label:
new, cdn, and hod hold good

Priority Relationship exists and hod
has higher priority over cdn and
cdn has higher priority over new.
Value of Status is hodApproved

13. If cases: new,
cdn and dean
have executed

Enter valid values for variables
such that the rules under label:
new, cdn and dean hold good

Priority Relationship exists and dean
has higher priority over cdn and
cdn has higher priority over new.
Value of Status is deanApproved

14. If cases: new,
cdn, hod and
dean have
executed

Enter valid values for variables
such that the rules under label:
new, cdn, hod and dean hold
good.

Priortiy Relationship exists and dean
has higher priority over hod and
hod has higher priority over cdn
and cdn has higher priority over
new. Value of Status is
hodApproved.

132 R. Sharma and K.K. Biswas

combinations of three and four labels respectively. However, each of such combination
may not be semantically or logically correct. For example: 11th and 13th test cases
(indicated in italics) violate the given workflow scenario of grade approval. The current
version of our algorithm of test case generation does not take into account any workflow
or sequencing information between different rules. Therefore, the ‘action performed’ as
well as the ‘actual result’ in Table 1 are incorrectly stated for these hypothetical scenarios
– 11 and 13. Nevertheless, these test cases serve as examples of negative testing.

Example 2 – Representing Default and Exceptional Scenario Processing (Saving
and Current Account Processing). Consider the account processing scenario of a
bank customer. Let us consider that a bank customer can have a current account and a
saving account. The customer can choose one of these accounts as default account for
any transaction that he wants to carry out. The customer is also free to select the other
account for some of his transactions. The NL expression for such default operation and
the associated exception can be easily understood by the involved stakeholders as well
as developers. But what is often overlooked by developers is the implicit interpretation
here – the account chosen for default processing should remain unaffected in case
selection is made for the non-default account and often, this is uncovered till testing
phase. Such overlooked implicit interpretation results in implicit internal inconsistency.
Such a defect can be easily detected during RE phase if we have an executable model
for representation of requirements that can sufficiently express the domain knowledge.
We have translated the requirements for this scenario in courteous logic from NL as:

Natural Language Generation Approach for Automated Generation 133

We applied the algorithm described in Fig. 1 to the deposit and the withdraw
transactions separately as each of these transactions represent different scenarios. The
test cases generated corresponding to above requirements for nullness, validity checks
and for functional test-cases are presented in Table 2 below:

Here, the first three test cases (1 to 3) indicate examples of null checks and the cases
5 to 7 examples of validity test cases. The next two cases, namely 7th and 8th test-cases
are examples of trivial functional test cases. These cases correspond to the ‘deposit’
transaction. The test cases for ‘withdraw’ transaction are generated on similar lines.
The test cases – 9 and 10 respectively bring out the functional test-cases for the two
transactions, namely: deposit and withdraw. Since there are two labels for each of these
two transactions, therefore, only one combination is generated in each case. Corre-
sponding to each of these transactions (deposit and withdraw), the rule for selected
account is found to have higher priority over default account when both the scenarios
hold good and accordingly, the priority relationship is identified. With the identified
priority relationship, the selected account only gets affected and, not the default one.

Table 2. Test Cases – Example 2.

Sl.
No.

Test case Action performed Actual result

1. Null Checks for
‘deposit’

Enter null value of
Transaction Id

Error Message displayed

2. Enter null value of Client Error Message displayed
3. Enter null value of Amount Error Message displayed
4. Validity Checks

for ‘deposit’
Enter invalid value of
Transaction Id

Error Message displayed

5. Enter invalid value of Client Error Message displayed
6. Enter invalid value of Amount Error Message displayed
7. Execute deposit Enter valid values for

variables: Transaction Id,
Client and Amount

addAmount is executed

8. Execute option Enter valid values for
variables: Client,
Transaction Id and Account
Id

option is executed

9. If cases:
def-deposit and
sel-deposit
have executed

Enter valid values for variables
such that the rules under
label: def-deposit and

sel-deposit hold good.

Priority Relationship exists
and sel-deposit has higher
priority over def-deposit.
addAmount is executed.

10. If cases:
def-withdraw
and
sel-withdraw
have executed

Enter valid values for variables
such that the rules under
label: def-withdraw and
sel-withdraw hold good.

Priority Relationship exists
and sel-withdraw has
higher priority over
def-withdraw.
subtractAmount is
executed.

134 R. Sharma and K.K. Biswas

Example 3 – Representing and Prioritizing Views of Multiple Stakeholders
(Corporate Event Processing). This example scenario considers a corporate action
event announced on a security. If a client is holding the security on which event is
announced, then that client is eligible to get the announced benefits of the event. These
benefits can either be in the form of cash or stock or both. The types of benefits disbursed
to the clients vary from one event type to another; it also depends on various other
factors like base country of the security on which event is announced and if the client is
opting for an option etc. It is possible that the announced benefit is in the form of stock
whereas, client has opted for cash. In such a scenario, client is disbursed the equivalent
cash amount and vice-versa. Following the algorithm in Fig. 1, similar test cases
(nullness-check, validity-check, trivial functional test case and scenario-representative
functional test cases) were generated successfully for this scenario too just as for
Examples 1 and 2. We are not representing these test cases to avoid repetitiveness and
space-constraints. Instead, we present below the summary of the test cases generated
using our approach referred to as ‘system-generated test cases’ in Table 3 below:

In the above table, the number of nullness and validity test cases corresponds to the
count of individual variables because similar checks for these variables need to be
performed for each of the predicate in logical representation of requirements. The count
of functional test-cases for scenario is governed by the number of labels present in the
input requirements-set in logical form.

The case-studies as discussed above indicate that an adapted version of Shieber
et al.’s NLG algorithm can be successfully applied to generate trivial as well as
functional test cases from logical representation of requirements. However, it is
important to study the real effectiveness of the generated test cases as perceived by
practitioners and this calls for an empirical study as presented in following sub-section.

4.2 Empirical Study

We have conducted an empirical study with objective to find if the system-generated test
cases are effective in terms of readability, comprehensibility and coverage of the given
scenario. The subjects were carefully chosen from varying backgrounds in order to
ensure the fairness of the study. 9 subjects participated in the study – 5 participants are
students (indicated by ‘STU’ in Table 4) who have taken course in Software Engi-
neering and worked on the project that requires them to write test-cases for the project.
4 participants are software professionals (indicated by ‘SPS’ in Table 4) having 2 to 4
years of industry experience. The study was designed to be conducted in two phases:

Table 3. Summary of System-Generated Test-cases.

Scenario Nullness
test case

Validity
test case

Functional test case
(trivial + scenario)

Total test-case for
each scenario

1. 7 7 4 + 11 29
2. 4 4 5 + 2 15
3. 5 5 4 + 33 47

Natural Language Generation Approach for Automated Generation 135

1. The subjects were presented with the scenarios and were asked to write the test
cases for those scenarios just by reading the NL representation of the scenario.
Next, they were asked to code the scenario and then, write the test cases.

2. The subjects were shown the system generated test-cases and their opinions were
taken on the same on the four point Likert-scale of questions for the questionnaire:
(1) Are the test cases readable and comprehensible? and, (2) Do you think these test
cases cover the scenario exhaustively?

We first conducted an hour session to introduce the tasks involved to the participants
to make sure that they are comfortable with the study and their tasks. The second phase
was executed after the completion of the first one so that the subjects do not get influenced
by the system generated test cases. In order to cross-check that subjects’ participation is
attentive and enthusiastic, we intentionally left the Example 3 ambiguous by removing
few parts of it. We found that none of ‘STU’ participants were able to attempt the
ambiguous third example, whereas ‘SPS’ participants raised concerns about ambiguity
and attempted as much as they could. Table 4 below summarizes the number of test cases
reported by the subjects. The responses for each of the STU and SPS category are
averaged across their respective counts 5 and 4, dropping the fractional part.

For the question on readability and comprehensibility, all the participants unani-
mously reported complete agreement. Table 5 below indicates the responses of the
subjects on Likert’s scale for the second question on test coverage; the responses being
averaged for respective categories:

Table 4. Summary of Test-cases by Subjects.

Scenario Nullness test
case

Validity test
case

Functional test
case

Total test-case for
scenario

Subjects —- (STU/SPS) —- Before Coding
1. 0/0 3/2 4/4 7/6
2. 0/2 0/2 4/4 4/6
3. NA/1 NA/2 NA/3 NA/6
Subjects —- (STU/SPS) —- After Coding
1. 0/2 5/2 5/5 10/9
2. 1/3 1/4 4/6 6/13
3. NA/3 NA/4 NA/3 NA/10

Table 5. Summary of Responses to question – 2.

Scenario Subjects Completely agree
(%)

Agree
(%)

Disagree
(%)

Completely
disagree (%)

1. STU 81 19 0 0
2. STU 87.5 12.5 0 0
3. STU NA NA NA NA
1. SPS 89 11 0 0
2. SPS 88 12 0 0
3. SPS 84 16 0 0

136 R. Sharma and K.K. Biswas

4.3 Observations - Empirical Study

We have interesting observations from the summary of results displayed in Table 4,
namely:

1. The number of test cases reported by both the categories of the participants is very
less as compared to the system generated test cases.

2. The focus of the participants is more towards the functional test cases as opposed to
the possible null checks and validation checks.

3. The number of reported test cases increases consistently for both scenarios after
coding.

4. Though experience helps but the familiarity of the domain plays a role in designing
test cases. The ‘STU’ participants are more familiar with scenario-1 and they
perform a bit better than ‘SPS’ participants, whereas, the situation is opposite for
scenario-2.

None of the participants identified negative test-cases in scenario-1. In case of
scenario-2, the participants could not identify the possibility of both the default account
and selected account option existing simultaneously. The test-case corresponding to
this possibility is reported by ‘SPS’ participants after coding though. None of the
participants are in disagreement with the coverage of the test cases. However, few
participants are not found to be in complete agreement with (possibly extra) negative
test cases and the trivial functional test cases as evident from the summary of responses
in Table 5. We had a post-study session with the participants where the common
queries were regarding these two types of test cases. After the discussion, the partic-
ipants realized the importance of negative test cases and the trivial functional test cases
which need to be carried out for unit testing a component.

The above-mentioned observations strengthen the need of formal representation of
requirements as well as an automated approach towards generating the test cases.

4.4 Mitigating Threats to Validity

The subjectivity of the participants may influence any empirical study. We, therefore,
tried to mitigate the possible threats to validity of our study by choosing the participants
from differing backgrounds and explaining the details of the study beforehand. A quick
random test was taken during the introduction session for the book-borrowing rules
illustrated in Sect. 2.1 to ensure that participants have a fair idea of writing test cases. We
also presented scenario-3 was given with ambiguous statements to cross-check that
participants are actually following the given scenarios and working accordingly and we
observed that concerns were raised by the participants for this particular scenario.

5 Discussion and Conclusion

In this paper, we have presented an approach to automatically generate trivial as well as
functional test cases from courteous logic representation of the requirements. The
approach borrows from semantic head-driven approach for NL Generation proposed by

Natural Language Generation Approach for Automated Generation 137

Shieber et al. The advantage of our approach is that courteous logic representations
have English-like constructs and easy to process. Secondly, we are generating these
representations from NL requirements, therefore the courteous rules representing
requirements become self-explanatory and with limited set of support words, we have
been able to generate the functional test cases automatically. We have validated the
applicability of our approach to various business scenarios through different
case-studies. We show the usability and effectiveness of the test cases generated
through an empirical study that indicates that the generated test cases are compre-
hensible and good in terms of functional coverage. We further intend to refine our
algorithm to include semantic and sequential information too.

References

1. Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge University Press, USA
(2008)

2. Incomplete List of Testing Tools. http://research.cs.queensu.ca/*shepard/testing.dir/under.
construction/tool_list.html

3. Tsai, J.J.P., Weigert, T.: HCLIE: a logic based requirement language for new software
engineering paradigms. Softw. Eng. 6(4), 137–151 (1991)

4. Boghdady, P.N., Badr, N.L., Hashem, M., Tolba, M.F.: A proposed test case generation
technique based on activity diagrams. Int. J. Eng. Technol. 11(3), 35–52 (2011)

5. Kansomkeat, S., Thiket, P., Offutt, J.: Generating test cases from UML activity diagrams
using the condition classification method. In: 2nd International Conference on Software
Technology and Engineering (ICSTE 2010), pp. V1-62–V1-66, San Juan (2010)

6. Li, L., Li, X., He T., Xiong, J.: Extenics-based test case generation for UML activity
diagram. In: International Conference on Information Technology and Quantitative
Management (ITQM 2013), pp. 1186-1193 (2013)

7. Hartmann, J., Vieira, M., Foster, H., Ruder, A.: A UML-based approach to system testing.
J. Innovations Syst. Softw. Eng. 1(1), 12–24 (2005)

8. Offutt, J., Abdurazik, A.: Generating tests from UML specifications. In: France, R.B. (ed.)
UML 1999. LNCS, vol. 1723, pp. 416–429. Springer, Heidelberg (1999)

9. Heumann, J.: Generating test cases from use cases. In the Rational Edge, e-zine for Rational
Community (2001)

10. Ahlowalia, N.: Testing from use cases using path analysis technique. In: International
Conference on Software Testing Analysis and Review (2002)

11. Kamalkar, S., Edward, S.H., Dao, T.M.: Automatically generating tests from natural
language descriptions of software behavior. In: 8th International Conference on Evaluation
of Novel Approaches to Software Engineering, France (2013)

12. Sharma, R., Biswas, K.K.: A Semi-automated approach towards handling inconsistencies in
software requirements. In: Maciaszek, L.A., Filipe, J. (eds.) Evaluation of Novel Approaches
to Software Engineering, pp. 142–156. Springer, Heidelberg (2012)

13. Sharma, R., Biswas, K.K.: Using norm analysis patterns for requirements validation. In:
IEEE 2nd International Workshop on Requirements Patterns (RePa), pp. 23–28 (2012)

14. Shieber, S.M., Noord, G.N, Moore, R., Pereira, C.N.: A Semantic-head-driven generation
algorithm for unification-based formalisms. In: 27th Annual Meeting of the Association for
Computational Linguistics, pp. 7–17 (1989)

138 R. Sharma and K.K. Biswas

http://research.cs.queensu.ca/%7eshepard/testing.dir/under.construction/tool_list.html
http://research.cs.queensu.ca/%7eshepard/testing.dir/under.construction/tool_list.html

15. Sharma, R., Biswas, K.K.: Automated generation of test cases from logical specification of
requirements. In: 9th International Conference on Evaluation of Novel Approaches to
Software Engineering (ENASE), Lisbon, Portugal (2014)

16. Reiter, R.: A logic for default reasoning. Artif. Intell. 13, 81–132 (1980)
17. Nute, D.: Defeasible logic. In: Proceedings of International Conference on Applications of

Prolog (INAP 2001), pp. 87–114. IF Computer Japan (2001)
18. Grosof, B.N.: Courteous logic programs: prioritized conflict handling for rules. IBM

Research Report RC20836, IBM Research Division, T.J. Watson Research Centre (1997)
19. Grosof, B.N.: Representing e-commerce rules via situated courteous logic programs in

RuleML. Electron. Commer. Res. Appl. 3(1), 2–20 (2004)
20. Kaur, A. and Vig, V.: Systematic review of automatic test case generation by UML

diagrams. Int. J. Eng. Res. Technol. 1(7) (2012)
21. Gutierrez, J.J., Escalona, M.J., Mejias, M., Torres, J.: Generation of test cases from

functional requirements, a survey. In: 4th workshop on System Testing and Validation,
Potsdam, Germany (2006)

22. Pertschner, A.: Classical search strategies for test case generation with constraint logic
programming. In: International Workshop of Formal Approaches to Software Testing of
Software, pp. 47–60 (2001)

23. Mandrioli, D., Morasca, S., Morzenti, A.: Generating test cases for real-time systems from
logical specifications. ACM Trans. Comput. Syst. 13(4), 365–398 (1995)

24. Grasso, F.: Natural language processing: many questions, no answers. http://www.academia.
edu/2824428/Natural_Language_Processing_many_questions_no_answers

Natural Language Generation Approach for Automated Generation 139

http://www.academia.edu/2824428/Natural_Language_Processing_many_questions_no_answers
http://www.academia.edu/2824428/Natural_Language_Processing_many_questions_no_answers

Visualization, Simulation and Validation
for Cyber-Virtual Systems

Jan Olaf Blech(B), Maria Spichkova, Ian Peake, and Heinz Schmidt

RMIT University, Melbourne, Australia
{janolaf.blech,maria.spichkova,ian.peake,heinz.schmidt}@rmit.edu.au

Abstract. We present our framework for visualization, simulation and
validation of cyber-physical systems in industrial automation during
development, operation and maintenance. System models may repre-
sent an existing physical part – for example an existing robot instal-
lation – and a software simulated part – for example a possible future
extension of the physical industrial automation setup. We call such sys-
tems cyber-virtual systems. Here, we present our VxLab infrastructure
for visualization using combined large screens and its applications in
industrial automation. The methodology for simulation and validation
motivated in this paper is based on this infrastructure. We are targeting
scenarios, where industrial sites which may be in remote locations are
modeled, simulated and visualized. Modeling, simulation and the visu-
alization can be done from different locations anywhere in the world.
Here, we are also concentrating on software modeling challenges related
to cyber-virtual systems and simulation, testing, validation and verifi-
cation techniques applied to them. Software models of industrial sites
require behavioral models of both human and machine oriented aspects
such as workflows and the components of the industrial sites such as
models for tools, robots, workpieces and other machinery as well as com-
munication and sensor facilities. Furthermore, facilitating collaboration
between sites and stakeholders, experts and operators is an important
application of our work. This paper is an extension of our previously
published work [1].

Keywords: Cyber-physical systems · Virtual interoperability testing ·
Simulation · System modeling · Formal specification · Visualization

1 Introduction

Operation, development, maintenance (including modifications and extensions)
of industrial automation facilities such as factories or mining sites profit from
software support. This comprises software based monitoring, controlling and
collaboration tools. The software support requires visualization capacities as well
as software models of the physical entities involved and ways to reason about
them. Industrial automation facilities typically comprise machinery like robots
and their components. Components may serve as actuators: tools, conveyor belts,
c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 140–154, 2015.
DOI: 10.1007/978-3-319-27218-4 10

Visualization, Simulation and Validation for Cyber-Virtual Systems 141

work pieces or pipes, valves and pumps in cases were fluids or gases are processed.
Sensors can be found throughout industrial automation sites. The data gathered
from the sensors may be stored in a central facility.

Hardware-in-the-loop (HIL) approaches [2] are now standard in the develop-
ment of system components in domains such as automative systems, e.g., [3],
avionics and also in industrial automation. In HIL, parts of a system are sim-
ulated in software to test a distinct system component. In this paper, we are
going one step further and aim at simulating different parts of an industrial site.
We do not restrict our approach to the development, but also aim at support-
ing operation and maintenance of industrial automation facilities. Furthermore,
we aim at visualizing remote facilities or parts of them. This is especially cru-
cial when developing, operating or maintaining industrial sites located in areas
that are difficult to access such as mines in the Australian outback and oil rigs.
It facilitates collaboration between these different sites and sharing knowledge
between them.

In the case where components of a system are manufactured at different
places, transport from component development and production locations to inte-
gration and deployment sites can significantly increase the whole development
costs as well as time. Integration can reveal additional work tasks and further
transportation of the system’s parts may be necessary. If a system’s components
are bulky or heavy, this may also delay optimization and correction.

For this reason, we present our existing visualization infrastructure - the
“x” laboratory (VxLab). We aim at enabling decision making and collaborative
work among leaders, experts and technicians distributed globally. Our facility
addresses multiple use cases (signified by the “x” parameter). These comprise
scientific computing, gaming, software development, engineering and architec-
ture. VxLab is a generalization of x = “Interoperation Testing” realized in the
VITELab, the Virtual Interoperability Test Lab (VITELab)1 a global laboratory
connecting industry and university sites and providing a collaboration platform
for experimental design and testing of cyber-physical systems. Among its aims
are to reduce development costs by simulating and virtually testing possible
deployments before the system is actually physically set up. We also present the
corresponding new and ongoing research directions towards combining visualiza-
tion and software support for reasoning about industrial automation facilities.
The ideas featured in this paper comprise the following ingredients:

– The use of VxLab/VITELab, and in particular the Global Operations Visu-
alization (GOV) Lab, a high resolution multi-screen visualization facility.

– Software models for system components that comprise spatio-temporal infor-
mation about a component’s behavior and ways to reason about them, testing
and simulation.

– The combination and integration of these for industrial automation.
1 VITELab is an eResearch facility of the Australia-India Research Centre for Automa-

tion Software Engineering (AICAUSE), a partnership between RMIT University and
the ABB Group (Australia and India) with support from the VIctorian State Gov-
ernment, http://rmit.edu.au/research/aicause.

http://rmit.edu.au/research/aicause

142 J.O. Blech et al.

Our work is a step towards software solutions facilitating global collaboration
between developers, operators and maintenance of industrial sites. This paper is
an extension of our previous work [1].

2 Related Work

Different languages exist for the modeling of embedded and automation systems.
Standards like IEC 61131-3 and IEC 61499 target the software part of control
systems and thus specify the behavior of machinery. In the scientific community
different modeling languages such as the Petri-Net semantics based BIP [4] for
distributed asynchronous systems and Modelica, providing means for modeling
and simulation of systems have been established, cf. [5–7]. Modelica is object-
oriented and its latest extensions allow modeling of system requirements [8] as
well as simulation of technical and physical systems [9]. Modeling theories for
distributed hybrid system such as SHIFT [10] and R-Charon [11] guarantee a
complete simulation and compilation of the models, but do not support verifica-
tion or analysis of the system on the modeling level. Same limitations also apply
to the input language of the model checkers UPPAAL [12] and PHAVer [13]: the
verification capabilities do not match the whole expressiveness of the modeling
languages.

Assigning semantics to logical entities for categorizing and reasoning about
them is a one goal of our models for industrial automation facilities. The general
underlying concept has been made popular in the context of the semantic web
[14] and ontologies [15].

The modeling of industrial automation sites involves spatial aspects. For
example, robots must ensure a behavior that guarantees collision avoidance and
the correct handling of workpieces. Systems that comprising thermal aspects
like heat exchangers need adequate models to cover their behavior. SpaceEx [16]
allows the modeling of continuous hybrid systems based on hybrid automata. It
can be used for computing overapproximations of the space occupied by objects.
In [17] a process algebra for 3D objects is provided. [18] provides and explains
results on spatial interpretations. A quantifier-free rational fragment of logic
suitable for describing spatial scenarios has been shown to be decidable in [19].
Logics for spatio-temporal reasoning go back to the seventies. The Region Con-
nection Calculus (RCC) [20] includes spatial predicates of separation. RCC fea-
tures predicates indicating that regions do not share points at all, points on the
boundary of regions are shared, internal contact where one region is included
and touches on the boundary of another from the inside, overlap of regions, and
inclusion.

Many approaches on mechatronic/cyber-physical systems omit an abstract
logical level of the system representation and lose the advantages of the abstract
representation. The work presented in [21] defines an extensive support to the
components communication and time requirements, while the model discussed
in [22] proposes a complete model of the processes with communication. In tra-
ditional development of embedded systems e.g., [23], the system is usually sepa-
rated into software and hardware parts as soon as possible, at an early stage of

Visualization, Simulation and Validation for Cyber-Virtual Systems 143

the development process. This does not always benefit the development process,
because when using an abstract level of modeling the difference in the nature of
components does not necessarily play an important role. [24,25] independently
suggest to use a platform-independent design in the early stages of system develop-
ment. The approach presented in [24] introduces the idea of pushing hardware- and
software-dependent design as late as possible, however, the question of the current
practical and fundamental limitations of logical modeling in comparison to cyber-
physical testing, is not completely answered. In comparison to [24], the focus of
[25] is on reutilisation and generalisation of two existing software systems devel-
opment methodologies (both elaborated according to the results of the case stud-
ies motivated and supported by DENSO Corporation and Robert Bosch GmbH)
for application within the cyber-physical domain to benefit from the advantages
these techniques have shown. The question, how deep we can go on the modeling
of cyber-physical systems on the logical level is still open in both approaches. The
goals presented here are also related to hybrid commissioning [26].

The idea of early analysis of critical system faults has the goal to identify
faults which mutate the safety critical behavior of the system, and to identify
test scenarios which can expose such faults from an abstract modeling level, i.e.
by generation of tests (both for real system and its model) from formal spec-
ifications or from the CASE tool models (cf., e.g., [27–29]). The approach has
certain limitations due the abstract nature of the formal model serving as a
base for the test generation as well as an underlying assumption of existence of
a precise formal model of the system being developed. Even when taking into
account these limitations and assumptions, these approaches allow automatiza-
tion of test case design and make the design process more stringent. VITELab
and the described research complements commercially available visualization
software for collaboration purposes in industrial automation such as DELMIA2.
The approach described here, is building on (semi-)formal models which carry
semantic meaning and are suitable for automatic interpretation and processing,
whereas the DELMIA focus is even more on visualization.

3 From Cyber-Physical to Cyber-Virtual Systems

Let us discuss an example scenario based on the ideas of the virtual interopera-
tion testing. In an industrial plant we require the integration/interoperability of
n+1 bulky/heavy robots (cf. Figs. 1 and 2): a robot of the type AType (lets call
it robot A) is assembled in location LA, the n other robots are of a different type
BType and are assembled in a different location LB . The robots are in differ-
ent locations and making them work together in a different shared deployment
location requires extensive simulation, testing and collaboration.

Assuming in addition that the n robots of type BType perform simultane-
ously similar movements and actions (e.g., they stamp similar details on work-
pieces on a conveyor belt and are doing the same movements, even in the case
their stamps are different), we can simulate their behavior using a single robot B:
2 http://www.3ds.com/products-services/delmia/products/all-delmia-products/.

http://www.3ds.com/products-services/delmia/products/all-delmia-products/

144 J.O. Blech et al.

its actuator information will be replicated to obtain n virtual models B1, . . . , Bn,
and its sensor information will be extended by the composition of the modeled
sensor information from B1, . . . , Bn. The sensor information of the robot A will
be a composition of the real sensor data and the sensor data modeled according
to the actions of B1, . . . , Bn.

Thus, to check the interoperability of the robot A and n robots of the type
BType on the level of virtual interoperability testing, we need only two real
robots: a robot A and a robot B. Moreover, they could be located in LA and LB

respectively, because the simulator and visualization facility may take the role of
a physical medium between them, allowing to ignore the real distance between
robots and also allowing to have a visualization of the test and simulation not
only at LA and LB , but also on the third place LC , where the corresponding
laboratory is located.

Fig. 1. Cyber-virtual communication.

General ideas for using the virtual interoperability test lab (VITELab) for
the use of remote cyber-physical integration/interoperability testing in a virtual
environment as a middle step between an abstract modeling and real testing
were presented in [30]. Figure 3 shows the VITELab facility in operation, viewed
from the GOV Lab. VITELab gives a platform for a new level of simulation
and integration: interoperability simulation and testing is performed early and
remotely, for example while cyber-physical components are in the prototyping

Visualization, Simulation and Validation for Cyber-Virtual Systems 145

Fig. 2. Real robot setup offered by VxLab using an ABB IRB 120.

stage i.e. on the workbench: individual components (e.g., robots, manufacturing
cells), are connected in a suitable virtual environment, without being deployed
at the same place physically. Successful testing and simulation could significantly
reduce the well-documented costs arising from discovery of design faults after
implementation.

Research connected to VITElab is influenced by larger cooperations in the
industrial automation domain. Remote integration and testing allows for an inte-
gration and testing phase of a real system assuming a certain level of abstraction
where the network, the virtual environment and the remote embodiments may
be abstractions themselves. This level of abstraction includes real physical com-
ponents of the system (in the case of the VITElab project, e.g., real robots and
production plants) and more characteristics of the network, environment and
embodiments. Our models and their visualization can give us the possibility to
identify:

– a number of problems and inconsistencies on the early stage of system devel-
opment and verify especially important system’s properties before the real
system is build and integrated, and

– possible weak points in the system (such as some timing properties, feature
interactions, component dependencies) which we should focus on, during the
testing phase.

146 J.O. Blech et al.

Fig. 3. VITElab in operation.

4 Research Challenges and Corresponding Projects

This section presents research challenges connected to cyber-virtual systems,
VITELab, simulation and validation in more detail. We have identified the fol-
lowing research challenges in our scenario:

– Simulation and the visualization of simulation runs. Including the interaction
with the simulation and visualized output.

– Testing, verification and validation of cyber-virtual scenarios.
– Gaining expertise and knowledge from joint work using visualization and sim-

ulation.
– Sharing and making expertise and knowledge available for similar development

projects and for related operation and maintenance tasks in related facilities.

In our work, we propose two ingredients related to software models for addressing
these challenges:

– (Semi-)formal descriptions based on human factors approaches to achieve
better readability/usability and understandability.

– Spatial behavioral models that capture the characteristics of entities and
components in industrial automation. We are interested in establishing a
type system for these components.

Visualization, Simulation and Validation for Cyber-Virtual Systems 147

4.1 Existing VITELab Projects

The research challenges identified in the context of VITELab fall into the net-
work, cloud and distributed computing areas, and are covered by the following
ongoing projects:

– Network Connectivity between sites with specialist equipment is supported by
dedicated links and research software stacks.

– The Cyber-physical Simulation Rack (CSRack), is a multi-node cloud server
rack with attached RAID storage provides parallel cloud computing capability
to support modeling and simulation and the capability to act as a ‘cloudlet’
gateway to major national and international cloud facilities such as NeCTAR3.

– The Global Operations Visualization (GOV) Lab project, provides videocon-
ference and streaming capability to remote sites combined with a large high
resolution tiled display wall.

– The Advanced Manufacturing Robot Interoperation Test (AMRIT) lab pro-
vides industrial robots connected to the GOV lab. The robots comprise arms,
sensors and cameras as “eyes on the robots”.

Furthermore, research challenges have been identified in our existing projects:

– Collaborative engineering [31] aims at facilitating collaboration for main-
tenance, services and operation between distributed sites. Such sites can
comprise manufacturing, mining and oil facilities, and operation centers. Visu-
alization is an important part of this project.

– Additional challenges can be found, in the connection of software based devel-
opment tools for industrial automation systems to the described infrastruc-
ture. Such tools may need to undergo a redesign of the software architecture
to enable this, cf. [32].

4.2 Interacting with Robots and Their Simulations

Simulation and visualization requires adequate ways to interact with the sim-
ulated and visualized cyber-physical system. To exemplify this and in addition
to classical input devices, one way of interacting with simulated and physical
facilities is shown in Fig. 4. Interaction is done in a hand-movement-based4 way
that allows the manipulation of robots and their simulated counterparts which
is part of our VxLab infrastructure. In the picture, a human (on the left) is
interacting with a simulated robot (middle). The position of the hands is detect
and visualized on the right.
3 National eResearch Collaboration Tools and Resources Project, https://www.nectar.

org.au.
4 Realized using a LeapMotion https://www.leapmotion.com device.

https://www.nectar.org.au
https://www.nectar.org.au
https://www.leapmotion.com

148 J.O. Blech et al.

Fig. 4. Interacting with the simulation using free-hand movements.

5 From (Semi-)Formal Methods to Visualization
and Validation

A starting point for our work is a HIL approach and is depicted in Fig. 5. Here,
the interplay of a physical robot with a virtual simulated robot is shown. The
actions of the physical robot to the environment are observed passed to the robot
simulation and reacting actions are calculated. These actions are (by)passed to
the sensors of the physical robot to simulate the interplay.

The interplay can be analyzed both by software tools as well as human inspec-
tion. The human based analysis profits from visualization capabilities for the
display of the simulated robot and the monitoring of the physical counterpart.

5.1 Human Factors and Formal Models

To enable simulations we need (semi-)formal descriptions of robot behavior, which
should not only fit for the simulation purposes but also be readable for sys-
tem/verification engineers. In our approach we follow the ideas based on human
factor analysis within formal methods [33,34]. This allows to have short and read-
able specifications of component behavior. It is appropriate for switching between
different modeling, specification and programming languages and is suitable for
the application of specification, reasoning and proof methodology [35,36].

Visualization, Simulation and Validation for Cyber-Virtual Systems 149

Fig. 5. Robot in the loop.

5.2 Formal Proofs and Verification

In the case of formal proofs, one of the main points of this methodology is
an alignment of the future proofs during the specification phase to make the
proofs simpler and appropriate for application in practice. One direction for
reasoning about a system represented in a formal specification framework, is the
verification of its properties by translating the specification to a Higher-Order
Logic and subsequently using the theorem prover following [37].

5.3 Spatial Behavioral Types

Our (semi-)formal models comprise spatial behavioral. This can be assigned to
both physical and virtual simulated robots, their components and other entities
interacting with them as shown in Fig. 6. Following the ideas presented in [38]
these spatial behavioral models can serve as a type system similar to types
systems in higher programming languages like C and Java which come with
basic types like integers, Strings and floating point values as well as composed
types like records or classes. Here, we regard (spatial) Behavioral Types (BT).
BT act as types for virtual or physical entities in our automation scenarios. They
are characterised by the following core concepts:

– Abstraction. BT represent aspects of robots, robot components and other enti-
ties in industrial automation. BT abstract from details concerning interactions
and internal structure.

– Conformance. Type conformance of BT is used to relate entities in industrial
automation correctly to a BT.

– Refinement. BT should comprise a notion of spatio-behavioral refinement that
allows replacing a component by a refined one. For example, the concept of

150 J.O. Blech et al.

refinement shall allow replacing a robot by a newer version that essentially
provides the same functionality plus some new features.

– Compatibility. Compatibility checking of BT is used to decide whether a com-
ponent does indeed match required needs based on provided and expected
BT. It should be decidable and automatic.

– Inference. A BT framework should allow to infer composed BT. For example,
the BT of a robot may be inferred from the BT of its components.

5.4 Spatial Behavioral Types for Simulation and Validation

BT can serve as a specification basis for the components of robots and the robots
composed of them.

BT can be used to build models of industrial automation facilities. Using BT
based specifications, we can perform:

1. Simulation and visualization for human inspection and collaboration between
developers, operators and maintenance personnel.

2. Automatic spatio-temporal reasoning for collision detection of robots and
other entities.

3. Checking automatically the required sensor ranges and regions affected by
physical entities.

4. Guaranteeing correct interplay of tools and workpieces in time and space.

Fig. 6. Combining virtual and physical robots for simulation and validation.

Visualization, Simulation and Validation for Cyber-Virtual Systems 151

5. Simulating the replacement of an entity such as a robot arm by another
(refined) version.

6. Documenting behavior of system installations and sharing this for collabora-
tion.

The BT concept is following the idea of interface automata first presented in [39].
It has been proposed as a type system for OSGi systems in the past [38]. Theo-
rem prover export and interactive verification of properties were studied in [40]
and may be an issue for future work together with human-factor analysis. Check-
ing compatibility and means to make behavioral system descriptions compatible
were examined in [41]. For checking the spatio-temporal properties in our scenar-
ios we incorporate the BeSpaceD [42] tool. Checks in BeSpaceD are done by con-
verting spatio-temporal models or BT and required properties into SMT and SAT
problems and applying suitable solving techniques such as the z3 SMT solver [43].
Another formal methods based approach aimed at combining human factors with
formal methods for reasoning about space in an automation context was presented
by us in [44].

6 Conclusions

The presented research is ongoing work and part of larger cooperations with
an industrial automation company. In this paper, we presented an overview on
the existing VxLab/VITELab infrastructure facilitating remote collaboration by
large screen/multi screen visualization. The aim of this infrastructure is to reduce
the development costs by simulating and virtually testing possible deployments
before the system is actually physically set up. We have highlighted connected
research questions, as well as explained the VITELab applications in operat-
ing, developing and maintaining industrial automation facilities. The connection
to spatial behavioral models and a related type system for the simulation of
industrial automation facilities and the connection to visualization capacities
was presented in more detail.

Acknowledgements. We would like to thank staff from RMIT ITS, PropertySer-
vices, eResearch and the VxLab/VITELab team, in particular Lasith Fernando, Ravi
Sreenivasamurthy, Garry Keltie, and Nicolas Vergnaud.

References

1. Blech, J.O., Spichkova, M., Peake, I.D., Schmidt, H.W.: Cyber-virtual systems -
simulation, validation and visualization. In: Filipe, J., Maciaszek, L.A. (eds.)
ENASE 2014 - Proceedings of the 9th International Conference on Evaluation
of Novel Approaches to Software Engineering, Lisbon, Portugal, 28–30 April 2014,
pp. 218–225. SciTePress (2014)

2. Schlager, M.: Hardware-in-the-loop simulation (2008)
3. Isermann, R., Schaffnit, J., Sinsel, S.: Hardware-in-the-loop simulation for the

design and testing of engine-control systems. Control Eng. Pract. 7, 643–653 (1999)

152 J.O. Blech et al.

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: 4th IEEE International Conference on Software Engineering and Formal
Methods (SEFM), pp. 3–12. IEEE (2006)

5. Donath, U., Haufe, J., Blochwitz, T., Neidhold, T.: A new approach for modeling
and verification of discrete control components within a modelica environment
(2008)

6. Fritzson, P.: Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley-IEEE Computer Society Press, New York (2004)

7. Anderson, A., Fritzson, P.: Models for distributed real-time simulation in a vehi-
cle co-simulator setup. In: Nilsson, H. (ed.) Proceedings of the 5th International
Workshop on Equation-Based Object-Oriented Modeling Languages and Tools.
Linkoping University Electronic Press (2013)

8. Tundis, A., Rogovchenko-Buffoni, L., Fritzson, P., Garro, A.: Modeling system
requirements in modelica: definition and comparison of candidate approaches. In:
Nilsson, H. (ed.) Proceedings of the 5th International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools. Linkoping University Electronic
Press (2013)

9. Fritzson, P.: Introduction to Modeling and Simulation of Technical and Physical
Systems with Modelica. Wiley-IEEE Computer Society Press, New York (2011)

10. Deshpande, A., Göllü, A., Varaiya, P.: SHIFT: a formalism and a programming
language for dynamic networks of hybrid automata. In: Antsaklis, P.J., Kohn, W.,
Nerode, A., Sastry, S.S. (eds.) HS 1996. LNCS, vol. 1273, pp. 113–133. Springer,
Heidelberg (1997)

11. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a modeling language for
reconfigurable hybrid systems. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006.
LNCS, vol. 3927, pp. 392–406. Springer, Heidelberg (2006)

12. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004)

13. Beek, D.A.V., Man, K.L., Reniers, M.A., Rooda, J.E., Schiffelers, R.R.H.: Syntax
and consistent equation semantics of hybrid Chi. J. Logic Algebraic Program. 68,
129–210 (2006)

14. Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284,
28–37 (2001)

15. Staab, S., Studer, R., Schnurr, H.P., Sure, Y.: Knowledge processes and ontologies.
IEEE Intell. Syst. 16, 26–34 (2001)

16. Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R.,
Girard, A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395.
Springer, Heidelberg (2011)

17. Cardelli, L., Gardner, P.: Processes in space. In: Ferreira, F., Löwe, B., Mayordomo,
E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer,
Heidelberg (2010)

18. Hirschkoff, D., Lozes, É., Sangiorgi, D.: Minimality results for the spatial logics.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp.
252–264. Springer, Heidelberg (2003)

19. Dal Zilio, S., Lugiez, D., Meyssonnier, C.: A logic you can count on. ACM SIG-
PLAN Not. 39, 135–146 (2004)

20. Bennett, B., Cohn, A.G., Wolter, F., Zakharyaschev, M.: Multi-dimensional modal
logic as a framework for spatio-temporal reasoning. Appl. Intell. 17, 239–251 (2002)

Visualization, Simulation and Validation for Cyber-Virtual Systems 153

21. Vogel-Heuser, B., Feldmann, S., Werner, T., Diedrich, C.: Modeling network archi-
tecture and time behavior of distributed control systems in industrial plant. In:
37th Annual Conference of the IEEE Industrial Electronics Society, IECON (2011)

22. Hadlich, T., Diedrich, C., Eckert, K., Frank, T., Fay, A., Vogel-Heuser, B.: Common
communication model for distributed automation systems. In: 9th IEEE Interna-
tional Conference on Industrial Informatics, IEEE INDIN (2011)

23. Berger, A.: Embedded Systems Design: An Introduction to Processes, Tools, and
Techniques. CMP Books, San Francisco (2002)

24. Sapienza, G., Crnkovic, I., Seceleanu, T.: Towards a methodology for hardware and
software design separation in embedded systems. In: Proceedings of the Seventh
International Conference on Software Engineering Advances (ICSEA), pp. 557–562.
IARIA (2012)

25. Spichkova, M., Campetelli, A.: Towards system development methodologies: from
software to cyber-physical domain. In: First International Workshop on Formal
Techniques for Safety-Critical Systems (FTSCS 2012) (2012)

26. Dominka, S., Schiller, F., Kain, S.: Hybrid commissioning from hardware-in-the-
loop simulation to real production plants. In: Proceedings of the 18th IASTED
International Conference on Modeling and Simulation (MS 2007), pp. 544–549
(2007)

27. Hazra, A., Ghosh, P., Vadlamudi, S.G., Chakrabarti, P.P., Dasgupta, P.: Formal
methods for early analysis of functional reliability in component-based embedded
applications. Embed. Syst. Lett. 5, 8–11 (2013)

28. Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-
Based Testing of Reactive Systems. LNCS, vol. 3472. Springer, Heidelberg (2005)

29. Pretschner, A., Philipps, J.: Methodological issues in model-based testing. In:
Model-Based Testing of Reactive Systems, pp. 181–291 (2005)

30. Spichkova, M., Schmidt, H., Peake, I.: From abstract modelling to remote cyber-
physical integration/interoperability testing. In: Improving Systems and Software
Engineering Conference (2013)

31. Blech, J.O., Schmidt, H., Peake, I., Kande, M., Ramaswamy, S., Sudarsan, S.D.,
Narayanan, V.: Collaborative engineering through integration of architectural,
social and spatial models. In: Emerging Technologies and Factory Automation
(ETFA). IEEE Computer (2014)

32. Peake, I., Blech, J.O., Fernando, L.: Towards reconstructing architectural models of
software tools by runtime analysis. In: 3rd International Workshop on Experiences
and Empirical Studies in Software Modelling (2013)

33. Spichkova, M.: Design of formal languages and interfaces: “formal” does not mean
“unreadable”. In Blashki, K., Isaias, P. (eds.) Emerging Research and Trends in
Interactivity and the Human-Computer Interface. IGI Global (2013)

34. Spichkova, M.: Human Factors of Formal Methods. In: Proceedings of IADIS Inter-
faces and Human Computer Interaction, IHCI 2012 (2012)

35. Spichkova, M., Zhu, X., Mou, D.: Do we really need to write documentation for a
system? In: International Conference on Model-Driven Engineering and Software
Development (MODELSWARD 2013) (2013)

36. Spichkova, M.: Specification and seamless verification of embedded real-time sys-
tems: FOCUS on Isabelle. Ph.D. thesis, Technische Universität München (2007)

37. Spichkova, M.: Stream processing components: Isabelle/HOL formalisation and
case studies. Archive of Formal Proofs (2013)

38. Blech, J.O., Falcone, Y., Rueß, H., Schätz, B.: Behavioral specification based run-
time monitors for OSGi services. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012,
Part I. LNCS, vol. 7609, pp. 405–419. Springer, Heidelberg (2012)

154 J.O. Blech et al.

39. de Alfaro, L., Henzinger, T.A.: Interface automata. SIGSOFT Softw. Eng. Notes
26, 109–120 (2001)

40. Blech, J.O., Schätz, B.: Towards a formal foundation of behavioral types for uml
state-machines. ACM SIGSOFT Softw. Eng. Notes 37, 1–8 (2012)

41. Blech, J.O.: Towards a framework for behavioral specifications of OSGI compo-
nents. In: 11th International Workshop on Formal Engineering approaches to Soft-
ware Components and Architectures (FESCA), pp. 79–93 (2013)

42. Blech, J.O., Schmidt, H.: Towards modeling and checking the spatial and interac-
tion behavior of widely distributed systems. In: Improving Systems and Software
Engineering Conference (2013)

43. de Moura, L., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

44. Spichkova, M., Blech, J.O., Herrmann, P., Schmidt, H.W.: Modeling spatial aspects
of safety-critical systems with focus-st. In: Boulanger, F., Famelis, M., Ratiu, D.
(eds.) Proceedings of the 11th Workshop on Model-Driven Engineering, Verification
and Validation co-located with 17th International Conference on Model Driven
Engineering Languages and Systems, MoDeVVa@MODELS 2014, Valencia, Spain,
September 30, 2014. Volume 1235 of CEUR Workshop Proceedings, pp. 49–58.
CEUR-WS.org (2014)

http://CEUR-WS.org

Mobile Application Estimate the Design Phase

Laudson Silva de Souza(B) and Gibeon Soares de Aquino Jr.

Department of Informatics and Applied Mathematics,
Federal University of Rio Grande do Norte, 59078-970 Natal, Brazil

{laudyson,gibeon}@gmail.com

Abstract. When addressing mobile applications, it is a technologi-
cal landscape that is emerging with new requirements and restrictions
requires a reassessment of current knowledge about the processes of
development of these types of systems. These new systems have different
features, ranging from planning to completion of the design, and there-
fore a particular area that is being addressed differently when it comes
to estimating software. The estimation processes in general are based on
characteristics of the systems to attempt to quantify the complexity of
the implementation. For this reason, it is important to analyze the main
models currently proposed for estimating software projects and consider
whether it is suitable for mobile computing. Thus, the main objective
of this paper is to present an estimation method for mobile applications
still in the design phase, giving basis for all the features addressed in this
scenario.

Keywords: Software engineering · Software quality · Estimating soft-
ware · Systematic review · Mobile applications · Mobile computing

1 Introduction

Computing is becoming increasingly present in people’s lives and currently in
a much more intense and accelerated way due to the rise of the use of mobile
technologies in the world, such as mobile phones, smartphones and tablets, all
connected to mobile networks, which are increasingly more present in many
places and with better speeds. We are facing a new technological scenario that is
changing old habits and creating new ways for the society to access information
and interact with computer systems [24,27,34].

The ITU1 estimates that there are more than 6 (six) billion mobile clients
worldwide. According to Gartner, 1.75 billion people own mobile phones with
advanced capabilities; he also foresees further growth in the use of this technol-
ogy in the upcoming years [12]. There is a global trend towards the increase of the
number of users connected to the network via mobile devices which, consequently,
will create an increasing demand for information, applications and content for
such equipments. New ways to use existing information systems are emerging.
1 International Telecommunication Union.

c© Springer International Publishing Switzerland 2015
J. Filipe and L. Maciaszek (Eds.): ENASE 2014, CCIS 551, pp. 155–167, 2015.
DOI: 10.1007/978-3-319-27218-4 11

156 L.S. de Souza and G.S. de Aquino

In particular, systems that were once accessed via web interfaces through per-
sonal computers physically located in offices, universities or homes are providing
new ways to access from mobile devices which, in turn, have different require-
ments and capabilities than the personal computers.

Thus, we realize that traditional information systems are undergoing a
process of adaptation to this new computing context. Current developments,
including the increase of the computational power of these new devices, in addi-
tion to the integration of multiple devices on a single one and lined up with
the change of the users’ behavior, actually create a new environment for the
development of computing solutions. However, it is important to note that the
characteristics of this new context are different. They present new resources
and, thereafter, new possibilities [20,26,40,41], as well as introduce non-existing
restrictions in conventional systems [17,37].

The fact is that this new technological scenario that is emerging with new
requirements and restrictions requires a reevaluation of current knowledge about
the processes of planning and building software systems. These new systems
have different characteristics and, therefore, an area in particular that demands
such adaptation is software estimation. The estimation processes, in general,
are based on characteristics of the systems, trying to quantify the complexity
of implementing them. For this reason, it is important to analyze the methods
currently proposed for software projects estimation and evaluate their applica-
bility to this new context of mobile computing. Hence, the main objective of this
paper is to present an estimation model for mobile applications.

These new systems have different characteristics and, therefore, an area in
particular that demands such adaptation is software estimation. The estima-
tion processes, in general, are based on characteristics of the systems, trying to
quantify the complexity of implementing them. For this reason, it is important
to analyze the methods currently proposed for software projects estimation and
evaluate their applicability to this new context of mobile computing. The fact is
that this new technological scenario that is emerging with new requirements and
restrictions requires a reevaluation of current knowledge about the processes of
planning and building software systems. Hence, the main objective of this paper
is to present a partial validation of the proposed model estimate.

2 Estimation Models

In order to identify how the estimation methods in accordance with ISO could
address the characteristics of the systems, a literature review on the estimation
methods was performed. The methods identified in the survey can be seen in
Table 1. All methods identified with their features can be accessed at the Fol-
lowing address: http://www.laudson.com/methods.pdf.

Table 1 displays in chronological order the estimation methods in accordance
with ISO, showing the year of creation, the name of the method and the author of
it. At first glance, one realizes that the main existing methods were not designed
to consider the requirements of mobile applications. Indeed, the very creation of

http://www.laudson.com/methods.pdf

Mobile Application Estimate the Design Phase 157

Table 1. Estimation methods.

Year Method Author

1979 Function Point Analysis (FPA) Albrecht [35]

1981 COnstructive COst MOdel (COCOMO) Barry W. Boehm’s [5]

1982 DeMarco’s Bang Metrics Tom DeMarco [18]

1986 Feature Points Jones [39]

1988 Mark II FPA Charles Symons [39]

1989 Data Points Harry Sneed [25]

1990 Netherlands Software Metrics Users
Association (NESMA) FPA

The Netherlands Software Metrics
Users Association [8]

1990 Analytical Software Size Estimation
Technique-Real-Time (ASSET-R)

Reifer [36]

1992 3-D Function Points Whitmire [29]

1993 Use Case Points UCP Gustav Karner [23]

1994 Object Points Banker et al. [4]

1994 Function Points by Matson, Barret and
Mellichamp

Matson, Barret e Mellichamp [28]

1997 Full Function Points (FFP) University of Quebec em cooperao
com o Software Engineering
Laboratory in Applied Metrics
[29]

1997 Early FPA (EFPA) Meli, Conte et al. [30]

1998 Object Oriented Function Points –
(OOFPs)

Caldiera et al. [32]

1999 Predictive Object Points – (POPs) Teologlou [6]

1999 Common Software Measurement
International Consortium (COSMIC)
FFP

Common Software Measurement
International Consortium
(COSMIC) [7]

2000 Early & Quick COSMIC-Full Function
Points (E&Q COSMIC FFP)

Meli et al. [31]

2000 Kammelar’s Component Object Points Kammelar [19]

2001 Object Oriented Method Function
Points – (OOmFP)

Pastor and his colleagues [1]

2004 Finnish Software Metrics Association
FSM

The Finnish Software Metrics
Association (FiSMA) [11]

most of them precedes the emergence of mobile devices as we know today. This
suggests that the use of these methods to estimate the effort of the development
of projects involving systems or applications for mobile devices would cause a
possible failure to quantify the complexity of some features and, therefore, would
not produce adequate estimates.

158 L.S. de Souza and G.S. de Aquino

3 Characteristics of Mobile Applications

In order to identify characteristics that are inherent to systems and mobile appli-
cations, a surveying of the characteristics of these types of software was accom-
plished through a systematic review. Conducting a systematic review is relevant
because most searches begin with some kind of review of the literature, and a
systematic review summarizes the existing work fairly, without inclinations. So
the surveys were conducted according to a predefined search strategy, in which
the search strategy should allow the integrity of the research to be evaluated.
The planning and accomplishment of the methodology discussed were directed
by Procedures for Performing Systematic Reviews [21].

In the context of the research questions, the following research questions were
formulated: “What are the characteristics of mobile applications” and “What
are the main differences between the Mobile Applications and other Applica-
tions”?. Procedures for The Evaluation of the Articles: the articles will be ana-
lyzed considering its relation with the issues addressed in the research questions,
inclusion criteria and exclusion criteria, and their respective situation will be
assigned with either “Accepted” or “Rejected”. The evaluation will follow the
following procedure: read the title and abstract and, should it be related with
the research question, also read the whole article. The implementation of the
systematic review was performed almost in line with its planning, except for
the need to adjust the syntax of the proposed search string due to the par-
ticularities of the research bases. 234 articles were analyzed, of which 40 were
selected and considered “Accepted” according to the inclusion criteria; 194 were
considered “Rejected” according to the exclusion criteria. The list with all the
articles Inclusion and Exclusion Criteria and Criteria can be accessed at the
following address: http://www.laudson.com/sr-articles.pdf. The 40 articles that
were accepted were fully read, thus performing the data extraction. All of the
features found during this phase extraction are described below.

Given the results extracted from the systematic review, it’s is possible to
identify 29 kinds of characteristics in 100 % of the articles evaluated and consid-
ered accepted in accordance with the inclusion criteria. However some of these
are a mixture of characteristics of mobile devices and characteristics of mobile
applications, such as the characteristic called “Limited Energy”, which is a char-
acteristic of the device and not the application, however the articles that mention
this type of characteristic emphasize that in the development of a mobile appli-
cation, this “limitation” must be taken into account since all the mobile devices
are powered by batteries, which have a limited life, depending completely on
what the user operates daily. Applications requiring more hardware or software
resources will consume more energy. The 23 types of characteristics mentioned
the most in the selected articles can be observed following. There is a description
of each characteristic identified in the review:

◦ Limited energy [38]; Small screen [38]; Limited performance [33]; Bandwidth
[33]; Change of context [33]; Reduced memory [38]; Connectivity [9]; Interactivity
[33]; Storage [33]; Software portability [33]; Hardware portability [33]; Usability

http://www.laudson.com/sr-articles.pdf

Mobile Application Estimate the Design Phase 159

[9]; 24/7 availability [9]; Security [9]; Reliability [22]; Efficiency [2]; Native vs.
Web Mobile [9]; Interoperability [33]; Response time [15]; Privacy [9]; Short term
activities [3]; Data integrity [15]; Key characteristics [3]; Complex integration of
real-time tasks [16]; Constant interruption of activities [3]; Functional area [14];
Price [14]; Target audience [14]; Provider type [14].

After this survey, a refinement was made and a mix of characteristics was
elicited with the purpose of defining which characteristics would be emphasized.
Of a total of 23 types of characteristics that were most mentioned in the selected
articles, a common denominator of 13 characteristics was reached, some of which
had their names redefined, like “Interactivity”, which became “Input Interface”.

With the conclusion of the systematic review, a survey was carried out among
experts in mobile development with the purpose of ratifying the characteris-
tics previously raised and to prove their respective influence on mobile devel-
opment. The disclosure of the survey was conducted in more than 70 locations,
among them universities and businesses, through e-mails, study groups and social
groups. In general, of all 117 feedbacks received through the survey, 100 % of the
experts confirmed the characteristics; among them, an average of 72 % indicated
a greater effort and complexity regarding the characteristics during development,
an average of 12 % indicated less effort and complexity and, finally, an average
of 16 % indicated they did not perceive any difference in mobile development,
even though they confirmed the presence of the characteristics.

4 Problem Addressed

As noted in Sect. 2, there is no estimation method developed for mobile applica-
tions projects. Moreover, some of the characteristics elicited in Sect. 3 aggravate
the complexity and, thereafter, the effort in the development of mobile applica-
tions. From the analysis that follows, with the characteristics of applications on
mobile devices elicited in Sect. 3, it is clear that they are different from the char-
acteristics of traditional systems and directly influence its development. A clear
example, which is different from the information or desktop systems, is the char-
acteristic that the mobile devices have “Limited Energy”. As mobile devices are
powered by battery, which have a limited lifetime period, the applications must
be programmed to require the minimal amount of hardware resources possible,
since the more resources consumed, the greater amount of energy expended. This
characteristic makes it necessary for the solution project to address this concern,
generating a higher complexity of development and, thereafter, a greater effort
and cost. All other characteristics that tend to influence the development of a
mobile application and its attached thereto analyzes can be accessed at: http://
www.laudson.com/characteristics.pdf.

From the survey of the most popular estimation methods cited in Sect. 2,
it was found that these characteristics are not covered by the current estima-
tion methods for two explicit reasons: first, none of the existing methods was
designed to perform project estimation in mobile applications development; and
second, all the characteristics discussed in this section are exclusive to mobile

http://www.laudson.com/characteristics.pdf
http://www.laudson.com/characteristics.pdf

160 L.S. de Souza and G.S. de Aquino

applications, with direct interference in their development, thereby generating
a greater complexity and, thereafter, a greater effort. However, to consider any
of the existing estimation methods to apply to the process of development of
mobile applications is to assume that this kind of development is no different
than the project of developing desktop applications, in other words, an eminent
risk is assumed.

5 Estimation in Mobile Application Design Phase

The approached proposed is an adaptation of an existing method, which was
named the “MEstiAM (Estimation Model for Mobile Applications)”, based
exclusively on methods recognized as international standards by ISO. Among
the most popular estimation methods mentioned in Sect. 2, the method used to
base the proposal below on is known as “Finnish Software Metrics Association
(FISMA)”. The model is one of the five methods for measuring software that
complies with the ISO/IEC 14143-1 standard, is accepted as an international
standard for software measuring [11] and nowadays over 750 software projects
are completed being estimated by FISMA. However, the difference between this
and other methods that are in accordance with the above standard, which are
the Common Software Measurement International Consortium Function Points
(COSMIC FP) [7], the International Function Point Users Group (IFPUG)
FPA [35], MarkII FPA [39] and the Netherlands Software Metrics Association
(NESMA) WSF [13], is that the method used is based in functionality but is
service-oriented. It also proposes in its definition that it can be applied to all
types of software, but this statement is lightly wrong since in its application, the
method does not take into account the characteristics elicited in Sect. 3. Finally,
other methods were analyzed tested, become unfeasible a possible adapto of
them because mostly has its year of creation before the FISMA itself.

The COMISC FP [7], the MarkII FPA [39] and the NESMA [13] were created
based on the FPA [35], in other words, they assume the counting of Function
Point (FP), but considering the implemented functionality from the user’s point
of view. With this, it is clear that the methods mentioned above do not take into
account the characteristics of mobile applications because they are not noticed
by the user. The methods are independent of the programming language or
technology used. And, unlike FISMA, they do not bring in their literature the
information that they can be applied to all types of software.

Overall, the FISMA method proposes that all services provided by the applica-
tion are identified. It previously defines some services, among which stands out the
user’s interactive navigation, consulting services, user input interactive services,
interface services for other applications, data storage services, algorithmic services
and handling services. Finally, after identifying all the services, the size of each ser-
vice is calculated using the same method and thus obtaining a total functional size
of the application by adding the size of each service found [10].

Mobile Application Estimate the Design Phase 161

5.1 Approaching the Chosen Model

The FiSMA method in its original usage proposes a structure of seven classes of the
Base Functional Component or BFC (Base Functional Component) type, which is
defined as a basic component of functional requirement. The seven classes used to
account for the services during the application of the method are [10]: interactive
navigation of the end user and query services (q); interactive input services from
end users (i); non-interactive outbound services for the end user (o); interface ser-
vices for another application (t); interface services for other applications (f); data
storage services (d) and algorithmic manipulation services (a).

The identification for each class name BFC previously mentioned, with a let-
ter in parenthesis, is used to facilitate the application of the method during the
counting process, because each of the seven classes BFCs are composed of other
BFC classes which, at the time of calculating, these BFCs “daughter” classes
are identified by the letter of their BFC “mother” class followed by a numeral.
The unit of measurement is the point of function with the letter “F” added to
its nomenclature to identify the “FiSMA”, resulting in FfP (FiSMA Function
Point) or Ffsu (FiSMA functional size unit). The measurement process generally
consists of measuring the services and end-user interface and the services con-
sidered indirect [10]. Briefly, the process of counting should be done as follows.
Identify: ◦ How many types of BFCs does the software have? ◦ Which are they?
(identify all) ◦ What are they? (provide details of each BFC identified). After
doing this, it is necessary to add each BFC root using the formulas pre-defined
by the method and their assignments. Finally, the formula of the final result of
the sum is the general sum of all the BFCs classes.

5.2 Applying the Chosen Model

The FiSMA method can be applied manually or with the aid of the Experience
Service2 tool, which was the case, provided by FiSMA itself through contact
made with senior consultant Pekka Forselius and with the chairman of the board
Hannu Lappalainen.

When using the tool, it is necessary to perform all the steps of the previous
subsection to obtain the functional size. Figure 1 shows the final report after the
implementation of the FiSMA on a real system, the Management of Academic
Activities Integrated System (Sigaa) in its Mobile version, developed by the
Superintendence of Computing (SINFO) of the Federal University of Rio Grande
do Norte (UFRN).

After the application of FiSMA, the functional size of the software is obtained
and from this it is possible to find the effort using the formula: Estimated effort
(h) = size (fp) x reuse x rate of delivery (h/fp) x project status; the latter is
related to productivity factors that are taken into account for the calculation of
the effort. However, of the factors predefined by the FiSMA regarding the prod-
uct, only 6 (six) are proposed, in which the basic idea of the evaluation is that

2 http://www.experiencesaas.com/.

http://www.experiencesaas.com/

162 L.S. de Souza and G.S. de Aquino

Fig. 1. Final report of FiSMA applied to Sigaa Mobile.

“the better the circumstances of the project, the more positive the assessment”.
The weighting goes from −− to + +, as follows:

Caption: ◦ (++) = [1.10] Excellent situation, much better circumstances than
in the average case; ◦ (+) = [1.05] Good situation, better circumstances than
in the average case; ◦ (+/−) = [1.0] Normal situation; ◦ (−) = [0.95] Bad
situation, worse circumstances than in the average case; ◦ (−−) = [0.90] Very
bad situation, much worse circumstances than in the average case.

Productivity Factors: ◦ Functionality requirements → compatibility with the
needs of the end user, the complexity of the requirements; ◦ Reliability require-
ments → maturity, tolerance to faults and recovery for different types of use
cases; ◦ Usability requirements → understandability and easiness to learn the
user interface and workflow logic; ◦ Efficiency requirements → effective use of
resources and adequate performance in each use case and under a reasonable
workload; ◦ Maintainability requirements → lifetime of the application, crit-
icality of fault diagnosis and test performance; ◦ Portability requirements →
adaptability and instability to different environments, to the architecture and to
structural components.

Among the productivity factors mentioned above, only the “Portability
Requirement” factor fits in harmony with the “Portability” characteristic regard-
ing both hardware and software. However, none of the other factors discusses the
characteristics of mobile application, in other words, after obtaining the func-
tional size of the software and applying the productivity factors related to the
product to estimate the effort, this estimate ignores all of the characteristics of
mobile applications, judging that the estimate of traditional information systems

Mobile Application Estimate the Design Phase 163

is equal to the mobile application. However, with the proposal of the creation of
new productivity factors, which would be the specific characteristics of mobile
applications, this problem will be solved, as presented below.

Performance Factor: ◦ (−) The application should be concerned with the opti-
mization of resources for a better efficiency and response time. ◦ (+/−) Resource
optimization for better efficiency and response time may or may not exist. ◦ (+)
Resource optimization for better efficiency and response time should not be taken
into consideration.

Power Factor: ◦ (−) The application should be concerned with the optimization
of resources for a lower battery consumption. ◦ (+/−) Resource optimization for
lower battery consumption may or may not exist. ◦ (+) Resource optimization
for a lower battery consumption should not be taken into consideration.

Band Factor: ◦ (−) The application shall require the maximum bandwidth.
◦ (+/−) The application shall require reasonable bandwidth. ◦ (+) The appli-
cation shall require a minimum bandwidth.

Connectivity Factor: ◦ (−) The application must have the maximum willingness
to use connections such as 3G, Wi-fi, Wireless, Bluetooth, Infrared and others.
◦ (+/−) The application must have reasonable predisposition to use connec-
tions such as 3G, Wi-Fi and Wireless. ◦ (+) The application must have only a
predisposition to use connections, which can be: 3G, Wi-fi, Wireless, Bluetooth,
Infrared or others.

Context Factor: ◦ (−) The application should work offline and synchronize.
◦ (+/−) The application should work offline and it is not necessary to syn-
chronize. ◦ (+) The application should not work offline.

Graphic Interface Factor: ◦ (−) The application has limitations due to the screen
size because it will be mainly used by cell phone users. ◦ (+/−) The application
has reasonable limitation due to the screen size because it will be used both by
cell phone and tablet users. ◦ (+) The application has little limitation due to
the screen size because it will be mainly used by tablet users.

Input Interface Factor: ◦ (−) The application must have input interfaces for
touch screen, voice, video, keyboard and others. ◦ (+/−) The application must
have standard input interfaces for keyboard. ◦ (+) The application must have
any one of the types of interfaces, such as: touch screen, voice, video, keyboard
or others.

The proposed factors take into account the same weighting proposed by
FiSMA, but only ranging from − to +, in other words: ◦ (+) = [1.05] Good
situation, better circumstances than in the average case; ◦ (+/−) = [1.0] Nor-
mal Situation; ◦ (−) = [0.95] Bad situation, worse circumstances than in the
average case. The functional size remains the same, thus affecting only the for-
mula used to obtain the effort, which will now consider in its “project situation”
variable the new productivity factors specific for mobile applications.

164 L.S. de Souza and G.S. de Aquino

Table 2. Analysis of estimates of Sigaa Mobile.

Real effort spent MEstiAM model FiSMA model

860 h 792 h 403 h

Table 3. Analysis of estimates of SigRH Mobile.

Real effort spent MEstiAM model FiSMA model

103 h 115,2 h 152 h

The validation process was as follows, was raised the total effort expended in
developing the Sigaa Mobile project, i.e., we obtained the actual effort. After we
applied the method of estimation FISMA, in his original proposal thus obtaining
an estimate of effort. Then we applied the method MEstiAM also generating
an effort estimate finally the comparative analysis between the three estimates
generated was performed to verify which method is closer to the actual effort
spent. As can be seen in Table 2.

As can be seen in Table 2, the proposed method, MEstiAM, which is closest
to the actual effort spent. You FISMA model, it was very much desired for the
new model and the actual effort expended.

As it was also performed, the validation process was as follows, was raised the
total effort expended in developing the SigRH Mobile project, i.e., we obtained
the actual effort. After we applied the method of estimation FISMA, in his orig-
inal proposal thus obtaining an estimate of effort. Then we applied the method
MEstiAM also generating an effort estimate finally the comparative analysis
between the three estimates generated was performed to verify which method is
closer to the actual effort spent. As can be seen in Table 3.

As can be seen in Table 3, the proposed method, MEstiAM, which is closest
to the actual effort spent. You FISMA model, it was very much desired for the
new model and the actual effort expended.

6 Conclusion

Given the results presented, based on the literature review of estimation methods
and on the systematic review of the characteristics of mobile applications, it was
observed that this sub-area of software engineering still falls short. Basically,
it’s risky to use any existing estimation method in development projects for
mobile applications, as much as there are some models already widespread in
industry, such as the Function Point Analysis, the Mark II and the COSMIC-
FFP, which are even approved by ISO as international standards. They all fall
short by not taking into account the particularities of mobile applications, which
makes the method partially ineffective in this situation. Based on this study, it
is concluded that the proposal presented in this work is entirely appropriate and
viable and that this proposal should take into account all the peculiarities of

Mobile Application Estimate the Design Phase 165

such applications, finally creating a belief that there actually are considerable
differences in the development project for mobile applications.

With the common emergence of new systems, experts always find a barrier
when using one of the current methods of software measurement. This barrier can
be on the effectiveness of the method, on what type of method should be used,
when it comes to a software that is considered unconventional and, mostly, when
it is required to apply it in completely atypical scenarios. This whole situation
is aggravated further when it comes to mobile applications.

Based on this study, it is concluded that the proposal presented in this work is
entirely appropriate and viable and that this proposal should take into account all
the peculiarities of such applications, finally creating a belief that there actually
are considerable differences in the development project for mobile applications.

References

1. Abrahão, S., Poels, G., Pastor, O.: A functional size measurement method for
object-oriented conceptual schemas: design and evaluation issues. Softw. Syst.
Model. 5(1), 48–71 (2006)

2. Al-Jaroodi, J., Al-Dhaheri, A., Al-Abdouli, F., Mohamed, N.: A survey of security
middleware for pervasive and ubiquitous systems. In: 2009 International Conference
on Network-Based Information Systems, NBIS 2009, pp. 188–193. IEEE (2009)

3. Rogov, I., Erlick, D., Gerbert, A., Mandadi, A., Mudegowder, D.: Mobile appli-
cations: characteristics and group project summary. Mobile Application Develop-
ment. Google (2009)

4. Banker, R.D., Kauffman, R.J., Wright, C., Zweig, D.: Automating output size and
reuse metrics in a repository-based computer-aided software engineering (case)
environment. IEEE Trans. Softw. Eng. 20(3), 169–187 (1994)

5. Boehm, B., Valerdi, R., Lane, J., Brown, A.: Cocomo suite methodology and evo-
lution. CrossTalk 18(4), 20–25 (2005)

6. Caldiera, G., Antoniol, G., Fiutem, R., Lokan, C.: Definition and experimental
evaluation of function points for object-oriented systems. In: 1998 Proceedings of
the Fifth International Software Metrics Symposium, Metrics 1998, pp. 167–178
(1998)

7. COSMIC-Common Software Measurement International Consortium: The cosmic
functional size measurement method-version 3.0 measurement manual (the cosmic
implementation guide for ISO/IEC 19761: 2003) (2007)

8. Engelhart, J., Langbroek, P., et al.: Function Point Analysis (FPA) for Software
Enhancement. NESMA (2001)

9. Feng, H.: A literature analysis on the adoption of mobile commerce. In: 2009 IEEE
International Conference on Grey Systems and Intelligent Services, GSIS 2009, pp.
1353–1358. IEEE (2009)

10. Finnish Software Measurement Association FiSMA. Fisma functional size mea-
surement method version 1-1 (2004)

11. Forselius, P.: Finnish software measurement association (FiSMA), FSM working
group: FiSMA functional size measurement method v. 1.1 (2004)

12. Inc. GARTNER: Gartner says worldwide mobile phone sales declined 1.7 percent
in 2012. Gartner, Egham (2013)

166 L.S. de Souza and G.S. de Aquino

13. Gencel, C., Heldal, R., Lind, K.: On the conversion between the sizes of software
products in the life cycle

14. Giessmann, A., Stanoevska-Slabeva, K., de Visser, B.: Mobile enterprise
applications-current state and future directions. In: 2012 45th Hawaii International
Conference on System Science (HICSS), pp. 1363–1372. Google (2012)

15. Hameed, K., et al.: Mobile applications and systems. Google (2010)
16. Hayenga, M., Sudanthi, C., Ghosh, M., Ramrakhyani, P., Paver, N.: Accurate

system-level performance modeling and workload characterization for mobile inter-
net devices. In: Proceedings of the 9th Workshop on MEmory Performance: DEal-
ing with Applications, Systems and Architecture, MEDEA 2008, pp. 54–60. ACM,
New York (2008)

17. Husted, N., Säıdi, H., Gehani, A.: Smartphone security limitations: conflicting
traditions. In: Proceedings of the 2011 Workshop on Governance of Technology,
Information, and Policies, GTIP 2011, pp. 5–12. ACM, New York (2011)

18. Jones, C., Jones, T.C.: Estimating Software Costs, vol. 3. McGraw-Hill, New York
(1998)

19. Kammelar, J.: A sizing approach for oo-environments. In: Proceedings of the 4th
International ECOOP Workshop on Quantitative Approaches in Object-Oriented
Software Engineering (2000)

20. Ketykó, I., De Moor, K., De Pessemier, T., Verdejo, A.J., Vanhecke, K., Joseph, W.,
Martens, L., De Marez, L.: QoE measurement of mobile youtube video streaming.
In: Proceedings of the 3rd Workshop on Mobile Video Delivery, MoViD 2010, pp.
27–32. ACM, New York (2010)

21. Kitchenham, B.: Procedures for performing systematic reviews. Keele, UK, Keele
Univ. 33, 1–26 (2004)

22. Maji, A.K., Hao, K., Sultana, S., Bagchi, S.: Characterizing failures in mobile OSes:
A case study with android and symbian. In: 2010 IEEE 21st International Sympo-
sium on Software Reliability Engineering (ISSRE), pp. 249–258. IEEE (2010)

23. Kusumoto, S., Matukawa, F., Inoue, K., Hanabusa, S., Maegawa, Y.: Estimating
effort by use case points: method, tool and case study. In: 2004 Proceedings of the
10th International Symposium on Software Metrics, pp. 292–299 (2004)

24. Liu, T.C., Wang, H.Y., Liang, J.K., Chan, T.-W., Ko, H.W., Yang, J.C.: Wire-
less and mobile technologies to enhance teaching and learning. J. Comput. Assist.
Learn. 19(3), 371–382 (2003)

25. Lother, M., Dumke, R.: Points metrics-comparison and analysis. In: International
Workshop on Software Measurement (IWSM 2001), Montréal, Québec, pp. 155–172
(2001)

26. Lowe, R., Mandl, P., Weber, M.: Context directory: a context-aware service for
mobile context-aware computing applications by the example of google android. In:
2012 IEEE International Conference on Pervasive Computing and Communications
Workshops (PERCOM Workshops), pp. 76–81 (2012)

27. Macario, G., Torchiano, M., Violante, M.: An in-vehicle infotainment software
architecture based on google android. In: 2009 IEEE International Symposium on
Industrial Embedded Systems, SIES 2009, pp. 257–260 (2009)

28. Matson, J.E., Barrett, B.E., Mellichamp, J.M.: Software development cost estima-
tion using function points. IEEE Trans. Softw. Eng. 20(4), 275–287 (1994)

29. Maya, M., Abran, A., Oligny, S., St-Pierre, D., Desharnais, J.-M.: Measuring the
functional size of real-time software. In: Proceedings of 1998 European Software
Control and Metrics Conference, Maastricht, The Netherlands, pp. 191–199 (1998)

30. Meli, R.: Early and extended function point: a new method for function points
estimation. In: Proceedings of the IFPUG-Fall Conference, pp. 15–19 (1997)

Mobile Application Estimate the Design Phase 167

31. Meli, R., Abran, A., Ho, V.T., Oligny, S.: On the applicability of COSMIC-FFP for
measuring software throughout its life cycle. In: Proceedings of the 11th European
Software Control and Metrics Conference, pp. 18–20 (2000)

32. Morisio, M., Stamelos, I., Spahos, V., Romano, D.: Measuring functionality and
productivity in web-based applications: a case study. In: 1999 Proceedings of Sixth
International Software Metrics Symposium, pp. 111–118 (1999)

33. Mukhtar, H., Beläıd, D., Bernard, G.: A model for resource specification in mobile
services. In: Proceedings of the 3rd International Workshop on Services Integration
in Pervasive Environments, SIPE 2008, pp. 37–42. ACM, New York (2008)

34. Naismith, L., Sharples, M., Lonsdale, P., Vavoula, G., et al.: Literature review in
mobile technologies and learning (2004)

35. Oligny, S., Desharnais, J.-M., Abran, A.: A method for measuring the functional
size of embedded software. In: 3rd International Conference on Industrial Automa-
tion, pp. 7–9 (1999)

36. Reifer, D.J.: Asset-R: a function point sizing tool for scientific and real-time sys-
tems. J. Syst. Softw. 11(3), 159–171 (1990)

37. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: a comprehensive security assessment. IEEE Secur. Priv. 8(2), 35–44 (2010)

38. Sohn, J.-H., Woo, J.-H., Lee, M.-W., Kim, H.-J., Woo, R., Yoo, H.-J.: A 50 Mver-
tices/s graphics processor with fixed-point programmable vertex shader for mobile
applications. In: 2005 IEEE International Solid-State Circuits Conference, Digest
of Technical Papers. ISSCC 2005, vol. 1, pp. 192–592 (2005)Google

39. Symons, C.: Come back function point analysis (modernized)–all is forgiven!). In:
Proceedings of the 4th European Conference on Software Measurement and ICT
Control, FESMA-DASMA, pp. 413-426 (2001)

40. Yang, C.-C., Yang, H.-W., Huang, H.-C.: A robust and secure data transmission
scheme based on identity-based cryptosystem for ad hoc networks. In: Proceed-
ings of the 6th International Wireless Communications and Mobile Computing
Conference, IWCMC 2010, pp. 1198–1202. ACM, New York (2010)

41. Yang, S.-Y., Lee, D.L., Chen, K.-Y.: A new ubiquitous information agent system
for cloud computing - example on GPS and bluetooth techniques in google android
platform. In: 2011 International Conference on Electric Information and Control
Engineering (ICEICE), pp. 1929–1932 (2011)

Author Index

Biswas, K.K. 125
Blech, Jan Olaf 140
Bravo, Crescencio 93
Buchan, Jim 63

Che, Xiaoping 79
Christou, Marios 18

de Aquino Jr., Gibeon Soares 155
de Castro, Valeria 1
de Souza, Laudson Silva 155
Dehlinger, Josh 33

Gallardo, Jesús 93
Gallego, Fernando 93
González, Juan Carlos 109

Jia, Xiaoping 46
Jones, Christopher 46

Kapitsaki, Georgia M. 18

Lopez, Jorge 79

Maag, Stephane 79
MacDonell, Stephen 63
Marcos, Esperanza 1
Molina, Ana Isabel 93
Morales-Trujillo, Miguel Ehécatl 109

Oktaba, Hanna 109

Peake, Ian 140

Rosasco, Nicholas 33

Santiago, Iván 1
Schmidt, Heinz 140
Sharma, Richa 125
Spichkova, Maria 140

Tahir, Amjed 63

Vara, Juan M. 1

	Preface
	Organization
	Contents
	Reducing the Level of Complexity of Working with Model Transformations
	1 Introduction
	2 Related Works
	3 Generation of Trace Models
	3.1 The iTrace Metamodel
	3.2 Generation Process

	4 iTrace Visualization Mechanisms
	4.1 Multipanel Editor for Trace Models
	4.2 Dashboards for Traceability Data

	5 Conclusion and Future Works
	References

	Learning from the Current Status of Agile Adoption
	1 Introduction
	2 Research Methodology
	3 Results
	3.1 Organization Profile
	3.2 Demographics
	3.3 Popularity Among Agile
	3.4 How Big Is the Team, How Long Is the Iteration
	3.5 Where Do Teams Work
	3.6 Agile and Tradition

	4 Scrum-Specifics
	5 Related Surveys
	6 Threats to Validity
	7 Where We Are and Conclusions
	References

	A Case Study Investigation of a Lightweight, Systematic Elicitation Approach for Enterprise Architecture Requirements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Enterprise Architecture Frameworks
	2.2 Vision-Mission-Objectives-Strategy-Tactics Method
	2.3 The Grounded Theory Method

	3 Research Methodology
	3.1 Research Process Design and Case Selections
	3.2 Data Analysis and Hypotheses Shaping
	3.3 The Story and Enfolding Literature

	4 Primary Results
	5 Generalization and Limitations Discussion
	6 Conclusions
	Acknowledgements
	References

	Using a Domain Specific Language for Lightweight Model-Driven Development
	1 Introduction
	2 The AXIOM Approach
	2.1 Abstract Model Trees

	3 Construction
	4 Transformation
	4.1 Transformation Rules
	4.2 Structural Transformations
	4.3 Styling Transformations

	5 Translation
	5.1 Injection Descriptors
	5.2 Native Code Generation

	6 Evaluation
	6.1 Approach
	6.2 Metrics
	6.3 Results

	7 Discussion
	8 Related Work
	9 Conclusion
	References

	A Study of the Relationship Between Class Testability and Runtime Properties
	Abstract
	1 Introduction
	2 Related Work
	3 Testability Concepts
	3.1 Dynamic Coupling
	3.2 Key Classes

	4 Study Design
	4.1 Research Questions and Hypotheses
	4.2 Measurements

	5 Data Collection
	5.1 Case Studies
	5.2 Execution Scenarios

	6 Results
	7 Discussion
	8 Threats to Validity
	9 Conclusions and Future Work
	References

	Online Testing: A Passive Approach for Protocols
	1 Introduction
	2 Related Works
	3 Formal Approach
	3.1 Basics
	3.2 Syntax and Semantics of Our Formalism

	4 Online Testing Framework
	4.1 Framework
	4.2 Testing Algorithm

	5 Experiments
	5.1 Environment
	5.2 Tests Results

	6 Perspectives and Conclusion
	References

	Experiences of Use of a Multi-domain Tool for Collaborative Software Engineering Tasks
	Abstract
	1 Introduction
	2 Related Work
	2.1 Tools for Synchronous Collaborative Modeling
	2.2 Collaborative Tools for the Development of UML Diagrams

	3 The SPACE-DESIGN Tool
	4 Empirical Study
	4.1 The Study
	4.2 Results and Discussion
	4.3 Other Evaluation Studies

	5 Conclusions and Future Work
	Acknowledgements
	References

	Taking Seriously Software Projects Inception Through Games
	Abstract
	1 Introduction
	2 Success Factors in Software Projects
	3 Software Projects Inception Phase
	3.1 Agile Approach
	3.2 Traditional Approach
	3.3 Game-Based Approach

	4 ActiveAction Workshop
	4.1 Intensive-Day Method
	4.2 Game-Based Practices
	4.3 Non-ludic Practices
	4.4 Intensive-Day Work Products
	4.5 AVAX Mind Map for Project Tracking

	5 Results
	5.1 ActiveAction Advantages and Disadvantages
	5.2 Validation and Improvement Suggestions

	6 Conclusions and Future Work
	Acknowledgements
	References

	Natural Language Generation Approach for Automated Generation of Test Cases from Logical Specification of Requirements
	Abstract
	1 Introduction
	2 Related Work
	2.1 Courteous Logic Representation of Requirements
	2.2 Test-Case Generation

	3 Our Approach
	4 Case-Study
	4.1 Test-Cases Generated Using Our Proposed Algorithm
	4.2 Empirical Study
	4.3 Observations - Empirical Study
	4.4 Mitigating Threats to Validity

	5 Discussion and Conclusion
	References

	Visualization, Simulation and Validation for Cyber-Virtual Systems
	1 Introduction
	2 Related Work
	3 From Cyber-Physical to Cyber-Virtual Systems
	4 Research Challenges and Corresponding Projects
	4.1 Existing VITELab Projects
	4.2 Interacting with Robots and Their Simulations

	5 From (Semi-)Formal Methods to Visualization and Validation
	5.1 Human Factors and Formal Models
	5.2 Formal Proofs and Verification
	5.3 Spatial Behavioral Types
	5.4 Spatial Behavioral Types for Simulation and Validation

	6 Conclusions
	References

	Mobile Application Estimate the Design Phase
	1 Introduction
	2 Estimation Models
	3 Characteristics of Mobile Applications
	4 Problem Addressed
	5 Estimation in Mobile Application Design Phase
	5.1 Approaching the Chosen Model
	5.2 Applying the Chosen Model

	6 Conclusion
	References

	Author Index

