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      Structural Reconstruction 
of Protein-Protein Complexes 
Involved in Intracellular Signaling                     

     Klára     Kirsch    ,     Péter     Sok    , and     Attila     Reményi    

    Abstract  

  Signaling complexes within the cell convert extracellular cues into physi-
ological outcomes. Their assembly involves signaling enzymes, allosteric 
regulators and scaffold proteins that often contain long stretches of disor-
dered protein regions, display multi-domain architectures, and binding 
affi nity between individual components is low. These features are indis-
pensable for their central roles as dynamic information processing hubs, 
on the other hand they also make reconstruction of structurally homoge-
neous complex samples highly challenging. In this present chapter we dis-
cuss protein machinery which infl uences extracellular signal reception, 
intracellular pathway activity, and cytoskeletal or transcriptional activity.  
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20.1       Introduction 

 Signal transduction refers to all molecular events 
between the reception of extracellular signals and 
the mounting of biologically appropriate 
responses inside the cell ( e.g. , gene expression by 
the general transcriptional machinery or move-
ments involving cytoskeletal proteins). As cells 

receive myriad of signals and responses are func-
tionally diverse, a great proportion of intracellu-
lar proteins participate in the hierarchical 
assembly of signaling complexes. Protein-protein 
interaction specifi city of components within 
these complexes determines how signaling path-
ways are wired. We show that detailed mechanis-
tic understanding on how signaling complexes 
transmit intracellular information requires their 
structural reconstruction. However, this is diffi -
cult, because signaling proteins often form short- 
lived transient complexes, are prone to allosteric 
regulatory mechanisms, and modulated by post- 
translational modifi cations ( e.g. , phosphorylation 
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or nondegradative ubiquitinilation). In addition, 
most proteins contain long disordered protein 
regions, display multi-domain architecture, and 
binding affi nities between structured and linear 
motif containing disordered regions are weak 
(micromolar). 

 In the next pages we will review how the 
above mentioned technical challenges were 
solved for reconstructing GPCR-G protein com-
plexes, focal adhesion sites, the Ste5 MAP kinase 
cascade, the ARP2/3, and the Mediator complex. 
The structural reconstruction of these complexes 
has given insight into the reception of chemical 
ligands, adhesion to the extracellular matrix, 
intracellular signaling cascade insulation, actin 
branching dynamics and transcriptional activa-
tion, respectively. These topics give a cross- 
section of now structurally explored molecular 
events from the cellular signaling fi eld. On the 
other hand, the examples below maybe viewed as 
paradigmatic cases on how to devise strategies to 
limit conformational fl exibility of reconstituted 
multi-protein complexes, or alternatively to 
divide them up into functionally relevant and 
structurally compact units.  

20.2     Sensing the Chemical 
Environment: GPCRs 
and Heterotrimeric G 
Proteins 

 G protein-coupled receptors (GPCRs) play a cen-
tral role in detecting extracellular signals. They 
bind ligands outside of the cell, go through bind-
ing triggered conformation changes and turn 
these into downstream intracellular signals with 
the help of heterotrimeric G-proteins located at 
the cytoplasmic side of the cell membrane. 
GPCRs are an important group of signaling 
receptors as the largest part of current drugs 
deliver their effects through them. Learning the 
molecular mechanism of GPCR activation is the 
key to create successful therapeutics. However, 
acquiring insight into the conformational changes 
of GPCRs upon ligand binding has turned out to 
be a diffi cult task [ 1 ]. The fi rst solved GPCR 
structure was the light sensitive but relatively 

stable rhodopsin [ 2 ]. Most GPCR proteins are 
hard to express in the necessary amounts and are 
unstable when using common detergent solubili-
zation methods. Instead of detergents, most of the 
GPCR crystals were grown in lipidic cubic phase 
where proteins are stabilized by the membrane 
bilayer [ 3 ]. 

 The highly dynamic nature of GPCRs has 
hampered their structural investigation for a long 
time. Structure solution of the beta-2-adrenergic 
receptor (β2AR) was made possible by using 
monoclonal antibodies to stabilize conformation 
of a fl exible region—the third intracellular loop 
connecting two transmembrane regions, helices 5 
and 6 [ 4 ]. As an alternative to this, insertion of 
the stable T4 lysozyme (T4L) protein at this 
region was also successfully used to stabilize the 
GPCR structure [ 5 ]. In addition, using inverse 
agonists such as carazolol was helpful in locking 
the GPCR into its inactive conformation, causing 
less conformational heterogeneity at other fl exi-
ble protein regions [ 6 ]. 

 Obtaining an active, agonist-bound GPCR 
structure has also proven diffi cult due to the 
inherent instability of this state in the absence of 
a G protein. This was circumvented by using 
nanobodies, single domain antibodies that exhib-
ited G protein-like behaviour [ 7 ,  8 ]. 

 Binding of agonists to the extracellular region 
of the GPCR induces a conformational change in 
the receptor. The activated GPCR receptor allo-
sterically activates the heterotrimeric G protein. 
The activated G proteins alpha subunit (Gα) 
exchanges GDP for GTP, which results in the dis-
sociation of the Gα from the Gβ-Gγ subunits. 
Activated Gs protein binds and then turns on 
adenyl cyclase (Fig.  20.1 ). In 2011 the β2AR-Gs 
protein complex was fi nally solved [ 8 ]. This was 
a great contribution to fully understanding the 
molecular mechanism behind GPCR signaling as 
well as to know how most drugs exercise their 
effect. Similarly to efforts on the monomeric 
GPCR, fi ghting against and prevailing over con-
formational heterogeneity of receptor samples 
was the key for success and several former meth-
odological improvements on how to handle 
GPCR samples had to be combined. The fusion 
of the T4L protein as well as the use of a  nanobody 
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(Nb35) was necessary to stabilize the complex 
and provide optimal crystal lattice contacts. 
Finally the T4L-β2AR-Gs-Nb35 protein complex 
was successfully crystallized in lipidic cubic 
phase (Fig.  20.1 ).

   Understanding how ligands induce activating 
conformational changes in GPCRs required some 
truly creative and novel methods to be applied for 
their crystallization. Many years of method 
developments were required to learn how it is 
pragmatically possible to decrease the inherent 
fl exibility of these dynamic molecular switches.  

20.3     Sensing the Matrix: Focal 
Adhesions 

 The focal adhesion of cells to the extracellular 
matrix (ECM) or to neighboring cells is an inter-
esting example for showing how cells could gain 

information about their physical environment. 
Focal adhesions are macromolecular assemblies 
connecting cells to physical surfaces. In adhe-
sion signaling the recruitment of many adaptor 
proteins to the plasma membrane mediate the 
outcome of the response. Integrins have a major 
role in forming focal adhesions and in transduc-
ing biochemical signals. Major components of 
“integrin adhesomes” are paxillin, talin, and vin-
culin. Overall, they may be composed of more 
than 150 components and closer examination of 
this complex network revealed the existence of 
functional subnets. Key network motifs were 
dominated by three-component complexes in 
which a scaffolding molecule recruits both a sig-
naling molecule and its downstream target [ 9 ]. 
Integrin signaling plays a role in cell migration, 
immune and infl ammatory responses, and also in 
actin polymerization involving the ARP2/3 com-
plex (see later). 
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  Fig. 20.1     GPCR structure and signaling . The panel on 
the  left  displays the unit cell of the crystal structure of the 
beta-2-adrenergic receptor and the Gs protein complex. 
The T4L fusion contributes to the crystal lattice contacts 
and the nanobody stabilizes a signaling-competent con-
formation of Gs. One T4L-β2AR-Gs-Nb35 nanobody 
complex is highlighted in  blue  background. Panels on the 

 right  show the signaling events after GPCR ligand bind-
ing. The activated Gs protein dissociates, its alpha subunit 
activates adenyl cyclase (AC) and the produced cAMP 
activates Protein kinase A [ 49 ,  50 ]. The G protein beta and 
gamma subunit complex also have regulatory functions. It 
is known to have regulatory effect on calcium ion chan-
nels for example [ 51 ]       
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 The characterization of protein-protein inter-
actions in adhesion contacts are mostly based on 
Fluorescence Resonance Energy Transfer 
(FRET), fl uorescence co-localization, acceptor 
photobleaching FRET (apFRET), Fluorescence 
Recovery After Photobleaching (FRAP) based 
assays and immunofl uorescence imaging [ 10 –
 12 ]. These studies revealed interacting proteins at 
focal adhesion sites. Since many structures of key 
protein-protein complexes are not known, most 
molecular mechanisms still remain 
undiscovered. 

 Cryo-electron tomography recently gave fun-
damental insight into the core of focal adhesion 
sites within cells [ 13 ]. Under cryogenic condi-
tions focal adhesions were identifi ed in cells by 
fl uorescent microscopy based on YFP labeled 
paxillin and by immunolabelled vinculin. The 
identifi ed components were indexed for cryo- 
electron tomography. As a result it was possible 
to identify adhesion related intact integrin- 
paxilin- vinculin-actin complexes, and their 
structure could be revealed at ~4–6 nm resolu-
tion. As complexes were analyzed in cells, imag-
ing gave information about localization of 
adhesome particles within the cell. This analysis 
revealed that the membrane–cytoskeleton inter-
action at focal adhesions is indeed mediated 
through particles that are directly attached to 
actin fi bers (Fig.  20.2 ).

   Integrins are heterodimeric receptors of alpha 
and beta subunits and they are linked to the intra-
cellular cytoskeleton through their short cyto-
plasmic tails [ 14 ,  15 ]. These cytoplasmic tails are 
fl exible and serve as a hub for adaptor proteins 
that recruit other interaction partners [ 16 ]. 
Paxillin is one of the well-characterized adaptor 
protein for integrins which integrates signaling 
and structural proteins into adhesion sites. It 
functions as a platform to coordinate multiple 
signaling pathways and to control the reorganiza-
tion of the cytoskeleton. One of its major partner 
is focal adhesion kinase (FAK) which is a central 
signaling protein recruited to adhesomes. FAK is 
a multi-domain tyrosine kinase [ 17 ]. NMR stud-
ies on the interacting domains of FAK (FAT 
domain) and paxillin (LD motifs) revealed the 
highly dynamic nature of this important regula-

tory interaction [ 18 ]. Focal adhesions are abun-
dant in regulatory proteins such as protein 
kinases, phosphatases, GTPases, GAPs, and 
GEFs. Because these are not only affected by 
upstream signaling events coming from the 
receptor but in turn they also modify the receptor, 
integrin signaling is a two-way signaling process 
where besides mediating signals from outside to 
inside, cells could alter their integrin binding 
affi nity to its ligands for inside-out signaling [ 19 ] 
(Fig.  20.2 ). 

 Focal adhesions are complex and dynamic 
structures comprised of high number of protein 
components. Once protein binding profi les are 
mapped out, structural investigation of important 
binary or ternary sub-complexes is possible, 
however, understanding how they connect integ-
rin receptors to the cytoskeleton will naturally 
require investigation of at least the core complex 
in the cell. Cryo-electron tomography on specifi -
cally labeled multi-protein containing cellular 
structures gives unique structural information, 
albeit at low resolution, which is not possible 
through reconstituting complexes from purifi ed 
components  in vitro .  

20.4     Organizing Protein Kinases 
into Functional Modules 

 Intracellular signaling pathways often use cas-
cades of protein kinases to mediate signals from 
the cell membrane. Interestingly, signaling cas-
cades often use shared enzymatic components. 
At the mechanistic level the question then arises 
as to how functionally distinct pathway activities 
are insulated. The solution may be the use of 
multi-domain scaffolds consisting of dedicated 
binding proteins capable of assembling different 
sets of protein kinases. Scaffold proteins poten-
tially allow the combinatorial use of a limited set 
of signaling enzymes to control a great number of 
signaling activities [ 20 ]. Scaffolds, however, do 
not merely facilitate signaling between recruited 
enzymatic components by passive tethering but 
they also allosterically modulate their bound 
partners. Recent studies on scaffolds of mitogen 
activated protein kinase (MAPK) pathways 
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 demonstrated this elegantly by reconstituting 
scaffolded MAPK modules out of components in 
well-defi ned conformational states [ 21 ]. 

 One of the best characterized signaling path-
way is the baker’s yeast α-pheromone response 
(mating pathway) [ 22 ]. This is a classical GPCR 
triggered pathway that is dependent on an evolu-
tionarily conserved, three-tiered kinase cascade 
(Fig.  20.3 ). The three kinases (Ste11, Ste7 and 
Fus3) sequentially activate each other and can 
simultaneously bind to the Ste5 scaffold protein. 
Upon activation of the GPCR the dissociated 
βγ-subunit of the G-protein recruits Ste5 to the 
cell membrane, which brings about the activation 
of the fi rst protein kinase, Ste11, by a membrane 
located kinase, Ste20. In turn, Ste7 gets activated 
which will then activate the Fus3 mitogen- 
activated protein kinase (MAPK). Activated Fus3 
enters the nucleus and phosphorylate transcrip-
tion factors that execute the mating response 
(where a-type haploid cells fuse with α-type hap-
loid cells to form diploids.) Interestingly, other 

physiologically non-related pathways also use 
Ste7 as a common signaling mediator. For exam-
ple the fi lamentous growth pathway depends on 
the Ste7 mediated activation of the Kss1 
MAPK. How can Fus3 be selectively activated by 
Ste7 molecules that obtained upstream signals 
from the mating but not from the fi lamentous 
growth pathway? The answer lies in the Ste5 
dependent allosteric activation mechanism of 
Fus3 by Ste7. In contrast to Kss1, Fus3 can only 
be activated by Ste7 if it is co-bound with its acti-
vator kinase on the Ste5 scaffold [ 23 ]. In addi-
tion, Ste5 itself is also allosterically regulated. 
An internal interaction between two of its 
domains hinders its allosteric role on Ste7-Fus3 
signaling, while this is relieved upon its 
 membrane recruitment following GPCR activa-
tion [ 24 ]. These mechanisms ensure that Ste7 can 
be used in two unrelated pathways in a physio-
logically relevant fashion.

   Scaffold proteins are abundantly used in 
MAPK signaling pathways [ 25 ]. Similar recon-

βα

  Fig. 20.2     Focal adhesion sites . Schematic representation 
of adhesome particles. The complex shown in green contains 
the paxilin-vinculin-talin adapter complex that couples inte-
grin receptors to actin and to the focal adhesion kinase 
(FAK). The recruitment of kinases ( e.g. , FAK and Src) 
ensures the functional linkage to downstream signaling path-

ways ( e.g.,  Ras/MAPK). Besides this outside- in signaling, 
integrin can be regulated through talin by inside-out signal-
ing. Panels on the  right  show two different adhesome rele-
vant particles comprised of paxilin, talin and vinculin (in 
 green ) connected to the cytoskeleton (actin in salmon) (Cryo-
electron tomography images were taken from Ref. [ 13 ])       
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stitution studies as described above with MAPK 
module components of the epidermal growth fac-
tor sensing pathway also highlighted the impor-
tance of allosteric regulation and the existence of 
multiple, dynamic conformational states. This 
pathway culminates in the activation of the mam-
malian MAPK homolog of Fus3, ERK2, and it 
contains the three-tiered Raf-MEK-ERK module 
where the KSR scaffold plays somewhat analo-
gous functions to that of Ste5. Here structural 
studies on sub-complexes of this module showed 
that KSR-Raf heterodimerization results in an 
increase of Raf-induced MEK phosphorylation 
via the KSR-mediated relay of a signal from Raf 
to release the activation segment of MEK for 
phosphorylation [ 26 ]. 

 Scaffold proteins are normally multi-domain 
proteins comprised of folded domains and linear 
motifs with long stretches of disordered protein 

regions linking these together. Their bound enzy-
matic components and even scaffolds themselves 
are subject to function modifying modifi cations 
as well as to mutual allosteric regulation. These 
make the reconstitution of complete scaffolded 
modules in well-defi ned functional states techni-
cally impossible. The main problem is that these 
complexes even if reconstituted from homoge-
nous protein sample components, they are too 
fl exible, and thus too heterogeneous for any sin-
gle particle cryo-EM or crystallography based 
approaches, and far too big for NMR. Thus 
researchers have used the “divide and conquer” 
strategy and focused on characterizing the nature 
of binary interactions between scaffold-kinase 
and kinase-kinase pairs. The mechanistic under-
standing on how the functionally meaningful 
scaffolded module works comes from by piecing 
together data obtained on sub-complexes.  

  Fig. 20.3     Modular interactions of the Ste5 scaffold . 
Ste5 contains close to 1,000 amino acids. Long stretches of 
disordered protein regions are interspersed with differently 
structured regions. PM is an amphipathic alpha helix that 
binds membranes, the RING domain binds to Ste4 which 
is the β-subunit of the heterotrimeric G-protein, the Fus3 
binding domain (FUS3BD) is a linear motif that adopts a 
defi ned conformation only when it is bound to the Fus3 
kinase, the pleckstrin homology (PH) domain binds to 

membrane phosphoinositides, and von Willebrand type A 
(VWA) domain binds Ste7. Some of these regions play a 
role in the core steps of signal propagation through the 
scaffolded complex ( e.g. , membrane recruitment, tethering 
MAPK cascade components and allosteric coactivation of 
the MAPK), while others are involved in higher-order 
regulatory mechanisms ( e.g. , negative regulation of mem-
brane recruitment by other kinases, PM; or feed-back 
phosphorylation by the activated MAPK, FUS3BD)       
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20.5     Controlling Cytoskeletal 
Structure and Dynamics 

 The dynamic polymerization, depolymerization 
and branching of actin fi laments are controlled 
by more than a hundred actin-binding proteins 
[ 27 ]. How upstream signals infl uence this com-
plex network? One of the most studied regulator 
complex is the actin-related protein-2/3 (ARP2/3) 
complex, which is responsible for the formation 
of branched actin fi laments. Structural reconsti-
tution experiments seek to reveal the regulatory 
mechanism of this complex in order to better 
understand its role in various processes from cell 
migration, endocytosis, vesicle traffi cking, cyto-
kinesis to tumor-cell invasion and metastasis 
[ 28 ]. ARP2/3 is a stable complex of seven con-
served subunits (Fig.  20.4 ). ARPC2 and ARPC4 
form the structural core of the complex, ARP2 
and ARP3 are involved in the nucleation process, 
and ARPC1, ARPC3, and ARPC5 contribute to 
the activation of the complex by N-WASP (neu-
ronal Wiskott-Aldrich Syndrome Protein). 
Upstream activators responsible for actin regula-
tion ( e.g. , Cdc42-GTP and PIP2) can bind 
N-WASP, which disrupts its auto-inhibitory 
intramolecular interaction. The unmasked VCA 
domain can bind ARP2 and ARP3 subunits, and 
branching will be started by binding to the mother 
actin fi lament. The pseudo actin dimer composed 
of ARP2 and ARP3 act as a template for the 
building of the new fi lament joining to its mother 
with 70° Y angle [ 29 ,  30 ].

   The reconstitution of human recombinant 
ARP2/3 complex provided insights into the role 
of the individual subunits on the stability of the 
complex as well as on the nucleation of branched 
fi laments [ 31 ]. During the reconstitution of any 
complex it is necessary to fi x the conformational 
states of the monomers to gain a homogeneous 
sample. In the case of transient interactions it is 
particularly challenging to determine the condi-
tions for capturing the complex in its active state. 
For the ARP2/3 complex, several studies tried to 
resolve the inactive and active states. Beyond 

crystallization—which has the limitation of 
freezing the complex into only one state—cryo-
 EM has been applied to follow transitions 
between different molecular states [ 30 ].  In vitro  
reconstitution of the active ARP2/3 complex is a 
multi-step process. The active conformation is 
the result of a conformational change that brings 
ARP2 and ARP3 subunits together mimicking 
two sequential subunits in an actin fi lament (Fig. 
 20.4 ). This process requires many components: 
ATP, Mg, N-WASP, mother actin fi lament and 
G-actin monomers. 

 The fi rst solved crystal structure was the 
bovine ARP2/3 complex in its inactive state [ 32 ]. 
The architecture confi rmed the structural simi-
larities of ARP2 and ARP3 with actin as well as 
the central role of the core proteins ARPC2 and 
ARPC4. Homology modeling showed that the 
important contact points and residues are evolu-
tionary all conserved [ 33 ].  In vitro  FRET studies 
proved that binding both the nucleotide and NPF 
is essential for the formation of active ARP2/3 
complex [ 34 ]. YFP or GFP labeling of individual 
subunits of the complex enabled their docking 
into electron micrographs obtained on reconsti-
tuted branched actin [ 35 ]. 

 Three conformational classes of particles were 
discovered on the EM grids of wild type yeast and 
bovine ARP2/3 samples [ 36 ]. The open, interme-
diate and closed states imply great structural fl ex-
ibility. Further examination revealed that the 
cryo-EM maps changed when the complex bound 
to regulator molecules: the inhibitor coronin 
bound to the ARPC2 subunit and stabilized the 
open complex, while the activator N-WASP 
locked it into the closed (active) conformation. 

 Complex regulatory machines may exist in 
multiple conformational states and structural 
reconstitutions fi rst should target only the core 
part responsible for setting up the basic architec-
ture of the complex. Later, including components 
outside the core is not only necessary to 
 mechanistically understand activation but also to 
stabilize conformations that represent important 
functional states.  
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20.6     Protein Complexes 
Controlling Transcription 

 A signaling pathway most often infl uences the 
transcription of selected genes. To understand 
transcription regulation, researchers in the last 
decade have reconstituted core transcriptional 
complexes [ 37 ]. These studies highlighted the 
importance of transient structural changes form-
ing in response to activator or repressor mole-
cules. The most studied complex is the class II 
transcription pre-initiation complex (PIC), which 
is a 4 MDa multi-protein assembly comprised of 
60 polypeptides. PIC is comprised of RNA poly-
merase II (Pol II), general transcription factors 
(TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH), 

and the Mediator complex [ 38 ] (Fig.  20.5 ). There 
are crystal structures available for some of the 
individual proteins and these could be used for 
docking them into the cryo-EM maps obtained 
on larger assemblies [ 39 ].

   The 26-subunit Mediator complex acts like a 
bridge for signal transduction between transcrip-
tion factors and RNA polymerase II. Its large sur-
face area enables it to accept multiple inputs from 
transcription factors, co-activators, co-repressors, 
or nucleic acids. A simple input signal may be for 
example the appearance of an activated transcrip-
tion factor on the DNA enhancer. According to 
the multiple allosteric network model, the input 
signal causes binding factor specifi c structural 
shifts which spreads across the whole complex 

  Fig. 20.4     Structural alteration steps leading to active 
ARP2/3 complex . Model of structural transition between 
inactive (opened), intermediate and active (closed) ARP2/3 
complex observed in cryo-EM structural reconstructions. 
Terminal stages can be stabilized by inhibitor (coronin) or 
activator (N-WASP) proteins (their binding site is shown 
with  arrows ). Crystal structure of inactive ARP2/3 (PDB 

ID: 2P9L) fi ts the model of the opened state [ 36 ]. The fi g-
ure on the right shows the branched actin fi lament bound 
by the ARP2/3 complex in its closed state. ARP2 and 
ARP3 ( magenta  and  blue , respectively) mimic two actin 
monomers in the closed state of the ARP2/3 complex, thus 
they act as a template for the new fi lament growing in 
approximately 70° compared to the mother fi lament       

 

K. Kirsch et al.



323

[ 40 ]. This model suggests that the Mediator is 
best described not only as a loose network of 
interacting proteins but rather as a sophisticated 
multi-subunit complex with a network of differ-
ent allosteric states. This mechanism helps to 
generate promoter specifi c outcomes through the 
PIC, which is comprised of ubiquitous compo-
nents [ 41 ,  42 ]. Structurally explored examples 
are the sterol regulatory element binding protein 
(SREBP), p53 or the viral VP16 transcription 
factors that cause distinct structural shifts in the 
Mediator (Fig.  20.5 ). For p53, two of its domains 
may interact with two Mediator subunits, but 
interestingly only one binding mode brings about 
conformational changes that are compatible with 
Pol II elongation. The mechanism of Pol II acti-
vation is started with the binding of p53 activa-
tion domain to MED17, which in turn promotes 
TFIIH-dependent Pol II phosphorylation. 
Ultimately, the transcription machinery is now 
brought into its elongation competent state and 
transcription will start [ 43 ]. 

 TFIID is also part of the PIC and it is com-
posed of TATA-box-binding protein (TBP) and 
13 TBP-associated factors (TAFs). Based on 
cryo-EM analysis the core-TFIID consists of two 
symmetric copies of TAF4, TAF5, TAF6, TAF9 
and TAF12. In response to upstream signals, the 
TAF8–TAF10 complex is imported into the 
nucleus by importins, binds to the core-TFIID 
and breaks its symmetry. This results in an asym-
metric 7TAF complex with new binding surfaces 
for six more TAF subunits and for TBP (canoni-
cal form) [ 44 ]. The promoter DNA and TFIIA 
trigger further structural changes and participate 
in the stabilization of the rearranged holo-TFIID 
complex (Fig.  20.5 ). The formation of the rear-
ranged TFIID-TFIIA-DNA complex is then fol-
lowed by binding of TFIIB, Pol II, TFIIF, TFIIE, 
and TFIIH to yield the transcriptionally compe-
tent pre-initiation complex [ 45 ]. 

 For large multi-subunit complexes, single- 
particle electron microscopy (EM) is an essential 
method, especially when the sample is available in 

  

   

  

  

  Fig. 20.5     Allosteric regulation in the transcriptional 
machinery . Schematic fi gure of the human PIC. Mediator 
complex ( blue particles ) has multiple binding sites for tran-
scription factors ( e.g. , p53, SREB and VP16). The binding 
of transcription factors or DNA to PIC subunits may cause 
structural shifts which leads to specifi cally regulated tran-
scription. For example binding of VP16 transcription factor 
results in a structural shift in Mediator- Pol II-TFIIF assem-

bly ( blue  cryo-EM maps; EMD-5344, EMD-5343 [ 52 ]. 
Cryo-EM maps ( green ) indicate directed reorganization of 
TFIID (EMD-2287, EMD-2284, respectively). The TFIID 
complex may exist in two distinct conformations, and bind-
ing of promoter DNA (TATA) and TFIIA stabilizes one of 
the conformations, which is competent to recruit Pol II 
[ 45 ].  Yellow stars  indicate corresponding regions of the 
cryo-EM maps ( TBP  TATA binding protein)       
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very little amounts. This technique combined with 
atomic resolution structures on monomers can give 
pseudo-atomic models on large complexes [ 46 ].  

20.7     Conclusion 

 There are myriads of signaling complexes in 
action when cells respond to their environment. 
Fortunately, binary protein-protein interaction 
data on the proteome level is rapidly increasing 
thanks to systematic, large-scale protein-protein 
interaction studies and databases [ 47 ]. To what 
extent this wealth of information can be har-
nessed for mechanistic understanding of signal-
ing complexes greatly depends on the 
reconstruction of functionally important signalo-
somes for structural analysis. 

 Obtaining atomic resolution structural infor-
mation about a signaling question will require the 
reduction of a bigger complex into biochemically 
well-behaving smaller units, which have less dis-
ordered regions and are conformationally less 
heterogeneous. In this case the pitfall could be 
that higher-level biochemical properties of the 
whole complex may be lost in a reduced system. 
Fortunately, these smaller complexes could be 
built into low-resolution maps of bigger com-
plexes. Ultimately, signaling complexes may be 
visualized  in cellulo  by super resolution micros-
copy techniques that are capable of breaching the 
250 nm light diffraction limit by an order of mag-
nitude [ 48 ]. This potentially bridges the resolu-
tion gap between structural reconstructions by 
X-ray crystallography/single-particle cryo-EM/
cryo-electron tomography and the visualization 
of fl uorescently labeled protein complexes via 
classical light microscopy in cells.     
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