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Abstract. Public-key cryptosystems and algorithms, including RSA [20],
EC and Diffie-Hellman key exchange [5], require efficient large integer
arithmetic in finite fields. Contemporary processors are not designed to
support such operations in a productive manner, since most of them
natively work on 8 to 64 bit word sizes. Thus, an expensive crypto-
graphic accelerator is frequently required to offload the computational
burden. In this paper, we focus on a highly parallel architecture which
is commonly found in commodity computers, i.e. the Graphical Process-
ing Unit (GPU). Recently, GPUs have known an exponential growth in
terms of computing power, becoming a cost-effective option for offloading
computationally intensive tasks. This paper describes a parallel imple-
mentation of the Montgomery Multiplication, as well as optimizations
that enable efficient exploitation of the CUDA GPU architecture.

Keywords: Mongtomery multiplication · Modular exponentiation ·
CUDA · GPGPU

1 Introduction

Asymmetric cryptographic algorithms and protocols, including RSA, EC-based
and Diffie-Hellman key exchange, require efficient large integer arithmetic. This
implies performing exponentiations and modular reductions, therefore a chain
of repetitive operations upon different data. Typically, the sizes of the operands
are between 1024 and 4096-bit. Given two operands, A and B, of SA and SB

bits, the result of A × B will have a maximum of SA + SB + 1 bits. Considering
the operands sizes and the fact that most processors have a word length between
8 and 64-bits, multiple precision arithmetic is implemented in software, in the
detriment of computational performance.
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Large numbers are usually represented in polynomial form as an array of
native word size integers:

a = an−1an−2 . . . a0(β) =
n−1∑

i=0

aiβ
i (1)

General Purpose GPU Programming became easier with the introduction of
programming frameworks like OpenCL and CUDA which enable the use of a
GPU as a coprocessor. Current GPUs exhibit good Floating-point Operations
Per Second (FLOPS) per dollar ratio and represent an attractive way to offload
computationally intensive tasks.

1.1 Related Work

One of the first usages of the graphical processing units within the cryptog-
raphy field was focused on accelerating of symmetric ciphers. The first known
implementation of this kind was made by Cook et al. [4]. Further on, researchers
have developed various solutions for this purpose using parallel architecture of
the GPUs. These implementations have been proven to be more useful than the
usual CPU-based implementations. The [13] presents a CUDA-based implemen-
tation for AES algorithm which was tested on the NVidia GeForce 8700 and 8800
GTX graphical cards. At the time of writing, the developed solution ran up to
20 times faster than the OpenSSL [1] CPU-based solution. A new block based
conventional implementation of AES having a 4-10x speed improvements over
CPU solutions is pointed out in [9]. They outlined a general purpose data model
for encapsulating cryptographic functions (client requests) which is suitable for
an execution on a GPU. They used this general model to investigate how the
data input can be mapped to the threading model of the GPUs for several of
the AES operation modes.

Currently, there are a number of publications presenting mathematical results
and optimizations for the modular multiplication (and exponentiation) algo-
rithms. Various techniques were proposed in addition to practical implementa-
tions of these algorithms. These techniques are mainly based on parallelization
which is a mechanism perfectly applicable on hardware processing technologies
like FPGAs or GPUs.

The integration of multiple-precision multiplication with modular reduction
as stated by Montgomery’s method [14] along with improvements regarding the
interleaving of multiplication and reduction are described in [6]. Five Mont-
gomery Multiplication algorithm flavours along with their space, time require-
ments and actual performance results are discussed in [10]. The Coarsely Inte-
grated Operand Scanning (CIOS) method proved to be the most efficient of all.
Given two operands of sizes s, CIOS requires 2s2+s multiplications, 4s2+4s+2
additions, 6s2 + 7s + 2 reads, and 2s2 + 5s + 1 writes and needs s + 3 words of
memory space.

Many papers present GPU implementations of public key and elliptic curve
cryptography needed primitives. All of these were focused on speeding up
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operations like modular multiplication, exponentiation or elliptic curve scalar
multiplication. One of the first was performed in [21], where by using an NVIDIA
7800 GTX GPU, they reported, at the paper time, a speedup factor of 3 relative
to the reference CPU. Other works in this way are referenced by [2,3,7,8,15,21].
A more recent GPU implementation of the Montgomery multiplication algo-
rithm for a field size of 112 to 521 bits is discussed in [12]. Their work, which
is an improvement of a previous approach [11], regards the GPU-based NIST
prime field multiplication and employs Montgomery algorithm to allow any field
prime to be used in this case. They also bring some new implementation tech-
niques which led to eliminating the need for GPU cache accesses and to gaining
this way a bigger throughput that could to accelerate EC cryptography. Exper-
iments and measurements have been conducted on an NVIDIA GTX 480 GPU
with reported speeds significantly higher than other published CPU and GPU-
based implementations. In [22] are proposed several optimizations on modular
multiplication algorithms. The implementation uses the OpenCL framework and
the tests have been conducted on an AMD Radeon HD5870 graphic card. After
applying the optimizations, they could deliver up to 11 % more arithmetical
throughput.

Structure of the Paper. The rest of this paper is organized as follows:
Section 2 reviews the basic concepts and introduces the notions used through-

out the paper. Namely, summary elements about Montgomery Reduction, Binary
exponentiation and Montgomery’s ladder technique are presented in Subsects. 2.1,
2.2, and respectively 2.3, while an overview of the GPU architecture used is pre-
sented in Subsect. 2.4. Section 3 describes our implementation details regarding
the CIOS Method on CUDA, along with the results obtained and their interpre-
tation (Sect. 3.1). Finally, conclusions are outlined in Sect. 4.

2 Preliminaries

2.1 Montgomery Multiplication

Commonly used public key cryptographic algorithms imply large integer arith-
metic operations, e.g. modular multiplication and exponentiation [20]. A straight-
forward approach when computing a modular product consists of operands’
multiplication followed by the reduction of the partial result. Considering the
magnitude of the numbers (thousands of bits), multiprecision multiplications
and repeated subtractions are necessary steps. From a computational perspec-
tive, both of the previously mentioned operations are costly. Modular exponenti-
ation, i.e. abmod n, can be computed by multiplying a by itself b times and then
reducing the result modulo n. After each multiplication, the memory require-
ments increase by a number of bits equivalent to the size of a. In practice, this is
clearly not a feasible way of tackling the problem. Applying the modulus reduc-
tion at each step reduces the required memory. However, by doing so the number
of operations greatly increases.
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In 1985, Peter Montgomery introduced the Montgomery Reduction algorithm
[14], which enables the modular multiplication (c ≡ a×b mod N) to be computed
using a different modulo. This method requires using a residue form of the
operands, a and b.

The first step of the Montgomery Reduction algorithm consists of choosing
a number R s.t. R > N and gcd(R,N) = 1. Moreover, R is often conveniently
chosen to be a power of base β in which the processor operates. In our case, the
basis is β = 2. Assuming that N is an odd prime number of w bits, choosing
R = 2w satisfies the requirements. With such an R, division and remainder
operations become bitwise mask and shifting operations.

The next step involves transforming the operands a and b into their reduced
forms, as illustrated in (2), and finding R’s inverse, i.e. RR−1 ≡ 1mod N .

a ≡ aR mod N

b ≡ bR mod N
(2)

Having a and b, we can further compute c:

c ≡ cR ≡ (a × b)R ≡ (aR × bR)R−1 ≡ (a × b)R−1 mod N (3)

The initial c, can be calculated by applying the inverse Montgomery transfor-
mation:

c ≡ cR−1 mod N (4)

The above presented steps, represent the conversion to and from the Mont-
gomery reduced form, and do not serve in the speed up of the commencing
computation. Moreover, converting operands of a single multiplication to their
residue form, in order to apply Montgomery Reduction is disadvantageous com-
pared to the straightforward method, but a substantial gain is obtained in expo-
nentiation operations. Algorithm1 illustrates the computation of c. It can be
observed that all arithmetic operations are performed modulo R, task which can
be easily solved by means of the processor. A performance analysis of the algo-
rithm (together with its multiple implementations) can be found in [10]. The
Coarsely Integrated Operand Scanning (CIOS) method proved to be the most
efficient of all five algorithms analyzed.

The Coarsely Integrated Operand Scanning (CIOS) Method. The
Montgomery reduction is intrinsically a right-to-left procedure. This allows us to
compute one word at a time of t since m[i] depends only on t[i], [6]. The CIOS
method (Algorithm 2) takes advantage of this property and integrates the multi-
plication and reduction steps by alternating between the iterations of the outer
loops. Assuming that both a and b have s words, the CIOS variant requires:

– 2s2 + s multiplications
– 4s2 + 4s + 2 additions
– 6s2 + 7s + 2 reads
– 2s2 + 5s + 1 writes
– s + 3 words of memory space
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Algorithm 1. Montgomery multiplication
Input: a, b, N , R
Output: (a × b)R−1 mod N
1: n′ ≡ −N−1 mod R
2: t ← (a × b)
3: m ← t × n′ mod R
4: t ← (t + m × N)/R
5: if t ≥ N then
6: return t − N
7: else
8: return t
9: end if

2.2 Binary Exponentiation

Given a large integer exponent, e, with its binary representation e =
en−1en−2 . . . e0(2), the computation of ae resumes to a series of square and
multiply operations, as we can see within the Algorithm3. The computational
complexity of the algorithm is O(log2 n) since there are log2n squarings and a
maximum of log2n multiplications. In asymmetric cryptosystems, the encryp-
tion often involves the use of an exponent which must be kept secret. In this the
method, the number of multiplications depend on the value of exponent which
makes it vulnerable to side-channel attacks.

2.3 Montgomery’s Ladder Technique

The technique presented in Algorithm 4 addresses the side-channel vulnerability
of Algorithm 3 by performing a fixed sequence of operations regardless of the
bit’s value in exponent.

2.4 Compute Unified Device Architecture (CUDA)

The GPU and CPU architectures are very different. CPUs have few cores (e.g.
1 to 32) running at high clock rates and put a great emphasis on big memory
caches, complex control logic including branch prediction, speculative execution
but have expensive context switching between threads. In contrast, GPUs have
many cores (e.g. 128 to 2048) running at lower clock rates and are designed to
execute hundreds of threads at the same time [17,18]. These cores have small
memory caches and simple control logic. The downside is that GPUs are only
efficient in processing tasks which are highly data parallel. In CUDA, the basic
working unit is the thread and is executed by a CUDA Core. A Streaming Mul-
tiprocessor (SM) creates and executes groups of 32 threads called warps. The
threads are characterized by having their own stack and set of registers includ-
ing program counter and by being free to branch and execute independently. On
the other hand, a warp executes a single common instruction at a time, so full
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Algorithm 2. CIOS method for Montgomery multiplication
Input: a, b, N , R = 2s·w, w being the processor word size and s the number of words.
Output: (a × b)R−1mod N
1: n′ ≡ −N [0]−1mod R
2: t ← 0
3: for i = 0 → s − 1 do
4: C ← 0
5: for j = 0 → s − 1 do
6: (C, S) ← t[j] + a[j] · b[i] + C
7: t[j] ← S
8: end for
9: t[s] ← S

10: t[s + 1] ← C
11: C ← 0
12: m ← t[0] · n′mod 2w

13: (C, S) ← t[0] + m · N [0]
14: for j = 1 → s − 1 do
15: (C, S) ← t[j] + m · N [j] + C
16: t[j − 1] ← S
17: end for
18: (C, S) ← t[s] + C
19: t[s − 1] ← S
20: t[s] ← t[s + 1] + C
21: end for
22: if t ≥ N then
23: return t − N
24: else
25: return t
26: end if

Algorithm 3. Binary Exponentiation
Input: a, e = en−1en−2 . . . e0(2)
Output: ae

1: x ← 1
2: for i = n − 1 → 0 do
3: x ← x · x
4: if ei = 1 then
5: x ← x · a
6: end if
7: end for
8: return x

efficiency is achieved when all threads of a warp follow a common path. Multi-
ple warps compose into thread blocks (TB) which in turn reside on a SM. The
SMs have limited resources and developers using CUDA must take in account
these hardware limitations in order to maximize the occupancy and to exploit
the hardware-based task switching designed to hide memory access latency.
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Algorithm 4. Montgomery’s ladder technique
Input: a, e = en−1en−2 . . . e0(2)
Output: ae

1: x1 ← a
2: x2 ← a2

3: for i = n − 2 → 0 do
4: if ei = 0 then
5: x2 ← x1 · x2

6: x1 ← x2
1

7: else
8: x1 ← x1 · x2

9: x2 ← x2
2

10: end if
11: end for
12: return x1

The level of occupancy depends on the amount of registers and shared mem-
ory used by the kernel and the generation of the CUDA Architecture being
used. The current GPUs tend to have multiple SMs. Communication between
SMs is not recommended since it is done through the global memory which is
slower than the shared memory available per thread block. Unique IDs are given
to threads and blocks, which are accessible through built-in variables, threadIdx
and blockIdx, thus allowing the threads to uniquely identify the data which is
going to operate on. Threads within a thread block can communicate efficiently
through shared memory and synchronize through hardware barriers invoked by
calling the intrinsic function, syncthreads().

CUDA C [18] allows developers to use the C programming language to create
C functions called kernels which are executed in parallel by CUDA Cores on
the device. A CUDA Program consists of a device kernel and a host program.
Since the CPU and GPU have their own separate memory, the host program is
responsible for transferring the required data necessary for execution. A typical
workflow consists of the following steps achieved by calling the relevant CUDA
Application Programming Interface (API):

1. Allocate memory on the device;
2. Transfer data from host to device;
3. Start the execution of the kernel;
4. When the kernel is done executing, transfer the result from the device.

3 Implementation and Results

Our implementation leverages the Montgomery Reduction and Montgomery
Ladder technique to efficiently compute the exponentiation required by the RSA
encryption. The GPU used in our work, Gefore GTX 750 [16], has a CUDA Com-
pute Capability 5.0 architecture, with 512 CUDA Cores running at a base clock
of 1.14 GHz and a memory bandwidth of 80 GB/s. These cores are partitioned
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over 4 Streaming Multiprocessors, each having its own resources. To obtain the
maximum device utilization and to ensure that the memory latency doesn’t
affect performance, 8 blocks per Streaming Multiprocessor were allocated and
the number of registers per thread was limited to 32. Each thread operates on
word level and calculates a word of the output. The CUDA Architecture has a
32 bit word size, hence the number of threads needed to operate on a number
can be calculated by diving the number’s bit size to 32.

Memory coalescing of GPU RAM operations is mandatory to obtain peak
memory transfer bandwidth. This is guaranteed by having consecutive threads
accessing consecutive memory locations, i.e. thread 0 reads and writes to word
index 0. This is illustrated in Fig. 1, where a block of n · s threads are processing
operands of s words.

Fig. 1. Threads organization inside a thread block.

Square and multiply are handled differently, exploiting the fact that when
computing, a · a, the processor needs a single memory access.

In the scenario where batch operations are performed, e.g. RSA encryptions
with the same private key, we can precompute the value of N and n′[0] used
in Algorithm 2 and embed the results in the code. The compiler is then able
to reduce the number of required registers and memory accesses, resulting in a
relevant performance gain.

Loop unrolling eliminates the overhead implied by loop counters and loop
arithmetic and facilitates additional compiler optimizations.

Shared memory at block level was used for its low latency access times. The
64KB shared memory [19] is big enough to cache the input operands and store
the intermediate results accessed by all worker threads.

3.1 Results

The Table 1 presents the speedups obtained, relative to a CPU-based implemen-
tation (Intel i7-4790K at 4.0 GHz). The variable factors taken into account were
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the Loop Unroll depth, whether the precomputed n′ is embedded in the code,
and the operands bit-size.

It is worth noting that these results were obtained at 100 % GPU utilization.
In order to obtain this degree of utilization, it is necessary to queue multiple
requests which can lead to increased latency in processing. Depending on the
actual setup, it might not always be beneficial to offload the computations if low
latency is required.

Firstly, it can be observed that increasing the operands bit-size, degrades
performance. This can be explained by the increased number of threads required
to compute the result which need to synchronize. The biggest speedup is obtained
with 1024 bit operands because 32 threads are needed to compute the result,
resembling a warp, which is inherently synchronized.

Secondly, (as expected) precomputing n′, yields a significant boost in speedup
since we eliminate the memory access penalty associated with reading the n′

variable.
Finally, loop unrolling depth affects performance in a not so obvious way.

The best results for 1024 bit operands, were obtained at a depth of value 8. This
is not the case for 2048/4096 bit operands since the best speedup was obtained
when performing full loop unrolling.

Table 1. Results for 1024/2048/4096 exponentiation

Unroll depth n′ constant Speedup

1024 2048 4096

1 false 5.83 5.10 4.70

1 true 5.86 5.35 4.73

2 false 5.98 5.39 4.88

2 true 6.18 5.56 4.91

4 false 6.17 5.48 4.98

4 true 6.25 5.68 5.02

8 false 6.25 5.57 5.03

8 true 6.55 5.63 5.26

16 false 6.20 5.61 5.07

16 true 6.52 5.66 5.28

32 false 6.29 5.59 5.06

32 true 6.44 5.67 5.29

4 Conclusions

This paper has presented a high throughput GPU implementation of modular
exponentiation, as well as optimization suitable for the SIMT (Single Instruc-
tion Multiple Threads) architecture. This design could be used in the context



128 N. Roşia et al.

of a cryptographic accelerator. As shown in this article, parallel architecture
has proven to be a feasible approach to overcome operating frequency limita-
tions imposed by the current state of technology in CPUs. Despite the increased
latency that they may cause, considering the encouraging results obtained, we are
confident that further research, coupled with the increase of core count in GPUs,
will only increase performance of many-core architectures. As further steps, we
plan to embed this work within an open cryptographic API (e.g. OpenSSL) in
order to evaluate the real acceleration gained at the high level protocols and
applications like SSL and web servers.
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