
Stateful Certificateless Public Key Encryption
with Application in Public Cloud

S. Sree Vivek(B)

Samsung Research Institute, Bangalore, India
sreevivek.s@samsung.com

Abstract. Certificateless cryptography eliminates the key escrow prob-
lem inherent in identity based cryptosystem. Certificatateless systems
are preferred in public cloud to offer security because it solves two dif-
ferent problems simultaneously, namely, the key escrow problem and the
cumbersome certificate management. A stateful public key encryption
scheme is a cryptographic primitive, in which the sender maintains state
information to perform encryption. The encryption algorithm takes the
intended message, receiver’s public key and the current state information
to produce the ciphertext, and possibly updates the state information.
Decryption is straightforward and depends only on the ciphertext and
secret key of the receiver. In this paper, we propose the first stateful cer-
tificateless public key encryption scheme and prove the security of the
scheme in the random oracle model. This scheme finds very interesting
application for sharing data in an encrypted cloud storage system.

Keywords: Certificateless encryption · Stateful cryptography ·
Random oracle model · Provable security · Cloud data security · Sharing
cloud data

1 Introduction

Certificateless Cryptography (CLC) introduced by Al-Riyami et al. [2] is a vari-
ant of Identity Based Cryptography (IBC), which intends to prevent the key
escrow problem. Usually, in IBC the private key of a user is generated by the
Private Key Generator (PKG), who has to be trusted by all users of the system.
In the case of a PKG compromise, a total-break of the system is possible. This
is called the key escrow problem. In order to prevent this, the key generation
process is split between the KGC (Key Generation Center - The central author-
ity in CLC) and the user. The KGC first generates the private key for a user,
which is called as the partial private key of the user. The remaining part of the
private key is a random secret value generated by the user, and is never revealed
to anyone, not even to the KGC. This key is called as the user secret value and
the user generates the public key corresponding to this key. All cryptographic
operations by the user are performed by using the full private key which involves
both the partial private key and the user secret value.

c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 130–149, 2015.
DOI: 10.1007/978-3-319-27179-8 10

Stateful Certificateless Public Key Encryption 131

Having introduced CLC, we now move on to stateful public key encryption
(PKE) schemes. PKE schemes make use of compute intensive exponentiation
computations to perform encryption as well as decryption. The order of com-
plexity is roughly considered to be one thousand times that of a block cipher
or hash function evaluation. This results in slowdown of the system as well as
hinders the use of public key cryptography in systems with limited computing
power. Public key cryptography operations are very expensive that they drain
the battery of devices easily. This seems to be a very important and severe limi-
tation on cell phones, personal digital assistants, tablets, wearables, RFID chips
and sensors. Hence, researchers are very much interested in reducing the cost
of exponentiation, which is a very crucial operation for PKE schemes. It was
stated by Bellare et al. [5] that “a 10% improvement would be very welcome
and a 50% improvement would be dramatic”. However, lot of intellectual energy
is pumped in to improve the schemes by proposing time-space trade-off mech-
anisms like pre-computation of exponentiation and faster implementations for
exponentiations.

In a stateful encryption scheme, the sender maintains a state information
that can be reused across various encryptions during a session. A session may
be marked by the communication between a sender and a fixed receiver. Thus if
the communication has to occur between two fixed entities, the sender has to use
a symmetric key (the key used for encryption and decryption in any symmetric
key encryption scheme) which is derived using the public key of the receiver.
A stateful encryption algorithm is deterministic with respect to the state and
public key. Thus, this key has to be computed only for the first time the sender
communicates with the receiver. After which the key can be reused through
out the state, which reduces the cost of further public key encryptions to that
receiver.

Moreover, it should be noticed that reusing randomness is not straightforward
in any cryptographic operation. In the history, we have learned hard lessons due
to reuse of randomness. One of the well known examples is the attack on Sony’s
PlayStation 3 in 2010. A group of attackers recovered the private key of Elliptic
Curve Digital Signature Algorithm (ECDSA) used by Sony to sign software for
the PlayStation 3 game console. This attack was possible because ECDSA has
a randomized signature generation algorithm and Sony reused the randomness
used to generate the signature [6]. One more well known example is in the case of
RSA. The entropy of the output distribution of standardized RSA key generation
is always almost maximal. The outputs are hard to factor if factoring in general
is hard where the primes were chosen at random but it was identified in [12]
that the random primes did not satisfy this requirement on the distribution of
the RSA keys. This exposed a considerable number of RSA private keys used
in PGP system. Hence we emphasize that reuse of randomness should be done
with utmost care and the resulting scheme should be proven secure, taking the
reuse into account.

Motivation: Recent advancements in technology has made huge data stor-
age available for users in the name of Cloud Storage. Cloud platforms such as

132 S. Sree Vivek

Dropbox, Skybox, Oracle, Amazon provide users with huge space for them to
store their data. However reputed the cloud storage provider is, other organi-
zations who want to make use of the cloud storage do no trust them to store
sensitive data. Hence a need for secure cloud storage arose. In secure cloud stor-
age, each user has a public/private key pair created by the user. The public key
is used to encrypt a symmetric key which in turn is used to encrypt the data.
The encrypted data (ciphertext) is then stored in the cloud. The corresponding
private key is used to decrypt and obtain the symmetric key which is used to
decrypt the ciphertext and obtain the actual message. However, this approach
requires a certified public key in order to withstand man-in-the-middle attacks
and public key replacement attacks, and requires the presence of a Certification
Authority (CA).

To make the system more convenient, the identity of the user could be used
to generate the public keys and the corresponding private key could be obtained
from the trusted authority (PKG). In this case the PKG (the cloud service
provider) is a fully trusted entity and knows the private key of all users in the
system. Certificateless Encryption (CLE) schemes find great application in this
scenario. In a CLE, the identity of a user along with a user defined public key acts
as the full public key of the user. Unlike Public Key Infrastructure (PKI), these
public keys need not be certified by centralized authorities, because changing
the public key in the public repository will be useful only to the trusted KGC
in the CLE and hence the KGC will be accountable for any replacement of the
public keys in the repository.

Consider a scenario wherein a user has n different files (may be photos,
documents etc.). In order to maintain privacy, the user has to encrypt each file
with different symmetric keys. This is because, if all the files were encrypted
with the same key and if the user shares the key of one file, he is loosing the
keys of all other files too. In order to avoid this each file should be encrypted
with different symmetric keys. Thus all the n files are encrypted with n different
symmetric keys and stored in the cloud storage. In case, if the user (owner of the
files) wants to share a subset of k files to another user (the receiver), the naive
way is to use a PKE scheme and encrypt the symmetric keys to the receiver.
The receiver on receiving the encrypted keys can decrypt them using his private
key and use the symmetric keys to decrypt the actual file from the downloaded
ciphertext. If k is large and if the owner uses a stateless encryption scheme, he
has to perform O(k) exponentiations. The advantage of using a stateful PKE
scheme is that it requires only O(1) exponentiation when the receiver is fixed.

Figure 1 shows how a user registers with the KGC to avail secure cloud storage
and how his data is encrypted and stored in the cloud. User A sends his identity,
IDA and requests for the partial private key to the KGC. The KGC has a master
private key msk and a set of public system parameters params, which are used
to generate the partial private key SKA of the user A. SKA is sent to A through
a secure channel. After receiving the partial private key user A chooses his own
user defined private key skA and computes the corresponding public key pkA.
The user defined public key pkA is sent to the KGC and is stored in the user

Stateful Certificateless Public Key Encryption 133

Fig. 1. User registration and encryption on cloud

public key list maintained by the KGC. Hence the private key of A is 〈skA, SKA〉
and the corresponding public key is 〈pkA, IDA〉. To encrypt a message to A, the
sender has to use IDA and pkA along with params. When user A wants to
upload a file Filei to the cloud, he has to encrypt the file using a symmetric
key encryption scheme with a symmetric key Ksymi

to obtain the encrypted file
EFi = SY M Enc(Ksymi

, F ilei). (Note that we assume that each symmetric key
is unique and there is an efficient way for the owner of the file to uniquely obtain
the key using a private Pseudo Random Number Generator and other attributes
such as file name, modified and created date etc., in a secure way. We do not
explain it here since it is out of the scope of the problem addressed here) The
encrypted file EFi is then stored in the cloud.

Fig. 2. Sharing encrypted contents using CLE

Figure 2 shows how user A shares an encrypted file to another user. Let
us consider that user A wants to share his contents to user B, whose pub-
lic key is 〈pkB , IDB〉. The owner A shares the encrypted file to user B first.
Then he obtains the user public key pkB of B from the user public key list
maintained by the KGC. Using pkB and IDB with a CLE scheme he encrypts
the symmetric key Ksymi

corresponding to the file Filei to user B as CT =

134 S. Sree Vivek

CL Enc(pkB , IDB ,Ksymi
) and sends CT to B. User B upon receiving CT ,

decrypts it as: Ksymi
= CL Dec(skB , SKB , CT) and obtains the symmetric

key. Now, B uses Ksymi
to decrypt EFi as Filei = SY M Dec(Ksymi

, EFi).

Related Work: Al-Riyami and Paterson in [2] have shown realization for CLE,
signature (CLS) and key exchange (CLK) schemes in their work. Huang et al.
[10] and Castro et al. [7] independently showed that the signature scheme in [2]
is not secure against Type-I adversary (explained in later sections). In fact they
showed that it is possible for a Type-I adversary to replace the public key of
the user and attack the scheme. They also gave a new certificateless signature
scheme. A lot of CLE schemes were proposed, whose security were proved both
in the random oracle model [4,8,17,18] and standard model [13,15]. Recently,
Dent [9] gave a survey on the various security models for CLE schemes, men-
tioning the subtle difference in the level of security offered by each model. Dent
also gave a generic construction and an efficient construction for CLE. The ini-
tial constructs for certificateless cryptosystem were all based on bilinear pairing
[8,13,15,17]. Baek et al. [4] were the first to propose a CLE scheme without bilin-
ear pairing. Certificateless cryptosystem are prone to key replacement attack
because the public keys are not certified and anyone can replace the public key
of any legitimate user in the system. The challenging task in the design of certifi-
cateless cryptosystem is to come up with schemes which resists key replacement
attacks. The CLE in [4] did not withstand key replacement attack, which was
pointed out by Sun et al. in [18]. Sun et al. fixed the problem by changing the
partial key extract and setting public key procedures. Both the aforementioned
schemes, namely [4,18] were based on multiplicative groups. Lai et al. in [11] pro-
posed the first RSA-based CLE scheme. They have proved their scheme secure
against chosen plaintext attack (CPA). Later, in [19] Vivek et al. proposed a
CCA secure scheme based on the RSA assumption.

There are several PKE schemes, which make use of transformations to achieve
CCA security and some of them are customized design. There is no known
straightforward ways to make these schemes stateful. Even though some efforts
were made in this direction, the ciphertext size will be large due to the usage of
CCA secure symmetric key encryption schemes. However, there are PKE schemes
that are designed to be stateful, namely [3,5,20] and few stateful IBE schemes
were also found in the literature [3,16]. There are no known stateful certificate-
less PKE schemes present in the literature, which motivated us to look forward
in this direction.

Our Contribution: In this paper we propose the first stateful certificate-
less encryption scheme. Our scheme finds straightforward application in shar-
ing encrypted contents in the cloud efficiently when the cloud data is accessed
through resource constrained devices. This efficiency comes in due to the fact
that when different files are encrypted with different keys as shown in Fig. 1,
sharing huge number of encrypted files will involve transportation of huge num-
ber of symmetric keys. Since in a stateful encryption scheme, the randomness
used to encrypt the data is reused across a session for communication with a
fixed receiver, we are able to reduce the cost of encryption required to share the

Stateful Certificateless Public Key Encryption 135

keys. In the example stated above if there are k files to be shared with a receiver,
the owner has to perform only O(1) exponentiation operations, where as in the
naive way, the owner has to perform O(k) exponentiations. Our scheme offers
compact ciphertext with ciphertext verifiability.

2 Preliminaries

In this section, we give the definition of hardness assumptions, framework and
the security model used in our paper.

2.1 Review of Computational Assumptions

Definition 1 Computational Diffie-Hellman Problem (CDHP). Given
〈g, ga, gb〉 ∈ G

3 for unknown a, b ∈ Z
∗
q , where G is a cyclic prime order mul-

tiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving
the CDH problem in G is defined as

AdvCDH
A = Pr

[A(g, ga, gb) = gab | a, b ∈ Z
∗
q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2 (Strong Diffie Hellman (SDH) Problem as given in [1]).
Let κ be the security parameter and G be a multiplicative group of order q, where
|q| = κ. Given 〈g, ga, gb〉 ∈R G

3 and access to a Decision Diffie Hellman (DDH)
oracle DDHg,a(., .) which on input gb and gc outputs true if and only if gab = gc,
the strong Diffie Hellman problem is to compute gab ∈ G.

The advantage of an adversary A in solving the strong Diffie Hellman problem
is defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSDH
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time
adversaries A, the advantage AdvSDH

A is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [14].

136 S. Sree Vivek

2.2 Framework for Stateful CLE

In this section, we discuss the general framework for stateful CLE. We adopt
the definition of certificateless public key encryption, given by Baek et al. [4].
Their definition of CLE is weaker than the original definition by Al-Riyami and
Paterson [2] because the user has to obtain a partial public key from the KGC
before he can create his public key (While in Al-Riyami and Paterson’s original
CLE this is not the case). A stateful certificateless public-key encryption scheme
is defined by seven probabilistic, polynomial-time algorithms which are defined
below:

Setup: This algorithm takes as input a security parameter κ and returns the
master private key msk and the system public parameters params. This algo-
rithm is run by the KGC in order to initialize a certificateless system.

Partial Private Key Extract: This algorithm takes as input the public para-
meters params, the master private key msk and an identity IDA ∈ {0, 1}∗ of a
user A. It outputs the partial private key dA and a partial public key yA of user
A. This algorithm is run by the KGC once for each user and the corresponding
partial private key and partial public key is given to A through a secure and
authenticated channel.

Set Full Private Key: This algorithm is run once by each user. It takes the
public parameters params, the user identity IDA and A’s partial private key dA

as input. The algorithm generates a secret value skA ∈ S, where S is the secret
value space. Now, the full private key DA of A, is a combination of the secret
value skA and the partial private key dA.

Set Full Public Key: This algorithm run by the user, takes as input the public
parameters params, a user, say A’s partial public key yA and the full private
key DA. It outputs the full public key PKA for A. This algorithm is run once
by each user and the resulting full public key is widely and freely distributed.
The full public key of user A consists of PKA and IDA.

New State Generation: This algorithm is used to generate a set of state
information used for encryption. The sender executes this algorithm and keeps
the information confidential. The sender’s state information is not known to any
entity. The state information st is generated by taking params as input.

Encryption: This algorithm takes as input the public parameters params, a
receiver identity, say IDA, the corresponding full public key PKA, the state
information sti (corresponding to the ith state) and a message m ∈ M. The
output of this algorithm is the ciphertext CT ∈ CS. Note that M is the message
space and CS is the ciphertext space.

Decryption: This algorithm takes as input the public parameters params, a
user, say A’s private key DA and a ciphertext CT ∈ CS. It returns either a
message m ∈ M - if the ciphertext is valid, or ′Invalid′ - otherwise.

Stateful Certificateless Public Key Encryption 137

2.3 Security Model for CLE

We review the notion of Type-I and Type-II adversaries and provide the security
model for stateful CLE. The confidentiality of a stateful CLE scheme is proved
by means of an interactive game between a challenger C and an adversary. In the
confidentiality game for stateful certificateless encryption (IND-stCLE-CCA2),
the adversary is given access to the following six oracles. These oracles are sim-
ulated by C:

Partial Key Extract for IDA: C responds by returning the partial private
key SKA and the partial public key PPKA of the user A.

Extract Secret Value for IDA: If A’s public key has not been replaced then
C responds with the secret value skA for user A. If the adversary has already
replaced A’s public key, then C does not provide the corresponding private key
to the adversary.

Request Public Key for IDA: C responds by returning the full public key
PKA for user A. (First by choosing a secret value if necessary).

Replace Public Key for IDA: The adversary can repeatedly replace the
public key PKA for a user A with any valid public key PK ′

A of its choice. The
adversary generates the new valid public key and sends it to C. The current value
of the user’s public key is used by C in any computations or responses.

Encryption(IDi, stj,mk): Encryption queries for any number of messages
(k = 1 to m̂) for a given state stj (j = 1 to n̂), where m̂ and n̂ are the upper
bounds for the number of messages that can be encrypted in a state and total
number of states respectively, for whose combination A can query this oracle.

Decryption(CT, IDA): The adversary can issue a decryption query for cipher-
text CT and identity IDA of its choice, C decrypts CT and returns the corre-
sponding message to the adversary. C should be able to properly decrypt cipher-
texts, even for those users whose public key has been replaced, i.e. this oracle
provides the decryption of a ciphertext, which is generated with the current
valid public key. The strong decryption oracle returns Invalid, if the ciphertext
corresponding to any of the previous public keys were queried. This is a strong
property of the security model (Note that, C may not know the private key
corresponding to the current public key of the user. This is true if public key
is replaced by the adversary). However, this property ensures that the model
captures the fact that changing a user’s public key to a value of the adversary’s
choice may give the adversary an advantage in breaking the scheme. This is
called as strong decryption in [9]. Our scheme provides strong decryption for
Type-I adversary.

There are two types of adversaries (namely Type-I and Type-II) to be consid-
ered for stateful certificateless encryption scheme. The Type-I adversary models
the attack by a third party attacker, (i.e. anyone except the legitimate receiver
or the KGC) who is trying to gain some information about a message from
the encryption. The Type-II adversary models the honest-but-curious KGC who

138 S. Sree Vivek

tries to break the confidentiality of the scheme. Here, the attacker is allowed to
have access to master private key msk. This means that we do not have to give
the attacker explicit access to partial key extraction, as the adversary is able
to compute these value on its own. The most important point about Type-II
security is that the adversary modeling the KGC should not have replaced the
public key for the target identity before the challenge is issued.

Constraints for Type-I and Type-II Adversaries: The IND-stCLE-CCA2
security model distinguishes the two types of adversary Type-I and Type-II with
the following constraints.

– Type-I adversary AI is allowed to change the public keys of users at will but
does not have access to the master private key msk.

– Type-II adversary AII is equipped with the master private key msk but is
not allowed to replace public keys corresponding to the target identity.

IND-stCLE-CCA2 Game for Type-I Adversary: The game is named as
IND-stCLE-CCA2-I. This game, played between the challenger C and the Type-I
adversary AI , is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params to AI while keeping msk
secret. After receiving params, AI interacts with C in two phases:

Phase I: AI is given access to all the six oracles. AI adaptively queries the
oracles consistent with the constraint that the type-I adversary AI is allowed to
change the public keys of users at will but does not have access to the master
private key msk.

Challenge: At the end of Phase I , AI gives two messages m0 and m1 of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit δ ∈R {0, 1} and encrypts mδ with the target identity ID∗’s public key for
the state st∗ to form the challenge ciphertext CT ∗ and sends it to AI as the
challenge. (Note that the partial Private Key corresponding to ID∗ should not
be queried by AI but the secret value corresponding to ID∗ may be queried.
This makes our security model stronger when compared to the security models
of [11,18].)

Phase II: AI adaptively queries the oracles consistent with the constraints for
Type-I adversary described above. Besides this AI cannot query Decryption on
(CT ∗, ID∗) and the partial private key of the receiver should not have been
queried to the Extract Partial Private Key oracle. AI gets oracle access to all
ciphertexts for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗,mj), where j ≤ m̂.

Guess: AI outputs a bit δ′ at the end of the game. AI wins the IND-stCLE-
CCA2-I game if δ′ = δ. The advantage of AI is defined as -

AdvIND−stCLE−CCA2−I
AI

= |2Pr [δ = δ′] − 1|

Stateful Certificateless Public Key Encryption 139

IND-stCLE-CCA2 Game for Type-II Adversary: The game is named
as IND-stCLE-CCA2-II. This game, played between the challenger C and the
Type-II adversary AII , is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params and the master private key
msk to AII . After receiving params, AII interacts with C in two phases:

Phase I: AII is not given access to the Extract partial Private Key oracle
because AII knows msk, it can generate the partial private key of any user in
the system. All other oracles are accessible by AII . AII adaptively queries the
oracles consistent with the constraint that the type-II adversary AII is equipped
with the master private key msk but is not allowed to replace public keys cor-
responding to the target identity.

Challenge: At the end of Phase I , AII gives two messages m0 and m1 of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit δ ∈R {0, 1} and encrypts mδ with the target identity ID∗’s public key using
the state information st∗ to form the challenge ciphertext CT ∗ and sends it to
AII as the challenge. (Note that the Secret Value Corresponding to ID∗ should
not be queried by AII and the public key corresponding to ID∗ should not be
replaced during Phase I .)

Phase II: AII adaptively queries the oracles consistent with the constraints for
Type-II adversary described above. Besides this AII cannot query Decryption
on (CT ∗, ID∗) and the Secret Value corresponding to the receiver should not
be queried to the Extract Secret Value oracle and the public key corresponding
to ID∗ should not be replaced during Phase I . AII gets oracle access to all
ciphertexts for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗,mj), where j ≤ m̂.

Guess: AII outputs a bit δ′ at the end of the game. AII wins the IND-stCLE-
CCA2-II game if δ′ = δ. The advantage of AII is defined as -

AdvIND−stCLE−CCA2−II
AII

= |2Pr [δ = δ′] − 1|

3 Our Scheme - StCLE

In this section, we propose our stateful certificateless encryption scheme. The
scheme has the following algorithms. Unless stated otherwise, all computations
are done mod p.

Setup: The KGC does the following to initialize the system and to setup the
public parameters. Let κ be the security parameter.

– Choose two large primes p and q such that q|(p − 1) and |q| ≥ κ. Choose
g ∈R Z

∗
p with order q, z ∈R Z

∗
q and compute y = gz. Choose five cryptographic

hash functions F : Z
∗
p → Z

∗
q , G : {0, 1}∗ → Z

∗
q , H : {0, 1}∗ → {0, 1}lm ,

H1 : {0, 1}∗ → Z
∗
q and H2 : {0, 1}∗ → Z

∗
q , where lm is the size of the message.

140 S. Sree Vivek

– The KGC publicizes the system parameters, params = 〈p, q, g, y, F,G,H,H1,
H2〉 and keeps z as the master private key.

Partial Key Extract: This algorithm is executed by the KGC and upon receiv-
ing the identity IDA of a user A the KGC performs the following to generate
the corresponding partial private key dA.

– Choose si0, si1 ∈R Z
∗
q , compute yA0 = gsi0 and yA1 = gsi1 .

– Compute dA0 = si0 + zH1(IDA, yA0) mod q and dA1 = si1 + zH2(IDA, yA0,
yA1) mod q.

– Output dA = 〈dA0, dA1〉 and yA = 〈yA0, y, A1〉.
The validity of the partial private key can be verified by user A by performing
the following check:

gdA0gdA1 ?= yA0y
H1(IDA,yA0)yA1y

H2(IDA,yA0,yA1) (1)

Set Full Private Key: On receiving the partial private key the user with
identity IDA does the following to generate his full private key.

– Choose xA ∈R Z
∗
q as his secret value.

– Set the private key as DA = 〈D(1)
A ,D

(2)
A 〉 = 〈dA0, xA〉. (Note that both the

KGC and the corresponding user knows D
(1)
A and the user with identity IDA

alone knows D
(2)
A).

Set Full Public Key: The user with identity IDA computes the public key
corresponding to his private key as described below:

– Compute gA = gD
(2)
A .

– Make PKA = 〈PK
(1)
A , PK

(2)
A , PK

(3)
A , PK

(4)
A 〉 = 〈yA0, yA1, dA1, gA〉 public.

Now, any one can verify the public key by checking:

gPK
(3)
A

?= PK
(2)
A yH2(IDA,PK

(1)
A ,PK

(2)
A) (2)

It should be noted that there is no verification for PK
(4)
A .

New State Generation: Recall that the sender’s state information is not
known to any entity other than the sender himself. Let i represent the index
of the current state and hence the current state will be referred as sti. The
sender generates the state information as follows:

– Choose ri ∈R Z
∗
q . Compute ui = F (gri) ∈ Z

∗
q , si = riui mod q, vi = gsi ,

wi1 = (PK
(1)
A yH1(IDA,yA0))si and wi2 = (PK

(4)
A)si .

The state information sti = 〈ui, vi, si, wi1, wi2, index〉.
Encryption: To encrypt a message m to a user with identity IDA, one has to
perform the following steps:

Stateful Certificateless Public Key Encryption 141

– Compute c1 = gsi, c2 = ui ⊕ G(IDA, c1,m,wi1, wi2, index) and c3 = m ⊕
H(IDA, c1, c2, wi1, wi2, index)

Now, CT = 〈c1, c2, c3, index〉 is send as the ciphertext to the user A. To reuse
the state information sti, the sender has to just increment index and use sti,
It is not required to send the component c1 throughout the session and hence
from the second encryption onwards the ciphertext size will be |q|+ |m|+ |index|
which is much less than |q|+|m|+|p| in the most efficient CLE [4] with ciphertext
verifiability.

It should be noted that the maximum number of encryptions to be performed
in a session will be determined by the sender. Thus, index is a user determined
integer value and to perform one million encryptions in a session, the value of
index may be utmost 220. Hence, index may typically be a value from 1 ≤
index ≤ 220 and thus of size less than 20-bits.

Decryption: The receiver with identity IDA does the following to decrypt a
ciphertext CT = (c1, c2, c3, index):

– Compute w′
i1 = c

D
(1)
A

1 and w′
i2 = c

D
(2)
A

1 , m′ = c3⊕H(IDA, c1, c2, w
′
i1, w

′
i2, index)

and u′ = c2 ⊕ G(IDA, c1,m,w′
i1, w

′
i2, index)

– Check whether u′ ?= F (c(u
′)−1

1). If the check holds output m′, otherwise output
⊥. This check helps in identifying whether a ciphertext is well formed or not.

Correctness: We have to show that the u′ computed by the decryption algorithm
passes the verification test u′ ?= F (c(u

′)−1

1), if u′ = ui = F (gri).

RHS= F (c(u
′)−1

1) = F (v(u′)−1

i) = F (gsi(u
′)−1

) = F (griui(u
′)−1

)
= F (gri) (If u′ = ui = F (gri))
= u′ = LHS

Thus, the decryption will hold if u′ = ui = F (gri).

3.1 Security Proof

To prove the confidentiality of a certificateless encryption scheme, it is required
to consider the attacks by Type-I and Type-II adversaries. In the two existing
secure schemes [11,18], the Type-I adversary is not allowed to extract the secret
value corresponding to the target identity. To capture the ability of the adversary
who can access the user secret keys of the target identity, we give access to the
user secret value of the target identity to the Type-I adversary. We also state
that, allowing the extract secret value query corresponding to the target identity
makes the security model for Type-I adversary more stronger. For a stateful
certificateless encryption scheme, the adversary may be interested in analyzing
the ciphertexts of different messages of his choice, encrypted during a particular
session. Since the adversary does not know the state information, the challenger
has to provide the encryption oracle to the adversary.

142 S. Sree Vivek

Confidentiality Against Type-I Adversary

Theorem 1. The stateful certificateless encryption scheme stCLE is IND-stCLE-
CCA2-I secure in the random oracle model, if the SDH problem is intractable.

Proof. The challenger C is challenged with an instance of the SDH problem, say
〈g, ga, gb〉 ∈R G

3 and is given access to a Decision Diffie Hellman (DDH) oracle
DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc. The
challenger’s aim is to solve the SDH problem, which is to compute gab ∈ G. In
our scheme Z∗

p forms a group which can be represented as G. Let us consider that
there exists an adversary AI who is capable of breaking the IND-stCLE-CCA2-I
security of the stCLE scheme. C can make use of AI to compute gab by playing
the following interactive game with AI .

Setup: C begins the game by setting up the system parameters as in the stCLE
scheme. C takes g and ga from the instance of the SDH problem sets y = ga

and sends params = 〈p, q, g, y〉 to AI . This makes an implicit assignment to the
master private key as z = a, where C doenot know z. C also designs the five hash
functions F , G, H, H1 and H2 as random oracles OF , OG, OH , OH1 and OH2 . C
maintains five lists LF , LG, LH , LH1 and LH2 in order to consistently respond
to the queries to the random oracles OF , OG, OH , OH1 and OH2 respectively. To
maintain the consistency of the private key request and public key request oracle
queries, C maintains lists LS and LP respectively. A typical entity in list Li for
i = {F,G,H,H1,H2} will have the input parameters of the oracles, followed by
the corresponding hash value returned as the response to the hash oracle query.
The list LS consists of the tuples of the form 〈IDi,D

(1)
i ,D

(2)
i 〉 and that of LP

consists of the tuples of the form 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i)〉. In order

to generate stateful encryptions, C generates n̂ tuples of state informations and
stores them in a state list Lst. Each tuple in the list corresponds to a state
information. This is done as follows.
For each identity IDi created by AI and j = 1 to n̂, C performs the following:

– Choose rj ∈R Z
∗
q , compute kj = grj , choose uj ∈R Z

∗
q and add the tuple

〈kj , uj〉 in the list LF .
– Compute sj = rjuj and vj = gsj .
– The state information stj = 〈IDi, uj , vj , sj , indexj〉.
– Store the tuple stj in list Lst.

The game proceeds as described in the security model for Type-I adversary in
Sect. 2.3.

Phase I: AI performs a series of queries to the oracles provided by C. The
descriptions of the oracles and the responses given by C to the corresponding
oracle queries by AI are described below:
OF (gri): For answering the OF query, C performs the following:

– If a tuple of the form 〈gri , ui〉 exists in the list LF then C retrieves the corre-
sponding ui and sends it to AI .

Stateful Certificateless Public Key Encryption 143

– Else, C chooses ui ∈R Z
∗
q , stores the tuple 〈gri , ui〉 in the list LF and sends ui

to AI

OG(IDj , c1,m,wi1, wi2,index): For answering the OG query, C performs the
following:

– If a tuple of the form 〈IDj , c1,m,wi1, wi2, index,G〉 exists in the list LG then
C retrieves the corresponding G and sends it to AI .

– Else, C chooses G ∈R Z
∗
q , stores the tuple 〈IDj , c1,m,wi1, wi2, index,G〉 in

the list LG and sends G to AI

OH(IDj , c1, c2, wi1, wi2,index): For answering the OH query, C performs the
following:

– If a tuple of the form 〈IDj , c1, c2, wi1, wi2, index,H〉 exists in the list LH then
C retrieves the corresponding H and sends it to AI .

– Else, C chooses H ∈R {0, 1}lm , stores the tuple 〈IDj , c1,m,wi1, wi2, index,H〉
in the list LH and sends H to AI

OH1(IDi, yi0): To respond to this query, C checks whether a tuple of the form
〈IDi, yi0, hi1〉 exists in the list LH1 . If a tuple of this form exists, C returns the
corresponding hi1, else chooses hi1 ∈R Z

∗
q and adds the tuple 〈IDi, yi0, hi1〉 to

the list LH1 and returns hi1 to AI .
OH2(IDi, yi0, yi1): To respond to this query, C checks whether a tuple of the form
〈IDi, yi0, yi1, hi2〉 exists in the list LH2 . If a tuple of this form exists, C returns
the corresponding hi2, else chooses hi2 ∈R Z

∗
q , adds the tuple 〈IDi, yi0, yi1, hi2〉

to the list LH2 and returns hi2 to AI .
ORequestPublicKey(IDi): C selects a random index γ, where 1 ≤ γ ≤ qPK and C
does not reveal γ to AI . Here qPK is the maximum number of Request Public
Key oracle queries. When AI makes the γth query on IDγ , C fixes IDγ as target
identity for the challenge phase.
If a tuple of the form 〈IDi, PK

(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 exists in the list LP ,

return the items corresponding to the identity IDi in the list as the public
key. If a tuple does not exist, check whether i
= γ. In this case, C queries
OPartialKeyExtract(IDi) and then retrieves the tuple of the form 〈IDi, PK

(1)
i ,

PK
(2)
i , PK

(3)
i , PK

(4)
i 〉 from the list LP and returns it as the public key corre-

sponding to the identity IDi. If i = γ, then perform the following:

– Choose si0, di1, hi1, hi2, xi ∈R Z
∗
q .

– Compute yi0 = gsi0 , yi1 = gdi1 (ga)−hi2 and gi = gxi .
– Add the tuple 〈IDi,D

(1)
i ,D

(2)
i 〉 = 〈IDi,−, xi〉 in the list LS and add the tuple

〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 = 〈IDi, yi0, yi1, di1, gi〉 to the list LP .

– Add the tuple 〈IDi, yi0, hi1〉 to list LH1 and the tuple 〈IDi, yi0, yi1, hi2〉 to
list LH2

– Return 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 to AI .

144 S. Sree Vivek

OPartialKeyExtract(IDi): In order to answer a query to the oracle, C checks
whether a tuple of the form 〈IDi,D

(1)
i ,D

(2)
i 〉 exists in the list LS and if a tuple of

this form exists, C returns the corresponding D
(1)
i . If it does not exist, C checks

whether i
?= γ. If i = γ, C Aborts the game. If i
= γ, C performs the following:

– Choose di0, di1, hi1, hi2, xi ∈R Z
∗
q .

– Compute yi0 = gdi0(ga)−hi1 , yi1 = gdi1 (ga)−hi2 and gi = gxi .
– Add the tuple 〈IDi,D

(1)
i ,D

(2)
i 〉 = 〈IDi, di0, xi〉 in the list LS and add the

tuple 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 = 〈IDi, yi0, yi1, di1, gi〉 to the list

LP .
– Add the tuple 〈IDi, yi0, hi1〉 to list LH1 and the tuple 〈IDi, yi0, yi1, hi2〉 to

list LH2

– Return D
(1)
i to AI .

OExtractSecretV alue(IDi): C retrieves the tuple of the form 〈IDi, di0, xi〉 from the
list LS and returns the corresponding xi as the secret value corresponding to
the identity IDi. If the entry corresponding to xi in the tuple is “−” then it
indicates the fact that AI has replaced the public key corresponding to IDi. By
the definition of the model, such queries by AI are not allowed and hence C can
ignore such queries.
OReplacePublicKey(IDi, PK

′
i): To replace the public key of IDi with a new public

key PK
′
i = 〈IDi, PK

(1)′

i , PK
(2)′

i , PK
(3)′

i , PK
(4)′

i 〉, sent by AI , C updates the
corresponding tuples in the list LP , only if PK

′
i satisfies equation (2). If the

equation is not satisfied return Invalid.
OEncryption(IDi, stj ,mk): AI may perform encryption with respect to any state
information stj , chosen by C. C performs the following to encrypt the message
mk with respect to the state information stj , where j = 1 to n̂, where n̂ is the
upper bound for the total number of states and k = 1 to m̂ is bound by the
maximum number of messages that can be encrypted in one session:

– Retrieves the tuple stj of the form 〈IDi, uj , vj , sj , indexj〉 from Lst, sets
c1 = vj , compute wj1 = (PK

(1)
i yhi1)sj and wj2 = (PK

(4)
i)sj

– Choose G ∈R Z
∗
q , store the tuple 〈IDi, c1,mk, wj1, wj2, indexj ,G〉 in the list

LG and computes c2 = uj ⊕ G.
– Choose H ∈R {0, 1}lm , store the tuple 〈IDi, c1, c2, wj1, wj2, indexj ,H〉 in the

list LH and computes c3 = mk ⊕ H.
– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments indexj and updates the

state information stj .

ODecryption(CT = (c1, c2, c3, index), IDi, PKi): If i
= γ, C performs decryption
in the normal way since C knows the private key corresponding to IDi. If i = γ,
C performs the following to decrypt the ciphertext CT = 〈c1, c2, c3, index〉:
– Check the validity of PKi and reject the ciphertext CT if this check fails;

else, proceed.

Stateful Certificateless Public Key Encryption 145

– Retrieve the tuples of the form 〈IDi, c1,m,wi1, wi2, index,G〉 and 〈IDi, c1, c2,
wi1, wi2, index,H〉 from the lists LG and LH respectively. Retrieve the tuple
〈IDi, yi0, hi1〉 from the list LH1 .

– Compute α = (wi1c
−si0
1)h−1

i1 by taking the corresponding values from the
tuples retrieved in the above step.

– Check whether 〈g, c1, g
a, α〉 is a valid DDH tuple using the DDHg,a(., .) oracle.

If the oracle outputs true, proceed else reject the ciphertext CT .
– Compute m′ = c3 ⊕ H and check whether m′ = m, where H and m are

retrieved from the lists LH and LG respectively. If m′
= m reject the cipher-
text CT .

– If the check holds, compute u′ = c2⊕G. Retrieve the tuple of the form 〈gri , u′〉
from the list LF and check whether cu′−1

1
?= gri . If the check does not hold

reject the ciphertext CT .

If any of the fetched tuple is not available in any of the lists or any of the tests
fails, returns Invalid else return m as the message.

Challenge: At the end of Phase I , AI produces two messages m0 and m1

of equal length and an identity ID∗. C Aborts the game if ID∗
= IDγ , else
randomly chooses a bit δ ∈R {0, 1} and computes a ciphertext CT ∗ with IDγ

as the receiver by performing the following steps:

– Choose u ∈R Z
∗
q and add the tuple 〈gb, u〉 to the list LF .

– Set index∗ = 1 and compute c∗
1 = gbu

– Retrieve the tuple of the form 〈ID∗, d∗
0, x

∗〉 from the list LS and compute
w∗

2 = (c∗
1)

x∗
.

– Choose G ∈R Z
∗
q , store the tuple 〈ID∗, c∗

1,mδ,−, w∗
2 , index∗,G〉 in list LG

and compute c∗
2 = u ⊕ G.

– Choose H ∈R {0, 1}lm , store the tuple 〈ID∗, c∗
1,mδ,−, w∗

2 , index
∗,H〉 in list

LH and compute c∗
3 = mδ ⊕ H.

– Here the state information st∗ = 〈ID∗, u∗, v∗, s∗, index∗〉 = 〈ID∗, u, gbu,−,
index∗〉

Now, CT ∗ = 〈c∗
1, c

∗
2, c

∗
3, index

∗〉 is sent to AI as the challenge ciphertext.

Phase II: AI performs the second phase of interaction, where it makes polyno-
mial number of queries to the oracles provided by C with the following conditions:

– AI should not have queried the Strong Decryption oracle with (CT ∗, PKγ ,
IDγ) as input. (It is to be noted that PKγ is the public key corresponding
to IDγ during the challenge phase. AI can query the decryption oracle with
(CT ∗, PK∗, IDγ) as input, ∀PK∗
= PKγ)

– AI should not query the partial private key of IDγ .
– AI can query the secret value and PKγ of IDγ .

Encryption oracle has to be provided to AI with respect to the state informa-
tion st∗. This is because, AI should have access to any number of ciphertexts
generated during this state. Moreover, the decryption oracle has to respond to

146 S. Sree Vivek

decryption queries corresponding to any ciphertext generated during the state
st∗. These two oracles are described here and all other oracles are same as in
Phase I.
OEncryption(IDi, stj ,mk): For any state stj
= st∗, C performs the encryption as
in Phase I. If stj = st∗, C performs the following to encrypt the message mk

with respect to the state information st∗.

– Retrieve the tuple st∗ of the form 〈ID∗, u, gbu,−, index∗〉 from the list Lst,
set c1 = gbu.

– Choose G ∈R Z
∗
q , store the tuple 〈ID∗, c1,mk,−,−, index∗,G〉 in the list LG

and computes c2 = u ⊕ G.
– Choose H ∈R {0, 1}lm , store the tuple 〈ID∗, c1, c2,−,−, index∗,H〉 in the

list LH and computes c3 = mk ⊕ H.
– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments indexj and updates the

state information stj .

ODecryption(CT = (c1, c2, c3, index), IDi, PKi): If i
= γ and c1
= c∗
1, C performs

decryption in the normal way since C knows the private key corresponding to IDi.
If i = γ and c1
= c∗

1, C performs the decryption as in Phase I. If i = γ and c1 = c∗
1

then C performs the following. It should be noted that the state information st∗

is with respect to the identity ID∗ and hence for all other identities, decryption
oracle proceeds as in Phase I.

– Check the validity of PKi and reject the ciphertext CT if this check fails;
else, proceed.

– Retrieve the tuples of the form 〈ID∗, c∗
1,m,−,−, index∗,G〉 and 〈ID∗, c∗

1, c2,
−,−, index,H〉 from the lists LG and LH respectively. Retrieve the tuple
〈IDi, yi0, hi1〉 from the list LH1 .

– Compute m′ = c3 ⊕ H and check whether m′ = m, where H and m are
retrieved from the lists LH and LG respectively. If m′
= m reject the cipher-
text CT . Note that C can even work consistently with the tuples of this form.
In this case, C takes the values G and H without consulting the DDH oracle
because these tuples were generated by C without knowing the values of w∗

1

and w∗
2 .

– Compute u′ = c2 ⊕ G. Retrieve the tuple of the form 〈gri , u′〉 from the list
LF and check whether c∗

1
u′−1

= gri . If the check does not hold reject the
ciphertext CT .

– If in the process of finding out the tuples of the form 〈ID∗, c∗
1,m,w∗

1 , w
∗
2 ,

index∗,G〉 and 〈ID∗, c∗
1, c

∗
2, w

∗
1 , w∗

2 , index
∗,H〉 appeared in the lists LG and

LH respectively then retrieve the tuple 〈ID∗, y∗
0 , h

∗
1〉 from the list LH1 , com-

pute α = (w∗
1c

∗
1
−s∗

0)h∗
1

−1
by taking the corresponding values from the tuples

retrieved in the above step and check whether 〈g, c∗
1, g

a, α〉 is a valid DDH
tuple using the DDHg,a(., .) oracle. If the oracle outputs true, output α as
the solution to the SDH problem instance.

If any tuple is not available in any of the lists or any of the tests fails, returns
Invalid.

Stateful Certificateless Public Key Encryption 147

Guess: At the end of Phase II , AI produces a bit δ′ to C, C performs the
following to output the solution for the SDH problem instance.

– Retrieve the tuple 〈ID∗, y∗
0 , h

∗
1〉 from the list LH1 .

– For each tuple of the form 〈ID∗, c∗
1,m,w∗

1 , w∗
2 , index

∗,G〉 and 〈ID∗, c∗
1, c

∗
2, w

∗
1 ,

w∗
2 , index

∗,H〉 in the lists LG and LH , compute α = (w∗
1c

∗
1
−s∗

0)h∗
1

−1
by taking

the corresponding values from the tuples.
– Check whether 〈g, c∗

1, g
a, α〉 is a valid DDH tuple using the DDHg,a(., .) oracle.

If the oracle outputs true, output α as the solution to the SDH problem
instance.

Thus, C obtains the solution to the SDH problem with almost the same
advantage of AI in the IND-stCLE-CCA2-I game. �
Analysis: We now derive the advantage of C in solving the SDH problem using
the adversary AI . The simulations of F , G, H, H1 and H2 clearly shows that
the hash oracles are perfectly random. Let ε be the non-negligible advantage of
AI in winning the IND-stCLE-CCA2-I game.
The events in which C aborts the game and the respective probabilities are given
below:

1. E1 - The event in which AI queries the partial private key of IDγ .
2. E2 - The event in which IDγ is not chosen as the target identity by AI for

the challenge.

Suppose, AI has asked qPK queries to the ORequestPublicKey oracle and qP

queries to the OPartialKeyExtract oracle. Let us consider that there are a total
of qI individual identities, where qI ≤ qPK + qP queried by AI to these oracles,
then:

Pr[E1]= qP
qI

and Pr[E2]= 1 − 1
qI−qP

.
Therefore,
Pr[¬abort]=[¬E1 ∧ ¬E2]=

[
1 − qP

qI

]
.
[
1 − 1 − 1

qI−qP

]
= 1

qI
.

Therefore, the advantage of C solving the SDH problem is ε′ ≥
(
ε. 1

qI

)
. Since ε

is assumed to be non-negligible and frac1qI is also non-negligible, ε′ will be non-
negligible. This contradicts the assumption that there is no polynomial time algo-
rithm to solve the SDH problem. Thus, we conclude that there does not exist a
polynomial time adversary that can break the IND-stCLE-CCA2-I security of the
stCLE scheme.

Confidentiality Against Type-II Adversary

Theorem 2. Our certificateless public key encryption scheme stCLE is IND-
stCLE-CCA2-II secure in the random oracle model, if the SDH problem is
intractable.

The proof of this theorem is omitted here due to page limitation and will appear
in the full version of the paper.

148 S. Sree Vivek

4 Conclusion

In this paper, we have proposed the first stateful certificateless PKE scheme.
We have formally proved the scheme in the random oracle model assuming the
strongest adversary. Our scheme finds straightforward application in secure shar-
ing of encrypted cloud data with a very minimum cost. Assuming the security
aspects, all the files of a user stored in the cloud are encrypted with unique
symmetric keys. The existing method is to use a PKE scheme and encrypt the
symmetric keys to the receiver. The receiver on receiving the encrypted keys
can decrypt them using his private key and use them to decrypt the actual file
from the downloaded ciphertext. Our approach reduces the cost of performing
this encryption of symmetric keys from O(k) to O(1) exponentiations. This effi-
ciency come because our scheme is stateful, which suits for resource constrained
devices such as cell phones, personal digital assistants, tablets, wearables and
sensors, where each exponentiation costs on the battery life of the device.

References

1. Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-secure encryption for messages of
arbitrary length. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp.
377–392. Springer, Heidelberg (2009)

2. Al-Riyami, S.S., Paterson, K.G.: Certificateless public key cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

3. Baek, J., Chu, C.-K., Zhou, J.: On shortening ciphertexts: new constructions for
compact public key and stateful encryption schemes. In: Kiayias, A. (ed.) CT-RSA
2011. LNCS, vol. 6558, pp. 302–318. Springer, Heidelberg (2011)

4. Baek, J., Safavi-Naini, R., Susilo, W.: Certificateless public key encryption without
pairing. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol.
3650, pp. 134–148. Springer, Heidelberg (2005)

5. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: how to
encrypt with one 160-bit exponentiation. In: ACM Conference on Computer and
Communications Security - ACM-CCS 2006, pp. 380–389. ACM (2006)

6. Bendel, M.: Hackers describe ps3 security as epic fail, gain unrestricted access
(2010). http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-
fail-gain-unrestricted-access/

7. Castro, R., Dahab, R.: Two notes on the security of certificateless signatures. In:
Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784, pp. 85–102.
Springer, Heidelberg (2007)

8. Cheng, Z., Comley, R.: Efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/012 (2005). http://eprint.iacr.org/

9. Dent, A.W.: A survey of certificateless encryption schemes and security models.
Int. J. Inf. Secur. 7(5), 349–377 (2008)

10. Huang, X., Susilo, W., Mu, Y., Zhang, F.T.: On the security of certificateless
signature schemes from Asiacrypt 2003. In: Desmedt, Y.G., Wang, H., Mu, Y.,
Li, Y. (eds.) CANS 2005. LNCS, vol. 3810, pp. 13–25. Springer, Heidelberg (2005)

11. Lai, J., Deng, R.H., Liu, S., Kou, W.: RSA-Based Certificateless Public Key
Encryption. In: Bao, F., Li, H., Wang, G. (eds.) ISPEC 2009. LNCS, vol. 5451,
pp. 24–34. Springer, Heidelberg (2009)

http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
http://eprint.iacr.org/

Stateful Certificateless Public Key Encryption 149

12. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, whit is right. IACR Cryptology ePrint Archive (2012)

13. Liu, J.K., Au, M.H., Susilo, W.: Self-generated-certificate public key cryptography
and certificateless signature/encryption scheme in the standard model: extended
abstract. In: Proceedings of the ACM Symposium on Information, Computer and
Communications Security - ASIA-CCS 2007, pp. 273–283. ACM (2007)

14. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001)

15. Park, J.-H., Choi, K.Y., Hwang, J.Y., Lee, D.-H.: Certificateless public key encryp-
tion in the selective-ID security model (without random oracles). In: Takagi, T.,
Okamoto, E., Okamoto, T., Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp.
60–82. Springer, Heidelberg (2007)

16. Phong, L.T., Matsuoka, H., Ogata, W.: Stateful identity-based encryption scheme:
faster encryption and decryption. In: Proceedings of the 2008 ACM Sympo-
sium on Information, Computer and Communications Security - ASIACCS 2008,
pp. 381–388. ACM (2008)

17. Shi, Y., Li, J.: Provable efficient certificateless public key encryption. Cryptology
ePrint Archive, Report 2005/287 (2005). http://eprint.iacr.org/

18. Sun, Y., Zhang, F.T., Baek, J.: Strongly secure certificateless public key encryption
without pairing. In: Bao, F., Ling, S., Okamoto, T., Wang, H., Xing, C. (eds.)
CANS 2007. LNCS, vol. 4856, pp. 194–208. Springer, Heidelberg (2007)

19. Sree Vivek, S., Selvi, S., Rangan, C.P.: CCA secure certificateless encryption
schemes based on RSA. In: SECRYPT 2011 - Proceedings of the International
Conference on Security and Cryptography, pp. 208–217. SciTePress (2011)

20. Vivek, S.S., Selvi, S.S.D., Rangan, C.P.: Compact stateful encryption schemes with
ciphertext verifiability. In: Hanaoka, G., Yamauchi, T. (eds.) IWSEC 2012. LNCS,
vol. 7631, pp. 87–104. Springer, Heidelberg (2012)

http://eprint.iacr.org/

	Stateful Certificateless Public Key Encryption with Application in Public Cloud
	1 Introduction
	2 Preliminaries
	2.1 Review of Computational Assumptions
	2.2 Framework for Stateful CLE
	2.3 Security Model for CLE

	3 Our Scheme - StCLE
	3.1 Security Proof

	4 Conclusion
	References

