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Abstract. Certificateless cryptography eliminates the key escrow prob-
lem inherent in identity based cryptosystem. Certificatateless systems
are preferred in public cloud to offer security because it solves two dif-
ferent problems simultaneously, namely, the key escrow problem and the
cumbersome certificate management. A stateful public key encryption
scheme is a cryptographic primitive, in which the sender maintains state
information to perform encryption. The encryption algorithm takes the
intended message, receiver’s public key and the current state information
to produce the ciphertext, and possibly updates the state information.
Decryption is straightforward and depends only on the ciphertext and
secret key of the receiver. In this paper, we propose the first stateful cer-
tificateless public key encryption scheme and prove the security of the
scheme in the random oracle model. This scheme finds very interesting
application for sharing data in an encrypted cloud storage system.
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1 Introduction

Certificateless Cryptography (CLC) introduced by Al-Riyami et al. [2] is a vari-
ant of Identity Based Cryptography (IBC), which intends to prevent the key
escrow problem. Usually, in IBC the private key of a user is generated by the
Private Key Generator (PKG), who has to be trusted by all users of the system.
In the case of a PKG compromise, a total-break of the system is possible. This
is called the key escrow problem. In order to prevent this, the key generation
process is split between the KGC (Key Generation Center - The central author-
ity in CLC) and the user. The KGC first generates the private key for a user,
which is called as the partial private key of the user. The remaining part of the
private key is a random secret value generated by the user, and is never revealed
to anyone, not even to the KGC. This key is called as the user secret value and
the user generates the public key corresponding to this key. All cryptographic
operations by the user are performed by using the full private key which involves
both the partial private key and the user secret value.
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Having introduced CLC, we now move on to stateful public key encryption
(PKE) schemes. PKE schemes make use of compute intensive exponentiation
computations to perform encryption as well as decryption. The order of com-
plexity is roughly considered to be one thousand times that of a block cipher
or hash function evaluation. This results in slowdown of the system as well as
hinders the use of public key cryptography in systems with limited computing
power. Public key cryptography operations are very expensive that they drain
the battery of devices easily. This seems to be a very important and severe limi-
tation on cell phones, personal digital assistants, tablets, wearables, RFID chips
and sensors. Hence, researchers are very much interested in reducing the cost
of exponentiation, which is a very crucial operation for PKE schemes. It was
stated by Bellare et al. [5] that “a 10% improvement would be very welcome
and a 50% improvement would be dramatic”. However, lot of intellectual energy
is pumped in to improve the schemes by proposing time-space trade-off mech-
anisms like pre-computation of exponentiation and faster implementations for
exponentiations.

In a stateful encryption scheme, the sender maintains a state information
that can be reused across various encryptions during a session. A session may
be marked by the communication between a sender and a fixed receiver. Thus if
the communication has to occur between two fixed entities, the sender has to use
a symmetric key (the key used for encryption and decryption in any symmetric
key encryption scheme) which is derived using the public key of the receiver.
A stateful encryption algorithm is deterministic with respect to the state and
public key. Thus, this key has to be computed only for the first time the sender
communicates with the receiver. After which the key can be reused through
out the state, which reduces the cost of further public key encryptions to that
receiver.

Moreover, it should be noticed that reusing randomness is not straightforward
in any cryptographic operation. In the history, we have learned hard lessons due
to reuse of randomness. One of the well known examples is the attack on Sony’s
PlayStation 3 in 2010. A group of attackers recovered the private key of Elliptic
Curve Digital Signature Algorithm (ECDSA) used by Sony to sign software for
the PlayStation 3 game console. This attack was possible because ECDSA has
a randomized signature generation algorithm and Sony reused the randomness
used to generate the signature [6]. One more well known example is in the case of
RSA. The entropy of the output distribution of standardized RSA key generation
is always almost maximal. The outputs are hard to factor if factoring in general
is hard where the primes were chosen at random but it was identified in [12]
that the random primes did not satisfy this requirement on the distribution of
the RSA keys. This exposed a considerable number of RSA private keys used
in PGP system. Hence we emphasize that reuse of randomness should be done
with utmost care and the resulting scheme should be proven secure, taking the
reuse into account.

Motivation: Recent advancements in technology has made huge data stor-
age available for users in the name of Cloud Storage. Cloud platforms such as
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Dropbox, Skybox, Oracle, Amazon provide users with huge space for them to
store their data. However reputed the cloud storage provider is, other organi-
zations who want to make use of the cloud storage do no trust them to store
sensitive data. Hence a need for secure cloud storage arose. In secure cloud stor-
age, each user has a public/private key pair created by the user. The public key
is used to encrypt a symmetric key which in turn is used to encrypt the data.
The encrypted data (ciphertext) is then stored in the cloud. The corresponding
private key is used to decrypt and obtain the symmetric key which is used to
decrypt the ciphertext and obtain the actual message. However, this approach
requires a certified public key in order to withstand man-in-the-middle attacks
and public key replacement attacks, and requires the presence of a Certification
Authority (CA).

To make the system more convenient, the identity of the user could be used
to generate the public keys and the corresponding private key could be obtained
from the trusted authority (PKG). In this case the PKG (the cloud service
provider) is a fully trusted entity and knows the private key of all users in the
system. Certificateless Encryption (CLE) schemes find great application in this
scenario. In a CLE, the identity of a user along with a user defined public key acts
as the full public key of the user. Unlike Public Key Infrastructure (PKI), these
public keys need not be certified by centralized authorities, because changing
the public key in the public repository will be useful only to the trusted KGC
in the CLE and hence the KGC will be accountable for any replacement of the
public keys in the repository.

Consider a scenario wherein a user has n different files (may be photos,
documents etc.). In order to maintain privacy, the user has to encrypt each file
with different symmetric keys. This is because, if all the files were encrypted
with the same key and if the user shares the key of one file, he is loosing the
keys of all other files too. In order to avoid this each file should be encrypted
with different symmetric keys. Thus all the n files are encrypted with n different
symmetric keys and stored in the cloud storage. In case, if the user (owner of the
files) wants to share a subset of k files to another user (the receiver), the naive
way is to use a PKE scheme and encrypt the symmetric keys to the receiver.
The receiver on receiving the encrypted keys can decrypt them using his private
key and use the symmetric keys to decrypt the actual file from the downloaded
ciphertext. If k is large and if the owner uses a stateless encryption scheme, he
has to perform O(k) exponentiations. The advantage of using a stateful PKE
scheme is that it requires only O(1) exponentiation when the receiver is fixed.

Figure 1 shows how a user registers with the KGC to avail secure cloud storage
and how his data is encrypted and stored in the cloud. User A sends his identity,
1D 4 and requests for the partial private key to the KGC. The KGC has a master
private key msk and a set of public system parameters params, which are used
to generate the partial private key SK 4 of the user A. SK 4 is sent to A through
a secure channel. After receiving the partial private key user A chooses his own
user defined private key sks and computes the corresponding public key pk4.
The user defined public key pk4 is sent to the KGC and is stored in the user
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Fig. 1. User registration and encryption on cloud

public key list maintained by the KGC. Hence the private key of A is (sk4, SK4)
and the corresponding public key is (pka, ID4). To encrypt a message to A, the
sender has to use D4 and pky along with params. When user A wants to
upload a file File; to the cloud, he has to encrypt the file using a symmetric
key encryption scheme with a symmetric key Kym, to obtain the encrypted file
EF; = SYM_Enc(Ksym,, File;). (Note that we assume that each symmetric key
is unique and there is an efficient way for the owner of the file to uniquely obtain
the key using a private Pseudo Random Number Generator and other attributes
such as file name, modified and created date etc., in a secure way. We do not
explain it here since it is out of the scope of the problem addressed here) The
encrypted file EF; is then stored in the cloud.
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Fig. 2. Sharing encrypted contents using CLE

Figure2 shows how user A shares an encrypted file to another user. Let
us consider that user A wants to share his contents to user B, whose pub-
lic key is (pkp,IDp). The owner A shares the encrypted file to user B first.
Then he obtains the user public key pkp of B from the user public key list
maintained by the KGC. Using pkp and IDp with a CLE scheme he encrypts
the symmetric key Ky, corresponding to the file File; to user B as CT =
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CL_Enc(pkp,IDp, Keym,) and sends CT to B. User B upon receiving CT,
decrypts it as: Kgym, = CL_Dec(skp, SKp,CT) and obtains the symmetric
key. Now, B uses Kyym, to decrypt EF; as File; = SYM _Dec(K gym,, EF;).

Related Work: Al-Riyami and Paterson in [2] have shown realization for CLE,
signature (CLS) and key exchange (CLK) schemes in their work. Huang et al.
[10] and Castro et al. [7] independently showed that the signature scheme in [2]
is not secure against Type-I adversary (explained in later sections). In fact they
showed that it is possible for a Type-I adversary to replace the public key of
the user and attack the scheme. They also gave a new certificateless signature
scheme. A lot of CLE schemes were proposed, whose security were proved both
in the random oracle model [4,8,17,18] and standard model [13,15]. Recently,
Dent [9] gave a survey on the various security models for CLE schemes, men-
tioning the subtle difference in the level of security offered by each model. Dent
also gave a generic construction and an efficient construction for CLE. The ini-
tial constructs for certificateless cryptosystem were all based on bilinear pairing
[8,13,15,17]. Baek et al. [4] were the first to propose a CLE scheme without bilin-
ear pairing. Certificateless cryptosystem are prone to key replacement attack
because the public keys are not certified and anyone can replace the public key
of any legitimate user in the system. The challenging task in the design of certifi-
cateless cryptosystem is to come up with schemes which resists key replacement
attacks. The CLE in [4] did not withstand key replacement attack, which was
pointed out by Sun et al. in [18]. Sun et al. fixed the problem by changing the
partial key extract and setting public key procedures. Both the aforementioned
schemes, namely [4, 18] were based on multiplicative groups. Lai et al. in [11] pro-
posed the first RSA-based CLE scheme. They have proved their scheme secure
against chosen plaintext attack (CPA). Later, in [19] Vivek et al. proposed a
CCA secure scheme based on the RSA assumption.

There are several PKE schemes, which make use of transformations to achieve
CCA security and some of them are customized design. There is no known
straightforward ways to make these schemes stateful. Even though some efforts
were made in this direction, the ciphertext size will be large due to the usage of
CCA secure symmetric key encryption schemes. However, there are PKE schemes
that are designed to be stateful, namely [3,5,20] and few stateful IBE schemes
were also found in the literature [3,16]. There are no known stateful certificate-
less PKE schemes present in the literature, which motivated us to look forward
in this direction.

Our Contribution: In this paper we propose the first stateful certificate-
less encryption scheme. Our scheme finds straightforward application in shar-
ing encrypted contents in the cloud efficiently when the cloud data is accessed
through resource constrained devices. This efficiency comes in due to the fact
that when different files are encrypted with different keys as shown in Fig. 1,
sharing huge number of encrypted files will involve transportation of huge num-
ber of symmetric keys. Since in a stateful encryption scheme, the randomness
used to encrypt the data is reused across a session for communication with a
fixed receiver, we are able to reduce the cost of encryption required to share the
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keys. In the example stated above if there are k files to be shared with a receiver,
the owner has to perform only O(1) exponentiation operations, where as in the
naive way, the owner has to perform O(k) exponentiations. Our scheme offers
compact ciphertext with ciphertext verifiability.

2 Preliminaries

In this section, we give the definition of hardness assumptions, framework and
the security model used in our paper.

2.1 Review of Computational Assumptions

Definition 1 Computational Diffie-Hellman Problem (CDHP). Given
(g,9% g¢°) € G* for unknown a,b € Ly, where G 1is a cyclic prime order mul-
tiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute g?.

The advantage of any probabilistic polynomial time algorithm A in solving
the CDH problem in G is defined as

AdvGPH = Pr[A(g,g*,9") = " | a,b € Z]]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvﬁDH is negligibly small.

Definition 2 (Strong Diffie Hellman (SDH) Problem as given in [1]).
Let k be the security parameter and G be a multiplicative group of order q, where
lg| = k. Given (g, 9% ¢°) €r G® and access to a Decision Diffie Hellman (DDH)
oracle DDHy q(.,.) which on input g® and ¢¢ outputs true if and only if g** = ¢°,
the strong Diffie Hellman problem is to compute ¢°® € G.

The advantage of an adversary A in solving the strong Diffie Hellman problem
is defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSPH = PrA(g, g%, ¢°) = g°°|DDHy (., )]

The strong Diffie Hellman assumption holds in G if for all polynomial time

adversaries A, the advantage AdviD H i3 negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [14].
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2.2 Framework for Stateful CLE

In this section, we discuss the general framework for stateful CLE. We adopt
the definition of certificateless public key encryption, given by Baek et al. [4].
Their definition of CLE is weaker than the original definition by Al-Riyami and
Paterson [2] because the user has to obtain a partial public key from the KGC
before he can create his public key (While in Al-Riyami and Paterson’s original
CLE this is not the case). A stateful certificateless public-key encryption scheme
is defined by seven probabilistic, polynomial-time algorithms which are defined
below:

Setup: This algorithm takes as input a security parameter s and returns the
master private key msk and the system public parameters params. This algo-
rithm is run by the KGC in order to initialize a certificateless system.

Partial Private Key Extract: This algorithm takes as input the public para-
meters params, the master private key msk and an identity ID4 € {0,1}* of a
user A. It outputs the partial private key d4 and a partial public key y4 of user
A. This algorithm is run by the KGC once for each user and the corresponding
partial private key and partial public key is given to A through a secure and
authenticated channel.

Set Full Private Key: This algorithm is run once by each user. It takes the
public parameters params, the user identity I D 4 and A’s partial private key d 4
as input. The algorithm generates a secret value sks € S, where S is the secret
value space. Now, the full private key D4 of A, is a combination of the secret
value sk, and the partial private key d 4.

Set Full Public Key: This algorithm run by the user, takes as input the public
parameters params, a user, say A’s partial public key y4 and the full private
key D 4. It outputs the full public key PK 4 for A. This algorithm is run once
by each user and the resulting full public key is widely and freely distributed.
The full public key of user A consists of PK 4 and ID 4.

New State Generation: This algorithm is used to generate a set of state
information used for encryption. The sender executes this algorithm and keeps
the information confidential. The sender’s state information is not known to any
entity. The state information st is generated by taking params as input.

Encryption: This algorithm takes as input the public parameters params, a
receiver identity, say ID 4, the corresponding full public key PK 4, the state
information st; (corresponding to the i*" state) and a message m € M. The
output of this algorithm is the ciphertext CT € CS. Note that M is the message
space and CS is the ciphertext space.

Decryption: This algorithm takes as input the public parameters params, a
user, say A’s private key D4 and a ciphertext CT € CS. It returns either a
message m € M - if the ciphertext is valid, or 'Invalid’ - otherwise.
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2.3 Security Model for CLE

We review the notion of Type-I and Type-II adversaries and provide the security
model for stateful CLE. The confidentiality of a stateful CLE scheme is proved
by means of an interactive game between a challenger C and an adversary. In the
confidentiality game for stateful certificateless encryption (IND-stCLE-CCA2),
the adversary is given access to the following six oracles. These oracles are sim-
ulated by C:

Partial Key Extract for ID 4: C responds by returning the partial private
key SK 4 and the partial public key PPK 4 of the user A.

Extract Secret Value for I D 4: If A’s public key has not been replaced then
C responds with the secret value ska for user A. If the adversary has already
replaced A’s public key, then C does not provide the corresponding private key
to the adversary.

Request Public Key for I D 4: C responds by returning the full public key
PK 4 for user A. (First by choosing a secret value if necessary).

Replace Public Key for ID 4: The adversary can repeatedly replace the
public key PK 4 for a user A with any valid public key PK’; of its choice. The
adversary generates the new valid public key and sends it to C. The current value
of the user’s public key is used by C in any computations or responses.

Encryption(ID;, stj, my): Encryption queries for any number of messages
(k =1 to m) for a given state st; (j = 1 to 1), where 1 and # are the upper
bounds for the number of messages that can be encrypted in a state and total
number of states respectively, for whose combination A can query this oracle.

Decryption(CT, ID 4): The adversary can issue a decryption query for cipher-
text C'T and identity I D4 of its choice, C decrypts C'T" and returns the corre-
sponding message to the adversary. C should be able to properly decrypt cipher-
texts, even for those users whose public key has been replaced, i.e. this oracle
provides the decryption of a ciphertext, which is generated with the current
valid public key. The strong decryption oracle returns Invalid, if the ciphertext
corresponding to any of the previous public keys were queried. This is a strong
property of the security model (Note that, C may not know the private key
corresponding to the current public key of the user. This is true if public key
is replaced by the adversary). However, this property ensures that the model
captures the fact that changing a user’s public key to a value of the adversary’s
choice may give the adversary an advantage in breaking the scheme. This is
called as strong decryption in [9]. Our scheme provides strong decryption for
Type-I adversary.

There are two types of adversaries (namely Type-I and Type-1I) to be consid-
ered for stateful certificateless encryption scheme. The Type-I adversary models
the attack by a third party attacker, (i.e. anyone except the legitimate receiver
or the KGC) who is trying to gain some information about a message from
the encryption. The Type-II adversary models the honest-but-curious KGC who
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tries to break the confidentiality of the scheme. Here, the attacker is allowed to
have access to master private key msk. This means that we do not have to give
the attacker explicit access to partial key extraction, as the adversary is able
to compute these value on its own. The most important point about Type-II
security is that the adversary modeling the KGC should not have replaced the
public key for the target identity before the challenge is issued.

Constraints for Type-I and Type-II Adversaries: The IND-stCLE-CCA2
security model distinguishes the two types of adversary Type-I and Type-II with
the following constraints.

— Type-I adversary A is allowed to change the public keys of users at will but
does not have access to the master private key msk.

— Type-IT adversary Ajy is equipped with the master private key msk but is
not allowed to replace public keys corresponding to the target identity.

IND-stCLE-CCA2 Game for Type-I Adversary: The game is named as
IND-st CLE-CCAZ2-1. This game, played between the challenger C and the Type-I
adversary Ay, is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params to A; while keeping msk
secret. After receiving params, Ay interacts with C in two phases:

Phase I: A; is given access to all the six oracles. A; adaptively queries the
oracles consistent with the constraint that the type-I adversary A; is allowed to
change the public keys of users at will but does not have access to the master
private key msk.

Challenge: At the end of Phase I, A; gives two messages mg and my of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit 6 €g {0,1} and encrypts ms with the target identity 1D*’s public key for
the state st* to form the challenge ciphertext CT* and sends it to A; as the
challenge. (Note that the partial Private Key corresponding to ID* should not
be queried by A; but the secret value corresponding to ID* may be queried.
This makes our security model stronger when compared to the security models
of [11,18].)

Phase II: A; adaptively queries the oracles consistent with the constraints for
Type-I adversary described above. Besides this 4; cannot query Decryption on
(CT*,ID*) and the partial private key of the receiver should not have been
queried to the Fatract Partial Private Key oracle. Aj gets oracle access to all
ciphertexts for any message including mgy and m; for the state information st*
through the encryption oracle Encryption(params, st*,m;), where j < m.

Guess: A; outputs a bit ¢’ at the end of the game. A; wins the IND-stCLE-
CCA2-1 game if ¢’ = 0. The advantage of A; is defined as -

Adv-IAJyD—stCLE—CCAQ—I _ ‘QPT [5 _ 5/] o 1|
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IND-stCLE-CCA2 Game for Type-II Adversary: The game is named
as IND-stCLE-CCAZ2-II. This game, played between the challenger C and the
Type-1I adversary Ay, is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params and the master private key
msk to Ayry. After receiving params, Ajy interacts with C in two phases:

Phase I: Aj; is not given access to the Ezxtract partial Private Key oracle
because Aj; knows msk, it can generate the partial private key of any user in
the system. All other oracles are accessible by Aj;. A adaptively queries the
oracles consistent with the constraint that the type-II adversary Ay is equipped
with the master private key msk but is not allowed to replace public keys cor-
responding to the target identity.

Challenge: At the end of Phase I, Ajr gives two messages mo and m; of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit § €r {0,1} and encrypts ms with the target identity 7D*’s public key using
the state information st* to form the challenge ciphertext CT™* and sends it to
A as the challenge. (Note that the Secret Value Corresponding to ID* should
not be queried by Aj; and the public key corresponding to I D* should not be
replaced during Phase I.)

Phase II: Ar; adaptively queries the oracles consistent with the constraints for
Type-II adversary described above. Besides this Aj; cannot query Decryption
on (CT* ID*) and the Secret Value corresponding to the receiver should not
be queried to the Extract Secret Value oracle and the public key corresponding
to ID* should not be replaced during Phase I. Aj; gets oracle access to all
ciphertexts for any message including mg and m; for the state information st*
through the encryption oracle Encryption(params, st*,m;), where j < m.

Guess: Ajr; outputs a bit ¢’ at the end of the game. A;; wins the IND-stCLE-
CCA2-II game if 6’ = §. The advantage of Aj; is defined as -

Advil]y[DfstCLEfc’CA27ll _ |2P7“ [(5 _ 6/] _ 1|

3 Owur Scheme - StCLE

In this section, we propose our stateful certificateless encryption scheme. The
scheme has the following algorithms. Unless stated otherwise, all computations
are done mod p.

Setup: The KGC does the following to initialize the system and to setup the
public parameters. Let x be the security parameter.

— Choose two large primes p and ¢ such that ¢|(p — 1) and |¢| > &. Choose
g €r Z, with order ¢, z €g Z; and compute y = g*. Choose five cryptographic
hash functions F' : Zy — Zy, G : {0,1}* — Zz, H : {0,1}* — {0,1}m,
Hy :{0,1}* — Z; and Hj : {0,1}* — Z, where l,,, is the size of the message.
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— The KGC publicizes the system parameters, params = (p,q, g,y, F, G, H, Hy,
Hs,) and keeps z as the master private key.

Partial Key Extract: This algorithm is executed by the KGC and upon receiv-
ing the identity ID4 of a user A the KGC performs the following to generate
the corresponding partial private key d 4.

— Choose sio, si1 €r Zy, compute ya9 = ¢g*° and ya; = g***
— Compute dag = si0 + 2H1(IDa,ya0) mod q and da; = s;1 + 2zHa(ID 4, yao,

ya1) mod q.
— Output dg = (dao,da1) and ya = (yao,y, Al).

The validity of the partial private key can be verified by user A by performing
the following check:

gdAogdA1 ? H1(IDa,yao0)

= yaoy H>(IDa,yao0,yA1) (1)

Yyary

Set Full Private Key: On receiving the partial private key the user with

identity I D 4 does the following to generate his full private key.

— Choose ¢4 €r ZZ as his secret value.

— Set the private key as Dy = (D?,DE?} = (dao,z4). (Note that both the
KGC and the corresponding user knows DS) and the user with identity 1D 4

alone knows D ))

Set Full Public Key: The user with identity I D4 computes the public key
corresponding to his private key as described below:

— Compute g4 = gD( :

~ Make PK 4 = <PK§>,PK£§),PK§’),PK( )Y = (Y0, Ya1, da1, ga) public.

Now, any one can verify the public key by checking:

gPK(B) ? PK(z) Ho(IDA,PK PKY) 2)

It should be noted that there is no verification for PKXL).

New State Generation: Recall that the sender’s state information is not
known to any entity other than the sender himself. Let ¢ represent the index
of the current state and hence the current state will be referred as st;. The
sender generates the state information as follows:

— Choose r; €p Zy. Compute u; = F(g™) € Zg, si = riui mod ¢, v; = g*,
Wi = (PKS)yHMIDA,yAO))Si and w;y = (PKI(44))Si.
The state information st; = (u;, v;, 8;, Wi, Wiz, index).

Encryption: To encrypt a message m to a user with identity 1D 4, one has to
perform the following steps:
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— Compute ¢; = g%, co = u; ® G(IDa,c1,m,w;1, W2, index) and c3 = m @
H(IDg4,c1,co, w1, w;e, index)

Now, CT = {c1, ¢2, c3, index) is send as the ciphertext to the user A. To reuse
the state information st;, the sender has to just increment index and use st;,
It is not required to send the component c¢; throughout the session and hence
from the second encryption onwards the ciphertext size will be |g|+|m|+|index|
which is much less than |g|+|m|+|p| in the most efficient CLE [4] with ciphertext
verifiability.

It should be noted that the maximum number of encryptions to be performed
in a session will be determined by the sender. Thus, index is a user determined
integer value and to perform one million encryptions in a session, the value of
index may be utmost 22°. Hence, index may typically be a value from 1 <
index < 229 and thus of size less than 20-bits.

Decryption: The receiver with identity 1D 4 does the following to decrypt a
ciphertext CT = (¢, ¢, c3, index):
— Computew); = ¢} * andwl, =c;* ,m' = cg®H(IDa,c1,co, W}, w,, index)
and v’ = co ® G(ID 4, c1,m, W}y, Wiy, index)
/\—1
~ Check whether o/ = F (cgu ) ). If the check holds output m’, otherwise output
L. This check helps in identifying whether a ciphertext is well formed or not.

Correctness: We have to show that the u’1 computed by the decryption algorithm
? =
passes the verification test u’ = F(c(lu ) ), if v =u; = F(g™).

u/ -1 u/ -1 o u, 1 o u/ _1
RHS=F(")" ) = F!") ) = F(g= @)™y = F(grime)™)
=F(g") (If v = u;i = F(g™))

=u =LHS

Thus, the decryption will hold if v’ = u; = F(g").

3.1 Security Proof

To prove the confidentiality of a certificateless encryption scheme, it is required
to consider the attacks by Type-I and Type-II adversaries. In the two existing
secure schemes [11,18], the Type-I adversary is not allowed to extract the secret
value corresponding to the target identity. To capture the ability of the adversary
who can access the user secret keys of the target identity, we give access to the
user secret value of the target identity to the Type-I adversary. We also state
that, allowing the extract secret value query corresponding to the target identity
makes the security model for Type-I adversary more stronger. For a stateful
certificateless encryption scheme, the adversary may be interested in analyzing
the ciphertexts of different messages of his choice, encrypted during a particular
session. Since the adversary does not know the state information, the challenger
has to provide the encryption oracle to the adversary.
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Confidentiality Against Type-1 Adversary

Theorem 1. The stateful certificateless encryption scheme stCLE is IND-stCLE-
CCA2-I secure in the random oracle model, if the SDH problem is intractable.

Proof. The challenger C is challenged with an instance of the SDH problem, say
{g,9% ¢°) €r G and is given access to a Decision Diffie Hellman (DDH) oracle
DDH,.q(.,.) which on input ¢g° and g¢ outputs True if and only if g** = g°. The
challenger’s aim is to solve the SDH problem, which is to compute g? € G. In
our scheme Z; forms a group which can be represented as G. Let us consider that
there exists an adversary A; who is capable of breaking the IND-st CLE-CCA2-1
security of the stCLE scheme. C can make use of A; to compute g*® by playing
the following interactive game with A;.

Setup: C begins the game by setting up the system parameters as in the stCLE
scheme. C takes g and g® from the instance of the SDH problem sets y = g%
and sends params = (p,q,g,y) to As. This makes an implicit assignment to the
master private key as z = a, where C doenot know z. C also designs the five hash
functions F', G, H, H; and Hs as random oracles Or, Og, O, O, and Og,. C
maintains five lists Ly, Lg, Ly, Ly, and Ly, in order to consistently respond
to the queries to the random oracles O, Og, O, O, and O, respectively. To
maintain the consistency of the private key request and public key request oracle
queries, C maintains lists Lg and Lp respectively. A typical entity in list L; for
i ={F,G,H, H, Hy} will have the input parameters of the oracles, followed by
the corresponding hash value returned as the response to the hash oracle query.
The list Lg consists of the tuples of the form (ID;, D§1)7 D£2)> and that of Lp
consists of the tuples of the form (ID;, PKi(l), PKZQ)7 PKi(S), PKi(4))>. In order
to generate stateful encryptions, C generates 7 tuples of state informations and
stores them in a state list Lg. Each tuple in the list corresponds to a state
information. This is done as follows.
For each identity ID; created by A; and j = 1 to 7, C performs the following;:
— Choose r; €r Zy, compute k; = g7 , choose u; €g Z; and add the tuple
(kj,u;) in the list Lp.
— Compute s; = rju; and v; = g*.
— The state information st; = (ID;, u;,v;, s;, index;).
— Store the tuple st; in list L.

The game proceeds as described in the security model for Type-I adversary in
Sect. 2.3.

Phase I: A; performs a series of queries to the oracles provided by C. The
descriptions of the oracles and the responses given by C to the corresponding
oracle queries by A are described below:

Or(g™): For answering the Or query, C performs the following:

— If a tuple of the form (¢, u;) exists in the list Ly then C retrieves the corre-
sponding u; and sends it to Aj.
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— Else, C chooses u; €r Z, stores the tuple (9", u;) in the list Ly and sends wu;

to A

O¢(IDj, c1,m, w1, w;2,index): For answering the Og query, C performs the
following:

— If a tuple of the form (IDj, ¢1,m, w;1, w2, index, G) exists in the list Lg then
C retrieves the corresponding G and sends it to A;j.

— Else, C chooses G €r Zj, stores the tuple (IDj,c1,m, w;1,w;2,index, G) in
the list Lg and sends G to Ay

Owu(IDj,c1,c2,wi1, wiz,index): For answering the Oy query, C performs the
following:

— If a tuple of the form (ID;, ¢1, co, wi1, Wiz, index, H) exists in the list Ly then
C retrieves the corresponding H and sends it to Aj.

— Else, C chooses H € {0, 1}/, stores the tuple (IDj, ¢1, m, w;1, w;2, index, H)
in the list Lg and sends H to Ar

Op,(ID;,yio): To respond to this query, C checks whether a tuple of the form
(ID;, yio, hi1) exists in the list Ly, . If a tuple of this form exists, C returns the
corresponding h;1, else chooses hj; €r Z; and adds the tuple (ID;,yi0, hi1) to
the list Ly, and returns h;; to Aj.

On,(ID;, yi0, yi1): To respond to this query, C checks whether a tuple of the form
(ID;,Yi0,Yi1, hio) exists in the list Ly,. If a tuple of this form exists, C returns
the corresponding h;s, else chooses h;s €p ZZ, adds the tuple (ID;, .0, Yi1, hi2)
to the list Ly, and returns h;o to Aj.

ORequest Publickey(ID;): C selects a random index v, where 1 < v < gpg and C
does not reveal v to Aj. Here gpg is the maximum number of Request Public
Key oracle queries. When A; makes the v*" query on I D, C fixes ID., as target
identity for the challenge phase.

If a tuple of the form (ID;, PK", PK® PK® PK®™) exists in the list Lp,
return the items corresponding to the identity ID; in the list as the public
key. If a tuple does not exist, check whether i # ~. In this case, C queries
OpartialKeyEatract(ID;) and then retrieves the tuple of the form (ID;, PKi(l),

PKi(Q), PKi(g),PKi([l)) from the list Lp and returns it as the public key corre-
sponding to the identity ID;. If i = =y, then perform the following:

— Choose Si0,d;i1, hi1, hio, x; ER Z;

— Compute y;o = ¢°°, yi1 = g% (¢*)~ "2 and g; = g%i.

— Add the tuple (ID;, DY, D) = (ID;, -, ;) in the list Lg and add the tuple
(ID;, PK", PK® PK® PK™) = (ID;,yi0,yi1,di1,9;) to the list Lp.

— Add the tuple (ID;,y;0, hi1) to list Ly, and the tuple (ID;, 0, ¥i1, hi2) to
list LH2

~ Return (ID;, PK", PE® , PK® PK™) to A;.

h
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OpartialKeyEstract(ID;): In order to answer a query to the oracle, C checks
whether a tuple of the form (ID;, DEl) , D§2)> exists in the list Lg and if a tuple of
this form exists, C returns the corresponding Dgl). If it does not exist, C checks

whether i = ~v. If i ==, C Aborts the game. If i # -, C performs the following:

— Choose dio, di17 hi17 hig, J)l GR Z*.

— Compute yio = g% (g*) "1, yq = g% (¢°)7"2 and g; = g"'.

— Add the tuple (ID;, DV, D'®) = (ID;, dio, ;) in the list Lg and add the
tuple (ID;, PKY, PK®, PK( ). PK®™) = (ID;, yi0, i1, di1, g:) to the list
L

- Agd the tuple (ID;,y:0, hi1) to list Ly, and the tuple (ID;,v:0,yi1, hi2) to
list Ly,

— Return Dgl) to Aj.

OEztractSecretvalue(IDj): C retrieves the tuple of the form (ID;, d;o, ;) from the
list Lg and returns the corresponding x; as the secret value corresponding to
the identity ID;. If the entry corresponding to x; in the tuple is “—” then it
indicates the fact that A; has replaced the public key corresponding to ID;. By
the definition of the model, such queries by A; are not allowed and hence C can
ignore such queries.

OReplacePublickey (I Ds, PK;): To replace the public key of I D; with a new public
key PK, = (ID;, PEY', PK®' PK® PK®') sent by A, C updates the
corresponding tuples in the list Lp, only if PK; satisfies equation (2). If the
equation is not satisfied return Invalid.

OEneryption(ID;, stj, my): A; may perform encryption with respect to any state
information st;, chosen by C. C performs the following to encrypt the message
my, with respect to the state information st;, where j = 1 to n, where 7 is the
upper bound for the total number of states and £ = 1 to m is bound by the
maximum number of messages that can be encrypted in one session:

— Retrieves the tuple st; of the form (ID;,u;,v;, s;,index;) from L, sets
¢1 = vj, compute w;; = (PKi(l) hin)si and wjo = (PK(4))SJ

— Choose G €p Zy, store the tuple (ID;, ¢1,mi, wj1, wj2, index;, G) in the list
L¢g and computes cp = u; © G.

— Choose H € {0,1}m | store the tuple (ID;, c1,c2, wj1,wj2, index;, H) in the
list Ly and computes c3 = myi ® H.

— Returns ¢ = (¢, ¢, ¢3) as the ciphertext, increments index; and updates the
state information st;.

Opecryption(CT = (c1,¢2,c3,index), ID;, PK;): If i # , C performs decryption
in the normal way since C knows the private key corresponding to ID;. If i =,
C performs the following to decrypt the ciphertext CT = (cy, co, ¢3, index):

— Check the validity of PK; and reject the ciphertext CT if this check fails;
else, proceed.
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— Retrieve the tuples of the form (I D;, ¢1, m, w;1, w;2, index, G) and (ID;, ¢1, ca,
wj1, Wi, index, H) from the lists L and Ly respectively. Retrieve the tuple
(ID;,yi0, hs1) from the list Ly, .

— Compute a = (wﬂcl_s"")hi_l1 by taking the corresponding values from the
tuples retrieved in the above step.

— Check whether (g, ¢1, g%, o) is a valid DDH tuple using the DDH,, ,(., .) oracle.
If the oracle outputs true, proceed else reject the ciphertext CT.

— Compute m’ = c¢3 @ H and check whether m’ = m, where H and m are
retrieved from the lists Ly and Lg respectively. If m’ # m reject the cipher-
text CT.

— If the check holds, compute u' = co®G. Retrieve the tuple of the form (g™, u')

from the list Ly and check whether 011‘/71 L g"*. If the check does not hold
reject the ciphertext CT.

If any of the fetched tuple is not available in any of the lists or any of the tests
fails, returns Invalid else return m as the message.

Challenge: At the end of Phase I, A; produces two messages mg and my
of equal length and an identity ID*. C Aborts the game if ID* # ID., else
randomly chooses a bit § €g {0,1} and computes a ciphertext CT* with ID,
as the receiver by performing the following steps:

— Choose u €g Z; and add the tuple (g, u) to the list L.

— Set index* = 1 and compute ¢} = g**

— Retrieve the tuple of the form (ID*,dj,z*) from the list Lg and compute
wy = ()"

— Choose G €r Z, store the tuple (ID*, ¢, ms, —, w5, index*,G) in list Lg
and compute ¢5 =u® G.

— Choose ‘H €g {0,1}! store the tuple (ID*, ¢}, ms, —, wh, index*, H) in list
Ly and compute c§ = ms @ H.

— Here the state information st* = (ID* u* v*,s*, index*) = (ID*,u,g"", —,
index™*)

Now, CT* = (¢}, 3, ch, index™) is sent to Aj as the challenge ciphertext.

Phase II: A; performs the second phase of interaction, where it makes polyno-
mial number of queries to the oracles provided by C with the following conditions:

— Aj should not have queried the Strong Decryption oracle with (CT*, PK,,
ID,) as input. (It is to be noted that PK, is the public key corresponding
to ID. during the challenge phase. .A; can query the decryption oracle with
(CT*,PK*,1D,) as input, VPK* # PK,)

— Ay should not query the partial private key of ID,.

— Ay can query the secret value and PK,, of ID.,.

Encryption oracle has to be provided to A; with respect to the state informa-
tion st*. This is because, A; should have access to any number of ciphertexts
generated during this state. Moreover, the decryption oracle has to respond to
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decryption queries corresponding to any ciphertext generated during the state
st*. These two oracles are described here and all other oracles are same as in
Phase 1.

OEneryption(ID;, stj, my): For any state st; # st*, C performs the encryption as
in Phase I. If st; = st*, C performs the following to encrypt the message my
with respect to the state information st*.

— Retrieve the tuple st* of the form (ID*, u,¢", —, index*) from the list L,
set ¢; = g™

— Choose G €g Z;, store the tuple (ID*, ¢y, my, —, —, index*,G) in the list Lg
and computes co = u & G.
— Choose H €p {0,1}'™, store the tuple (ID*, ¢y, ¢, —, —, index*, H) in the

list Ly and computes c3 = my @ H.
— Returns ¢ = (¢1, ¢2, ¢3) as the ciphertext, increments index; and updates the
state information st;.

Opecryption(CT = (¢1, ¢z, c3,index), ID;, PK;): If i # « and ¢; # ¢}, C performs
decryption in the normal way since C knows the private key corresponding to I D;.
Ifi = v and ¢; # ¢}, C performs the decryption as in Phase . If i = v and ¢; = ¢}
then C performs the following. It should be noted that the state information st*
is with respect to the identity ID* and hence for all other identities, decryption
oracle proceeds as in Phase 1.

— Check the validity of PK; and reject the ciphertext CT if this check fails;
else, proceed.

— Retrieve the tuples of the form (ID*, ci,m,—, —, index*,G) and (ID*, ¢}, ca,
—,—,index, H) from the lists Ls and Lpy respectively. Retrieve the tuple
<ID1, Yi0, h11> from the list LH1 .

— Compute m’ = c3 ® H and check whether m’ = m, where H and m are
retrieved from the lists Ly and Lg respectively. If m’ # m reject the cipher-
text CT. Note that C can even work consistently with the tuples of this form.
In this case, C takes the values G and ‘H without consulting the DDH oracle
because these tuples were generated by C without knowing the values of wy
and w3.

— Compute v’ = co @ G. Retrieve the tuple of the form (¢™,u’) from the list
Lr and check whether cf“kl = ¢". If the check does not hold reject the
ciphertext C'T.

— If in the process of finding out the tuples of the form (ID*, ¢}, m,w;,w;,
index*,G) and (ID*, ¢}, c5, wi, wi,index*, H) appeared in the lists Lg and
Ly respectively then retrieve the tuple (ID*,yg, h%) from the list Ly,, com-

pute o = (741’1kc’1‘_85)h91f71 by taking the corresponding values from the tuples

retrieved in the above step and check whether (g, ¢}, g% «) is a valid DDH
tuple using the DDH, ,(.,.) oracle. If the oracle outputs true, output « as
the solution to the SDH problem instance.

If any tuple is not available in any of the lists or any of the tests fails, returns
Invalid.
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Guess: At the end of Phase II, A; produces a bit ¢’ to C, C performs the
following to output the solution for the SDH problem instance.

— Retrieve the tuple (ID*,yg, hi) from the list Ly, .

— For each tuple of the form (ID*, ¢}, m,w}, w3, index*, G) and (ID*, ¢}, ¢, wy,
w3, index*, H) in the lists Lg and Ly, compute a = (wie;~*0)h
the corresponding values from the tuples.

— Check whether (g, ¢}, g%, ) is a valid DDH tuple using the DDH,, ,(., .) oracle.
If the oracle outputs true, output a as the solution to the SDH problem

instance.

by taking

Thus, C obtains the solution to the SDH problem with almost the same
advantage of A; in the IND-stCLE-CCA2-I game. O

Analysis: We now derive the advantage of C in solving the SDH problem using
the adversary A;. The simulations of F', G, H, H; and Hs clearly shows that
the hash oracles are perfectly random. Let € be the non-negligible advantage of
Aj in winning the IND-st CLE-CCA2-1 game.

The events in which C aborts the game and the respective probabilities are given
below:

1. &1 - The event in which A; queries the partial private key of ID,.
2. & - The event in which 1D, is not chosen as the target identity by .A; for
the challenge.

Suppose, A; has asked gpx queries to the OprequestPublickey Oracle and gp
queries to the OpartiaikeyEatract Oracle. Let us consider that there are a total
of qr individual identities, where q; < gpx + gp queried by A; to these oracles,
then:

Pr[&]= % and Pr[&]=1- ——.
qr qr—4qp
Therefore,

Pr[-abort]=[-&1 A ~&]= {1 — q—P} . {1 -1-—1_|=1.

qr ar—qr | a1

Therefore, the advantage of C solving the SDH problem is ¢ > (eq%) Since €

is assumed to be non-negligible and fraclq; is also non-negligible, ¢’ will be non-
negligible. This contradicts the assumption that there is no polynomial time algo-
rithm to solve the SDH problem. Thus, we conclude that there does not exist a
polynomial time adversary that can break the IND-stCLE-CCAZ2-I security of the
stCLE scheme.

Confidentiality Against Type-II Adversary

Theorem 2. Our certificateless public key encryption scheme stCLE is IND-
stCLE-CCAZ-1I secure in the random oracle model, if the SDH problem is
intractable.

The proof of this theorem is omitted here due to page limitation and will appear
in the full version of the paper.



148 S. Sree Vivek

4 Conclusion

In this paper, we have proposed the first stateful certificateless PKE scheme.
We have formally proved the scheme in the random oracle model assuming the
strongest adversary. Our scheme finds straightforward application in secure shar-
ing of encrypted cloud data with a very minimum cost. Assuming the security
aspects, all the files of a user stored in the cloud are encrypted with unique
symmetric keys. The existing method is to use a PKE scheme and encrypt the
symmetric keys to the receiver. The receiver on receiving the encrypted keys
can decrypt them using his private key and use them to decrypt the actual file
from the downloaded ciphertext. Our approach reduces the cost of performing
this encryption of symmetric keys from O(k) to O(1) exponentiations. This effi-
ciency come because our scheme is stateful, which suits for resource constrained
devices such as cell phones, personal digital assistants, tablets, wearables and
sensors, where each exponentiation costs on the battery life of the device.
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