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Foreword

The present volume is the outcome of the 8th International Conference on Security for
Information Technology and Communications that comes in a long series of successful
events starting in 2008. This conference series was founded to foster novel and exciting
research in this area and to help generate new directions for further research and
development.

Information and Communications Technologies (ICT) encourage globalization,
exchange of information, and the proliferation of cyber space. The advantages of using
these technologies are immense but, alongside opportunities, a broad range of issues
and drawbacks have limited to some extent the full extraction of benefits from ICT use.
One of the main issues with ICT today is security, which has to deal with the flour-
ishing of a myriad electronic attacks, malware, vulnerabilities, and intrusions in the
domain of information and communications technologies.

For seven years, SECITC has brought together computer security researchers,
cryptographers, industry representatives, and graduate students. One of SECITC’s
primary goals is to gather researchers from different communities and provide a forum
allowing for the informal exchanges necessary for the emergence of new scientific
collaborations. Special attention was devoted to young researchers, master and Ph
students, with scientific interests in the field of information security, cyber defense,
cryptography, and communications and network security.

The initial concept of SECITC arose from a teaching and research collaboration
between the two co-founder universities, Military Technical Academy and Bucharest
University of Economic Studies, which was meant to highlight the increasing impor-
tance of computer and information security. This was followed by discussions with a
number of fellow cyber security researchers. Their enthusiastic encouragement per-
suaded the co-founder universities to move ahead with the daunting task of creating a
high-quality conference.

The organization of a conference like SECITC requires the collaboration of many
individuals. First of all, we would like to thank the authors and the keynote speakers for
graciously accepting our invitation. We express our gratitude to the Program Com-
mittee members and external reviewers for their efforts in reviewing the papers,
engaging in active online discussion during the selection process, and providing
valuable feedback to authors. Last but not least, we would like to thank the two
co-chairs of the conference, Prof. David Naccache and Dr. Emil Simion for their
special effort to ensure the scientific high quality of our conference.

November 2015 Victor-Valeriu Patriciu



Preface

This volume contains the papers presented at SECITC 2015, the 8th International
Conference on Security for Information Technology and Communications
(www.secitc.eu), held during June 11–12, 2015, in Bucharest.

There were 34 submissions and each submitted paper was reviewed by at least three
Program Committee members. The committee decided to accept 15 papers, and the
program also included three invited guest speakers.

For seven years SECITC has been bringing together computer security researchers,
cryptographers, industry representatives, and graduate students. The conference focu-
ses on research on any aspect of security and cryptography. The papers present
advances in the theory, design, implementation, analysis, verification, or evaluation of
secure systems and algorithms.

One of SECITC’s primary goals is to bring together researchers belonging to dif-
ferent communities and provide a forum that facilitates the informal exchanges nec-
essary for the emergence of new scientific collaborations. We would like to
acknowledge the work of the Program Committee, whose great efforts provided a
proper framework for the selection of the papers.

The conference was organised by Advanced Technologies Institute, Bucharest
University of Academic Studies and Military Technical Academy.

May 2015 Ion Bica
David Naccache

Emil Simion

http://www.secitc.eu
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Invited Talks



Authenticated-Encryption: Security Notions,
Designs and Applications

Reza Reyhanitabar

EPFL, Switzerland

Abstract. Practical applications of symmetric-key encryption usually aim for
two complementary data security properties: confidentiality (privacy) and
authenticity (integrity). Yet classical encryption modes such as CBC solely
provide confidentiality; hence, are an inadequate tool of a very limited utility
unless combined appropriately with an additional cryptographic primitive called
a message authentication code (MAC).

An authenticated encryption (AE) scheme simultaneously provides confi-
dentiality and authenticity. The historically popular generic composition para-
digm to build an AE scheme by combining two separate primitives, one to
ensure confidentiality and another to guarantee authenticity, is neither most
efficient nor most robust to implementation errors. This motivated the emer-
gence of dedicated AE designs. AE has been studied for over a decade, yet
remains a highly active and interesting area of research as evidenced by the
currently running CAESAR competition by the cryptographic community. The
competition aims to boost public discussions towards a better understanding of
AE designs and to identify a portfolio of next-generation AE schemes by 2017.

In this talk we will explore the historical development of AE as a crypto-
graphic goal and different methods to achieve this goal. I will start by explaining
some of the failed attempts to use encryption-with-redundancy mechanisms; for
example, the CBCC scheme (CBC encryption with the XOR of the message
blocks as the checksum). Then I will talk about the emergence of AE as a
formally defined security notion in its own right in 2000. We will explore the
generic composition paradigm to achieve the AE goal. I will then look at the
evolution of dedicated AE designs, offering better efficiency and usability
compared to generic composition, from the introduction of RPC, IAPM, XCBC
and OCB in 2001 to the currently running CAESAR competition with 57
algorithms as its first-round submissions.

Importance of useable AE to practice, and to some extent, difficulty of
getting it right, is evident from the number of standards in which different AE
constructions have been specified (such as IEEE 802.11i, NIST SP 800-38D,
ANSI C12.22, and ISO/IEC 19772:2009) as well as widely-deployed standard
protocols that employ AE schemes (such as IPsec, SSH, SSL/TLS). Finally, we
will look at these standards.

Keywords: Authenticated encryption � Security notions � Provable security �
Generic composition � Dedictaed AE designs � CAESAR competition.



New Results on Identity-Based Encryption
from Quadratic Residuosity

Ferucio Laurenţiu Ţiplea1 and Emil Simion2

1 Department of Computer Science, “Al.I.Cuza” University of Iaşi,
700506 Iaşi, Romania

fltiplea@info.uaic.ro
2 Advanced Technologies Institute, Bucharest, Romania,

ati@dcti.ro

Abstract. This invited talk surveys the results obtained so far in designing
identity-based encryption (IBE) schemes based on the quadratic residuosity
assumption (QRA). We begin by describing the first such scheme due to Cocks,
and then we advance to the novel idea of Boneh, Gentry and Hamburg. Major
improvements of the Boneh-Gentry-Hamburg scheme are then recalled. The
recently revealed algebraic torus structures of the Cocks scheme allows for a
better understanding of this scheme, as well as for new applications of it such as
homomorphic and anonymous variants of it.

Identity-based encryption (IBE) was proposed in 1984 by Adi Shamir [10] who for-
mulated its basic principles but he was unable to provide a solution to it, except for an
identity-based signature scheme. Sakai, Ohgishi, and Kasahara [9] have proposed in
2000 an identity-based key agreement scheme and, one year later, Cocks [4] and Boneh
and Franklin [1] have proposed the first IBE schemes. Cocks’ solution is based on
quadratic residues. It encrypts a message bit by bit and requires 2 log n bits of
cipher-text per bit of plain-text. The scheme is quite fast but its main disadvantage is
the ciphertext expansion. Boneh and Franklin’s solution is based on bilinear maps.
Moreover, Boneh and Franklin also proposed a formal security model for IBE,
and proved that their scheme is secure under the Bilinear Diffie-Hellman (BDH)
assumption.

The Cocks scheme [4] is very elegant and per se revolutionary. It is based on the
standard QRA modulo an RSA composite. The scheme encrypts one bit at a time. The
bits are considered to be exactly the two values (i.e., �1 and 1) of the Jacobi symbol
modulo an RSA modulus n, when applied to an integer non-divisible by n. Thus, if
Alice wants to send a bit b 2 f�1; 1g to Bob, she randomly generates an integer t with
the Jacobi symbol b modulo n, hides t into a new message s ¼ tþ at�1 mod n obtained
by means of Bob’s identity a, and sends s to Bob. The decryption depends on whether
a is a quadratic residue or not modulo n. As neither Alice nor Bob knows whether a is a
quadratic residue or not, Alice repeats the procedure above with another integer t0

whose Jacobi symbol modulo n is b, and sends s0 ¼ t0 � at0�1 mod n as well. Now, Bob

Work partially supported by the Romanian National Authority for Scientific Research (CNCS-
UEFISCDI) under the project PN-II-PT-PCCA-2013-4-1651.



can easily decrypt by using a private key obtained from the key generator, because
either a or �a is a quadratic residue modulo n. It can be shown that the Cocks IBE
scheme is IND-ID-CPA secure in the random oracle model under the QRA.

The main disadvantage regarding the efficiency of the Cocks scheme consists of the
fact that it encrypts one bit by 2 log n bits. A very interesting idea proposed by Boneh,
Gentry and Hamburg [2] is to encrypts a stream of bits by multiplying each of them by
an Jacobi symbol randomly generated. The generation of these new Jacobi symbols are
based on the equation ax2 þ Sy2 � 1 mod n. Any solution to this congruential equation
leads to two polynomials f and g with the property that gðsÞ and f ðrÞ have the same
Jacobi symbol modulo n, for any square root s of S and any square root r of a.
Therefore, g can be used to encrypt one bit, while f can be used to decrypt it. If the
solutions of the above congruential equation can be obtained by a deterministic
algorithm, then the decryptor knows how to decryt the ciphertext. Therefore, in order to
send an ‘-bit message to Bob, Alice has to solve 2‘ equations as above (two equations
for each bit, one for Bob’s identity a and the other one for �a), while the decryptor
needs to solve only ‘ equations. The ciphertext size is 2‘þ log n bits. Some
improvements at the sender side reduces the number of equations to be solved by the
encryptor to ‘þ 1.

An important improvement of the Boneh-Gentry-Hamburg (BGH) scheme was
proposed later by Jhanwar and Barua [7]. The improvement works in two directions:
improve the time complexity of the algorithm to solve equations ax2 þ Sy2 � 1 mod n,
and reduce the number of equations to be solved. The first improvement is based on a
careful analysis of the solutions of the equation ax2 þ Sy2 � 1 mod n. Thus, an efficient
probabilist algorithm is developed to randomly generate solutions of such an equation.
The second improvement is based on a composition formula according to which two
solutions can be combined in some way to obtain a new solution. Therefore, to encrypt
an ‘-bit message, only 2

ffiffi

‘
p

equations need to be solved. Unfortunately, the proba-
bilistic nature of the algorithm by which solutions are obtained leads to a ciphertext
larger than in the case of the BGH scheme, namely 2‘þ 2

ffiffi

‘
p

log n bits. The Jhanwar-
Barua (JB) scheme was revisited in [6], where some errors were corrected; unfortu-
nately, the security was not sufficiently argued as it was later remarked in [5].
Moreover, [5] also proposes an improvement by which the number of equations needed
to be solved by Alice is reduced to 2 log ‘. The ciphertext size is also reduced to
2‘þ 2ðlog ‘Þðlog nÞ bits.

It is well-known that the Cocks scheme is not anonymous [2]. Several researchers
tried to extend this scheme to offer identity anonymity; usually, such extensions are
based on creating lists of ciphertext so that the identity becomes hidden in the lists. This
approach gives rise to very large ciphertexts. It was also a believe that the Cocks
scheme does not have homomorphic properties. A very recent result [8] rehabilitates
the Cocks scheme with respect to these two weaknesses. Joye [8] identified the alge-
braic structure of the Cocks ciphertexts: he proved that these are squares in a torus like
structure, and form a quasi-group. The underlying group law is the operation needed on
ciphertexts to show that the Cocks scheme is homomorphic when the operation on clear
messages is the multiplication. Therefore, the Cocks scheme offer homomorphic
properties. Another important consequence obtained in [8] is about the anonymity

New Results on Identity-Based Encryption XV



of the Cocks scheme. It was shown that a different way of computing the ciphertext,
without expansion, leads to identity anonymity.

A very interesting question is whether high order Jacobi symbols can be used in the
Cocks scheme in order to encrypt more than one bit at a time. A first attempt to do that
is the one in [3]. Unfortunately, the only secure scheme proposed in [3] suffers from
massive ciphertext expansion.
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Efficient Techniques for Extracting Secrets
from Electronic Devices

Marios Choudary

University Politehnica of Bucharest
marios.choudary@cs.pub.ro

Summary

Smartcards, such as those provided to their customers by many banks across the world,
use a microcontroller to encrypt or decrypt data, in order to authenticate a person (e.g.
verify a PIN) or a transaction (e.g. generate an electronic transaction certificate), based
on a secret key stored in the microcontroller. However, the physical implementation of
a microcontroller leaks information via a side-channel, such as the power-supply
current or electromagnetic emanations. This leakage may allow an attacker to recover
the secret key of a microcontroller, and use that to generate valid certificates for
unlawful commercial transactions. To reduce this threat, microcontrollers used in the
smartcards provided by banks have several layers of countermeasures to limit the
amount of side-channel information available to an attacker. But, to develop efficient
countermeasures, and to have a correct assessment of the level of security provided by
such smartcards, it is important to have a good understanding of the potential of
side-channel attacks.

Along the search for better cryptosystems during the two World Wars, to encrypt
messages over a particular communication channel, the military discovered the pos-
sibility of “listening” to the main communication channel by means of another,
unintentional, channel, known as the side-channel. As Kuhn [11, Section 1.1.1] and
Markettos [12, Section 2.11.1] describe in more detail, there were many such cases
during the past century. Among the first known cases, during the First World War, the
Germans were able to retrieve the communications of enemy troops, by analysing the
earth return-current of the single-wire telegraph system used by those troops [1].
Another important case, this time involving a cryptosystem, was the side-channel
analysis performed by British intelligence on the French embassy in London, around
1960–1963 [14]. MI5 and GCHQ scientists used a broad-band radio-frequency tap on
the communication line used by the French embassy to transmit information, encrypted
using a low-grade cipher, in the hope of obtaining partial information of the plaintext,
that may leak into the channel. It turned out that they were indeed able to retrieve the
plaintext of the communication encrypted using the low-grade cipher. Furthermore,
they were also able to retrieve a secondary signal, corresponding to the plaintext of a
high-grade encrypted communication, which leaked somehow (e.g. via electro-
magnetic cross-talk) into the low-grade channel.

While the previous attacks showed that it was possible to use side-channel leakage,
such as the signal recovered by the British intelligence, to recover the plaintext mes-
sage, the publication of side-channel attacks against the cryptosystem itself, e.g. to



recover the secret key, came much later. Probably the first such publication was the
paper by Paul Kocher in 1996 [10], describing the use of timing information to
determine the private-key used by the RSA cryptosystem. Kocher’s timing attack
exploited the fact that the time needed to perform the modular multiplication and
exponentiation operations, used by the RSA cryptosystem, depended on the value
of the private key bits.

Two years later, in 1998, Kocher, Jaffe and Jun published another side-channel
attack, known as Differential Power Analysis (DPA) [9], which exploited the monitored
power consumption of a microcontroller executing DES encryptions, to determine the
secret key used with DES. This publication marked a very important point in history,
since a cryptosystem such as DES, which was considered secure against all known
cryptanalytic attacks, and was even designed to resist the differential cryptanalysis
attacks discovered by Biham and Shamir [2] after its publication, could be easily
broken (i.e. we could recover the secret key), when implemented on a physical device
accessible to an attacker. This had important consequences for the pay-TV industry,
and later for the banking industry as well, who provided their customers with a
microcontroller (in the form of a smartcard), in order to authenticate them, by using
their smartcard to perform some encryption using a cryptosystem such as DES. After
the publication of DPA, this technique has also been used with the electromagnetic
emissions of microcontrollers [8], [13], and was also immediately analysed for the case
of AES [3].

In 2002, Suresh Chari, Rao Josyula and Pankaj Rohatgi presented a very powerful
method, known as the Template Attack [4], to infer secret values processed by a
microcontroller, by analysing its power-supply current, generally known as its
side-channel leakage. This attack uses a profiling step to compute the parameters of a
multivariate normal distribution from the leakage of a training device, and an attack
step in which these parameters are used to infer a secret value (e.g. cryptographic key)
from the leakage of a target device. This has important implications for many indus-
tries, such as pay-TV or banking, that use a microcontroller executing a cryptographic
algorithm to authenticate their customers.

In this presentation I shall provide an introduction in this interesting field of
side-channel attacks, including the Differential Power Analysis and Template attacks.
Then, I shall briefly discuss some of my research on obtaining efficient implementa-
tions of the Template attack that can push its limits further, by using multivariate
statistical analysis techniques to: a) determine almost perfectly an 8-bit target value,
even when this value is manipulated by a single LOAD instruction [6]; b) cope with
variability caused by the use of either different devices or different acquisition cam-
paigns [7]; c) speed-up the profiling phase of template attacks, resulting in the most
efficient kind of template attacks [5].
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Secure and Trusted Application Execution
on Embedded Devices

Konstantinos Markantonakis, Raja Naeem Akram,
and Mehari G. Msgna

Information Security Group, Smart Card Centre, Royal Holloway,
University of London, UK

{k.markantonakis,r.n.akram,

mehari.msgna.2011}@rhul.ac.uk

Abstract. Embedded devices have permeated into our daily lives and significant
day-to-day mundane tasks involve a number of embedded systems. These
include smart cards, sensors in vehicles and industrial automation systems.
Satisfying the requirements for trusted, reliable and secure embedded devices is
more vital than ever before. This urgency is also strengthened further by the
potential advent of the Internet of Things and Cyber-Physical Systems. As our
reliance on these devices is increasing, the significance of potential threats
should not be underestimated, especially as a number of embedded devices are
built to operate in malicious environments, where they might be in the pos-
session of an attacker. The challenge to build secure and trusted embedded
devices is paramount. In this paper, we examine the security threats to
embedded devices along with the associated prevention mechanisms. We also
present a holistic approach to the security and trust of embedded devices, from
the hardware design, reliability and trust of the runtime environment to the
integrity and trustworthiness of the executing applications. The proposed pro-
tection mechanisms provide a high degree of security at a minimal computa-
tional cost. Such an agnostic view on the security and trust of the embedded
devices can be pivotal in their adoption and trust acquisition from the general
public and service providers.
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Abstract. In this paper we describe a new error-correcting code (ECC) inspired
by the Naccache-Stern cryptosystem. While by far less efficient than Turbo
codes, the proposed ECC happens to be more efficient than some established
ECCs for certain sets of parameters.

The new ECC adds an appendix to the message. The appendix is the
modular product of small primes representing the message bits. The receiver
recomputes the product and detects transmission errors using modular division
and lattice reduction.



Contents

Invited Talks

Secure and Trusted Application Execution on Embedded Devices . . . . . . . . . 3
Konstantinos Markantonakis, Raja Naeem Akram,
and Mehari G. Msgna

A Number-Theoretic Error-Correcting Code . . . . . . . . . . . . . . . . . . . . . . . . 25
Eric Brier, Jean-Sébastien Coron, Rémi Géraud, Diana Maimuţ,
and David Naccache

Cryptographic Algorithms and Protocols

Full Duplex OTP Cryptosystem Based on DNA Key for Text
Transmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Dumitru Balanici, Vlad Tomsa, Monica Borda, and Raul Malutan

Evaluation of Lightweight Block Ciphers for Embedded Systems . . . . . . . . . 49
Oana Barahtian, Mihai Cuciuc, Lucian Petcana, Cătălin Leordeanu,
and Valentin Cristea

CART Versus CHAID Behavioral Biometric Parameter Segmentation
Analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Ionela Roxana Glăvan, Daniel Petcu, and Emil Simion

SCA Resistance Analysis on FPGA Implementations of Sponge Based
MAC� PHOTON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

N. Nalla Anandakumar

A Novel Fast and Secure Chaos-Based Algorithm for Image Encryption . . . . 87
Jean De Dieu Nkapkop, Joseph Yves Effa, Monica Borda,
and Romulus Terebes

A Novel Key Management for Virtually Limitless Key Size . . . . . . . . . . . . . 102
Damir Omerasevic, Narcis Behlilovic, and Sasa Mrdovic

Efficient Montgomery Multiplication on GPUs . . . . . . . . . . . . . . . . . . . . . . 119
Nicolae Roşia, Virgil Cervicescu, and Mihai Togan

Stateful Certificateless Public Key Encryption with Application in Public
Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

S. Sree Vivek

http://dx.doi.org/10.1007/978-3-319-27179-8_1
http://dx.doi.org/10.1007/978-3-319-27179-8_2
http://dx.doi.org/10.1007/978-3-319-27179-8_3
http://dx.doi.org/10.1007/978-3-319-27179-8_3
http://dx.doi.org/10.1007/978-3-319-27179-8_4
http://dx.doi.org/10.1007/978-3-319-27179-8_5
http://dx.doi.org/10.1007/978-3-319-27179-8_5
http://dx.doi.org/10.1007/978-3-319-27179-8_6
http://dx.doi.org/10.1007/978-3-319-27179-8_7
http://dx.doi.org/10.1007/978-3-319-27179-8_8
http://dx.doi.org/10.1007/978-3-319-27179-8_9
http://dx.doi.org/10.1007/978-3-319-27179-8_10
http://dx.doi.org/10.1007/978-3-319-27179-8_10


Applying Cryptographic Acceleration Techniques to Error Correction . . . . . . 150
Rémi Géraud, Diana-Ştefania Maimuţ, David Naccache,
Rodrigo Portella do Canto, and Emil Simion

Security Technologies for ITC

A Cooperative Black Hole Node Detection and Mitigation Approach
for MANETs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

Vimal Kumar and Rakesh Kumar

Up-High to Down-Low: Applying Machine Learning to an Exploit
Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Yisroel Mirsky, Noam Gross, and Asaf Shabtai

Detecting Computers in Cyber Space Maliciously Exploited
as SSH Proxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

Idan Morad and Asaf Shabtai

On a Lightweight Authentication Protocol for RFID . . . . . . . . . . . . . . . . . . 212
George-Daniel Năstase and Ferucio Laurenţiu Ţiplea

Spam Filtering Using Automated Classifying Services over a Cloud
Computing Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Alecsandru Pătraşcu, Ion Bica, and Victor Valeriu Patriciu

Contributions to Steganographic Techniques on Mobile Devices . . . . . . . . . . 242
Dominic Bucerzan and Crina Raţiu

Secure Implementation of Stream Cipher: Trivium . . . . . . . . . . . . . . . . . . . 253
Dillibabu Shanmugam and Suganya Annadurai

Fast Searching in Image Databases Using Multi-index Robust
Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Cezar Pleşca, Luciana Morogan, and Mihai Togan

Erratum to: Up-High to Down-Low: Applying Machine Learning
to an Exploit Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E1

Yisroel Mirsky, Noam Gross, and Asaf Shabtai

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

XXIV Contents

http://dx.doi.org/10.1007/978-3-319-27179-8_11
http://dx.doi.org/10.1007/978-3-319-27179-8_12
http://dx.doi.org/10.1007/978-3-319-27179-8_12
http://dx.doi.org/10.1007/978-3-319-27179-8_13
http://dx.doi.org/10.1007/978-3-319-27179-8_13
http://dx.doi.org/10.1007/978-3-319-27179-8_14
http://dx.doi.org/10.1007/978-3-319-27179-8_14
http://dx.doi.org/10.1007/978-3-319-27179-8_15
http://dx.doi.org/10.1007/978-3-319-27179-8_16
http://dx.doi.org/10.1007/978-3-319-27179-8_16
http://dx.doi.org/10.1007/978-3-319-27179-8_17
http://dx.doi.org/10.1007/978-3-319-27179-8_18
http://dx.doi.org/10.1007/978-3-319-27179-8_19
http://dx.doi.org/10.1007/978-3-319-27179-8_19


Invited Talks



Secure and Trusted Application Execution
on Embedded Devices

Konstantinos Markantonakis, Raja Naeem Akram(B), and Mehari G. Msgna

Information Security Group, Smart Card Centre, Royal Holloway,
University of London, Egham, UK

{k.markantonakis,r.n.akram,mehari.msgna.2011}@rhul.ac.uk

Abstract. Embedded devices have permeated into our daily lives and
significant day-to-day mundane tasks involve a number of embedded
systems. These include smart cards, sensors in vehicles and industrial
automation systems. Satisfying the requirements for trusted, reliable and
secure embedded devices is more vital than ever before. This urgency
is also strengthened further by the potential advent of the Internet of
Things and Cyber-Physical Systems. As our reliance on these devices is
increasing, the significance of potential threats should not be underesti-
mated, especially as a number of embedded devices are built to operate
in malicious environments, where they might be in the possession of an
attacker. The challenge to build secure and trusted embedded devices
is paramount. In this paper, we examine the security threats to embed-
ded devices along with the associated prevention mechanisms. We also
present a holistic approach to the security and trust of embedded devices,
from the hardware design, reliability and trust of the runtime environ-
ment to the integrity and trustworthiness of the executing applications.
The proposed protection mechanisms provide a high degree of security
at a minimal computational cost. Such an agnostic view on the security
and trust of the embedded devices can be pivotal in their adoption and
trust acquisition from the general public and service providers.

Keywords: Smart cards · Fault attacks · Runtime attacks · Hardware
security · Runtime security · Trusted platform · Trusted execution ·
Trojans · Counterfeit products

1 Introduction

Embedded devices provide a computing environment that is miniaturised to fit
in as part of a much larger systems. For example, a smart phone, modern car and
aircraft might have number of embedded devices interconnected with each other
to perform associated tasks. The deployment of embedded devices is steadily
increasing and the advent of the Internet of Things (IoTs) and Cyber Physical
Systems (CPS) will make them closely integrated into almost every aspect of
our lives.

c© Springer International Publishing Switzerland 2015
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These embedded devices must provide highly reliable and deterministic ser-
vices – some of which might even be crucial to the health and safety of an
individual or a community. Examples of such deployments can be the embedded
devices used in the health sector, vehicles and industrial systems. Therefore, such
devices have to not only provide efficient and reliable services in difficult oper-
ational environments but also provide a degree of security and trustworthiness.
The level of security and trustworthiness is obviously dictated by the nature of
the overall system that the embedded devices are going to integrate with.

Having computational and in certain cases operational restrictions, embedded
devices not only have to protect against software based attacks, but also hard-
ware modifications and a combination of the both. Furthermore, such devices
are mostly deployed in operational environments where they are easily accessi-
ble to the malicious users. Therefore, being small, less powerful and adhering
to very stringent performance and economical costs — they are still required to
be reliable, secure and trusted. These are the major challenges that embedded
devices have to meet.

In addition to the security and reliability of such devices, another important
aspect is the genuineness of the device. The genuineness problem has two aspects,
which are raised due to the increased demand in outsourcing of the chip/device
fabrication to (external/foreign) foundries. These foundries can inject hardware
Trojans to the original design of the device. In addition, the foundry can also
create counterfeit devices. Therefore, any organisations receiving these devices
need to have a high assurance and capability to validate that these devices are
legitimate and not tampered with. We term this is a problem of genuineness of
the embedded devices.

In this paper, we will investigate the state-of-the-art of the threat and security
in the embedded computing field along with examining proposals that cover the
embedded device’s security, trust and genuineness.

2 Embedded Computing’s Security Challenges

In this section, we try to briefly answer two questions, firstly why security and
reliability is essential for the embedded devices, and secondly what security
threats are posed to embedded devices.

2.1 Rationale for Security Considerations

In the last few decades, embedded devices have proliferated into almost every
computing and industrial system. A most common example of the embedded
device with which most of the public might be familiar with is “smart cards”.
These devices are issues to individual users by organisations, so the individuals
can access the organisation’s services in a secure and reliable manner. Envi-
ronments these smart cards are deployed in include mobile telecommunication,
banking and access control, to name a few. We appreciate further that failure
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to the respective organisations services might result in potential monetary, rep-
utation and even physical harm in certain cases.

Another example to understand the necessity of the security and reliability
of embedded devices can be in automotive industry. Security of the Electronic
Control Unit (ECU) plays a crucial role to ensure the safety and reliability of
the car. These ECUs are embedded devices used to control different (crucial)
operations in a car. In modern cars, there can be 70 ECUs [33] and if any of
them can be compromised, the safety of the car and passengers may be at risk.

Embedded devices are tiny electronic chips that perform multitude of tasks
in high-tech systems. These devices are present in electronic equipment ranging
from microwave oven to high-speed railway systems, nuclear plants, and aero-
planes etc. A failure of a single device has the potential to damage the overall
system. Such failures can lead to disastrous consequences, as revealed by the U.S.
Senate Committee on Armed Services that identified suspected components in
the CH-46 Sea Knight helicopter, C-17 military transport aircraft, P-8A Posei-
don sub hunter and F-16 fighter jet [10]. Multi-million dollar defence equipment
reliability might be compromised by a $2 insecure and counterfeit embedded
device. As estimated by the Semiconductor Industry Association (SIA) in 2013,
the cost of counterfeit embedded devices is at US $7.5 billion per year [11].
The problem is by no means localised only affecting certain areas but a global
issue. There are number of high profile cases [10] that came to light that identi-
fied sub-standard embedded devices in military equipment because of stringent
safety testing. In commercial environments, the problem is perceived to be higher
in magnitude than the military.

From the discussion in this section we can conclude that not only the security
and reliability of these embedded devices is crucial but also the genuineness. In
subsequent sections we will discuss different threats posed to the embedded
systems.

2.2 Threat Model for Embedded Devices

In this section, we discuss the threat model in relation to the embedded devices.
Embedded devices can be in the hands of an adversary; therefore, he or she has
the potential to attack the devices in every conceivable way ranging from hard-
ware intrusions to introducing malicious applications/code. From an adversary’s
point of view, he or she might target:

1. Hardware platform.
2. Permanent data (saved in the devices, which can include cryptographic keys).
3. Runtime data.
4. Control flow of the program (i.e. to interfere with the execution of an appli-

cation).

The above list of potential targets is just a subset of attributes that an
adversary might try to focus on during his or her attack. It is by no means an
exhaustive list and should be taken as an example of potential targets.
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2.3 Hardware Attacks

In these types of attacks, an adversary tries to alter the silicon design of an embed-
ded device. This attack requires a high level of knowledge of the hardware design
and specialised equipment that could be used to change the circuit on the silicon.
However, these attacks are very powerful as it would be extremely challenging for
any software based protection mechanism to provide protection against them.

Furthermore, another facet of the hardware attacks includes the malicious
changes to chip design during the manufacturing stage. In this case, when the
manufacturing of the devices is outsourced, the foundry can potentially introduce
malicious designs that act as hardware Trojans.

As countermeasures to these attacks, the chip designer can include:

1. Smaller circuitry: Reducing the size makes physical attacks more difficult.
2. Hiding the bus: Glue logic and placing bus lines on lower layers of the circuitry

of the chip.
3. Scramble bus lines: Communication buses can be scrambled in static, chip-

specific or session-specific manner. The scrambling of the communication
buses is carried out in order to make the function of individual silicon con-
nections in a communication bus not apparent to the adversary (hidden).

4. Tamper-resistance: Placing sensors to detect physical perturbation and kill
the device as a result.

2.4 Attacks on Persistent Storage

Data stored in persistent memory can include sensitive information, including
passwords, Personal Identification Number (PIN), and cryptographic keys. In
addition to data, proprietary application code and/or algorithm might also be
stored on the persistent memory. Therefore, the persistent memory is like a
treasure trove for an adversary. There are several potential ways an adversary
can read the persistent storage that might include:

– Reading the memory via directly tapping into the storage locations and/or
communication buses.

– Exploiting a potential bug/vulnerability in the sandboxing mechanism of the
runtime environment, which might lead to a malicious application reading the
entire persistent memory.

– Using side channel leakages to infer the data.

As a security designer, to protect against potential attacks on the persistent
storage, set of comprehensive security countermeasures are required that might
include:

1. Encrypted storage/communication buses: To avoid data being read from stor-
age or during transit, the data should be encrypted while in storage and over
the communication bus using a hardware based key.

2. Memory read: Allowing only selected instruction in a given condition to access
such data and then check their conditions.

3. Side channel protection: Implementing side channel protection techniques
that hide the presence of data from the side channel footprint.
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2.5 Attacks on Runtime Data

During the execution of an application, several data structures are generated that
facilitate the execution. These might include intermediate computation results,
function call parameters, return addresses and un/conditional statement parame-
ters. These data structures might contain valuable information for an adversary
to compromise the application. Modification to the runtime data can change the
behavior of the application execution.

Modification to the runtime data is usually carried out by injecting a fault
during the execution of the application. The aim of an adversary during a fault
attack is to disrupt the correct execution of an application by introducing errors.
These errors are usually introduced by physical perturbation of the hardware
platform on which the application is executing. By introducing errors at a precise
instruction, an adversary can circumvent the security measures implemented by
the runtime environment. Possible types of faults an adversary can produce are
described as below:

1. Precise bit error: In this scenario, an adversary has total control over the
timing and locations of bits that needs to be changed.

2. Precise byte error: This scenario is similar to the previous one; however, an
adversary only has the ability to change the value of a byte rather than a bit.

3. Unknown byte error: An adversary has no control on the timing and byte
that it modifies during the execution of an instruction.

4. Unknown error: In this scenario, an adversary generates a fault but has no
location and timing control.

From the above list of fault models, the first model adversary can be con-
sidered the most powerful. However, for a smart card environment the second
scenario (i.e. precise byte error) is the most realistic one. Due to the advances in
the smart card hardware and counter-measures against fault attacks (i.e. espe-
cially for cryptographic algorithms) it is difficult to have total control of timing
and locations of bits to flip [46]. Furthermore, fault attacks require knowledge
of the underlying platform and application execution pattern [28]. This is possi-
ble to achieve by side-channel analysis [36]. In most processors runtime data is
processed as stack items; therefore their protection also works around the stack.

Countermeasures to the attacks on the runtime data include but are not
limited to:

1. Stack canaries is a method where the processor inserts canary values into the
stack and then check them during operation. If they are changed then there
is an attack otherwise execution continues [27].

2. Separation of data and return address stack in this work the authors propose
a segregation of the stack memory used for return addresses and other stack
items. Then enforce instruction based access to the return addresses [31].

3. Verifying the integrity of an instruction before executing it. A trade-off between
the security and the computational cost that the countermeasure adds.
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4. Code signing: Verify it before loading it to the processor. However, this doesnt
protect the program against runtime attacks. One of the solutions proposed to
protect the instructionsat runtime is toaddan integratedmodule into thedesign
that hashes the executed instructions and verifies their signature on the fly.

2.6 Notion of Trust and Trustworthiness

The definition of trust, taken from Merriam Webster’s online dictionary1 states
that trust is a “belief that someone or something is reliable, good, honest, effec-
tive, etc.”

Based on this, we generically define digital trust as “a trust based either on
past experience or evidence that an entity has behaved and/or will behave in
accordance with the self-stated behaviour.” The self-stated purpose of intent is
provided by the entity and this may have been verified/attested by a third party.
The claim that the entity satisfies the self-stated behaviour can either be gained
through past interactions (experience) or based on some (hard) evidence like val-
idatable/verifiable properties certified by a reputable third party (i.e. Common
Criteria evaluation for secure hardware [2]). This definition is not claimed to be
a comprehensive definition for digital trust that encompasses all of its facets.
However, this generic definition will be used as a point of discussion for the rest
of the paper.

In the real world, trust in an entity is based on a feature, property or asso-
ciation that is entailed in it. In the computing world, establishing trust in a dis-
tributed environment also follows the same assumptions. The concept of trusted
platforms is based on the existence of a trusted and reliable device that pro-
vides evidence of the state of a given system. How this evidence is interpreted
is dependent on the requesting entity. Trust in this context can be defined as
an expectation that the state of a system is as it is considered to be: secure.
This definition requires a trusted and reliable entity called a Trusted Platform
Module (TPM) to provide trustworthy evidence regarding the state of a system.
Therefore, a TPM is a reporting agent (witness) not an evaluator or enforcer of
the security policies. It provides a root of trust on which an inquisitor relies for
the validation of the current state of a system.

The TPM specifications are maintained and developed by an international
standards group called the Trusted Computing Group (TCG)2 Today, TCG
not only publishes the TPM specifications but also the Mobile Trusted Mod-
ule (MTM), Trusted Multi-tenant Infrastructure, and Trusted Network Connect
(TNC). With emerging technologies, service architectures, and computing plat-
forms, TCG is adapting to the challenges presented by them.
1 Website: http://www.merriam-webster.com/dictionary/trust.
2 Trusted Computing Group (TCG) is the culmination of industrial efforts that

included the Trusted Computing Platform Association (TCPA), Microsoft’s
Palladium, later called Next Generation Computing Base (NGSCB), and Intel’s
LaGrande. All of them proposed how to ascertain trust in a device’s state in a dis-
tributed environment. These efforts were combined in the TCG specification that
resulted in the proposal of TPM.

http://www.merriam-webster.com/dictionary/trust
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2.7 Trust in Execution Environment

In this section we briefly introduce some of the proposals for a secure and trusted
application execution and data storage.

ARM TrustZone. Similar to the MTM, the ARM TrustZone also provides the
architecture for a trusted platform specifically for mobile devices. The underlying
concept is the provision of two virtual processors with hardware-level segregation
and access control [7,48]. This enables the ARM TrustZone to define two exe-
cution environments described as Secure world and Normal world. The Secure
world executes the security- and privacy-sensitive components of applications
and normal execution takes place in the Normal world. The ARM processor
manages the switch between the two worlds. The ARM TrustZone is imple-
mented as a security extension to the ARM processors (e.g. ARM1176JZ(F)-S,
Cortes-A8, and Cortex-A9 MPCore) [7], which a developer can opt to utilise if
required (Fig. 1).

Fig. 1. Generic architectural view of ARM TrustZone

GlobalPlatform Trusted Execution Environment (TEE). The TEE is
GlobalPlatform’s initiative [4,6,9] for mobile phones, set-top boxes, utility
meters, and payphones. GlobalPlatform defines a specification for interoperable
secure hardware, which is based on GlobalPlatform’s experience in the smart
card industry. It does not define any particular hardware, which can be based
on either a typical secure element or any of the previously discussed tamper-
resistant devices. The rationale for discussing the TEE as one of the candidate
devices is to provide a complete picture. The underlying ownership of the TEE
device still predominantly resides with the issuing authority, which is similar to
GlobalPlatform’s specification for the smart card industry [3].

3 Trust in the Underlying Hardware

In the early days of computing systems security was almost virtually associated
with the software. However, the commercial and economic conditions of late
have forced hardware manufacturers to outsource their production process to
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countries with cheaper infrastructure cost. While this significantly reduces the
integrated circuit production cost, it also makes it much easier for an attacker
to compromise their supply chain and replace them with unoriginal or malicious
ones. Such items could be counterfeits or hardware Trojans. This threat to the
IC supply chain is already a cause for alarm in some countries [12,39]. For this
reason, some governments have been subsidising few high-host local foundries for
producing ICs used in military applications [30]. However, this is not affordable
solution for most of the developing countries.

Counterfeits. Counterfeiting at a global stage covers almost everything that
is made or manufactured, from spare parts to clothing to prescription drugs. In
contrast to other counterfeit items, the ramifications of a counterfeit IC device
failure in an electronic system are more than just inconvenience or a minor loss
of money. According to [26], the number of counterfeit incidents has increased
from 3,868 in 2005 to 9,356 in 2008. These incidents can have the following
ramifications; (a) original IC providers incur an irrecoverable loss due to the
sale of often cheaper counterfeit components, (b) low performance of counter-
feit products (that are often of lower quality and/or cheaper older generations
of a chip family) affects the overall efficiency of the integrated systems that
unintentionally use them; this could in turn harm the reputation of authentic
providers, and (c) unreliability of defective devices could render the integrated
systems that unknowingly use the parts unreliable; this potentially affects the
performance of weapons, airplanes, cars or other crucial applications that use
the fake components [37].

Hardware Trojans. Hardware Trojans are malicious circuitry implanted in an
IC. The malicious circuit can be inserted for different reasons, such as stealing
sensitive information, IP reverse engineering or spying on the user. One way of
implanting a Trojan into an IC is by compromising the supply chain of ICs and
adding the Trojan mask into the original design. Trojan circuits are designed to
be very difficult, nearly impossible, to detect by purely functional testing. They
are designed to monitor for specific but rare trigger conditions; for instance spe-
cific bit patterns on received data or the bus. Once triggered the actions of the
Trojan could be leaking secrets, creating glitches to compromise the security
of larger electronic equipments or simply disabling the circuit. For example, a
simple yet deadly Trojan in RSA [45] could be to inject a fault into the CRT
inversion step during RSA signature computation that could lead to the com-
promise of the RSA keys [24].

3.1 Countermeasure

Counterfeit ICs and hardware Trojans could be designed to be hard to detect by
purely functional testing. However, in the real world ICs leak information about
their internal state unintentionally. This leakage comes as a power consumption
or electromagnetic emissions caused by a varying electric current flowing through
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the IC’s circuitry. This leakage can be recorded and analysed to adequately
detect counterfeits and hardware Trojans. For instance in [47], a gate-level pas-
sive hardware characterisation of an IC was proposed to identify defective ICs.
However, the gate-level characteristics are dependent on ageing, temperature
and supply voltage instability. The authors use the negative bias temperature
instability model proposed in [25] to calculate the original characteristics of aged
ICs. In another proposal [13], power consumption of a device was proposed for
detecting hardware Trojans implanted in ICs. In this paper process variation
noise modelling (constructed using genuine ICs) is used for detecting ICs with
Trojan circuits through statistical analysis. In this section we discuss how same
leakage can be used to verify the integrity of control flow jumps and instructions
integrity before the IC is integrated into a security critical environments.

We implemented these techniques on the ATMega164 processor. This proces-
sor has 130 instructions used for transferring data, performing arithmetic and
logic operations. To simplify the experiment we removed redundant instructions.
The processor is powered up by a +5V power supply and running at a 4 MHz
clock speed. Leroy WaveRunner 6100A [38] is used to measure the power traces.

Control Flow Verification. An application is a combination of basic blocks.
A basic block is a linear sequence of executable instructions with only one entry
point and one exit point [22]. After executing one basic block the processor jumps
into another basic block based on the branching instruction executed at the end
of the current basic block. In this paper we refer to basic blocks as states.

To reconstruct the state sequence that a device followed during the execution
of a program from its side channel leakage we modelled the device as a Hidden
Markov Model (HMM ) [29,43]. A Markov Model is a memoryless system with
a finite number of hidden states. It is called memoryless because the next state
depends only on the current state. In such a model the states are not directly
observable. However, there has to be (at least) one observable output of the
process that reveals partial information about the state sequence that the device
has followed. Figure 2, illustrates a Markov Process with five hidden states (i.e.
A to E).

To build the HMM of our test program we collected 1000 traces for each
state and computed all the necessary parameters. We have also pre-computed
the possible valid control flow jumps of the program. At runtime we collected
the power consumption of the program without any prior information which
path the device followed to execute the program. From the trace we recovered
the control flow jumps using the HMM and Viterbi algorithm [34]. We repeated
this experiment multiple times and successfully verified the control flow jumps.
Details of the technique and experiment results are presented in [41].

Verifying Integrity of Executed Instructions. The first step in our verifi-
cation is the construction of instruction-level side channel templates using few
identical processors. During verification, the verifying device records the proces-
sor’s power consumption waveform while executing the application and extracts
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Fig. 2. A Markov model representing a device executing a program with five states (A,
B, C, D and E). The power consumption is the observable output that reveals partial
information about the state sequence of the device.

the executed instructions by matching it against the pre-constructed templates.
The extracted information together with the pre-computed signatures are then
used to verify the integrity of the software component using RSA signature
screening algorithm [23].

As shown in the diagram (Fig. 3), the embedded system has the embedded
parameter calculator (EP-C), embedded processor and the application package
which includes the application executable and the basic block signatures. The
EP-C is a special module that calculates the product of two large numbers. It can
be implemented in hardware or software; although, hardware would be prefer-
able for performance reasons. The embedded processor is the core that executes
the software component of the embedded system (application executable). After
the execution of every basic block the EP-C updates its parameter (EP ) by
multiplying it with the basic block’s signature.

The verifying device has the templates, the instruction classifier, the verifier
parameter calculator (VP-C) and the software integrity verifier. The templates are
constructed ahead of time using identical processors and then installed into the
verifying device’s non-volatile memory. How these templates are installed into the
verifying device is beyond the scope of this paper. The instruction classifier uses
these templates to extract the executed instructions from the processor’s power
consumption waveform (W ). The power consumption waveform is measured as a
voltage drop across a shunt resistor connecting the embedded processor’s ground
and the verifying device’s ground voltage. The VP-C uses the output of the clas-
sifier to compute the verifying device’s parameter. Finally, the software integrity
verifier uses the output of the EP-C and VP-C to verify the software using RSA
signature screening algorithm. Details of the template construction, instruction
classification and software integrity verification processes are discussed [42].
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Fig. 3. Software integrity verification block diagram

The templates of selected instructions are created from 2500 traces collected
by executing the instructions using different conditions; such as data processed,
memory locations and registers. Finally, using these templates we successfully
verified the integrity of executed instructions of a sample PIN verification pro-
gram. Full detail of the verification techniques and experimental results are pre-
sented in [42].

4 Trusted Platform and Execution for Embedded Devices

The Trusted Computing Group is currently looking into the concept of trusted
platform for embedded devices. Although, there is no specification made public
at the time of writing this paper. However, we have proposed a similar trusted
platform for smart cards and we will be discussing it in subsequent sections.

4.1 Trusted Environment and Execution Manager (TEM)

This section discusses the architecture of a Trusted Environment & Execution
Manager (TEM) specifically for smart cards, and highlights how the TEM differs
from a typical TPM not only in architectural but also in operational context.
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4.2 Architecture

The TEM is illustrated as a layer between the smart card hardware and the run-
time environment. This illustration provides a semantic view of the architecture
and does not imply that all communication between the runtime environment
and the hardware goes through the TEM (Fig. 4).

Fig. 4. Smart Card Architecture in with TEM

If general TPM requirements are analysed [5], the basic building blocks in
the hardware required to build a TPM chip are already available on smart cards.
Therefore, most of the functionality of the TEM would be implemented in soft-
ware and it would not impose any additional hardware requirement on the host
platform. The detailed TEM architecture is shown in Fig. 5.

Figure 5 depicts native code and smart card hardware as complementary com-
ponents of the TEM. This is because the TEM does not need separate hardware
for its operations. It will utilise the existing services provided by the smart card
hardware. To avoid duplicating the code, the TEM uses the native code imple-
mentation of cryptographic services like encryption/decryption, digital signature
and random number generation.

Interface. The interface manages communication with external entities that
can either be on-card or off-card entities. Any request that the interface receives
is interpreted: if it is a well-formed request and the requesting entity is authorised
to do so, then the interface will redirect the request to the intended module in
the TEM. The interface during the interpretation of the request will enforce the
access policy of the TEM as defined by the access control module (discussed in
subsection ‘Access Control’ of Sect. 4.2). To manage these relationships with the
authorised entities, the TEM should have a mechanism to establish the relation-
ship in the first place. Therefore, at the time of installation of an application, a
binding (symmetric key) is generated between the downloaded application and
the TEM. For all subsequent communications, the application would use this
key when requesting the TEM [16]. The protocol that establishes this binding is
managed by the interface and the binding is stored in the key/certificate manager
and corresponding access privilege in access control module.

Attestation Handler. During the application installation process, both an
application and a smart card platform would need to verify each other’s current
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state to gain assurance of their trustworthiness. An application can only request
attestation for either itself or the respective platform. It cannot request attesta-
tion for other applications on the smart card concerned. However, to facilitate
the application sharing mechanism [14] an application can issue an authorisation
token. The attestation handler will then provide the attestation of the token-
issuing application to the requesting application [15].

Fig. 5. Trusted Platform Module for Smart Card Architecture

Access Control. At the time of application installation, the Service Provider
(SP) involved would request attestation of the card platform. However, no infor-
mation regarding any of the other applications installed on the card would be
provided to the SP at this stage. Once the application is installed, it can request
attestation only for itself and not for any other applications. These restrictions
are required to avoid privacy issues like application scanning attacks [15].

Key & Certificate Manager. The key & certificate manager manages the
keys and certificates that a TEM stores in the non-volatile memory (EEPROM
[44]). Contrary to the general TPM architecture, there are no migratable keys
in the TEM. The TEM signature key pair and certificate is the permanent key
and certificate (it can be considered as the endorsement key in the general TPM
architecture). Besides managing the keys and certificates, it also generates them.
Therefore, it is a combination of key generation and non-volatile memory com-
ponents of the general TPM.

The key & certificate manager stores the evaluation certificates which are
provided by the respective applications. Therefore, when an application requests
attestation, the TEM does not return the hash value of the application. In fact,
it returns an evaluation of whether the current state complies with the state for
which the evaluation certificate was issued. Therefore, the decision whether an
application is trustworthy or not is actually made by the TEM. If the evaluation
fails, then depending upon the application or platform policy it might either
block the application or delete it (and inform the cardholder and respective SP).

Ownership Manager. This component manages the ownership of a smart
card. When a smart card is acquired by a user either from a card manufac-
turer or a card supplier, it is under the default ownership of the card manufac-
turer/supplier. The user then initiates the ownership acquisition process that
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requires the user to provide personal information (i.e. name and date of birth)
and their Card Management Personal Identification Number (CM-PIN). The
TEM will then generate a signature key pair specific to the cardholder along
with a certificate that will also include the user information. Although this key
is assigned to the cardholder, it will be protected by the TEM.

TSM Scheme Registration Manager. This module is optional and it facili-
tates Competitive Architecture for Smart Cards. For further details please refer
to [17].

Lease & Contract Manager. An SP would lease its application to a smart
card (cardholder) and the card would assure that it would abide by the SP’s
Application Lease Policy (ALP) The lease contract is signed by the TEM with
the user’s signature key and as these keys are stored/restrict access only to the
TEM, the signing and storage of the contracts are on the TEM. The cardholder
can retrieve these contracts after providing the CM-PIN if he/she needs to.
Similarly, individual applications can also retrieve their own contracts from the
TEM repository.

Backup/Restoration Manager. A cardholder may download multiple appli-
cations onto her smart card. If she loses her smart card, she will lose access to
all of the applications (and related services). One possible approach can be to
acquire a new card and then manually install all the applications again. However,
another approach could be that a user creates a backup of the installed appli-
cations and restores the backup to a new smart card, if required. This backup
mechanism is credential-based (a token issued by the SPs and not the actual
application) and it is stored securely at a remote location [19]. When users lose
their smart cards, they only need to get a new smart card and then initiate the
restoration process, which will take each credential from the backup and initiate
the application download process with respective SPs. The restoration process
can also request the respective SPs to block (revoke the lease) their application(s)
installed on the stolen/lost device.

Self-Test Manager. For security validation, the TEM implements a valida-
tion mechanism that is divided into two parts: tamper-evidence and reliability
assurance. Smart cards are required to be tamper-resistant devices [44] and for
this purpose card manufacturers implement hardware-based tamper protections.
The tamper-evidence process verifies whether the implemented tamper-resistant
mechanisms are still in place and effective. The reliability assurance process, on
the other hand, verifies that the software part of the smart card that is crucial
for its security and reliability has not been tampered with.

A TEM tamper-evidence process should provide the properties listed below:

1. Robustness: On input of certain data, it always produces the associated
output.
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2. Independence: When the same data is input to a tamper-evidence process on
two different devices, it outputs different values.

3. Pseudo-randomness: The generated output should be computationally diffi-
cult to distinguish from a pseudo-random function.

4. Tamper-evidence: An invasive attack to access the function should cause irre-
versible changes, which render the device unusable.

5. Assurance: The function can provide assurance (either implicitly or explicitly)
to independent (non-related) verifiers. It should not require an active connec-
tion with the device manufacturer to provide the assurance. The assurance
refers to the current hardware and software state as it was at the time of
third party evaluation.

For the TEM tamper-evidence process there are several candidates includ-
ing: active (intelligent) shield/mesh [44]; Known Answer Test (KAT) [1], hard-
wired HMAC key, attestation based on PRNG [35]; and Physically Unclonable
Function (PUF) [32]. Two algorithms that provide tamper-evidence and relia-
bility based upon PUF and PRNG based validation mechanisms are discussed
in [20,21] respectively.

Runtime Security Manager. The purpose of the runtime security manager is
to enforce the security counter-measures defined by the respective platform. To
enforce the security counter-measures, the runtime security manager has access
to the heap area (e.g. method area, Java stacks) and can be implemented as
either a serial or a parallel mode.

A serial runtime security manager will rely on the execution engine of the
Java Card Virtual Machine (JCVM) [8] to perform the required tasks. This
means that when an execution engine encounters instructions that require an
enforcement of the security policy, it will invoke the runtime security manager
that will then perform the checks. If successful the execution engine continues
with execution, otherwise, it will terminate. A parallel runtime security manager
will have its own dedicated hardware (i.e. processor) support that enables it
to perform checks simultaneously while the execution engine is executing an
application. Having multiple processors on a smart card is technically possible
[44]. The main question regarding the choice is not the hardware, but the balance
between performance and latency (Fig. 6).

Performance, as the name suggests, is concerned with computational speed,
whereas latency deals with the number of instructions executed between an
injected error and the point at which it is detected. For example, if during the
execution of an application ‘A’, at instruction A4 a malicious user injects an
error, which is detected by the platform security mechanism at instruction A7
of the application, the latency is three (i.e. 7 − 4 = 3). A point to note is that
the lower the latency value the better the protection mechanism, as it will catch
the error quickly. Therefore, theoretically we can assume that a serial runtime
security manager will have low performance but also a low latency value, while
a parallel runtime security manager will have a good performance measure but
a higher latency value.
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Fig. 6. Runtime Security Manager Integration with Java Card Runtime Environment

It is obvious that the implementation of additional components like runtime
security managers will also incur additional economic costs (i.e. increase in the
price of a smart card. The security measures that could be enforced are:

1. Operand Stack Integrity: In this we XOR the value pushed on to the operand
stack with the top value of the integrity stack and the results are pushed back
on to the integrity stack. When a value is popped from the operand stack, we
will XOR the popped value from the top value in the integrity stack (where
n is the top value of the stack). If the result is same as the value n− 1 in the
integrity stack, the execution continues, if not, then it is interrupted by the
runtime security manager.

2. Control Flow Analysis: Authorised execution flows are generated oncard at
the time of application installation. Later when application is executing, only
the authorised execution flow is allowed to go ahead. Any violation would
render the application blocked and may lead of it being deleted from the
device.

3. Bytecode Integrity: Each basic block of an application code has an associated
integrity value. When the basic block is fetched to the runtime memory, the
integrity value is verified.

Preliminary Results. For evaluation of proposed counter-measures, we have
selected four sample applications. Two of the applications selected are part of the
Java Card development kit distribution: Wallet and Java Purse. The other two
applications are the implementation of our proposed mechanisms that include
the offline attestation algorithm [20] and STCPSP protocol [18].
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4.3 Latency Analysis

As discussed before, latency is the number of instructions executed after an
adversary mounts an attack and the system becomes aware of it. Therefore,
in this section we analyse the latency of proposed counter-measures under the
concept of serial and parallel runtime security managers that are listed in Table 1
and discussed subsequently.

Table 1. Latency measurement of individual countermeasure

Counter-measures Serial RSM Parallel RSM

Operand stack integrity 0 + i 3 + i

Permitted execution path analysis 0 3(Cn)

Bytecode integrity 0 0

In case of the operand stack integrity, the serial runtime security manager
finds the occurrence of an error (e.g. fault injection) with latency “0 + i”, where ‘i’
is the number of instructions executed before the manipulated value reaches the
top of the operand stack. For example, consider an operand stack with values V1,
V2, V3, V4, and V5, where V5 is the value on the top. If an adversary changes the
value of V3 by physical perturbation, then the runtime security manager will not
find out about his change until the value is popped out of the stack. Therefore,
the value of ‘i’ depends upon the number of instructions that will execute until
the V3 reaches the top of the operand stack and JCVM pops it out. Similarly,
the latency value in case of the operand stack integrity for the parallel runtime
security manager is “3 + i”, where ‘3’ is the number of instructions required to
perform a comparison on a pop operation. The latency value of the parallel
runtime security manager is higher than the serial. This has to do with the fact
that while parallel runtime security manager is applying the security checks the
JCVM does not need to stop the execution of subsequent instructions.

Regarding the control flow analysis, the serial runtime security manager has
a latency of zero where the parallel runtime security manager has latency value
of “3(Cn)”, where the value Cn represents the number of legal jumps in the
respective execution flow set. The value ‘3’ represents the number of instructions
required to execute individual comparison.

A notable point to mention here is that all latency measurements listed in the
Table 2 are based on the worst-case conditions. Furthermore, it is apparent that
it might be difficult to implement a complete parallel runtime security manager.
To explain our point, consider two consecutive jump instructions in which the
parallel runtime security manager has to perform control flow analysis. In such
situation, there might be a possibility that while the runtime security manager
is still evaluating the first jump, the JCVM might initiate the second jump
instruction. Therefore, this might create a deadlock between the JCVM and
parallel runtime security manager - we consider that either JCVM should wait
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for the runtime security manager to complete the verification, or for the sake
of performance the runtime security manager might skip certain verifications.
We opt for the parallel runtime security manager that will switch to the serial
runtime security manager mode - restricting the JCVM to proceed with next
instruction until the runtime security manager can apply the security checks.
This situation will be further explained during the discussion on the performance
measurements in the next section.

4.4 Performance Analysis

To evaluate the performance impact of the proposed counter-measures we devel-
oped an abstract virtual machine that takes the bytecode of each Java Card
applet and then computes the computational overhead for individual counter-
measure. When a Java application is compiled the java compiler (javac) pro-
duces a class file. The class file is Java bytecode representation, and there are
two possible ways to read class files. We can either use a hex editor (an editor
that shows a file in hexadecimal format) to read the Java bytecodes or better
utilise the javap tool that comes with Java Development Kit (JDK). In our
practical implementation, we opted for javap as it produces the bytecode repre-
sentation of a class file in human-readable mnemonics as represented in the JVM
specification [40]. We used javap to produce the mnemonic bytecode representa-
tion; the abstract virtual machine takes the mnemonic bytecode representation
of an application and searches for push, pop, and jump (e.g. method invokes)
opcodes. Subsequently, we calculated the number of extra instructions required
to be executed in order to implement the counter-measures discussed in previous
sections.

Table 2. Performance measurement (percentage increase in computational cost)

Applications Serial RSM Parallel RSM

Wallet +29 % +22 %

Java purse +30 % +26 %

Offline attestation [21] +27 % +23 %

STCPSP [20] +39 % +33 %

To compute the performance overhead, we counted the number of instructions
an application has and how long the application takes to execute on our test Java
Cards (e.g. C1 and C3). After this measurement, we have associated costs based
on additional instructions executed for each JCVM instruction and calculated
as an (approximate) increase in the percentage of computational overhead and
listed in Table 2.

For each application, the counter-measures have different computational over-
head values because they depend upon how many times certain instructions that
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invoke the counter-measures are executed. Therefore, the computational over-
head measurements in Table 2 can only give us a measure of how the performance
is affected in individual cases - without generalising for other applications.

In this section we discussed the smart card runtime environment by taking
the Java Card as a running example. The JCRE was described with its different
data structures that it uses during the execution of an application. Subsequently,
we discussed various attacks that target the smart card runtime environment
and most of these attacks based on perturbation of the values stored by the
runtime environment. These perturbations are called fault injection, which was
defined and mapped to an adversary’s capability in this chapter. Based on these
recent attacks on the smart card runtime environment, we proposed an architec-
ture that includes the provision of a runtime security manager. We also proposed
various counter-measures and provided the computational cost imposed by these
counter-measures. No doubt, counter-measures that do not change the core archi-
tecture of the Java virtual machine, will almost always incur extra computational
cost. Therefore, we concluded in this chapter that a better way forward would be
to change the architecture of the Java virtual machine. However, in the context
of this paper we showed that current architecture can be hardened at the cost
of a computational penalty.

5 Conclusions

In this paper, we have briefly highlighted the security, trust and genuineness
requirements for the embedded devices. These devices are becoming ever present
in our daily life and reliance on them is going to increase in coming years.
Therefore, utmost efforts have to be invested into their security and reliability
in order to provide a safe and efficient service to the users. In this paper, we
discussed some of the threat vectors that an adversary can use to compromise
these devices. Furthermore, we also discussed the associated countermeasures
along with some state-of-the-art protection mechanism. In this paper, we have
also detailed a few of our proposal to provide security, reliability, trust and
genuineness. The field of embedded computing still faces a number of challenges,
effectively making it an exciting domain for security research to investigate and
be innovative.
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Abstract. In this paper we describe a new error-correcting code (ECC)
inspired by the Naccache-Stern cryptosystem. While by far less efficient
than Turbo codes, the proposed ECC happens to be more efficient than
some established ECCs for certain sets of parameters.

The new ECC adds an appendix to the message. The appendix is
the modular product of small primes representing the message bits. The
receiver recomputes the product and detects transmission errors using
modular division and lattice reduction.

1 Introduction

Error-correcting codes (ECCs) are essential to ensure reliable communication.
ECCs work by adding redundancy which enables detecting and correcting mis-
takes in received data. This extra information is, of course, costly and it is
important to keep it to a minimum: there is a trade-off between how much data
is added for error correction purposes (bandwidth), and the number of errors
that can be corrected (correction capacity).

Shannon showed [13] in 1948 that it is in theory possible to encode messages
with a minimal number of extra bits1. Two years later, Hamming [7] proposed a
construction inspired by parity codes, which provided both error detection and
error correction. Subsequent research saw the emergence of more efficient codes,
such as Reed-Muller [8,10] and Reed-Solomon [11]. The latest were generalized
by Goppa [6]. These codes are known as algebraic-geometric codes.

Convolutional codes were first presented in 1955 [4], while recursive sys-
tematic convolutional codes [1] were introduced in 1991. Turbo codes [1] were
indeed revolutionary, given their closeness to the channel capacity (“near Shan-
non limit”).

1 Shannon’s theorem states that the best achievable expansion rate is 1 − H2(pb),
where H2 is binary entropy and pb is the acceptable error rate.
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Results: This paper presents a new error-correcting code, as well as a form of
message size improvement based on the hybrid use of two ECCs one of which
is inspired by the Naccache-Stern (NS) cryptosystem [2,9]. For some codes
and parameter choices, the resulting hybrid codes outperform the two under-
lying ECCs.

The proposed ECC is unusual because it is based on number theory rather
than on binary operations.

2 Preliminaries

2.1 Notations

Let P = {p1 = 2, . . . } be the ordered set of prime numbers. Let γ ≥ 2 be an
encoding base. For any m ∈ N (the “message”), let {mi} be the digits of m in
base γ i.e.:

m =
k−1∑

i=0

γimi mi ∈ [0, γ − 1], k = �logγ m�

We denote by h(x) the Hamming weight of x, i.e. the sum of x’s digits in base 2,
and, by |y| the bit-length of y.

2.2 Error-Correcting Codes

Let M = {0, 1}k be the set of messages, C = {0, 1}n the set of encoded messages.
Let P be a parameter set.

Definition 1 (Error-Correcting Code). An error-correcting code is a couple
of algorithms:

– An algorithm μ, taking as input some message m ∈ M, as well as some public
parameters params ∈ P, and outputting c ∈ C.

– An algorithm μ−1, taking as input c̃ ∈ C as well as parameters params ∈ P,
and outputting m ∈ M ∪ {⊥}.

The ⊥ symbol indicates that decoding failed.

Definition 2 (Correction Capacity). Let (μ, μ−1,M, C,P) be an error-
correcting code. There exists an integer t ≥ 0 and some parameters params ∈ P
such that, for all e ∈ {0, 1}n such that h(e) ≤ t,

μ−1 (μ (m, params) ⊕ e, params) = m, ∀m ∈ M
and for all e such that h(e) > t,

μ−1 (μ (m, params) ⊕ e, params) �= m, ∀m ∈ M.

t is called the correction capacity of (μ, μ−1,M, C,P).

Definition 3. A code of message length k, of codeword length n and with a
correction capacity t is called an (n, k, t)-code. The ratio ρ = n

k is called the
code’s expansion rate.
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3 A New Error-Correcting Code

Consider in this section an existing (n, k, t)-code C = (μ, μ−1,M, C,P). For
instance C can be a Reed-Muller code. We describe how the new (n′, k, t)-code
C ′ = (ν, ν−1,M, C′,P ′) is constructed.

Parameter Generation: To correct t errors in a k-bit message, we generate a
prime p such that:

2 · p2t
k < p < 4 · p2t

k (1)

As we will later see, the size of p is obtained by bounding the worst case in which
all errors affect the end of the message. p is a part of P ′.

Encoding: Assume we wish to transmit a k-bit message m over a noisy channel.
Let γ = 2 so that mi denote the i-th bit of m, and define:

c(m) :=
k∏

i=1

pmi
i mod p (2)

The integer generated by Eq. (2) is encoded using C to yield μ(c(m)). Finally,
the encoded message ν(m) transmitted over the noisy channel is defined as:

μ(m) := m‖μ(c(m)) (3)

Note that, if we were to use C directly, we would have encoded m (and
not c). The value c is, in most practical situations, much shorter than m. As
is explained in Sect. 3.1, c is smaller than m (except the cases in which m is
very small and which are not interesting in practice) and thereby requires fewer
extra bits for correction. For appropriate parameter choices, this provides a more
efficient encoding, as compared to C.

Decoding: Let α be the received2 message. Assume that at most t errors occurred
during transmission:

α = ν(m) ⊕ e = m′‖(μ(c(m)) ⊕ e′)

where the error vector e is such that h(e) = h(m′ ⊕ m) + h(e′) ≤ t.
Since c(m) is encoded with a t-error-capacity code, we can recover the correct

value of c(m) from μ(c(m)) ⊕ e′ and compute the quantity:

s =
c(m′)
c(m)

mod p (4)

Using Eq. (2) s can be written as:

s =
a

b
mod p,

⎧
⎪⎨

⎪⎩

a =
∏

(m′
i=1)∧(mi=0)

pi

b =
∏

(m′
i=0)∧(mi=1)

pi

(5)

2 i.e. encoded and potentially corrupted.
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Note that since h(m′ ⊕m) ≤ t, we have that a and b are strictly smaller than
(pk)t. Theorem 1 from [5] shows that given t the receiver can recover a and b
efficiently using a variant of Gauss’ algorithm [14].

Theorem 1. Let a, b ∈ Z such that −A ≤ a ≤ A and 0 < b ≤ B. Let p be some
prime integer such that 2AB < p. Let s = a · b−1 mod p. Then given A, B, s
and p, a and b can be recovered in polynomial time.

As 0 ≤ a ≤ A and 0 < b ≤ B where A = B = (pk)t − 1 and 2AB < p
from Eq. (1), we can recover a and b from t in polynomial time. Then, by testing
the divisibility of a and b with respect to the small primes pi, the receiver can
recover m′ ⊕ m and eventually m.

A numerical example is given in Appendix A.

Bootstrapping: Note that instead of using an existing code as a sub-contractor for
protecting c(m), the sender may also recursively apply the new scheme described
above. To do so consider c(m) as a message, and protect c = c(c(· · · c(c(m))),
which is a rather small value, against accidental alteration by replicating it 2t+1
times. The receiver will use a majority vote to detect the errors in c.

3.1 Performance of the New Error-Correcting Code for γ = 2

Lemma 1. The bit-size of c(m) is:

log2 p  2 · t log2(k ln k). (6)

Proof. From Eq. (1) and the Prime Number Theorem3. ��
The total output length of the new error-correcting code is therefore log2 p,

plus the length k of the message m.
C ′ outperforms the initial error correcting code C if, for equal error capacity

t and message length k, it outputs a shorter encoding, which happens if n′ < n,
keeping in mind that both n and n′ depend on k.

Corollary 1. Assume that there exists a constant δ > 1 such that, for k large
enough, n(k) ≥ δk. Then for k large enough, n′(k) ≤ n(k).

Proof. Let k be the size of m and k′ be the size of c(m). We have n′(k) = k+n(k′),
therefore

n(k) − n′(k) = n(k) − (k + n(k′)) ≥ (δ − 1)k − n(k′).

Now,

(δ − 1)k − n(k′) ≥ 0 ⇔ (δ − 1)k ≥ n(k′).

3 pk � k ln k.
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But n(k′) ≥ δk′, hence

(δ − 1)k ≥ δk′ ⇒ k ≥ k′δ
(δ − 1)

.

Finally, from Lemma 1, k′ = O(ln ln k!), which guarantees that there exists a
value of k above which n′(k) ≤ n(k). ��

In other terms, any correcting code whose encoded message size is growing
linearly with message size can benefit from the described construction (Fig. 1).

Fig. 1. Illustration of Corollory 1. For large enough values of k, the new ECC uses
smaller codewords as compared to the underlying ECC.

Expansion Rate: Let k be the length of m and consider the bit-size of the cor-
responding codeword as in Eq. (6). The expansion rate ρ is:

ρ =
|m‖μ(c(m))|

|m| =
k + |μ(c(m))|

k
= 1 +

|μ(c(m))|
k

(7)

Reed-Muller Codes. We illustrate the idea with Reed-Muller codes. Reed-
Muller (R-M) codes are a family of linear codes. Let r ≥ 0 be an integer, and
N = log2 n, it can apply to messages of size

k =
r∑

i=1

(
N

i

)
(8)



30 E. Brier et al.

Table 1. Examples of length n, dimension k, and error capacity t for Reed-Muller
code.

n 16 64 128 256 512 2048 8192 32768 131072

k 11 42 99 163 382 1024 5812 9949 65536

t 1 3 3 7 7 31 31 255 255

Such a code can correct up to t = 2N−r−1 − 1 errors. Some examples of
{n, k, t} triples are given in Table 1. For instance, a message of size 163 bits can
be encoded as a 256-bit string, among which up to 7 errors can be corrected.

To illustrate the benefit of our approach, consider a 5812-bit message, which
we wish to protect against up to 31 errors.

A direct use of Reed-Muller would require n = 8192 bits as seen in Table 1.
Contrast this with our code, which only has to protect c(m), that is 931 bits as
shown by Eq. 6, yielding a total size of 5812+n(931) = 5812+2048 = 7860 bits.

Other parameters for the Reed-Muller primitive are illustrated in Table 2.

Table 2. (n, k, t)-codes generated from Reed-Muller by our construction.

n′ 638 7860 98304

k 382 5812 65536

c(m) 157 931 9931

RM(c(m)) 256 2048 32768

t 7 31 255

Table 2 shows that for large message sizes and a small number of errors, our
error-correcting code slightly outperforms Reed-Muller code.

3.2 The Case γ > 2

The difficulty in the case γ > 2 stems from the fact that a binary error in a
γ-base message will in essence scramble all digits preceding the error. As an
example,

12200210122020120100111202023 + 230 = 12200210221120001122201101103

Hence, unless γ = 2Γ for some Γ , a generalization makes sense only for channels
over which transmission uses γ symbols. In such cases, we have the following:
a k-bit message m is pre-encoded as a γ-base κ-symbol message m′. Here κ =
�k/ log2 γ�. Eq. (1) becomes:

2 · p2t(γ−1)
κ < p < 4 · p2t(γ−1)

κ

Comparison with the binary case is complicated by the fact that here t refers to
the number of any errors regardless their semiologic meaning. In other words,
an error transforming a 0 into a 2 counts exactly as an error transforming 0
into a 1.



A Number-Theoretic Error-Correcting Code 31

Example 1. As a typical example, for t = 7, κ = 106 and γ = 3, pκ = 15485863
and p is a 690-bit number.

For the sake of comparison, t = 7, k = 1584963 (corresponding to κ = 106)
and γ = 2, yield pk = 25325609 and a 346-bit p.

4 Improvement Using Smaller Primes

The construction described in the previous section can be improved by choosing
a smaller prime p, but comes at a price; namely decoding becomes only heuristic.

Parameter Generation: The idea consists in generating a prime p smaller than
before. Namely, we generate a p satisfying :

2u · pt
k < p < 2u+1 · pt

k (9)

for some small integer u ≥ 1.

Encoding and Decoding: Encoding remains as previously. The redundancy c(m)
being approximately half as small as the previous section’s one, we have :

s =
a

b
mod p,

⎧
⎪⎨

⎪⎩

a =
∏

(m′
i=1)∧(mi=0)

pi

b =
∏

(m′
i=0)∧(mi=1)

pi

(10)

and since there are at most t errors, we must have :

a · b ≤ (pk)t (11)

We define a finite sequence {Ai, Bi} of integers such that Ai = 2u·i and Bi =
�2p/Ai�. From Eqs. (9) and (11) there must be at least one index i such that
0 ≤ a ≤ Ai and 0 < b ≤ Bi. Then using Theorem1, given Ai, Bi, p and s, the
receiver can recover a and b, and eventually m.

The problem with that approach is that we lost the guarantee that {a, b} is
unique. Namely we may find another {a′, b′} satisfying Eq. (10) for some other
index i′. We expect this to happen with negligible probability for large enough
u, but this makes the modified code heuristic (while perfectly implementable for
all practical purposes).

4.1 Performance

Lemma 2. The bit-size of c(m) is:

log2 p  u + t log2(k ln k). (12)

Proof. Using Eq. (9) and the Prime Number Theorem. ��
Thus, the smaller prime variant has a shorter c(m).
As u is a small integer (e.g. u = 50), it follows immediately from Eq. (1) that,

for large n and t, the size of the new prime p will be approximately half the size
of the prime p generated in the preceding section.

This brings down the minimum message size k above which our construction
provides an improvement over the bare underlying correcting code.



32 E. Brier et al.

Note: In the case of Reed-Muller codes, this variant provides no improvement
over the technique described in Sect. 3 for the following reasons: (1) by design,
Reed-Muller codewords are powers of 2; and (2) Eq. (12) cannot yield a twofold
reduction in p. Therefore we cannot hope to reduce p enough to get a smaller
codeword.

That doesn’t preclude other codes to show benefits, but the authors did not
look for such codes.

5 Prime Packing Encoding

It is interesting to see whether the optimization technique of [2] yields more
efficient ECCs. Recall that in [2], the pis are distributed amongst κ packs. Infor-
mation is encoded by picking one pi per pack. This has an immediate impact
on decoding: when an error occurs and a symbol σ is replaced by a symbol σ′,
both the numerator and the denominator of s are affected by additional prime
factors.

Let C = (μ, μ−1,M, C,P) be a t-error capacity code, such that it is possible
to efficiently recover c from μ(c) ⊕ e for any c and any e, where h(e) ≤ t. Let
γ ≥ 2 be a positive integer.

Before we proceed, we define κ := �k/ log2 γ� and

f := f(γ, κ, t) =
k∏

i=k−t

pγi.

Parameter Generation: Let p be a prime number such that:

2 · f2 < p < 4 · f2 (13)

Let Ĉ = M ×Zp and P̂ = (P ∪P) ×N. We now construct a variant of the ECC
presented in Sect. 3 from C and denote it

Ĉ =
(
ν, ν−1,M, Ĉ, P̂

)
.

Encoding: We define the “redundancy” of a k-bit message m ∈ M (represented
as κ digits in base γ) by:

ĉ(m) :=
κ−1∏

i=0

piγ+mi+1 mod p

A message m is encoded as follows:

ν(m) := m‖μ (ĉ (m))
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Decoding: The received information α differs from ν(m) by a certain number
of bits. Again, we assume that the number of these differing bits is at most t.
Therefore α = ν(m) ⊕ e, where h(e) ≤ t. Write e = em‖eĉ such that

α = ν(m) ⊕ e = m ⊕ em‖μ(ĉ(m)) ⊕ eĉ = m′‖μ(ĉ(m)) ⊕ eĉ.

Since h(e) = h(em)+h(eĉ) ≤ t, the receiver can recover efficiently ĉ(m) from
α. It is then possible to compute

s :=
ĉ(m′)
ĉ(m)

mod p =

κ−1∏

i=0

piγ+m′
i+1

κ−1∏

i=0

piγ+mi+1

mod p.

s =
a

b
mod p,

⎧
⎪⎪⎨

⎪⎪⎩

a =
∏

m′
i �=mi

piγ+m′
i+1

b =
∏

mi �=m′
i

piγ+mi+1

(14)

As h(e) = h(em) + h(eĉ) ≤ t, we have that a and b are strictly smaller than
f(γ, κ)2t. As A = B = f(γ, κ)2t −1, we observe from Eq. (13) that 2AB < p. We
are now able to recover a, b, gcd(a, b) = 1 such that s = a/b mod p using lattice
reduction [14].

Testing the divisibility of a and b by p1, . . . , pκγ the receiver can recover
em = m′ ⊕ m, and from that get m = m′ ⊕ em. Note that by construction
only one prime amongst γ is used per “pack”: the receiver can therefore skip on
average γ/2 primes in the divisibility testing phase.

5.1 Performance

Rosser’s theorem [3,12] states that for n ≥ 6,

ln n + ln lnn − 1 <
pn

n
< ln n + ln lnn

i.e. pn < n(ln n + ln lnn). Hence a crude upper bound of p is

p < 4f(κ, γ, t)2

= 4

(
κ∏

i=κ−t

pγi

)2

≤ 4
κ∏

i=κ−t

(iγ(ln iγ + ln ln(iγ)))2

≤ 4γ2t

(
κ!

(κ − t − 1)!

)2

(lnκγ + ln lnκγ)2t

Again, the total output length of the new error-correcting code is n′ = k+|p|.
Plugging γ = 3, κ = 106 and t = 7 into Eq. (13) we get a 410-bit p. This

improves over Example 1 where p was 690 bits long.
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A Toy Example

Let m be the 10-bit message 1100100111. For t = 2, we let p be the smallest
prime number greater than 2 ·294, i.e. p = 707293. We generate the redundancy:

c(m) = 21 · 31 · 50 · 70 · 111 · 130 · 170 · 191 · 231 · 291 mod 707293

⇒ c(m) = 836418 mod 707293 = 129125.

As we focus on the new error-correcting code we simply omit the Reed-Muller
component. The encoded message is

ν(m) = 11001001112‖12912510.

Let the received encoded message be α = 11001010112‖12912510. Thus,

c(m′) = 21 · 31 · 50 · 70 · 111 · 130 · 171 · 190 · 231 · 291 mod p

⇒ c(m′) = 748374 mod 707293 = 41081.

Dividing by c(m) we get

s =
c(m′)
c(m)

=
41081
129125

mod 707293 = 632842

Applying the rationalize and factor technique we obtain s =
17
19

mod 707293. It

follows that m′⊕m = 0000001100. Flipping the bits retrieved by this calculation,
we recover m.
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Abstract. The present work aims at finding an alternative way to set up
an OTP cryptosystem which generates secret keys based on DNA random
sequences. The main advantage of the proposed procedure is that it gen-
erates a pure random secret key based on multiplexing genetic sequences
randomly selected. Experimental results are given for text transmissions.
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1 Introduction

Cryptography manipulates the information in order to make it incompressible
for adversaries, using an algorithm and a secret key [1–3].

Pure random sequences are widely used in cryptographic applications for
cryptographic keys. The use of OTP (One Time Pad) is of great interest in
cryptography, where a key is only used once in a confidential communication
and the length of the key is at least as long as the message in plaintext. Such a
system was proved to be unbreakable [1,4]. One of the most important problems
which occur in OTP implementation of usable cryptographic systems is the
number of very long keys required and their management.

The construction of an OTP cryptosystem that is capable of transmitting
encrypted messages opens an entirely new field of analysis. The main reason
for using DNA (Dezoxyribonucleic Acid) sequences for secret keys generation, is
that these sequences were proved to be incompressible, thus such sequences can
be considered random sequences [5].

Based on [6–8], we propose a full duplex OTP cryptosystem using DNA
keys. The paper is structured in eight sections: 1. Introduction, 2. Access to the
DNA Sequences, 3. Key generation method, 4. Full duplex OTP cryptosystem
and protocol based on DNA sequences, 5. Efficiency analysis of the algorithm for
text transmissions, 6. Conclusions, 7. Future implementations and 8. References.
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2 Access to the DNA Sequences

DNA sequences can be accessed using provided biological databases that store
genetic sequences, and can be used to generate as long desired sequences as
needed. The structure of DNA sequences is random, so it cannot be compressed,
or the compression ratio is very small. The genetic code has four bases: A Ade-
nine, C Cytosine, G Guanine, and T Thymine [10,11]. It is important to mention
that these bases are converted in binary using the following relations: A = 00;
B = 01; C = 10; D = 11 [11]. This substitution is used for a better interpreta-
tion of the genetic code in programming language. In order to obtain a random
sequence for OTP cryptographic applications, the sequences should be at least
equal to the length of the message in plaintext and need to be used only once.
For this reason, the minimum length of the generated sequence should match
the message length, which varies depending on its format and type [5,7,8]. For
implementation of this application it was chosen a personal database, to store
cryptographic keys, in order to not dependent on access to servers of other enti-
ties. In this way a server capable of storing a database of DNA structure of
various organisms and their chromosomes was created. These sequences were
imported from the databases of NCBI (The National Center for Biotechnology
Information) and inserted into the local database [9]. Thus, this application is
capable of transmitting messages, with size limitations set only by the server,
fact which may result in low processing speeds of encryption. The structure of
the local database is presented in Fig. 1. For testing, a number of 200 items
(DNA structures) was introduced in the database. This number will be further
increased for future development.

Fig. 1. Structure of the local DNA sequence database

3 Key Generation Method

For obtaining a high number of random sequences based on the DNA structure,
the key used in the encryption process is generated by multiplexing different
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sequences stored in the DNA server database [6–8]. In this database, each indi-
vidual DNA sequence has its own associated identification (ID) number. The
number of sequences used during the multiplexing process is selected arbitrary.
After obtaining the number of sequences, each individual sequence is selected
randomly by its associated identification number. Figure 2 presents the process
of multiplexing 3 DNA sequences.

Fig. 2. Cryptographic key resulted from the multiplexing of 3 DNA sequences stored
in the local database

The total number of sequences used in multiplexing and the identification
number of each sequence are used for generation of the cryptosystems private
key. Another field introduced in the private key is the sequence offset. The offset
is referring to the possibility of selecting only segments of the chosen sequences
from the database. Beside these fields, the total length of the plaintext message
value is also introduced into the private key. This value will be used at the
reception, within the decryption algorithm. The private key (seed) structure is
presented in Fig. 3.

Fig. 3. Cryptosystem private key (seed) structure

The main advantages of this method are:

– DNA sequences are random (cannot be compressed);
– The variety of DNA sequences is very large considering the multitude types

of organisms;
– A wide range of keys resulted from sequences multiplexing due to the random

selection and arbitrary number of used sequences;
– There is no need to send the entire key, only the private key (Fig. 3), which

requires a high level of security in transmission.
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Fig. 4. DNA sequences based OTP cryptosystem block diagram

4 Full Duplex OTP Transmission Cryptosystem Based
on DNA Keys and its Associated Protocol

Legend of the block diagram (Fig. 4):

– MA - plaintext message from user A;
– MB - plaintext message from user B;
– No. Seq - block that generates a random number (k) of sequences used for

generating the private key;
– ID0 . . . IDk - identification number of each individual DNA sequence used in

the generation of the private key;
– DNA DB - local database of DNA sequences, identical for both users. This

database can be private or public;
– Gen KDNA - key generation block. The resulted key (KA,KB) is obtained

after multiplexing the DNA sequences received from the local database and
converted into binary code according to the method mentioned in Sect. 2;

– SA - modulo 2 adder used in the procedure of encryption and decryption by
user A;

– SB - modulo 2 adder used in the procedure of encryption and decryption by
user A;

– EA,B - encryption block for users A and B, that generates the private key
by encrypting the number of DNA sequences used, their identification num-
bers and the value of the plaintext length. This encryption procedure can be
realized using a symmetric or public algorithm;

– DA,B - decryption block for users A and B. The output of this block consists
of the number of DNA sequences used, their identification numbers and the
value of the plaintext length. The algorithm used for decryption of the private
key must be the same as the one chosen for encryption;

– || - concatenation block.

The following subsection defines the communication protocol between user
A, the transmitter, and user B, the receiver. The structure of the cryptogram is
illustrated in Fig. 5.
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Fig. 5. Structure of the cryptogram transmitted from user A to user B

4.1 Encryption and Transmission of the Cryptogram

1. After the plaintext message is provided, a random number is generated, rep-
resenting the number of sequences used for the generation of the OTP key;

2. Based on the arbitrary number generated, a list of sequence identification
numbers is generated randomly. The range of these numbers corresponds to
the total number of sequences stored in the local database;

3. For each identification number generated, the local database generates its
corresponding DNA sequence;

4. The OTP key is created by the DNA key generator, from multiplexing all
the sequences provided from the DNA database and converting the resulted
sequence into binary code according to the method mentioned in Sect. 2;

5. The private key is created by the encryption block EA, from encrypting the
arbitrary number of sequences used in multiplexing, their associated identifi-
cation numbers, and the plaintext length value, using a symmetric or public
algorithm;

6. OTP encryption is deployed by applying the modulo 2 adder SA, adding the
plaintext and the OTP key provided from the DNA key generator. After all
the characters of the plaintext are encrypted, the remaining characters of the
OTP key are encrypted using a symmetric or public algorithm and added as
padding;

7. The cryptogram is the result of concatenating the private key with the OTP
encrypted message. This cryptogram is transmitted to the receiver.

4.2 Reception and Decryption of the Cryptogram

1. Providing the cryptogram, the receivers block separates the private key from
the OTP encrypted message;

2. The private key is received by the decryption block DA, which extracts the
number of sequences used in generating the OTP key, their associated identi-
fication numbers, and the plaintext length value. The identification numbers
extracted are transmitted to the local DNA database;

3. For each identification number extracted, the local database generates its
corresponding DNA sequence and transmits it to the DNA key generator;

4. The OTP key is created by the receivers DNA key generator, after multi-
plexing all the sequences provided from the DNA database and converting
the resulted sequence into binary code according to the method mentioned in
Sect. 2. This key is the same as the one generated at the transmitting side;
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5. OTP decryption is realized by means of modulo 2 adder SB, adding the
OTP encrypted message and the OTP key provided from the DNA key gen-
erator. This procedure is realized character wise, until the final character is
decrypted. This final character is determined from the plain message length
value extracted from the private key. The remaining characters from the cryp-
togram are considered padding, and will not be processed.

5 Security Analysis

In order to measure the security of the algorithm key space, known plaintext
and chosen plaintext analysis were done, and statistical measurements were
performed in order to measure the security of the algorithm, to illustrate the
randomness and dissimilarity of the ciphertext from the plaintext.

Experimental results were realized using a plaintext of 6000 characters. The
following statistical evaluations were made: histogram, correlation and measure-
ment of the entropies. Matlab simulations were used [14].

5.1 Key Space

The key space represents the total number of possible keys used. This parameter
reveals the capacity of the algorithm to resist possible brute force attack.

Our algorithm is proposing a key generation method using a number of DNA
sequences chosen from a public database which contains millions of sequences.
The number of chosen sequences is randomly variable. The selected sequences are
then multiplexed using an appropriate offset, which can be variable as well. All
these data (seed), necessary to generate the OTP key (as presented in Fig. 3) are
encrypted using a secure algorithm (for example AES-128/ AES-256), meaning
that the brute force to crack it is strong enough for most applications (2128/2256).

5.2 Known Plaintext and Chosen Plaintext Analysis

The database, being public, could be vulnerable to known plaintext or chosen
plaintext attacks, but taking into account that in the key generation method,
the number of used sequences is random, the offset is also variable and that
the resulted key represents the outcome of multiplexing the selected sequences,
the proposed method is able to avoid the known plaintext and chosen plaintext
attack.

It should be noted that the genetic database is not compulsory public, it
could be a private database, and it is not necessary that this database should
store real genomic sequences.

5.3 Histogram Analysis

Histogram permits visualizing the distribution of the characters contained in a
given plaintext [12]. The histograms of the plaintext and of the ciphertext are
given in Fig. 6.
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Fig. 6. Histograms of the plaintext (a) and the ciphertext (b)

From the plaintext histogram it can be observed that there is a small range
of used characters, and their appearance frequency has a high value, while in
the ciphertext histogram, the entire range of characters is applied, all of them
having an approximately equal probability of occurring. The same behavior is
observed if the plaintext is using only one character (Fig. 7).

Fig. 7. Histograms of the plaintext (a) and the ciphertext (b) of a sequence that contain
6000 characters of the same symbol

5.4 Information Entropy Analysis

Under the assumption that the plaintext and the ciphertext are memoryless
[1,11], the information entropy, which measures the randomness of a variable, is
given by Shannons formula:
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H(s) = −
M∑

i=1

pi · log2 pi [bits/symbol] (1)

pi meaning the occurrence probability of the character i of the alphabet com-
posed of M symbols.

Experimental information entropy analyses of the plaintext and cryptogram
are presented in Table 1.

Table 1. Plaintext and ciphertext entropy analysis.

Type of text Entropy value(bits/ASCII symbol)

Plaintext 4.5372

Ciphertext 7.9797

While both (the plaintext and the ciphertext) being assumed memoryless,
it can be noticed that there is a great increase of the entropy in the cryp-
togram compared with the plaintext, reaching a value close to its maximum
value (8 bits/symbol) for the ASCII code, which shows that the proposed algo-
rithm is effective [1].

5.5 Correlation Analysis

In statistics, correlation measures the relationship between two sets of data. The
correlation coefficient between the random variables X and Y is [13]:

ρX,Y =
Coν{X,Y }√

σ2
x + σ2

Y

(2)

where CovX, Y is the covariance function:

Coν{X,Y } = E{[X − E{X}] · [Y − E{Y }]} (3)

E{} is the average(expectation) operator:

E{X} =
1
M

M∑

i=1

xi · pi (4)

and σ2{} is the dispersion operator:

σ2
x = E{[X − E{X}]2} =

1
M

M∑

i=1

(xi − E{X})2 (5)

The range of values the correlation coefficient takes is ρ ∈ [−1; 1]. If ρ = 1,
the variables X and Y are linearly dependent, meaning that the knowledge of
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Table 2. Autocorrelation and intercorrelation analysis.

Correlation analysis Coeficient value

Plaintext autocorrelation 1

Intercorrelation between plaintext and ciphertext 0.0806

one variable reveals totally the behavior of the other variable. If ρ = 0, the two
variables analyzed are uncorrelated.

In cryptography, the correlation between the plaintext and the ciphertext
should be as small as possible (ρ → 0), which means that there is no possible
link between the two.

Table 2 presents the measured correlation coefficient values for the plaintext
auto-correlation and for plaintext-ciphertext intercorrelation. The decreasing of
ρ from its maximum value (1) in the case of plaintext autocorrelation to 0.0806
for the intercorrelation means that the proposed algorithm is effective from this
point of view too.

6 Conclusions

In this article a new OTP cryptosystem based on DNA random sequences was
presented. Starting from the DNA structure, an infinite number of OTP keys
can be generated by multiplexing these sequences. This algorithm can be useful
in full duplex communication applications.

There is no need to send the entire OTP key, only a private key (seed), which
consists of the total number of DNA sequences used in the process of multiplexing
and their associated identification number. Thus the key management becomes
very easy. The transmission of the private key requires a high level of security
(e.q. AES-128/256 or other).

An implementation for text transmission and security measurements that
proves its effectiveness were done.

7 Future Work

Further implementation of this algorithm would consist in:

– Expanding the application for image transmission;
– Implementing a procedure that dynamically updates the sequences stored

in the local database when the receiver decrypts the cryptogram. The new
sequence will be the OTP key resulted from the multiplexing procedure;

– Improvement of the algorithm by introducing a permutation block to create
confusion;

– Comparison with other algorithms (e.q. chaos based).
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Abstract. Ubiquitous Computing and the Internet of Things are two
paradigms which have gained a lot of popularity lately. They are based
on a multitude of low power devices which usually communicate through
wireless connections. To avoid security and reliability problems, efficient
cryptographic algorithms must be used for authentication, key exchange
and message encryption. Due to the wide range of such algorithms and
their characteristics, some ciphers are more suitable for implementation
on certain platforms than others. In this paper we propose solutions
for the implementation and evaluation of block ciphers on 8-bit, 16-bit
and 32-bit microcontrollers. We focus on widely used algorithms such as
AES (the tinyAES implementation), as well as others which are suitable
for embedded platforms, such as the Simon and Speck family of block
ciphers. The conclusions of this paper are drawn based on the perfor-
mance and energy efficiency of each algorithm.

Keywords: Block ciphers · Embedded systems · Cryptographic algo-
rithms · Simon and Speck

1 Introduction

Computing systems have spread beyond the traditional desktop, leading to the
paradigm known as Ubiquitous Computing [2]. It refers to the fact that compu-
tation can take place at any time, on any device, on any platform, thus leading
to the emergence of smart environments. This shift of the computing paradigm
brings along a number of other challenges and issues which need to be resolved.
For example, as such devices are usually very small, driven by microcontrollers
and can communicate through wireless connections, power consumption becomes
a very important factor which influences their capabilities. Many algorithms
previously established for use on desktop systems were reevaluated in order to
efficiently run on such devices.

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-27179-8 4
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The need for security is also very important in this discussion [3]. Crypto-
graphic algorithms are essential in order to provide authentication, protection
against eavesdropping or to verify data integrity. The AES algorithm [4] is con-
sidered the reference block cipher and it is in use for a very large number of appli-
cations and communication protocols [5]. It is in use on a wide range of devices,
from powerful servers to very lightweight devices, such as fitness bracelets and
other wearables [1,6]. However, it may not be the most suitable block cipher,
compared to others which are not as widespread.

This paper proposes an evaluation methodology for block ciphers on various
embedded systems and argues that there are other existing algorithms more
suitable than AES. Notable candidates include TEA [11] as well as the Simon and
Speck family of block ciphers [9]. We propose a thorough evaluation on a wide
range of hardware platforms, such as 8-bit, 16-bit and 32-bit microcontrollers.
Our analysis focuses on the performance (and consequently, energy efficiency)
of each algorithm and based on the test results we draw conclusions regarding
their suitability.

The rest of the paper is structured as follows. In Sect. 2 we study similar
evaluations present in the scientific literature. Section 3 describes the encryp-
tion algorithms which are used in this paper while Sect. 4 draws conclusions
on their suitability for each platform and describes the hardware setup of the
experiments, which are detailed in Sect. 5. Section 6 draws the conclusions of the
paper and outlines the areas for further research.

2 Related Work

Testing and evaluation of cryptographic algorithms is not a new field. In an era
when there are many research groups dedicated to cryptology, this is a very
dynamic field. The interval between the publication of a new cipher and the
time when attacks are developed for it is becoming shorter and shorter. Also,
organizations such as the National Institute of Standards and Technology (NIST)
are helping by publishing standards and official test suites for such algorithms
[18,19].

A general characteristic of most block ciphers is the fact that most allow
parallel execution with very little overhead. This lead to the search for different
hardware platforms, in order to gain speed or energy efficiency. One such app-
roach is COPACOBANA (Cost-Optimized Parallel COde Breaker) [20]. Their
solution was based on a modular structure of FPGAs. Due to the fact that a
cryptographic algorithm is usually based on the execution of multiple rounds,
with little or no communication inside a single round, it can be mapped to a
simple FPGA architecture, similar to a Spartan3.

The COPACOBANA architecture can be used for multiple applications for
encryption or hash functions. It can be used for the evaluation of algorithms such
as DES, AES or SHA-1 or the testing of different attacks on these algorithms
[21]. However, this approach is oriented towards the use of their COPACOBANA
FPGA-based architecture for different cryptographic tasks, not the evaluation
and deployment of the algorithms on different hardware platforms.
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Apart from this approach, there are other research papers oriented towards
the use of cryptographic algorithms on different hardware platforms. AES has
received a lot of attention, of course [5,16]. Other algorithms, such as TEA and
xTEA have been initially developed for such embedded systems [7]. This paper
however evaluates a wide range of systems from 8-bit to 32-bit microcontrollers,
which provides a more comprehensive analysis than if it would have been focused
on a single platform.

3 Block Ciphers

In block ciphers the plaintext is divided in blocks (usually 64-bits or 128-bits) of
fixed-length, which are then encrypted into blocks of ciphertexts using the secret
key. Techniques known as modes of operation have to be used when we encrypt
messages longer than the block size. To be useful, a mode must be at least as
secure and efficient as the underlying cipher.

A block cipher is called iterated cipher if the ciphertext is computed by
iteratively applying an invertible transformation (round function) several times
to the plaintext. All round transformations are key-dependend and transforma-
tions of the round i obtains its own subkey ki obtained from the key scheduling
algorithm applied to the cipher key, K.

There are many ways of building iterative ciphers, but the two most widespread
approaches are: Balanced Feistel Networks (BFNs) and substitution-
permutation networks (SPNs). A Feistel cipher with block size of 2n and r rounds
could be defined as follows [17]. Let CL

0 and CR
0 be the left and the right halves of

the plaintext, respectively, each of n bits. The round function G operates as follows:

CL
i = CR

i−1

CR
i = F (K,CR

i−1) ⊕ CL
i ,

The ciphertext is the concatenation of CL
r and CR

r . Typically, the round
F -functions are chosen to be highly nonlinear key-dependent transformation with
good diffusion. A standard way to provide these properties is to use substitution-
permutation structure consisting of three layers [15]: In the first layer the subkey
ki is added to xi (the input of the round i), which provides key dependency. In the
second layer, nonlinear functions (S−boxes) acting on parts are applied in parallel.
In the third layer, these parts are diffused using a linear mapping (permutation).

Because in this paper we deal with lightweight cryptographic algorithms,
we choose to present the AES and the rest of algorithms used in our test con-
figuration. Compared with traditional block ciphers, lightweight ciphers have
three main properties. Firstly, applications for constrained devices are unlikely
to require the encryption of large amounts of data, and hence there is no require-
ment of high throughput. Secondly, in these environments due to lack of data for
attackers the lightweight ciphers only need to achieve moderate security. Lastly,
lightweight ciphers are usually implemented on hardware devices and a small
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part of them will be also implemented on software platforms, such as 8-bit con-
trollers. Therefore, hardware performance will be the primary consideration for
these ciphers.

3.1 AES

The block cipher Rijndael was designed by Daemen and Rijmen and standard-
ized by NIST in 2000 as the Advanced Encryption Standard (AES) [4]. In 2005,
Feldhofer et al. proposed a hardware implementation of the AES which is brought
down to a size of only 3100 gate equivalents, optimized for low-resource require-
ments [16]. Most AES operations are byte oriented, executing efficiently on 8-bit
processors. As 8-bits operations can be combined to form a 32-bit operations,
AES can be implemented with success on 32-bit processors too. Several other
implementations [12,13,16] show that AES-128 can also be used as a secure and
lightweight block cipher in many constrained environments.

3.2 TEA and xTEA

The block cipher xTEA, designed by Needham and Wheeler, was published as a
technical report in 1997. The cipher was a result of fixing some weaknesses in TEA
(designed by the same authors) used in Microsoft’s Xboxes. xTEA is a 64-round
Feistel cipher with a block size of 64 bits and a key size of 128 bits. The best known
hardware implementation of xTEA requires 3490 gate equivalents [11].

3.3 Simon and Speck

Simon and Speck are two families of ciphers proposed by the NSA in June
2013 [9], and were designed to provide high performance across a wide range of
devices. Simon has been optimized for hardware implementations, while its sister
algorithm, Speck, has been optimized for software implementations. They were
both built on ARX (Add-Rotate-XOR) philosophy, using only basic arithmetic
operations such as modular addition, XOR, bitwise AND and bit rotation on
different block sizes (32, 48 and 64 bits) with key sizes (64, 72 or 96, 96 or 128
respectively).

Block cipher Simon has a Feistel structure and its round function under a
fixed round key k is defined on inputs x and y as:

Rk(x, y) = ((y ⊕ f(x) ⊕ k), x), where

fk(x, y) = ((x ≪ 1) & (x ≪ 8)) ⊕ (x ≪ 2)

The Speck block cipher has a structure similar to that of Threefish. Its round
function under a fixed round key k is defined on inputs x and y as:

Rk(x, y) = (fk(x, y), fk(x, y) ⊕ (y ≪ β), where

fk(x, y) = ((x ≫ α) + y) ⊕ k,

α = 7, β = 2 for block size 32 and α = 8, β = 3 otherwise.
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Although Speck is not a Feistel cipher itself, it can be represented as a com-
position of two Feistel maps as described in [9].

Hardware efficiency can be measured in many different ways: latency, clock
cycles, power consumption, throughput, area requirements and so on. Among
them, area requirements (measured as GE - gate equivalents) is the most impor-
tant parameter [14] because it minimize the cost and the power efficiency require-
ments.

4 Testing Environments

Contrary to a general purpose computer, embedded systems are designed to run
a specific task while being constrained by very limited resources. However, they
still can run a wide range of algorithms, usually incurring a penalty in perfor-
mance. The industry has developed many architectures of varying complexities
to address the growing need for embedded computing and as such testing the
suitability of an algorithm for embedded platforms cannot be done on a single
system. In order to evaluate the potential of security algorithms on embedded
platforms this paper targets the following architectures, represented by specific
microcontrollers (Table 1).

Table 1. The architectures used for evaluation.

Architecture ALU width [bits] Microcontroller

AVR32 32 AT32UC3A0128

AVR mega 8 ATmega328P

dsPIC 16 dsPIC30F5013

MSP430 16 MSP430FG4619

PIC16 8 PIC16F1947

PIC18 8 PIC18F46K22

PIC24 16 PIC24FJ128GA

PIC32 32 PIC32MX270F256D

PIC32 32 PIC32MZ2048ECH144

Ideally one could test the same implementation on each architecture in order
to assess its performance, but since these are not instruction-set compatible this
is impossible. In order to keep the implementation identical only algorithms
developed in C have been employed, but in this case the effects of the compiler’s
optimizations can also be noticed in the results. As such, the architecture is
considered only together with the compiler it was used with. Where multiple
compilers have been tested, only the best results are being considered. The mea-
sure of an algorithm’s performance on a particular implementation is considered
the number of instruction cycles it takes to encode and decode particular sets
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of data. This, rather than the code size is considered more important on the
basis of the fact that currently most architectures offer large internal program
memories and all are limited by power used. Since the energy required to execute
an instruction cycle can be obtained from the microcontroller’s datasheet, the
total impact on battery life can be derived for each algorithm and architecture.
This test does not target the security of an algorithm, nor its susceptibility to
side-channel attacks.

The algorithms chosen for this analysis are AES (the tinyAES implementa-
tion [8]), TEA and Speck. While other algorithms are also targeted at resource-
constrained devices, these three cover a wide range of scenarios: AES is a stan-
dard reference point, TEA benefits from a very simple implementation while
Speck is a comparatively new algorithm optimized for software implementations.

5 Experimental Results

In this section we provide details on the experiments we performed on using the
previously mentioned architectures. We started with performance evaluation for
each algorithm.

Table 2. Instruction cycles taken for one encryption and one decryption of a 64 byte
block using the AES-128 implementation on the specific architecture, with compiler
optimizations for execution speed enabled.

MCU Compiler Algorithm Cycles

PIC24EP128GP202 XC16 v1.24 AES/64 Byte 50699

dsPIC30F5013 XC16 v1.24 AES/64 Byte 51751

AT32UC3A0128 AVR32 GCC 4.4.7 AES/64 Byte 58773

PIC32MX270F256D XC32 v1.34 AES/64 Byte 63694

PIC32MZ2048ECH144 XC32 v1.34 AES/64 Byte 67266

ATmega328P AVR8 GCC 4.8.1 AES/64 Byte 85106

MSP430FG4619 IAR 6.30 AES/64 Byte 259178

PIC18F46K22 XC8 v1.33 AES/64 Byte 606352

PIC16F1947 XC8 v1.33 AES/64 Byte 2518930

5.1 Performance Evaluation

The AES [8] implementation shows little performance improvements when being
run on larger architectures, having comparable performances on both 8 bit and
32 bit AVR cores. This similarity can be traced back to the implementation of
tinyAES which makes extensive use of single byte operations, thus leaving the
larger possible data throughput for bigger architectures unused (Table 2).
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Notable exceptions are the 8 bit PIC architectures that have a single accumu-
lator and relatively small numbers of instructions. These particularities require
these architectures to do a lot of extra moving of data for processing, but also
provide the implementation advantages of simpler cores.

The single result that stands out for this implementation is the relatively
low performance provided by the MSP430 MCU. However, given that this algo-
rithm relies heavily on multiplications it incurs a penalty on this architecture
that provides a hardware multiplier but it takes 8 CPU cycles to perform the
operation. Although this is a separate peripheral, leaving the CPU free while
it is performing the computation, the algorithm is not optimized for this setup,
stalling the program to perform many multiplications in sequence. The AVR
8 bit core, having a 2 cycle multiplier can thus score better in this situation.

Table 3. Instruction cycles required to do one encryption and one decryption of an
8 byte block using the Speck algorithm with compiler optimizations for speed enabled.

MCU Compiler Algorithm Cycles

PIC32MZ2048ECH144 XC32 v1.34 Speck/8 Byte 2374

PIC32MX270F256D XC32 v1.34 Speck/8 Byte 2428

AT32UC3A0128 AVR32 GCC 4.4.7 Speck/8 Byte 2802

dsPIC30F5013 XC16 v1.24 Speck/8 Byte 4915

PIC24EP128GP202 XC16 v1.24 Speck/8 Byte 5221

MSP430FG4619 IAR 6.30 Speck/8 Byte 12338

ATmega328P AVR8 GCC 4.8.1 Speck/8 Byte 28518

PIC16F1947 XC8 v1.33 Speck/8 Byte 87362

PIC18F46K22 XC8 v1.33 Speck/8 Byte 94941

Since the Speck implementation uses 32 bit data extensively, the perfor-
mances are clearly clustered according to specific architecture sizes. Both PIC32
architectures score the lowest numbers of instructions, closely followed by the
AVR32 core, the three 16 bit cores follow (the dsPIC30, the PIC24 and the
MSP430) while the 8 bit machines require the most work additional work to
process the large data (Table 3).

The results of the TEA implementation follow a similar trend to those for
the Speck algorithm. This is expected as both implementations rely heavily on
using 32 bit data (Table 4).

Ideally one would clearly determine which algorithms are faster regardless
of architecture, but this cannot be established in this case. Naively considering
encryption of a 64 byte block to take 4 times longer than an 8 byte block with
the Speck algorithm (and 4 times longer than a 16 byte block using the TEA
algorithm) the algorithm performances can be compared for a single architecture.

Tables 5 and 6 show that even for similar architectures the compiler optimiza-
tions can have a very large effect on the execution speeds, enough to change the
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Table 4. Instruction cycles required to do one encryption and one decryption of a
16 byte block using the TEA algorithm with compiler optimizations for speed enabled.

MCU Compiler Algorithm Cycles

PIC32MX270F256D XC32 v1.34 TEA/16 Byte 1194

PIC32MZ2048ECH144 XC32 v1.34 TEA/16 Byte 1194

AT32UC3A0128 AVR32 GCC 4.4.7 TEA/16 Byte 1523

dsPIC30F5013 XC16 v1.24 TEA/16 Byte 3742

PIC24EP128GP202 XC16 v1.24 TEA/16 Byte 3942

MSP430FG4619 IAR 6.30 TEA/16 Byte 8960

ATmega328P AVR8 GCC 4.8.1 TEA/16 Byte 13879

PIC16F1947 XC8 v1.33 TEA/16 Byte 21341

PIC18F46K22 XC8 v1.33 TEA/16 Byte 22381

Table 5. Algorithm execution cycles for a single architecture (PIC16F1947).

MCU Compiler Algorithm Cycles

PIC16F1947 XC8 v1.33 TEA/64 Byte 85364

PIC16F1947 XC8 v1.33 Speck/64 Byte 698896

PIC16F1947 XC8 v1.33 AES/64 Byte 2518930

Table 6. Algorithm execution cycles for a single architecture (PIC18F46K22).

MCU Compiler Algorithm Cycles

PIC18F46K22 XC8 v1.33 TEA/64 Byte 89524

PIC18F46K22 XC8 v1.33 AES/64 Byte 606352

PIC18F46K22 XC8 v1.33 Speck/64 Byte 759528

ranking of algorithms. While tinyAES performs faster than Speck on the PIC18,
on the PIC16 it falls behind. Additionally, even the implementation choice of
a particular algorithm can make it more suitable for a specific architecture, as
is the case for AES which offers little improvement when migrating to large
architectures.

6 Conclusions and Future Work

Our experiments show that the encryption algorithm needs to be considered
closely with the whole system architecture both from a security standpoint as
well as a performance one. As such, balancing security, low cost and performance
requires embedded system designers to consider encryption a requirement of the
product and take it into account when selecting microcontroller architecture.

However, it is to be noted that the simpler TEA algorithm outperforms the
others on every architecture thus promising to offer security even to the tightest
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constrained devices. Another notable result is that the implementation details of
the algorithm needs to be properly matched up with the targeted architecture,
as using the AES implementation built around many 8-bit operations yields
little improvement in performance when moving to more capable processors. The
Speck algorithm’s performance is situated in between the other two, with the
exceptions of two 8-bit architectures (PIC18F46K22 and ATmega328P) where
its running time is longer than that of AES.

As future work, we intend to perform an analysis of the algorithms using the
NIST Statistical Tests. Although these tests are not specifically related to the algo-
rithms themselves, this will offer insight into the security and possible attacks.
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Abstract. With the large scale deployment of mobile telecommunica-
tion infrastructure offering fast access to mobile internet users, the data
content on all internet web platforms will increase and thus, creates the
necessity for the platform owners to effectively analyze the quality of
internet traffic on their web pages. This implies in depth examination of
user behavior based on the interaction with the web platform by further
adapting non-intrusive techniques. Behavioral biometric techniques offer
a positive solution in this regard and are implemented with success by
different vendors. In this paper we propose an implementation analysis
for CART and CHAID segmentation of behavioral biometric features.
The two methods are compared in order to come forward with solution
for the behavior categorization and segmentation of active users.

Keywords: Behavioral biometrics · Information security ·Decision trees ·
Classification and regression tree (CART) · Chi-square automatic inter-
action detection (CHAID)

1 Introduction

Biometrics industry has the purpose of providing enhanced data security pro-
tection. Identity authentication and verification [1] is of great significance, as
human behavior is gradually shifting from face to face to online interaction.
This shift has become the primary driver in the implementation of networked
society [4]. In scientific researches there are three major types of biometrics:
behavioral, physiological, and token based. Physiological biometrics relies on
biological traits such as face, iris, DNA, fingerprint and retina pattern. Token
based biometrics requires the use of a security device that generates security
keys and an ID card. Behavioral biometrics uses the way individuals interact
with the authentication system. This measured level of behavioral interaction
c© Springer International Publishing Switzerland 2015
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60 I.R. Glăvan et al.

can further be divided in two categories. The first category includes systems
based on voice, dynamic signature, gait, eye motion and in the second cate-
gory one may find systems that use keystroke dynamics, lexical and content
specific behavior. The main reason that advocates for behavioral biometrics is
that they offer increased convenience in data acquisition because they do not
require any special or dedicated hardware. Another important aspect is that
these systems use for input less invasive methods of acquiring biometric data,
generally associated with machine based interaction. In terms of necessity, these
traits need to be easy verifiable and identifiable. The user behavioral biometric
traits depend on their permanence character and on the constructed distinctive-
ness metrics. Based on the user interaction perspective, physiological biometrics
may be affected by skill of the individual as their use implies certain level of
cooperation [3]. Furthermore, because behavioral biometrics technologies do not
introduce delays in operation and are implemented silently, in most of the online
platforms, one can state that their acceptance level in society is high [5]. This
silent implementation is performed with no other cooperation requirements apart
from the behavioral data storage user permission acknowledgment. By compar-
ing the number of behavioral biometrics research papers with physiological ones
we may see that techniques approaching online user interaction are fewer than
traditional physiological approaches. Most of the traditional biometric systems
approaches use extracted traits with specific predominance from fingerprint [2].
In current interconnected information based society, due to the mobility increase
and the ease of access to internet connected devices, there is real challenge for
extraction and segmentation of relevant behavioral traits [9]. The data that is
extracted from human-device interaction offers less robustness for authentication
purpose but nevertheless it can be used effectively for verification and user profile
segmentation based on behavioral aspects. Furthermore the extraction was per-
formed with notification of behavioral data storage and the permission of each
user. This paper presents an indirect biometric based approach and establishes a
segmentation parameter analysis of behavioral traits extracted from a developed
online platform. In the following section two of this paper we present details for
both CART and CHAID methodologies. In this section we also provide informa-
tion on our related work implementation and further details. Finally the paper
presents the delivered results and the obtained CART Tree and user behavior
diagrams with IBM SPSS Statistics 20.

2 Methodology and Related Work Analysis

2.1 Methodology

CART and CHAID are decision algorithms that deliver solutions for data classi-
fication and segmentation offering output decision tree tables [8]. Classification
and regression tree method, CART, represents a major milestone in the evo-
lution of non-parametric statistics, machine learning, artificial intelligence and
data mining. It is an algorithm, based on binary decision trees constructed by
the re-cursive division of a parent node in two child nodes, capable of computing
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nominal and continuous attributes both as targets and predictors [10]. In order
to construct the decision trees, CART methodology uses a set of historical data
called learning samples with preassigned classes for all observations. The rule
that is applied for split in CART algorithm follows the below:

If CONDITION is applied instance goes left, and goes right otherwise

for continuous attributes the CONDITION is treated as attribute Xi <= C
and for the nominal attributes the CONDITION is expressed as a member from
an explicit list values [13].

The scope of this algorithm is to choose the division mechanism of each node
in such a way that all child nodes become pure [8,13].

This is achieved based on the “Gini rule”, similar to entropy or information-
gain criterion. For a binary target, “Gini measure of impurity” of a node t is
defined in Eq. 1

G(t) = 1 − p(t)2 − (1 − p(t))2 (1)

where p(t) is defined as the relative frequency of class 1 in the node, and the
improvement generated by a split into left (L) and right (R) children is defined
in Eq. 2

I(P ) = G(P ) − qG(L) − (1 − q)G(R) (2)

where q is defined as the fraction of left going instances and P is defined
as the parent node [13]. Further details regarding CART methodology may be
found in [11,12].

Chi-square automatic interaction detection method, better known as CHAID
relies on tree classification variance analysis in order to achieve segmentation
and prediction of input data. All the values of potential predictor features are
evaluated using a statistical significance test criterion. More specifically, it uses
the p-value of the Chi-square.

In every point of the CHAID analysis, it is identified the best predictor from a
subgroup of unities. The main aspect is to merge the nearest categories from the
multitude of independent variables with many categories [8]. The outputs of our
analysis are the computed trees from where decision and related information can
be interpreted. The main difference between CART and CHAID resides in the
tree construction process. In order to avoid overfitting the data, all methods try
to limit the size of the resulting tree. CHAID algorithm achieves this by using
a statistical end process rule that discontinuous the tree growth. In contrast,
CART methodology firstly grows the full tree and then prunes it back. Another
difference between these two methods is that CHAID algorithm uses a single
dataset to construct the final tree, whereas CART uses a computed training
set to build the tree and a holdout set to prune it. In terms of the splitting
mechanism, CHAID methodology is more flexible as it allows multiple splits,
compared with the binary split of the CART methodology. In addition to CART
and CHAID methodology the unique behavior pattern for each user may further
be accessed through the proposed user behavioral diagrams that are presented
in the experimental results section.
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2.2 Related Work Analysis

The structural functionality of the implemented web-platform can be described
in three stages. Firstly the user has to access the web-platform. Second stage
relates to the automatic run of the script implemented in the web platform.
This implemented script is written in PHP (Hypertext Preprocessor), a pro-
gramming language frequently used for online web applications development. In
the last stage is performed the MySQL database storage of data parameters.
The implemented web platform PHP script will verify if there is a new user or
if the present user has previously visited the platform. This is performed with
the use of the specified cookie in the PHP script. A new cookie of permanent
persistence containing the unique “User Key” identifier will be created in the

Table 1. Behavioral and non-behavioral traits

Trait name Definition Unit of measure

User key Unique generated user key allocated for
each user that accesses the web
platform

N/A

Session key Defined as Unique generated session key
by the web platform

N/A

IP IP address of user Standard IP v4
notation

Total number of unique
user session keys

Defined as the number of distinct unique
session keys per user

Decimal number

Total number of pages
per all sessions per
user

Defined as the number of pages per all
sessions per user

Decimal number

Δweb-space Defined web-space distance between
source pace and next browsed page of
the platform

a-dimensional

Δtime Defined as difference between registered
time of the incoming source page
inside of platform and current
accessed platform web page

Seconds

Search function used Defined as the usage of search
functionality by each user that access
the web platform

Yes/No

Search function type
speed

Defined as the time that user writes
desired keyword in search
functionality of the web platform

Seconds

Nr of usages of
Backspace in Search
function

Defined as the number of Backspace key
usages for each session for unique user
that accesses web platform

Decimal number
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web browser, used for accessing the web-platform, for every new user. The “Ses-
sion Key” parameter identifier is generated automatically with session lifetime
duration of 30 min to differentiate different access sessions for same user. In all
web pages of the developed online platform, a tracking function is called in order
extract and to compute the behavioral biometric traits. The time spent on each
web page is further given by the difference between the current web page access
time and the previous web page access time. The number of backspaces and the
insertion time in the search functionality extracted from the developed web page
with a developed JavaScript. All these web platform functionalities run silently
in real-time during the extraction of biometric and non-biometric parameters.
The biometric traits are extracted and post-processed in order to obtain maxi-
mum relevant information. In our study, the behavioral traits that are used as
measured parameters in the analysis are coded in Table 1. The first three traits
defined in the Table 1 are non-behavioral and the rest of them are classified as
behavioral traits. In order to find solution for the best decision tree with mini-

Table 2. Behavioral traits used in the CART and CHAID analysis

Trait name SPSS label Segmentation details

Total number of unique
session keys per user

Unique S Very low −1 session

Low −2 sessions

Medium −3 to 7 sessions

High −8 to 12 sessions

Very High – more than 12

Total number of accessed
web pages per all sessions
per user

Total pages acc 1 – 1 web pages

[2–10] – between 2 and 10

[11–20] – between 11 and 20

[21–50] – between 21 and 50

>50 – more than 50

Δweb-space Delta web sp 0

[1–30]

[31–60]

[61–90]

>90

Δtime Delta time <15s

[15 s 5 min]

(5min 15 min]

(15min 30 min]

>30 min
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mum standard deviation and to conclude the relevance of proposed behavioral
traits we evaluate both CART and CHAID methodologies.

The web-space behavioral trait is constructed based on the Levenshtein dis-
tance [6,7] between the accessed source web-page name and the incoming web-
page name. It is measured per individual user key and session. In the developed
web platform all web pages are named with desired associated keyword. Usually
this distance between two keywords may be computed by the minimum number
of single-character alterations. For these single-character alterations literature
refers to deletions, insertions or substitutions necessary to change one word into
the other [6,7].

Therefore, because Levenshtein distance in information theory and com-
puter science is a string metric used for measuring the difference between two
sequences, in our proposed analysis we emphasized its use for the constructed
behavioral biometric trait.

Furthermore in the proposed analysis for obtaining better results we included
a filtering mechanism for discarding non-human behavior by removing all access
inputs from different IP’s in less than 30 s.

The implemented CART and CHAID methodology [8] uses following input
nominal traits as in Table 2.

The implementation of both CART and CHAID analysis is performed using
IBM SPSS 20 software [8]. In this data set, “Unique S” is selected as the target
variable while the other three variables remain independent variables. Further,
the highest number of “levels” we want in the CART decision tree, is chosen
to be three. The option of Pruning the tree is also selected in order to avoid
overfitting.

In the proposed methodology the CHAID growing method uses the dependent
variable “Unique S” and the following independent variables “Total pages acc”,
“Delta web sp”, “Delta time”. The maximum tree depth is set to three and
minimum cases in parent node set to 2000 and minimum cases in child node set
to 1000. All three independent variables specified are included in the model and
there are no rejected variables.

3 Experimental Results

The data volume up to 28000 records extracted during one month of web-
platform running is preprocessed according to described CART and CHAID
analysis methodology.

Applying the CHAID methodology, the best predictor for “Unique S” para-
meter is given by the “Total pages acc” behavioral trait parameter. The selected
category “more than 50” of the “Total pages acc” is obtained as the only sig-
nificant predictor of the total “Unique S” variable. The “1 web pages” cate-
gory related note is resulted as a terminal node in the output diagram. All
the users in this category have “very low” total number of accessed web pages
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on all sessions per user. The next best predictor for the two computed cate-
gories, from the “Total pages acc” parameter, is Δweb-space metrics behavioral
trait. Further, the best predictor for the “between 2 and 10” category from the
“Total pages acc” is outputted as Δtime metrics parameter. With the same men-
tioned category that has Δtime in the [15 s 5 min] interval, the CHAID model
includes one more predictor, Δweb-space.

Using the CART method the best predictor rating for the total number of
unique session keys per user is also the level for the total number of accessed web
pages on all sessions per user. The results of the implemented CART method
with prune tree to avoid overfitting are presented below (such in Fig. 1).

It presents two subgroups of the biometric parameter “Total pages acc” that
are considered an indication for “Unique S” parameter.

Without pruning tree to avoid over fitting in the implemented CART method,
“Total pages acc” is accepted as the primary factor in the prediction of “Unique S”
parameter. “Total pages acc” parameter classified as “more than 50” is consid-
ered an indication of a “Unique S”. This group of users is not further subdivided.
The node of users with “Total pages acc” less than 50 is subdivided in two child
nodes. These two nodes have their “Total pages acc” parameter “less than 10”
and “between 11 and 50”. The 4th node in the CART diagram, showed in Fig. 2,
is further divided in 2 child nodes. For the “between 21 and 50” and “between 11
and 20” categories from the “Total pages acc” accessing web-platform, the CART
model includes one more predictor, Δweb-space. Over 74% of those users seg-
mented in “[1–30]” or “[31–60]”, Δweb-space classes have a “very low” rating of
total number of unique session keys per user, while 63.6% of these users segmented

Fig. 1. CART Tree diagram with prune tree for behavioral traits model
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Fig. 2. CART Tree diagram without tree pruning for behavioral traits model

in “0”, “[61–90]” and “>90” have “very low” unique session rating. In the second
child node related to “between 11 and 20” category from the “Total pages acc”,
86.1% of users segmented in “[1–30]” or “0”, “>31” have a “very low” rating of
“Unique S”. Also approximately 80% of users subdivided in “0” and “>31” cat-
egory are categorized as “very low” total number of unique session keys per user
rating.

After the conducted analysis, an important aspect that may further show the
behavior pattern for each user may be seen in the constructed user behavioral
diagrams such in above figure (Fig. 3).
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Fig. 3. User Behavior Diagram constructed per individual user key and session key

4 Conclusion

Based on the computed results, we conclude that the overall predictions for both
implemented CHAID and CART show great resemblance. Both methods define
the level for the total number of accessed web pages on all sessions per user as
the best predictor of the rating for the total number of unique session keys per
user. The defined “more than 50” category of the total number of accessed web
pages on all sessions per user is the only significant predictor of total number
of unique session keys per user in both methods. From all users accessing the
web-platform in this category, 40.9% have “medium” level for the total number
of accessed web pages on all sessions per user. Thus, on the resulted diagram
there are no child nodes below the above mentioned node, and this is considered
a terminal node for CART and CHAID algorithm methods.

A significant difference between CART and CHAID is that the CART split-
ting rule allows only binary splits whereas CHAID allow multiple splits. Based
on the obtained results we can say that CHAID methodology is most suitable
to perform analysis and CART is better suited for prediction. For the studied
behavioral based parameters, CHAID works best to describe the relationship
between the set of explanatory variables and the response variable, while CART
methodology may be used to create a model with high prediction for new cases.

Further studies are to be considered with the inclusion of emotion behavior
parameters along with the studied behavior traits parameters.
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Abstract. PHOTON is a lightweight hash function which was proposed
by Guo et al. in CRYPTO 2011. This is used in low-resource ubiquitous
computing devices such as RFID tags, wireless sensor nodes, smart cards
and mobile devices. PHOTON is built using sponge construction and it
provides a new MAC function called MAC− PHOTON. This paper deals with
FPGA implementations of MAC − PHOTON and their side-channel attack
(SCA) resistance. First, we describe three architectures of the MAC −
PHOTON based on the concepts of iterative, folding and unrolling, and we
provide their performance results on the Xilinx Virtex-5 FPGAs. Second,
we analyse security of the MAC−PHOTON against side-channel attack using
a SASEBO-GII development board. Finally, we present an analysis of its
Threshold Implementation (TI) and discuss its resistance against first-
order power analysis attacks.

Keywords: SCA · Lightweight cryptography · Sponge functions · MAC ·
PHOTON · Threshold implementation

1 Introduction

Hash functions are one of the most important and invaluable primitives in mod-
ern cryptography. Recently, Bertoni et al. [7] proposed a new way of building
hash functions from a fixed permutation which is called sponge function. A
sponge function H is a one-way function that converts arbitrary-length message
M into variable-length hash code H(M) (or digest). In practice, sponge based
hash functions are very useful for constructing Message Authentication Codes
(MACs) [6]. A MAC algorithm accepts as input a secret key K and a message M
of arbitrary-length and produces a short-tag as output. The purpose of a MAC is
to provide integrity and authenticity assurances on the message.

Recently, a sponge based hash function called PHOTON [15] has been pro-
posed, especially for usage in lightweight security devices. The design struc-
ture of PHOTON has an AES like internal permutation. In this study, we present
the iterative, folding and unrolling architectures of the MAC-PHOTON on FPGA
(Field-Programmable Gate Array). The proposed constructions are suited for
the lightweight cryptographic applications such as FPGA-based RFID tags [14],
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 69–86, 2015.
DOI: 10.1007/978-3-319-27179-8 6
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FPGA-based wireless sensor nodes [13,25]. Moreover, the side-channel security
resistance of these non-serialised implementations of MAC-PHOTON has not been
evaluated quantitatively.

In 2013, Susana et al. [12] presented an analysis of side channel resistance
of HMAC [4] based on fully serialized implementation of PHOTON [15] hash func-
tions. They make strong assumptions on the target implementation to discover
the state information, and they use same key variant for HMAC prefix-suffix
construction. They also mention that their implementation is not suitable for
high-speed resource constrained devices. Our goal in this work is to present
implementations suitable for high-speed resource constrained devices.

Side-channel attacks on a non-serialised hardware implementation of MAC-
PHOTON would be much more challenging to implement. Up until now, there
has not been much prior work along this direction. In a side-channel attack,
an adversary exploits the secret information which is leaking from a physical
implementation of the algorithm. In MAC-PHOTON construction, obtaining the full
secret information or even partial disclosure of secret information can lead to
a forgery of the MAC for arbitrary messages. This work deals with security of
three FPGA implementations against side-channel analysis such as correlation
power analysis (CPA) [11]. We also provide Threshold Implementation (TI) of
MAC-PHOTON and discuss its resistance against first-order power analysis attacks.
To the best of our knowledge, this is the first security analysis of the unprotected
and protected of MAC-PHOTON against first-order CPA attacks.

Our Contributions. The primary goal of this work is to provide an analysis
of the SCA resistance of the sponge based MAC construction that uses either
iterative or folding or unrolling based architecture of PHOTON hash function. We
also analyse security of threshold implementation of the MAC-PHOTON against
first-order CPA attacks. Our contributions are summarized as follows:

1. Our first contribution is to present the iterative, folding and unrolling archi-
tectures of the MAC-PHOTON, and to provide their performance results on the
Xilinx Virtex-5 FPGAs. Our three implementations yield better through-
put per area ratio when compared with existing FPGA implementation of
PHOTON-80/20/16 [3,12] and HMAC-PHOTON-80/20/16 [12].

2. Our second contribution is to present the side channel security analysis of
the iterative, folding and unrolling architectures of the MAC-PHOTON against
first-order CPA attack. As a result, the iterative, folding and unrolling archi-
tectures have resistance against side channel attack up to 10000, 8000, 50000
messages, respectively. Moreover, our MAC-PHOTON implementations provide
better security compared to Susana et al. [12].

3. Our third contribution is to present the iterative, folding based threshold
implementations of MAC-PHOTON, and to analyse their security against first-
order CPA attack. As a result, our implementations yield better through-
put per area ratio when compared with existing FPGA implementations
of PHOTON-80/20/16 [3,12] and HMAC-PHOTON-80/20/16 [12]. Moreover, our
implementations are resistant against first-order CPA attacks even if an
attacker is capable of measuring 100,000 power traces.
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The rest of this paper is organised as follows. First we provide the several prelim-
inaries on PHOTON, SCA and MAC calculation in Sect. 2. In Sect. 3 we present the
hardware architecture of the MAC-PHOTON structure and implementation results
for Xilinx FPGAs. In Sect. 4 we describe a CPA attack strategy to analyze its
resistance against side-channel attacks. We then furnish its experimental results.
In Sect. 5 we present the threshold implementation of the MAC-PHOTON-80/20/16
and to evaluate their security against first-order CPA attacks. The paper con-
cludes in Sect. 6.

2 Technical Background

In this section, we give a brief description of the PHOTON hashing algorithm, fol-
lowed by an overview of the MAC-PHOTON constructions and also give an overview
of the side channel analysis.

2.1 PHOTON Description

PHOTON is a cryptographic hash function based on the sponge construction with
arbitrary-length input and variable-length output. Each PHOTON hash function
is denoted by PHOTON-n/r/r′, where its input bitrate r, its output bitrate r′,
and its hash output size n. There are five hash function in the PHOTON family:
PHOTON-80/20/16, PHOTON-128/16/16, PHOTON-160/36/36, PHOTON-224/32/32, and
PHOTON-256/32/32. The size of the internal state (t bits, t = c + r; r input bitrate
and c capacity) depends on the hash output size.

PHOTON has three phases: (1) initialization, (2) absorbing and (3) squeezing.
In the initialization phase, the input message is padded and cut blocks of r bits.
During the absorption phase, the r-bit input message blocks are XORed into the
first r bits of the state and then interleaved with the t-bit permutation function
P . Once all message blocks have been handled the squeezing phase starts. During
this phase, the extracting r′ bits from the bitrate part of the internal state and
then applying the permutation P on it. The squeezing process continues until
the proper digest size n is reached.

The PHOTON internal permutation P is also AES-like permutations. It also
consists of 12 rounds, each round is composed as the application of the following
four operations:

• AddConstants (AC): first column of the internal state is bitwise XORed with
round and internal constants;

• SubCells (SC): the PRESENT S-box [9] is applied to the internal state;
• ShiftRows (SR): cell row i of the internal state is cyclically shifted by i

positions to the left;
• MixColumnsSerial (MCS): each cell column of the internal state is transfor-

med by multiplying it once with MDS matrix (A)d (or d times with matrix A).
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We focus on PHOTON-80/20/16 in our analysis, because it is the lightest and
the simplest version of the family. It presents an internal state of (5 × 5) cells
and each cell represents a 4-bit nibble. The PHOTON-80/20/16 MDS matrix (A)5

is defined as follows:

A =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 2 9 9 2

⎞

⎟⎟⎟⎟⎠
; (A)5 =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 2 9 9 2

⎞

⎟⎟⎟⎟⎠

5

=

⎛

⎜⎜⎜⎜⎝

1 2 9 9 2
2 5 3 8 13
13 11 10 12 1
1 15 2 3 14
14 14 8 5 12

⎞

⎟⎟⎟⎟⎠

2.2 The MAC Construction

For sponge construction, the output is only a small part of the squeezing phase
and hence it is protected from length extension weakness which is mentioned
in [6,8,15]. Thus, the HMAC nested construction does not require for sponge
based constructions [5,6,8,15,26]. Indeed, we simply prepend the key to the
message and then we apply the sponge construction to generate a MAC as recom-
mended by PHOTON [15] designers.

MAC(M,K) = H(K||M) (1)

We will denote the MAC algorithm that uses PHOTON-80/20/16 to instantiate
H by the term “MAC-PHOTON-80/20/16”. We give in Fig. 1 the construction of the
sponge based MAC-PHOTON-80/20/16. In the first step, the t-bit internal state Ai is
initialized to initial vector A0 = IV . Then, the secret key and the input message
is split into blocks of r-bits each, which are denoted by key K = (k0, k1, ..., kn−1)
and message M = (m0,m1, ...,mn−1) respectively. The absorbing phase, the r-bit
input blocks are XORed with r leftmost bits of the state, then interleaved with
the permutation function P . During this phase, the key blocks are processed first
and then the message blocks are processed. Once all key and message blocks have
been absorbed, the squeezing phase begins.

In the squeezing phase, the first r′-bits of the state are returned as output
blocks zi from the internal state, and then interleaved with the permutation
function P . The squeezing process continues until the proper MAC (z0||...||zn−1)
size is reached. In the above MAC construction, obtaining the actual secret key
(K), or recovering the internal state Ai would be enough to forge the MAC for
arbitrary messages.

2.3 Side Channel Analysis

Side channel attacks have become an important field of cryptographic research.
It is a class of attack that exploits information leaking from physical implemen-
tation of cryptosystems. Differential Power Analysis (DPA) [20] and Correlation
Power Analysis (CPA) [11] are most common forms of the side channel analysis.
DPA exploits the relationship between power consumptions and data generated
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Fig. 1. The block diagram of the sponge based MAC-PHOTON-80/20/16 construction

during execution. In a CPA attack, the secret key can be derived by using the
Pearson’s correlation coefficient to correlate the recorded power consumption
(so often power trace) with the hypothetical power consumption model. The
hypothetical power consumption model is computed by using a Hamming Dis-
tance (HD) model [11]. The HD represents the number of bit-flips between two
clock cycles. Side channel attack on MAC based on several hash functions was
studied in [10,24,27]. In this paper, we demonstrate CPA attack on MAC-PHOTON-
80/20/16.

3 FPGA Implementation of the MAC-PHOTON-80/20/16

In this section, we present three FPGA implementations of the MAC-PHOTON based
on the concepts of iterative, folding and unrolling, and to provide their perfor-
mance results on the Xilinx Virtex-5 FPGAs.

In order to demonstrate the security of the MAC-PHOTON-80/20/16 construc-
tion against CPA attacks, we implemented the MAC-PHOTON-80/20/16 in Ver-
ilogHDL and targeted Xilinx Virtex-5 FPGA (XC5VLX50-1FFG324). We used
Mentor Graphics ModelSimPE for simulation purposes and Xilinx ISE v13.4 for
synthesizing and implementation purposes. For MAC-PHOTON-80/20/16 analysis,
we have selected 256 bits (260 bits with required padding) message length and
60 bits key length. A 60-bit key provides security for up to 30,000 messages per
key [15]. For higher key length, the higher versions of the PHOTON hash core must
be replaced as recommended by PHOTON [15]. We give in Table 1 the detailed
synthesis results of the iterative, folding and unrolling based implementations of
the MAC-PHOTON. The iterative architecture computes one round per clock cycle,
while the folding architecture computes one round per 2 clock cycles. In the
unrolling architecture computes 12 rounds per clock cycle.
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Fig. 2. The block diagram of the iterative, folding, unrolling implementations of the
MAC-PHOTON-80/20/16

Iterative: The main goal of the design is moderate throughput and area require-
ments. We give in Fig. 2 the block diagram of the basic iterative (denoted (i) in
Fig. 2) FPGA implementation of MAC-PHOTON-80/20/16. Initially, the key value
and input message value split into blocks of r-bits (20-bit). In absorbing phase,
first 3 key blocks are processed, after that 13 message blocks are processed,
where each block consists of 12 rounds. The data register Treg is updated every
round after processing AC, SC, SR, and MCS operations in one clock cycle.
Hence, it requires 192 clock cycles to process 16 blocks (where, 36 clock cycles
for 3 key blocks and 156 clock cycles for 13 message blocks). In squeezing phase,
r′-bit (16-bit) of 5 output blocks are extracted from the internal state which
requires 48 clock cycles (i.e. only 4 permutations are executed). Therefore, 240
clock cycles are required in order to complete both phases. We obtain 302 slices,
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while the throughput reaches 287.83 Mbps. As can be seen from the Table 1, our
work seems to require much less area than most ciphers [16–19] and also yields a
better throughput per area ratio compared to MD5 [18], SHA-l [17], SHA-256 [19],
PHOTON-80/20/16 [3,12] and HMAC-PHOTON-80/20/16 [12].

Folding: The main goal of the design is reasonable throughput and better area
requirements. In Fig. 2, horizontal folding by a factor of two is demonstrated
(denoted (ii) in Fig. 2). In this architecture, a half of a round is implemented as
combinational logic, and the entire round is executed using 2 clock cycles. The
data register Treg is updated every half of a round (either after processing AC,
and SC operations or after processing SR, and MCS operations in one clock
cycle). The datapath width and state size are stays the same as in the basic
iterative architecture. Hence, 384 clock cycles are required to process 16 blocks
in absorbing phase and 96 clock cycles (i.e. only 4 permutations are executed)
are required to process 5 output blocks in squeezing phase. Therefore, 480 clock
cycles are required in order to complete both the phases. We obtain 251 slices,
while the throughput reaches 171.42 Mbps. As seen from the Table 1, our folding
based MAC-PHOTON implementation seems to require much less area than most
ciphers [16–19] and also yields a better throughput per area ratio compared to
MD5 [18], SHA-l [17], SHA-256 [19], PHOTON-80/20/16 [3,12] and HMAC-PHOTON-
80/20/16 [12].

Unrolling: The main goal of the design is on high throughput and not on
low area requirements. We give in Fig. 2 the block diagram of the unrolling
(denoted (iii) in Fig. 2) FPGA implementation of MAC-PHOTON-80/20/16. The
combinational logic of a round is replicated, so now 12 rounds of internal per-
mutation P are executed in one clock cycle. Thus, the data register Treg is
updated after every permutation P. Hence, it requires 16 clock cycles to process
16 blocks in absorbing phase and 4 clock cycles (i.e. only 4 permutations are
executed) are required to process 5 output blocks in squeezing phase. There-
fore, 20 clock cycles are required in order to complete both the phases. We
obtain 1066 slices, while the throughput reaches 508.6 Mbps. As seen from the
Table 1, our unrolling based MAC-PHOTON implementation seems to require much
less area than KECCAK-256 [16,19] and also yields a better throughput per area
ratio compared to MD5 [18], SHA-l [17], SHA-256 [19], PHOTON-80/20/16 [3,12] and
HMAC-PHOTON-80/20/16 [12].

4 Side Channel Attack Resistance of MAC-PHOTON-80/20/16

In this section, we present a CPA attack strategy to analyze the security of
MAC-PHOTON against side-channel attack using our communication interface (see
Appendix A) on a SASEBO-GII development board, especially CPA with Ham-
ming Distance model and we furnish experimental results of it.
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Table 1. Performance Results of the MAC-PHOTON-80/20/16 and TI implementation of
MAC-PHOTON-80/20/16 on Virtex-5-xc5vlx50.

Design Area
(slices)

LUTs FFs Max.
freq
(MHz)

Total Number
of Clock
Cycles
(cycles)

T.put
(Mbps)

T.put/Area
(Mbps/slices)

Internal
permutation P

Whole hash
function H

Iterative
302

508 415 172.7 12 240 287.83 0.95

Folding
251

515 414 205.7 24 480 171.42 0.68

Unrolling 1066 3065 411 25.43 1 20 508.6 0.48

PHOTON-80 [3]
82

188 135 302.68 54 648 9.34 0.11

PHOTON-80 [3]
69

159 89 285.2 30 360 15.84 0.22

PHOTON-80 [12]
149

— — 250 59 — 7 0.05

HMAC-PHOTON-80 [12]
199

— — 114 59 17,700 38.64 0.19

MD5 [18]
613

— — 96 — — 77.4 0.12

SHA-l [17]
518

— — 82 — — 51.8 0.10

SHA-256 [19]
609

— — 260 — — 198 0.32

KECCAK-256 [19] 1433 — — 205 — — 8397 5.86

KECCAK-256 [16] 1395 — — — — — 12777 9.16

KECCAK-256 [16] 1980 — — — — — 15362 7.76

KECCAK-256 [16] 3849 — — — — — 12652 3.29

TI implementation of MAC-PHOTON-80/20/16

TI-iterative 739 1626 819 172.7 12 240 238.3 0.32

TI-folding 687 1738 814 194.3 24 480 162 0.24

4.1 Attacking MAC-PHOTON-80/20/16

The attacker needs either to recover the actual secret key K (see Table 2) or
the internal state Ai (t = 100 bits; r = 20 bits and c= 80 bits) to forge MAC for
arbitrary messages. In the MAC-PHOTON-80/20/16 construction (see Fig. 2), K only
affects the internal state values A1, A2, A3 before the message is inserted and also
these internal state values are fixed and unknown. In order to perform a CPA
attack, we require fixed unknown data to be combined with variable known data.
This criterion is fulfilled, when the known and variable m is combined with the
secret internal state A3 (combined nibbles are represented in gray cells in Fig. 3).
This internal state value A3 (see Table 2) does not change if K is fixed for any
message m. In summary, the goal of our attack is to recover the secret internal
state A3 (marked in red in Fig. 2) before the message digesting phase.

One can see that the incoming message block M is processed through the
P permutation. First, the permutation P takes r-bit leftmost of the incoming
internal state A3 is XORed with r-bit known incoming first message block and
storing the result in the first row (denoted m0i in Fig. 3) of the matrix represent-
ing the internal state, while the four other rows (denoted xij in Fig. 3) are filled
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Table 2. Secret values

Secret Key (K) FA4B7 5A4BC 9AB8C

Secret internal state value (A3) 8F4D6 0112A ABADC D0FF7 14971

with the remaining c-bits of the incoming internal state A3. Second, AddCon-
stants (denoted ci in Fig. 3) are XORed to the first column of the internal state,
then the SC and SR operations are performed (denoted sij in Fig. 3). Finally,
the MCS operation is performed (denoted zij in Fig. 3).

Fig. 3. One round of the internal permutation P of MAC-PHOTON-80/20/16.

Iterative: In the iterative architecture, we recover the incoming internal secret
data (A3) by correlating the power traces with a hypothetical model at a point
of first round MCS state output during the A4 permutation. In Fig. 3, we can see
that known and internal secret data (2–5 rows) are mixed after MCS operation is
performed, where each column will depend on one known value and five unknown
secret values. Overall, at the end of the first round, the first column (zi0) on the
output can be written as in the following matrix

⎛

⎜⎜⎜⎜⎝

z00
z10
z20
z30
z40

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

1 2 9 9 2
2 5 3 8 13
13 11 10 12 1
1 15 2 3 14
14 14 8 5 12

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

s00
s11
s22
s33
s44

⎞

⎟⎟⎟⎟⎠

If we look at the first output nibble z00, it is given by

z00 = 01 · s00 ⊕ 02 · s11 ⊕ 09 · s22 ⊕ 09 · s33 ⊕ 02 · s44

If we focus on the first round, we can substitute s00, s11, s22, s33 and s44
with SC(x00 ⊕ m00 ⊕ c0), SC(x11), SC(x22), SC(x33) and SC(x44). The output
nibble z00 can then be written as

z00 = 01 · SC(x00 ⊕ m00 ⊕ c0) + q00; q00 ∈ [0, ..., 15] (2)

where, known constant c0 is 1; unknown constant q00 can write as follows:
q00 = 02 · SC(x11) + 09 · SC(x22) + 09 · SC(x33) + 02 · SC(x44)
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From Eq. 2, we observe that m00 is variable and known, whereas x00 is fixed
and unknown secret. q00 is also fixed and unknown constant. Therefore, a CPA
attack can be launched by making hypotheses about x00 and q00, and computing
the corresponding values of z00. First, we recover the value of x00, whereas
hypotheses for q00 is initially ignored because it is not related to m00. Hence, 24

hypotheses for x00 are required. Using the Hamming Distance (HD) model, the
24 possibilities for the previous state x00 (A3), must also be taken into account.
In our case same 24 hypotheses for the x00 are used in both the states. Therefore,
the attacker correlates the power traces with the 24 hypotheses for HD(x00, z00).
This allows the attacker to recover the secret value of x00. Once recovering the
secret value of x00, the attacker can now make the 24 hypotheses on the q00
for HD(x00, z00). Hence, the fixed value of q00 is revealed. Furthermore, with
knowledge of both x00 and q00, the attacker can now accurately predict z00 for
any message m. By following the above strategy, the attacker can recover the
remaining internal state secrets. This attack model can decrease the complexity
of internal state (A3) from 2100 to 25 × 28 for MAC-PHOTON-80/20/16.

Folding: For folding architecture, we divide the attack in two phases. In the
first one, we recover the bitrates part (first row in Fig. 3) of the incoming internal
secret data (A3) by correlating the power traces with a hypothetical model at a
point of first round SC state output during the A4 permutation. Once recovering
the bitrates part, we recover the left part of the incoming internal secret data by
correlating the power traces with a hypothetical model at a point in output of
the second round SC state operation during the A4 permutation. The SC state
is denoted by sij for first round and by s..ij for second round, respectively.

sij = SC(xij ⊕ mij ⊕ 1) (3)

s..ij = SC(zij ⊕ 3) (4)

where zij value is obtained from Eq. 2
Focusing on Eq. 3, the attacker correlates the power traces with the 24

hypotheses HD(xij , sij) for each nibble to recover the bitrates part. Using Eq. 4,
the attacker can launch a CPA attack on s..ij by forming hypotheses HD(zij ,
s..ij) to recover the remaining state values of A3. This attack model can effi-
ciently decrease the complexity of internal state (A3) from 2100 to 25 × 24 for
MAC-PHOTON-80/20/16.

Unrolling: In the unrolling architecture, the data register Treg is updated only
after processing every internal permutation P. Thus, the attacker can launch a
CPA attack at a point of last round MCS state output during the A4 permutation
by forming hypotheses HD(A3, A4) to recover the state values of A3. In this
way, hypothesis test involves too many hypothesis for A4 state which is derived
from A3 state. Therefore, we correlating the power traces with the following
two hypothetical model approaches to recovers the internal state values of A3.
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First one is computed similar to iterative architecture, while second is computed
similar to folding architecture.

4.2 Experimental Results

The SASEBO-GII hosts two FPGAs, i.e., one control FPGA (Xilinx XC3S400A-
4FTG256, Spartan-3A series) and one cryptographic FPGA (Xilinx XC5VLX50-
1FFG324, Virtex-5 series). In order to obtain CPA power traces from the design,
the cryptographic FPGA was configured with the MAC-PHOTON-80/20/16 circuit
through Parallel JTAG Cable. A USB cable to supply power to the SASEBO-GII
board and to act as an interface between the board and the host PC. In all the
experiments the clock signal is provided by a 24 MHz oscillator which is divided
by 3 using a frequency divider, i.e., the cryptographic FPGA is clocked at a
frequency of 8MHz. Measurements are performed using an Agilent MSO7104B
1GHz oscilloscope at a sampling rate of 4GS/s and by means of a SMA-BNC
cable which captures the voltage drop over an 1Ω shunt resistor inserted into
the 1V VCORE (J2) line of the targeted FPGA. Therefore, the traces recorded
on the oscilloscope were proportional to the power consumption of the FPGA
during the execution of MAC-PHOTON-80/20/16 algorithm.

Iterative: In the iterative architecture, using the previously defined set-up and
hypothetical model approaches, a total of 10,000 input random messages and
10,000 points per trace were required to obtain a successful CPA attack, which
recovers that conform the secret internal state A3 of the MAC-PHOTON. Figure 4
shows the result of iterative MAC-PHOTON-80/20/16 against CPA analysis. The
correct first nibble of intermediate state A3 value is 8 (Matlab array index value
minus one) shows up clearly after around 10,000 traces.

Fig. 4. Correlation Co-efficient plot for
Side-channel attack (number of mea-
surements= 10,000) on iterative based
MAC-PHOTON implementation

Fig. 5. Correlation Co-efficient plot
forSide-channel attack (number of
measurements = 8,000) on folding
based MAC-PHOTON implementation
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Folding: In the folding architecture, using the previously defined set-up and
hypothetical model approaches, a total of 8,000 input random messages and
10,000 points per trace were required to obtain a successful CPA attack, which
recovers that conform the secret internal state A3 of the MAC-PHOTON. Figure 5
shows the result of folding based MAC-PHOTON-80/20/16 against CPA analysis.
The correct first nibble of intermediate state A3 value is 8 (Matlab array index
value minus one) shows up clearly after around 8,000 traces.

Unrolling: Usig the previously defined set-up and hypothetical model
approaches, we performed CPA attacks on the unrolling implementation of MAC-
PHOTON with 50,000 power traces. In the unrolling MAC-PHOTON-80/20/16 analy-
sis, without any surprise, we could not reveal correct value of the intermediate
state A3 for our two hypothetical approaches. Hence, our unrolling MAC-PHOTON-
80/20/16 design resist against correlation power analysis on Hamming distance
model.

5 Threshold Implementation of the MAC-PHOTON-80/20/16

The preceding sections have analysed security of the MAC-PHOTON algorithm
against first-order CPA attacks. We now examine security of threshold imple-
mentation (TI) of MAC-PHOTON against first-order CPA attacks. In 2006, Nikova
et al. [22] introduced the concept of a threshold implementation scheme that is
based on secret sharing techniques and is provable resistant against first order
DPA even in the presence of glitches. The sharing can have three properties: Cor-
rectness, Non-completeness and Uniformity. Correctness means that combining
the output of the different shares retrieves the original output in a correct way.
Non-completeness means that each output share of a function is independent of
at least one input share. Uniformity means that if the input shares are uniformly
distributed, the output shares must also be uniformly distributed.

In order to design a threshold implementation for MAC-PHOTON there are two
choices, iterative and folding. In both cases, we use three shares throughout the
entire implementations. Hence, we need three times the registers compared to
the unprotected iterative and folding implementations. Since the S-box used in
PHOTON is same as that used in PRESENT, the decomposing and sharing techniques
are borrowed from [23]. Figure 6 shows how to apply the threshold countermea-
sure to a 4-bit S-box: first it is decomposed into two stages G and F, then each
stage is split into 3 shares. Figure 6 also shows that in [23] the authors imple-
mented F and G using six Boolean functions F1, F2, ...., G3 which can be calcu-
lated by the formulas in [23, Appendix A], but in this article the S-box decompo-
sition is implemented without using a Y register [23] in between the G-function
and the F-function. In our proposed two architectures where 25 instances of the
TI S-box are implemented. We use the above analysis and provide a complete
threshold implementation of MAC-PHOTON.
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Fig. 6. Decomposition of an S-box

Fig. 7. Architecture of the round-
based TI of MAC-PHOTON

Fig. 8. Architecture of the folding
based TI of MAC-PHOTON

Iterative: A iterative based architecture computes one round per clock cycle.
This architecture is depicted in Fig. 7. For this architecture, we need two ran-
domly generated masks (mask1 and mask2), which are XORed with the data
(= key||message) chunk during input data block absorbing. The unmasking
step is performed by simply XORing all three shares (h1, h2, h3) yielding the
output MAC. Furthermore, the SC is now replaced by a decomposed and shared
SC module similar to [23]. The data register Treg is updated every round after
processing AC, shared SC, SR, and MCS operations in one clock cycle. We give
in Table 1 the detailed results of the iterative based TI implementation of the
MAC-PHOTON. As seen from the Table 1, our threshold implementation of the iter-
ative architecture seems to require much less area than KECCAK-256 [16,19] and
also yields a better throughput per area ratio compared to MD5 [18], SHA-l [17],
SHA-256 [19], PHOTON-80/20/16 [3,12] and HMAC-PHOTON-80/20/16 [12].
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Folding: A folding based architecture computes one round per two clock cycles.
The threshold implementation of the folding architecture is depicted in Fig. 8. For
this architecture, we need two randomly generated masks (mask1 and mask2),
which are XORed with the data (= key||message) chunk during input data block
absorbing. Furthermore, the SC is now replaced by a decomposed and shared
SC module similar to [23]. The data register Treg is updated on every half of
a round operations in one clock cycle (similarly as unprotected folding based
implementation). We give in Table 1 the detailed results of the folding based
TI implementation of the MAC-PHOTON. As seen from the Table 1, our threshold
implementation of the folding architecture seems to require much less area than
KECCAK-256 [16,19] and also yields a better throughput per area ratio compared
to MD5 [18], SHA-l [17], PHOTON-80/20/16 [3,12] and HMAC-PHOTON-80/20/16 [12].

We repeat the experiments described in Sect. 4.1 on our threshold implemen-
tations of the iterative and folding architectures. We verify that our implementa-
tions are resistant against first order CPA attacks even if collects up to 100,000
power traces.

6 Conclusion

In this paper, we have presented an analysis of SCA resistance of implementation
of PHOTON hash algorithm in MAC construction. The implemented MAC− PHOTON-
80/20/16 features are more efficient for processing short messages when com-
pared to HMAC construction. Without compromising the system security, our
results show that without any protection and key refreshment, it is possible to
interchange up to 10000, 8000, 50000 messages for iterative, folding and unrolling
implementations, respectively. Resistance of TI implementations of MAC−PHOTON
against first order CPA attacks has been tested. As we noted, our implementa-
tions are resistant against first order CPA attacks even if an attacker is capable
of measuring 100,000 power traces. Our results showed that both protected and
unprotected MAC − PHOTON constructions seems to be very well suited for light-
weight applications (even high-speed) when compared to construction of HMAC
design based protocols.
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A Our Communication Interface for SASEBO-GII

Our communication interface for SASEBO-GII [2] is derived from the work pro-
posed in [19] with slight modifications which is suitable and customisable for
cryptographic primitives. Our entire interface control logic was implemented
based on a finite-state machine and also provides the MATLAB solutions instead
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of SASEBO-Checker [19] to work with the FTDI chip. This choice is made
for accessibility and ease of maintenance. Figure 9 shows the overview of the
SASEBO-GII communication interface. This interface is used to communicate
with the PC and two FPGAs of SASEBO-GII board. They are a cryptographic
FPGA (Virtex-5) and control FPGA (Spartan-3A), a cryptographic FPGA usu-
ally implements the cryptographic algorithm and a control FPGA which commu-
nicates the data between the PC and the cryptographic FPGA. In our case, the
MAC-PHOTON-80/20/16 module was ported into the cryptographic FPGA whereas
the control FPGA acted as a bridge between the PC and the MAC-PHOTON-
80/20/16 module.

Fig. 9. SASEBO-GII communication Interface

A.1 The Interface Between the Control and Cryptographic FPGAs

The control FPGA module consists of the following 5 states: initial, receiveusb,
ControlFPGAsend, ControlFPGAreceive and sendusb. During initial state,
the USB module in the control FPGA is initialized through the FT2232D USB
chip [1]. In receiveusb state, the input data is received 8-bits at a time from
the PC (MATLAB) through the USB chip and then the values are stored in
the data registers. During ControlFPGAsend state, a MAC-PHOTON-80/20/16
module in the cryptographic FPGA via init signal is initialized first. Then, the
control FPGA sends the input data 16-bits wide via datain signal from the
input data registers to the cryptographic FPGA. Once the data is processed the
ControlFPGAreceive state receives the output data 16-bits-wide via dataout
signal from the cryptographic FPGA and stores the data into the output data
registers. During sendusb state, the output data (MAC) is sent back (8-bits wide)
to the PC (MATLAB) from output data registers through the FT2232D USB
chip. Hence, it requires 30 clock cycles to process the interface between the
Control and Cryptographic FPGAs.

The cryptographic FPGA module consists of the following 3 states: process,
CryptoFPGAreceive and CryptoFPGAsend. In CryptoFPGAreceive state,
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the cryptographic FPGA start to receives the input data from the control FPGA
when the init signal is reached and then the values are stored in the data reg-
isters. The process state, is to execute the MAC-PHOTON-80/20/16 module. The
CryptoFPGAsend state, once the MAC-PHOTON-80/20/16 module is processed,
sends the output data (MAC) 16-bits wide via dataout signal to the control FPGA.

A.2 The Interface Between the PC and Control FPGA

The FT2232D USB chip was permanently mounted with the contol FPGA of
the SASEBO-GII board. This chip acts as the communication interface between
the MATLAB software and the control FPGA. This MATLAB software is run
on the host PC and it is the control center of the whole system. In this work, the
MATLAB is used for 2 purposes: one is to record the traces from the oscilloscope
and the other is to send or receive the data from the PC to the control FPGA
via FT2232D USB chip from FTDI inc. Although MATLAB provides support
to call shared library functions, there is no readily available MATLAB solu-
tions [21] to work with the FTDI chip. In this work, we translate from working
.Net wrapper [21] to MATLAB with call shared library functions.

The translation program is divided into 4 parts: initialization, transfer,
receive and closing. During initialization, the data length is defined, the library
functions are loaded and also handle is defined to specify that the device (USB
port) is opened. Once initialization is complete, the program tells the user that
it is ready to receive data and asks the user to trigger the FPGA. During the
transfer stage, the program continuously write the input data to the control
FPGA until the expected number of data length. During the receive stage, the
program read the output data from the control FPGA. Once receive stage is
complete, handle device (USB port) is closed. Hence, it requires 216 clock cycles
to process the interface between the PC and Control FPGA.
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P.O. Box 454, Ngaoundéré, Cameroon
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Abstract. Now in cryptography, the key challenge is to consider the
trade-offs between the security level and speed performance. In this
paper, a fast and secure algorithm for image encryption scheme based on
chaotic generators is proposed. In the proposed method, permutation-
diffusion design is used to create computationally secure encryption
primitives and the integer sequences obtained by the sorting of chaotic
Logistic map generator by descending order is used as the permuta-
tion key to shuffle the whole image. The iteration of the chaotic Skew
Tent map is applied after, with an exclusive-or scheme to change the
value of the entire pixel, in order to increase the entropy of encrypted
image. Moreover, to further enhance the security of the cryptosystem,
the keystream used in diffusion process is updated for each pixel and
the computed encrypted pixel values depends on both the previously
encrypted pixels and the random keystream. The proposed algorithm
can resist the statistical and differential attacks. It also passed the infor-
mation entropy and key sensitivity test. Experimental results indicate
that the proposed algorithm has satisfactory speed and high security
which makes it a very good candidate for real-time of multimedia data
encryption applications.

Keywords: Secure encryption · Sorting of chaotic sequences · Permu-
tation · Diffusion schemes

1 Introduction

In today’s world, the extension of multimedia technology in which image covers
the highest percentage, has promoted digital images to play a more significant
role than the traditional texts. The Internet banking, e-business, e-commerce,
etc., are the major fields where security is most important. So it is necessary to
encrypt image data before transmission over the network to preserve its secu-
rity and prevent unauthorized access. For this end, most of the conventional
c© Springer International Publishing Switzerland 2015
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encryption algorithms such as Advanced Encryption Standard (AES) [1] are
designed with good properties [2,3]. However, due to bulk volume of data, high
correlation among adjacent pixels, high redundancy and real time requirement
[4], these ciphers may not be the most desired candidates for image encryption,
particularly for fast and real-time communication applications [5]. To meet this
challenge, the chaos-based encryption has suggested a new and efficient way to
deal with the intractable problem of fast and highly secure image encryption [6].
The properties of chaos such as high sensitive dependence on initial conditions
and control parameter, quasi-randomness, ergodicity, unpredictability, mixing,
etc. [7], which are analogous to the confusion and diffusion properties of Shannon
[8], have granted chaotic dynamics as a promising alternative for the traditional
cryptographic algorithms, and also for generating keystream.

Depending on the type of key used in the encryption algorithms, chaos-based
cryptosystems are either symmetric or asymmetric. Symmetric encryption, in
which the decryption key is identical to the encryption key, is the oldest method
in cryptology and is still used today. By contrast, asymmetric cryptosystems
use different keys for decryption and encryption. We consider here typical (sym-
metric encryption) chaos-based image encryption techniques which rely on two
processes: pixel permutation and pixel substitution [9,10]. The first one, also call
pixel confusion is needed to scramble the pixels. But, due to the strong correla-
tion between adjacent pixels of the images, this stage does not guarantee a good
level of security [11]. The diffusion stage is thus used to modify the pixel values
in order to increase the entropy of the entire image.

Several image encryption algorithms based on this structure are already
available in the literature [10,12–14]. Each of them has its own strength and
limitations more or less in terms of security level and computational speed.
Accordingly, some of them have been cryptanalyzed successfully [15–19]. The
common characteristic of these algorithms are: their chaotic generators need
to be discretized to the finite sets of integers and that is time consuming and
destroyed also their chaotic behaviors. Also, the keystream in the diffusion stage
of these algorithms depends on the key only and that is less secured because an
attacker can obtain that keystream by known/chosen plaintext attack [16]. So, to
enhance the security, in [20], the keystream in the diffusion step depend on both
the key and original image. Another method to obtain a high immunity to resist
the differential cryptanalysis is to design strong substitution Boxes (S-Boxes)
based on chaotic map or strong diffusion properties based on the combination
of chaotic function and other techniques [21–23].

To improve the computational performance and to resist statistical, differ-
ential, brute-force attacks, this paper continues the same pursuit with further
improvement, in which a one round chaos-based image encryption scheme based
on the fast generation of large permutation key with a good level of randomness
and a very high sensitivity on the keys is proposed. We use the integer sequences
obtained by the descending sorting of the Logistic map as a secret key in the per-
mutation stage. This technique avoids the excess digitization of chaotic values.
As consequence, the sensitivity to small changes of the initial condition or con-
trol parameters is increased, as the true accuracy of the computer is exploited.
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In diffusion process, at first, a random code is generated to get integer num-
bers from real numbers generated by Skew Tent map. Then, with that numbers,
the exclusive-or is performed on the permuted image to computed the cipher
image. The proposed approach can be easily implemented and is computationally
simple.

The remaining of the paper is organized as follows. The chaotic maps are
described in Sect. 2. In Sect. 3, the proposed encryption scheme is discussed in
detail. Simulation results and security analysis are presented in Sect. 4 to show
the efficacy and validity of the algorithm. Finally, conclusions are drawn in the
last Section.

2 Chaotic Maps

Chaotic maps are nonlinear maps that exhibit chaotic behavior. The chaotic
maps generate pseudo-random sequences, which are used during encryption
process [24]. Many fundamental concepts in chaos theory, such as mixing and
sensitivity to initial conditions and parameters, actually coincide with those in
cryptography [25]. The only difference in this concern is that encryption opera-
tions are defined on finite sets of integers while chaos is defined on real numbers.
The main advantage using chaos lies in the observation that a chaotic signal
looks like noise for the unauthorized users. Moreover, generating chaotic values
is often of low cost with simple iterations, which makes it suitable for the con-
struction of stream ciphers. Therefore, cryptosystem can provide a secure and
fast means for data encryption, which is crucial for data transmission in many
applications. The proposed scheme uses Logistic and Skew Tent maps and they
are both discussed hereafter.

2.1 Logistic Map

The Logistic map is a very simple non-linear dynamical and polynomial equation
of degree two with x output and input variable, one initial condition x0 and one
control parameter λ and can be described as follows:

xn+1 = λxn(1 − xn) (1)

where xn ∈ (0, 1) is the state of the system, for n = 0, 1, 2, ..., and λ ∈ (0, 4) is
the control parameter. For different values of parameter λ, the Logistic sequence
shows different characteristics [26]. For 3, 58 ≤ λ ≤ 4, the Logistic map Eq. (1)
has a positive Lyapunov exponent and thus is always chaotic. So all the (x0, λ)
where x0 ∈ (0, 1) and 3, 58 ≤ λ ≤ 4 can be used as secret keys.

2.2 Skew Tent Map

The Skew Tent chaotic map [27] can be described as follows:

yn+1 =
{

yn/α, if yn ∈ [0, α]
(1 − yn)/(1 − α), if yn ∈ [α, 1] (2)
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Fig. 1. Synoptic of the proposed scheme.

where α is controllable parameter for chaotic maps, yi and yi+1 are the i-th and
the i + 1-th state of chaotic maps. For α ≺ 1 the system converges to 0 for all
initial conditions. If α = 1, then all initial conditions less than or equal to 0.5 are
fixed points of the system, otherwise for initial conditions y0 � 0.5 they converge
to the fixed point 1 − y0. So all the y0, α ∈ (0, 1), can be used as secret keys.

3 Proposed Encryption Scheme

The encryption algorithm consists of two stages: permutation and diffusion of
pixels of the entire image as shown in Fig. 1.

In the proposed algorithm, we use one round (R = 1) of confusion and
diffusion for encryption.

3.1 Confusion

In this stage, the position of the pixels is scrambled over the entire image
without change their values and the image becomes unrecognizable. The pur-
pose of confusion is to reduce the high correlation between adjacent pixels in
the plain image. To enhance the degree of randomness and the level of secu-
rity, the Logistic map described in Subsect. 2.1 is used in order to generate
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pseudorandom key stream S = {x1, x2, . . . , xM×N} as the same size of the
plain-image. Let I be a gray original image of size M × N , containing M rows
and N columns, and the gray values ranges from 0 to 255. Transform I to
a one dimensional vector P = {P1, P2, . . . , PM×N}, where Pi is the i-th pixel
value. Then sort S by descending order, and note S′ = {xj , . . . , x8, . . . , x1}
with x1 ≺ ... ≺ x8 ≺ ... ≺ xj , the sorted chaotic values. The positions of
sorted chaotic values in the original chaotic sequence are found and stored in
K = {j, . . . , 8, . . . , 1}. Now, the next step is to scramble the total one dimen-
sional vector with by using the following formula:

P ′ = P (K) (3)

where P ′ is the permuted image and K the permutation key. The reconstruction
of P cannot be made unless the distribution of K is determined. The inverse
transform for deciphering is given by:

P ′(K) = P (4)

This technique avoids the excess digitization of chaotic values. As consequence,
the sensitivity to small changes of the initial condition or control parameters is
increased, as the true accuracy of the computer is exploited and the computa-
tional time necessary for the generation of large permutation is reduced.

After obtaining the shuffled image, the correlation among the adjacent pixels
is completely disturbed and the image is completely unrecognizable. Unfortu-
nately, the histogram of the shuffled image is the same as that of the plain-image.
Therefore, the shuffled image is weak against statistical attack and known plain-
text attack. As a remedy, we design diffusion next to improve the security.

3.2 Diffusion

The total image is again encrypted with different chaotic numbers. Skew Tent
map system shown in Sect. 2.2 is applied here to produce that numbers:Z =
{y1, y2, . . . , yM×N}. The masking process is employed to modify the gray values
of the image pixels, to confuse the relationship between the plain image and the
encrypted image in order to increase the entropy of the plain image by making
its histogram uniform. The diffusion function is also used to ensure the plain
image sensitivity so that, a very little change in any one pixel of plain image
should spread out to almost all pixels in the whole image. Diffusion is performed
by using following equation:

Ci = r ⊕ mod(P ′
i + Ci−1 + a, 28) (5)

where Ci and Ci−1 are the value of the currently and previously masking pixel
respectively; C0 can be set as a constant;P ′

i is the permuted pixels;⊕ is bitwise
XOR operation;a is a positive integer and r is a random code obtained according
to the following formula:

r = mod(floor(yn × 220), 256) (6)



92 J.D.D. Nkapkop et al.

where, mod (x, y) returns the remainder after division and yn is the state value
corresponding to the n-th iteration of the skew tent map from initial state value
y0 and α.

A random code r is computed to get integer numbers from real numbers
generated by Skew Tent map.

The key formula in decryption procedure is as follows:

P ′
i = mod(r ⊕ Ci − Ci−1 − a, 28) (7)

To compute the first encrypted pixel, Eq. 8 is used.

C1 = r ⊕ mod(P ′
1 + C0 + a, 28) (8)

where r is evaluated by using Skew Tent map parameters below for i = 1 to
generate y. {

y0 = (Ci−1 + a)/(255 + a + b)
α = (P ′

i + a)/(M × N + a + b) (9)

With a, b, C0 � 0.
For the security to be strengthened, the keystream r is updated for each pixel
and the computed encrypted pixel values Ci depends on the previously encrypted
pixels and the keystream, hence algorithm shows resistance to the differential
attacks such as known plain-text attack and known cipher-text attack.

3.3 Encryption Scheme

Encryption Algorithm. The encryption algorithm is composed of thirteen
steps.
Step 1: Reshape the plaintext image I into 1-D signal P and choose x0 and λ in
(0, 1) and (3.58, 4) respectively;
Step 2: Iterate the Logistic map given in Eq. 1 for T times to get rid of transient
effect, where T is a constant;
Step 3: Continue to iterate the Logistic map for M × N times, and take out the
state values S = {x1+T , x2+T , ..., xM×N+T };
Step 4: Sort S and get S’ then, generate the permutation keys K as explained
in Subsect. 3.1;
Step 5: Shuffle the pixels of the whole 1-D signal P with K using Eq. 3 and
get P ′;
Step 6: Give C0, choose a, b and evaluate y0 and α in (0, 1) respectively as shown
in Eq. 9;
Step 7: Iterate the Skew Tent map T times by using Eq. 2 and get the random
code r;
Step 8: Compute the first cipher-pixel C1 using Eq. 8 for i = 1;
Step 9: Set i = i + 1 and update y0 and α in (0, 1) and get a new chaotic
sequence yt;
Step 10: Evaluate the new random code r by using Eq. 6;
Step 11: Compute cipher-pixel Ci according to the formula 5;
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Step 12: Repeat step 9 to 11 until i reaches M × N , the length of the whole 1-D
signal;
Step 13: Reshape the 1-D signal into the 2-D image and get ciphered image.

The decryption involves reconstructing gray levels of the original image from
the encrypted image. It is a simple inverse process of the proposed encryption
algorithm.

Key Schedule. A key of 128 bits or 256 bits is required for symmetric-key
cryptosystems for more security [29]. We used an external 256-bit key (E1E2 · · ·
Ei · · · E32, where Ei are ASCII symbols) to derive initial conditions and control
parameters of the chaotic systems. The key is divided into two blocks of 16
ASCII symbols for the determination of the system control parameter and the
initial condition respectively. For each block of 128 bits (corresponding to 16
ASCII symbols), we defined

W =
15∑

i=0

2
i

i+1 Pi (10)

where Pi are values (0–255) of ASCII symbols Ei and W is the value from
which the control parameters and initial conditions are deduced, depending on
the chaotic system. By considering the possible maximum value of ASCII sym-
bols equal to 255 and the upper limit of the weight coefficient 2

i
i+1 equal to

2, the value of W presents an upper limit Wr = 8160, which is used for its
normalization.

The flowchart of the proposed encryption algorithm is then described in
Fig. 2.

4 Experiments and Security Analysis

In this section, the proposed image cryptosystem is analyzed using different secu-
rity measures. These measures consist of statistical analysis, sensibility analysis,
information entropy analysis and differential attack analysis. Each of these mea-
sures which are widely used in the literature in the field of chaos-based cryptog-
raphy [10,22,23] is described in detail in the following subsections.

4.1 Visual Test

In this subsection, we perform visual test using Lena and Black images of size
512 × 512 encrypted using parameters x0 = 0.75, λ = 3.393695629843, for the
permutation and a = 7, b = 4 and C0 = 23 for the diffusion. As shown in
Fig. 3(b) and (b’), the encrypted image is non-recognizable in appearance, unin-
telligible, incomprehensible, random and noise-like image without any leakage
of the original information. This demonstrates that the proposed algorithm can
be used to protect various images for diverse protections. The decrypted images
are exactly same as the original images (Fig. 3(c) and (c’)).
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Fig. 2. Flowchart of the encryption algorithm.

4.2 Histogram Analysis

The histogram of the plain-image and cipher image is in Fig. 3(e) and (f) respec-
tively. We found that the histogram of the ciphered image has approximately a
uniform distribution. For instance, the histogram in Fig. 3(f’) which corresponds
to the ciphered Black image highlights the effectiveness of the algorithm, as all
the 256 gray-levels present the same probability. To confirm this result, we mea-
sured the entropy for the ciphered image and we found that it has the value
7.9996 which is close to the ideal value 8.

4.3 Key Space Analysis

The key space is the total number of different keys that can be used in the
encryption/decryption procedure. For an effective cryptosystem, the key space
should be sufficiently large enough to resist brute-force attacks. In the proposed
algorithm a 256-bit key corresponding to 32 ASCII symbols is considered and the
key consists of the initial value x0, a, b and the parameter λ, where x0 ∈ (0, 1),
λ ∈ (3.58, 4) et a, b � 0. In hexadecimal representation, the number of different
combinations of secret keys is equal to 2256. Accordingly, the theoretical key
space is not less than 2256, which is large enough to resist brute-force attack [10].
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Fig. 3. Histogram: (a), (a′) original image; (b), (b′) ciphered image of
(a), (a′); (c), (c′) decrypted image of (b), (b′); (e), (e′), (f), (f ′), (g), (g′) histogram
of (a), (a′), (b), (b′), (c), (c′) respectively.

4.4 Correlation Analysis

The proposed chaotic encryption system should be resistant to statistical attacks.
Correlation coefficients of adjacent pixels in the encrypted image should be as
low as possible [28] A thousand pairs of two adjacent pixels are selected randomly
in vertical, horizontal, and diagonal direction from the original and encrypted
images. And then, the correlation coefficient was computed using the formulas
below and the results are shown in Table 1 and the visual testing of the correla-
tion distribution of two horizontally adjacent pixels of the plain image and the
cipher image produced by the proposed scheme is shown in Fig. 4. It is clear from
Table 1 and Fig. 4 that the proposed approach is resistant to statistical attacks.
We can also find in Table 1 that the proposed encryption algorithm has a much
better statistic properties than those in [10] and [22] using respectively the same
standard gray scale image Barbara and Lena with size 512× 512.

rxy =

1
N

N∑
i=1

(xi − x̄)(yi − ȳ)
√(

1
N

N∑
i=1

(xi − x̄)2
)(

1
N

N∑
i=1

(xi − ȳ)2
) (11)

x̄ =
1
N

N∑

i=1

xi (12)

ȳ =
1
N

N∑

i=1

yi (13)

where xi and yi are greyscale values of i-th pair of adjacent pixels, and N denotes
the total numbers of samples.
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Fig. 4. Correlation of horizontally adjacent pixels of the image Lena.

4.5 Differential Attack Analysis

In general, a desirable property for an encrypted image must be sensitive to the
small changes in plain-image. An opponent may make a slight change, usually one
pixel, in the plain image and compare the cipher images (corresponding to very
similar plain images and obtained by the same key) to find out some meaning-
ful relationship between plain image and cipher image, which further facilitates
in determining the secret key. If one minor change in the plain image can be
effectively diffused to the whole ciphered image, then such differential analysis
may become inefficient and practically useless. The diffusion performance is com-
monly measured by means of two criteria, namely, the Number of Pixel Change
Rate (NPCR) and the Unified Average Changing Intensity (UACI). NPCR is
used to measure the percentage of different pixel numbers between two images.
The NPCR between two ciphered images A and B of size M × N is [28]:

NPCRAB =

M∑
i=1

N∑
j

D(i, j)

M × N
× 100 (14)

where

D(i, j) =
{

1, A(i, j) �= B(i, j)
0, otherwise

(15)

The expected NPCR for two random images with 256 gray levels is 99.609 %.
The second criterion, UACI is used to measure the average intensity of differences
between the two images. It is defined as [27]:
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Table 1. Correlation coefficients of two adjacent pixels for two plain and cipher images.

Name Plain image of Lena Cipher image of Lena

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed Algorithm 0.9395 0.9789 0.9286 0.0002 0.0030 0.0008

[22] 0.0097 0.0136 0.0178

Name Plain image of Barbara Cipher image of Barbara

Horizontal Vertical Diagonal Horizontal Vertical Diagonal

Proposed Algorithm 0.9792 0.9809 0.9551 −0.0031 −0.0175 0.0010

[10] 0.0217 0.0086 0.0118

UACIAB =
100

M × N

M∑

1

N∑

1

|A(i, j) − B(i, j)|
255

(16)

For a 256 gray levels image, the expected UACI value is 33.464 %.
The NPCR and UACI test results are shown in Table 2. The proposed cryp-
tosystem achieves high performance by having NPCR � 0.99609 and UACI �
0.33464 and can well resist the known-plaintext and the chosen-plaintext attacks.
Also, the results in Table 3 show that the proposed scheme requires fewer per-
mutation and diffusion rounds than the other algorithms. Indeed, the proposed
scheme requires few chaotic numbers for the generation of complex permutation
and diffusion keys, which contributes to the raise of the speed performance as
compared to the other algorithms.

4.6 Information Entropy

The information entropy can be calculated by:

H = −
2M∑

i=1

p(mi)log2(p(mi)) (17)

where M is the number of bits to represent a symbol; p(mi) represents the
probability of occurrence of symbol mi and log denotes the base 2 logarithm so
that the entropy is expressed in bits. It is known that if the information entropy
is close to 8, the encryption algorithm is secure upon the entropy attack. The
results in Table 4 show that, our scheme is better in the aspect of the information
entropy than the other encryption schemes.

4.7 Key Sensitivity Analysis

An ideal image encryption procedure should have not only a large key space
but also a high key sensitivity. Key sensitivity implies that the small change
in the secret key should produce entirely different encrypted image. It means
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Table 2. NPCR and UACI of image Lena by proposed method

NPCR UACI

0.99693 0.33621

Table 3. Comparison of round number of scanning-image Lena, confusion and diffusion
to achieve NPCR > 99.6 % and UACI > 33.4 %

Algorithm NPCR % UACI % Round number of
scanning-image

Round number
of confusion

Round number
of diffusion

Proposed >99.6 >33.4 1 1 1

Ref. [22] >99.6 >33.4 2 - 2

Ref. [28] >99.6 >33.4 2 2 2

Ref. [29] >99.6 >33.4 1 5 1

that a slight change in the key should cause some large changes in the ciphered
image [28]. This property makes the cryptosystem of high security against sta-
tistical or differential attacks. Figure 5 shows key sensitivity test result. Where
the plain Lena image is firstly encrypted using the test key (x0 = 0.75, λ =
3.93695629843, a = 9, b = 2). Then the ciphered image is tried to be decrypted
using five decryption keys:
(i) x0 = 0.75, λ = 3.93695629843, a = 9, b = 2; (ii) x0 = 0.74, λ =
3.93695629843, a = 9, b = 2; (iii) x0 = 0.75, λ = 3.93695629842, a = 9, b = 2;
(iv) x0 = 0.75, λ = 3.93695629843, a = 8, b = 2; (v) x0 = 0.75, λ =
3.93695629843, a = 9, b = 3.

It can be observed that the decryption with a slightly different key fails com-
pletely. Therefore, the proposed image encryption scheme is highly key sensitive.

4.8 Efficiency Analysis

Running speed of the algorithm is an important aspect for a good encryption
algorithm, particularly for the real-time internet applications. In general, encryp-
tion speed is highly dependent on the CPU/MPU structure, RAM size, Oper-
ating System platform, the programming language and also on the compiler
options. So, it is senseless to compare the encryption speeds of two ciphers image.
We evaluated the performance of encryption scheme by using Matlab 7.10.0.
Although the algorithm was not optimized, performances measured on a 2.0
GHz Pentium Dual-Core with 3GB RAM running Windows XP are satisfactory.

The average running speed depends on the precision used for the quantization
of chaotic values.

For p = 8, the average computational time required for 256 gray-scale images
of size 512 × 512 is shorter than 100 ms. By comparing this result with those pre-
sented in Ref. [28], the scheme can be said high-speed as we only used a 2.0 GHz
processor and the Matlab 7.10.0 software. Indeed, the modulus and the XOR
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Table 4. Information Entropy of Lena cipher image

Algorithm Entropy

Proposed 7.9996

Ref. [22] 7.9971

Ref. [23] 7.9993

Ref. [29] 7.9902

Fig. 5. Key sensitivity test: (a) Deciphered image using key (i); (b) Deciphered image
using key (ii); (c) Deciphered image using key (iii); (d) Deciphered image using key
(iv); (e) Deciphered image using key (v).

functions are the most used basic operations in our algorithm. Also, the com-
parison between the simulations times required at the permutation stage shows
that the computational time required in our experiment is three times less than
that of Chong Fu et al’s. [29]. This means that the actual computational times
of our scheme could be at least smaller if implemented in the same conditions
than the Chong Fu et al’s. algorithm. So, referring to actual fast ciphers [22,23],
our proposed algorithm has a fast running speed. Such a speed is promising for
real time applications of multimedia data encryption.

5 Conclusion

In this paper, we proposed a new fast and secure chaos-based algorithm for image
encryption. In the proposed scheme, the permutation-diffusion design based on
the fast generation of large permutation and diffusion key with a good level
of randomness and a very high sensitivity has been investigated. In order to
shuffle entire image, we have proposed to sort chaotic sequences of the logistic
map. This procedure allows avoiding the cyclic digitization of chaotic numbers
in the generation of permutation key. In the diffusion stage, in order to avoid the
known/chosen plaintext attack, we have proposed to link keystream with both
the key and original image to mask the whole image. By using these techniques,
the spreading process is significantly accelerated contrary to that of Chong Fu
et al. [29]. Also, we proved the very good cryptographic performances of the
proposed image scheme through an extensive analysis, performed with respect
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to the latest methodology from this field. As a result, one round of encryption
with the proposed algorithm is safe enough to resist exhaustive attack, chosen
plaintext attack and statistical attack. The new scheme has higher security and
faster enciphering/deciphering speeds. This makes it a very good candidate for
real-time image encryption applications.

Acknowledgement. J.D.D Nkapkop gratefully acknowledges the AUF for their finan-
cial support.
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Abstract. The paper proposes key management between two parties,
based on set of multimedia files shared by sender and recipient. The
method is simple, fast, secure and robust. Possible key sizes are virtually
limitless. One implementation, which uses YouTube website as a source
of multimedia files, is presented.
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1 Introduction

The goal of this paper is to propose simple, fast, secure and robust key manage-
ment between two parties. We separated key management problem into three
parts:

1. Creation of session-based type of keys, based on set of images, shared by
sender and recipient,

2. Finding types of images with entropy suitable for session-based type of keys,
and

3. Implementation with robust and secure key exchange properties, for creating
key encryption key (KEK), for session-based type of keys.

1.1 Creation of Session-Based Type of Keys

All modern ciphers, like AES [1] or RSA [2], implement Kerckhoffs’ principle
[3] and Shannon’s Maxim [4] that security of system is in security of secret key.
Therefore, secret keys needs to be safe.

There are two possible ways to attack cipher secret key. One is to try all
possible values of the key until the correct key is guessed, brute force attack. To
prevent this kind of attack key needs to be as long as possible. The other way
of attack is to try to get hold of the secret key.
c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-27179-8 8
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To protect secret key various key establishment protocols have been devel-
oped. They all address the problem of how to securely make secret key available
to all pairs that need to use it to encrypt messages.

In this paper we use multimedia files to establish secret key for encryption,
between two parties. There is no need to exchange keys. Keys are generated
from multimedia files that both sides have. This is similar to session-based or
one-time keys. Exchange parties have to exchange information on which set of
files they use, from time to time, which is similar to KEK.

It is not good enough to use any set of multimedia files for session-based
type of keys. Therefore, we had to discover adequate types of multimedia files
for that purpose.

1.2 Discovering Types of Multimedia Files Suitable
for Session-Based Type of Keys

Using entropy to measure randomness on series of data values is a well-accepted
statistical practice in information theory [4].

In information theory, entropy is a measure of uncertainty. Under this term
is commonly understood Shannon’s entropy (although her origin comes from
Pauli’s [5] and von Neumann’s quantum statistical mechanics [6]), which quan-
tifies the expected value of the information contained in the message, usually in
units such as bits.

According to Shannon, entropy H of any message or state is the following:

H = −K
n∑

i=1

pi log pi (1)

where pi is probability of the state i from n possible states, and K is an
optional constant.

By measuring entropy of different sets of multimedia files, we could also
measure randomness on the sets, and therefore we could discover adequate types
of multimedia files for session-based type of keys.

1.3 Implementation with Secure and Robust Key Exchange
Properties

GNU Privacy Guard (GnuPG or GPG) is a General Public Licence (GPL) alter-
native to the Pretty Good Privacy (PGP) suite of cryptographic software. The
GNU General Public License (GNU GPL or GPL) is the most common used free
software license today. GPL allows freedom to use, study, share (copy), charge
and modify the software [7,8]. GPG is a part of the Free Software Founda-
tion’s GNU software project, and has received major funding from the German
government.

The implementation with secure and robust exchange properties, described in
this paper, proposes that the data set (i.e. sets and ordering of files) is first signed
and encrypted by GNU Privacy Guard (GnuPG or GPG), which is compliant
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with RFC 4880 [9], which is the current IETF standards track specification of
OpenPGP. After that, secure message is converter into Quick Response (QR)
code.

GPG now supports RSA signing and encryption keys (in addition to the
older DSA for signing and ElGamal for encryption methods). DSA signing keys
are limited to 1024 bit lengths, while RSA signing keys can be much longer (512
to 4096 bits are commonly used). In GnuPG version 2, the default is to create
two RSA keys for the account now, one for encryption and one for signing.

We use QR codes error correction levels (L up to 7 % of damage, M up to
15 % of damage, Q up to 25 % of damage and H up to 30 % of damage) for
including robustness in our proposition.

1.4 Our Contributions

Idea of this paper is to use a set of multimedia files, in order to establish secret
key for encryption, between two parties. With proposed approach, key space and
therefore key length, is virtually limitless.

In addition, there is no need to exchange keys. Keys are generated from
multimedia files that both sides have. Our idea is to use image bits directly from
files. Exchange parties have to exchange information on which set of files they
use, from time to time. This information can be updated dynamically, by using
encrypted channel that has been established.

The main question here is how securely exchange information on which set
of files parties use. The implementation of proposed key management, described
in this paper, proposes that the data set of files parties use, is first signed and
encrypted by GPG, and after that converted to QR code. GPG use RSA keys
for signing and encryption. Robustness of presented implementation is due to
QR code features, which are resistant to a certain level on errors.

1.5 Paper Organization

The paper is organized as follows. Related work is addressed in Sect. 2. Section 3
explains how to measure entropy in different video and audio media files.
Section 4 explains our idea on how to establish encryption keys. Conclusion and
discussion, as well as directions for future research work are in Sect. 5.

2 Related Work

We separated related work into two parts:

1. Creation of keys, and
2. QR codes, as a base for robustness.
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2.1 Related Work on Creation of Keys

Basic issues of key establishment with various key transport and key agreement
protocols are well covered in books [11,12].

We use some concepts and ideas from both steganography and cryptography,
when we use multimedia files to establish secret key for encryption, between two
parties.

Steganography deals with ways of embedding secret messages on carrier
media [13]. The characteristics of the carrier medium depend on the amount
of secret information that can be hidden, on the perceptibility of carrier media
and its robustness [14–18].

Different ideas on combining cryptography with steganography have
appeared [19–24]. One idea is to hide ciphertext within an image using steganog-
raphy, like it was proposed in [25]. To further complicate things [26] proposes
encrypting plaintext twice before hiding it in an image. Paper [27] proposes doing
encryption and hiding in one step, and saving time and resources.

According to authors’ best knowledge and available data, the focus of the
most of ideas is mainly on steganography, where cover medium is used as a
carrier.

Idea to use different kind of media files to generate cryptographic keys is
not new. Most of proposed solutions were to generate personalized keys based
on biometric features like fingerprint [28], voice [29] or face [30]. Good recent
overview of biometric key generation methods and issues can be found in [31].
However, all of ideas mentioned here requiring certain processing time, which
prolongs total encryption time. Again, our method borrows some ideas from this
area of research, but does not propose permanent personal keys, rather one time
session keys.

The most similar idea to the one we propose is expressed in [32]. Their
method uses image features for key generation. Process of key generation is rather
complicated, and requires time. They also use their own encryption algorithm.

Our idea is to use image bits directly.

2.2 Related Work on QR Codes

We use error correction levels embedded into QR code for improving robustness
of our secure information (on data set).

In the last few years we experienced a very large application of QR codes
in steganography, authentication and video watermarking. In [33], QR code
and image processing techniques are used to construct a nested steganography
scheme. A lossless data is embedded into a cover image. The data does not have
any distortion, when comparing with the extracted data and original data. Since
the extracted text is lossless, the error correction rate of QR encoding must be
carefully designed. Authors of [33] found out that 25 % error correction rate is
suitable for the goal. This scheme is also robust to Joint Photographic Experts
Group (JPEG) attacks.
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In [34] authors proposed a geo-location based QR-code authentication scheme
using mobile phone, to defeat against man-in-the-middle phishing attacks. The
proposed scheme provides convenience, mobility, and security for the user.

Paper [35], proposes a video watermarking with text data (verification mes-
sage) by using QR code. QR code is prepared to be watermarked by SVD (sin-
gular value decomposition) and DWT (Discrete Wavelet Transform). In addition
to that, logo/watermark gives the authorized ownership of video document.

3 How to Measure Randomness in Different Video
and Audio Media Files

By using existing sets of already existing sources of media file types, which are
good enough from randomness perspective to be used in everyday practice, we
are shortening time for encryption/decryption, and therefore making the whole
encryption/decryption process faster.

3.1 Randomness Tests

In order to test which media file types are good enough from randomness per-
spective to be used in everyday practice, we were using different statistical tests
[10,36], namely the following:

1. Entropy Test
Entropy originally was introduced in thermodynamics and Shannon applied
it on digital communications [4]. Entropy is a measure of the uncertainty
in a random variable in information theory, so we could interpret entropy
as the measurement of randomness. Shannon was interested in determining
what was theoretical maximum amount for file compression, i.e. more entropy
means less compression (and better quality of randomness) and vice versa.
We tested entropy as percentage, which means that results which are the
closest to 100 % are the best.

2. Arithmetic Mean Test
Arithmetic Mean Test is simply the result of summing all of bits in tested file
and divide with the length of the file. If bits in tested file are close to random,
the result should be close to 0.5.

3. Serial Correlation Test
Serial Correlation Test measures coefficient or extent to which each byte in
tested file depends on the previous byte [36]. If the coefficient in tested file
are close to random, the result should be close to 0.

4. Lempel-Ziv Compression Test [37]
The purpose of the test is to determine if and how much of testing sequence
can be compressed. The sequence is considered to be random if it can not be
significantly compressed. If the sequence in tested file is close to random, the
result should be close to 0.
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3.2 Testing Environment for Randomness Tests

Testing environment for randomness tests was set on laptop, with the following
hardware: CPU Intel Core i7-3610QM, CPU working frequency 2.30 GHz, and
RAM memory 12 GB. The laptop had the following software installed: operating
system Windows 7 Professional Edition with SP1, and compiler Borland C++
version 5.02.

As a source for our testing sets of file types, we used the following sets: JPG,
WAV, FLV WEBM and MP3 set of files.

3.3 Testing Procedure

We used compiler Borland C++ and adopted source code from [36] and we
created additional scripts for faster processing. Scripts are done in that way
that we use [36] not only for one file, but for the whole folder, so we made
efficiency and performance improvement for overall measurement process.

The measurement is done by running scripts, one time for each tested file
type, and after that we collected results. We extracted all tables and comparisons,
which are presented in next subsections of this paper, from collected results.

We used file indexes instead of real file names, due to space reduction and
better table data clarity. File size is given in bits, for calculating purposes.

3.4 Test Results

Test results are presented for two best suited types of files:

– FLV set of files, and
– WEBM set of files.

FLV Testing. Test results for FLV file types are given in Table 1. As we could
see from the results, FLV files have very good test results, for the purpose of
this work, for all of four tests, as the following:

– File entropy expressed as a percentage varies from 99.9531 to 100.0000, which
is very close to 100.0000,

– Arithmetic mean varies from 0.4939 to 0.50004, which is very close to 0.5,
– Serial correlation varies from 0.001153 to 0.019413, which is very close to 0,

and
– Reduction of compression is expressed as a percentage and is not varying,

which means that is exactly equal to 0.

WEBM Testing. Test results for WEBM file types are given in Table 2. As we
could see from the results, WEBM files have very good test results, very close to
FLV results, for the purpose of this work, for all of four tests, as the following:
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Table 1. Results of comparison for FLV files

File index File size Entropy (%) Arithmetic mean Serial correlation Compression (%)

FLV1 149177272 99.9531 0.4872 0.019413 0

FLV2 59895888 99.9994 0.4985 0.005974 0

FLV3 158340880 99.9984 0.4977 0.00546 0

FLV4 700971952 100.0000 0.5004 0.001153 0

FLV5 33027968 99.9891 0.4939 0.012764 0

FLV6 361880112 99.9993 0.4985 0.003405 0

FLV7 460491968 99.9983 0.4975 0.00545 0

FLV8 309196744 100.0000 0.4999 0.002019 0

FLV9 58047696 99.9982 0.4975 0.005092 0

FLV10 156009472 99.9983 0.4975 0.00545 0

Table 2. Results of Comparison for WEBM files

File Index File size Entropy (%) Arithmetic mean Serial correlation Compression (%)

WEBM1 113135048 99.9295 0.4844 0.020691 0

WEBM2 1244183048 99.9998 0.4993 0.003173 0

WEBM3 311626752 99.9834 0.4924 0.005272 0

WEBM4 101210448 99.9960 0.4963 0.014056 0

WEBM5 365222584 99.9995 0.4986 0.011864 0

WEBM6 320629952 99.9969 0.4967 0.009266 0

WEBM7 228198976 99.9995 0.4987 0.006817 0

WEBM8 219042400 99.9909 0.4944 0.012517 0

WEBM9 314455432 99.9862 0.4931 0.006153 0

WEBM10 601979712 99.9976 0.4971 0.009781 0

– File entropy expressed as a percentage varies from 99.9295 to 99.9998, which
is very close to 100.0000,

– Arithmetic mean varies from 0.4844 to 0.4993, which is very close to 0.5,
– Serial correlation varies from 0.003173 to 0.014056, which is very close to 0,

and
– Reduction of compression is expressed as a percentage and is not varying,

which means that is exactly equal to 0.

4 Proposed Implementation for Key Exchange

Parties in secret communication need to agree on a set of files (some kind of
keys) they are going to use for encryption. Therefore, it is a very important issue
of distribution of this “master” key. We address that problem in the following
subsection.
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4.1 Distribution of the “Master” Key

We proposed a solution to the issue, of distribution of “master” key.
We show by experiment that the best source for “master” key are

FLV/WEBM files. Very good source of FLV files is YouTube website. All
YouTube video files could be accessed by the following Uniform Resource Locator
(URL) syntax:

https://www.youtube.com/watch?v=key
where key is 11-alphanumeric YouTube video identification (ID), like, for

example, “voLNA8LdcCw” (without quotes).
Our initial message (and the size of the set) has 256 key, i.e. 256 file set is

described with 256 lines of 11-alphanumeric YouTube IDs.
By using YouTube IDs, we could access all format of video files from one place

and, depending of device and appropriate web browser, automatically show the
best fitted video format for device which is currently used.

In order to get specific video format from specific YouTube IDs, we need to
parse HyperText Markup Language (HTML) code for each of 256 YouTube IDs,
and identify exact URL locations for FLV/WEBM files.

Considering the fact that we have all information about complete file set
in one initial message, there is no need in this implementation to have sepa-
rate messages for file sets and orders. We show processes from both sender and
receiver side.

4.2 Distribution of the “Master” Key - Sender Side

In Fig. 1 we described secure exchange process, initiated from sender side.
The process from sender side consists of eight steps:

1. Prepare initial message by sender,
2. Sign and encrypt initial message with GPG,
3. Prepare/encode QR code,
4. Send QR code to recipient,
5. Receive QR code by recipient,
6. Decode QR code,
7. Decrypt and verify signature with GPG, and
8. Prepare/calculate identical copy of initial message.

The most important parts from sender side are located in the first and the
fourth step. We describe all steps in more details. After the last step is executed,
we have to let sender know, that recipient received initial message.

Prepare Initial Message by Sender. Initial message file consist of 256 lines.
In each line is 11-alphanumeric YouTube video identification (ID), plus addi-
tional end of line characters, like line feed (LF) and carriage return (CR). The
total of 3,328 bytes is used.

https://www.youtube.com/watch?v=key
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We could manually type into initial message file all of 256 lines (YouTube
IDs), but it not convenient. Although YouTube has a huge set of video files, it is
not correct that we just randomly generate 256 of 11-alphanumeric IDs, because
some of IDs generated on that way will no exist. We have to be sure that all of
11-alphanumeric IDs really exist on YouTube site.

Therefore, we suggest the following steps for creation of non-manual initial
message file.

1. Randomly create 256 three-character (al least) strings,
2. Fetch from YouTube site pseudo-random chosen video, for each of three-

character (al least) string, by using YouTube application programming inter-
face (API),

3. Extract YouTube ID, for all of fetched YouTube videos.

Sign and Encrypt Initial Message with GPG. We used GPG4Win
command-line utility gpg.exe, together with appropriate parameters, for sign-
ing and encrypting of initial message.

The syntax for signing and encrypting is the following:

gpg –armor –recipient Damir –encrypt –sign keys.txt

where Damir is recipient name, and keys.txt contains the initial message file.

Prepare/Encode QR Code. For QR codes, we used compiler Microsoft Stu-
dio 2005, Visual C# part of the Studio, and adopted source code from [38], by
making command-line applications. We were making additional batch scripts for
easier usage. Scripts are done in that way that we write in advance parameters
needed for command-line application, so we made efficiency and performance
improvement for overall measurement process.

The syntax for creating QR code is the following:

QRCodeConsoleApp.exe keys.txt.asc jpg keys.jpg

where QRCodeConsoleApp.exe is name for QR code console application,
keys.txt.asc contains GPG-signed and encrypted initial message file, jpg is type
of graphical format used for QR code and keys.jpg if file name for created QR
code.

Send QR Code to Recipient. While sender is sending QR code to the recip-
ient, an adversary could only listen (passive adversary), in order to try to learn
more about messages exchanged. Adversary could try to put some noise into
communication channel, or deliberately change some bits in the message, in
order to prevent communication (active adversary).

Robustness of proposed key exchange is in the fact that we still can decode
original (ciphertext) message, although QR code is damaged. Damage recovery
is dependent on error level correction which we use during QR code encoding.
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Receive QR Code by Recipient. Recipient receives QR code and he does
not know if QR code is sent by sender or not. In order to check it, recipient first
has to decode QR code.

Decode QR Code. Result of decoding QR code should be (identical copy of)
the initial message file. However, recipient still does not know if initial message
is send by sender or not. In order to check it, recipient has to decrypts and verify
signature with GPG.

Decrypt and Verify Signature with GPG. The syntax for decrypting and
verifying initial message is the following:

gpg –output decrypt-keys.txt –decrypt keys.txt.asc

where keys.txt.asc is GPG-signed and encrypted message, and decrypt-
keys.txt contains (identical copy of) the initial message file, if sender signature
is verified.

Prepare/Calculate Identical Copy of Initial Message. After confirming
authenticity of (identical copy of) the initial message file, the result of previous
step is creating decrypt-keys.txt file, which contains decrypted (identical copy
of) the initial message file.

4.3 Distribution of the “Master” Key - Recipient Side

The process from recipient side consists of six steps:

1. Sign and encrypt (identical copy of) initial message with GPG,
2. Prepare/encode QR code,
3. Send QR code to sender,
4. Receive QR code by sender,
5. Decode QR code, and
6. Decrypt and verify signature with GPG.

It is important to stress here that it is not enough just to sign (identical copy
of) initial message with GPG, but the message must be signed and encrypted,
in order to preserve secrecy of the message.

As soon as sender decrypt and verify signature with GPG, which is send
from recipient side as an acknowledgment of receiving ordered set of files, secret
message communication could begin.

4.4 Secret Message Communication

As soon as sender and a recipient securely exchange an information of ordered
set of files that are, individually, much bigger then messages being exchanged,
secret message communication could start.
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For each message to be encrypted the sender picks a file from the set and a
position within that file. The bits of a plaintext message are XOR-ed with the
bits of the selected file from the selected position to generate a ciphertext. The
ciphertext with an index of the selected file and the position within the file is
sent to the recipient. Using the index and the position, recipient can transform
the ciphertext back to plaintext by XOR-ing it with the bits of the same file
from the same position.

We describe formal model in the following subsection.

Formal Model. Formal model of secret message has the following notation:

– k - key space (FLV files),
– Pk - ordered set of files P from key space k,
– i - file index i,
– Pi - selected file i from ordered set of files P ,
– p - starting position p in bits in file Pi,
– bPi(j) - bit j in file Pi,
– m - plaintext message only,
– LUH - length of unencrypted header,
– LEH - length of encrypted header,
– Lm - length of the plaintext message,
– LEF - length of encrypted footer,
– C - ciphertext message,
– bMj - bit j of to-be-encrypted header, plaintext message and to-be-encrypted

footer,
– bCj - bit j of encrypted header, ciphertext message and encrypted footer.

Using above notation, encryption for part of secret message which is to-be-
encrypted can be expressed with:

Algorithm 1. Encryption for part of secret message which is to-be-encrypted
1: for j = 1 to (LEH + Lm + LEF ) do
2: bCj = bMj ⊕ bPi(p + j − 1)
3: end for

Similarly, decryption for part of secret message which is encrypted can be
expressed with:

Algorithm 2. Decryption for part of secret message which is encrypted
1: for j = 1 to (LEH + Lm + LEF ) do
2: bMj = bCj ⊕ bPi(p + j − 1)
3: end for
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Table 3. The structure of unencrypted part of the header of the message

Header field description Length

File index i 1 byte

Position p in file Pi 4 bytes

Table 4. The structure of encrypted part of the header of the message

Header field description Length

Datetime stamp sender 8 bytes

Datetime stamp recipient 8 bytes

Table 5. The structure of encrypted footer of the message

Footer field description Length

Secure Hash Algorithm-1 (SHA-1) of the whole message 20 bytes

Secure Hash Algorithm-1 (SHA-1) of the file used for encryption 20 bytes

Message Format. Since messages with a ciphertext need to include file index
i and starting position p, within unencrypted part of the message, we defined
message format, for implementation we created.

The structure of unencrypted part of the header of the message is given in
Table 3.

The structure of encrypted part of the header of the message is in Table 4.
The structure of encrypted footer of the message is given in Table 5.
The structure of the message is given in Table 6.

4.5 Security Analysis

It is obvious that security of proposed key exchange method is in secrecy of a
set of files. The set of files might be considered as a master key or some sort
of key encryption key, while the bits of files used to encrypt messages have a
role of session keys. Key size of this master key is practically limitless since the
number of possible file sets is practically limitless. There are implementation
issues regarding the size of the set and the size of the files that might limit the
possible size of this “master” key for a particular implementation.

A third party that monitors the communication channel can capture the
ciphertext, the index and the position. The index and the position are of no
value without knowledge of the file set. The ciphertext is the result of XOR-ing
plaintext message with the key, the bits form the selected file, that is the same
length as the message. Since each message is encrypted with a different key, that
has the same length as the message, our method resembles one-time pads.

Message format described assumes that there are maximum of 256 files in
set (File index is 1 byte long), meaning 256! of permutations for selected file
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Table 6. The structure of the message

Field description Length

Unencrypted header 5 bytes

Encrypted header 16 bytes

Bits of ciphertext L - length of plaintext/ciphertext in bits

Encrypted footer 40 bytes

set. Position is defined with four bytes that allows for 232, over 4 billion, posi-
tions. Encrypted header contains encrypted time stamps for sender and recipient.
Encrypted footer is SHA-1 hash for the complete message. The session key is
selected from key space of randomly selected FLV files.

The attacker could only find out unencrypted part of the header of the
message, i.e. file number and position in the file. The attacker can not
decrypt the message, since he has no knowledge about KEK. However, the
attacker/adversary could change unencrypted part of the header of the message,
and therefore prevent communication between two parties.

Therefore, we use encrypted footer. Within encrypted footer we have two
SHA-1 hash values. The first SHA-1 hash protects the whole message, including
timestamps from sender and recipient, which could prevent replay attack. By
calculating SHA-1 hash of received message on recipient side, we could also know
if any other attempt was made, in order to change the message, by comparing
calculated SHA-1 hash value with the first SHA-1 hash value in encrypted footer
of the message received.

The second SHA-1 hash is calculated from the file which is used for encryp-
tion/decryption. The file is downloaded from YouTube site, at different time, on
sender and recipient sides. In order to be sure that sender and recipient have the
same file for encryption/decryption, we calculate SHA-1 hash and use it during
secure communication.

We describe in Sect. 3 how to measure entropy in different video and audio
media files. In a case that the set of files used to encrypt the message is revealed
in future, it is possible to decrypt the message for anyone with an access to
the set and the encrypted message with the index and the position. However,
considering the fact that we are using GPG with RSA keys for signing and
encrypting, we consider our proposition safe and secure.

5 Conclusion

Key management presented in this paper is simple and fast. Presented solution
resembles One-Time-Pads (OTP). Each message is encrypted with a different
key. A length of the key is the same as the length of the message. Parties in secret
communication need only to have an ordered set of files that are, individually,
much bigger than messages being exchanged.



116 D. Omerasevic et al.

Easily available sets of already existing sources of media file types were tested
on entropy. Files with content that is random could be the source for short lived
cryptographic keys. Otherwise, key generation could take time. Using such files
could make the whole encryption/decryption process faster.

Entropy/randomness measuring was performed using different statistical
tests. Testing showed that FLV set of files, compared with all other above men-
tioned audio and video files, have the best results for all given statistical tests.

Each user is distributed with a unique and secret RSA key pair. Using RSA
key pairs is reasonable, because of its general acceptance and safety checked dur-
ing long time. However, it is only used in a minimum volume, not in full capacity,
like in transport of symmetric keys, where we have to have keys longer than 2048
bits. In this paper is not an essence of RSA keys to protect keys, because, if that
protection is broken, an adversary does not get key (which resembles OTP).
In this paper, RSA has, except protective function, an important aspect in the
phase of creating non-repudiation.

Key exchange implemented is not only secure, but also more robust. The
most of well-known and widely-used cryptographic techniques are out of order,
if we change a single bit of secret message. Therefore, we use QR code to add
robustness/self-healing feature, up to a certain level, to our solution.

Robustness of presented implementation is due to QR code features, based
on Reed-Solomon error correction codes, which are resistant to a certain level
on errors. In our case we showed that we could use up to 25 percent error level
correction, due to the length of the message (information on ordered set of files).

Our future work is oriented mostly towards transformation of the imple-
mentation to other platforms/operating systems, like Android, Windows Mobile
platform or IOS, and compare performances from smartphone platform(s) to
laptop/desktop platform based on Windows operating system.
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Nicolae Roşia1,2(B), Virgil Cervicescu2, and Mihai Togan3

1 Advanced Technology Institute, Bucharest, Romania
2 Military Technical Academy, Bucharest, Romania
{nicolae.rosia,virgil.cervicescu}@gmail.com

3 certSIGN, Bucharest, Romania
mihai.togan@certsign.ro

Abstract. Public-key cryptosystems and algorithms, including RSA [20],
EC and Diffie-Hellman key exchange [5], require efficient large integer
arithmetic in finite fields. Contemporary processors are not designed to
support such operations in a productive manner, since most of them
natively work on 8 to 64 bit word sizes. Thus, an expensive crypto-
graphic accelerator is frequently required to offload the computational
burden. In this paper, we focus on a highly parallel architecture which
is commonly found in commodity computers, i.e. the Graphical Process-
ing Unit (GPU). Recently, GPUs have known an exponential growth in
terms of computing power, becoming a cost-effective option for offloading
computationally intensive tasks. This paper describes a parallel imple-
mentation of the Montgomery Multiplication, as well as optimizations
that enable efficient exploitation of the CUDA GPU architecture.

Keywords: Mongtomery multiplication · Modular exponentiation ·
CUDA · GPGPU

1 Introduction

Asymmetric cryptographic algorithms and protocols, including RSA, EC-based
and Diffie-Hellman key exchange, require efficient large integer arithmetic. This
implies performing exponentiations and modular reductions, therefore a chain
of repetitive operations upon different data. Typically, the sizes of the operands
are between 1024 and 4096-bit. Given two operands, A and B, of SA and SB

bits, the result of A × B will have a maximum of SA + SB + 1 bits. Considering
the operands sizes and the fact that most processors have a word length between
8 and 64-bits, multiple precision arithmetic is implemented in software, in the
detriment of computational performance.
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Large numbers are usually represented in polynomial form as an array of
native word size integers:

a = an−1an−2 . . . a0(β) =
n−1∑

i=0

aiβ
i (1)

General Purpose GPU Programming became easier with the introduction of
programming frameworks like OpenCL and CUDA which enable the use of a
GPU as a coprocessor. Current GPUs exhibit good Floating-point Operations
Per Second (FLOPS) per dollar ratio and represent an attractive way to offload
computationally intensive tasks.

1.1 Related Work

One of the first usages of the graphical processing units within the cryptog-
raphy field was focused on accelerating of symmetric ciphers. The first known
implementation of this kind was made by Cook et al. [4]. Further on, researchers
have developed various solutions for this purpose using parallel architecture of
the GPUs. These implementations have been proven to be more useful than the
usual CPU-based implementations. The [13] presents a CUDA-based implemen-
tation for AES algorithm which was tested on the NVidia GeForce 8700 and 8800
GTX graphical cards. At the time of writing, the developed solution ran up to
20 times faster than the OpenSSL [1] CPU-based solution. A new block based
conventional implementation of AES having a 4-10x speed improvements over
CPU solutions is pointed out in [9]. They outlined a general purpose data model
for encapsulating cryptographic functions (client requests) which is suitable for
an execution on a GPU. They used this general model to investigate how the
data input can be mapped to the threading model of the GPUs for several of
the AES operation modes.

Currently, there are a number of publications presenting mathematical results
and optimizations for the modular multiplication (and exponentiation) algo-
rithms. Various techniques were proposed in addition to practical implementa-
tions of these algorithms. These techniques are mainly based on parallelization
which is a mechanism perfectly applicable on hardware processing technologies
like FPGAs or GPUs.

The integration of multiple-precision multiplication with modular reduction
as stated by Montgomery’s method [14] along with improvements regarding the
interleaving of multiplication and reduction are described in [6]. Five Mont-
gomery Multiplication algorithm flavours along with their space, time require-
ments and actual performance results are discussed in [10]. The Coarsely Inte-
grated Operand Scanning (CIOS) method proved to be the most efficient of all.
Given two operands of sizes s, CIOS requires 2s2+s multiplications, 4s2+4s+2
additions, 6s2 + 7s + 2 reads, and 2s2 + 5s + 1 writes and needs s + 3 words of
memory space.

Many papers present GPU implementations of public key and elliptic curve
cryptography needed primitives. All of these were focused on speeding up
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operations like modular multiplication, exponentiation or elliptic curve scalar
multiplication. One of the first was performed in [21], where by using an NVIDIA
7800 GTX GPU, they reported, at the paper time, a speedup factor of 3 relative
to the reference CPU. Other works in this way are referenced by [2,3,7,8,15,21].
A more recent GPU implementation of the Montgomery multiplication algo-
rithm for a field size of 112 to 521 bits is discussed in [12]. Their work, which
is an improvement of a previous approach [11], regards the GPU-based NIST
prime field multiplication and employs Montgomery algorithm to allow any field
prime to be used in this case. They also bring some new implementation tech-
niques which led to eliminating the need for GPU cache accesses and to gaining
this way a bigger throughput that could to accelerate EC cryptography. Exper-
iments and measurements have been conducted on an NVIDIA GTX 480 GPU
with reported speeds significantly higher than other published CPU and GPU-
based implementations. In [22] are proposed several optimizations on modular
multiplication algorithms. The implementation uses the OpenCL framework and
the tests have been conducted on an AMD Radeon HD5870 graphic card. After
applying the optimizations, they could deliver up to 11 % more arithmetical
throughput.

Structure of the Paper. The rest of this paper is organized as follows:
Section 2 reviews the basic concepts and introduces the notions used through-

out the paper. Namely, summary elements about Montgomery Reduction, Binary
exponentiation and Montgomery’s ladder technique are presented in Subsects. 2.1,
2.2, and respectively 2.3, while an overview of the GPU architecture used is pre-
sented in Subsect. 2.4. Section 3 describes our implementation details regarding
the CIOS Method on CUDA, along with the results obtained and their interpre-
tation (Sect. 3.1). Finally, conclusions are outlined in Sect. 4.

2 Preliminaries

2.1 Montgomery Multiplication

Commonly used public key cryptographic algorithms imply large integer arith-
metic operations, e.g. modular multiplication and exponentiation [20]. A straight-
forward approach when computing a modular product consists of operands’
multiplication followed by the reduction of the partial result. Considering the
magnitude of the numbers (thousands of bits), multiprecision multiplications
and repeated subtractions are necessary steps. From a computational perspec-
tive, both of the previously mentioned operations are costly. Modular exponenti-
ation, i.e. abmod n, can be computed by multiplying a by itself b times and then
reducing the result modulo n. After each multiplication, the memory require-
ments increase by a number of bits equivalent to the size of a. In practice, this is
clearly not a feasible way of tackling the problem. Applying the modulus reduc-
tion at each step reduces the required memory. However, by doing so the number
of operations greatly increases.
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In 1985, Peter Montgomery introduced the Montgomery Reduction algorithm
[14], which enables the modular multiplication (c ≡ a×b mod N) to be computed
using a different modulo. This method requires using a residue form of the
operands, a and b.

The first step of the Montgomery Reduction algorithm consists of choosing
a number R s.t. R > N and gcd(R,N) = 1. Moreover, R is often conveniently
chosen to be a power of base β in which the processor operates. In our case, the
basis is β = 2. Assuming that N is an odd prime number of w bits, choosing
R = 2w satisfies the requirements. With such an R, division and remainder
operations become bitwise mask and shifting operations.

The next step involves transforming the operands a and b into their reduced
forms, as illustrated in (2), and finding R’s inverse, i.e. RR−1 ≡ 1mod N .

a ≡ aR mod N

b ≡ bR mod N
(2)

Having a and b, we can further compute c:

c ≡ cR ≡ (a × b)R ≡ (aR × bR)R−1 ≡ (a × b)R−1 mod N (3)

The initial c, can be calculated by applying the inverse Montgomery transfor-
mation:

c ≡ cR−1 mod N (4)

The above presented steps, represent the conversion to and from the Mont-
gomery reduced form, and do not serve in the speed up of the commencing
computation. Moreover, converting operands of a single multiplication to their
residue form, in order to apply Montgomery Reduction is disadvantageous com-
pared to the straightforward method, but a substantial gain is obtained in expo-
nentiation operations. Algorithm1 illustrates the computation of c. It can be
observed that all arithmetic operations are performed modulo R, task which can
be easily solved by means of the processor. A performance analysis of the algo-
rithm (together with its multiple implementations) can be found in [10]. The
Coarsely Integrated Operand Scanning (CIOS) method proved to be the most
efficient of all five algorithms analyzed.

The Coarsely Integrated Operand Scanning (CIOS) Method. The
Montgomery reduction is intrinsically a right-to-left procedure. This allows us to
compute one word at a time of t since m[i] depends only on t[i], [6]. The CIOS
method (Algorithm 2) takes advantage of this property and integrates the multi-
plication and reduction steps by alternating between the iterations of the outer
loops. Assuming that both a and b have s words, the CIOS variant requires:

– 2s2 + s multiplications
– 4s2 + 4s + 2 additions
– 6s2 + 7s + 2 reads
– 2s2 + 5s + 1 writes
– s + 3 words of memory space
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Algorithm 1. Montgomery multiplication
Input: a, b, N , R
Output: (a × b)R−1 mod N
1: n′ ≡ −N−1 mod R
2: t ← (a × b)
3: m ← t × n′ mod R
4: t ← (t + m × N)/R
5: if t ≥ N then
6: return t − N
7: else
8: return t
9: end if

2.2 Binary Exponentiation

Given a large integer exponent, e, with its binary representation e =
en−1en−2 . . . e0(2), the computation of ae resumes to a series of square and
multiply operations, as we can see within the Algorithm3. The computational
complexity of the algorithm is O(log2 n) since there are log2n squarings and a
maximum of log2n multiplications. In asymmetric cryptosystems, the encryp-
tion often involves the use of an exponent which must be kept secret. In this the
method, the number of multiplications depend on the value of exponent which
makes it vulnerable to side-channel attacks.

2.3 Montgomery’s Ladder Technique

The technique presented in Algorithm 4 addresses the side-channel vulnerability
of Algorithm 3 by performing a fixed sequence of operations regardless of the
bit’s value in exponent.

2.4 Compute Unified Device Architecture (CUDA)

The GPU and CPU architectures are very different. CPUs have few cores (e.g.
1 to 32) running at high clock rates and put a great emphasis on big memory
caches, complex control logic including branch prediction, speculative execution
but have expensive context switching between threads. In contrast, GPUs have
many cores (e.g. 128 to 2048) running at lower clock rates and are designed to
execute hundreds of threads at the same time [17,18]. These cores have small
memory caches and simple control logic. The downside is that GPUs are only
efficient in processing tasks which are highly data parallel. In CUDA, the basic
working unit is the thread and is executed by a CUDA Core. A Streaming Mul-
tiprocessor (SM) creates and executes groups of 32 threads called warps. The
threads are characterized by having their own stack and set of registers includ-
ing program counter and by being free to branch and execute independently. On
the other hand, a warp executes a single common instruction at a time, so full
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Algorithm 2. CIOS method for Montgomery multiplication
Input: a, b, N , R = 2s·w, w being the processor word size and s the number of words.
Output: (a × b)R−1mod N
1: n′ ≡ −N [0]−1mod R
2: t ← 0
3: for i = 0 → s − 1 do
4: C ← 0
5: for j = 0 → s − 1 do
6: (C, S) ← t[j] + a[j] · b[i] + C
7: t[j] ← S
8: end for
9: t[s] ← S

10: t[s + 1] ← C
11: C ← 0
12: m ← t[0] · n′mod 2w

13: (C, S) ← t[0] + m · N [0]
14: for j = 1 → s − 1 do
15: (C, S) ← t[j] + m · N [j] + C
16: t[j − 1] ← S
17: end for
18: (C, S) ← t[s] + C
19: t[s − 1] ← S
20: t[s] ← t[s + 1] + C
21: end for
22: if t ≥ N then
23: return t − N
24: else
25: return t
26: end if

Algorithm 3. Binary Exponentiation
Input: a, e = en−1en−2 . . . e0(2)
Output: ae

1: x ← 1
2: for i = n − 1 → 0 do
3: x ← x · x
4: if ei = 1 then
5: x ← x · a
6: end if
7: end for
8: return x

efficiency is achieved when all threads of a warp follow a common path. Multi-
ple warps compose into thread blocks (TB) which in turn reside on a SM. The
SMs have limited resources and developers using CUDA must take in account
these hardware limitations in order to maximize the occupancy and to exploit
the hardware-based task switching designed to hide memory access latency.
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Algorithm 4. Montgomery’s ladder technique
Input: a, e = en−1en−2 . . . e0(2)
Output: ae

1: x1 ← a
2: x2 ← a2

3: for i = n − 2 → 0 do
4: if ei = 0 then
5: x2 ← x1 · x2

6: x1 ← x2
1

7: else
8: x1 ← x1 · x2

9: x2 ← x2
2

10: end if
11: end for
12: return x1

The level of occupancy depends on the amount of registers and shared mem-
ory used by the kernel and the generation of the CUDA Architecture being
used. The current GPUs tend to have multiple SMs. Communication between
SMs is not recommended since it is done through the global memory which is
slower than the shared memory available per thread block. Unique IDs are given
to threads and blocks, which are accessible through built-in variables, threadIdx
and blockIdx, thus allowing the threads to uniquely identify the data which is
going to operate on. Threads within a thread block can communicate efficiently
through shared memory and synchronize through hardware barriers invoked by
calling the intrinsic function, syncthreads().

CUDA C [18] allows developers to use the C programming language to create
C functions called kernels which are executed in parallel by CUDA Cores on
the device. A CUDA Program consists of a device kernel and a host program.
Since the CPU and GPU have their own separate memory, the host program is
responsible for transferring the required data necessary for execution. A typical
workflow consists of the following steps achieved by calling the relevant CUDA
Application Programming Interface (API):

1. Allocate memory on the device;
2. Transfer data from host to device;
3. Start the execution of the kernel;
4. When the kernel is done executing, transfer the result from the device.

3 Implementation and Results

Our implementation leverages the Montgomery Reduction and Montgomery
Ladder technique to efficiently compute the exponentiation required by the RSA
encryption. The GPU used in our work, Gefore GTX 750 [16], has a CUDA Com-
pute Capability 5.0 architecture, with 512 CUDA Cores running at a base clock
of 1.14 GHz and a memory bandwidth of 80 GB/s. These cores are partitioned
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over 4 Streaming Multiprocessors, each having its own resources. To obtain the
maximum device utilization and to ensure that the memory latency doesn’t
affect performance, 8 blocks per Streaming Multiprocessor were allocated and
the number of registers per thread was limited to 32. Each thread operates on
word level and calculates a word of the output. The CUDA Architecture has a
32 bit word size, hence the number of threads needed to operate on a number
can be calculated by diving the number’s bit size to 32.

Memory coalescing of GPU RAM operations is mandatory to obtain peak
memory transfer bandwidth. This is guaranteed by having consecutive threads
accessing consecutive memory locations, i.e. thread 0 reads and writes to word
index 0. This is illustrated in Fig. 1, where a block of n · s threads are processing
operands of s words.

Fig. 1. Threads organization inside a thread block.

Square and multiply are handled differently, exploiting the fact that when
computing, a · a, the processor needs a single memory access.

In the scenario where batch operations are performed, e.g. RSA encryptions
with the same private key, we can precompute the value of N and n′[0] used
in Algorithm 2 and embed the results in the code. The compiler is then able
to reduce the number of required registers and memory accesses, resulting in a
relevant performance gain.

Loop unrolling eliminates the overhead implied by loop counters and loop
arithmetic and facilitates additional compiler optimizations.

Shared memory at block level was used for its low latency access times. The
64KB shared memory [19] is big enough to cache the input operands and store
the intermediate results accessed by all worker threads.

3.1 Results

The Table 1 presents the speedups obtained, relative to a CPU-based implemen-
tation (Intel i7-4790K at 4.0 GHz). The variable factors taken into account were
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the Loop Unroll depth, whether the precomputed n′ is embedded in the code,
and the operands bit-size.

It is worth noting that these results were obtained at 100 % GPU utilization.
In order to obtain this degree of utilization, it is necessary to queue multiple
requests which can lead to increased latency in processing. Depending on the
actual setup, it might not always be beneficial to offload the computations if low
latency is required.

Firstly, it can be observed that increasing the operands bit-size, degrades
performance. This can be explained by the increased number of threads required
to compute the result which need to synchronize. The biggest speedup is obtained
with 1024 bit operands because 32 threads are needed to compute the result,
resembling a warp, which is inherently synchronized.

Secondly, (as expected) precomputing n′, yields a significant boost in speedup
since we eliminate the memory access penalty associated with reading the n′

variable.
Finally, loop unrolling depth affects performance in a not so obvious way.

The best results for 1024 bit operands, were obtained at a depth of value 8. This
is not the case for 2048/4096 bit operands since the best speedup was obtained
when performing full loop unrolling.

Table 1. Results for 1024/2048/4096 exponentiation

Unroll depth n′ constant Speedup

1024 2048 4096

1 false 5.83 5.10 4.70

1 true 5.86 5.35 4.73

2 false 5.98 5.39 4.88

2 true 6.18 5.56 4.91

4 false 6.17 5.48 4.98

4 true 6.25 5.68 5.02

8 false 6.25 5.57 5.03

8 true 6.55 5.63 5.26

16 false 6.20 5.61 5.07

16 true 6.52 5.66 5.28

32 false 6.29 5.59 5.06

32 true 6.44 5.67 5.29

4 Conclusions

This paper has presented a high throughput GPU implementation of modular
exponentiation, as well as optimization suitable for the SIMT (Single Instruc-
tion Multiple Threads) architecture. This design could be used in the context
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of a cryptographic accelerator. As shown in this article, parallel architecture
has proven to be a feasible approach to overcome operating frequency limita-
tions imposed by the current state of technology in CPUs. Despite the increased
latency that they may cause, considering the encouraging results obtained, we are
confident that further research, coupled with the increase of core count in GPUs,
will only increase performance of many-core architectures. As further steps, we
plan to embed this work within an open cryptographic API (e.g. OpenSSL) in
order to evaluate the real acceleration gained at the high level protocols and
applications like SSL and web servers.
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Abstract. Certificateless cryptography eliminates the key escrow prob-
lem inherent in identity based cryptosystem. Certificatateless systems
are preferred in public cloud to offer security because it solves two dif-
ferent problems simultaneously, namely, the key escrow problem and the
cumbersome certificate management. A stateful public key encryption
scheme is a cryptographic primitive, in which the sender maintains state
information to perform encryption. The encryption algorithm takes the
intended message, receiver’s public key and the current state information
to produce the ciphertext, and possibly updates the state information.
Decryption is straightforward and depends only on the ciphertext and
secret key of the receiver. In this paper, we propose the first stateful cer-
tificateless public key encryption scheme and prove the security of the
scheme in the random oracle model. This scheme finds very interesting
application for sharing data in an encrypted cloud storage system.

Keywords: Certificateless encryption · Stateful cryptography ·
Random oracle model · Provable security · Cloud data security · Sharing
cloud data

1 Introduction

Certificateless Cryptography (CLC) introduced by Al-Riyami et al. [2] is a vari-
ant of Identity Based Cryptography (IBC), which intends to prevent the key
escrow problem. Usually, in IBC the private key of a user is generated by the
Private Key Generator (PKG), who has to be trusted by all users of the system.
In the case of a PKG compromise, a total-break of the system is possible. This
is called the key escrow problem. In order to prevent this, the key generation
process is split between the KGC (Key Generation Center - The central author-
ity in CLC) and the user. The KGC first generates the private key for a user,
which is called as the partial private key of the user. The remaining part of the
private key is a random secret value generated by the user, and is never revealed
to anyone, not even to the KGC. This key is called as the user secret value and
the user generates the public key corresponding to this key. All cryptographic
operations by the user are performed by using the full private key which involves
both the partial private key and the user secret value.
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Having introduced CLC, we now move on to stateful public key encryption
(PKE) schemes. PKE schemes make use of compute intensive exponentiation
computations to perform encryption as well as decryption. The order of com-
plexity is roughly considered to be one thousand times that of a block cipher
or hash function evaluation. This results in slowdown of the system as well as
hinders the use of public key cryptography in systems with limited computing
power. Public key cryptography operations are very expensive that they drain
the battery of devices easily. This seems to be a very important and severe limi-
tation on cell phones, personal digital assistants, tablets, wearables, RFID chips
and sensors. Hence, researchers are very much interested in reducing the cost
of exponentiation, which is a very crucial operation for PKE schemes. It was
stated by Bellare et al. [5] that “a 10% improvement would be very welcome
and a 50% improvement would be dramatic”. However, lot of intellectual energy
is pumped in to improve the schemes by proposing time-space trade-off mech-
anisms like pre-computation of exponentiation and faster implementations for
exponentiations.

In a stateful encryption scheme, the sender maintains a state information
that can be reused across various encryptions during a session. A session may
be marked by the communication between a sender and a fixed receiver. Thus if
the communication has to occur between two fixed entities, the sender has to use
a symmetric key (the key used for encryption and decryption in any symmetric
key encryption scheme) which is derived using the public key of the receiver.
A stateful encryption algorithm is deterministic with respect to the state and
public key. Thus, this key has to be computed only for the first time the sender
communicates with the receiver. After which the key can be reused through
out the state, which reduces the cost of further public key encryptions to that
receiver.

Moreover, it should be noticed that reusing randomness is not straightforward
in any cryptographic operation. In the history, we have learned hard lessons due
to reuse of randomness. One of the well known examples is the attack on Sony’s
PlayStation 3 in 2010. A group of attackers recovered the private key of Elliptic
Curve Digital Signature Algorithm (ECDSA) used by Sony to sign software for
the PlayStation 3 game console. This attack was possible because ECDSA has
a randomized signature generation algorithm and Sony reused the randomness
used to generate the signature [6]. One more well known example is in the case of
RSA. The entropy of the output distribution of standardized RSA key generation
is always almost maximal. The outputs are hard to factor if factoring in general
is hard where the primes were chosen at random but it was identified in [12]
that the random primes did not satisfy this requirement on the distribution of
the RSA keys. This exposed a considerable number of RSA private keys used
in PGP system. Hence we emphasize that reuse of randomness should be done
with utmost care and the resulting scheme should be proven secure, taking the
reuse into account.

Motivation: Recent advancements in technology has made huge data stor-
age available for users in the name of Cloud Storage. Cloud platforms such as
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Dropbox, Skybox, Oracle, Amazon provide users with huge space for them to
store their data. However reputed the cloud storage provider is, other organi-
zations who want to make use of the cloud storage do no trust them to store
sensitive data. Hence a need for secure cloud storage arose. In secure cloud stor-
age, each user has a public/private key pair created by the user. The public key
is used to encrypt a symmetric key which in turn is used to encrypt the data.
The encrypted data (ciphertext) is then stored in the cloud. The corresponding
private key is used to decrypt and obtain the symmetric key which is used to
decrypt the ciphertext and obtain the actual message. However, this approach
requires a certified public key in order to withstand man-in-the-middle attacks
and public key replacement attacks, and requires the presence of a Certification
Authority (CA).

To make the system more convenient, the identity of the user could be used
to generate the public keys and the corresponding private key could be obtained
from the trusted authority (PKG). In this case the PKG (the cloud service
provider) is a fully trusted entity and knows the private key of all users in the
system. Certificateless Encryption (CLE) schemes find great application in this
scenario. In a CLE, the identity of a user along with a user defined public key acts
as the full public key of the user. Unlike Public Key Infrastructure (PKI), these
public keys need not be certified by centralized authorities, because changing
the public key in the public repository will be useful only to the trusted KGC
in the CLE and hence the KGC will be accountable for any replacement of the
public keys in the repository.

Consider a scenario wherein a user has n different files (may be photos,
documents etc.). In order to maintain privacy, the user has to encrypt each file
with different symmetric keys. This is because, if all the files were encrypted
with the same key and if the user shares the key of one file, he is loosing the
keys of all other files too. In order to avoid this each file should be encrypted
with different symmetric keys. Thus all the n files are encrypted with n different
symmetric keys and stored in the cloud storage. In case, if the user (owner of the
files) wants to share a subset of k files to another user (the receiver), the naive
way is to use a PKE scheme and encrypt the symmetric keys to the receiver.
The receiver on receiving the encrypted keys can decrypt them using his private
key and use the symmetric keys to decrypt the actual file from the downloaded
ciphertext. If k is large and if the owner uses a stateless encryption scheme, he
has to perform O(k) exponentiations. The advantage of using a stateful PKE
scheme is that it requires only O(1) exponentiation when the receiver is fixed.

Figure 1 shows how a user registers with the KGC to avail secure cloud storage
and how his data is encrypted and stored in the cloud. User A sends his identity,
IDA and requests for the partial private key to the KGC. The KGC has a master
private key msk and a set of public system parameters params, which are used
to generate the partial private key SKA of the user A. SKA is sent to A through
a secure channel. After receiving the partial private key user A chooses his own
user defined private key skA and computes the corresponding public key pkA.
The user defined public key pkA is sent to the KGC and is stored in the user
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Fig. 1. User registration and encryption on cloud

public key list maintained by the KGC. Hence the private key of A is 〈skA, SKA〉
and the corresponding public key is 〈pkA, IDA〉. To encrypt a message to A, the
sender has to use IDA and pkA along with params. When user A wants to
upload a file Filei to the cloud, he has to encrypt the file using a symmetric
key encryption scheme with a symmetric key Ksymi

to obtain the encrypted file
EFi = SY M Enc(Ksymi

, F ilei). (Note that we assume that each symmetric key
is unique and there is an efficient way for the owner of the file to uniquely obtain
the key using a private Pseudo Random Number Generator and other attributes
such as file name, modified and created date etc., in a secure way. We do not
explain it here since it is out of the scope of the problem addressed here) The
encrypted file EFi is then stored in the cloud.

Fig. 2. Sharing encrypted contents using CLE

Figure 2 shows how user A shares an encrypted file to another user. Let
us consider that user A wants to share his contents to user B, whose pub-
lic key is 〈pkB , IDB〉. The owner A shares the encrypted file to user B first.
Then he obtains the user public key pkB of B from the user public key list
maintained by the KGC. Using pkB and IDB with a CLE scheme he encrypts
the symmetric key Ksymi

corresponding to the file Filei to user B as CT =
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CL Enc(pkB , IDB ,Ksymi
) and sends CT to B. User B upon receiving CT ,

decrypts it as: Ksymi
= CL Dec(skB , SKB , CT ) and obtains the symmetric

key. Now, B uses Ksymi
to decrypt EFi as Filei = SY M Dec(Ksymi

, EFi).

Related Work: Al-Riyami and Paterson in [2] have shown realization for CLE,
signature (CLS) and key exchange (CLK) schemes in their work. Huang et al.
[10] and Castro et al. [7] independently showed that the signature scheme in [2]
is not secure against Type-I adversary (explained in later sections). In fact they
showed that it is possible for a Type-I adversary to replace the public key of
the user and attack the scheme. They also gave a new certificateless signature
scheme. A lot of CLE schemes were proposed, whose security were proved both
in the random oracle model [4,8,17,18] and standard model [13,15]. Recently,
Dent [9] gave a survey on the various security models for CLE schemes, men-
tioning the subtle difference in the level of security offered by each model. Dent
also gave a generic construction and an efficient construction for CLE. The ini-
tial constructs for certificateless cryptosystem were all based on bilinear pairing
[8,13,15,17]. Baek et al. [4] were the first to propose a CLE scheme without bilin-
ear pairing. Certificateless cryptosystem are prone to key replacement attack
because the public keys are not certified and anyone can replace the public key
of any legitimate user in the system. The challenging task in the design of certifi-
cateless cryptosystem is to come up with schemes which resists key replacement
attacks. The CLE in [4] did not withstand key replacement attack, which was
pointed out by Sun et al. in [18]. Sun et al. fixed the problem by changing the
partial key extract and setting public key procedures. Both the aforementioned
schemes, namely [4,18] were based on multiplicative groups. Lai et al. in [11] pro-
posed the first RSA-based CLE scheme. They have proved their scheme secure
against chosen plaintext attack (CPA). Later, in [19] Vivek et al. proposed a
CCA secure scheme based on the RSA assumption.

There are several PKE schemes, which make use of transformations to achieve
CCA security and some of them are customized design. There is no known
straightforward ways to make these schemes stateful. Even though some efforts
were made in this direction, the ciphertext size will be large due to the usage of
CCA secure symmetric key encryption schemes. However, there are PKE schemes
that are designed to be stateful, namely [3,5,20] and few stateful IBE schemes
were also found in the literature [3,16]. There are no known stateful certificate-
less PKE schemes present in the literature, which motivated us to look forward
in this direction.

Our Contribution: In this paper we propose the first stateful certificate-
less encryption scheme. Our scheme finds straightforward application in shar-
ing encrypted contents in the cloud efficiently when the cloud data is accessed
through resource constrained devices. This efficiency comes in due to the fact
that when different files are encrypted with different keys as shown in Fig. 1,
sharing huge number of encrypted files will involve transportation of huge num-
ber of symmetric keys. Since in a stateful encryption scheme, the randomness
used to encrypt the data is reused across a session for communication with a
fixed receiver, we are able to reduce the cost of encryption required to share the
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keys. In the example stated above if there are k files to be shared with a receiver,
the owner has to perform only O(1) exponentiation operations, where as in the
naive way, the owner has to perform O(k) exponentiations. Our scheme offers
compact ciphertext with ciphertext verifiability.

2 Preliminaries

In this section, we give the definition of hardness assumptions, framework and
the security model used in our paper.

2.1 Review of Computational Assumptions

Definition 1 Computational Diffie-Hellman Problem (CDHP). Given
〈g, ga, gb〉 ∈ G

3 for unknown a, b ∈ Z
∗
q , where G is a cyclic prime order mul-

tiplicative group with g as a generator and q the order of the group, the CDH
problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving
the CDH problem in G is defined as

AdvCDH
A = Pr

[A(g, ga, gb) = gab | a, b ∈ Z
∗
q

]

The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.

Definition 2 (Strong Diffie Hellman (SDH) Problem as given in [1]).
Let κ be the security parameter and G be a multiplicative group of order q, where
|q| = κ. Given 〈g, ga, gb〉 ∈R G

3 and access to a Decision Diffie Hellman (DDH)
oracle DDHg,a(., .) which on input gb and gc outputs true if and only if gab = gc,
the strong Diffie Hellman problem is to compute gab ∈ G.

The advantage of an adversary A in solving the strong Diffie Hellman problem
is defined as the probability with which A solves the above strong Diffie Hellman
problem.

AdvSDH
A = Pr[A(g, ga, gb) = gab|DDHg,a(., .)]

The strong Diffie Hellman assumption holds in G if for all polynomial time
adversaries A, the advantage AdvSDH

A is negligible.

Note: In pairing groups (also known as gap groups), the DDH oracle can be
efficiently instantiated and hence the strong Diffie Hellman problem is equivalent
to the Gap Diffie Hellman problem [14].
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2.2 Framework for Stateful CLE

In this section, we discuss the general framework for stateful CLE. We adopt
the definition of certificateless public key encryption, given by Baek et al. [4].
Their definition of CLE is weaker than the original definition by Al-Riyami and
Paterson [2] because the user has to obtain a partial public key from the KGC
before he can create his public key (While in Al-Riyami and Paterson’s original
CLE this is not the case). A stateful certificateless public-key encryption scheme
is defined by seven probabilistic, polynomial-time algorithms which are defined
below:

Setup: This algorithm takes as input a security parameter κ and returns the
master private key msk and the system public parameters params. This algo-
rithm is run by the KGC in order to initialize a certificateless system.

Partial Private Key Extract: This algorithm takes as input the public para-
meters params, the master private key msk and an identity IDA ∈ {0, 1}∗ of a
user A. It outputs the partial private key dA and a partial public key yA of user
A. This algorithm is run by the KGC once for each user and the corresponding
partial private key and partial public key is given to A through a secure and
authenticated channel.

Set Full Private Key: This algorithm is run once by each user. It takes the
public parameters params, the user identity IDA and A’s partial private key dA

as input. The algorithm generates a secret value skA ∈ S, where S is the secret
value space. Now, the full private key DA of A, is a combination of the secret
value skA and the partial private key dA.

Set Full Public Key: This algorithm run by the user, takes as input the public
parameters params, a user, say A’s partial public key yA and the full private
key DA. It outputs the full public key PKA for A. This algorithm is run once
by each user and the resulting full public key is widely and freely distributed.
The full public key of user A consists of PKA and IDA.

New State Generation: This algorithm is used to generate a set of state
information used for encryption. The sender executes this algorithm and keeps
the information confidential. The sender’s state information is not known to any
entity. The state information st is generated by taking params as input.

Encryption: This algorithm takes as input the public parameters params, a
receiver identity, say IDA, the corresponding full public key PKA, the state
information sti (corresponding to the ith state) and a message m ∈ M. The
output of this algorithm is the ciphertext CT ∈ CS. Note that M is the message
space and CS is the ciphertext space.

Decryption: This algorithm takes as input the public parameters params, a
user, say A’s private key DA and a ciphertext CT ∈ CS. It returns either a
message m ∈ M - if the ciphertext is valid, or ′Invalid′ - otherwise.
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2.3 Security Model for CLE

We review the notion of Type-I and Type-II adversaries and provide the security
model for stateful CLE. The confidentiality of a stateful CLE scheme is proved
by means of an interactive game between a challenger C and an adversary. In the
confidentiality game for stateful certificateless encryption (IND-stCLE-CCA2),
the adversary is given access to the following six oracles. These oracles are sim-
ulated by C:

Partial Key Extract for IDA: C responds by returning the partial private
key SKA and the partial public key PPKA of the user A.

Extract Secret Value for IDA: If A’s public key has not been replaced then
C responds with the secret value skA for user A. If the adversary has already
replaced A’s public key, then C does not provide the corresponding private key
to the adversary.

Request Public Key for IDA: C responds by returning the full public key
PKA for user A. (First by choosing a secret value if necessary).

Replace Public Key for IDA: The adversary can repeatedly replace the
public key PKA for a user A with any valid public key PK ′

A of its choice. The
adversary generates the new valid public key and sends it to C. The current value
of the user’s public key is used by C in any computations or responses.

Encryption(IDi, stj,mk): Encryption queries for any number of messages
(k = 1 to m̂) for a given state stj (j = 1 to n̂), where m̂ and n̂ are the upper
bounds for the number of messages that can be encrypted in a state and total
number of states respectively, for whose combination A can query this oracle.

Decryption(CT, IDA): The adversary can issue a decryption query for cipher-
text CT and identity IDA of its choice, C decrypts CT and returns the corre-
sponding message to the adversary. C should be able to properly decrypt cipher-
texts, even for those users whose public key has been replaced, i.e. this oracle
provides the decryption of a ciphertext, which is generated with the current
valid public key. The strong decryption oracle returns Invalid, if the ciphertext
corresponding to any of the previous public keys were queried. This is a strong
property of the security model (Note that, C may not know the private key
corresponding to the current public key of the user. This is true if public key
is replaced by the adversary). However, this property ensures that the model
captures the fact that changing a user’s public key to a value of the adversary’s
choice may give the adversary an advantage in breaking the scheme. This is
called as strong decryption in [9]. Our scheme provides strong decryption for
Type-I adversary.

There are two types of adversaries (namely Type-I and Type-II) to be consid-
ered for stateful certificateless encryption scheme. The Type-I adversary models
the attack by a third party attacker, (i.e. anyone except the legitimate receiver
or the KGC) who is trying to gain some information about a message from
the encryption. The Type-II adversary models the honest-but-curious KGC who
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tries to break the confidentiality of the scheme. Here, the attacker is allowed to
have access to master private key msk. This means that we do not have to give
the attacker explicit access to partial key extraction, as the adversary is able
to compute these value on its own. The most important point about Type-II
security is that the adversary modeling the KGC should not have replaced the
public key for the target identity before the challenge is issued.

Constraints for Type-I and Type-II Adversaries: The IND-stCLE-CCA2
security model distinguishes the two types of adversary Type-I and Type-II with
the following constraints.

– Type-I adversary AI is allowed to change the public keys of users at will but
does not have access to the master private key msk.

– Type-II adversary AII is equipped with the master private key msk but is
not allowed to replace public keys corresponding to the target identity.

IND-stCLE-CCA2 Game for Type-I Adversary: The game is named as
IND-stCLE-CCA2-I. This game, played between the challenger C and the Type-I
adversary AI , is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params to AI while keeping msk
secret. After receiving params, AI interacts with C in two phases:

Phase I: AI is given access to all the six oracles. AI adaptively queries the
oracles consistent with the constraint that the type-I adversary AI is allowed to
change the public keys of users at will but does not have access to the master
private key msk.

Challenge: At the end of Phase I , AI gives two messages m0 and m1 of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit δ ∈R {0, 1} and encrypts mδ with the target identity ID∗’s public key for
the state st∗ to form the challenge ciphertext CT ∗ and sends it to AI as the
challenge. (Note that the partial Private Key corresponding to ID∗ should not
be queried by AI but the secret value corresponding to ID∗ may be queried.
This makes our security model stronger when compared to the security models
of [11,18].)

Phase II: AI adaptively queries the oracles consistent with the constraints for
Type-I adversary described above. Besides this AI cannot query Decryption on
(CT ∗, ID∗) and the partial private key of the receiver should not have been
queried to the Extract Partial Private Key oracle. AI gets oracle access to all
ciphertexts for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗,mj), where j ≤ m̂.

Guess: AI outputs a bit δ′ at the end of the game. AI wins the IND-stCLE-
CCA2-I game if δ′ = δ. The advantage of AI is defined as -

AdvIND−stCLE−CCA2−I
AI

= |2Pr [δ = δ′] − 1|
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IND-stCLE-CCA2 Game for Type-II Adversary: The game is named
as IND-stCLE-CCA2-II. This game, played between the challenger C and the
Type-II adversary AII , is defined below:

Setup: Challenger C runs the setup algorithm to generate master private key
msk and public parameters params. C gives params and the master private key
msk to AII . After receiving params, AII interacts with C in two phases:

Phase I: AII is not given access to the Extract partial Private Key oracle
because AII knows msk, it can generate the partial private key of any user in
the system. All other oracles are accessible by AII . AII adaptively queries the
oracles consistent with the constraint that the type-II adversary AII is equipped
with the master private key msk but is not allowed to replace public keys cor-
responding to the target identity.

Challenge: At the end of Phase I , AII gives two messages m0 and m1 of
equal length to C on which it wishes to be challenged. C randomly chooses a
bit δ ∈R {0, 1} and encrypts mδ with the target identity ID∗’s public key using
the state information st∗ to form the challenge ciphertext CT ∗ and sends it to
AII as the challenge. (Note that the Secret Value Corresponding to ID∗ should
not be queried by AII and the public key corresponding to ID∗ should not be
replaced during Phase I .)

Phase II: AII adaptively queries the oracles consistent with the constraints for
Type-II adversary described above. Besides this AII cannot query Decryption
on (CT ∗, ID∗) and the Secret Value corresponding to the receiver should not
be queried to the Extract Secret Value oracle and the public key corresponding
to ID∗ should not be replaced during Phase I . AII gets oracle access to all
ciphertexts for any message including m0 and m1 for the state information st∗

through the encryption oracle Encryption(params, st∗,mj), where j ≤ m̂.

Guess: AII outputs a bit δ′ at the end of the game. AII wins the IND-stCLE-
CCA2-II game if δ′ = δ. The advantage of AII is defined as -

AdvIND−stCLE−CCA2−II
AII

= |2Pr [δ = δ′] − 1|

3 Our Scheme - StCLE

In this section, we propose our stateful certificateless encryption scheme. The
scheme has the following algorithms. Unless stated otherwise, all computations
are done mod p.

Setup: The KGC does the following to initialize the system and to setup the
public parameters. Let κ be the security parameter.

– Choose two large primes p and q such that q|(p − 1) and |q| ≥ κ. Choose
g ∈R Z

∗
p with order q, z ∈R Z

∗
q and compute y = gz. Choose five cryptographic

hash functions F : Z
∗
p → Z

∗
q , G : {0, 1}∗ → Z

∗
q , H : {0, 1}∗ → {0, 1}lm ,

H1 : {0, 1}∗ → Z
∗
q and H2 : {0, 1}∗ → Z

∗
q , where lm is the size of the message.
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– The KGC publicizes the system parameters, params = 〈p, q, g, y, F,G,H,H1,
H2〉 and keeps z as the master private key.

Partial Key Extract: This algorithm is executed by the KGC and upon receiv-
ing the identity IDA of a user A the KGC performs the following to generate
the corresponding partial private key dA.

– Choose si0, si1 ∈R Z
∗
q , compute yA0 = gsi0 and yA1 = gsi1 .

– Compute dA0 = si0 + zH1(IDA, yA0) mod q and dA1 = si1 + zH2(IDA, yA0,
yA1) mod q.

– Output dA = 〈dA0, dA1〉 and yA = 〈yA0, y, A1〉.
The validity of the partial private key can be verified by user A by performing
the following check:

gdA0gdA1 ?= yA0y
H1(IDA,yA0)yA1y

H2(IDA,yA0,yA1) (1)

Set Full Private Key: On receiving the partial private key the user with
identity IDA does the following to generate his full private key.

– Choose xA ∈R Z
∗
q as his secret value.

– Set the private key as DA = 〈D(1)
A ,D

(2)
A 〉 = 〈dA0, xA〉. (Note that both the

KGC and the corresponding user knows D
(1)
A and the user with identity IDA

alone knows D
(2)
A ).

Set Full Public Key: The user with identity IDA computes the public key
corresponding to his private key as described below:

– Compute gA = gD
(2)
A .

– Make PKA = 〈PK
(1)
A , PK

(2)
A , PK

(3)
A , PK

(4)
A 〉 = 〈yA0, yA1, dA1, gA〉 public.

Now, any one can verify the public key by checking:

gPK
(3)
A

?= PK
(2)
A yH2(IDA,PK

(1)
A ,PK

(2)
A ) (2)

It should be noted that there is no verification for PK
(4)
A .

New State Generation: Recall that the sender’s state information is not
known to any entity other than the sender himself. Let i represent the index
of the current state and hence the current state will be referred as sti. The
sender generates the state information as follows:

– Choose ri ∈R Z
∗
q . Compute ui = F (gri) ∈ Z

∗
q , si = riui mod q, vi = gsi ,

wi1 = (PK
(1)
A yH1(IDA,yA0))si and wi2 = (PK

(4)
A )si .

The state information sti = 〈ui, vi, si, wi1, wi2, index〉.
Encryption: To encrypt a message m to a user with identity IDA, one has to
perform the following steps:
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– Compute c1 = gsi, c2 = ui ⊕ G(IDA, c1,m,wi1, wi2, index) and c3 = m ⊕
H(IDA, c1, c2, wi1, wi2, index)

Now, CT = 〈c1, c2, c3, index〉 is send as the ciphertext to the user A. To reuse
the state information sti, the sender has to just increment index and use sti,
It is not required to send the component c1 throughout the session and hence
from the second encryption onwards the ciphertext size will be |q|+ |m|+ |index|
which is much less than |q|+|m|+|p| in the most efficient CLE [4] with ciphertext
verifiability.

It should be noted that the maximum number of encryptions to be performed
in a session will be determined by the sender. Thus, index is a user determined
integer value and to perform one million encryptions in a session, the value of
index may be utmost 220. Hence, index may typically be a value from 1 ≤
index ≤ 220 and thus of size less than 20-bits.

Decryption: The receiver with identity IDA does the following to decrypt a
ciphertext CT = (c1, c2, c3, index):

– Compute w′
i1 = c

D
(1)
A

1 and w′
i2 = c

D
(2)
A

1 , m′ = c3⊕H(IDA, c1, c2, w
′
i1, w

′
i2, index)

and u′ = c2 ⊕ G(IDA, c1,m,w′
i1, w

′
i2, index)

– Check whether u′ ?= F (c(u
′)−1

1 ). If the check holds output m′, otherwise output
⊥. This check helps in identifying whether a ciphertext is well formed or not.

Correctness: We have to show that the u′ computed by the decryption algorithm
passes the verification test u′ ?= F (c(u

′)−1

1 ), if u′ = ui = F (gri).

RHS= F (c(u
′)−1

1 ) = F (v(u′)−1

i ) = F (gsi(u
′)−1

) = F (griui(u
′)−1

)
= F (gri) (If u′ = ui = F (gri))
= u′ = LHS

Thus, the decryption will hold if u′ = ui = F (gri).

3.1 Security Proof

To prove the confidentiality of a certificateless encryption scheme, it is required
to consider the attacks by Type-I and Type-II adversaries. In the two existing
secure schemes [11,18], the Type-I adversary is not allowed to extract the secret
value corresponding to the target identity. To capture the ability of the adversary
who can access the user secret keys of the target identity, we give access to the
user secret value of the target identity to the Type-I adversary. We also state
that, allowing the extract secret value query corresponding to the target identity
makes the security model for Type-I adversary more stronger. For a stateful
certificateless encryption scheme, the adversary may be interested in analyzing
the ciphertexts of different messages of his choice, encrypted during a particular
session. Since the adversary does not know the state information, the challenger
has to provide the encryption oracle to the adversary.
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Confidentiality Against Type-I Adversary

Theorem 1. The stateful certificateless encryption scheme stCLE is IND-stCLE-
CCA2-I secure in the random oracle model, if the SDH problem is intractable.

Proof. The challenger C is challenged with an instance of the SDH problem, say
〈g, ga, gb〉 ∈R G

3 and is given access to a Decision Diffie Hellman (DDH) oracle
DDHg,a(., .) which on input gb and gc outputs True if and only if gab = gc. The
challenger’s aim is to solve the SDH problem, which is to compute gab ∈ G. In
our scheme Z∗

p forms a group which can be represented as G. Let us consider that
there exists an adversary AI who is capable of breaking the IND-stCLE-CCA2-I
security of the stCLE scheme. C can make use of AI to compute gab by playing
the following interactive game with AI .

Setup: C begins the game by setting up the system parameters as in the stCLE
scheme. C takes g and ga from the instance of the SDH problem sets y = ga

and sends params = 〈p, q, g, y〉 to AI . This makes an implicit assignment to the
master private key as z = a, where C doenot know z. C also designs the five hash
functions F , G, H, H1 and H2 as random oracles OF , OG, OH , OH1 and OH2 . C
maintains five lists LF , LG, LH , LH1 and LH2 in order to consistently respond
to the queries to the random oracles OF , OG, OH , OH1 and OH2 respectively. To
maintain the consistency of the private key request and public key request oracle
queries, C maintains lists LS and LP respectively. A typical entity in list Li for
i = {F,G,H,H1,H2} will have the input parameters of the oracles, followed by
the corresponding hash value returned as the response to the hash oracle query.
The list LS consists of the tuples of the form 〈IDi,D

(1)
i ,D

(2)
i 〉 and that of LP

consists of the tuples of the form 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i )〉. In order

to generate stateful encryptions, C generates n̂ tuples of state informations and
stores them in a state list Lst. Each tuple in the list corresponds to a state
information. This is done as follows.
For each identity IDi created by AI and j = 1 to n̂, C performs the following:

– Choose rj ∈R Z
∗
q , compute kj = grj , choose uj ∈R Z

∗
q and add the tuple

〈kj , uj〉 in the list LF .
– Compute sj = rjuj and vj = gsj .
– The state information stj = 〈IDi, uj , vj , sj , indexj〉.
– Store the tuple stj in list Lst.

The game proceeds as described in the security model for Type-I adversary in
Sect. 2.3.

Phase I: AI performs a series of queries to the oracles provided by C. The
descriptions of the oracles and the responses given by C to the corresponding
oracle queries by AI are described below:
OF (gri): For answering the OF query, C performs the following:

– If a tuple of the form 〈gri , ui〉 exists in the list LF then C retrieves the corre-
sponding ui and sends it to AI .
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– Else, C chooses ui ∈R Z
∗
q , stores the tuple 〈gri , ui〉 in the list LF and sends ui

to AI

OG(IDj , c1,m,wi1, wi2,index): For answering the OG query, C performs the
following:

– If a tuple of the form 〈IDj , c1,m,wi1, wi2, index,G〉 exists in the list LG then
C retrieves the corresponding G and sends it to AI .

– Else, C chooses G ∈R Z
∗
q , stores the tuple 〈IDj , c1,m,wi1, wi2, index,G〉 in

the list LG and sends G to AI

OH(IDj , c1, c2, wi1, wi2,index): For answering the OH query, C performs the
following:

– If a tuple of the form 〈IDj , c1, c2, wi1, wi2, index,H〉 exists in the list LH then
C retrieves the corresponding H and sends it to AI .

– Else, C chooses H ∈R {0, 1}lm , stores the tuple 〈IDj , c1,m,wi1, wi2, index,H〉
in the list LH and sends H to AI

OH1(IDi, yi0): To respond to this query, C checks whether a tuple of the form
〈IDi, yi0, hi1〉 exists in the list LH1 . If a tuple of this form exists, C returns the
corresponding hi1, else chooses hi1 ∈R Z

∗
q and adds the tuple 〈IDi, yi0, hi1〉 to

the list LH1 and returns hi1 to AI .
OH2(IDi, yi0, yi1): To respond to this query, C checks whether a tuple of the form
〈IDi, yi0, yi1, hi2〉 exists in the list LH2 . If a tuple of this form exists, C returns
the corresponding hi2, else chooses hi2 ∈R Z

∗
q , adds the tuple 〈IDi, yi0, yi1, hi2〉

to the list LH2 and returns hi2 to AI .
ORequestPublicKey(IDi): C selects a random index γ, where 1 ≤ γ ≤ qPK and C
does not reveal γ to AI . Here qPK is the maximum number of Request Public
Key oracle queries. When AI makes the γth query on IDγ , C fixes IDγ as target
identity for the challenge phase.
If a tuple of the form 〈IDi, PK

(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 exists in the list LP ,

return the items corresponding to the identity IDi in the list as the public
key. If a tuple does not exist, check whether i 
= γ. In this case, C queries
OPartialKeyExtract(IDi) and then retrieves the tuple of the form 〈IDi, PK

(1)
i ,

PK
(2)
i , PK

(3)
i , PK

(4)
i 〉 from the list LP and returns it as the public key corre-

sponding to the identity IDi. If i = γ, then perform the following:

– Choose si0, di1, hi1, hi2, xi ∈R Z
∗
q .

– Compute yi0 = gsi0 , yi1 = gdi1 (ga)−hi2 and gi = gxi .
– Add the tuple 〈IDi,D

(1)
i ,D

(2)
i 〉 = 〈IDi,−, xi〉 in the list LS and add the tuple

〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 = 〈IDi, yi0, yi1, di1, gi〉 to the list LP .

– Add the tuple 〈IDi, yi0, hi1〉 to list LH1 and the tuple 〈IDi, yi0, yi1, hi2〉 to
list LH2

– Return 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 to AI .
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OPartialKeyExtract(IDi): In order to answer a query to the oracle, C checks
whether a tuple of the form 〈IDi,D

(1)
i ,D

(2)
i 〉 exists in the list LS and if a tuple of

this form exists, C returns the corresponding D
(1)
i . If it does not exist, C checks

whether i
?= γ. If i = γ, C Aborts the game. If i 
= γ, C performs the following:

– Choose di0, di1, hi1, hi2, xi ∈R Z
∗
q .

– Compute yi0 = gdi0(ga)−hi1 , yi1 = gdi1 (ga)−hi2 and gi = gxi .
– Add the tuple 〈IDi,D

(1)
i ,D

(2)
i 〉 = 〈IDi, di0, xi〉 in the list LS and add the

tuple 〈IDi, PK
(1)
i , PK

(2)
i , PK

(3)
i , PK

(4)
i 〉 = 〈IDi, yi0, yi1, di1, gi〉 to the list

LP .
– Add the tuple 〈IDi, yi0, hi1〉 to list LH1 and the tuple 〈IDi, yi0, yi1, hi2〉 to

list LH2

– Return D
(1)
i to AI .

OExtractSecretV alue(IDi): C retrieves the tuple of the form 〈IDi, di0, xi〉 from the
list LS and returns the corresponding xi as the secret value corresponding to
the identity IDi. If the entry corresponding to xi in the tuple is “−” then it
indicates the fact that AI has replaced the public key corresponding to IDi. By
the definition of the model, such queries by AI are not allowed and hence C can
ignore such queries.
OReplacePublicKey(IDi, PK

′
i): To replace the public key of IDi with a new public

key PK
′
i = 〈IDi, PK

(1)′

i , PK
(2)′

i , PK
(3)′

i , PK
(4)′

i 〉, sent by AI , C updates the
corresponding tuples in the list LP , only if PK

′
i satisfies equation (2). If the

equation is not satisfied return Invalid.
OEncryption(IDi, stj ,mk): AI may perform encryption with respect to any state
information stj , chosen by C. C performs the following to encrypt the message
mk with respect to the state information stj , where j = 1 to n̂, where n̂ is the
upper bound for the total number of states and k = 1 to m̂ is bound by the
maximum number of messages that can be encrypted in one session:

– Retrieves the tuple stj of the form 〈IDi, uj , vj , sj , indexj〉 from Lst, sets
c1 = vj , compute wj1 = (PK

(1)
i yhi1)sj and wj2 = (PK

(4)
i )sj

– Choose G ∈R Z
∗
q , store the tuple 〈IDi, c1,mk, wj1, wj2, indexj ,G〉 in the list

LG and computes c2 = uj ⊕ G.
– Choose H ∈R {0, 1}lm , store the tuple 〈IDi, c1, c2, wj1, wj2, indexj ,H〉 in the

list LH and computes c3 = mk ⊕ H.
– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments indexj and updates the

state information stj .

ODecryption(CT = (c1, c2, c3, index), IDi, PKi): If i 
= γ, C performs decryption
in the normal way since C knows the private key corresponding to IDi. If i = γ,
C performs the following to decrypt the ciphertext CT = 〈c1, c2, c3, index〉:
– Check the validity of PKi and reject the ciphertext CT if this check fails;

else, proceed.
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– Retrieve the tuples of the form 〈IDi, c1,m,wi1, wi2, index,G〉 and 〈IDi, c1, c2,
wi1, wi2, index,H〉 from the lists LG and LH respectively. Retrieve the tuple
〈IDi, yi0, hi1〉 from the list LH1 .

– Compute α = (wi1c
−si0
1 )h−1

i1 by taking the corresponding values from the
tuples retrieved in the above step.

– Check whether 〈g, c1, g
a, α〉 is a valid DDH tuple using the DDHg,a(., .) oracle.

If the oracle outputs true, proceed else reject the ciphertext CT .
– Compute m′ = c3 ⊕ H and check whether m′ = m, where H and m are

retrieved from the lists LH and LG respectively. If m′ 
= m reject the cipher-
text CT .

– If the check holds, compute u′ = c2⊕G. Retrieve the tuple of the form 〈gri , u′〉
from the list LF and check whether cu′−1

1
?= gri . If the check does not hold

reject the ciphertext CT .

If any of the fetched tuple is not available in any of the lists or any of the tests
fails, returns Invalid else return m as the message.

Challenge: At the end of Phase I , AI produces two messages m0 and m1

of equal length and an identity ID∗. C Aborts the game if ID∗ 
= IDγ , else
randomly chooses a bit δ ∈R {0, 1} and computes a ciphertext CT ∗ with IDγ

as the receiver by performing the following steps:

– Choose u ∈R Z
∗
q and add the tuple 〈gb, u〉 to the list LF .

– Set index∗ = 1 and compute c∗
1 = gbu

– Retrieve the tuple of the form 〈ID∗, d∗
0, x

∗〉 from the list LS and compute
w∗

2 = (c∗
1)

x∗
.

– Choose G ∈R Z
∗
q , store the tuple 〈ID∗, c∗

1,mδ,−, w∗
2 , index∗,G〉 in list LG

and compute c∗
2 = u ⊕ G.

– Choose H ∈R {0, 1}lm , store the tuple 〈ID∗, c∗
1,mδ,−, w∗

2 , index
∗,H〉 in list

LH and compute c∗
3 = mδ ⊕ H.

– Here the state information st∗ = 〈ID∗, u∗, v∗, s∗, index∗〉 = 〈ID∗, u, gbu,−,
index∗〉

Now, CT ∗ = 〈c∗
1, c

∗
2, c

∗
3, index

∗〉 is sent to AI as the challenge ciphertext.

Phase II: AI performs the second phase of interaction, where it makes polyno-
mial number of queries to the oracles provided by C with the following conditions:

– AI should not have queried the Strong Decryption oracle with (CT ∗, PKγ ,
IDγ) as input. (It is to be noted that PKγ is the public key corresponding
to IDγ during the challenge phase. AI can query the decryption oracle with
(CT ∗, PK∗, IDγ) as input, ∀PK∗ 
= PKγ)

– AI should not query the partial private key of IDγ .
– AI can query the secret value and PKγ of IDγ .

Encryption oracle has to be provided to AI with respect to the state informa-
tion st∗. This is because, AI should have access to any number of ciphertexts
generated during this state. Moreover, the decryption oracle has to respond to
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decryption queries corresponding to any ciphertext generated during the state
st∗. These two oracles are described here and all other oracles are same as in
Phase I.
OEncryption(IDi, stj ,mk): For any state stj 
= st∗, C performs the encryption as
in Phase I. If stj = st∗, C performs the following to encrypt the message mk

with respect to the state information st∗.

– Retrieve the tuple st∗ of the form 〈ID∗, u, gbu,−, index∗〉 from the list Lst,
set c1 = gbu.

– Choose G ∈R Z
∗
q , store the tuple 〈ID∗, c1,mk,−,−, index∗,G〉 in the list LG

and computes c2 = u ⊕ G.
– Choose H ∈R {0, 1}lm , store the tuple 〈ID∗, c1, c2,−,−, index∗,H〉 in the

list LH and computes c3 = mk ⊕ H.
– Returns c = 〈c1, c2, c3〉 as the ciphertext, increments indexj and updates the

state information stj .

ODecryption(CT = (c1, c2, c3, index), IDi, PKi): If i 
= γ and c1 
= c∗
1, C performs

decryption in the normal way since C knows the private key corresponding to IDi.
If i = γ and c1 
= c∗

1, C performs the decryption as in Phase I. If i = γ and c1 = c∗
1

then C performs the following. It should be noted that the state information st∗

is with respect to the identity ID∗ and hence for all other identities, decryption
oracle proceeds as in Phase I.

– Check the validity of PKi and reject the ciphertext CT if this check fails;
else, proceed.

– Retrieve the tuples of the form 〈ID∗, c∗
1,m,−,−, index∗,G〉 and 〈ID∗, c∗

1, c2,
−,−, index,H〉 from the lists LG and LH respectively. Retrieve the tuple
〈IDi, yi0, hi1〉 from the list LH1 .

– Compute m′ = c3 ⊕ H and check whether m′ = m, where H and m are
retrieved from the lists LH and LG respectively. If m′ 
= m reject the cipher-
text CT . Note that C can even work consistently with the tuples of this form.
In this case, C takes the values G and H without consulting the DDH oracle
because these tuples were generated by C without knowing the values of w∗

1

and w∗
2 .

– Compute u′ = c2 ⊕ G. Retrieve the tuple of the form 〈gri , u′〉 from the list
LF and check whether c∗

1
u′−1

= gri . If the check does not hold reject the
ciphertext CT .

– If in the process of finding out the tuples of the form 〈ID∗, c∗
1,m,w∗

1 , w
∗
2 ,

index∗,G〉 and 〈ID∗, c∗
1, c

∗
2, w

∗
1 , w∗

2 , index
∗,H〉 appeared in the lists LG and

LH respectively then retrieve the tuple 〈ID∗, y∗
0 , h

∗
1〉 from the list LH1 , com-

pute α = (w∗
1c

∗
1
−s∗

0 )h∗
1

−1
by taking the corresponding values from the tuples

retrieved in the above step and check whether 〈g, c∗
1, g

a, α〉 is a valid DDH
tuple using the DDHg,a(., .) oracle. If the oracle outputs true, output α as
the solution to the SDH problem instance.

If any tuple is not available in any of the lists or any of the tests fails, returns
Invalid.
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Guess: At the end of Phase II , AI produces a bit δ′ to C, C performs the
following to output the solution for the SDH problem instance.

– Retrieve the tuple 〈ID∗, y∗
0 , h

∗
1〉 from the list LH1 .

– For each tuple of the form 〈ID∗, c∗
1,m,w∗

1 , w∗
2 , index

∗,G〉 and 〈ID∗, c∗
1, c

∗
2, w

∗
1 ,

w∗
2 , index

∗,H〉 in the lists LG and LH , compute α = (w∗
1c

∗
1
−s∗

0 )h∗
1

−1
by taking

the corresponding values from the tuples.
– Check whether 〈g, c∗

1, g
a, α〉 is a valid DDH tuple using the DDHg,a(., .) oracle.

If the oracle outputs true, output α as the solution to the SDH problem
instance.

Thus, C obtains the solution to the SDH problem with almost the same
advantage of AI in the IND-stCLE-CCA2-I game. �
Analysis: We now derive the advantage of C in solving the SDH problem using
the adversary AI . The simulations of F , G, H, H1 and H2 clearly shows that
the hash oracles are perfectly random. Let ε be the non-negligible advantage of
AI in winning the IND-stCLE-CCA2-I game.
The events in which C aborts the game and the respective probabilities are given
below:

1. E1 - The event in which AI queries the partial private key of IDγ .
2. E2 - The event in which IDγ is not chosen as the target identity by AI for

the challenge.

Suppose, AI has asked qPK queries to the ORequestPublicKey oracle and qP

queries to the OPartialKeyExtract oracle. Let us consider that there are a total
of qI individual identities, where qI ≤ qPK + qP queried by AI to these oracles,
then:

Pr[E1]= qP
qI

and Pr[E2]= 1 − 1
qI−qP

.
Therefore,
Pr[¬abort]=[¬E1 ∧ ¬E2]=

[
1 − qP

qI

]
.
[
1 − 1 − 1

qI−qP

]
= 1

qI
.

Therefore, the advantage of C solving the SDH problem is ε′ ≥
(
ε. 1

qI

)
. Since ε

is assumed to be non-negligible and frac1qI is also non-negligible, ε′ will be non-
negligible. This contradicts the assumption that there is no polynomial time algo-
rithm to solve the SDH problem. Thus, we conclude that there does not exist a
polynomial time adversary that can break the IND-stCLE-CCA2-I security of the
stCLE scheme.

Confidentiality Against Type-II Adversary

Theorem 2. Our certificateless public key encryption scheme stCLE is IND-
stCLE-CCA2-II secure in the random oracle model, if the SDH problem is
intractable.

The proof of this theorem is omitted here due to page limitation and will appear
in the full version of the paper.
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4 Conclusion

In this paper, we have proposed the first stateful certificateless PKE scheme.
We have formally proved the scheme in the random oracle model assuming the
strongest adversary. Our scheme finds straightforward application in secure shar-
ing of encrypted cloud data with a very minimum cost. Assuming the security
aspects, all the files of a user stored in the cloud are encrypted with unique
symmetric keys. The existing method is to use a PKE scheme and encrypt the
symmetric keys to the receiver. The receiver on receiving the encrypted keys
can decrypt them using his private key and use them to decrypt the actual file
from the downloaded ciphertext. Our approach reduces the cost of performing
this encryption of symmetric keys from O(k) to O(1) exponentiations. This effi-
ciency come because our scheme is stateful, which suits for resource constrained
devices such as cell phones, personal digital assistants, tablets, wearables and
sensors, where each exponentiation costs on the battery life of the device.
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Abstract. Modular reduction is the basic building block of many
public-key cryptosystems. BCH codes require repeated polynomial
reductions modulo the same constant polynomial. This is conceptually
very similar to the implementation of public-key cryptography where
repeated modular reduction in Zn or Zp are required for some fixed
n or p. It is hence natural to try and transfer the modular reduc-
tion expertise developed by cryptographers during the past decades to
obtain new BCH speed-up strategies. Error correction codes (ECCs) are
deployed in digital communication systems to enforce transmission accu-
racy. BCH codes are a particularly popular ECC family. This paper gen-
eralizes Barrett’s modular reduction to polynomials to speed-up BCH
ECCs. A BCH(15, 7, 2) encoder was implemented in Verilog and syn-
thesized. Results show substantial improvements when compared to tra-
ditional polynomial reduction implementations. We present two BCH
code implementations (regular and pipelined) using Barrett polynomial
reduction. These implementations, are respectively 4.3 and 6.7 faster
than an improved BCH LFSR design. The regular Barrett design con-
sumes around 53% less power than the BCH LFSR design, while the
faster pipelined version consumes 2.3 times more power than the BCH
LFSR design.

1 Introduction

Modular reduction (e.g. [3,4,8,10]) is the basic building block of many public-
key cryptosystems. We refer the reader to [3] for a detailed comparison of various
modular reduction strategies.

BCH codes are widely used for error correction in digital systems, memory
devices and computer networks. For example, the shortened BCH(48,36,5) was
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 150–168, 2015.
DOI: 10.1007/978-3-319-27179-8 11
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accepted by the U.S. Telecommunications Industry Association as a standard
for the cellular Time Division Multiple Access protocol (TDMA) [11]. Another
example is BCH(511, 493) which was adopted by International Telecommunica-
tion Union as a standard for video conferencing and video phone codecs (Rec.
H.26) [5]. BCH codes require repeated polynomial reductions modulo the same
constant polynomial. This is conceptually very similar to the implementation
of public-key cryptography where repeated modular reduction in Zn or Zp are
required for some fixed n or p [1].

It is hence natural to try and transfer the modular reduction expertise devel-
oped by cryptographers during the past decades to obtain new BCH speed-up
strategies. This work focuses on the “polynomialization” of Barrett’s modular
reduction algorithm [1]. Barrett’s method creates the operation a mod b from
bit shifts, multiplications and additions in Z. This allows to build modular reduc-
tion at very marginal code or silicon costs by leveraging existing hardware or
software multipliers.

Reduction modulo fixed multivariate polynomials is also very useful in other
fields such as robotics and computer algebra (e.g. for computing Gröbner bases).

Structure of the Paper: Section 2 recalls Barrett’s algorithm. Section 3
presents our main theoretical results, i.e. a polynomial variant of [1]. Section 4
recalls the basics of BCH error correcting codes (ECC). Section 4.2 describes
the integration of the Barrett polynomial variant in a BCH circuit and provides
benchmark results.

2 Barrett’s Reduction Algorithm

Notations. ‖x‖ will denote the bit-length of x throughout this paper. y � z will
denote binary shift-to-the-right of y by z bits i.e.:

y � z =
⌊ y

2z

⌋
.

Barrett’s algorithm (Algorithm 1) approximates the result c = d mod n by a
quasi-reduced integer c + εn, where 0 ≤ ε ≤ 2. Let N = ‖n‖ ,D = ‖d‖ and fix a
maximal bit-length reduction capacity L such that N ≤ D ≤ L. The algorithm
will work if D ≤ L. In most implementations, D = L = 2N . The algorithm
uses the pre-computed constant κ = �2L/n� that depends only on n and L. The
reader is referred to [1] for a proof and an analysis of Algorithm 1.

Example 1. Reduce 8619 mod 93 = 63.
n = 93 ⇒ N = 7

κ =
⌊
232

n

⌋
=10110000001011000000101100

d = 8619 =10000110101011
c1 =10000110101011 = 10000110
c2 =101110000110111000011011100001000
c3 =1011100 00110111000011011100001000 =1011100
nc3 =10000101101100
c4 = 63
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Algorithm 1. Barrett’s Algorithm

Input: n < 2N , d < 2D, κ =
⌊

2L

n

⌋
where N ≤ D ≤ L

Output: c = d mod n

1 c1 ← d � (N − 1)

2 c2 ← c1κ

3 c3 ← c2 � (L − N + 1)

4 c4 ← d − nc3

5 while c4 ≥ n do
6 c4 ← c4 − n
7 end
8 return c4

Work Factor: ‖c1‖ = D − N + 1 � D − N and ‖κ‖ = L − N hence their
product requires w = (D − N)(L − N) elementary operations. ‖c3‖ = (D −
N) + (L − N) − (L − N + 1) = D − N − 1 � D − N . The product nc3 will
therefore claim w′ = (D −N)N elementary operations. All in all, work amounts
to w + w′ = (D − N)(L − N) + (D − N)N = (D − N)L.

2.1 Dynamic Constant Scaling

The constant κ can be adjusted on the fly thanks to Lemma 1.

Lemma 1. If U ≤ L, then κ̄ = κ � U =
⌊

2L−U

n

⌋
.

Proof. ∃ α < 2U and β < n (integers) verifying:

κ̄ =
κ

2U
− α

2U
and κ =

2L

n
− β

n
.

Therefore,

min
α β

(
2L−U

n
− β + αn

2Un

)
≤ κ̄ =

2L−U

n
− β + αn

2Un
≤ max

α,β

(
2L−U

n
− β + αn

2Un

)

and finally,
2L−U

n
− 1 <

2L−U

n
− 1 +

1
2Un

≤ κ̄ ≤ 2L−U

n
.


�

Work factor: We know that κ̄ = κ � L − D. Let c5 = D − N + 1. Replacing
step 4 of Algorithm 1 with

c6 ← d − n(κ̄c1 � c5),



Applying Cryptographic Acceleration Techniques to Error Correction 153

the multiplication of c1 by κ̄ (κ adjusted to D − N bits, shifting by L − D bits
to the right), will be done in O((D − N)2).
Hence, the new work factor decreases to (D − N)2 + N(D − N) = (D − N)D.

Example 2. Reconsidering Example 1, i.e. computing 8619 mod 93 using the
above technique, we obtain:

D = log2 8619� = 14
κ̄ =10110000 001011000000101100
c1 =10000110 101011 =10000110
κ̄c1 =101110000100000
κ̄c1 � c5 =1011100 00100000
n(κ̄c1 � c5) =10000101101100
c6 = 63

3 Barrett’s Algorithm for Polynomials

3.1 Orders

Definition 1 (Monomial Order). Let P, Q and R be three monomials in ν
variables. � is a monomial order if the following conditions are fulfilled:

– P � 1
– P � Q ⇒ ∀R, PR � QR

Example 3. The lexicographic order on exponent vectors defined by

ν∏

i=1

xai �
ν∏

i=1

xbi ⇔ ∃i, aj = bj for i < j and ai > bi

is a monomial order. We denote the lexicographic order by �.

3.2 Terminology

In the following, capital letters will next denote polynomials and ν ∈ N.

Let P =
α∑

i=0

pi

ν∏

j=1

x
yj,i

j ∈ Q[x ] = Q[x1, x2, ..., xν ].

The leading term of P according to �, will be denoted by lt(P ) = p0

ν∏

j=1

x
yj,0
j .

The leading coefficient of P according to � will be denoted by lc(P ) = p0 ∈ Q.

The quotient lm(P ) =
lt(P )
lc(P )

=
ν∏

j=1

x
yj,0
j is the leading monomial of P accord-

ing to �.
The above notations generalize the notion of degree to exponent vectors:

deg(P ) = deg(lm(P )) = y0 = 〈y0,0, . . . , yν,0〉.
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Example 4. For � and P (x, y) = 2x2
1x

2
2 + 11x1 + 15, we have:

lt(P ) = 2x2
1x

2
2, lm(P ) = x2

1x
2
2,deg(P ) = 〈2, 2〉 and lc(P ) = 2.

Definition 2 (Reduction Step). Let P, Q ∈ Q[x]. We denote by Q −→
P

Q1

the reduction step of Q (with respect to P and according to �) defined as the
result given by the following operations:

1. Find a term t of Q such that monomial(t)=lm(P )m

2. If such a t exists, return Q1 = Q − Pm

lc(P )
. Else return Q1 = Q.

Example 5. Let Q(x1, x2) = 3x2
1x

2
2 and P (x1, x2) = 2x2

1x2 − 1.

The reduction step of Q (with respect to P ) is Q −→
P

Q1 =
3x2

2
.

Lemma 2. Let P, Q ∈ Q[x] and {Qi} such that Q −→
P

Q1 −→
P

Q2 −→
P

. . .

1. ∃i ∈ N such that j ≥ i ⇒ Qj = Qi

2. Qi is unique

We denote Q
∗−→
P

Qi = Q mod P and
⌊

Q

P

⌋
=

Q − Q mod P

P
∈ Q[x] and call

Qi the “residue of Q (with respect to P and according to �)”.

Example 6. Euclidean division is a reduction in which i = 1.

3.3 Barrett’s Algorithm for Multivariate Polynomials

We will now adapt Barrett’s algorithm to Q[x ].

Barrett’s algorithm and Lemma 1 can be generalised to Q[x ], by shifting
polynomials instead of shifting integers.

Definition 3 (Polynomial Right Shift). Let P =
∑α

i=0 pi

∏ν
j=1 x

yj,i

j ∈
Q[x] and a = 〈a1, a2, ..., aν〉 ∈ N

ν . We denote

P � a =
∑

ϕ(a)

pi

ν∏

j=1

x
yj,i−ai

j ∈ Q[x], where ϕ(a) = {i, ∀j, yi,j ≥ ai}.

Example 7.

If P (x) = 17x7 + 26x6 + 37x4 + 48x3 + 11, then P � 〈5〉 = 17x2 + 26x.

Theorem 1 (Barrett’s Algorithm for Polynomials). Let:

– P =
α∑

i=0

pi

ν∏

j=1

x
yj,0
j ∈ Q[x] and Q =

β∑

i=0

qi

ν∏

j=1

x
wj,i

j ∈ Q[x] s.t. lm(Q) � lm(P )
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– L ≥ max (wi,j) ∈ N, h(L) =
ν∏

j=1

xL
j and K =

⌊
h(L)
P

⌋

– y0 = 〈y1,0, y2,0, ..., yν,0〉 ∈ N
ν

Given the above notations, (K(Q � y0)) � (〈Lν〉 − y0) =
⌊

Q

P

⌋
.

Proof. Let G = h(L) mod P and B = (K(Q � y0)) =
h(L) − G

P

⌊
Q

lm(P )

⌋
.

⇓

B =

∑

ϕ(y0)

qi

ν∏

j=1

x
L+wj,i−yj,0
j − G

∑

ϕ(y0)

qi

ν∏

j=1

x
wj,i−yj,0
j

P

Applying the definition of “�”, we obtain

B � (〈L〉ν − y0) = deg≥0

Qϕ(y0)
− G

∑

ϕ(y0)

qi

ν∏

j=1

xwj,i−L

P
, where 0 = 〈0〉ν .

Thus,

B � (〈Lν〉 − y0) =
⌊

Qϕ(y0)

P

⌋
− deg≥0

G

P

∑

ϕ(y0)

qi

ν∏

j=1

xwj,i−L =
⌊

Qϕ(y0)

P

⌋
.

We know that

P � G and L ≥ max (wi,j), therefore deg≥0

G

P

∑

ϕ(y0)

qi

ν∏

j=1

xwj,i−L = 0.

Let Q̄ be the irreducible polynomial with respect to P , obtained by removing
from Q the terms that exceed lm(P ).

⌊
Qϕ(y)

P

⌋
=

Qϕ(y) − (Qϕ(y) mod P )
P

=
(Q − Q̄)((Q − Q̄) mod P )

P
.

Hence,

B � (〈L〉ν − y0) =
(Q − Q̄)((Q − Q̄) mod P )

P

⇓

B � (〈L〉ν − y0) =
⌊

Q

P

⌋
− Q̄ − Q̄ mod P

P
=

⌊
Q

P

⌋
.


�



156 R. Géraud et al.

Algorithm 2. Polynomial Barrett Algorithm
Input: P, Q ∈ Q[x ] s.t. P � Q

h(L) = xL, y0 = deg P and K = h(L) mod P, where deg Q ≤ 〈L, . . . , L〉
Output: R = Q mod P

1 B ← (K(Q � y0)) � (L − y0)

2 R ← Q − BP

3 return R

Remark. Let Q =
α∑

i=0

qi,j

ν∏

j=1

x
wj,i

j , K =
β∑

i=0

ki,j

ν∏

j=1

x
tj,i

j , y = 〈y1, ..., yν〉 and

z = 〈z1, ..., zν〉.
Let us have a closer look at the expression B = (K(Q � y)) � z .

Given the final shifting by z , the multiplication of K by Q � y can be
optimised by being only partially accomplished. Indeed, during multiplication,
we only have to form monomials whose exponent vectors b = wi + t i’ −y −z =
〈b1, ..., bν〉 are such that bj ≥ 0 for 1 ≤ j ≤ ν.
We implicitly apply the above in the following example.

Example 8. Let
� = �

P = x2
1x

2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1

Q = x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3.

We let L = 6 and we observe that ν = 2. We pre-compute K:
K = x4

1x
4
2 − x4

1x
2
2 + x4

1 − 2x3
1x

4
2 − 2x3

1x
3
2 + 3x3

1x
2
2 + 4x3

1x2 − 4x3
1

+4x2
1x

4
2 + 8x2

1x
3
2 − 5x2

1x
2
2 − 20x2

1x2 + 3x2
1 − 8x1x

4
2 − 24x1x

3
2

+68x1x2 + 36x1 + 16x4
2 + 64x3

2 + 36x2
2 − 184x2 − 239.

We first shift Q by y0 = 〈2, 2〉, which is the vector of exponents for lm(P ).

Q � y0 = (x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3) � 〈2, 2〉 = (x1x2 + 1)

Then, we compute K(x1x2 + 1) = x5
1x

5
2 − 2x4

1x
5
2 − x4y4 + {terms ≺ x4

1x
4
2}.

This result shifted by 〈L〉ν − y0 = 〈6, 6〉 − 〈2, 2〉 = 〈4, 4〉 to the right gives:

A = x5
1x

5
2 − 2x4

1x
5
2 − x4y4 + {terms � x4

1x
4
2} � 〈4, 4〉 = x1x2 − 2x2 − 1.

It is easy to verify that:
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Q − PA =

= (x3
1x

3
2 −2x3

1 +x2
1x

2
2 +3)− (x2

1x
2
2 +x2

1 +2x1x
2
2 +2x1x2 +x1 +1)(x1x2 −2x2 −1)

⇓
Q − PA = 4x1x

3
2 + 6x1x

2
2 − x3

1x2 + x2
1x2 + 3x1x2 + 2x2 − 2x3

1 + x2
1 + x1 + 4 ≺ P.

Complexity: We refer the reader to Appendix A for a detailed computation of
the complexity of Algorithm 2.

3.4 Dynamic Constant Scaling in Q[x ]

Lemma 3. If 0 ≤ u ≤ L, then K̄ = K � 〈u〉ν =
⌊

h(L−u)
P

⌋
.

Proof. K =
⌊

h(L)
P

⌋
⇒ K =

h(L) − h(L) mod P

P
.

Let G = h(L) mod P ⇒ K =

ν∏

j=1

xj
L − G

P
.

Since

〈u〉ν ∈ N
ν ⇒ K � 〈u〉ν = deg≥0

ν∏

j=1

xj
L−u − Gϕ(〈u〉ν)

P

⇓

K � 〈u〉ν = deg≥0

ν∏

j=1

xj
L−u

P
− deg≥0

Gϕ(〈u〉ν)

P
.

We know that P � G, thus P � Gϕ(〈u〉ν), thus deg≥0

Gϕ(〈u〉ν)

P
= 0.

Finally,

K � 〈u〉ν =

⌊∏ν
j=1 xj

L−u

P

⌋
=

⌊
h(L − u)

P

⌋
.


�
Example 9. Let

� = �

P = x2
1x

2
2 + x2

1 + 2x1x
2
2 + 2x1x2 + x1 + 1

Q = x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3.
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We let u = 4 and we observe that ν = 2. We pre-compute K̄:

K̄ = x2
1x

2
2 − x2

1 − 2x1x
2
2 − 2x1x2 + 3x1 + 4x2

2 + 8x2 − 5.

We first shift Q by y0 = 〈2, 2〉, which is the vector of exponents for lm(P ).

Q � y0 = (x3
1x

3
2 − 2x3

1 + x2
2x

2
2 + 3) � 〈2, 2〉 = (x1x2 + 1)

Then, we compute K̄(x1x2 + 1) = x3
1x

3
2 − 2x2

1x
3
2 − x2

1x
2
2 + {terms ≺ x2

1x
2
2}.

This result shifted by 〈u〉ν − y0 = 〈4, 4〉 − 〈2, 2〉 = 〈2, 2〉 to the right gives:

A = x3
1x

3
2 − 2x2

1x
3
2 − x2

1x
2
2 + {terms � x2

1x
2
2} � 〈2, 2〉 = x1x2 − 2x2 − 1.

It is easy to verify that:

Q − PA =

= (x3
1x

3
2 −2x3

1 +x2
1x

2
2 +3)− (x2

1x
2
2 +x2

1 +2x1x
2
2 +2x1x2 +x1 +1)(x1x2 −2x2 −1)

⇓
Q − PA = 4x1x

3
2 + 6x1x

2
2 − x3

1x2 + x2
1x2 + 3x1x2 + 2x2 − 2x3

1 + x2
1 + x1 + 4 ≺ P.

4 Application to BCH Codes

4.1 General Remarks

BCH codes are cyclic codes that form a large class of multiple random error-
correcting codes. Originally discovered as binary codes of length 2m − 1, BCH
codes were subsequently extended to non-binary settings. Binary BCH codes
are a generalization of Hamming codes, discovered by Hocquenghem, Bose and
Chaudhuri [2,4] featuring a better error correction capability. Gorestein and Zier-
ler [6] generalised BCH codes to pm symbols, for p prime. Two important BCH
code sub-classes exist. Typical representatives of these sub-classes are Hamming
codes (binary BCH) and Reed Solomon codes (non-binary BCH).

Terminology: We further refer to the vectors of an error correction code as
codewords. The codewords’ size is called the length of the code. The distance
between two codewords is the number of coordinates at which they differ. The
minimum distance of a code is the minimum distance between two codewords.

Recall that a primitive element of a finite field is a generator of the multi-
plicative group of the field.
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4.1.1 BCH Preliminaries
Definition 4. Let m ≥ 3. For a length n = 2m −1, a distance d and a primitive
element α ∈ F

∗
2m , we define the binary BCH code:

BCH(n, d) = {(c0, c1, ..., cn−1) ∈ F
n
2 | c(x) =

n−1∑

i=0

cix
i satisfies

c(α) = c(α2) = ... = c(αd−1)}
Let m ≥ 3 and 0 < t < 2m−1 be two integers. There exists a binary BCH

code (called a t−error correcting BCH code) with parameters n = 2m − 1 (the
block length), n − k ≤ mt (the number of parity-check digits) and d ≥ 2t + 1
(the minimum distance).

Definition 5. Let α be a primitive element in F2m . The generator polynomial
g(x) ∈ F2[x] of the t−error-correcting BCH code of length 2m−1 is the lowest-
degree polynomial in F2[x] having roots α, α2, ..., α2t.

Definition 6. Let φi(x) be the minimal polynomial of αi. Then,

g(x) = lcm{φ1(x), φ2(x), ..., φ2t(x)}.

The degree of g(x), which is the number of parity-check digits n − k, is at
most mt.

Let i ∈ N and denote i = 2rj for odd j and r ≥ 1. Then αi = (αj)2
r

is a
conjugate of αj which implies that αi and αj have the same minimal polynomial,
and therefore φi(x) = φj(x). Consequently, the generator polynomial g(x) of the
t-error correcting BCH code can be written as follow:

g(x) = lcm{φ1(x), φ3(x), φ3(x), ..., φ2t−1(x)}.

Definition 7 (Codeword). An n−tuple c = (c0, c1, ..., cn−1) ∈ F2n is a code-
word if the polynomial c(x) =

∑
cix

i has α, α2, ..., α2t as its roots.

Definition 8 (Dual Code). Given a linear code C ⊂ F
n
q of length n, the dual

code of C (denoted by C⊥) is defined to be the set of those vectors in F
n
q which

are orthogonal1 to every codeword of C, i.e.:

C⊥ = {v ∈ F
n
q |v · c = 0,∀c ∈ C}.

As αi is a root of c(x) for 1 ≤ i ≤ 2t, then c(αi) =
∑

ciα
ij . This equality

can be written as a matrix product and results in the next property:

1 The scalar product of the two vectors is equal to 0.
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Property 1. If c = (c0, c1, ..., cn−1) is a codeword, then the parity-check matrix
H of this code satisfies c · HT = 0, where:

H =

⎛

⎜⎜⎜⎜⎜⎝

1 α α2 . . . αn−1

1 α2 (α2)2 . . . (α2)n−1

1 α3 (α3)2 . . . (α3)n−1

...
...

...
...

1 α2t (α2t)2 . . . (α2t)n−1

⎞

⎟⎟⎟⎟⎟⎠
.

If c · HT = 0, then c(αi) = 0.

Remark 1. A parity check matrix of a linear block code is a generator matrix
of the dual code. Therefore, c must be a codeword of the t−error correcting
BCH code. If each entry of H is replaced by its corresponding m−tuple over F2

arranged in column form, we obtain a binary parity-check matrix for the code.

Definition 9 (Systematic Encoding). In systematic encoding, information
and check bits are concatenated to form the message transmitted over the noisy
channel.

The speed-up described in this paper applies to systematic BCH coding only.
Consider an (n, k) BCH code. Let m(x) be the information polynomial to be

coded and m′xn−k = m(x).
We can write m′(x) as m(x)g(x) + b(x).
The message m(x) is coded as c(x) = m′(x) − b(x)2.

BCH Decoding. Syndrome decoding is a decoding process for linear codes
using the parity-check matrix.

Definition 10 (Syndrome). Let c be the emitted word and r the received one.
We call the quantity S(r) = r · HT the syndrome of r .

If r · HT = 0 then no errors occurred, with overwhelming probability. If
r · HT �= 0, at least one error occurred and r = c + e, where e is an error
vector. Note that S(r) = S(e). The syndrome circuit consists of 2t components
in F2m . To correct t errors, the syndrome has to be a 2t-tuple of the form
S = (S1, S2, · · · , S2t).

Syndrome. In the polynomial setting, Si is obtained by evaluating r at the
roots of g(x).

Indeed, letting r(x) = c(x) + e(x), we have

Si = r(αj) = c(αj) + e(αj) = e(αj) =
ν−1∑

k=0

ekαik, for i ≤ 1 ≤ 2t.

Suppose that r has ν errors denoted eji
. Then

Si =
ν∑

j=1

eji
(αi)j� =

ν∑

j=1

eji
(αj�)i.

2 where b(x) is the remainder of the division of c(x) by g(x).
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Algorithm 3. Peterson’s Algorithm
1 Initialization ν ← t
2 Compute the determinant of S

det (S) ← det

⎛
⎜⎜⎜⎝

S1 S2 · · · St

S2 S3 · · · St+1

...
...

. . .
...

St St+1 · · · S2t−1

⎞
⎟⎟⎟⎠

3 Find the correct value of ν⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

det(S) 	= 0 −→ go to step 4

det(S) = 0 −→

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if ν = 0 then

The error locator polynomial is empty

stop

else

ν ←− ν − 1, and then repeat step 2

end if

4 Invert S and compute Λ(x)

⎡
⎢⎢⎢⎣

σν

σν−1

...
σ1

⎤
⎥⎥⎥⎦ = S−1 ×

⎡
⎢⎢⎢⎣

−Sν+1

−Sν+2

...
−S2ν

⎤
⎥⎥⎥⎦

Error Location. Let X� = αj� . Then, for binary BCH codes, we have Si =∑ν
j=1 Xi

�. The X�s are called error locators and the error locator polynomial is
defined as:

Λ(x) =
ν∏

�=1

(1 − X�) = 1 + Λ1x + ... + Λνxν .

Note that the roots of Λ(x) point out errors’ places and the number of errors
ν is unknown.

There are several ways to compute Λ(x), e.g. Peterson’s algorithm [7] or
Berlekamp-Massey algorithm [8]. Chien’s search method [9] is applied to deter-
mine the roots of Λ(x).

Peterson’s Algorithm. Peterson’s Algorithm 3 solves a set of linear equations
to find the value of the coefficients σ1, σ2, . . . σt.

Λ(x) =
ν∏

�=1

(1 + αjl) = 1 + σ1x + σ2x
2 + · · · + σtx

t

At the beginning of Algorithm3, the number of errors is undefined. Hence
the maximum number of errors to resolve the linear equations generated by the
matrix S is assumed. Let this number be i = ν = t.

Chien’s Error Search. Chien search finds the roots of Λ(x) by brute force [4,9].
The algorithm evaluates Λ(αi) for i = 1, 2, . . . , 2m − 1. Whenever the result is
zero, the algorithm assumes that an error occurred, thus the position of that
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error is located. A way to reduce the complexity of Chien search circuits stems
from Eq. 1 for Λ(αi+1).

Λ(αi) = 1 + σ1 αi + σ2 (αi)2 + · · · + σt (αi)t

= 1 + σ1 αi + σ2 α2i + · · · + σt αit

Λ(αi+1) = 1 + σ1 αi+1 + σ2 (αi+1)2 + · · · + σt (αi+1)t

= 1 + α (σ1 αi) + α2 (σ2 α2i) + · · · + αt (σt αit) (1)

4.2 Implementation and Results

To evaluate the efficiency of Barrett’s modular division in hardware, the
BCH(15, 7, 2) was chosen as a case study code. Five BCH encoder versions were
designed and synthesized. Results are presented in detail in the coming sections.

4.2.1 Standard Architecture
The BCH-standard architecture consists of applying the modular division using
shifts and XORs. Initially, to determine the degree of the input polynomials,
each bit3 of the dividend and of the divisor are checked until the first bit one is
found. Then, the two polynomials are left-aligned (i.e., the two most significant
ones are aligned) and XORed. The resulting polynomial is right shifted and
again left-aligned with the dividend and XORed. This process is repeated until
the dividend and the resulting polynomial are right-aligned. The final resulting
polynomial represents the remainder of the division. Algorithm4 provides the
pseudocode for the standard architecture.

Algorithm 4. Standard modular division (BCH-standard)
Input: P, Q
Output: remainder = Q mod P

1 diff degree ← deg(Q) − deg(P )

2 shift counter ← diff degree + 1

3 shift divisor ← P � diff degree

4 remainder ← Q

5 while shift counter 	= 0 do
6 if remainder[p degree + shift counter − 1] = 1 then
7 shift counter ← shift counter − 1

shift divisor ← shift divisor � 1
8 end

9 end
10 return remainder

3 Considered in big endian order.
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4.2.2 LFSR and Improved LFSR Architectures
The BCH-LFSR design is composed of a control unit and a Linear-Feedback Shift
Register (LFSR) submodule. The LFSR submodule receives the input data seri-
ally and shifts it to the internal registers, controlled by the enable signal. The
LFSR’s size (the number of parallel flip-flops) is defined by the BCH parame-
ters n and k, i.e., size(LFSR) = n − k, and the LFSR registers are called di,
enumerated from 0 to n − k − 1. The feedback value is defined by the XOR
of the last LFSR register (dnk−1) and the input data. The feedback connec-
tions are defined by the generator polynomial g(x). In the case of BCH(15, 7, 2),
g(x) = x8 + x7 + x6 + x4 + 1, therefore the input of registers d0, d4, d6 and d7
are XORed with the feedback value. As shown in Fig. 1, the multiplexer that
selects the bits to compose the final codeword is controlled by the counter. The
LFSR is shifted k times with the feedback connections enabled. After that, the
LFSR state contains the result of the modular division, therefore the bits can
be serially shifted out from the LFSR register.

Fig. 1. Standard LFSR architecture block diagram. (Design BCH-LFSR)

To calculate the correct codeword, the LFSR must shift the input data during
k clock cycles. After that, the output is serially composed by n − k extra shifts.
This means that the LFSR implementation’s total latency is n clock cycles.
Nevertheless, it is possible to save n−k−1 clock cycles by outputting the LFSR
in parallel from the sub-module to the control unit after k iterations, while during
the k first cycles the input data is shifted to the output register, as we perform
systematic BCH encoding. This decreases the total latency to k +1 clock cycles.
This method was applied to the BCH-LFSR-improved design depicted in Fig. 2.

4.2.3 Barrett Architecture (Regular and Pipelined)
The LFSR submodule can be replaced by the Barrett submodule to evaluate its
performance. Two Barrett implementations were designed: the first computes all
the Barrett steps in one clock cycle, while the second approach, a pipelined block,
works with the idea that Barrett operations can be broken down into up to k+1
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Fig. 2. Improved LFSR architecture block diagram. In denotes the module’s serial
input. (Design BCH-LFSR-improved)

pipeline stages, to match the LFSR’s latency. The fact that Barrett operations
can be easily pipelined drastically increases the final throughput, while both
LFSR implementations do not allow for pipelining.

In the Barrett submodule, the constants y0, L, and K are pre-computed and
are defined as parameters of the block. Since the Barrett parameter P is defined
as the generator polynomial, P does not need to be defined as an input, which
saves registers. As previously stated, Barrett operations were cut down to k
iterations (in our example, k = 7). The first register in the pipeline stores the
result of Q � y0. The multiplication by K is the most costly operation, taking
5 clock cycles to complete. Each cycle operates on 3 bits, shifting and XORing
at each one bit of K, according to the rules of multiplication. The last operation
simply computes the intermediate result from the multiplication left-shifted by
L − y0.

4.2.4 Performance
The gate equivalent (GE) metric is the ratio between the total cell area of a
design and the size of the smallest NAND−2 cell of the digital library. This met-
ric allows comparing circuit areas while abstracting away technology node sizes.
FreePDK45 (an open source 45 nm Process Design Kit [12]) was used as a dig-
ital library to map the design into logic cells. Synthesis results were generated
by Cadence Encounter RTL Compiler RC13.12 (v13.10-s021 1). BCH-Barrett
presented an area comparable to the smallest design (BCH-LFSR). Although
BCH-Barrett does not reach the maximum clock frequency, Table 1 shows that
it actually reaches the best throughput among the non-pipelined designs, around
2.08 Gbps. The BCH-Barrett-pipelined achieves the best throughput, but it
reresents the biggest area and the more power consuming core. This is mainly
due to the parallelizable nature of Barrett’s operations, allowing the design to
be easily pipelined and therefore further speed-up. The extra register barriers
introduced in BCH-Barrett-pipelined forces the design to present bigger area
and a higher switching activity, which increases power consumption.
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Table 1. Synthesis results of the four BCH designs.

Design Gate Gate Max frequency Throughput Power

instances equivalent (MHz) (Mbps) (μW)

BCH-Standard 310 447 741 690 978

BCH-LFSR 155 223 1043 972 920

BCH-LFSR-improved 160 236 1043 2080 952

BCH-Barrett 194 260 655 9150 512

BCH-Barrett-pipelined 426 591 995 13900 2208

A Polynomial Barrett Complexity

We decompose the algorithm’s analysis into steps and determine at each step
the cost and the size of the result. Size is measured in the number of terms. In
all the following we assume that polynomial multiplication is performed using
traditional cross product. Faster (e.g. ν-dimensional FFT [13]) polynomial mul-
tiplication strategies may grandly improve the following complexities for asymp-
totically increasing L and ν.

Given our focus on on-line operations we do not count the effort required
to compute K (that we assume given). We also do not account for the partial
multiplication trick for the sake of clarity and conciseness.

Let ω ∈ Z
ν , in this appendix we denote by ||ω|| the quantity

||ω|| =
ν∏

j=1

ωj ∈ Z.

1. Q � y0

1.1. Cost: lm(Q) is at most 〈L, ..., L〉 hence Q has at most Lν monomials.
Shifting discards all monomials having exponent vectors ω for which
∃j such that ωj < yj,0. The number of such discarded monomials is
O(||y0||), hence the overall complexity of this step is:

cost1 = O((Lν − ||y0||)ν) = O((Lν −
ν∏

j=1

yj,0)ν).

1.2. Size: The number of monomials remaining after the shift is

size1 = O(Lν − ||y0||) = O(Lν −
ν∏

j=1

yj,0).

2. K(Q � y0)
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Because K is the result of the division of h(L) =
ν∏

j=1

xL
j by P , the leading

term of K has an exponent vector equal to L − y0. This means that K’s

second biggest term can be x
L−y1,0
1

ν∏

j=2

xL
j . Hence, the size of K is

sizeK = O((L − y1,0)Lν−1).

2.1. Cost: The cost of computing K(Q � y0) is

cost2 = O(ν × size1 × sizeK).

2.2. Size: The size of K(Q � y0) is determined by lm(K(Q � y0)) =
lm(K)×lm(Q � y0) which has the exponent vector u = (L − y0) +
〈L − y1,0, L, ..., L〉.

size2 = O(||u ||) = O(2(L − y1,0)
ν∏

j=2

(2L − yj,0))

= O((L − y1,0)
ν∏

j=2

(2L − yj,0)).

3. B = (K(Q � y0)) � (L − y0)
3.1. Cost: The number of discarded monomials is O(||L − y0||), hence the

cost of this step is

cost3 = O((2(L − y1,0)
ν∏

j=2

(2L − yj,0) −
ν∏

j=1

(L − yj,0))ν).

3.2. Size: The leading monomial of B has the exponent vector u − L − y0

which is equal to 〈L − y1,0, L, ..., L〉. We thus have sizeB = sizeK .
4. BP

The cost of this step is

cost4 = O(ν × sizeB × sizeP ) = O(ν × sizeB × ||y0||).

5. Final subtraction Q − BP

The cost of polynomial subtraction is negligible with respect to cost4.
6. Overall complexity

The algorithm’s overall complexity is hence

max(cost1, cost2, cost3, cost4) = cost2.
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B Polynomial Barrett: Scheme Code

p1(x) =
∑7

i=0(10 + i)xi and p2(x) = x3 + x2 + 110

(define p1 ’((7 17) (6 16) (5 15) (4 14) (3 13) (2 12) (1 11) (0 10)))

(define p2 ’((3 1) (2 1) (0 110)))

;shifting a polynomial to the right

(define shift (lambda (l q)

if (or (null? l) (< (caar l) q)) ’() (cons (cons (- (caar l) q)
(cdar l))

(shift (cdr l) q)))))

;adding polynomials

(define add (lambda (p q)

(degre (if (>= (caar p) (caar q)) (cons p (list q)) (add q p)))))

;multiplying a term by a polynomial, without monomials ≺ xlim

(define txp (lambda (terme p lim)

(if (or (null?p) (> lim (+ (car terme) (caar p)))) ’() (cons (cons
(+ (car terme)

(caar p)) (list (* (cadr terme) (cadar p)))) (txp terme (cdr p)
lim)))))

;multiplying a polynomial by a polynomial, without monomials ≺ xlim

(define mul (lambda (p1 p2 lim)

(if p1 (cons (txp (car p1) p2 lim) (mul (cdr p1) p2 lim)) ’())))

;management of the exponents

(define sort (lambda (p n)

(if p (+ ((lambda(x) (if x (cadr x) 0)) (assoc n (car p))) (sort (cdr p)

n)) 0)))

(define order (lambda (p n)

(if(> 0 n) ’() (let ((factor (sort p n))) (if (not (zero?factor))

(cons (cons n (list factor)) (order p (-n 1))) (order p (-n
1)))))))

(define degre (lambda(p) (order p ((lambda(x)(if x x -1)) (caaar
p)))))

;Euclidean division

(define divide (lambda (q p r)

(if (and p (<= (caar p) (caar q))) (let ((tampon (cons (- (caar
q)(caar p))

(list (/ (cadar q) (cadar p)))))) (divide (add (map (lambda(x)
(cons (car x)
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(list (-cadr x)))))(txp tampon p -1)) q) p (cons tampon r)))
(reverse r)))

(define division (lambda (q p) (divide q p ’())))

;Barrett(k, L, last P and Y representing K, L, P and y)

(define k)

(define y)

(define L 8)

(define last)

(define barrett (lambda (q p)

(if (eq ? last p) (letrec ((g (caar q)) (h (- (+ g 1) y))) (shift (degre

(mul

(shift k (-L g 1)) (shift q y) h)) h)) (begin (set! k (division (list

(cons L ’(1) )) p)) (set! y (caar (set! last p))) (barrett q p)))))
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Abstract. Mobile ad hoc networks (MANETs) do not depend on any
fixed infrastructure, but communicate in a self-unified way. In order to
provide secure communication, researchers are working specifically on the
security issues in MANETs, and many secure routing protocols/measures
within the networks have been proposed. Our proposed work presents a
more efficient approach for detecting the cooperative black hole attack
in a MANET, which is particularly vulnerable compared to traditional
wired networks due to its mobility and broadcast nature. An opponent
can easily deploy black hole attack in the MANETs, therefore, to detect
cooperative black hole attack, our mechanism modifies the Ad hoc On
Demand Distance Vector (AODV) routing protocol by introducing two
special packets, (i) query packet and (ii) further route request (FRREQ)
packet. Our simulation results show that attack is detected successfully
and it outperforms existing attack detection methods.

Keywords: Mobile ad hoc networks · Black hole attack · Secure AODV ·
Query packet · Malicious node

1 Introduction

Nowadays, mobile ad hoc networks are one of the fastest growing areas of
research. It is a collection of mobile nodes that is connected through a wire-
less network interfaces, forming dynamic topology. In a MANET, each node
acts either as a source, destination or as a router. The main characteristics of
MANET are lack of any type of infrastructure or central authority. They can be
easily deployed in places where it is difficult to set up any wired infrastructure. It
also avoids single point of failure due to its nature of decentralized architecture.
Routing protocols in MANETs can be divided into three main categories, namely,
table driven, which is proactive, on-demand, which is reactive, and hybrid one,
depending on how the source finds a route to the destination node for transmit-
ting a message [1–5]. Designing a security protocol for ad hoc network is a very
difficult task due to certain unique characteristics of ad hoc wireless network,
namely, shared broadcast medium, insecure operational environment, lack of
central control, lack of association among nodes, limited availability of resource
and physical vulnerability [6,7].
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 171–183, 2015.
DOI: 10.1007/978-3-319-27179-8 12
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1.1 Taxonomy of Security Attacks

A taxonomy of security attacks over a mobile ad hoc network is given in Fig. 1.
It can be divided into two main categories, namely active and passive attacks.
A passive attacker does not modify the transmitted message while an active
attacker attempts to modify or destroy the message being exchanged between
two nodes [8,9]. Active attackers can also insert false information and send to
another node. Active attacks are more harmful than passive attacks [10–13].

Fig. 1. Taxonomy of Security Attacks

Ad hoc On-Demand Distance Vector (AODV) is a well-known reactive rout-
ing protocol for mobile ad hoc network that maintains routes only when it is
required by the source node for communication. When a node wants to send a
data packet to the other nodes, it initiates a route discovery process by sending
a route request (RREQ) packet. Neighbouring nodes after receiving a RREQ
packet check routes for the destination node. In case a route to the destination
node is not available, they further forward RREQ packet to its neighbor node.
In case a fresh route to the destination node is available on an intermediate
node, then intermediate node sends route reply (RREP) packet to source node.
If a route request packet reaches to the destination node, then destination node
sends a RREP packet to source node with the help of intermediate nodes [12,13].
AODV routing protocol is vulnerable to several security attacks such as black
hole (malicious node) [14]. A black hole node could advertise that it has fresh
and shortest path to a destination node, thereby discarding all packets without
forwarding to a destination node. Cooperative black hole attack means black hole
nodes act in a group. A black hole node does not compare destination sequence
number in RREQ packet to its destination sequence number entry currently in
its routing table for a path.
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The rest of the paper is organized as follows: Sect. 2 presents related work.
Proposed scheme/algorithm for detection of cooperative black hole attack is
presented in Sect. 3 while its performance evaluation & result analysis has been
presented in Sect. 4. Finally, conclusion and future work are given in Sect. 5.

2 Related Work

Sen et al. [15] gave a novel mechanism to detect coordinated black hole attack
in a MANET. This mechanism modifies the standard AODV routing protocol
by introducing two special parameters, (i) data routing information (DRI) and
(ii) Cross checking. Tamilselvan et al. [16] proposed a technique to combat a black
hole attack by fidelity table where all participating nodes will be assigned a new
parameter fidelity level that is used to measure reliability of the participating
node. In case the fidelity level of any node drops to 0, it is considered to be a
black hole node.

Banerjee et al. [17] proposed a technique for protecting the mobile ad-hoc
network from gray/black hole attack. It also provides a technique to discover
cooperating black hole nodes. Sharma et al. [18] tried to investigate the effects
of a black hole attack over the performance of a mobile ad hoc network. Exper-
imental results show that network performance, reduced up to 26 % in the pres-
ence of black hole attack. Konate et al. [19] gave an analytical model to model
some of these attacks like cooperative black hole, blackmail, overflow, selfish and
a simulation study of these attacks by using a network simulator tool.

Munjal et al. [20] proposed a scheme to detect cooperative black hole attack
and examination has been done by considering three different cases. In the first
case there is no malicious node in the network, there are cooperative black hole
nodes and node is reliable. Bindra et al. [21] proposed a technique to detect and
remove the gray/black hole attacks. Extended data routing information (EDRI)
table is used for detection/removal of cooperative black hole/gray hole attacks.
It also maintains all malicious activities of a particular node. Gupta et al. [22]
tried to avoid black hole attack without use of special hardware and dependency
on any physical medium of wireless network.

3 Proposed Detection Scheme

In this section, we present a technique to identify cooperative black hole attack
and a safe route in a mobile ad hoc network. In Fig. 2, source node S initiates
route discovery process by flooding a RREQ packet in the entire network. When
nodes 1, 2 and 3 receive RREQ packet, they check availability of routes to the
destination node. If it is not available then simply they forward a RREQ packet
to neighbor node. In case route is available to the destination then an intermedi-
ate node (having fresh information for the route to a destination) simply sends a
RREP packet to source node. When black hole node B enters into MANET then
it exploits the inherent routing behaviour of MANET and pretends to have an
optimal path to a destination node. Figure 2 shows a black hole node B, which
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Fig. 2. Sending false route by attacker

receives a RREQ packet then it simply generates a route reply to a source node
S, which carry a large value of destination sequence number in order to pretend
freshest routing information of a destination. Once the source node broadcasts a
RREQ packet, either intermediate nodes or destination node itself generates one
or more RREP packet (containing the information of next hop node). Unlike
AODV protocol, we store all these replies into the coming route reply table
(CRRT) at source node, it stores all route replies coming from the destination
or an intermediate node. As soon as a source node receives the very first RREP
packet, it assumes that RREP comes from a black hole node and make a con-
firmation about node behaviour. Collection of route reply performs until the
time to live (TTL) expires. In our proposed work, an extra field get included in
RREP packet, which is used to store an additional information of next hop of
originator of RREP. We use this information in the future for detecting black
hole behaviour of a node. We introduced two new special packets, viz. Query
Packet (QP) and Further Route Request Packet (FRREQ), which is used for
detection of cooperative black hole attack.

3.1 Query Packet

A query packet contains two basic queries:

– Query 1: Is node (next hop of the originator of RREP) has a route to the
destination?

– Query 2: Is node lies in the neighborhood proximity of the originator of RREP?

Structure of query packet (QP) is shown in Fig. 3. This query packet contains
a field dubbed check results which might be filled by next hop of the originator
of RREP.
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Fig. 3. Query Packet

Fig. 4. Request/Reply Process for Query Packet

We discovered a route to next hop of the originator of RREP node for sending
a query packet via another path. When the node receives query packet, it sets a
flag for query packet. Four possible conditions arise which are (0, 0) (0, 1) (1, 0)
(1, 1). Here, 1 stands for ‘YES’ and 0 for ‘NO’. In Fig. 4, source node S unicast a
query packet (QP) to node 8 (next hop of originator of RREP) via another path.
Upon receiving QP, node 8 sends answer of query to the source node S. When
source node S receives outcome of query by node 8. If outcome of any query is
‘NO’, then it is sure that originator of RREP node B is a black hole node but
if both outcome is ‘YES’ then there might be a possibility of cooperative black

Table 1. Decision table for query packet

S.N. Case Query 1 outcomes Query 2 outcomes Conclusion

1. I YES YES Legitimate node/Cooperative
black hole attack

2. II NO NO Only originator of RREP node
is black hole attack

3. III YES NO Only originator of RREP node
is black hole attack

4. IV NO YES Only originator of RREP node
is black hole attack
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hole attack (black hole attack performed by originator of RREP and its next
hop). These answers are given in the decision Table 1. To detect a cooperative
black hole attack, we use another control packet i.e. further route request packet
(FRREQ). Based on query outcomes, we reach on a conclusion that whether we
use further route request packets or not.

3.2 Further Route Request (FRREQ) Packet

Source node S unicasts a FRREQ (packet having similar packet format as in
basic AODV, but the source node placed a fake destination address) to the next
hop of originator of RREP.

Further route request is slightly different from RREQ packet of standard
AODV protocol, which is shown in Fig. 5. In place of destination address, we

Fig. 5. FRREQ Packet Format

Fig. 6. Request/Reply Process for FRREQ Packet
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Table 2. Decision table for FRREQ Packet

S.N. Case Query 1
outcomes

Query 2
outcomes

FRREQ
reply
arrived

Conclusion

1. I YES YES NO Legitimate node

2. II YES YES YES Cooperative black hole
attack

place an address of a hypothetical node, which does not exist in the network.
FRREQ packet also contains a random number instead of destination sequence
number field during the route discovery phase. Upon receiving a FRREQ packet,
a suspect node sends a route reply or simply forward the packet to its next hop
as per basic AODV mechanism. If a RREP is generated and arrived at the source
S, then originator of RREP node is surely a black hole node just because it reply
to claim that it has a short and fresh enough route for a destination D, which is
not exist in the network, otherwise originator of RREP node is a legitimate.

When the node receives a FRREQ Packet, it sets a flag for FRREQ Packet.
Two possible conditions arise which are (1, 1, 0) (1, 1, 1). Here, 1 stands for
‘YES’ and 0 for ‘NO’. If both answer is YES then source node S broadcasts
FRREQ packet to the black hole node B, which is shown in Fig. 6. Upon receiving
FRREQ packet, if a RREP packet generation by black node B then source node
S simply detects cooperative black hole attack, otherwise node is legitimate.
These outcomes are better explained in the decision Table 2.

3.3 Detection Algorithm

The various notations used in the proposed algorithm are given in Table 3 while
Algorithm 1 presents detection of cooperative black hole attack.

Table 3. Notations

I Intermediate node

DSRREQ Destination Sequence Number of Route Request

DSRREP Destination Sequence Number of Route Reply

t Time of Arrival

4 Performance Evaluation

In this section, we apply proposed algorithm for detection of cooperative black
hole attack, which is implemented using network simulator (ns-2.34) and it is
compared with standard AODV protocol under black hole node.
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Algorithm 1. Detection of Cooperative Black hole attack

D/I
RREP
====⇒ S

for each route reply[ i ] do
if DSRREP[ i ] >DSRREQ[ i ] then

Insert.RREP[ i ] into CRRT
t i= t.RREP[ i ]

S
QP
==⇒ next hop of the originator of RREP

Next hop of the originator of RREP
outcomes
======⇒ S

if First query outcome==1 then
if Second query outcome==1 then

S
unicasts FRREQ
===========⇒ Next hop of the originator of RREP

if FRREP is arrived from Next hop of the originator of RREP then
Cooperative black hole node

else
It is legitimate node

end if
else

Only originator of RREP is black hole node
end if
if second query outcome == 1 then

Only originator of RREP is black hole node
else

Only originator of RREP is black hole node
end if

end if
end if

end for

4.1 Simulation Environment and Scenarios

The network topology is a rectangular area with 800 m height and 501 m width.
All the fix links have chosen speed from 10 m/s to 90 m/s. We use the IEEE
802.11 algorithms at physical and data link layer. We use AODV as the routing
algorithm at network layer. Finally, user datagram protocol (UDP) is used in
transport layer. The simulation parameters are given in Table 4.

4.2 Movement Model

The propagation model uses two ray ground in simulation. The Random Way-
point Model is used for mobility in mobile ad hoc network. Mobility model is
generated using setdest utility.

4.3 Communication Model

CBR (continuous bit rate) and size of each packet is 512 bytes. A Packet trans-
mission rate in scenario considered is 0.20 Mbps. The connection pattern is
generated using cbrgen.
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Table 4. Simulation parameters

Parameter Value

Simulator ns-2.34

Simulation time 21 s

Number of nodes 10 to 90

Routing protocol AODV

Traffic agent TCP

Pause time 2 s

Node speed 10–90m/s

Terrain area 850m × 501 m

Transmission range 250m

Number of malicious node 2

4.4 Performance Metrics

The metrics used to evaluate the performance of these contexts are given below:

– Packet Delivery Ratio (PDR): It is the ratio between total number of packets
transmitted by a traffic source and total number of packets received by a
traffic sinks.

– Throughput: Throughput is the ratio of total number of packets (data bits)
successfully delivered to a destination node in given simulation time.

4.5 Results and Analysis

We examine the performance of AODV routing protocol in terms of two metrics:
packet delivery ratio and throughput. Simulation is done with source node trans-
mitting maximum 410 packets to a destination node. To analyze performance
with our solution, various contexts are created by varying mobility and num-
ber of nodes. We used these performance metrics to validate proposed approach
against cooperative black hole attack and result obtained is shown in Figs. 7, 8,
9 and 10.

Figure 7 shows a comparison graph of % PDR v/s node speed. Here, we
compare our proposed algorithm % PDR outcomes with two others (AODV
without black hole node and AODV with black hole node). AODV is a basic
algorithm, which is supposed to free from black hole attack. Another one is
simulated under presence of one black hole node nearer to a source node S.
Here, proposed approach gets an unprecedented rise in the % PDR as compared
to AODV with the black hole node.

It can be seen that % PDR of AODV dropped by 96 % in presence of coop-
erative black hole node with varying node mobility. The same increased by
98 % when our proposed approach is used under cooperative black hole attack.
Figure 8 represents the comparison graph of throughput v/s node speed. Hence,
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Fig. 7. PDR vs Node Speed

Fig. 8. Throughput vs Node Speed

proposed approach gives better performance with respect to throughput out-
comes to two others.

In Fig. 9, we find that when the number of nodes is minimum, standard
AODV achieved good % PDR. Now as the number of nodes is increased then
the % PDR decrease. Hence, our proposed algorithm shows better performance
with respect to % PDR when increasing the number of nodes.

In Fig. 10, it is observed that standard AODV gives better throughput. When
number of nodes are minimum. As the number of node increases, throughput of
standard AODV decreases while throughput of our propose approach is higher
than two others. Hence, our proposed algorithm showing better performance
with respect to throughput.
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Fig. 9. PDR vs No. of nodes

Fig. 10. Throughput vs No. of nodes

5 Conclusion and Future Work

Standard AODV routing protocol is vulnerable to black hole attack. Due to this
attack, packet delivery ratio (PDR) and throughput of AODV routing protocol
decreases drastically. Existing solutions have been evaluated. Having justified a
need for further improvements, we proposed a Query Packet with FRREQ app-
roach to counter the cooperative black hole attack in AODV routing protocol in
MANETs. From the experimental results, we conclude that proposed solution
achieves a very good rise in PDR and throughput as node mobility in the net-
work increases. Moreover, the proposed approach does not involve much hidden
overhead on their intermediate/destination node.



182 V. Kumar and R. Kumar

Future work may concentrate on extending the proposed approach to other
reactive routing protocols such as dynamic source routing (DSR). An another
future work may be to detract false positive (FP) in the proposed approach.
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Abstract. Today machine learning is primarily applied to low level
features such as machine code and measurable behaviors. However, a
great asset for exploit type classifications is public exploit databases.
Unfortunately, these databases contain only meta-data (high level or
abstract data) of these exploits. Considering that classification depends
on the raw measurements found in the field, these databases have been
overlooked. In this study, we offer two usages for these high level datasets
and evaluate their performance. The first usage is classification by using
meta-data as a bridge (supervised), and the second usage is the study
of exploits’ relations using clustering and Self Organizing Maps (unsu-
pervised). Both offer insights into exploit detection and can be used as
a means to better define exploit classes.

Keywords: Exploit database · Machine learning · Supervised · Unsu-
pervised · Pattern abstraction · Data mining

1 Introduction

Machine learning offers a multitude of applications from automated predictions,
classification and other data mining tools. Today it is becoming more and more
popular to apply machine learning to the domain of cyberspace security [3,8]. The
reason for this is because machine learning is very good at dealing with abstract
situations and problems [8]. However, aside from anomaly detection, these algo-
rithms tend to be supervised machine learning problems which require a large
labelled datasets. Acquiring these datasets can take many man hours or in some
cases be impossible. For this reason it is desirable to use existing databases to build
preliminary models for testing and evaluation before investing the man hours to
build the final product. For instance, should one wish to train a model to clas-
sify exploit code, he would need a dataset or database filled with examples of
exploit code. Although these databases exist, they have been largely overlooked by
machine learning applications. The main reason for this is that they only contain
meta-information about the threats and not the threats themselves. For example,
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an instance in such a database would contain information on the type of threat,
platform or steps taken to perform it and not the exploit code itself or its con-
crete behaviors. This makes it difficult to use them as a basis for training a
model on existing threats. Furthermore, machine learning is commonly applied
to low level features such as machine code [5,11] and measurable behaviors [1,14].
The point that is overlooked is that a lot can be learned and obtained from
meta-information on exploits. When an exploit is discovered and submitted to
a database its high level description, in a way, paints an image of its behavior
or intents. For example, take an instance of exploit code written in C. In the
code the variables have a particular significance to the author. Furthermore,
the imported library names also have a correlation to the intended exploit [12].
Once all the instances have been refined, correlated and grouped, it is possible
to build a model which can identify the type of exploit based on these high
level indicators. Although this alone provides no benefit to detecting true mal-
ware, it is possible to build a reverse model that can connect machine code (OP
Codes) to this higher level abstraction (or source-code). In other words, using
the meta-data as a target, it is possible to identify the malware’s intents straight
from the OP codes (using a supervised machine learning algorithm). Further-
more, most malicious programs found in the wild are variants of some previous
one [13]. There is another useful application of machine learning to a dataset of
exploit metadata. This is when it is applied to a un-supervised machine learn-
ing algorithm. Doing so allows us to find meaningful patterns and possibly new
classes/behaviors of malware. One such algorithm is the Self Organizing Map
(SOM) [9]. After training a SOM on the metadata, queries can be input to find
their correction among similar or close clusters [7]. For instance, if we look for
where all denial of service (DoS) exploit instances are within the SOM topology
and compare that to where all remote exploits are. In such a case we may find
that they have an overlap “in interests” or that they are disjoint but close in
proximity (similarity) or very far apart. These can be used as clues in exploit
behaviors that can be used in training and labeling future classes. In this article
we investigate some applications of meta-exploit databases to supervised and
un-supervised machine learning algorithms. In the case of supervised learning,
we evaluate the performance of a direct and indirect high level (metadata) clas-
sifier. The indirect classifier is a two stage learning model. It first predicts the
metadata from N-grams of OP Codes, and then submits these results as features
to a meta-classifier. The meta-classifier’s job is to determine the machine code’s
type of exploit. The indirect classifier builds a single model that predicts the
exploit type directly from the N-grams of OP Codes. In our evaluation, we con-
trast the performance of both methods. It is important to note that these OP
codes were compiled from the meta-data supplied (which includes the source
code). In the domain of unsupervised machine learning algorithms, we apply a
SOM to the dataset and offer explanations of the results. The rest of the article is
divided into section as follows. In Sect. 2, the database used for our models is pre-
sented. In Sect. 3, the supervised machine learning algorithm’s application to a
parsed version of the database is evaluated. In Sect. 4, the unsupervised machine
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learning algorithm’s application to a different parsed version of the database is
evaluated. Lastly, in Sect. 5, a conclusion with future work is proposed.

2 The Exploit Database

There are many repositories of existing exploits available to the public. How-
ever, very few actually provide the high level code used to carry them out. For
instance, the National Vulnerability Database (NVD) is an extensive and current
database which details known vulnerabilities and their details. What NVD does
not provide are concrete examples of performing these exploits. One database
that does offer the meta-information along with the exploit code is Exploit DB.
Exploit DB is a community based database filled with labelled code submissions
in many different coding languages (C/C++, python, JavaScript, ASM etc.)1.
The database is constantly updated including instances submitted from 1994
until today. The downloaded database contains a compressed directories of all
the exploit’s source-code files and a spreadsheet labeling each exploit’s meta-
information. We decide to use Exploit DB for our evaluation due to its simple
organization and readily available source-code. Furthermore, although the data-
base contained thousands of exploit written in different languages, be focused
only on those written in C. Due to time constraints, we could not parse (or com-
pile) and extract features from all the available languages. However, we believe
that our feature extraction process can also be applied other languages as well.
Therefore, our work should serve as a sample of what is possible as well as what
can be extendible to the other source-codes (written in other programming lan-
guages). In terms of final labels, we used the provide “exploit type”. The offered
exploit types were: local, remote, DoS and Shell-code. We needed to remove the
“Web apps” exploit type instances due to heavy class skewage. As seen from the
WEKA data visualizations below, afterwards, dataset did not suffer from class
skewage. Figure. 1 shows the distribution of instances in the data set by submis-
sion year, and Figs. 2 and 3 shows the instances division between exploit type
and target platform respectively. Although Fig. 2 shows that there were fewer
Shell-code type exploits than others, they are not too small in comparison. Fur-
thermore, on a yearly basis, the distribution between the exploit types persists.
This is important when we attempt to find the correlations between the two
using the SOM in Sect. 4. It is interesting to point out that number of C code
submissions per year has a very obvious “prime” and then becomes less frequent.
This may have a negative impact in terms of how relevant the models trained on
this data will be for present day applications. However, this issue does not affect
out evaluation since our goal is the effective use of applying machine learning to
meta-data. Should the reader desire to apply our research, he should use a data-
base with a stronger relevance (population) to modern exploits. Lastly, note the
target-platform distribution in Fig. 3 This distribution is based on the original
labels pulled from the database. In order to fix the problem of scarcity between
groupings we applied a filter which grouped all similar platforms together to form
1 The Exploit DataBase – http://www.exploit-db.com/.

http://www.exploit-db.com/
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Fig. 1. Plot of the dataset instances by year of submission: 1994 to 2013

a new platform label. For instance, bsd, bsd ppc, bsd x86, bsdi x86, freebsd x86
and freebsd x86-64 were all grouped under one label “bsd”. In the end there
were 6 parent labels: Windows, Linux, Solaris, BSD, Unix, and Other. These
groupings were exceptionally important for the SOM. This way we were able
to find more meaningful relations between the platforms. In total the database
contains 2486 instances of exploits. For each case in this article, we generated
a dataset using a subset of these instances. The details of these datasets are
described later on.

3 Applying Supervised Learning

In this section we apply supervised machine learning algorithms to the meta-
information database (exploit DB). The intent here is to determine whether this
type of data can be used for classifying exploit types based on their machine
code. Throughout this article, we used MATLAB as the choice machine learning
environment, due to its familiarity, extensive libraries and SOM features.

3.1 Creation of the Datasets

Two datasets built around the same instances were needed to accomplish our
objectives. Both datasets’ features were generated from the source code (pro-
vided by the database) while their labels were taken from the meta-data that
accompanied them. We considered both the source code and informational meta-
data to be the “metadata” referred to in section I. The first dataset was a dataset
of high level features (HLF) such as the number of libraries imported and the
existence of similar variable names in the source code. The second dataset was
of low level features (LLF) specifically the 2-grams document frequency (df) on
the OP-codes of the compiled exploits.
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Fig. 2. Chart of the dataset instances by exploit type.

Fig. 3. Chart of the dataset instances by target platform.

The HLF Dataset. Because Exploit DB is a collection of non-standardized
community submissions, extensive parsing and filtering was required in order
to obtain the HLF dataset. Therefore all of the processing was done through a
series of well-planned automated Python scripts. The reason we chose Python,
is because of its versatility and well supported community of libraries. The first
step was to decide on what features to extract. We decided that since the source
code holds linguistic significance we should extract this content as a feature. Fur-
thermore, we felt that the number of different variable and function types hold a
subtle significance as well; so these too were taken into account. Unfortunately,
the source code was filled with comments and debugging code (printf, cout,
etc.). Therefore before any feature extraction, we used regular expressions and
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the CTAGS programming tool2 to remove and collect all relevant information.
Once the source code was clear of irrelevant “words”, we began collecting a list
of the names of all imported libraries, library functions, user functions, and vari-
ables. In addition, we also collected their frequency amongst on a per file basis
as well as a global sum (for feature selection purposes). After this process we
obtained 16,384 features. It was obvious that a dataset with only 2486 instances
would suffer from the “curse of dimensionality” [2]. Therefore it was required
that we perform feature selection to find the most useful subset. In the end
we decided to create new compound features by grouping them by similarity in
names. These groupings were done with respect to each category (libraries, user
functions, etc.). Using a Python library, we used a similarity threshold of 0.7
to group names which yielded the results in Table 1. Afterwards, we performed
feature selection by taking the top 10 most popular results from each category
(across the entire dataset) seen in Table 2. It is clear that each of the groups in
Table 2 represent a common theme and therefore a particular behavior of the
exploit. The way each of these groupings where converted into a feature was:
if the any of the names in the group were present in an instance then it would
receive the value “1”. If none of the names in that grouping were present then
it would receive the value “0”. Altogether, the 4 categories with 10 groups each
created a 40 element binary feature vector. To complete the feature set, we also
took the number (frequency) of imported libraries, library functions, user func-
tions and variables as features. The final HLF dataset contained 2486 instances
with 44 features, and 4 target classes (the exploit types).

Table 1. Feature selection statistics

Before grouping After grouping Taken as features

# Library Names 405 190 10

# Lib. Function Names 2399 1405 10

# User Function Names 3502 1790 10

# Variable Names 7460 2947 10

The LLF Dataset. The second dataset represented the instances found in real-
ity. This dataset contains features strictly obtained from the machine code (Op-
codes) of the exploits themselves. Unfortunately, Exploit DB does not provide
the assembled exploits rather only their source code. Due to the sheer amount
of instances, compiling the code manually was not an option. Therefore an auto-
mated process was programmed. This was a difficult task since the source codes
were full of typos, uncommon libraries and had platform dependencies which
caused the compilations to fail.

2 CTAGS by Darren Hiebert – http://ctags.sourceforge.net/.

http://ctags.sourceforge.net/
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Table 2. Final name groupings taken as a binary feature vector

Due to a lack of time, we focused on Linux and Windows platform based
compilations. After a long process of filtering errors 1285 instances were success-
fully compiled into ASM code (998 via Linux and 287 via Windows). From the
research in the paper [10], the authors showed that an effective feature extrac-
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Table 3. Sample of Top 10 Op-code pairs ordered by document frequency (most com-
mon across the collection)

Op-code pair Total global occurrences

(movl, movl) 33165

(movl, call) 22411

(call, movl) 14811

(pushq, movq) 2715

(movq, movl) 15134

(leave, ret) 2909

(call, movq) 6604

(movq, subq) 2018

(movq, movq) 15930

(movl, movq) 10302

tion would be as follows. Over the Op-code sequences of each file, the n-grams
algorithm was performed with a size of 2. For each of the possible Op-code pairs,
a frequency count was given for each file. Since this resulted in too many fea-
tures, the top 1000 most frequent Op-code pairs (by df) were taken as the final
feature set (Table 3). The final dataset was then row normalized (across each
feature’s attributes). The final LLF dataset contained 1285 instances with 1000
features. The targets were either the 4 exploit types or the respective HLFs from
the corresponding instances in the HLF dataset.

3.2 Single Stage Classifier of Machine Code

Our intent was see how much the HLFs help the classification of the LLFs.
However, before building this model we needed a way to determine whether
including the HLF would improve the results at all. In order to do so, it was
necessary to build a second model which directly classified the exploit type from
the LLFs. This single stage classifier was trained on the LLFs (2-gram OP-codes)
to predict the class type (exploit type). In order to proceed we had to choose
which machine learning algorithm was best for the dataset. At first we were
interested in using an artificial neural network (ANN) because we believed that
there exists strong nonlinear relations within our data. Our initial evaluations
showed that a decision tree (DT) was a faster and more accurate classifier than
the ANN for the given datasets. In order to be certain, we performed several
cross validation on different ANN sizes (see Fig. 4).

Since the ANN was not a good option we used a DT as the single stage
classifier (1S DT). The model of the 1S DT can be seen in Fig. 5. The evidence
that drew us to our conclusions are available in Fig. 7 where the 1S DT out
performed a 500 node single hidden layer ANN. The DT algorithms we used
were those that were packaged with MATLAB [4,6].
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Fig. 4. The Receiver Operating Characteristics from training a single hidden layer
artificial neural network with different sized hidden layers.

Fig. 5. The single stage DT learning model (1S DT). A classification decision tree is
trained on the LLFs to predict the exploit type of the instance

3.3 Two Stage Meta-Classifier on Machine Code and High Level
Features

The intent of this model is to show how HLFs can be used as a means for boosting
the classification accuracy. To test this we built the two stage DT model (2S DT)
shown in Fig. 6.

The idea behind the model is that since the HLFs hold abstract informa-
tion about the exploit type they can assist in the classification. In other words,
when the 2S DT is presented with a new instance’s OP-codes, it attempts to
first determine what the HLFs were. Afterwards, these predictions are used to
“construct” the abstract picture of “the exploit type”. For both the S1 and S2
DTs, we trained them on 85 % of the dataset, and then evaluated them based
on the remaining 15 %. The results on the test set can be found in Fig. 7.

3.4 Comparing Results

The results present several interesting points. First of all, the 2S DT does not
perform as well as the 1S DT. However, it still performs well as a predictor in
general. This indicates that there is a strong connection from the LLFs to the
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Fig. 6. The two stage DT learning model (2S DT). For each HLF, A single regression
decision tree (DTR) is trained on the entire LLF dataset (an expert in predicting that
HLF). The HLF predictions of these DTRs are the inputs to the decision tree classifier
(DTC) trained to classify the instance’s exploit type
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Fig. 7. The results of the classification models on the test set. Displayed are the models’
evaluations separated by targeted class

HLFs in terms of the exploit type. Another interesting result presented itself.
The best performance the 2S DTC could provide should be the same accuracy
as a DTC trained on the HLFs directly. However, contrary to this notion, the
results (Fig. 8) show a DTC trained on predicted HLFs performed better than a
DTC trained on the original HLFs. The reason for this is because although the
DTRs in the 2S DT had a degree on error in their predictions, they included extra
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Fig. 8. A comparison between performing classification using a model trained on the
original HLFs and a model trained on predicted HLFs. Note that the predicted features
offer better performance (Color figure online)

information from the LLFs. Therefore, the predicted HLF which the DTC was
trained on were actually “boosted” in their information (classification) content.

In summary, although the 2S DT is not as good as a simple 1S DT, there
is a benefit to including the HLFs as a part of the processes. Further research
should be considered on improving and capitalizing on fusing HLF into LLF
models (Fig. 9).

4 Applying Unsupervised Learning

In this section we apply unsupervised learning in order to find patterns and
corrections between instances on exploits. In particular, we use a SOM to seek
out new classes of exploits and interesting unseen relations between groups of
instances. The use of a SOM for this task is desirable for the following reasons.
A SOM is an unsupervised machine learning algorithm that finds correlations
between instances’ features by positioning the instances on a 2D topological
map. This means that instances which are found close together in a cluster are
considered to be of the same “class”. Furthermore, by investigating the distance
and order of different clusters to one another can reveal further insights. Lastly,
overlapping clusters indicate shared interests, yet dissimilar personalities.



Up-High to Down-Low: Applying Machine Learning to an Exploit Database 195

Fig. 9. The two classification decision trees (in red) compared in Fig. 8. The primary
difference is that the top DTC has been trained on the actual HLFs while the bottom
DTC has been trained on “predicted” HLFs (Color figure online)

4.1 Creation of the Dataset

The dataset used was the same HLF dataset used in Sect. 3. The only difference
was that the label “exploit type” was not included in the training process and
additional information from the database in Sect. 2 was used during the eval-
uation. This extra information includes: the year of submission and the target
platform. Furthermore, the data was normalized in order to assist the SOM in
finding correlations between instances. The normalization method used was the
well-known mean over standard deviation method.

4.2 Applying the SOM

The SOM used was a 900 neuron map in a staggered square formation. The
training process consisted of 200 iterations over the entire dataset. It can be seen
that the HLFs (such as the number of libraries and function name groupings)
were more than enough for the SOM to distinctly find the correlations between
the instances. In Figs. 10 and 11 the neuron weights can be seen to show distinct
patterns in the dataset.

4.3 Observed Patterns and Results

There are many ways to find interesting information about existing known
classes. One method is that after training a SOM on unlabeled data, we plot
the fallout of all the instances onto the SOM’s 2D map. Afterwards, we ask all
instances which have some particular trait to raise their hand. By plotting the
densities of the selected instances we can see patterns emerge. In general, these
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Fig. 10. The neuron’s neighboring weights (biases) for each of the 44 HLF inputs.
Overlapping strong weights indicate a strong correlation between the features.
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Fig. 12. Left: The fallout by density of the instances for each “exploit type” on the
SOM. Right: The fallout by density of the instances by year of submission. The year
ranges are balanced bins based on the histogram from Fig. 1

traits are the labels we left out of the training set. For this reason, we expect
the SOM not only to find the correlation between these labels by itself, but also
learn out new ones that we haven’t seen before.

There are many interesting correlations and patterns which are evident in
the results. Focusing on the left side of Fig. 12, note the differences between
the instances of each exploit type. For the most part, the personality of remote
exploits is disjoint to that of the local exploits. However, there is a small cluster
of remote exploits at (22,20) which merges with the local exploits. It is clear
that these exploits are neither DoS or shell-code types, so the question arises,
“what is the cause of this unique cluster?”. Upon further speculation, we can
note that from Fig. 13 the majority of that cluster is target for the Windows
platform. This may indicate a new class of exploit that is a mix of both remote
and local existing primarily on the Windows operating system. Having another
look at the left side of Fig. 12, other clear distinctions arise between the exploit
types. For instance, Shell-code and local exploits are clearly disjoint yet favor
being located in the northern hemisphere of the map. By merging these patterns
we can tell that although shell-code exploits are disjoint to remote ones, they
are far more similar to them than local exploits. This gives a nice indication of
what behaviors to look for when classifying an exploit’s type. Moving the focus
over to Fig. 13, note that there is a distinct hole within the Windows instances
at (15,16). This is particularly interesting since this correlates to the same gap
found in the remote exploit types (left side of Fig. 12). This indicates that there
is a definitive grouping of correlated local and DoS exploits that are not found
on Windows platforms. It would be very interesting to investigate what these
local and DoS exploits have in common. Moreover, note that the Linux platforms
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Fig. 13. The fallout by density of the instances for each “targeted platform” on the
SOM

mostly favor the right while the DoS exploits favor the left. Although there is an
overlap between these instances, it is clear that the usage of DoS type exploits
(or exploits that have the same behavior) is not common on Linux platforms.
Another interesting fact about the Linux platform is the correlation between
Linux based exploits and shell-code exploits (15,25). This connection apparently
is not only popular in general, but in particular during the years 2004–2006 (right
side of Fig. 12). While this cluster is a highly active until today, it is notable that
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it was less so prior to the year 2001. Lastly, note the similarity between Linux and
BSD. It would appear that their exploit personalities are very similar. Shifting
the focus now onto the right side of Fig. 12, note how the popularity of using
particular exploits have changed over time. It would appear that there were
favoured trends that were picked up by the exploit DB community and then
later dismissed. By using these results it is possible to determine what “old
exploits” are and therefore where a new classifier should put its focus. In other
words, the results here, show the concept drifts over time, and can be used to
pick up on the new trends (an catch them in the act) while dismissing the old
ones. Including this information into active learning algorithm could improve its
accuracy. One example of a trend is the correlation between the remote exploits
and the recent years. It is clear by their overlap that not only has remote exploits
been less interesting to in the past, but now they are the “hottest” item (2006–
2013). Another example is that Shell-code type exploits have been popular from
year to year, while other exploit types such as DoS and remote have come and
gone. Lastly note that over the years 2006 to 2013 there has been less interest in
exploit types falling out in the right and bottom sides of the map (a backwards
“L”). There is a clear relation between this pattern and the patterns in the DoS
and local exploits. There we can see that the upper right and lower left quadrants
have an inverse existential relation, while the overlapping upper left quadrant
is populated by both of them. When merging this pattern with the 2006–2013
instances, we can tell that the diagonal disjoint clusters indicate that in the past,
DoS and local exploit have behaved as very different “animals” and have been
kept distinct in terms of their code. However, as evident from their overlap in
the upper left quadrant, today their behaviors have becomes merged. This new
class of behaviors that has appeared in the recent years is incredibly intriguing
a more time should be invested into analyzing this trend.

5 Conclusion and Future Work

The practicality of using metadata and high level features, found in certain
databases, as a means for classifying exploit-types has been widely overlooked.
In particular, community pooled resources such as Exploit DB. In this article
we have shown how the application of supervised and unsupervised machine
learning algorithms to high level features can provide insightful contributions to
classification of low level features. In the case of supervised learning, although
the inclusion of HLFs to classify LLFs did not provide a direct improvement,
insight was gained in the connection between the two. In the case of unsuper-
vised learning, many patterns were uncovered and possible unknown exploit
classes were discovered as well. This information could be highly beneficial in
designing strong specialized classifiers. For future work, we recommend investing
time into a deeper analysis of the SOM mappings in order find new class types.
Furthermore, it would be interesting to use SOMs as a means for detecting and
predicting concept drifts as they come up. Lastly, the dataset used in this article
was incomplete with respect the total number of instances available in Exploit
DB and others. More accurate results may be achieved if these instances are
included.
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Abstract. Classifying encrypted traffic is a great challenge in the cyber
security domain. Attackers can use the SSH protocol to hide the nature of
their attack. This is done by enabling SSH tunneling to act as a proxy. In
this study we present a technique for matching (encrypted) SSH incoming
sessions with corresponding (encrypted) SSH outgoing sessions through
a series of SSH servers. This is an indication of suspicious activity and
therefore an important step in order to identify SSH servers that are
potentially used as a stepping-stone in a chain of proxies.

Keywords: Encrypted traffic · SSH · Cyberattack · Machine learning

1 Introduction

Secured Shell (SSH) is a client-server protocol that is used for remote login
and remote command execution [1]. It provides authentication and secured
(encrypted) communications over an insecure channel. SSH is also used for tun-
neling, i.e., corresponding a port on the client machine with a port on a machine
that resides within a private network over TCP/IP communication (also known
as port forwarding). The tunnel is established between the SSH client and the
SSH server, and the communication within the tunnel is encrypted.

Unfortunately, the SSH protocol may be maliciously exploited by hackers
in order to hide the source, destination and nature of an attack. This can be
done by enabling SSH tunneling acting as a proxy through which the malicious
traffic will be transmitted (e.g., leaking sensitive data, command and control
communication). As a case in point, the Flame virus detected in 2012 used SSL
and SSH for stealing sensitive information [2] and the Duqu virus detected in
2011 used SSH port forwarding to hide the command and control traffic and the
IP of the control application [3]. Wahlisch et al. [4] implemented a mobile device
honeypot. While analyzing suspicious access via the Internet to smartphones,
manual attacks that first established SSH connection and then targeted the
address book and stored photos were identified.

Figure 1 illustrates a legitimate and malicious use of an SSH server. A benign
client connects to the destination server over an unsecured network via the SSH
server. The communication between the client and the SSH server is encrypted
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 201–211, 2015.
DOI: 10.1007/978-3-319-27179-8 14
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Fig. 1. Illustrating an attack scenario using an SSH server as a proxy (Color figure
online)

(marked in double red lines). The communication between the destination server
and the SSH server is not protected (i.e., encrypted) by the SSH protocol.

An attacker, on the other hand, may connect several SSH servers in a chain
(in an onion routing approach) in order to forward the attack traffic to the next
SSH server (marked in red and yellow lines). In this case an incoming session
and a correlated outgoing session are encapsulating the same traffic (encrypted).
Thus, if one can correlate incoming encrypted traffic with an outgoing encrypted
traffic, both containing the same content, we can indicate that the server is being
used as an SSH proxy in a chain, which might be illegitimate.

The contribution of this study is a simple method for classifying and corre-
lating incoming and outgoing sessions in SSH servers. This is an important step
in order to identify SSH servers that are potentially used as a stepping-stone in
a chain.

The rest of the paper is structured as follows. In Sect. 2 we describe the
related works. Section 3 presents the proposed method. In Sect. 4 we present the
evaluation of the proposed method and Sect. 5 concludes the paper and suggests
ideas for future work.

2 Related Works

Previous works have applied machine learning techniques for analyzing SSH
network traffic. The first class of studies attempted to distinguish regular (non-
tunneled) SSH traffic, such as regular remote interactive logins or secure copying
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activities, from encrypted tunneled SSH traffic across network boundaries. Dusi
et al. [5] presented the “Tunnel Hunter” as an efficient solution based on sta-
tistical classification techniques (Näıve Bayes) that can provide a behavioral
characterization of an application layer protocol to detect tunneling activities.
The legitimate behavior of application protocols is modeled using statistical fea-
tures extracted from the TCP sessions carrying them. During the classification
phase, each session is assigned with an anomaly score. If the anomaly score is
smaller than a given threshold, it is considered as a legitimate session.

Another class of works investigated the use of machine learning in iden-
tifying the protocol transmitted across an SSH tunnel. Alshammari et al. [6]
used two supervised learning algorithms, AdaBoost and RIPPER, for classify-
ing the different services/applications running over the SSH traffic. The fea-
tures used in [6] include Stdev/Mean/Max/Min of packets’ interarrival time,
Stdev/Mean/Max/Min of packets’ length, number of bytes, duration of the
inspected flow and more. The classification task was divided into two phases:
The first phase focused on the identification of SSH traffic in a given traffic log
file. The dataset used in this phase was composed of traffic traces captured on real
networks of four classes (SSH, MAIL, DNS, HTTP). According to the reported
results of the first experiment, the RIPPER algorithm outperforms AdaBoost
in terms of classifying SSH traffic with over 99 % detection rate and an approx-
imate 1 % false positive rate. The second phase concentrated on identifying the
different services/applications running over an SSH session. The dataset used
in this phase was composed of packets of flows of 11 classes (1,000 flows from
each class) including Shell over SSH, SFTP over SSH, Telnet, and FTP. The
results for the second phase showed that the RIPPER algorithm can classify the
different running services with detection rate over 97 % and with false positive
below 0.3 %.

Dusi et al. [7], also used machine learning algorithms, specifically GMM and
SVM, for identifying the application being forwarded inside the SSH tunnel. SSH
sessions are represented using size and direction. Evaluation was conducted using
a training set containing 1,000 flows for each the following protocols: HTTP,
POP3, POP3S and EMULE (representing most common traffic classes: Web,
P2P and mail) and a test set containing more than 500 encrypted flows for
each protocol (including “unknown” protocols over SSH - MSN, HTTPS and
BitTorrent). Results showed that the SVM outperformed the GMM algorithm
while providing an accuracy of over 86 %. The above mentioned studies mainly
focused on classifying the type of encrypted traffic. Since tunneled traffic may be
legitimate, we are interested in identifying cases in which the traffic is tunneled
encrypted to another SSH server with different layer of encryption.

Hellemons et al. [8] focused on detecting malicious SSH traffic. They pre-
sented the SSHCure, a flow-based SSH intrusion detection system. SSHCure
analyzes traffic flows (i.e., sequence of packets) in order to identify three phases
of an attack: the scanning phase, brute-force phase and die-off phase. During the
scanning phase the attacker scans an IP address block in order find hosts that
are running an SSH daemon. In the brute-force phase, the attacker attempts
to login to the detected hosts using a large number of username and password
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combinations. Once the attacker gains access to an SSH server, the die-off phase
begins. This is the actual attack which includes commands being executed by
the attacker on the target host. In order to avoid blocking legitimate traffic, the
SSHCure can detect the die-off phase assuming that the previous phase of the
attack, the brute-force phase, was detected. Hellemons et al. [8] attempted to
identify the phase of attacking an SSH server while we focus on the next step–
maliciously using a compromised SSH server and using it as a stepping stone in
a chain of SSH proxies.

3 Proposed Method

The goal of our research is to link incoming tunneled streams with outgoing
streams of the same traffic. Finding such correlations between encrypted incom-
ing and outgoing streams indicates that the SSH server is used to forward a
tunnel and is acting as a proxy in a chain. The assumption is that some similar-
ity of properties is being preserved between the incoming encrypted traffic and
outgoing encrypted traffic of an SSH server (e.g., time between packets).

We propose and evaluate two methods: a machine learning approach and an
attribute ranking approach. In the machine learning approach we generate for
each incoming session, a profile, and match it with the most similar outgoing
(encrypted) session. In the second approach, we rank the attributes of each ses-
sion and match incoming and outgoing encrypted sessions based on the ordering
of the attributes.

3.1 Extracted Attributes

Each incoming/outgoing session is represented by a chronologically ordered
instance. Each instance was generated by aggregating a predefined amount of
packets (in our experiment we used 10 consecutive packets) and computing a
set of contextual, network-based attributes proposed by Alshammari and Zincir-
Heywood [6]. The list of features is presented in Table 1.

3.2 Machine Learning-Based Approach

In the machine learning approach we used two anomaly detection approaches. In
the first approach we applied the Ensemble of Feature Chains (EFC) anomaly
detection algorithm [9] with an underlying REPTree classifier. First, a model
was generated for each incoming session. The correlation process was performed
as follows: Given a test set containing the instances of an outgoing session,
each anomaly detection model (representing the behavior of a specific incoming
session) was applied to the test set. The incoming session is labeled as correlated
with the outgoing session with the lowest average anomaly score.

In the second approach the feature vectors of incoming session instances were
considered as a cluster, and a centroid was computed and used for representing
the session. The centroid was generated by computing the average of each feature
over all the instances of the incoming session.
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Table 1. Computed set of features.

Feature Name Description

active time avg The average active time period in the instance

active time max The maximal active time period in the instance

active time min The minimal active time period in the instance

active time stdev The standard deviation of the active time period in
the instance

idle time avg The average idle time period in the instance

idle time max The maximal idle time period in the instance

idle time min The minimal idle time period in the instance

idle time stdev The standard deviation of the idle time period in the
instance

inter arrival time avg The average of inter-arrival times of the packets

inter arrival time max The maximal inter-arrival time of the packets

inter arrival time min The minimal inter-arrival time of the packets

inter arrival time stdev The standard deviation of inter-arrival times of the
packets

packet length avg The average length of packets in the instance

In order to correlate incoming and outgoing sessions we computed the dis-
tance of each incoming session centroid from the instances of an outgoing session.
An outgoing session with the closest instances is likely to be correlated with the
incoming session, while “closeness” is determined according to some distance
function. In our experiments we evaluated using Euclidean distance and Cosine
similarity. An incoming session was determined to be correlated to the outgoing
session with the highest number of closest instances according to the selected
distance matric.

3.3 Matching Attributes Approach

We hypothesize that the order of the incoming sessions, when sorted by the
average value of a given feature, should be preserved also for the outgoing sessions
(the average value is computed for all the instances of an incoming session).
Based on this assumption, we proposed the following method which assigns a
similarity score for pairs of incoming and outgoing sessions based on their rank
in the sorted lists.

The proposed method is presented in Fig. 3. The input to the algorithm is
the list of features F, a matching factor k, a list of incoming sessions and a list of
outgoing sessions. Incoming and outgoing sessions are represented by its centroid
(i.e., the vector of averaged feature values).

First, we initialize all possible pairs of incoming and outgoing sessions with a
score of 0 (line 1). Then, for each feature f ∈ F , we sort the sessions’ centroids
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(both incoming and outgoing) by the value of the feature f (lines 2-2.2). Given
the ordered lists of incoming and outgoing sessions (according to feature f) we
update the score of each pair using to the CalculateScore function (lines 2.3-
2.3.1.2).

The CalculateScore function uses the indexes of the sessions’ centroids and
the matching factor k. The score of the i− th inSession and j − th outSession is
set according to the following equation:

calculateScore(i, j, k) =

⎧
⎪⎨

⎪⎩

i − j = 0, k

|i − j|<k, k − |i − j|
|i − j| > k, 0

If the indexes of the inSession and outSession are equal, the function assigns
the score k. If the distance is smaller than k, the function scores with the differ-
ence between k and the distance of the indexes. Finally, if the difference is bigger
than k, the function scores with 0. In the example in Fig. 3, the matching factor
k is set to 3 and the centroids are sorted by feature f . The outgoing session that
is located in the same place, respectively in their lists, with the incoming session
is given the maximum score k. The outgoing sessions that are located with the
distance of 1 from the index of incoming sessions are given the score 2, and so
on. When the distance between the indexes is bigger than k, the given score is
0 (Fig. 2).

Fig. 2. Procedure: match by attributes

4 Evaluation

4.1 Evaluation Environment

The proposed method was evaluated using evaluation environment. The evalua-
tion environment allows network traffic transmission (e.g., HTTP) through SSH
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Fig. 3. An example of the scoring technique

tunnel, chaining SSH tunnels, adding noise/background traffic, and simulating
attack traffic.

The traffic generated was tunneled using the SSH protocol and forwarded via
a chain of three stepping stones (SSH servers). The traffic was recorded on every
hop in the chain, and on the client machine as well using Wireshark [10]. Data
was collected using five Linux AMI instances residing in different geographic
locations on the Amazon cloud. The chains were automatically created using
Python scripts running on the client machine.

Each chain established consisted of three servers. While the second and third
servers remain the same (Servers 2 and 3 in Fig. 4), the first server of the chain
is selected each time to be one of the servers 1, 4 and 5. We refer to each chain
as a scenario, which is named after the servers constructing it. For example:
‘scenario 123’ refers to the chain in which its first server is “Server 1”, its second
is “Server 2”, and the last is “Server 3”.

For the evaluation we collected encrypted traffic that passes through the
three SSH servers. Each server in the chain removes one layer of encryption
until the last server in the chain (Server 3) forwards the traffic in plaintext
to the destination. The traffic that was generated for the evaluation included
various protocols and activities, such as downloading files or filling out a form.
Table 2 presents the list of types of protocols and activities, and the number
of sessions generated for each scenario (i.e., chain). There were a total of 807
incoming and outgoing sessions of all protocols.
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Fig. 4. Stepping-stone chains setup on Amazon cloud servers

Table 2. Protocols’ sessions statistics

Type Scenario 123 Scenario 423 Scenario 423

HTTPdownloadFile 15 12 13

HTTPfillForn 19 10 14

HTTPRandomLink 8 16 12

HTTPSclickRandomLink 22 16 18

HTTPSdownloadFileFromDropboxSite 38 20 6

HTTPSenterToGmail 38 36 32

HTTPSfillForm 50 46 46

HTTPSuploadFileToDropboxSite 26 24 34

HTTPuploadFile 8 8 22

HTTPwatchVideo 4 6 4

IMAP 9 8 4

IRC 10 8 10

Plain SSH 4 15 4

POP3 8 8 12

SKYPE 6 4 6

SMTP 16 2 16

TORRENT 6 4 4

XMPP 6 8 6
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4.2 Results

In order to evaluate the proposed method we conducted experiments as described
in the following sections. We tested the correlation only on Server 2 because it
is the only server which had encrypted SSH ingoing sessions and encrypted
SSH outgoing sessions (the other servers had plain text as incoming sessions
or outgoing sessions). In the experiments, the metric selected to evaluate the
algorithm is hit rate which is the percentage of correctly matched sessions (out
of the total number of sessions).

Machine Learning-Based Approach. The machine learning-based approach
yielded a low success rate where the EFC algorithm succeeded to correlate 5 out
of the 807 sessions (i.e., hit rate = 0.62 %) and the centroid (clustering) approach
could not detect any correct match.

In attempting to understand such unsatisfying results, we hypothesized that
the SSH Server manipulation of the traffic (i.e., removing one layer of encryption)
was effecting the ability to profile the session behavior through the extracted
feature and match the profile with the outgoing sessions. This conclusion led to
the proposal of the next approach.

Matching Attributes Approach. In the matching attribute approach we
assume that a similarity of properties was being preserved between the ingoing
encrypted traffic and outgoing encrypted traffic of an SSH server, only for this
approach, we suggested that the order of average value of a given feature (the
average value is computed for all the instances of a session), should be similar
(or preserved) also for the outgoing sessions.

To evaluate the matching attribute approach we defined the following
research questions:

1. What is the minimal, optimal subset of features that maximizes the hit rate?
This is important in order to avoid a lengthy computation time. There are 17
attributes, meaning a 217−1 was a valid combination to score (choosing none
of the attributes was considered invalid).

2. What is the matching factor k which maximizes the hit rate?
3. What is the overall hit rate of the proposed method?

In order to answer the first question we tested all possible combinations of
the feature subset with matching factor k = 8. On the chain of 123 servers the
best hit rate was 6.83 %, for the chain of 423 the best hit rate was 11.55 % and
for the chain of 523 the best hit rate was 8.37 %. The common features over all
the best feature subsets were:

– active time avg
– inter arrival time max
– inter arrival time min
– inter arrival time stdev
– session duration
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To answer the second question, we used the five features (listed above) and
the matching factor k was set to 1, 3, 5, 8, 15, 20, 30 and 50. The highest hit
rate was achieved for k = 16, with hit rates of 4.44 % in chain 123, 9.97 % in
chain 423 and 8.37 % in chain 523.

In order to evaluate the overall performance (hit rate) of the proposed method
we conducted a series of experiments that would show what the average hit
rate was, without dependence of the matching factor nor the features. For each
experiment, the matching factor was between 6 and 44, and the attributes in the
features were both chosen randomly. The experiments were performed 10, 50,
100, 200 and 500 times. The average hit rate was 4.3 %. The results are presented
in Table 3.

Table 3. Experiment 3 results

# iterations/dataset 10 50 100 200 500

123 3.55 % 3.06 % 2.93 % 2.91 % 2.99 %

423 5.34 % 5.86 % 5.89 % 5.71 % 5.61 %

523 4.37 % 4.48 % 4.18 % 4.29 % 4.19 %

Avg. 4.37 % 4.39 % 4.26 % 4.25 % 4.20 % 4.3 %

To conclude, the matching attributes approach showed a better performance
than the machine learning approach and with only a small set of features. The
hit rate was better and although it is still a low hit rate (8.9 % on average) it still
provides an indication that there are correlated sessions, which could indicate
that the server was being used for malicious purposes.

5 Conclusion and Future Work

In this paper, we presented a simple yet efficient method for correlating sessions
of encrypted ingoing and outgoing traffic in an SSH server which could indicate
that the server is used as a proxy in a chain, and thus could be suspected as
being malicious traffic.

In future work the method should be tested on a large-scale network (more
than a few stations) and with normal (legitimate cases) of SSH port forwarding
sessions. In addition, we are planning to evaluate the ability to classify the pro-
tocol or service that is encapsulated in the encrypted SSH session using machine
learning techniques, and use this information in order to improve the correlation
hit-rate.
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Abstract. This paper focuses on the lightweight mutual authentica-
tion protocol for RFID systems proposed in [7]. The randomness of the
non-linear feedback shift register sequences used in the protocol is recon-
sidered, a new technique for generated better such sequences is proposed,
and the security and privacy of the protocol is formally argued.

1 Introduction

An RFID system is typically composed of three elements: an RFID reader (trans-
ceiver), a number of RFID tags (transponders), and a back-end database (or
server). The reader and the back-end database may be viewed as a single entity
as they communicate through a secure channel. However, the communication
between reader and tag is insecure and, therefore, it is subject to eavesdropping.
As a conclusion, the (mutual) authentication between reader and tag becomes
one of the most important problems in this context.

Many authentication protocols for RFID systems have been proposed. They
are usually classified according to the computational power of the tag. If the tag
has strong computational capabilities, then it can implement protocols based
on strong cryptographic primitives [2,3,8,14,18]. Of course, such tags can be
too costly to be adopted in most retailer operations which are envisioned as
major applications of the RFID technology. A large number of authentication
protocols proposed so far are based on hash functions, hash function chains,
pseudo-random functions, and random number generators [1,9,15,16,18,27,32].
A third class of authentication protocols is the class of lightweight and ultra-
lightweight authentication protocols. They only require to perform primitive
operations such as random number generation, arithmetic bit-wise operations,
cyclic redundancy code checksum, or even light hash or pseudo-random functions
[4–6,11,12,18–23,30]. There is a widespread view that the lightweight and ultra-
lightweight authentication protocols will be the best candidate technology for
securing the future low-cost RFID systems.
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Contribution. In [7], a lightweight authentication protocol has been proposed.
The main idea is to use non-linear feedback shift register (NLFSR) sequences
generated by the position digit algebra function (PDAF) [24,25,28,29]. Unfor-
tunately, some of the main properties of the PDAF, as described in [29] are
flawed and, as a consequence, the NLFSR sequences used in [7] might have short
periods. We discuss this weaknesses in this paper and we propose better NLFSR
sequences. Based on these NLFSR sequences we improve the protocol in [7] and,
moreover, we provide formal arguments for its security and privacy.

Paper Organization. The paper is organized into six sections. The next section
discusses two wrong results proposed in [29] regarding the PDAF. The third
section proposes a new technique to generate NLFSR sequences with long periods
by using the PDAF. Our new authentication protocol is discussed in Sect. 4, while
the next sections focuses on its correctness, security, and privacy analysis. We
conclude in the last section.

2 Remarks on the Position Digit Algebra Function

We recall first a few basic concepts used throughout this paper. Z (Zr) stands for
the set of integers (integers modulo r, with r > 0). The addition in Zr, denoted
⊕r, is also called the r-XOR operation. That is, x ⊕r y = x + y mod r. When
r = 2, this is the standard XOR operation, whose notation is simplified to ⊕.

In this paper, r ≥ 2 denotes a number base and Zr is the set of the r-ary
digits. Given n ≥ 1, the elements x ∈ Z

n
r will be written in the form x =

x0 · · · xn−1, where xi is the ith r-ary digit of x, for all 0 ≤ i < n.
The position digit algebra function (PDAF) [24,25,28,29], also called the

combining function [24–26], is the function

PDAF :
⋃

r≥2,n≥1

(Zn
r × Z

n
r ) →

⋃

r≥2,n≥1

Z
n
r

given by
PDAF (x, y)i = xi ⊕r xi⊕nyi

,

for all r ≥ 2, n ≥ 1, x, y ∈ Z
n
r , and 0 ≤ i < n. x is called a value key and y an

offset key. We will further refer to PDAF (x, y) as x[y].
Two r-ary n-digit numbers x, x′ ∈ Z

n
r are called value key equivalent [29],

abbreviated VK-equivalent, if x[y] = x′[y], for some y ∈ Z
n
r . Two r-ary n-

digit numbers y, y′ ∈ Z
n
r are called offset key equivalent [29], abbreviated OK-

equivalent, if x[y] = x[y′], for some x ∈ Z
n
r .

Proposition 1 ([29]). Let x, x′, y, y′ be four r-ary n-digit numbers.

1. If r is even and x′
i = xi + r/2 mod r, for all 0 ≤ i < n, then x and x′ are

VK-equivalent.
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2. The probability of generating at random two VK-equivalent r-ary n-digit num-
bers is

1
(r − 1)n

+ ε

for some negligible small number ε.
3. y and y′ are OK-equivalent if and only if, for all 0 ≤ i < n, one of the

following holds:

– y′
i = yi + jn, for some 1 ≤ j ≤ αi, where αi =

⌊r − 1 − yi

n

⌋
≥ 1;

– y′
i = yi − jn, for some 1 ≤ j ≤ βi, where βi =

⌊yi

n

⌋
≥ 1;

– y′
i = yi.

4. If n < r, then the probability of generating at random two OK-equivalent
r-ary n-digit numbers is

∏n−1
i=0 (αi + βi + 1) − 1

rn

Remark 1. One more property of the PDAF is mentioned in [29], namely that
the probability of generating two OK-equivalent r-ary n-digit numbers is 0 if
n ≥ r.

Unfortunately, this property is false as the following example shows (r = 16,
n = 24, and the numbers are written in hexadecimal):

x = 41CD 69 39AF A8F0 55 86 82F1 67
y = 1C F9F7BC B9 52 5B 22 7C 52 8E 69
y′ = 1C F6F4BC B2 42 5B 2D 7C 56 8E 69

Clearly, y �= y′; however, a simple computation leads to x[y] = x[y′].

Remark 2. It is mentioned [29] that the PDAF can be used to define non-linear
feedback shift-register (NLFSR) sequences with long average period lengths, as
follows:

– choose initially at random two r-ary n-digit numbers x0 and x1;
– define xi+2 = xi[xi+1], for all i ≥ 0.

For such NLFSR sequences, [29] estimates the average period length to (r −1)n.
For instance, if r = 16 and n = 32, the average period length is 4.31 × 1037,
which is large enough for cryptographic purposes. Unfortunately, our computer
tests do not confirm the estimates in [29], as the chart in Fig. 1 shows. We have
used r = 16 and n = 32. On average, the first 188 elements in the sequence
are all pairwise distinct, but then they repeat themselves quite heavily. The test
was repeated 105 times and the chart in Fig. 1 illustrates the average number of
repetitions.

The above idea was used in [7] to generate three NLFSR sequences, as follows:

– choose at random three r-ary n-digit numbers c0, c1, and c2;
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Fig. 1. Repetitions in the sequence xi+2 = xi[xi+1]

– compute new values for c0, c1, and c2 as follows:
• save the old values of these numbers: ck,aux := ck, for all 0 ≤ k ≤ 2;
• compute the new c0 by c0 := c1,aux[c0,aux];
• compute the new c1 by c1 := c0,aux[c1,aux];
• compute the new c2 by c2 := ci,aux[c2,aux], where i is randomly chosen from

{0, 1}.

The three sequences thus generated are α, consisting of c0’s, β, consisting of
c1’s, and γ, consisting of c2’s. Unfortunately, as these sequences are based on
the same idea discussed above, they have quite short periods as the chart in
Fig. 2 shows (the test was repeated 105 times with n = r = 16 and the chart in
Fig. 2 illustrates the average number of repetitions).

Fig. 2. Repetitions in the sequences α, β, and γ

3 OK-equivalence and PDAF-based NLFSR Sequences

We are interested to know what properties should an r-ary n-digit number x
satisfy such that, given x and x[y] one can uniquely extract y. Proposition 1(4)



216 G.-D. Năstase and F.L. Ţiplea

shows that y might not be unique if n < r, and Remark 1 shows the same for
n ≥ r. However, we have the following result.

Proposition 2. Let x be an r-ary n-digit number. If n = r and x consists of
pairwise distinct r-ary digits, then x[y] = x[y′] if and only if y = y′.

Proof. Assume that n = r and x consists of pairwise distinct r-ary digits. Clearly,
if y = y′ then x[y] = x[y′].

Conversely, the relation x[y] = x[y′] leads to x[y]i = x[y′]i, for all 0 ≤ i < n.
That is,

xi ⊕n xi⊕nyi
= xi ⊕n xi⊕ny′

i

for all 0 ≤ i < n. This equation leads to xi⊕nyi
= xi⊕ny′

i
, for all 0 ≤ i < n. As

x consists of distinct digits, it follows that yi ≡ y′
i mod n, for all 0 ≤ i < n. As

yi and y′
i are n-ary digits, it follows that yi = y′

i, for all 0 ≤ i < n. Therefore,
y = y′. 	

Remark 3. The requirement n = r in Proposition 2 is crucial for the conclusion
of the Proposition. Indeed, take for instance r = 16, n = 8, y0 = 7, y′

0 = 15, and
yi = y′

i, for all 1 ≤ i < 8. Then,

x[y]0 = x0 ⊕16 x0⊕8y0 = x0 ⊕16 x7

and
x[y′]0 = x0 ⊕16 x0⊕8y′

0
= x0 ⊕16 x0⊕815 = x0 ⊕16 x7

which show that x[y] = x[y′], although y �= y′.

In what follows assume that MakeUnique is a deterministic algorithm that,
on an input x ∈ Z

n
n, outputs an n-ary n-digit number x∗ whose digits are pairwise

distinct. There are many ways to design such an algorithm. For our purposes is
not important to know how such an algorithm works; that is, we may assume
that MakeUnique is publicly known.

Define now five sequences of n-ary n-digit numbers as follows:

– choose at random five r-ary n-digit numbers c0, c1, c2, c3, and c4;
– compute new values for c0, c1, c2, c3, and c4 as follows:

• save the old values of these numbers: ck,aux := ck, for all 0 ≤ k ≤ 4;
• compute the new c0 by c0 := c1,aux[c0,aux] ⊕ c3,aux;
• compute the new c1 by c1 := c0,aux[c1,aux] ⊕ c4,aux;
• compute the new c2 by c2 := ci,aux[c2,aux], where i is randomly chosen from

{0, 1};
• compute the new c3 by c3 := Rev(c3,aux)[c4,aux];
• compute the new c4 by c4 := Rev(c4,aux),
where Rev is the reverse function which mirrors the number.

Consider now the same sequences α, β, and γ as defined in Remark 2. We have
computed 25 · 106 elements in each of these sequences, and no repetitions were
encountered (the test was repeated 105 times). Therefore, these sequences have
much better behavior than those in Remark 2.
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Consider now γ∗ as being the sequence obtained from γ by replacing each
element x of it by x∗ (x∗ = MakeUnique(x)). In this case, our tests (for n =
r = 16) show sporadic repetitions in γ∗ after the first 2.5 · 105 elements (see the
chart in Fig. 3).

Fig. 3. Repetitions in the sequence γ∗

If c4 is computed in a different way at every 2.5 · 105th iteration, namely

– c4 := a[c4,aux], where a is randomly chosen,

then γ∗ has a similar behavior to α, β, and γ.
These sequences will be used in the next section in order to propose a new

RFID authentication protocol.

4 The Protocol

The RFID authentication protocol we propose in this section is only slightly
changed from the original one in [7]. However, the changes are vital for its secu-
rity. The protocol is based on the sequences described in the above section. As
the only operations performed by tags are base r additions for some radix r, the
protocol can be regarded as a lightweight or even a ultra-lightweight protocol.

The protocol includes three parties: a reader R, a tag T , and a back-end
server S equipped with a database which maintains information about tags. We
assume that the channel between the reader and the back-end server is secure,
while the one between the reader and the tag is insecure.

The initialization phase, which is to be described below, sets the basic ele-
ments needed for the protocol to be run.

Protocol initialization

1. An integer r ≥ 2 and a hash function are chosen and made public;
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2. A private key KR of some symmetric cryptosystem (such as AES) is chosen
uniformly at random and securely distributed to the reader R;

3. For each tag T , the following steps are performed:
(a) sets n = r;
(b) seven values KST , c0, c1, c2, c3, c4, LT ∈ Z

n
r are chosen independent and

uniformly at random;
(c) the value P (T ) = h({ID(T )}KR

‖ KST ) is computed (“‖” denotes con-
catenation);

(d) P (T ),KST , c0, c1, c2, c3, c4, LT are stored in the tag T ;
(e) P (T ), {ID(T )}KR

,KST , c0, c1, c3, c4, LT, c4,prev are stored in the server’s
data base, where c4,prev = c4.

A pictorial view on the distribution of these parameters is provided in Fig. 4,
and a short description of them is in order. The server cannot see the identities
of the tags it manages because the they are encrypted by the key KR known
only to the reader. The random numbers c0, c1, c2, c3, c4 act as seeds for four
sequences α, β, γ, and γ∗, as in the previous section. The parameter LT (last
transaction) is used to count the numbers of queries executed on the tag by
readers, and to synchronize the database and the tag. The parameter c4.prev

stores the previous value of c4 and it is used by the server when the tag was not
able to authenticate it at the previous query. More precisely, the search in the
database uses first c4. If the search fails for all database records, then it starts
again with c4,prev. If it succeeds now, the server learns that during the previous
query the tag was not able to authenticate it.

Server Reader T ag

1. a

2. ci[P (T ) ⊕ a], c2 ⊕ KST , c∗
2[LT ]3. ci[P (T ) ⊕ a], c2 ⊕ KST , c∗

2[LT ], a

4. cj [c2][P (T ) ⊕ a], {ID(T )}KR 5. cj [c2][P (T ) ⊕ a]

KR

P (T )

KST

c0

c1

c2

c3

c4

LT

P (T ), {ID(T )}KR ,KST , c0, c1, c3, c4, LT, c4,prev

· · ·

· · ·

Data Base

Fig. 4. The protocol

Protocol description

1. R −→ T : The reader R chooses uniformly at random a ∈ Z
n
r and sends it

to the tag T ;
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2. T −→ R : The tag T chooses uniformly at random a bit i ∈ {0, 1}, and then
computes and sends

ci[P (T ) ⊕ a], c2 ⊕ KST , c∗
2[LT ]

to the reader R. Finally, the tag increments LT by 1 and updates c0, c1, c2,
c3, and c4 as follows:
– ck,aux := ck, for all 0 ≤ k ≤ 4;
– c0 := c1,aux[c0,aux] ⊕ c3,aux;
– c1 := c0,aux[c1,aux] ⊕ c4,aux;
– c2 := cj,aux[c2,aux], where j is the binary complement of i;
– c3 := Rev(c3,aux)[c4,aux];
– c4 := Rev(c4,aux);

3. R −→ S : The reader forwards the received message together with the
random a to the server;

4. S −→ R : On receipt of the reader’s message which we will further denote as
“x, y, z, a”, the server searches the database to find the record row associated
to the tag. For each record row

P (T ′), {ID(T ′)}KR
,KST ′ , c′

0, c
′
1, c

′
3, c

′
4, LT ′, c′

4,prev

of the data base, the server does the following:
(a) extracts c2 from y (by using KST ′) and then obtains LT from z;
(b) if LT < LT ′ then it goes to the next record row;
(c) if LT ≥ LT ′ then

i. temporarily updates c′
0, c

′
1, c

′
3, c

′
4, by (LT − LT ′) times, in the same

way as the tag did. Let c′′
0 , c′′

1 , c′′
3 , c′′

4 be the results;
ii. computes c′′

0 [P (T ′)⊕a] and c′′
1 [P (T ′)⊕a], and checks if either of them

equals x. If false, then it proceeds to the next record row; otherwise,
the server draws the conclusion that this is the record row corre-
sponding to the tag which was queried by the reader (more specifi-
cally, T ′ = T ); it also obtains the bit i. Afterwards, it replaces LT ′

by LT , (c′
0, c

′
1, c

′
3, c

′
4) by (c′′

0 , c′′
1 , c′′

3 , c′′
4), and sends

c′
j [c2][P (T ′) ⊕ a], {ID(T ′)}KR

to the reader (j is the binary complement of i). Then, the update
process is repeated one more time for c′

0, c
′
1, c

′
3, c

′
4, and LT ′ is incre-

mented by one. Finally, the servers does:
– c′

4,prev := c′
4;

– c′
4 := a[c′

4];
(d) if all record rows were searched and the property from the item above

failed for all of them, then it restarts the search, this time using c′
4 prev

instead of c′
4. If the process fails again then the server signals an error

message to the reader;
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5. R −→ T : When the reader receives the message, it extracts the tag’s
identity from {ID(T ′)}KR

, and forwards

cj [c2][P (T ′) ⊕ a]

to the tag;
6. On receipt of the reader’s message, the tag computes c2[P (T ) ⊕ a] by using

its own memory-stored a, c2, and P (T ), and compares it with the received
message (recall that the tag updated c2 after answering to the reader). If
they are not equal, an error message is signaled; otherwise, the authentication
succeeds and the tag performs the same update of c4 by a as the server did
(without storing the previous c4).

The first five steps of the protocol described above are pictorially represented
in Fig. 4.

Remark 4. A few remarks about the protocol correctness and efficiency are in
order.
1. The extraction of a unique LT from c∗

2[LT ], when c2 is known (step (4) in
the protocol description), is based on Proposition 2 (remark that n = r).

2. The term c2 ⊕ KST in the steps (2) and (3) hides c2 which is needed to
compute LT at the server side (from c∗

2[LT ]). If c2 is random, then c2 ⊕KST

is random too (although KST is fixed for the tag).
3. The only operations performed by the tag are base r additions and compar-

isons, which can efficiently be implemented in the tag’s logic.

Remark 5. Our protocol was designed for the case n = r. It can be modified
to work for the case “n > r” in several variants. For instance, the algorithm
MakeUnique could be changed such that, on the input c2 it outputs c∗

2 ∈ Z
r
r

with pairwise distinct r-ary digits. Moreover, in such a case, LT should be in Z
r
r.

Another option to deal with the case “n > r” would be to choose n = �r
for some � > 1. Then, decompose c2 and LT into � pieces of size r, namely
c1 = c21 · · · c2� and LT = LT1 · · · LT� respectively, and compute c∗

2[LT ] by

c∗
2[LT ] = c∗

21[LT1] · · · c∗
2�[LT�],

where c∗
2i = MakeUnique(c2i), for all i.

Remark 6. The protocol we proposed can be run even if the tag did not authen-
ticate the server (reader) at the previous session. However, it is customary to
assume that some upper bound t on the number of successive incomplete sessions
is necessary to impose. This upper bound is also necessary to avoid the overflow
of the parameter LT . If the upper bound t is exceeded, the tag may signal an
error.

5 Correctness, Security, and Privacy Analysis of the
Protocol

The analysis of a RFID protocol usually takes into consideration three aspects:
correctness (no false negatives), security (no false positives), and privacy
[10,17,31].
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Correctness. Following [10], a RFID authentication protocol is correct if, exe-
cuting it honestly, the identification of a legitimate tag only fails with negligible
probability.

A simple inspection of the protocol, in the view of Remark 4, shows that
false negatives are not possible (in the absence of an adversary).

Security is the property that an illegitimate tag is not authenticated by the
server, except for a negligible probability.

Assume that a tag T (legitimate or illegitimate) answers to some query a by

ci[P (T ) ⊕ a′], c2 ⊕ KST , c∗
2[LT ]

and the reader sends

ci[P (T ) ⊕ a′], c2 ⊕ KST , c∗
2[LT ], a

to the server.
According to the protocol description, the server looks in its database and,

for each tag T ′ checks the equality

c′
b[P (T ′) ⊕ a] = ci[P (T ) ⊕ a′]

for some bit b (see the step 4(c) in the protocol description). If this equality
holds, the server identifies the tag T as being the tag T ′ (although T ′ might not
be T , but the server does not know this).

As ci[P (T ) ⊕ a′] and P (T ′) ⊕ a are fixed given values for the server, the
problem is to estimate the probability of c′

b to fulfill the equality above. More
generally, given two random numbers y, v ∈ Z

n
r , we are interested in estimating

the probability of finding x such that x[y] = v. Or, in other words, we are
interested to estimate the maximum number of solutions in x to the equation
x[y] = v. This equation is equivalent to the system

⎧
⎨

⎩

x1 ⊕r x1⊕ry1 = v1
· · ·
xn ⊕r xn⊕ryn

= vn

(1)

The first remark is that if i ⊕r yi = j and j ⊕r yj = i, for distinct indexes i
and j, then:

1. if vi �≡ vj mod r, then the system (1) does not have solutions;
2. if vi ≡ vj mod r, then any solution to xi leads to at most one solution to xj

(and vice versa).

(if i and j are as above, we will say that the ith and jth equations are paired).
Our second remark is that a variable xi for one of the system’s equations is

substituted into another equation, the resulting equation still has at most two
variables.

These two remarks leads to the conclusion that the worst case regarding the
number of solutions to the system (1) is that when the variables are paired two
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by two as above. In such a case the maximum number of solutions to the system
is upper bounded by rn/2 (the variables are paired two by two and for each pair,
a solution to one of the pair components leads to at most a solution to the other
pair component).

Therefore, the probability of getting a solution to the equation x[y] = v is at
most

rn/2

rn
=

1
rn/2

For large n, this is negligible.

Privacy. The protocol we have proposed is lightweight and, therefore, it is
improper to use a privacy model as the one in [10,17] which is suitable for
protocols based on pseudo-random functions or random oracles. However, we
have identified a protocol in [17] which can be considered as a generalization of
our protocol and allows us to reason about the privacy of our protocol.

In [17], the following protocol is considered, based on two random functions
F : {0, 1}α+k+1 → {0, 1}k and G : {0, 1}k → {0, 1}k

1. the initial state of the tag is set to a random k-bit string K0;
2. the protocol rules are:

(a) the reader picks a random α-bit string a and sends it to the tag;
(b) the tag in state K sends the value c = F (0,K, a), stores d′ = F (1,K, a)

in its temporary memory, and refreshes its state K to G(K);
(c) the reader searches its database for a pair (T ′,K ′) with the property

c = F (0, G(K ′)i, a) for some i < t. If it finds such a pair then it sends
d = F (1, G(K ′), a) to the tag, and updates K ′ by G(K ′)i;

(d) the tag checks d = d′.

It is shown in [17] that this protocol is narrow-destructive private in the random
oracle model, if k and t are polynomially bounded (in the security parameter)
and 2−k is negligible (the reader is referred to [17,31] for privacy models for
RFID protocols; the limited space does not allow us to recall them here).

Our protocol follows the same line as the protocol above. The internal state
of the tag is the vector

P (T ),KST , c0, c1, c2, c3, c4, LT

The function F is the one which gives the answer to the reader’s query (see step
2 in the protocol), while G is the function used by the tag and the server to
update the internal state. The tag performs one more update of its state when
it authenticates the reader but this does not make much difference between our
protocol and the one described above. We have not included an upper bound
on the number of incomplete sessions, but this can be added as mentioned in
Remark 6. Therefore, we may think that our protocol is an instance of the pro-
tocol described above and, as a conclusion, it may be thought of as a lightweight
candidate to the narrow-destructive private class of mutual authentication RFID
protocols.
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The protocol does not achieve forward security. If a tag is corrupted and
the adversary gets the internal state of the tag, then the adversary can imper-
sonate the tag if it does not miss any complete session (a session is complete
if the tag authenticates the server and, in such a case, it randomizes its state
by the nonce received from the reader). However, if the adversary misses some
complete session, then he can impersonate the tag with negligible probability.
This property is common to many other authentication protocols such as [13,15].
In fact, reaching forward security without public key cryptography is an open
problem, already mentioned in [31].

6 Conclusions

We have revisited the lightweight authentication protocol for RFID systems in
[7] and we have proposed an improved one. The improvement takes mainly into
consideration the randomnesses of the NLFSR sequences used in the protocol.
Moreover, formal analysis of its security is provided. As with respect to privacy, it
is argued that the protocol can be viewed as an instance of a narrow-destructive
private protocol proposed in [17].
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7. Ţiplea, F.L.: A lightweight authentication protocol for RFID. In: Kotulski, Z.,
Ksiopolski, B., Mazur, K. (eds.) CSS 2014. CCIS, vol. 448, pp. 110–121. Springer,
Heidelberg (2014)

8. Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong authentication for RFID
systems using the AES algorithm. In: Joye, M., Quisquater, J.-J. (eds.) CHES
2004. LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

9. Henrici, D., Muller, P.: Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In: Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and Communications
Workshops, pp. 149–153, March 2004
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Abstract. Together with the increase in size of Internet technologies
and coped with the need for instant communication between people,
unsolicited messages or spam messages represent a serious problem for
most system administrators and users. This problem permits the usage
of various technologies and techniques in order to solve it and filter vol-
umes of thousands of email messages per day.

In this article we present a new solution for spam detection and classi-
fication, based on a Cloud supported infrastructure of a service oriented
architecture. Our implementation is able to scan and classify a large
stream of emails. We also prove that the architecture is scalable across
multiple datacenter nodes and it is able to handle a continuous flux of
emails, keeping users configuration a top priority.

Keywords: Spam analysis · Cloud computing · Bayesian filtering

1 Introduction

Currently any mail server for a large enough domain is constantly bombarded
with spam messages. This hinders the daily activities and congests the traffic
on the server and in relatively short time it can lead to a total paralysis of its
stored information and thus will not be accessible.

The current paper has the goal of filtering spam messages so that they cannot
reach the users Inbox. In this way the server will become more manageable and
less congested. Our application is intended to be used in a distributed environ-
ment, which has the advantage of high computing power and thus being able to
offer a good performance management system for all mail in high traffic condi-
tions. It will continuously communicate with a mail server for a large domain,
will interact with it, will process incoming messages and save the results into
a local database. Users can also interact with the system and provide feedback
constantly, depending on the settings they want. The system should take account
of these settings in order to increase its efficiency and maintain the number of
false alerts to the minimum.

The spammer the one who sends spam - needs a list of email addresses to
send messages. These can be obtained legally or illegally. It is considered that an
address is obtained illegally when the spammer uses various search engines to find
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 226–241, 2015.
DOI: 10.1007/978-3-319-27179-8 16
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valid addresses on the Internet, or when using special programs. The spammer
uses different combinations of the previous two to get possible addresses.

What is the purpose of searching these email addresses? The spammer, who
may be a normal or legal person, sends emails advertising, commercial or porno-
graphic content to these addresses in their own interest, in return for money or
for the benefit of another person, to determine the recipient to purchase various
products or services.

In this way, before the adoption of anti-spam laws, there were accounted by
different Internet Service Providers (ISPs) around 30 billion spam messages a
day [1]. Detecting spam is still a very difficult challenge, due to the dynamic
nature of spam. Over time, any anti-spam filter is ineffective in blocking the new
techniques of sending spam.

In this paper we propose a novel method of spam detection focused on scal-
ability through a service oriented architecture. The paper is structured as fol-
lows. Section 2 of this paper presents other research related to the contributions
of this paper and general antispam detection methods. Section 3 describes the
Bayes Filters and the other algorithms used in this paper. The main contribu-
tion of this paper is presented in Sect. 4 which contains the description of the
antispam architecture and the used cloud infrastructure. Section 5 presents test
cases and experimental results used to validate this model and demonstrate its
performance while Sect. 6 presents the conclusions and outlines the areas for
further research.

2 Related Work

To distinguish a legitimate email from a spam message is a hard job. It is very
difficult to realize if a message is authentic or not just by looking at the sender
and subject fields. But why does it matter if a message is authentic or not?
Because if the message is authentic, we can contact the company involved and
ask to be removed from the email lists, or if they didn’t want, to add their address
in order to filter our emails so that messages will arrive in the spam folder and not
in the inbox, and even complain to consumer protection. However, if spammers
hide the origin of the message, or forge the sender address by sending the email
through a compromised server, filters used to classify the message header will
also be inefficient and will not be able to forward a complaint against them.
So in order to effectively combat this kind of messages, a series of filters must
be created in order to detect such messages using other criteria than the email
address. To determine whether a message is authentic, the message header must
be verified. Although many parts of the header can be forged, the field that
shows the last mail server that the message went through to reach the recipient
is genuine.

On the market are a lot of software solutions for fighting spam messages such
as SpamAssassin, SpamCop or K9. There are also numerous research projects
focusing on this subject. In the article [2] the authors underline in their study
about spam, the need for a reliable solution to fight this threat. They also used a
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Bayesian filtering algorithm, but implemented on a single monolithic machine in
a naive way. They also focus on their research on measuring different performance
parameters of such algorithms and comparisons with keyword pattern spam
analysis tools.

Another related publication is [3] which studies the impact to the enterprise
levels of such anti-spam solutions in large ESP’s (Email Service Providers). They
analyze different approaches to scanning email that arrive in each user inbox.
One is pushing the scan to the user’s computer and the other one is implementing
centralized spam filtering. Their paper describes the issues encountered if a large-
scale spam filtering implementation on a fixed budget is needed.

Kang et al. [4] also focus on statistical based anti-spam analysis. They also
studied the problem of scaling to large enterprise-level of mail servers. Their
implementation and observations reflect the problem of using a dictionary based
look-ups and how these problems can be avoided in order to increase the total
speed of the system. Their solution was to use an approximation method, but
in our opinion, although they obtained a good speed-up for the look-up process,
the data loss in this method can be vital to understanding the spam messages,
especially the new, not previously analyzed before.

Beow et al. talk in [5] about the opportunity of using Cloud computing tech-
nologies in spam filtering. They present how using regular software applications
designed for regular networks are a bad idea in Cloud and they present a high
level view of a Cloud based anti-spam framework. Salah et al. take this matter
to a different level in their work [6] and present a Cloud based security overlay
network that can provide antispam services.

In this direction, we cannot exclude also in-cloud antispam solutions available
on the market, such as those from Symantec Hosted Service [7] and Zscaler [8],
combine multiple commercial AV and antispam engines, resulting in a multi lay-
ered defense to protect the client from email-based attacks. They detect embed-
ded suspicious URLs in emails by the “following link” capability and block Web
link emails when necessary.

On the hardware devices area, we find solution providers such as Fortinet with
the FortiGuard Antispam Service [9], which uses both a sender IP reputation
database and a spam signature database, along with sophisticated spam filtering
tools on Fortinet appliances and agents, to detect and block a wide range of spam
messages. An alternative is offered by Check Point with their Anti-Spam and
Email Security Software Blade [10], which uses the same basic pattern matching
as FortiGuard, and provides highly accurate anti-spam coverage and defends
organizations from a wide variety of virus and malware threats delivered within
email.

Our approach is a hybrid one, using spam signatures for known spam mes-
sages and using automatic checking with probabilities if a certain message is not
found in the signature database. We explain next how the internal mechanism
of our approach work.
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3 Bayes Filters for Spam Detection

The filtering system used in the application is based on Bayesian filters. Over
time it has been proven that they have a very good detection rate and can adapt
easily to different mechanisms invented by spammers. The implemented filter is
based on a calculation of conditional probabilities, depending on the frequency
of occurrence of a word, both in a spam context and in a non-spam one.

Bayes theorem represents a first mean to determine the probability of an
event Ai (the component of a partition), in the situation in which you know that
it’s appearance is influenced by the happening of another independent event B.
The formula of this theorem is:

Pr(Ai|B) =
Pr(B|Ai) × Pr(Ai)

k∑
j=1

Pr(B|Aj) × Pr(Aj)

The Ai events are independent and the a priori probabilities Pr(B|Ai) are
estimated [11]. Furthermore, these factors cannot remain static, meaning that at
certain time intervals the a priori probability must be updated. This computation
can be made in several modes, but in the scope of email filtering we will use
block mode processing, with some fixed points: the a priori probability is equal
to the greatest a posteriori probability, the a priori probability is equal to the a
posteriori probabilities average and the a priori probability can be equal to the
a posteriori probability.

When new email arrives, it is divided into tokens, and the most “interesting”
words are used to calculate the probability of being spam. By interesting for a
token, we understand the difference between the mean probability of being spam
and a neutral average of 0.5. In this calculation we take into account the existing
values in the database. If a token is found, it is given a probability of 0.4 because
we assume, for beginning, that it is a non-spam word. We consider a mail spam
if we get a higher probability than 0.9.

For greater efficiency, we used several schemas in order to split into tokens,
based on content analysis. First, there is a basic tokenizer, which extracts the
tokens in a raw way. It understands HTML elements, as well as Base64 encoding
type. It’s permitted the use of a small set of characters ‘.’, ‘,’ , ‘+’, ‘−’, within
a token, the rest being seen as separator characters. Tokens made only from
numbers are ignored, while tokens formed from numbers and punctuation are
not ignored, as they can hold valuable information, such as IP addresses. For
example, the token “23” is ignored, while the token containing the IP address
“23.81.154.68” is not. To keep a database as compact and as small in size and
to keep the number of false positives to a minimum, we converted each letter of
each token to lower case.

Also, we did not take into account tokens that have length 1 or 2, because
we noticed that they load unnecessarily the database and effective analysis and
tokens formed exclusively of characters ‘.’, ‘,’ , ‘+’, ‘−’ were ignored.

One of the most important decisions taken in order to improve the perfor-
mance of the filter was ignoring HTML tags. We decided to do this, because after
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a series of tests, we concluded that the HTML tags do not offer any valuable
information in our decision taking process. Firstly, the filter should generate as
few false positives as possible. After analyzing the data used in the database, we
noticed that tokens which were more likely to be considered as spam, were HTML
tags and attributes. After implementing this solution we observed a reduction in
false positives. The list of the most interesting terms has become more accurate,
because now contains conclusive tokens, unlike HTML tags and attributes, hex
color codes, etc.

In the intermediate tests we noticed, when analyzing whether an email is
or not spam, a predilection for the “select” requests in the database. To make
a more rapid implementation, but also to improve performance of the module
connected to the database, we optimized the database by putting indexes on
columns frequently required, and by increasing cache space of the Sql Server.
Also, whenever we could, we’ve used a local word cache, implemented as a hash
tables for extra speed. The word cache was used only in the first instance, in
the process of raw email processing. After this point, the database was used
exclusively in order not to affect the overall stored information.

4 Service Based Antispam Architecture

The usage of Cloud Computing technologies in spam analysis in order to better
filter email messages is not a new idea. Nevertheless, in our paper we will use
our custom Cloud framework, that is fully described in [12], on top of which we
built our software modules that are responsible with spam filtering. In Fig. 1 we
can see that the top view of a cloud computing framework contains two main
layers: a virtualization layer and a management layer.

Fig. 1. Cloud Computing framework as base for spam analysis
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In the Virtualization layer we find the actual platforms/servers that host the
virtual machines and have virtualization enabled hardware. In the Management
layer we find the modules responsible for enabling the entire operations specific
to the cloud. These modules are, in order: Security (responsible with all security
concerns related to the cloud system - intrusion detection and alarming module),
Validation engine (receives requests to add new jobs to be processed), Virtual
jobs (creates an abstraction between the data requested by the user and the
payload that must be delivered to the cloud system), Scheduler (schedules the
jobs to the virtualization layer), Hypervisor interface (acts like a translation
layer that is specific to a virtualization software vendor), Load distribution
(responsible with horizontal and vertical scaling of the requests received from the
scheduler), Internal cloud API (intended as a link between the virtualization
layer and the cloud system), External cloud API (offers a way to the user for
interacting with the system).

Our Cloud Computing architecture makes use of the concept of leases, in
which we can specify the amount of time the job must run, or specify between
what hours in a day it is running. To achieve our goal, we created a lease that
during the day, when the datacenter is mostly occupied by the users, uses a
minimum number of nodes and during the night, when the datacenter is almost
entirely free, it automatically scales up to use a maximum number of nodes. In
order to store the emails we have also used several nodes from the datacenter so
that the entire data will be accessible from the machine RAM.

The application contains five modules which work together, as can be seen in
Fig. 2, each having its well defined role. These components are: DataBase Layer,
Dummy Email, Message filter, Message analyzer and Processed data backup.

The logic of the application is as follows. First, the module responsible with
interaction with the database must be started so that the whole system will have
the possibility to connect to the underneath database using this supplementary
layer. This is an essential component, and in order for it to work, a database
server must be installed on the host machine. Secondly, the registration of the
dummy email to different spam generating sites is necessary so that the sys-
tem will benefit from the accelerated learning. For this module to work, a mail
system must be provided on the host machine. The message filtering module is
an important component for the system because it can filter each user’s mes-
sage and separate the spam from the non-spam. An email server must exist on
the host machine so that this module should work efficiently. The next step is
to start the analysis system. This is the critical module from the application
because it is responsible for taking the decision that an email message is spam
or not, according to its content. It can only work if there is an email system on
the host machine. The entire process can be viewed also in Fig. 3.

For testing we used the Apache James mail server. We chose this solution
because it is a mature software project, used in industry. Communication with
it is made through “Matchers” or “Mailets”. They allow users to write their own
handlers for emails, such as storing in a database, filtering them, etc. In addition,
it is written entirely in Java and fits perfectly on the project specifications.
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Fig. 2. Components of the antispam solution

Fig. 3. Process workflow
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The current software solution was designed as a combined architecture model.
This has benefits both from the advantages of “client-server” model, but also a
“distributed-computing” model, because the system is composed from a series
of software components running on different machines that communicate over a
network to provide a response to user requests as soon as possible. The server
component consists from the module that interacts with the database and it
provides “services” via a Web Service and also in the module that analyzes
messages.

4.1 DataBase Layer

As depicted in Fig. 4, this module doesn’t have a graphical user interface by
itself, the module being implemented as a Web Service that control actions such
as CRUD (Create-Read-Update-Delete) to the database. These operations will
be performed by the server component of the module. It receives requests from
online connected customers. The module is a client-server component responsible
for connecting to and communicating via the database. We chose this way for
maintaining transparency between the application and database used, and to
increase the security offered [13–15].

Fig. 4. DataBase layer structure

The database itself contains the following tables: header ht (keeps the
hash for the message headers), body ht (keeps the hash for the message body.
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Fig. 5. Database schema

This data, along with the header is used for the filtering process), atachment ht
(keeps the hash for the message attachments), email ht (keeps the hash for the
entire message) and spam word (contains a list of keywords labeled as spam).
The database schema can be viewed in detail in Fig. 5.

4.2 Dummy Email

The purpose of this module is to populate the associated database with spam
content to aid the detection process. They will be indexed using a hash algo-
rithm. This module has a graphical user interface itself, which is implemented
as a daemon to “listen” changes made by the email application, more exactly
receiving emails on a dummy address, indexing and introducing the data into
the database used by the entire system. The module will only insert values into
the database. Inserts are made through an appropriate Web Service.

This module also connects the application with the location in which spam
messages are received through the dummy email address, using a specific dae-
mon. It’s also notable the presence of a layer who’s functionality is to load the
necessary settings from an XML file, and the existence of two clients responsible
with the connection to the Web services and sites offered by the DataBase Layer
and the messages analyzer.

In order for the dummy email module to work properly, an email account
must be created in advance. The account will be used solely for receiving and fil-
tering spam. It is the duty of the application manager to register on different sites
that generate spam (such as those with pornographic content, gambling, etc.)
to improve the overall performance of the entire system. In addition, this action
may be made on multiple email addresses, or even on the actual workstation.
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In the latter case, after populating the database with hash values, those can be
injected into the database in use.

When receiving an email in this account, the daemon that listens and which
is responsible for that task is alerted and begins the process of scanning and
analysis. For the entire message a hash is calculated. This hash is then compared
with the values existing in the database. If it is found, it means that the message
has already been received before and will not proceed further through the process
of analysis. If it is not found, it will proceed to the next step, the analysis in
which the calculated hash is stored in the database. In addition, the message is
sent to the message analyzer which splits the message into a header, body and
an attachment and saves all relevant data in the database. It uses the fact that
the message received and going to be analyzed is 100 % spam.

4.3 Message Filter

The purpose of this module is to achieve a first filtering of emails from the
incoming mail server. It uses the saved data from the previous module. It doesn’t
have a graphical user interface by itself, and it is implemented as a daemon which
“listens” changes made by the email application, namely the receipt of emails
on an address associated with each profile, their analysis and filtering.

The filtering module also monitors certain areas on the disk where a user
receives a message. When this event has occurred, it starts the process of analysis.
First, it calculates the hash of the whole message and compares it with the
existing database. If found, the message is automatically classified as spam and
a particular action is performed. If it’s not found, the message is sent to the
analyzer. It will respond with a probability that indicate if the message is spam,
and according to the application settings and user settings for each filter module,
a particular action is performed or determines that the message is legit.

This step takes into account user intervention. If they decide that they
received a particular message which is spam or offensive in any way, this module
is responsible for capturing these requests. The message will be automatically
sent to the message analyzer and analysis result is stored in the database.

4.4 Message Analyzer

The purpose of this module is to analyze incoming messages and depending on
the operation required, to achieve effective filtering or analysis of the message.
This module can be seen in a graphical way in Fig. 6.

The module also performs the calculation to determine if an incoming mes-
sage is spam or not. To this end, according to data received and from the existing
data in the database, a probability is computed based on it. It can be noticed
the existence of a Web Service responsible for receiving messages. They may
come from the module or from the dummy email filtering module. In the case
of message filtering, this message can be chosen by the user, in which case the
analysis result will be stored in the database, along with other user settings.
This Web Service has triple use, depending on how it is invoked.
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Fig. 6. Structure of the message analyzer

The sub modules SV1, SV2 and SV3 represent the services responsible with
scanning and analysis of a certain part from the message. SV1 will be responsible
with the analysis of the header of an email. According to the addresses found,
it is determined whether they are or aren’t authentic. SV2 will be responsible
for analyzing the actual content of the message. Before analysis, the message’s
hash is compared with the existing ones in the spam database. If we detect
a Base64 encoding, the message is automatically decoded and then analyzed.
If the analyzer finds keywords that can be spam (such as words with obscene
meaning, use of pure colors, the replacement of A with 4, etc.), the result is stored
in the corresponding database table, respectively spam words and body ht. In
case of body ht, the content will be encoded in Base64 and then stored in the
database. Saving words will be made in clear-text. SV3 will be responsible for
analysis of email attachments, if any. Before analysis, the attachment’s hash is
compared with the existing ones in the spam database. If it’s not found there,
it moves to the actual scanning. If we detect a Base64 encoding, the attachment
is automatically decoded and then analyzed. If a multi-level archive is detected,
it will be analyzed layer by layer. Detecting a banned file (e.g. executable files
with multiple extension), leads to cataloging as spam and the analysis results
are saved in the corresponding database table.

Each of the three sub modules is easily scalable. Each SV is composed from
a “MASTER” processes and several “SLAVE” processes. Master process will
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achieve load-balancing among all slave processes to prevent network congestion
or the use of only one process while others sit idle.

To this end, we used a technology similar to JavaSpaces, called SqlSpaces
[16–18]. The solution chosen is an implementation of the concept of “Tuple
Space”, but provides as a back-end a database. The idea is to have a client-
server communication performed exclusively by tuples. Customers can write and
read tuples from the server without even knowing about the existence of other
clients. Tuples search mechanism is performed by making templates that are
then interpreted as wildcards.

In parallel with the analysis of spam, the SqlSpaces server is started. It
creates a common area for all customers who will participate in the analysis.
When the analyzer receives a message to process, regardless of operating mode,
it splits the message in the three component parts and from each creates a “job”
that is injected into the common area. Workers of a certain kind, which are
also connected to the area, listen for specific jobs and when it appears, they are
processed and the result is also put on the common area. The analyzer detects
the presence of responses for injected jobs, downloads and processes them.

4.5 Processed Data Backup

The purpose of this module is to create a backup of the database at predefined
intervals, chosen by the user. It does not use temporary data structures, nor
assume an important role in consumption of memory resources, because the
module uses the existing CRON utility in the host operating system.

5 Experimental Results

We tested our proposed architecture in order to prove the scalability and per-
formance claims. Our focus was on demonstrating the fact that this is a usable
architecture and that a service oriented approach is possible for spam filtering.

In the intermediate tests we noticed, when analyzing whether an email is
or not spam, a predilection for the select requests in the database. To make
a more rapid implementation, but also to improve performance of the module
connected to the database, we optimized the database by putting indexes on
columns frequently required, and by increasing cache space of the Sql Server.
Also, whenever we could, we’ve used a local cache, implemented as a hash tables
for extra speed.

When implementing this architecture we replaced calls to String.split() with
the methods of the StringTokenizer class. Although it offers little flexibility,
we preferred this implementation because it offered a faster response time. As
illustrated in Fig. 7, calls for StringTokenizer runs three times faster than calls
for String.split(), because the method split() receives as a parameter a regular
expression that requires a recompilation whenever it is used. You can use a
variant of this method, in which the regular expression is compiled only once,
but without significant increases in speed.
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Fig. 7. Matching speed for random traffic data

Another part that we optimized was the distributions of workers for every
component. The initial tests were made on five computer systems, using three
workers for the message analyzer, one for each part of the email. But in this case
we saw that the rest of the modules were running hard and slow because they
were split across the two remaining systems. After taking the system configura-
tion to different states, we found one in which our system performed the best.
At this stage, the system was fully functional and optimized. Tests followed the
response time and the accuracy of the results.

The first testing phase was made on a single computer, having a single phys-
ical CPU and 4 GB of RAM. In the first step we analyzed a single email and got
a response time of 4 s. In the second step, we analyzed batches of 100 emails,
each of about 100 relevant tokens, in a single thread and got a response time of
220 s, which means an average of 2.2 s for a single email, on a single CPU core.

The second testing phase consisted in running using our custom Cloud
Computing framework [12]. At each of the computing nodes we implemented
container based virtualization [19]. In Fig. 8, you can see our servers testbed
configuration. We have used 12 server racks, split as follows: two server racks
were used to install the modules of ReC2S, and the remaining nine racks were
used as worker nodes each having a single module running. Each of the ten
worker nodes racks contained eight physical servers, each server having a total
of 32 physical cores and 64 GB or RAM. The racks used for the management
frameworks contained only two physical servers, each having a total of 8 physical
cores and 16 GB of RAM. The entire topology was interconnected using Gigabit
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Fig. 8. Testbed configuration

connectivity. The phase was conducted by analyzing batches of 100 emails, using
a total of 32 threads. To reduce the influence of the centralized database in the
overall running time, we implemented the database across all eight servers, using
the “MySQL Cluster” software. We obtained a response time of about 8 s, which
means an average of 0.08 s for a single email.

We also compared our implementation to the others. The main difference
is that they tested in a single-way environment. We didn’t found any mention
in they work to the other modules, resembling the ones we have implemented.
Also, we observed that mainly, they are focusing only on the Bayesian filtering
algorithms and don’t mention details about the system as a whole. We found
in our experiments that taking care only of the filtering system is not the best
way, because all the modules have a great overall impact. Because our system is
specially designed and implemented in such way that it can scale to very large
number of systems, thus being a fully distributed platform, it is hard to compare
our results, which are presented in a batch manner, in a mail by mail approach,
with the ones that others give us.

6 Conclusions and Future Work

Spam messages are and will be a great problem for the existing email servers.
A large quantity of them can block any email server in a short time. Thus, an
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email anti-spam filtering system must be used to solve this problem. Because
in a big network, with a large number of users, the spam emails are received in
huge quantities, a different approach must be taken.

Our focus on this paper was on presenting a novel design and implementation
of a complete anti-spam system, according to the initial specifications and claims.
We described in detail the architecture of an efficient system, designed within the
scope of a full service oriented architecture, running in a distributed environment
that has the advantage of high computing power. The actual filtering algorithms
are based on Bayesian filters, which are known to be efficient.

Following tests have proven that we created a powerful system able to cope
with a high flow of emails, even under heavy traffic. We therefore achieved the
goal of providing scalability to our anti-spam architecture. Moreover, due to the
replicated service approach we also provide a degree of fault tolerance.

In the future we intend to continue working on this system and improve
it by using multiple interconnected database servers. This shall give a better
performance, but also a high redundancy. Another direction for future research
would be to improve the configuration and deployment capability by making it
able to interface with a large number of current email servers.

Acknowledgment. This paper has been financially supported within the project
entitled “Horizon 2020 - Doctoral and Postdoctoral Studies: Promoting the National
interest through Excellence, Competitiveness and Responsibility in the Field of
Romanian Fundamental and Applied Scientific Research”, contract number POS-
DRU/159/1.5/S/140106. This project is co-financed by European Social Fund through
the Sectoral Operational Programme for Human Resources Development 2007–2013.
Investing in people!

References

1. Spam Messages Report. http://www.symantec.com/content/en/us/enterprise/
other resources/b-istr main report v19 21291018.en-us.pdf

2. Androutsopoulos, I., Koutsias, J., Chandrinos, K.V., Spyropoulos, C.D.: An exper-
imental comparison of naive bayesian and keyword-based anti-spam filtering with
personal e-mail messages. In: Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval, Athens,
Greece (2000)

3. Kolcz, A., Bond, M., Sargent, J.: The challenges of service-side personalized spam
filtering: scalability and beyond. In: Proceedings of the 1st International Conference
on Scalable Information Systems, Hong Kong (2006)

4. Li, K., Zhong, Z.: Fast statistical spam filter by approximate classifications. In:
Proceedings of the Joint International Conference on Measurement and Modeling
of Computer Systems, Saint Malo, France (2006)

5. Aun, M.T.B., Goi, B.-M., Kim, V.T.H.: Cloud enabled spam filtering services:
challenges and opportunities. In: Sustainable Utilization and Development in Engi-
neering and Technology (2011)

6. Salah, K., Calero, J.M.A., Zeadally, S., Al-Mulla, S., Alzaabi, M.: Using cloud
computing to implement a security overlay network. IEEE Secur. Priv. 11(1), 44–
53 (2013)

http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf
http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_v19_21291018.en-us.pdf


Spam Filtering Using Automated Classifying Services 241

7. Check Point Anti-Spam & Email Security Software Blade, Symantec Hosted Ser-
vice. https://hostedendpoint.spn.com

8. Zscaler Web Security Service. http://www.zscaler.com/product-cloud-security/
web-security.php

9. FortiGuard Antispam Service. http://www.fortinet.com/support/fortiguard
services/antispam.html

10. http://www.checkpoint.com/products/anti-spam-email-security-software-blade/
11. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cam-

bridge (2012). ISBN: 0262018020, 9780262018029
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Abstract. In modern information and communication systems,
information security is becoming an increasingly important issue due
to the threats from all different types of attacks. The network security
is becoming more important as the number of data being exchanged
on the Internet increases. Therefore, the confidentiality and integrity of
data requires protection against unauthorized access and use. This real-
ity is the base for the study conducted in this paper regarding the field of
Digital Steganography, in order to provide solutions for confidential com-
munication between computers and mobile devices. The authors propose
a new solution in order to provide confidentiality and secrecy of digital
data that is transferred through todays available platforms for communi-
cation. The study is based on the SmartSteg application and consists of
a package of steganographic and cryptographic applications that works
both ways on Android and Windows platform.

Keywords: LSB steganography · Cryptography · Android · Windows ·
SmartSteg

1 Introduction

Steganography techniques are used since antiquity for covert communication.
Despite this, digital steganography is an emerging area and has a growing trend.
Today, along with cryptography, the two techniques are the main methods used
to ensure digital information security [2].

The main goal of steganography is to communicate securely in a completely
undetectable manner and to avoid drawing suspicion to the transmission of hid-
den data. Steganography hides the existence of the information in different car-
rier files (often in media files), protecting it against detection and removal. An
important feature of a stegosystem is to make the carrier file difficult to be
distinguished from an ordinary file [7].

Cryptography is used to ensure especially confidentiality and integrity, by
making the information indecipherable to an eyedropper.
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The open environment of nowadays available networks for communication
is full of threats and risks. In order to enhance the security of digital informa-
tion, specialists propose, as a method, the combination of the above mentioned
techniques.

This solution has been developed, implemented, studied, researched and has
generated complex dedicated algorithms in personal computers environment.

Regarding mobile devices, few and light research were made in this field and
the threats for digital information security grew more severe. Mobile devices
support complex applications, however they neglect the security of the data
they use, thus favoring potential attackers, giving them the opportunity to alter
sensitive data [2].

One of the major issues that occur in this environment is the fact that almost
all platforms have dedicated application. This is in contradiction with one of the
characteristic of digital information, namely availability. This fact is sustained by
some aspects regarding: several physical differences between the devices; every
type of device has its own type of operating system. Every type of device has
different performances regarding calculations speed.

In this paper we present a reliable and robust solution that ensures confi-
dential and private digital data communications through Internet and Mobile
Networks. Based on SmartSteg application developed for Android, we propose a
solution to provide confidential communication between computers and mobile
devices.

The goals that we want to achieve in the proposed study are:

– to design an algorithm that allows embedding a lager quantity of digital data
in a digital image;

– to design an algorithm that consumes minimal time and hardware resources;
– to minimize the steganalysis detection issues.

2 Related Works

The steganographic applications available on the market and in the literature,
designed for smart phones that work with Android Operating System, have
major limitations regarding:

– their functionality on different devices;
– the capacity of embedded secret information;
– the imperceptibility of the embedded data;
– the computational complexity, that refers to the computational cost of embed-

ding and extraction;
– the lack of a correspondent application that works on computers;
– the lack of information about the performance of steganographic methods:

capacity, security, imperceptibility, computational complexity [6].

We consider that the main disadvantage of the steganographic applications
that are designed for Android smart phones is the fact that they embed only a
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small quantity of data (short sequence of characters). This excludes the possibil-
ity to secretly traffic images or large documents [1]. Here we discuss some of the
steganographic applications available today on mobile platforms, applications
that we have tested:

– T.F.M. White and J.E. Martina developed an application that uses steganog-
raphy to hide a short text message in an audio message. The user can share
that message [3]. The same idea is retrived in StegDroid Alpha (2011).

– The following applications embed only short text messages in images:
Stegosaurus (2015), Stegano IMessAGE, Pocket Stego, Stegos, Kryfto, Photo
Hidden Data, Steganography Image, Steganography Master, EstegApp (2014),
Steganografia, Secret Letter, StegDroid Alpha VipSecret, PixelKnot: Hid-
den Messages, PtBox FREE, SecureMessage, Stegan (2013), Da Vinci Secret
Image, Stego Message, StegoLite, Camopic (2012): embeds short text mes-
sages;

– MoBiSiS, MobiStego (2013) are using Multimedia Messaging Service (MMS)
to send the image that covers the secret message. This means that the size of
the cover image with the secret message embedded must be less than 30 KB
[3]: embeds small quantity of data;

– Steganography (by Jan Meznik, apr.2014) makes the resulted file shorter than
the original one; this means that a user can embed a smaller quantity of data.
The same idea is used by Secret Tidings (2014); the resulted image with
message embedded is corrupted, the user may see changes: small sequence of
characters and image files; does not permit multiple saving; does not maintain
the original type of the support image; modifies the length of the original file;

– Steganography Application (by Preethi Natarajanl, dec.2012) does not work.
It returns a blank screen with “unfortunately steganography application has
stopped” on it. Also StegDroid Alpha (2013), Crypsis (2012): does not work.

These are the main reasons that led us to develop a new version of SmartSteg,
which is able to encode and embed files up to 2 megabytes (MB), using minimal
time resources and still be resistant to steganalysis attacks.

3 Proposed Solution and Implementation

In the literature [3], steganographic methods are divided into three main cate-
gories: pure steganography, secret key steganography, and public key steganog-
raphy.

In our proposed project we choose to work with secret key steganography
algorithm. The security of the stego-system relies on the stego-key which consists
of secret information exchanged between the sender and the intended receiver
using other secure channel. Only the sender and the intended receiver should be
able to reveal the secret data.

At this stage of the project, SmartSteg provides confidential communication
between computers that run on Windows Operating System and devices that
run on Android.
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In our research we focused on the embedding algorithm, cryptographic algo-
rithm, quantity of secret information that can be hidden without distinguishable
changes in the cover file and obtain minimal processing time.

The proposed algorithm has reached a very good processing speed. For exam-
ple a cover file of 16 MB can embed approximately 2 MB of secret information in
less than 1 s. The processing and the necessary changes occur in this short time,
which is significant considering that it is working on different Android version
on Smartphone.

3.1 Design of the Application

SmartSteg is designed to contain three main modules: cryptographic algorithm,
random function, embedding process.

Figures 1 and 2 shows the design chosen for the two versions of SmartSteg.

Fig. 1. Design for the application that runs Android

The visual design of SmartSteg is minimal; it is not a complex one because
this was not a target for our study. We used few defined objects from JAVA
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Fig. 2. Design for the application that runs Windows

and we built every control that was needed. This decision was taken to avoid
conflicts in accessing the original cover files on different Android versions.

3.2 Cryptographic Solution

SmartSteg uses secret key steganography combined with secret key cryptography
to ensure confidential and private communication.

We use a stream cipher algorithm to encode the secret information. The
result of this step is an array of scrambled bits of secret information. The stream
cipher we used is a proprietary one. Stream ciphers are characterized by small
size, high speed execution and minimal consumption of computing resources.
Given these characteristics, stream ciphers can optimize applications running on
mobile devices [8].

Regarding the cryptographic module of SmartSteg, the proposed solution
works with symmetric key. The modularity of the application allows the sym-
metric key solution to be changed with a public key algorithm.

3.3 Embedding Solution

Figure 3 shows details about the embedding process. In this process we use an
improved LSB (least significant bit) technique combined with a random selection
function.
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Fig. 3. SmartSteg scheme of the embedding process

LSB technique, known as noise insertion, uses raster image as a cover, mainly
bitmap format files (BMP).

SmartSteg algorithm proposes an improved solution of LSB technique that
may embed 0, 1 or 2 bits of secret information in a byte of the cover file using a
random function. The random function defines the number of bits of a byte from
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the cover file that are selected to carry the secret information. The embedding
rate is approximately 1/8 like in conventional LSB technique.

The embedding process continues until the reach of the end of the cover file
even if the end of the secret file is reached. This happens to conceal the length
of the secret file to a possible attacker.

To extract the embedded information the receiver must enter the correct
key and the application will start the revealing process. After the secret file is
reassembled, it is saved on the device.

In our study we used BMP files as a cover because of the next characteristics:

– this type of files are proper for LSB technique;
– BMP files are raster image of MB dimension, this favoring the quantity of

secret information that may be embedded. The proposed algorithm can embed
a quantity of secret information approximately that equals to an eight part of
the size of the cover file;

– BMP files allows to maintain the original cover file type, dimension, pixel
distribution and in the same time to conceal a reasonable quantity of data
with minimal time and hardware resources and a reasonable level of distortion
of the cover file.

3.4 Results

Figure 4 presents an example of image that we used in tests with SmartSteg,
both on Android and Windows platforms. The resulted image with secret data
embedded has the following characteristics:

– keeps the type, dimension and pixel distribution of the original cover image;
– the resulted image from SmartSteg on Android is the same with the resulted

image from SmartSteg on Windows.

Original cover image                                 Resulted image 

Fig. 4. Original cover image, resulted image, BMP-type, 2.14 MB, 1000× 750 pixel
distribution



Contributions to Steganographic Techniques on Mobile Devices 249

Figure 5 is the binary representation of Fig. 4. One can see the following:

– the header of original cover image equals with the header of resulted image.
This means that the dimension and the type of the files are the same;

– in red there are the different bytes between the original cover image and the
resulted image;

– no relevant differences in terms of pixel values between the original cover
image and the resulted image after processing with SmartSteg.

Original cover image                                 Resulted image

Fig. 5. Binary differences between original cover image and resulted image

4 Steganalysis

Steganalysis is the science that deals with the detection of steganography, the
estimation of the length of secret data and with its extraction [5].
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In the literature there is not a widespread procedure to evaluate the perfor-
mance of steganographic systems. It is proposed to measure the characteristics
of the compared systems and of the resulted image with information embedded.
The emphasis is on the quantity of secret information which may be embedded
and on its difficulty to be detected.

The indicators recommended by researchers to determine the quality of digi-
tal images are PSNR (peak signal-to-noise ratio) and MSE (mean squared error)
[9]. MSE is the difference between the two images, more precise it represents the
statistical difference between the pixels value of the original image and the pixel
values of the resulted image with secret information embedded.

One issue raised by this indicator is that it depends on the resolution of the
images. In the case of BMP images used in this study, with a distribution of
24 bits/pixel, a value of MSE that equals to 100 signifies a quite imperceptible
distortion. Thus, a high value of MSE means perceptible distortion and a low
value of MSE means imperceptible distortion [9].

PSNR represents the similarity between the two images, more specifically the
ratio of the maximum possible value of a pixel and the intensity of distortion to
the image. PSNR is measured in decibels. A high value of PSNR means small
differences, unnoticeable, between the original image and the processed image
[9]. Most steganographic systems have PSNR values between 30 db and 40 db
[10], which is a good value.

– mean square error

MSE =
1

M ×N

∑M

i=1

∑N

j=1
(pij − qij)

2 (1)

where: M ×N pixel distribution, p original image, q image with hidden data;
– peak signal-to-noise ratio

PSNR = 10 × log10
C2

max

MSE
(2)

where: C2
max - maximum pixel value in the image;

– correlation

r =

∑M
i=1

∑N
j=1(pij − p̄)(qij − q̄)

√
(
∑M

i=1

∑N
j=1(pij − p̄)2) × (

∑M
i=1

∑N
j=1(qij − q̄)2)

(3)

where: p̄ and q̄ are the average pixel value in the original image and image
with embedded data.

The PSNR obtained values are over 50 % (test value: 53.52 dB), a very good
value compared to other steganographic applications [10].

Fridrich et al. [4,7,11] introduces RS Steganalysis as a powerful method of
LSB steganographic detection. Beside this technique, Benchmark test is also a
well known technique in this field. According to these techniques, the relevant
parameters used to measure the differences between original cover image and the
resulted image with embedded data is given by the formulas (1), (2) and (3), [7].

In our project the recorded values of the color percentages (RGB) obtained
after running RS Analysis are between 70 % and 90 % which are good values [7].
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Table 1. SmartSteg properties

Properties SmartSteg Android application

Compatibility

with different devices and
operating systems

Compatible with any Android
and Windows mobile devices

Most of them work only on
Android smart phones

Capacity

of embedded information Large variety of files Short text messages

Availability

of performance
information

Providing performance
information

No performance information

Changes

to the original cover
image: dimension or
type

Keeps the original cover image:
dimension and type

Most of them change the
original cover image:
dimension or type

5 Conclusions and Future Work

SmartSteg is a new solution in steganography technique on mobile devices. The
project proposed in this paper has major advantages like:

– low degradation of cover image associated with large volume of hidden data
and large variety of hidden files;

– it is based on secret key cryptographic algorithm and on the random selection
of the bits with secret information, fact that ensures high level of security;

– high processing speed;
– works on Windows and on all versions of Android.

SmartSteg has no limitation raised by other steganographic application on
Android, like shown in Table 1.

The modularity of the application allows the symmetric key solution to be
changed with a public key algorithm. This is a future issue for us.

In our future research we intend to develop an improved version of SmartSteg
that can use PNG files as cover image for steganography, due to the popularity
of this type of image. Also, we intend to develop a version of SmartSteg that
runs under IOS operating systems.
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Abstract. Trivium is a hardware oriented synchronous stream cipher
designed by Christophe De Cannière and Bart Preneel [7]. Trivium is
one of the eSTREAM final portfolio cipher. Regardless of the security
of the cipher in theory, implementation attacks like Differential Power
Analysis (DPA) attack [10,12,18] and Fault attack [9] on Trivium were
observed. DPA attack of Trivium exploits the re-synchronization phase
of the algorithm to reveal the key.

In this paper, we analyse various implementation techniques as coun-
termeasures for Trivium stream cipher against DPA attack. First, we
present Threshold Implementation (TI) of Trivium using random mask
value. Second, we propose algorithm level changes (Modified Trivium)
to counteract the attack, which introduces negligible resource overhead
to the implementation. Third, random accelerator concept is introduced
for parallel architecture along with combined techniques of TI and algo-
rithm level changes to further increase the attack complexity. Finally,
we present comparative study on the performance of Trivium for the
proposed techniques.

Keywords: Trivium · Differential power analysis attack · Threshold
implementation and algorithm level countermeasure

1 Introduction

Stream ciphers are efficient in hardware that can be realised in constrained
area and consumes less power. They are very useful for streaming encryption,
for example, live streaming video or audio encryption. Also found useful in
RFID, Bluetooth, NFC and LTE applications. To promote the design of effi-
cient and compact stream ciphers, eSTREAM [1] project was initiated in 2004.
The eSTREAM final portfolio was announced in 2008, where seven stream
ciphers (Four for fast encryption in software and three for efficient implemen-
tation in hardware) were selected. Trivium is designed to be more efficient in
hardware. Vulnerability of Trivium against Differential Power Analysis (DPA)
attack were proposed in [10,18]. A detailed study on correlation power analysis
attack on Trivium was presented in [12]. Though the attack is explored in the
c© Springer International Publishing Switzerland 2015
I. Bica et al. (Eds.): SECITC 2015, LNCS 9522, pp. 253–266, 2015.
DOI: 10.1007/978-3-319-27179-8 18
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re-synchronisation stage of the cipher, the attack is trivial if the attacker has
access and control over the device. Therefore, it is important to implement the
cipher with proper countermeasure against DPA attack. Countermeasure is a
process of breaking the correlation between secret information processed and its
leakage characteristics. At the same time, the countermeasure should not burden
the resource requirement of the cipher. Hence, it’s a need of the hour to have an
efficient countermeasure with affordable area, speed and cost overheads.

Related Work: Countermeasures can be implemented at various levels of design
flow, such as algorithm level, architecture level and cell level. To protect crypto-
graphic device from DPA attack, countermeasures at all possible levels have been
suggested. Algorithmic level countermeasures like random delay [6], insertion of
dummy instructions that executes at random time [5] were proposed to resist
implementations from side-channel attack. In [8], the authors cryptanalysed the
random delay implementation of AES in an Atmel microcontroller using pattern
recognition and Hidden Markov Model techniques. Architecture level counter-
measures focus on varying the power pattern from the original power pattern.
This can be done by the change of clock frequency [2], by noise insertion and
instruction stream randomization [11]. Though these countermeasures succeed
in changing the algorithm’s power consumption pattern, it is quite possible for
an attacker to retrieve the original pattern [14] with little more effort. Hiding
intermediate values at cell level, such as sense-amplifier based logic (SABL) [19],
simple or wave dynamic differential logic (SDDL/WDDL) [20] have been pub-
lished. In SABL the input logic structure is designed to balance all internal
node capacitances for constant power consumption under all input conditions
and for every clock cycle. WDDL achieves an important reduction in the power
variation, but their drawbacks are the increased area, computation time and
power consumption. Most of the countermeasures have been implemented and
evaluated in block ciphers.

Few papers were published on countermeasure for stream ciphers. In [4], it is
suggested to maximize the switching activity in each cycle. Though the pattern of
power consumption changes considerably, increased switching activity consumes
more power and area. Mansouri et al. further optimised the approach in [13],
which reduces the power overhead by averaging the switching activity. Incor-
poration of suppression circuit to suppress information leakage through power
supply pin was proposed in [16]. In [3], Sense Amplifier Based Logic (SABL)
is used to decrease the power variations. But these approaches increase overall
power consumption and area.

In this work we propose secure implementation techniques against DPA
attack of Trivium stream cipher.

Our Contributions: First, we present threshold implementation of Trivium
using random mask values generated using Pseudo Random Number Genera-
tor (PRNG) or Physically Unclonable Function (PUF) circuit and discuss the
resistivity against DPA attack. Second, we share our observation in the initializa-
tion phase of algorithm structure and describe algorithm level changes as mod-
ified Trivium to increase the complexity of the attack with negligible overhead.
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Third, we explore random acceleration of parallel architecture (Algorithm exe-
cutes n bits at a time) based on the process variation of the silicon chip using
PUF to vary the power consumption of Trivium. In addition, we explore the
incorporation of combined countermeasures (TI and algorithm) in parallel archi-
tecture to increase the complexity of the attack further. Finally, we compare the
performance of the proposed implementation techniques.

Outline of This Paper: In Sect. 2, we give a brief description about structure
of Trivium hardware implementation and power analysis attack on Trivium.
Countermeasure is detailed in the Sect. 3. Section 3.1 describes threshold imple-
mentation of Trivium stream cipher and its DPA resistance. In Sect. 3.2, we
discuss algorithm level changes (modified Trivium) in initialization phase of the
cipher and architecture level countermeasure. Performance of these countermea-
sures are compared in Sect. 4 and the paper is concluded in Sect. 5.

2 Hardware Implementation of Trivium

The implementation of Trivium [7] consists of a 288-bit shift register and few
boolean operations (AND and XOR). We use VHDL (Very High Speed Inte-
grated Circuit Hardware Description Language) for implementation, SASEBO
(xc2vp7-fg456-5) evaluation board for experiment and power measurement and
MATLAB tool for statistical analysis.

. . .IV1 . . . . . . . . .. . . . . . . . . . . . . . .IV2 IV69 0 00IV80 0

. . . . . . . . . . . .. . . . . . . . . . . . . . . 1 1100 00

. . .K1 . . . . . .K7 K57 K60 0

IV78

1

1 84

111

1

Zi

K12 K80 . . .55K 65K . . .. . .

80 81 93

K13 0

Fig. 1. Hardware implementation of Trivium Initialization Phase

Figure 1 describes hardware implementation of initialization phase of Triv-
ium. It Initializes the key, Initialisation Vector (IV) and constant values that are
loaded on single 288-bit register. First 80 bits are loaded with key, then 13 bits of
zeroes, followed by 80 bits of IV and again zero for all bits, except the last three
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bits, which are set to one. During initialization phase, boolean operations are
performed on values of certain position of the register, then the entire register
is shifted left by one position, and output of boolean operations are updated
on relevant position in the register. The initialization phase is iterated for 1152
rounds, after that the key streams are generated for encryption.

2.1 Power Consumption of Trivium

Dynamic power consumption is the main source of leakage information for CMOS
circuits. Trivium implementation consists of Feedback Shift Register (FSR) and
logic gates. FSR has flip-flops connected in series with a feedback on the first
flip-flop. Consequently, flip-flops changing its state from 0 to 1 or 1 to 0 leaks
dynamic power consumption.

Hamming distance power model suits very well to describe the power con-
sumption of the hardware implementation of Trivium. Hence, power consump-
tion of Trivium for each clock cycle is modeled as follows:

P i = Σ288
j=1(s

i
j ⊕ si−1

j ),

where P i denotes the power consumption of ith iteration and Sj denotes the
state value of jth position.

2.2 Attack on Trivium Hardware Implementation

Trivium is vulnerable to DPA attack, because the initial loading of register has
consecutive zero values. These values are used along with the key bits to update
the register. In some instances, the key bit alone is updated with the IV value.
By observing the power consumption, the attacker can easily guess the key value
with the known IV value. In Trivium, 94th position of register is the target of
the attack, where the known IV bit is updated with the unknown key bit.

In round 1, all values of the register from position 94 to 288 are known and
K66 being the only exception as shown in the equation.

(S1, S2, .., S93) ← (K69,K1, ..,K79)
(S94, S95, ., S177) ← ((K66 ⊕ IV78), IV1, ..)
(S178, S179, .., S288) ← (IV69, 0, 0, .., 0)

Calculating two hypothetical power consumption using both possible values
K66 = 0 and K66 = 1, the correct key bit can be determined using correlation
power analysis. Using the same method, all the key bits can be retrieved as
presented in [12,18].
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3 Countermeasures

In this paper we present the countermeasure for Trivium stream cipher at algo-
rithm and architecture level. We propose two algorithm level countermeasures,
threshold implementation (TI) and changes at algorithm level to have modi-
fied Trivium. Though TI is not a new concept, we attempted to implement
and analyse the performance of TI in Trivium stream cipher. In algorithm level
changes, modifications are done in algorithm itself to minimize the leakage of the
secret information by increasing other bits dependency. Architecture level coun-
termeasure hides the leakage of information, by implementing the algorithm in
parallel. The success rate of countermeasure is based on how much valid informa-
tion leakage has been reduced on the particular intermediate state. We analyse
the possibility of information leakage with these countermeasure techniques and
show that the level of security has been increased. Hence, the attack complexity
is also increased.

3.1 Threshold Implementation

The Threshold Implementation (TI) countermeasure was proposed by Nikova
et al., in [15]. Threshold implementation is the process of decomposing the
secret information function as shares of function, process the shared functions
separately and then reconstruct to form a original information. The following
three properties need to be fulfilled for secret sharing implementation such as
Correctness, Non-completeness and Uniformity.

– Correctness: The sum of the output shares gives the desired output.

– Non-completeness: Every function is independent of at least one share of each
of the input variables.

– Uniformity: If the input shares are uniformly distributed, the output shares
must also be uniformly distributed.

By these properties even if the adversary does not know the value of one share,
it will be difficult to reconstruct the information.

DPA attack of Trivium in Sect. 2.2, exploits the non-linear function AND
operation to mount DPA attack. Therefore, the main focus of TI of Trivium is
sharing the nonlinear function (AND) that satisfies the properties of TI. In [15],
multiplication of two input variable is elaborated as Z = N(x, y) = xy with the
number of shares n = 3 and defined the 3 functions fi as follows:

Z1 = f1(X2;X3;Y 2;Y 3) = X2Y 2 ⊕ X2Y 3 ⊕ X3Y 2
Z2 = f2(X1;X3;Y 1;Y 3) = X3Y 3 ⊕ X1Y 3 ⊕ X3Y 1
Z3 = f3(X1;X2;Y 1;Y 2) = X1Y 1 ⊕ X1Y 2 ⊕ X2Y 1
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Fig. 2. Shared functions

Above share functions are used in Trivium with random bits M1 and M2 as
depicted in the Fig. 2.

Here M1 and M2 are 288-bit random masks that can be generated using
any Pseudo Random Number Generator (PRNG) or secure Physically Unclon-
able Function (PUF) circuit along with implementation of Trivium. For each
re-synchronisation phase of Trivium, random mask will be generated for shared
functions. The implementation details for shared circuit of Trivium is described
in the Algorithm 1. After 1152 iterations of Trivium, specific bits from three
registers S1, S2 and S3 are xored to generate key stream output (Zi).

Security Analysis. Threshold implementation of Trivium maintains three 288-
bit register, namely S1, S2 and S3. Attack on any one of the register (share) could
not reveal the secret information. However attack on all the shares becomes
tedious and obviously increase the attack complexity. The point of attack is
same as normal Trivium implementation, that is 94th bit position. Therefore,
Hamming Distance has to be taken at the 94th bit position of initial state of
three registers S1, S2 and S3 with the present state of three registers S1, S2
and S3. The dependency of key bits after the first iteration is derived in the
following equations. It is assumed that the random masking bits are unknown
to the attacker.

Initial state:

t1 = S194 ⊕ S294 ⊕ S394

= (IV1 ⊕ M194) ⊕ (M194 ⊕ M294) ⊕ M294

After first iteration :

t2 = S194 ⊕ S294 ⊕ S394

S194 = S266 ⊕ S293 ⊕ S2171 ⊕ (S291 & S292) ⊕ (S291 & S392)
⊕ (S391 & S292)

S294 = S366 ⊕ S393 ⊕ S3171 ⊕ (S391 & S392) ⊕ (S391 & S192)
⊕ (S191 & S392)
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Algorithm 1. Threshold Implementation of Trivium Initialisation Phase
Input: 80-bit Key, 80-bit IV, 288-bit M1 and M2 random mask
/* Initialization */
/* Key, IV are masked with random bits S1 */
(S11, S12, . . . , S193) ← (K1, . . . , K80, 0, . . . , 0) ⊕ (M11, M12, . . . , M193)
(S194, S95, . . . , S1177) ← (IV1, . . . , IV80, 0, . . . , 0) ⊕ (M194, M195, . . . , M1177)
(S1178, S1179, . . . , S1288) ← (0, . . . , 0, 1, 1, 1) ⊕ (M1178, M1179, . . . , M1288)

/* Random bits M1, M2 are Xored */
(S21, S22, . . . , S2288) ← (M11, M12, . . . , M1288) ⊕ (M21, M22, . . . , M2288)

/* Random bits M2 */
(S31, S32, . . . , S3288) ← (M21, M22, . . . , M2288)

− − − − − − − − − − − − − − − − − − − − − − − − − − − − − − −
for i = 1 to 1152 do

/* Share function 1 */
t21 ← (S266 ⊕ S293 ⊕ S2171 ⊕ (S291 & S292) ⊕ (S291 & S392) ⊕ (S391 & S292))
t22 ← (S2162 ⊕ S2177 ⊕ S2264⊕ (S2175 & S2176) ⊕ (S2175 & S3176)⊕

(S3175 & S2176))
t23 ← (S2243 ⊕ S2288 ⊕ S269⊕ (S2286 & S2287) ⊕ (S2286 & S3287)⊕

(S3286 & S2287));

(S11, S12, . . . , S193) ← (t23, S11, . . . , S192)
(S194, S195, . . . , S1177) ← (t21, S194, . . . , S1176)
(S1178, S1179, . . . , S1288) ← (t22, S1178, . . . , S1287)

/* Share function 2 */
t31 ← (S366 ⊕ S393 ⊕ S3171 ⊕ (S391 & S392) ⊕ (S391 & S192) ⊕ (S191 & S392))
t32 ← (S3162 ⊕ S3177 ⊕ S3264⊕ (S3175 & S3176) ⊕ (S3175 & S1176)⊕

(S1175 & S3176))
t33 ← (S3243 ⊕ S3288 ⊕ S369⊕ (S3286 & S3287) ⊕ (S3286 & S1287)⊕

(S1286 & S3287));

(S21, S22, . . . , S293) ← (t33, S21, . . . , S292)
(S294, S295, . . . , S2177) ← (t31, S294, . . . , S2176)
(S2178, S2179, . . . , S2288) ← (t32, S2178, . . . , S2287)

/* Share function 3 */
t11 ← (S166 ⊕ S193 ⊕ S1171 ⊕ (S191 & S192) ⊕ (S191 & S292) ⊕ (S291 & S192))
t12 ← (S1162 ⊕ S1177 ⊕ S1264⊕ (S1175 & S1176) ⊕ (S1175 & S2176)⊕

(S2175 & S1176))
t13 ← (S1243 ⊕ S1288 ⊕ S169⊕ (S1286 & S1287) ⊕ (S1286 & S2287)⊕

(S2286 & S1287));

(S31, S32, . . . , S393) ← (t13, S31, . . . , S392)
(S394, S395, . . . , S3177) ← (t11, S394, . . . , S3176)
(S3178, S3179, . . . , S3288) ← (t12, S3178, . . . , S3287)

end

S394 = S166 ⊕ S193 ⊕ S1171 ⊕ (S191 & S192) ⊕ (S191 & S292)
⊕ (S291 & S192)

Values of S1, S2 and S3 can further be expanded to,

S194 = (M266 ⊕ M166) ⊕ (M293 ⊕ M193) ⊕ (M2171 ⊕ M1171) ⊕
((M291 ⊕ M191) & (M292 ⊕ M192)) ⊕ ((M291 ⊕ M191) & M292) ⊕
(M291 & (M292 ⊕ M192))

S294 = M266 ⊕ M293 ⊕ M2171 ⊕ (M291 & M292) ⊕ (M291 & M192)⊕
(M191 & M292)
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S394 = (K66 ⊕ M166) ⊕ M193 ⊕ M1171 ⊕ (M191 & M192)⊕
(M191 & M192) ⊕ ((M191 ⊕ M291) & M192)

Since unknown random mask values are used in xor operation, the mask
value can be combined and t1 and t2 can be written as

t1 = IV1 ⊕ Mw

t2 = Mx ⊕ My ⊕ (K66 ⊕ Mz)

HD = HW (t1 ⊕ t2)
HD = HW (IV1 ⊕ Mw ⊕ Mx ⊕ My ⊕ (K66 ⊕ Mz))
HD = HW (IV1 ⊕ K66 ⊕ M)

Here, IV1 is a known input and key bit K66 is unknown and constant for all
encryptions. Random mask M is unknown value and it varies for each encryp-
tion. Therefore, in order to reveal the secret key by power analysis, the attacker
needs to compromise the PUF or PRNG circuit to get masking value, which is
generated for each encryptions. Therefore the hypothetical key guess possibly
not give high correlation without guessing the random mask value.

3.2 Modified Trivium

Trivium has vulnerability in its initialization phase, since thirteen zeroes are
initialized (S81 to S93) continuously in its design. This vulnerability is exploited,
when algorithm is executed in the initialization phase. To avoid such an exploita-
tion with minimal overhead, those thirteen consecutive zeros are to be distributed
among 80 bits of the key, which certainly increase the complexity of the attack.

The feed forward paths involving the AND operation are crucial for the secu-
rity ofTriviumas they prevent cryptanalysis that exploit the linearity of the cipher.
The AND operation is equal to modulo 2 multiplication. If we multiply two
unknowns, the result contains product of two unknowns. If one input to AND oper-
ation is fixed to zero, then the output is fixed to zero. If the value of one input to
AND operation is fixed to zero, the influence of the other bit is neglected, in the
case of Trivium the other input bit is key bit. Therefore, key bit will not propa-
gate and diffuse for randomization. On the other-hand, if one input is fixed to one,
then output has the dependency on the other input (key bit), which will propa-
gate and diffuse quickly for randomization. Hence, to have quick randomization,
we chose to incorporate thirteen ones in the initialisation phase. However, if the
thirteen ones are continuous in any position within the register, then the same
vulnerability (part of state value becomes vulnerable) as in the case of zero exist.
Consequently, it should be distributed uniformly among 80 bits. Hence, incorpo-
rating one at every seventh bit would be ideal. In the distribution of ones, AND
operation yields key bit output at every seventh position. For these reasons, we
chose ones that are distributed among 80-bit key value, instead of zeros. The key
stream output after incorporating the proposed changes (modified Trivium) will
be different from the original algorithm. However, the structure, the tap positions
and the functions are same. Therefore, the security analysis of the Trivium claimed
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Fig. 3. Architecture of algorithm level changes for Trivium

in [7] believed to be the same for the modified Trivium, irrespective of the initial
loading values. The proposed structure of Trivium is as shown in Fig. 3.

The idea here is to use different initialisation values which has better resis-
tance against DPA than the one chosen by the designers. To confirm the ran-
domness of key streams generated using our approach, 1000000 (one million)
bits of output key stream of the modified algorithm is tested for randomness
using NIST test suite [17]. The results are presented in Table 1. The results of
modified Trivium is compared with the original version of Trivium and first one
million bits of Π for the test vector.1 This shows that the modification of the
algorithm in the initialisation phase does not affect the randomness of the key
stream, perhaps it increases the randomness.

Security Analysis. The point of attack is similar to the DPA attack [12],
whereas the number of unknown values are increased in the hypothetical inter-
mediate values. For the first round, the state register is given as follows:

(S1, S2, .., S93) ← (K60,K1, ..,K79)
(S94, S95, ., S177) ← ((K57 ⊕ IV78 ⊕ 1.K79 ⊕ K80), IV1, ..)
(S178, S179, .., S288) ← (IV69, 0, 0, .., 0)

As discussed in Sect. 2.2, the first register values (S1 to S93) can be omitted
during the Hamming distance computation. In round 1, the leading bit of the
second register can be calculated by:

1 Modified Trivium, Key:0x9999999999, Initialization vector: Random. Every seventh
bit is incorporated as one in the loading of initialization phase.
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Table 1. NIST Randomness test for modified Trivium

Tests π Trivium [7] Modified Trivium

Frequency 0.578211 0.458087 0.586441

Block Frequency (m = 128) 0.380615 0.260054 0.386992

Cusum-Forward 0.628308 0.044979 0.948586

Cusum-Reverse 0.663369 0.247113 0.879794

Runs 0.419268 0.088652 0.155112

Long Runs of Ones 0.02439 0.330619 0.759176

Rank 0.083553 0.698237 0.327832

Spectral DFT 0.010186 0.783087 0.755036

Non-overlapping Templates (m = 9, B = 000000001) 0.165757 0.180413 0.17198

Overlapping Templates (m = 9) 0.296897 0.220271 0.257452

Universal 0.669012 0.033668 0.71509

Approximate Entropy (m = 10) 0.361595 0.923856 0.337823

Random Excursions (x = +1) 0.844143 0.645253 0.681384

Random Excursions Variant (x = −1) 0.760966 0.737837 0.755118

Linear Complexity (M = 500) 0.255475 0.589581 0.801023

Serial 0.143005 0.111355 0.776755

S94 = S66 ⊕ S91.S92 ⊕ S93 ⊕ S171

S94 = K57 ⊕ 1.K79 ⊕ K80 ⊕ IV78

As there are three unknown key bits, the hypothesis need to be the combina-
tion of these bits. It is to be noted that the three unknown bits are given to the
linear function, which will not helpful to uniquely determine the correct key bits
using DPA attack. Therefore, the key hypothesis will not provide high correla-
tion for correct key guess and the DPA attack on initial rounds is not feasible
with more unknown key bits. Further, implementation of the proposed counter-
measure is evaluated using SASEBO evaluation board. There is no unique peak
for the correct key guess upto 100,000 encryptions, whereas the implementation
of Trivium without countermeasure can be attacked with 10,000 encryptions.
The area requirement and other metrics are presented in Sect. 4.

Parallel Architecture. Parallel architecture of Trivium computes and updates
n (say 64) bits for each clock cycle. Therefore it executes n (64) times faster but
consumes more power and area when compared to normal execution. Further
intermediate state are always in multiples of n, this means in order to attack
an intermediate state the power model should be designed in multiples of n.
Therefore point of attack should be multiples of n bits. These parallel mechanism
would be useful for applications were parallel bits of streaming is needed. This
approach will strengthen the initialization phase against chosen IV attack, slide
attack, specific state attack and DPA attack. Further, we implemented algorithm
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Algorithm 2. Random Accelerate design using PUF/PRNG circuit
Input:Secret key K = (K1, .., K80);Initialization vector IV = (IV1, .., IV80);
Output:Intermediate state update(S1, ..., S288)
initialization : K1 to K93 = (K1, .., K80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);

/* Incorporation of one in every seventh bit */
for x � 93 do

If (x mod 6 == 0) then
Right shift Kx+1 to K93 by 1
K(x+1) ← 1;
x + +;

End
(S1, ..., S93) ← (K1, ..., K93);
(S94, ..., S177) ← (IV 1, ..., IV80, 0, .., 0);
(S178, ..., S288) ← (0, ..., 0, 1, 1, 1);

/* Module tK1,2,..,N to be called */

K = 1, 2, 3: K (Describes corresponding equation number)
Module tK1,2,..,N then

i ← N − 1;
t1N ← (S66−i ⊕ S91−iS92−i ⊕ S93−i ⊕ S171−i);
t2N ← (S162−i ⊕ S175−iS176−i ⊕ S177−i ⊕ S264−i);
t3N ← (S243−i ⊕ S286−iS287−i ⊕ S288−i ⊕ S69−i);

/*If process variation is low then algorithm execution triggers for parallel architecture/
if PRNG or PUF output = 0 then

accelerate circuit begin
N ←− 64;//64 bit parallel architecture
X ←− 18;//18 clock cycle for initialization phase
j ←− 0;
for j � X do

(S1, .., S93) ← ((t3N )&(t3N−1)&...&(S1, .., S92−N ));
(S94, ., S177) ← ((t1N )&(t1N−1)&...&(S94, .., S176−N ));
(S178, .., S288) ← ((t2N )&(t2N−1)&...&(S178, .., S287−N ));

End
end
End

End /*If process variation is high then algorithm executions normal architecture*/
else

t1 ← S66 ⊕ S91S92 ⊕ S93 ⊕ S171;
t2 ← S162 ⊕ S175S176 ⊕ S177 ⊕ S264;
t3 ← S243 ⊕ S286S287 ⊕ S288 ⊕ S69;
(S1, .., S93) ← (t3, S1, .., S92);
(S94, ., S177) ← (t1, S94, .., S176);
(S178, .., S288) ← (t2, S178, .., S287);

End

level countermeasure with parallel architecture to increase the complexity of the
attack. The area utilization is presented it the Table 2.

Random Acceleration Design. The size of n in parallel architecture of Triv-
ium can be varied between 1, 4, 8, 16, 24, 32, 48 and 64. We used three input
multiplexer to choose the size of n between the eight ranges. The multiplexer
chooses the number of parallel bits n to be generated depending on random
value generated using PRNG or PUF circuit. This will rapidly varies its power
consumption and mis-align the power traces based on process variation of cir-
cuit. Moreover, intermediate state differs from each and every power traces.
So, it is not easy to identify specific round and align in each and every traces.
This makes chosen IV attack difficult to do. For instance, Algorithm 2 describes
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random accelerate of 1 bit or 64 bits based on PUF or PRNG circuit output.
In order to attack the above example, we need twice the number of traces and
should able to differentiate the power traces (whether each power trace belongs
to 1 bit or 64 bits execution power consumption) for each and every bit attack.
This will be difficult and non-trivial. Similarly, more choices can be implemented
with other parallel architectures such as 4, 8, 16, 24, 32, 48 or 64 to make the
algorithm execution more random. But it increases the area requirement very
high.

We would like to discuss pros and cons of PUF and PRNG circuit. PRNG
requires additional storage space to store and maintain the key or seed. More-
over, PRNG is a deterministic algorithm and will not vary from device to device.
Hence, there is a possibility of pattern formation as well. Whereas, PUF circuit
produces output based on the process variation of the chip. PUF can be designed
to produce output based on the challenge given as input or without giving any
input. PUF extracts unique feature of silicon chip, hence it is specific for the
device. In general PUF shows significant progress in security related applica-
tions. However one needs to take care of the trade-off on selecting the critical
components. In addition, we implemented 8-bit parallel architecture combined
with TI and algorithm level countermeasure. Further, the algorithm can be exe-
cuted n times faster than normal algorithm execution and also increases the
complexity of the attack. However, this approach increases the area.

4 Performance Comparison of Implementation
Techniques

Performance and area overhead of the proposed countermeasure techniques are
presented in Table 2. We have taken FPGA, xc2vp7-fg456 as target device. From

Table 2. Implementation results of Trivium

Implementation Update Register(s) Clock Cycles Area (slices) Flip Flops LUTs

Unprotected Trivium 1 bit 1152 362 371 483

8 bit parallel 144 421 380 760

16 bit parallel 72 443 379 807

24 bit parallel 48 470 380 859

32 bit parallel 36 492 378 903

48 bit parallel 24 540 379 1001

64 bit parallel 18 585 377 1093

Modified Trivium 1 bit 1152 366 372 484

8 bit parallel 144 451 373 805

16 bit parallel 72 468 372 855

24 bit parallel 48 497 373 899

32 bit parallel 36 515 371 936

48 bit parallel 24 557 372 1020

64 bit parallel 18 593 369 1099

Threshold Implementation 1 bit 1152 885 947 1631

Combined (TI and Modified) 8 bit parallel 144 1421 946 2623

Implementation
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the comparison table it is understood that algorithm level changes (modified Triv-
ium) of Trivium requires only few additional gates as overhead with reasonable
security. Threshold Implementation takes 2.5 times area as overhead when com-
pared to unprotected implementation. Though 64-bit parallel algorithmic coun-
termeasure consumes 1.6 times additional areas compared to single bit (modified)
Trivium implementation, but it operates 64 times faster. The 8-bit parallel archi-
tecture of combined (TI and Modified) countermeasure consumes 3.15 and 3.3
times additional area when compared to modified Trivium and unprotected imple-
mentation of Trivium respectively.

5 Conclusion

In this paper, we presented both Threshold Implementation countermeasures
and modified Trivium implementation to protect against DPA attack of Trivium
stream cipher. We elaborated TI implementation of Trivium and its security
analysis. Then we had shown algorithmic level changes as modified Trivium very
less area requirement with reasonable security enhancement. Also we proposed
PUF based random acceleration to randomize the power consumption. In future,
we plan to focus on countermeasures for other possible light weight ciphers.
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Abstract. Robust image fingerprinting seeks to transform a given input
image into a compact binary hash using a non-invertible transform.
These binary hashes exhibit robustness against common image process-
ing and find their extensive application in multimedia databases where
near neighbor index search is often employed. Unfortunately, robust fin-
gerprinting length is usually longer than 32 bits which makes impossible
to use them as direct indices in multimedia databases.

This paper analyses a theoretical approach that allows to map a r-
neighbor search in Hamming space into a couple of direct index searches,
using multiple hash tables built on fingerprinting substrings. We analyse
the performances of this approach using a concrete perceptual finger-
printing scheme that we previously detailed in other paper. Experimental
results conducted on a well known 4000 image dataset confirm dramatic
speed-ups over a linear scan approach.

Keywords: Perceptual fingerprinting ·Multimedia indexing · r-neighbor
search · Multi-index hashing

1 Introduction

The emergence of the digital age necessitated the storing of large volumes of
digital data such as personal photographs and videos. In this context, there is
an emerging need of quickly retrieving a digital image from very large databases.

Content-based image retrieval (CBIR), also known as query by image content
(QBIC) is the application of computer vision techniques to the image retrieval
problem, that is, the problem of searching for digital images in large data-
bases. “Content-based” means that the search analyzes the contents of the image
rather than the metadata such as keywords, tags, or descriptions associated with
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the image. The term “content” in this context might refer to colors, shapes, tex-
tures, or any other information that can be derived from the image itself.

Another image retrieval problem consist in finding a slightly modified image
(e.g. compressed or affected by noise) inside a large image database. We have to
stress out from the begining that this work consider the image retrieval problem
in this context, rather than in the sense of CBIR systems. Given the size of
the multimedia databases, such large-scale search demands highly efficient and
accurate retrieval methods.

Traditionally, for binary content, hashing algorithms from the crypto-
graphic field could be used to index large databases in order to speed-up the
retrieval process. Such an algorithm produces a short binary output known as a
checksum or hash. The hashing process is both compressive and non-invertible.
Compression results in small checksums that can be easily compared, while non-
invertibility means that the original input cannot be recovered from its checksum.

Traditional cryptographic hashing methods are designed to be used with non-
changing digital data such as files, executables and passwords. In this manner,
they are sensitive to even 1-bit changes into the input data. This is known as the
“avalanche effect” as even the slightest change in the input will produce large
changes in the resulting checksum.

However, there are certain types of digital data where small variations cannot
be avoided. In digital imaging, many common transformations such as JPEG
compression, scaling, cropping and enhancement do not alter the perceptual
content of the image but do change the pixel values. The sensitivity of traditional
hashing methods prevents their use on multimedia data. Large image and video
databases such as Google Images or Facebook cannot take advantage of hash
based retrieval, authentication and digital rights management.

To account for the specific properties of visual data, new techniques are
required which do not assure the integrity of the digital representation of visual
data but its visual appearance. One such technique is based on robust hash
functions which are able to produce near identical checksums for two similar
visual inputs whilst preserving the compressive and non-invertible properties.

One of the first perceptual hashing schemes was proposed by Fridrich [2], who
obtained a hash by projecting the image on a set of zero-mean random patterns
generated based on the random key (a password used as the seed for a pseudo-
random generator). Since then, robust hash functions have been widely applied
for image indexing and retrieval applications. Images are hashed to produce
content dependent binary strings. These binary sequences are relatively short
and can be much more efficiently compared than non-binary features.

Nevertheless, exhaustively comparing the image query q perceptual hash with
each fingerprint from an database of N images is infeasible because linear com-
plexity O(N) is not scalable in practical settings. To cope with this problem,
hashing based r-neighbor (binary codes that differs by at most r bits) tech-
niques have attracted more attention in the last decade as they provide faster
retrieval time. In this work, we build upon a fingerprinting method proposed
in [1] to evaluate the speed-up performances of a multi-index approach [13].
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2 Image Hashing Framework for Image Retrieval

It is generally known and commonly accepted that an image hashing scheme
should comply some properties. Usually represented as a function H = H(I,K),
with I as the input image and K as the secret-key, we resume our representation
to H(I). Our choice is based on the targeted application (i.e. image indexing and
retrieval) where the secret key K can be considered constant and is, therefore, no
longer needed. The robustness and the collision-free properties are the properties
needed to be satisfied for a perceptual hash, also known as the image fingerprint.

The robustness refers to the property of the hash to be invariant to common
and minor image transformations such as noise, compression, geometric distor-
tions, filtering and contrast enhancement. The collision-free property repre-
sents the sensitivity of the hash to different inputs displaying major differences.
Moreover, two different hashes, obtained (with high probability) from two per-
ceptually different images, must differ by a distance beyond a given threshold.

In general, there is a well-known four-stage process of the majority of the
already proposed hashing methods: feature extraction, randomization, quanti-
zation and encoding [16]. Since we discuss our hashing scheme in the context of
image retrieval, we only need the three-stage process described below:

1. Feature Extraction. This stage is essentially used in order for the robustness
property to be satisfied. These extracted features should finely represent the
input and they are often driven from the image color, its texture or its form.
The output of this stage will be represented by a real-valued feature vector.

2. Quantization. The randomized features are discretized into a vector of quan-
tized features. To achieve this, one can use the Lloyd-Max, the uniform or a
random quantizer. The output data is not yet transform into a binary form,
but quantized into discrete levels due to a set of thresholds.

3. Encoding. To each quantization level a unique bit-string is assigned. The
length of the string is predefined. This assignation is provided by different
encoding schemes usually using the standard binary representation or the
Gray code. The advantage of the Gray code over the binary one is provided
by the difference of only one bit between two consecutive integers.

At the end of the hashing chain there could also be a compression step, whose
aim is the reduction of the hash length while still preserving the Hamming
distance. Moreover, for the compression step, one can also integrate decoding
stages of the error-correcting codes [4]. Through the image hashing methods, the
feature extraction represents the most captious stage from the above presented
ones [6,11,17]. Examples of such features include the block-based histograms [3],
the image-edge information [14], the image feature points [12] or the relative
magnitudes of the DCT coefficients [7].

One pioneer fingerprinting method was proposed by Fridrich et al. [2] where
the perceptual hash is based on the projection of an input image over a series of
random normalized smooth patterns. It was shown that their proposed technique
is robust to both noise and filtering-based image modifications. Still, this tech-
nique was not invariant to scale and rotation. In [15], the authors proved the fact
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that the method is also collision prone. The collision prone refers to a statistic
modeling of the hash bit generation process of an arbitrary image in order to be
modified to output the same hash.

In order to generate an invariant to common gray-scale operations, Venkatesan
et al. captured the principal values obtained after applying a wavelet transform
over the image blocks [17]. Further, on the resulted array, the quantization and
the compression processes are applied to obtain the perceptual hash. Some disad-
vantages of this method were shown by Meixner [10], concerning transformations
like object insertion, gamma correction and contrast changes.

In [11], Venkatesan et al. introduced an image hash which was constructed
in a iterative manner, based on thresholding and spatial filtering. The schemes
from [2,11,17] proved a good resilience under the operations such as additive
noise and common filtering. Nevertheless, regarding the desynchronization and
the geometric distortions, the results were relatively poor.

Willing to pass these disadvantages, new methods were proposed that exploits
features extracted from various transform domains. A first example is described
in [6], based on the properties of the Radon transform. Other methods use Ran-
dlet transform coefficients [9] or the features extracted from the singular values
decomposition of pseudo-randomly image blocks [5]. These methods proved good
robustness especially against the rotation and the cropping attacks.

Based on a joinder of global and local descriptors, the authors of [18] proposed
the image summarization. The global features were extracted making use of
the luminance and the chrominance characteristics of an image (the Zernike
moments). The local features were based on position and texture information of
the image salient regions. For generating a shape-contexts-based image hash, the
method from [8] was also based on some robust local feature points. The robust
SIFT-Harris detector was manipulated in order to select the most stable SIFT
key-points under various content-preserving distortions. Finally, the detected
local features are embedded into shape-contexts-based descriptors.

3 Overview of Our Perceptual Fingerprinting Scheme

The scheme we proposed in [1] is based on the log-polar image representation.
It is already known that such representation has interesting properties with
respect to invariant geometric transformations. The choice we made in extracting
the image features was based on a key that outputs a very robust perceptual
hash. The log-polar representation space convert rotations and scaling operations
applied in the original space into circular shifts and translation.

Let us consider the polar coordinate system (R, θ) where R denotes the radial
distance from the image center (xc, yc), while θ represents the angle made with
the horizontal axis. Any image pixel becomes actually one point in the polar
system which is described by the equations below:

R =
√

(x − xc)2 + (y − yc)2, θ = arctan
(

y − yc
x − xc

)
(1)
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The circles in the Cartesian space are mapped to horizontal lines in the
polar coordinate space, as illustrated in the Fig. 1a and b below. The origin is
considered to be in the upper left corner while θ and R lie along the horizontal
and vertical axes, respectively. Moreover, the radial lines in the original image
space are mapped to vertical columns in the polar coordinates space.

Fig. 1. Polar coordinate transformations

One can easily observe that in the new polar coordinates system, rotations
become vertical circular shifts while scalings imply changes of horizontal lines to
other positions. In fact, scaling multiplies the R coordinate with the scaling factor
ρ. Therefore, taking the logarithmic scale on the R axis will map the previous
multiplication to an addition with a constant factor, namely a translation.

Putting in other words, the (R, θ) polar coordinates become (r = log R, θ)
in the new log-polar coordinates. The usage of the new coordinates translates
the scale transformation applied to the original image into a vertical downward
shift along the r axis in the log-polar transformed image.

Since after geometric transformations, the large majority of the horizontal
lines remain unchanged, taking some aggregate metrics such as the mean or the
standard deviation could be good candidates for robust features. Building on
these observations, the basic steps of our fingerprinting algorithm [1] are:

1. Preprocessing. A Gaussian low-pass filter is applied to an input image I to
provide robustness to noise addition. The resulted image J is then converted
into log-polar coordinates to get an image denoted LP .

2. Feature Generation. A number of L horizontal random lines from the bottom
half of the image LP are chosen and their mean is computed along the θ-axis.
These average values are kept to obtain the image feature vector.

3. Post Processing. The resulting vector is uniformly quantized by representing
each value on a number of b bits using the Gray encoding. The output binary
hash sequence contains therefore a number of n = L · b bits.
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4 Multi-index Hashing Approach

Perceptual hashing used to represent image data in terms of compact binary
codes often facilitates fast neighbor search in image indexing and image retrieval
applications. In this context, the most compelling reason for binary codes is their
use as direct indexes (addresses) into a hash table, yielding a dramatic increase
in search speed compared to an exhaustive linear scan.

Image hashing code lengths are often significantly longer than 32 bits in order
to achieve satisfactory retrieval performance, thus making their use, as a direct
index, impossible. Moreover, hashing codes of two similar images are not gener-
ally identical but rather in a Hamming distance of a few bits. To find all neigh-
bors within a given Hamming distance of a query image, one needs to examine
all hash table entries, a computation which requires a linear time in both the
database size and the hash length.

To speed-up this computation, we build upon a theoretical approach pro-
posed in [13] that presented a new algorithm for exact r-neighbor search on
binary codes that is dramatically faster than exhaustive linear scan. Their app-
roach is called multi-index hashing, as binary codes from the entire database are
separated into m disjoint substrings which are used as indexes for m different
hash tables.

Given an image query code, images that fall exactly in at least one such
substring are considered neighbor candidates. These image candidates are then
checked for validity using the full hashing code, to remove any non-r-neighbors.
To be practical for large-scale datasets, the authors found, by means of simula-
tion, that the substrings must be chosen so that the set of candidates is small,
and storage requirements are reasonable.

The key idea resides in a simple observation, namely that with N binary codes
of n bits, the vast majority of the 2n possible entries in a full hash table will be
empty, since 2n � N . Therefore, it would be expensive to examine all entries
within r bits of a query code, since most of them contain no items. Instead,
the idea was to create hash tables based on substrings of the full binary codes,
thus merging many previous buckets together by marginalizing over different
dimensions of the Hamming space.

4.1 Searching r-neighbor Hamming Codes

In this subsection we briefly discuss the details of the multi-index hashing app-
roach analyzed in [13]. Each binary code h, comprising n bits, is partitioned into
m disjoint substrings, {h1 · · · hm}, each of length n/m bits. For now, we assume
that n is divisible by m and that the substrings comprise contiguous bits, but
this condition will be relaxed further.

The key idea rests on the following statement: when two binary codes h and
g differ by at most r bits, then, in at least one of their m substrings they must
differ by at most r′ = �r/m� bits. For example, if h and g differ by 3 bits or less,
and m = 4, at least one of the 4 corresponding substrings must be identical.
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The authors show that even it suffices to examine all buckets within a radius
of r′ bits in all m hash tables, generally a small number of hash tables need to
be investigated. More precisely, given r = mr′ + a, where 0 ≤ a < m, to find
any image within a radius of r bits on n-bit codes, it suffices to search a + 1
substring hash tables to a Hamming radius of r′, and the remaining m − (a + 1)
substring hash tables up to a radius of r′ − 1.

A special case is when r < m, hence r′ = 0 and a = r. In this case, it suffices
to search r + 1 substring hash tables for a radius of r′ = 0 (i.e. exact matches),
while the remaining m − (r + 1) hash tables can be ignored. Clearly, if a hash
code does not match exactly with the hash query in any of the selected r + 1
substrings, then the code must differ from the query in at least r + 1 bits.

4.2 Multi-index Hashing for r-neighbor Search

From the previous section, it is clear that, given a set of method parameters,
one can establish a threshold T such as, with great probability, hashes of similar
images are within a Hamming distance of T bits while hashes for different images
will lead to a distance beyond T . We put ourselves into the special case of multi-
index hashing approach (i.e. m > r) and consider r = T .

First, one compute hash binary codes of length n for the entire database,
and then build one hash table for each of the first r + 1 substrings of length s
from the entire hash. Clearly, (r + 1)s ≤ n, hence s ≤ �n/(r + 1)�. Each image
from the database will be placed in its corresponding bucket in each of the r +1
tables, with the average number of collisions depending of the value of r.

Then, given a query image having a hash g with the substrings {gj},
j = 1, r + 1, one investigates the j-th substring hash table for images that are
placed in the bucket whose index is gj . We obtain a set of candidates from the
j-th substring hash table, denoted Cj(g). As explained previously, the union of
the r + 1 sets, C(g) = ∪jCj is necessarily a superset of the r-neighbors of g.
The last step of the algorithm computes the full Hamming distance between g
and each candidate in C(g), retaining only those codes that are true r-neighbors
of g.

Algorithm 1 outlines the r-neighbor retrieval procedure for a query image
hash g. The search cost depends on the number of lookups (i.e., the number of
buckets examined) and the number of candidates tested. Not surprisingly, there
is a natural trade-off between them. With a large number of lookups one can
minimize the number of extraneous candidates. By merging many buckets to
reduce the number of lookups, one obtains a large number of candidates to test.

5 Experimental Results

In this section, we evaluate the performance of the multi-index hashing approach
described earlier on our fingerprinting scheme presented in the third section.
First, we compute a confidence interval for the threshold T that allows us to
distinguish between similar and distinct images on a 4000 image dataset. Second,
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Algorithm 1. r-Neighbor Search for Query g

1: Compute query substrings gj , 1 ≤ j ≤ r + 1
2: Candidates = ∅

3: for j = 1 to r + 1 do
4: Cj = candidates at bucket gj from j-th hash table
5: Candidates = Candidates ∪ Cj

6: end for
7: Remove all non r-neighbors from the Candidates set

we evaluate the speed-up rate for an image retrieval system by comparison with
the linear scan of all hashing codes. In this context, we experimentally study
the influence of the substring length used in the multi-index approach as well
as the Hamming radius (i.e. threshold) in the r-neighbor searching. Third, we
investigate the speed-up dynamics according to the size of the image database.

5.1 Database Experiment Setup

The metric we used to measure the distance between two images is the Hamming
distance between their binary hashes, h1 and h2 respectively, normalized with
respect to the length n of the hash:

d(h1, h2) =

n∑
i=1

|h1(i) − h2(i)|
n

(2)

This distance is expected to be near 0 for similar images and close to 0.5
for dissimilar ones. Moreover, this distance should increase with the distortion
between the manipulated and the original image.

For testing purposes, we used the Microsoft Research Cambridge Database
that contains over 4000 color images, either in 640× 480 or in 480× 640 resolu-
tion, available at the address: http://research.microsoft.com/downloads. These
images are grouped in different classes (e.g. cars, flowers), each class containing
multiple content-related images, as shown in Fig. 2.

The robustness of our hashing scheme was first tested against a list of content-
preserving operations shown in Table 1. For each such operation, we vary the
corresponding parameter: for example, considering rotation, we vary the angle
between 1◦ and 10◦. For each value of the parameter, we measure the normalized
Hamming distance between the hashes of the original image and the manipulated
image; the results obtained are averaged over the entire set of images.

As expected, the results obtained for these manipulations were very closed to
the ones reported in [1], and we do not detail them here. The maximum normal-
ized Hamming distance computed under content-preserving manipulations was
around 3 %, which means a radius of 9 bits from a hash length of 300 bits.

We also consider the Hamming distance between the hashes of dissimilar
images, which indicates the discriminative capability of the hashing algorithm.
For each pair of distinct images, we compute the normalized Hamming distance

http://research.microsoft.com/downloads
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Fig. 2. Database images from different classes.

Table 1. Set of content-preserving manipulations

Manipulation operation Parameter of the operation

Gaussian Noise Noise Variance from 0.0 to 0.2

Geometric Rotation Rotation Angle from 1 to 10

Geometric Scaling Scaling Factor from 1.0 to 2.0

JPEG Compression Quality Factor from 10% to 90 %

between their hashes. The minimum value of these distances is 7 %, meaning
that two distinct images differ at least by 21 bits of their fingerprints. Therefore,
any value in the confidence interval [9–21] could be set as a threshold, in order
to minimize false positives and false negatives rates.

5.2 Speed-up Rate Evaluation

Next, the main metric we used is the speed-up rate, defined as the ratio
between the linear scan time to search an image in the entire database and the
time needed by the multi-index method for the same purpose. Linear scan refers
to the classic approach where the hash of a query image is compared against
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the precomputed hashes of all database images, using the Hamming distance.
Multi-index hashing search refers to the searching method described in the pre-
vious section and synthesized in Algorithm 1.

We first studied the influence of the substring length parameter, denoted s,
used to build multiple hash tables. As explained before, for a given Hamming
radius r and a total length of the fingerprint n, we should have s ≤ �n/(r + 1)�.
For our first experiment, n = 300 bits and we fixed r = 14 (in the confidence
interval [9–21], hence s ≤ 20.

In the query process we used all images in the database, slightly modified by
transformations described in Table 1 and we measured the average time taken by
a search operation. For the linear scan procedure we obtained an average time of
20.13 ms while the multi-index approach average time varies between 70.23 ms
(for s = 5) and 1.15 ms (for s = 20).

The gain ratios for different substring length are depicted in Fig. 3. As
expected, the speed-up rate grows with the length of the substring used for
hashing operation. Longer substring length reduces the number of collisions in
the buckets of the hash tables, and since the number of hash tables is constant
(i.e. r + 1 = 15), this contributes to a quicker retrieval.

Fig. 3. Speed-up rate dynamics for different substring lengths

Next, we examined the influence of the threshold parameter r in the per-
formance of the multi-index hashing approach. From the previous experimen-
tal analysis, it is clear that, given a threshold r, to maximize the speed-up
rate, one should set the substring length at its maximum possible value, i.e.
s = �n/(r + 1)�. We experimented with different values of r in the interval
[5–20] and the results are illustrated in Fig. 4.

Smaller radius implies a larger substring length, henceforth a better speed in
the searching process; this came at the cost of a smaller tolerance against content-
preserving transformations, therefore leading to more false negative alarms.
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Fig. 4. Speed-up rate dynamics for different matching thresholds

The best trade-off seems to be for a minimum threshold inside the confidence
interval (i.e. [9–21]; for r = 9, the substring length would be s = 30 and the
multi-index hashing method is about 30 times faster than the linear scan search.

The last experiment we conducted concerns the scalability of this method.
In this manner, we randomly select a subset of the entire image database and
conduct the same searching process previously described to compare the two
methods. In this case we set the threshold at its minimum value (i.e. r = 9)
and the substring length at s = 30. One can notice from Table 2 that while the
classical scan method involves a linear time complexity, the average time needed
by the multi-index method increase very slow with the database size. Despite
this encouraging results, larger image databases need to be considered in order
to estimate the growth rate of the multi-index hashing method.

Table 2. Multi-index Hashing Performance Scalability

Database size Multi-index (milliseconds) Linear scan (milliseconds) Speed-up rate

500 0.402 2.561 6.40

1000 0.435 5.112 11.88

1500 0.478 7.446 15.83

2000 0.506 9.918 19.82

2500 0.527 12.435 23.90

3000 0.573 15.137 26.54

3500 0.604 17.490 29.15

4000 0.653 20.130 30.97
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6 Conclusion

In this paper, we investigated the practical performances of a multi-index hashing
approach for image retrieval using our fingerprinting scheme based on log-polar
image representation, already described in [1]. Multi-index hashing approach
presented in [13] allows to map a r-neighbor search in the fingerprinting Ham-
ming space onto a couple of direct index searches, using multiple hash tables
built on fingerprinting substrings.

The good resiliency of this scheme to content-preserving operations (e.g.
noise addition, compression and geometric transformations) together with its
discriminative capability allows us to compute a confidence interval in which a
threshold could be set. Starting from these observations, we conduct a series
of experiments on a real database of 4000 color images in order to estimate
the gain of the multi-index method over the classic linear scan approach. We
experimentally found that the average time required by the multi-index method
slowly increase with the database size and one can expect an improvement of
up to a 30 times faster image retrieval.

In the future, we would like to investigate the performances of the multi-index
hashing approach using state-of-the-art fingerprinting algorithms and larger
image datasets. Further studies could also be oriented on the CBIR (Content
Based Image Retrieval) systems coupled with the transformation of represen-
tative image features into binary codes, in which context the performances of
k-nearest neighbor approach based on multi-index hashing need to be addressed.
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