
Chapter 7

Field-Programmable-Gate-Array (FPGA)

7.1 Introduction

To be able to implement large-scale SOC designs, minimizing overall power

dissipation is a critical [1]. The primary objective of this chapter is to present the

results of silicon nanowire technology in a widely utilized prototyping platform

called Field-Programmable Gate Array (FPGA). The proposed FPGA architecture

in this chapter uses cluster blocks, each of which includes several Look-Up-

Tables (LUT) to configure any logic functionality. Each LUT can be configured

as a combinatorial logic block or part of a state machine. This flexible configuration

is achieved by scan chains implemented inside the cluster block to define the

interconnectivity between LUTs and to determine the logic functionality for each

LUT. After describing the architectural aspects of the LUT and the cluster, circuit

simulation were performed using BSIMSOI SNT models. The chapter reports the

results worst-case propagation delays and power dissipation figures of various

FPGA circuits and shows typical LUT and the cluster layouts.

7.2 Brief Description of Transistor Design and Modeling

Chapters 1, 2 and 3 show the 3D structure of the device and the complete design

process for undoped SNTs. The device design goals were set to achieve minimum

static and dynamic power dissipations and minimum intrinsic transient times as

discussed in Chapter 3. This criterion resulted in a 2 nm diameter and 10 nm

channel length SNTs and the generation of extrinsic BSIMSOI device models to

be used for all the circuit simulations in this chapter.

© Springer International Publishing Switzerland 2016

A. Bindal, S. Hamedi-Hagh, Silicon Nanowire Transistors,
DOI 10.1007/978-3-319-27177-4_7

121

http://dx.doi.org/10.1007/978-3-319-27177-4_1
http://dx.doi.org/10.1007/978-3-319-27177-4_2
http://dx.doi.org/10.1007/978-3-319-27177-4_3
http://dx.doi.org/10.1007/978-3-319-27177-4_3


7.3 FPGA Architecture

7.3.1 Cluster Architecture

FPGA can be considered as one of the most important application platforms for the

SNT technology to test its true potential. An FPGA consists of configuration logic

blocks called clusters which contain several LUTs [2]. To program each LUT, scan

chains are used. Scan chains are basic shift registers that transmit serial data to

configure the logic functionality for each LUT. A typical block diagram of a cluster

is shown in Fig. 7.1.

In this figure, an 8-bit wide intercluster bus, line0 through line7, sustains

continuous data exchange among clusters. The intercluster data is routed in any

available direction using switch boxes placed at four corners of each cluster.
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Fig. 7.1 The proposed FPGA architecture with global scan chains
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Each bit of the 8-bit intercluster bus is connected to a different switch box

composed of six SNTs programmed to guide the incoming data, establishing a

configurable path between clusters. A total of 12 data inputs ports, Data11 through

Data34, accept incoming signals from neighboring clusters; each input port is

connected to the 8-bit wide intercluster bus using an 8-1 MUX. Each cluster has

three output ports, OutCluster1, OutCluster2, and OutCluster3, which transfer the

cluster data to other clusters for data processing. A particular cluster output can be

routed to any one of the eight bits of the intercluster bus using 1-8 DEMUX blocks.

There are two types of scan chains embedded in each cluster. The outputs of the

scan chains A, B and C are used as the selector inputs for each 8-1 MUX connected

to input ports of the cluster. Once the 8-1 MUX selector is programmed by a scan

chain, then incoming signals from neighboring clusters are routed to a specific

cluster input for processing. Similarly, scan chain D outputs are used as selectors

for each 1-8 DEMUX at each cluster output. Once the selector for each 1-8

DEMUX is programmed, the processed data in a particular cluster is distributed

among neighboring clusters for further processing. The serial ports, WIn andWOut,

are used to program each LUT of a particular cluster. Serial ports that belong to

neighboring clusters are cascaded such that WOut of one cluster is connected to

WIn of the other to propagate programming data to all clusters without needing

more than one wiring channel. W is another input port that programs each LUT,

cluster selector tree and bypass path in each cluster.

Each cluster in Fig. 7.1 is composed of three 4-input Look-Up-Tables (4-LUT)

as shown in Fig. 7.2. Each 4-LUT receives external input data, Data11 through

Data34, through twelve 4-1 MUXes and can be programmed to implement a

primitive or complex logic function requiring up to four inputs. The number of

4-LUTs in each cluster and the intercluster bus width are determined according to

the study in [3] to maximize 4-LUT usage and increase available wire utilization

between clusters.

There is an additional internal scan chain in each cluster as shown in Fig. 7.2.

The primary purpose of this chain is to program all 24 selector inputs, s111 through

s342, to control the flow of data into the cluster and to generate program inputs for

the three bypass paths in each LUT, bypass1 through bypass3.

7.3.2 4-Input Look-Up-Table (4-LUT)

Each 4-LUT is composed of a 16-bit scan chain at the input and a 16-1 pass-gate

MUX tree as shown in Fig. 7.3.

The 16-bit scan chain is used to program a specific logic function for each

4-LUT in the cluster. Each 4-LUT has programming input and output ports, PIn and

POut, respectively. PIn of the first LUT, PIn1, receives the programming data

directly from WIn of the cluster. POut of the first 4-LUT, POut1, is connected to

PIn2 of the second 4-LUT to program the second 4-LUT. Similarly, POut2 of the

second 4-LUT is connected to PIn3 to program the third 4-LUT. The serial data at
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the PIn input propagates through the scan chain at the positive edge of clock while

the global write signal, W, is kept at logic 1. When scan is finished to program the

logic function for each 4-LUT, W is lowered and kept at logic 0 during normal

FPGA operation.
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Each selector input to the 16-1 MUX, InLUT1 through InLUT4, is formed either

by the cluster inputs routed to this specific 4-LUT (e.g., Data11 through Data14 if

referred to the first 4-LUT) or from the outputs of each 4-LUT in the cluster,

OutCluster1 through OutCluster3. The output of 16-1 MUX is either registered or

routed directly to the output of the 4-LUT via a bypass path.
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The registered 4-LUT outputs are either routed to the inputs of neighboring

clusters to form pipelined structures or fed back to the 4-LUT inputs within the

same cluster to implement state machines. This flexibility of logic configuration

creates an environment to implement any hybrid logic block composed of combi-

natorial and sequential logic functions.

The functional representation of each 4-LUT is shown in Fig. 7.4. In this figure,

1� 16 memory block represents 16-bit input scan chain in Fig. 7.3 responsible for

storing a particular logic function. An output is generated for each 4-LUT using a

16-1 pass-gate MUX.

7.3.3 An Example: A 3-bit Carry-Ripple Adder (CRA)

This simple 3-bit Carry-Ripple Adder (CRA) example demonstrates the capability

of the proposed FPGA architecture to implement a combinatorial block. A total of

six 4-LUTs in two separate clusters are used to implement the 3-bit CRA. The truth
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table to generate sum (Sum) and carry-out (Cout) bits of each full adder (FA) in the

CRA is shown in Fig. 7.5.

Since each full adder in the CRA has the A, B and carry-in (Cin) inputs, the

fourth input to the full adder receives a “don’t care” entry, which makes each Sum

and Cout output repeat twice in the truth table. The implementation of the 3-bit

CRA is shown in Fig. 7.6. The Sum0 output corresponding to the least significant

bit of the full adder is generated by storing the Sum column of the truth table in

Fig. 7.5 into the 1� 16 memory array of the 4-LUT in Fig. 7.6, and programming the

cluster scan chain to produce the selector inputs, s111¼ s112¼ s121¼ s122¼ s131

¼ s132¼ s141¼ s142¼ 0. This allows the inputs, Data11 through Data14, to be

routed directly to the selector inputs, InLUT1 through InLUT4, of the first 4-LUT,

respectively. Therefore, selector inputs for 4-LUT become InLUT1¼Data11¼A0,

InLUT2¼Data12¼B0, and InLUT3¼Data13¼Cin0. InLUT4¼Data14 takes a

“don’t care” input, which converts the 16-1MUX in Fig. 7.3 into two identical 8-1

MUXes. Only one 8-1 MUX output is connected to the OutLUT node in Fig. 7.3

because the InLUT4 input has a “don’t care” value. The other 8-1 MUX output stays

unconnected. The same approach applies to generate the Cout0 output corresponding

to the least significant full adder. The Cout column in Fig. 7.5 is stored in the 1� 16

memory array of the second 4-LUT in the cluster. The selector inputs, s211 through

s242, are programmed to be equal to 0 such that InLUT1¼Data21¼A0,

InLUT2¼Data22¼B0, and InLUT3¼Data23¼Cin0. InLUT4¼Data24 again

takes a “don’t care” input. The Cout0 output is directly routed to the third 4-LUT

in the same cluster and also to the first 4-LUT of the second cluster to generate the

Sum1 and Cout1 outputs of the next significant full adder bit of the 3-bit CRA.

A B Cin Data4 Sum Cout

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 0

0 0 1 1 1 0

0 1 0 0 1 0

0 1 0 1 1 0

0 1 1 0 0 1

0 1 1 1 0 1

1 0 0 0 1 0

1 0 0 1 1 0

1 0 1 0 0 1

1 0 1 1 0 1

1 1 0 0 0 1

1 1 0 1 0 1

1 1 1 0 1 1

1 1 1 1 1 1

X

Fig. 7.5 Truth table

of a full adder using 4-LUT
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Similarly, the Cout1 output is routed to the inputs of the second and third 4-LUTs

of the second cluster to generate the Sum2 and Cout2 outputs, respectively. The

Bypass1, Bypass2, and Bypass3 inputs are programmed to be at logic 1 to make all

three bits of the CRA purely combinatorial and unregistered.
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7.4 FPGA Circuit Characteristics

7.4.1 4-LUT Worst-Case Propagation Delays

Figure 7.7 shows the worst-case propagation delays at the internal nodes of the

4-LUT. In this figure, all uncomplemented InLUT inputs, InLUT1 through InLUT4,

are assumed to be connected to logic 1. When the signal reaches the internal node,

OutMUX1, the logic 1 level at that node drops by an amount equal to NMOS

threshold voltage, VTN, as expected. This trend continues at the subsequent nodes

from OutMUX2 to OutLUT until normal logic levels are restored at the OutLUT

node by an inverter. The OutCluster node shows a slower rise time due to a 100 aF

load capacitor. Typical worst-case delays in Fig. 7.7 are 4.7 ps from the clock input

to the InMUX node, 8.9 ps from the clock input to the OutLUT node, and 20.2 ps

from the clock input to the OutCluster node.

Figure 7.8 shows the worst-case delay from the clock input to the OutCluster

node as a function of load capacitor and it is expressed as TCLK-OUTCLUSTER¼ 10.8

þ 0.09 CLOAD in ps.

7.4.2 Intercluster Propagation Delays

The intercluster delays are explained in Fig. 7.9. In this figure, a worst-case signal

path is shown when two clusters are placed in a diagonal fashion. A typical

intercluster signal path starts from the OutCluster port of the source cluster and

travels through the pass-gate transistor in the 1-8 DEMUX stage, an intercluster

wire along the y-axis of the source cluster, a pass-gate transistor at the first switch
box, the second intercluster wire along the y-axis of the destination cluster, two

pass-gate transistors in the second switch box, the third intercluster wire half the
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length along the x-axis of destination cluster, and a pass-gate transistor in the 8-1

MUX stage before arriving at the data input of the destination cluster.

Typical worst-case delay waveforms at the OutCluster port of the source cluster,

the Data port, and the InLUT1 nodes of the destination cluster are shown in

Fig. 7.10. In this figure, fan-out is equal to one because only one destination cluster

is connected to the source cluster. The worst-case intercluster delay as a function of

fan-out is shown in Fig. 7.11 where fan-out is defined as the number of destination

clusters. In this figure, the delay analysis is performed on a diagonally placed source

and destination clusters two and four cluster lengths apart.
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7.4.3 4-LUT Power Dissipation

Since 16-1 input MUX of the 4-LUT is configured using only pass-gate transis-

tors, it is quite possible that the InLUT (InLUT1 through InLUT4) and the InLUT

(InLUT1 through InLUT4) inputs may not arrive at the same time and the overlap

between these signals may develop varying dynamic power dissipations for 4-LUT.

Figure 7.12 shows the worst-case dynamic power dissipation as a function of signal

overlap for 2 GHz, 4 GHz, and 10 GHz frequencies. To obtain the 2 GHz data, a

200 ps pulse with a 500 ps period is applied to all InLUT and InLUT inputs.

However, the pulse applied to InLUT inputs is forced to overlap with the pulse

applied to InLUT inputs by 20 ps, 40 ps, 60 ps, 80 ps and 100 ps intervals.

Subsequently, total dynamic power dissipation is measured and averaged within

500 ps window for each case. The same procedure is applied to obtain the 4 GHz

and 10 GHz data. However, the pulse width and period are both decreased to 100 ps

and 250 ps for 4 GHz, and to 50 ps and 100 ps for 10 GHz, respectively. Both the

level and the slope of power dissipation are observed to increase with increasing

frequency. However, when there is no signal overlap, the power dissipation in

4-LUT (1 μW at 2 GHz and 2.8 μW at 10 GHz) is found to be independent of any

linear frequency-power relationship.
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7.4.4 Flip-Flop Characteristics

Each cluster contains 93 D-type flip-flops, which are used for both scanning control

inputs and logic configuration. A typical flip-flop used in this design has 5 ps set-up

time, 1 ps hold time, and 11.4 ps clock-to-output delay at a load capacitor of 10 aF.

Its worst-case power dissipation is 1.2 μW at 10 GHz.

7.4.5 Cluster Layout

Figure 7.13 shows a cluster layout that contains three 4-LUTs. Note that this layout

contains alternating NMOS-PMOS placement methodology in a fabric-like matrix

as shown in the subpicture of Fig. 7.13. Every NMOS transistor is surrounded by

4 PMOS transistors and vice versa in a cross-bar form. This way, fabrication-related
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issues such as uniform vertical crystal growth of transistor bodies, Reactive Ion

Etch (RIE) lag etc. may be minimized. Each 4-LUT input is placed at a different

cluster boundary: the first 4-LUT inputs are placed at the top, the second at the left,

and the third at the bottom. The cluster outputs and control signals are placed at the

right boundary of the cluster.

7.5 Summary

This study investigates the outcome of using silicon nanowire transistor circuits in

FPGAs containing scan chains. Each FPGA cluster in this architecture is composed

of three 4-LUTs. Each cluster receives input data from other clusters through its

twelve data inputs and sends data to neighboring clusters from its three outputs.

Each 4-LUT in the cluster can be programmed to implement a specific logic

function with a maximum of four inputs or can be configured as part of a state

machine. Scan chains are used to program the data path in the cluster, to determine

the logic function for each 4-LUT and most importantly to minimize wiring

channels in the entire FPGA array. Intercluster communication is established by

an 8-bit wide bus architecture interconnected with switch boxes that contain six

transistors and are placed at the corners of each cluster. Post-layout, worst-case

propagation delay for a 4-LUT is 20.8 ps from the rising edge of the clock signal to

its output. The worst-case intercluster wire delay is 4.8 ps between two diagonally

placed adjacent clusters and increases to 11.2 ps between two neighboring clusters

diagonally placed at four cluster lengths away. The average worst-case dynamic

power dissipation of a 4-LUT is 1 μW at 2 GHz and 2.8 μW at 10 GHz if there is no

overlap between uncomplemented and complemented selector pulses for the

4-LUT. If there is an overlap between the selector pulses, power dissipation

increases by 12.5 nW/ns of the overlap at 2 GHz and 60 nW/ns of the overlap at

10 GHz. Cluster layout contains vertical silicon nanowire transistors placed in a

fabric matrix where each NMOS (PMOS) transistor has four neighboring PMOS

(NMOS) transistors.
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