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Abstract  In this chapter I will illustrate fitting a factor model within a MASEM 
analysis using the metaSEM package. The data come from a meta-analysis per-
formed by Fan et  al. (Personality and Individual Differences 48(7):781–785, 
2010), who collected correlation matrices of the 8 subscales of a test to measure 
“Emotional intelligence” from 19 studies. The preparation of the data, and the 
fixed and random effects Stage 1 analyses are explained step by step. Next, the 
Stage 2 factor model is fit to the pooled correlation matrix from the random effects 
Stage 1 analysis. All steps that have to be taken to perform the analyses are dis-
cussed, as well as the relevant output.

Keywords  Meta-analytic structural equation modeling  ·  MetaSEM  ·  Factor 
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6.1 � Introduction

Fan et al. (2010) used meta-analytic factor analysis to investigate the factor struc-
ture of a measurement instrument of emotional intelligence, the Mayer-Salovey-
Caruso Emotional Intelligence Test Version 2.0 (MSCEIT). Emotional intelligence 
is defined as a set of skills hypothesized to contribute to the accurate appraisal 
and expression of emotion, the effective regulation of emotion, and the use of feel-
ings to motivate, plan, and achieve in one’s life (Salovey and Mayer 1989). The 
MSCEIT consists of 8 subscales. Previous research on the factor structure of the 
MSCEIT lead to contradictory results, and a MASEM made it possible to compare 
the fit of several proposed factor models on the aggregated data across 19 studies. 
Based on these analyses, a three-factor model was found to have the best fit. In 
this section I will replicate the fixed effects analysis of Fan et al. and additionally 
run a random effects MASEM. The data and script to replicate the analyses can be 
found on my website (http://suzannejak.nl/masem).

Chapter 6
Fitting a Factor Model with the Two-Stage 
Approach

© The Author(s) 2015 
S. Jak, Meta-Analytic Structural Equation Modelling,  
SpringerBriefs in Research Synthesis and Meta-Analysis, 
DOI 10.1007/978-3-319-27174-3_6

http://suzannejak.nl/masem


58 6  Fitting a Factor Model with the Two-Stage Approach

6.2 � Preparing the Data

Fan et  al. collected 19 correlation matrices from different studies. Most of the 
studies reported all correlations between the 8 scales of the MSCEIT, for some 
studies the correlation had to be deduced from other information (see Fan et al.) 
and for two studies one and two variables were missing. The correlation matrices 
are collected in a text file, “fan_msceit.dat”, which contains the lower triangular of 
the matrix in each study. This is a part of the file:

The function readLowTriMat() can be used to store these matrices in a 
list that can serve as input for the analysis. The function takes the filename and 
the number of variables per study as arguments, and then creates a list of correla-
tion matrices. If variables are missing in some studies, this should be indicated by 
NA on the diagonal. The second matrix shown above does not contain information 
about the sixth variable, the NA on the diagonal ensures that the associated rows 
and columns will be filtered out during the analysis (so it does not matter what 
values are given for the missing correlations). The next two lines of code create 
the list of matrices and a vector with the associated sample sizes. The argument 
skip = 1 is needed because the first line of the file contains copyright information, 
and should be skipped by the function.
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6.3 � Fixed Effects Analysis

The tssem() function is used to estimate the pooled correlation matrix under the 
fixed effects model.

Leading to this output:

6.3  Fixed Effects Analysis
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The degrees of freedom are equal to the number of observed correlation coef-
ficients minus the number of estimated correlation coefficients. There are 17 
observed complete correlation matrices with 8 * 7/2 = 28 correlation coefficients 
each. One study missed one variable, and has 7 * 6/2 = 21 coefficients, and one 
study missed 2 variables and has 6 * 5/2 = 15 observed coefficients. So, in total 
there are 17 * 28 + 21 + 15 = 512 observed correlation coefficients. The model 
has 28 parameters, which are the correlation coefficients that are assumed to be 
equal across studies. Hence, degrees of freedom are 512 − 28 = 484. This calcu-
lation leads to the correct number of degrees of freedom, but in reality the diag-
onal elements of the observed correlation matrices are also counted as observed 
statistics, and a diagonal matrix is also estimated for each observed matrix (see 
Eq. 2.7 in Chap. 2). Because the number of observed diagonal elements is equal to 
the number of estimated diagonal elements, degrees of freedom do not change by 
evaluating the diagonal elements.

The chi-square is significant (χ2(484) =  1818.87, p  <  0.05), exact fit of the 
Stage 1 model does not hold, indicating that exact homogeneity of the correlation 
coefficients across studies is rejected. The RMSEA of 0.07 however shows accept-
able approximate fit, which could serve as an indication that homogeneity holds 

Table 6.1   Pooled correlation matrix of the research variables from the fixed effects analysis

1 2 3 4 5 6 7 8

1. Faces 1

2. Pictures 0.37 1

3. Facilitation 0.32 0.36 1

4. Sensations 0.33 0.33 0.37 1

5. Changes 0.19 0.23 0.33 0.25 1

6. Blends 0.19 0.20 0.28 0.26 0.49 1

7. Emotional management 0.21 0.24 0.34 0.32 0.36 0.32 1

8. Emotional relations 0.22 0.22 0.32 0.32 0.33 0.35 0.51 1

http://dx.doi.org/10.1007/978-3-319-27174-3_2
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approximately, and the pooled correlation matrix from the fixed effects analysis 
could be used to fit the structural model. Table 6.1 shows the rounded parameter 
estimates in matrix form. These coefficients can be extracted from the output with 
coef(stage1fixed).

6.4 � Random Effects Analysis

Stage 1: A random effects analysis also seems appropriate for these data. If the 
heterogeneity of the correlation coefficients is not substantial, the results will not 
be very different from the fixed effects analysis. The following code will run the 
random effects Stage 1 analysis. As it was not possible to estimate the study-level 
covariance, the random effects type “Diag” is used.

To save space, the raw output is not shown here. The Q-statistic is significant 
(Q(484) =  2061.08), so homogeneity is rejected based on this test. The I2 of the 
correlation coefficients range between 0.19 and 0.88 indicating substantial hetero-
geneity. Table  6.2 shows the pooled correlation matrix from the random effects 
analysis (with the I2 values above the diagonal).

The correlation coefficients are somewhat different from the fixed effects esti-
mates. Another difference is in the asymptotic variance covariance matrix of these 
correlation coefficients that will be used as a weight matrix in the Stage 2 analysis. 
The asymptotic variance from the random effects analysis will be larger, leading to 
larger confidence intervals around the Stage 2 estimates.

Stage 2: I am going to fit the structural model to the pooled random effects 
matrix from Stage 1. Figure  6.1 shows the 3-factor structure that will be fitted 
to these data. The specification of the parameter matrices for the Stage 2 model 
does not differ between the random or fixed approach. In the illustration of the 
path model in Chap. 5, I already introduced the A-matrix with regression coef-
ficients and the S-matrix with variances and covariances. These matrices feature 
in the factor model as well. The A-matrix contains the factor loadings (λ’s in 
Fig. 6.1), and matrix S contains the residual variances (θ’s in Fig. 6.1) as well as 
the factor variances and covariances (ϕ’s in Fig. 6.1). For factor analysis, a third 
matrix is needed, which is a matrix that indicates which variables are observed 
and which variables are latent. This is matrix F. In the current example, we have 
8 observed variables and 3 factors. Therefore both the A-matrix and the S-matrix 
will have 11 rows and 11 columns. The F-matrix will have 8 rows and 11 columns. 
Matrix F is a selection matrix that filters out the latent variables, it is an identity 
matrix with the rows associated with the latent variables removed. In the current 

6.3  Fixed Effects Analysis

http://dx.doi.org/10.1007/978-3-319-27174-3_5
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example, we put the observed variables first, the F matrix can be created using the 
create.Fmatrix() function directly:

Next, we need the A-matrix. I am going to create the A-matrix in steps. First I 
will create a 8 by 3 matrix lambda, which has the factor loadings.

Table 6.2   Pooled correlations (below diagonal) and I2 (above the diagonal) of the research vari-
ables from the random effects analysis

Fig. 6.1   Three factor model on the subscales of the MSCEIT
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Like the matrices in the path model, if a number is specified in the lambda 
matrix, it indicates that the factor loading is not estimated but fixed (fixed at the 
given number, zero in this case). If it is not a number, but for example “0.3 * L11”, 
the parameter is given a starting value of 0.3 and it gets the label “L11”. To cor-
rectly fix and free elements it may help to think of the columns of lambda as 
being associated with the common factors and the rows as being associated with 
the indicators. For example, if indicator number three loads on the first factor 
(or, the third indicator variable regresses on the first factor), we specify a free 
parameter for the element in the third row, first column (“0.3 * L31”). Note that 
the matrix() function fills in the values column wise by default, so we use the 
argument byrow = TRUE. The object lambda looks like shown below.

The A-matrix should be an 11 by 11 matrix, in which the factor loadings are 
in rows 1–8 (associated with the observed variables) and columns 9–11 (associ-
ated with the factors). The rest of the matrix should consist of zeros, as there are 
no other regression coefficients than factor loadings in the model. The zeros can 
be added to the A matrix by adding a 8 by 8 matrix to the left of lambda and con-
sequently a 3 by 11 matrix with zeros below using the cbind() and rbind() 
functions. Next, the as.mxMatrix() function is used to create the matrices 
that are used by OpenMx, which are a matrix indicating the labels of the param-
eters, a matrix with the starting values of the parameters and a matrix indicating 
whether the parameter is freely estimated (indicated by TRUE) or not (indicated by 
FALSE).

6.4  Random Effects Analysis
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The resulting A-matrices look as follows.
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The S-matrix with variances and covariances will also be created in steps. It 
actually consists of a variance covariance matrix of the observed variables and a 
variance covariance matrix of the factors. First, I am going to create the matrix 
with the residual variances of the observed variables. These are represented by θ’s 
in Fig. 6.1. The matrix theta is an 8 by 8 matrix, with freely estimated parameters 
on its diagonal. As there are no residual covariances in the model, all off-diagonal 
elements are fixed at zero. First, I create an 8 by 8 matrix with zero’s, and then I 
add the vector with the information about the residual variance on its diagonal.

The phi matrix contains the variances and covariances of the factors. For iden-
tification, the factor variances are fixed at 1. The correlations between the factors 
are specified off-diagonal.

The function bdiagMat() creates the larger S-matrix from the theta and phi 
matrices. By using the as.MxMatrix() function on this S-matrix, the matri-
ces with labels, starting values and free/fixed elements to be used by OpenMx are 
created.

6.4  Random Effects Analysis
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The resulting S-matrices look like below.

Now the required matrices for the Stage 2 analysis are created, the model can 
be fit to the pooled matrix from Stage 1. As the heterogeneity seems to be substan-
tial, I will fit the model to the Stage 1 matrix from the random effects analysis. 
The tssem() function distils the averaged correlation matrix and the asymptotic 
variance covariance matrix from the Stage 1 object stage1random. As with the 
path model I used the diag.constraints = TRUE and I asked for likelihood 
based confidence intervals around the parameter estimates.



67

The output can be viewed using the summary() function.

The 8 by 8 pooled correlation matrix on which the model is fitted contains 28 
correlation coefficients. The model contains 8 factor loadings, 8 residual variances, 
and 3 factor covariances (factor variances were fixed at 1), which sums up to 19 
parameters. However, because during estimation the 8 diagonal elements of the esti-
mated covariance are constrained to be 1, this reduces the number of parameters 
by 8. Degrees of freedom are therefore equal to 28 −  19 +  8 =  17. The model 
does not fit exactly, as the chi-square is significant (χ2

(17)  =  42.20, p  <  0.05).  

6.4  Random Effects Analysis
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The RMSEA value of 0.012 indicates close approximate fit, and the CFI of 0.99 
also indicated satisfactory fit of the model. The parameter estimates with the confi-
dence intervals could therefore be interpreted. All factor loadings are positive, larger 
than 0.50, and significantly larger than zero. The correlations between the three fac-
tors is substantial (0.62, 0.64 and 0.67), but not so large that some factors may be 
redundant. Figure 6.2 shows the graphical model with the parameter estimates.

As long as there are no mediating variables in the model, an alternative to 
using the argument diag.constraints = TRUE in the tssem2() function 
is to use diag.constraints = FALSE (or to leave out this argument). This 
will lead to the same fit results and parameter estimates, but the way the analy-
sis is performed is different. Without the diagonal constraints, the diagonals are 
totally left out of the analysis (the diagonal entries are not counted as observa-
tions), and no residual variances (Θ) are estimated. Because a correlation matrix is 
analyzed, we know that the total variance of each indicator equals 1. The residual 
variances can therefore be calculated from the matrix with estimated factor load-
ings (Λ) and matrix with estimated factor variances and covariances (Φ) using 
Θ = I − diag(ΛΦΛT), where I is an 8 by 8 identity matrix.
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Fig. 6.2   Factor model on the MSCEIT with parameter estimates and 95 % confidence intervals
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