Chapter 6
Fitting a Factor Model with the Two-Stage
Approach

Abstract In this chapter I will illustrate fitting a factor model within a MASEM
analysis using the metaSEM package. The data come from a meta-analysis per-
formed by Fan et al. (Personality and Individual Differences 48(7):781-785,
2010), who collected correlation matrices of the 8 subscales of a test to measure
“Emotional intelligence” from 19 studies. The preparation of the data, and the
fixed and random effects Stage 1 analyses are explained step by step. Next, the
Stage 2 factor model is fit to the pooled correlation matrix from the random effects
Stage 1 analysis. All steps that have to be taken to perform the analyses are dis-
cussed, as well as the relevant output.

Keywords Meta-analytic structural equation modeling + MetaSEM - Factor
model - Emotional intelligence + MSCEIT - Fixed effects + Random effects

6.1 Introduction

Fan et al. (2010) used meta-analytic factor analysis to investigate the factor struc-
ture of a measurement instrument of emotional intelligence, the Mayer-Salovey-
Caruso Emotional Intelligence Test Version 2.0 (MSCEIT). Emotional intelligence
is defined as a set of skills hypothesized to contribute to the accurate appraisal
and expression of emotion, the effective regulation of emotion, and the use of feel-
ings to motivate, plan, and achieve in one’s life (Salovey and Mayer 1989). The
MSCEIT consists of 8 subscales. Previous research on the factor structure of the
MSCEIT lead to contradictory results, and a MASEM made it possible to compare
the fit of several proposed factor models on the aggregated data across 19 studies.
Based on these analyses, a three-factor model was found to have the best fit. In
this section I will replicate the fixed effects analysis of Fan et al. and additionally
run a random effects MASEM. The data and script to replicate the analyses can be
found on my website (http://suzannejak.nl/masem).
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6.2 Preparing the Data

Fan et al. collected 19 correlation matrices from different studies. Most of the
studies reported all correlations between the 8 scales of the MSCEIT, for some
studies the correlation had to be deduced from other information (see Fan et al.)
and for two studies one and two variables were missing. The correlation matrices
are collected in a text file, “fan_msceit.dat”, which contains the lower triangular of
the matrix in each study. This is a part of the file:
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The function readLowTriMat () can be used to store these matrices in a
list that can serve as input for the analysis. The function takes the filename and
the number of variables per study as arguments, and then creates a list of correla-
tion matrices. If variables are missing in some studies, this should be indicated by
NA on the diagonal. The second matrix shown above does not contain information
about the sixth variable, the NA on the diagonal ensures that the associated rows
and columns will be filtered out during the analysis (so it does not matter what
values are given for the missing correlations). The next two lines of code create
the list of matrices and a vector with the associated sample sizes. The argument
skip = 1 is needed because the first line of the file contains copyright information,
and should be skipped by the function.

cordat <- readLowTriMat (file = "fan msceit.dat", no.var = 8,
skip 1)

N <- c(5000,457,412,655,150,450,138,237,314, 405,
375,239,260,266,209,84,192,523,198)
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The tssem () function is used to estimate the pooled correlation matrix under the

fixed effects model.

stagelfixed <- tsseml (my.df

cordat,

method = "FEM")

summary (stagelfixed)

Leading to this output:

Coefficients.

Estimate
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Goodness-of-fit indices:

Value
Sample size 10564.0000
Chi-square of target model 1818.8709
DF of target model 484.0000
p value of target model 0.0000
Chi-square of independence model 19130.4290
DF of independence model 512.0000
RMSEA 0.0704
SRMR 0.1267
TLI 0.9242
CFI 0.9283
AIC 850.8709
BIC -2665.4894
OpenMx statusl: 0 ("O" or "1": The optimization is considered

fine.
Other values indicate problems.)

The degrees of freedom are equal to the number of observed correlation coef-
ficients minus the number of estimated correlation coefficients. There are 17
observed complete correlation matrices with 8 * 7/2 = 28 correlation coefficients
each. One study missed one variable, and has 7 * 6/2 = 21 coefficients, and one
study missed 2 variables and has 6 * 5/2 = 15 observed coefficients. So, in total
there are 17 * 28 4 21 4 15 = 512 observed correlation coefficients. The model
has 28 parameters, which are the correlation coefficients that are assumed to be
equal across studies. Hence, degrees of freedom are 512 — 28 = 484. This calcu-
lation leads to the correct number of degrees of freedom, but in reality the diag-
onal elements of the observed correlation matrices are also counted as observed
statistics, and a diagonal matrix is also estimated for each observed matrix (see
Eq. 2.7 in Chap. 2). Because the number of observed diagonal elements is equal to
the number of estimated diagonal elements, degrees of freedom do not change by
evaluating the diagonal elements.

The chi-square is significant (x2s4) = 1818.87, p < 0.05), exact fit of the
Stage 1 model does not hold, indicating that exact homogeneity of the correlation
coefficients across studies is rejected. The RMSEA of 0.07 however shows accept-
able approximate fit, which could serve as an indication that homogeneity holds

Table 6.1 Pooled correlation matrix of the research variables from the fixed effects analysis

1 2 3 4 5 6 7 8
1. Faces 1
2. Pictures 0.37 1
3. Facilitation 0.32 0.36 1
4. Sensations 0.33 0.33 0.37 1
5. Changes 0.19 0.23 0.33 0.25 1
6. Blends 0.19 0.20 0.28 0.26 0.49 1
7. Emotional management | 0.21 0.24 0.34 0.32 0.36 0.32 1
8. Emotional relations 0.22 0.22 0.32 0.32 0.33 0.35 0.51 1
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approximately, and the pooled correlation matrix from the fixed effects analysis
could be used to fit the structural model. Table 6.1 shows the rounded parameter
estimates in matrix form. These coefficients can be extracted from the output with
coef (stagelfixed).

6.4 Random Effects Analysis

Stage 1: A random effects analysis also seems appropriate for these data. If the
heterogeneity of the correlation coefficients is not substantial, the results will not
be very different from the fixed effects analysis. The following code will run the
random effects Stage | analysis. As it was not possible to estimate the study-level
covariance, the random effects type “Diag” is used.

stagelrandom <- tsseml (my.df = cordat, n = N, method = "REM",
RE.type = "Diag")

summary (stagelrandom)

To save space, the raw output is not shown here. The Q-statistic is significant
(Qas4) = 2061.08), so homogeneity is rejected based on this test. The I? of the
correlation coefficients range between 0.19 and 0.88 indicating substantial hetero-
geneity. Table 6.2 shows the pooled correlation matrix from the random effects
analysis (with the I? values above the diagonal).

The correlation coefficients are somewhat different from the fixed effects esti-
mates. Another difference is in the asymptotic variance covariance matrix of these
correlation coefficients that will be used as a weight matrix in the Stage 2 analysis.
The asymptotic variance from the random effects analysis will be larger, leading to
larger confidence intervals around the Stage 2 estimates.

Stage 2: I am going to fit the structural model to the pooled random effects
matrix from Stage 1. Figure 6.1 shows the 3-factor structure that will be fitted
to these data. The specification of the parameter matrices for the Stage 2 model
does not differ between the random or fixed approach. In the illustration of the
path model in Chap. 5, I already introduced the A-matrix with regression coef-
ficients and the S-matrix with variances and covariances. These matrices feature
in the factor model as well. The A-matrix contains the factor loadings (\’s in
Fig. 6.1), and matrix S contains the residual variances (08’s in Fig. 6.1) as well as
the factor variances and covariances (¢’s in Fig. 6.1). For factor analysis, a third
matrix is needed, which is a matrix that indicates which variables are observed
and which variables are latent. This is matrix F. In the current example, we have
8 observed variables and 3 factors. Therefore both the A-matrix and the S-matrix
will have 11 rows and 11 columns. The F-matrix will have 8 rows and 11 columns.
Matrix F is a selection matrix that filters out the latent variables, it is an identity
matrix with the rows associated with the latent variables removed. In the current


http://dx.doi.org/10.1007/978-3-319-27174-3_5

62 6 Fitting a Factor Model with the Two-Stage Approach

Table 6.2 Pooled correlations (below diagonal) and 12 (above the diagonal) of the research vari-
ables from the random effects analysis

1 2 3 4 5 6 7 8

1. Faces 1 082 0.68 0.19 0.47 041 041 042
2. Pictures 037 1 0.59 0.37 0.30 046 0.57 0.46
3. Facilitation 031 032 1 0.65 0.78 0.78 0.84 0.68
4. Sensations 0.32 031 033 1 0.77 086 0.74 0.77
5. Changes 0.22 021 027 027 1 0.88 0.86 0.84
6. Blends 020 0.20 0.24 025 045 1 076 0.74

7. Emotional management 0.21 0.21 0.30 0.28 0.28 028 1 0.87

8. Emotional relations 0.22 0.19 0.27 0.31 0.31 032 045 1

¢ 11 .
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emotions
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emotions

Faces Pictures Facilitation Sensations Changes Blends Emotional Emotyonal
managemt. relations
6, 6,, 033 B44 055 665 6, Bgs

Fig. 6.1 Three factor model on the subscales of the MSCEIT

example, we put the observed variables first, the F matrix can be created using the
create.Fmatrix () function directly:

F <- create.Fmatrix(c(1,1,1,1,1,1,1,1,0,0,0), name="F")

Next, we need the A-matrix. [ am going to create the A-matrix in steps. First I
will create a 8 by 3 matrix lambda, which has the factor loadings.
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lambda <- matrix(

c("0.3*L11",0,0,
"0.3*L21",0,0,
"0.3*L31",0,0,
"0.3*L41",0,0,
0,%0.3*L52%, 0,
0,"0.3*L62",0,
0,0,%0.3*L737,
0,0,"0.3*L83"),

nrow=8,

ncol=3,

byrow = TRUE)

Like the matrices in the path model, if a number is specified in the lambda
matrix, it indicates that the factor loading is not estimated but fixed (fixed at the
given number, zero in this case). If it is not a number, but for example “0.3 * L117,
the parameter is given a starting value of 0.3 and it gets the label “L11”. To cor-
rectly fix and free elements it may help to think of the columns of lambda as
being associated with the common factors and the rows as being associated with
the indicators. For example, if indicator number three loads on the first factor
(or, the third indicator variable regresses on the first factor), we specify a free
parameter for the element in the third row, first column (“0.3 * L31”). Note that
the matrix () function fills in the values column wise by default, so we use the
argument byrow = TRUE. The object lambda looks like shown below.

> lambda
[,1] [,2] [,3]
[1,] "0.3*L11™ "O" "o
[2,] "0.3*L21"™ "O" "o
[3,] "0.3*L31™ "O" "o
[4,] "0.3*L41™ "O" "o
[5,1 "O" "0.3*L52" "O"
[6,]1 "O" "0.3*Le2" "O"
[7,1 "Oo" "o" "0.3*L73"
[8,] IIO" llOl' 'l0‘3*L83ll

The A-matrix should be an 11 by 11 matrix, in which the factor loadings are
in rows 1-8 (associated with the observed variables) and columns 9-11 (associ-
ated with the factors). The rest of the matrix should consist of zeros, as there are
no other regression coefficients than factor loadings in the model. The zeros can
be added to the A matrix by adding a 8 by 8 matrix to the left of lambda and con-
sequently a 3 by 11 matrix with zeros below using the cbind () and rbind ()
functions. Next, the as.mxMatrix () function is used to create the matrices
that are used by OpenMx, which are a matrix indicating the labels of the param-
eters, a matrix with the starting values of the parameters and a matrix indicating
whether the parameter is freely estimated (indicated by TRUE) or not (indicated by
FALSE).
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A <- rbind(cbind (matrix (0, ncol=8,nrow=8),lambda),
matrix (0, nrow=3, ncol=11))

A <- as.mxMatrix(A)

# not required but it helps to provide labels
dimnames (A) <- list(
c ("face", "pict", "faci", "sens", "chen", "blen", uemmau, vvemreu’ "El
", "FZ", "F3") ,
c("face","pict","faci", "sens", "chen", "blen", "emma", "emre", "F1
" |1F2ll "Fall))

4 14

The resulting A-matrices look as follows.

FullMatrix 'A'

$labels

face pict faci sens chen blen emma emre F1 F2 F3
face NA NA NA NA NA NA NA NA "L11" NA NA
pict NA NA NA NA NA NA NA NA "L21" NA NA
faci NA NA NA NA NA NA NA NA "L31" NA NA
sens NA NA NA NA NA NA NA NA "L41" NA NA
chen NA NA NA NA NA NA NA NA NA "L52" NA
blen NA NA NA NA NA NA NA NA NA "L62" NA
emma NA NA NA NA NA NA NA NA NA NA "L73"
emre NA NA NA NA NA NA NA NA NA NA "L83"
Fl NA NA NA NA NA NA NA NA NA NA NA
F2 NA NA NA NA NA NA NA NA NA NA NA
F3 NA NA NA NA NA NA NA NA NA NA NA
Svalues

face pict faci sens chen blen emma emre F1 F2 F3
face 0 0 0 0 0 0 0 0 0.3 0.0 0.0
pict 0 0 0 0 0 0 0 0 0.3 0.0 0.0
faci 0 0 0 0 0 0 0 0 0.3 0.00.0
sens 0 0 0 0 0 0 0 0 0.3 0.00.0
chen 0 0 0 0 0 0 0 0 0.0 0.30.0
blen 0 0 0 0 0 0 0 0 0.0 0.3 0.0
emma 0 0 0 0 0 0 0 0 0.0 0.0 0.3
emre 0 0 0 0 0 0 0 0 0.0 0.0 0.3
F1l 0 0 0 0 0 0 0 0 0.0 0.0 0.0
F2 0 0 0 0 0 0 0 0 0.0 0.0 0.0
F3 0 0 0 0 0 0 0 0 0.0 0.0 0.0
Sfree

face pict faci sens chen blen emma emre Fl F2 F3

face FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
pict FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
faci FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
sens FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE
chen FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
blen FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
emma FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
emre FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE
Fl FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
F2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
F3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

$lbound: No lower bounds assigned.

Subound: No upper bounds assigned.
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The S-matrix with variances and covariances will also be created in steps. It
actually consists of a variance covariance matrix of the observed variables and a
variance covariance matrix of the factors. First, I am going to create the matrix
with the residual variances of the observed variables. These are represented by 6’s
in Fig. 6.1. The matrix theta is an 8 by 8 matrix, with freely estimated parameters
on its diagonal. As there are no residual covariances in the model, all off-diagonal
elements are fixed at zero. First, I create an 8 by 8 matrix with zero’s, and then I
add the vector with the information about the residual variance on its diagonal.

theta <- matrix(0,nrow = 8,ncol = 8)
diag(theta) <- c("0.1*tl11"™,"0.1*t22","0.1*t33","0.1*t44",
"0.1*t55","0.1*t66","0.1*t77","0.1*t88")

The phi matrix contains the variances and covariances of the factors. For iden-
tification, the factor variances are fixed at 1. The correlations between the factors
are specified off-diagonal.

phi <- matrix(
c(l,"0.1*phi21","0.1*phi31",
"0.1*phi21",1,"0.1*phi32",
"0.1*phi31","0.1*phi32",1),
nrow = 3,
ncol = 3)

The function bdiagMat () creates the larger S-matrix from the theta and phi
matrices. By using the as.MxMatrix () function on this S-matrix, the matri-
ces with labels, starting values and free/fixed elements to be used by OpenMx are
created.

S <- bdiagMat (list (theta, phi))
S <- as.mxMatrix(S)

dimnames (S) <- list(
c("face","pict","faci","sens", "chen", "blen", "emma", "emre", "F1
W, 2w, Wz
c("face","pict","faci", "sens", "chen", "blen", "emma", "emre", "F1
"’ llF2", "FB") )
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The resulting S-matrices look like below.

FullMatrix 'S’

Slabels

face pict faci sens chen blen emma emre F1 F2 F3
face "tll"™ NA NA NA NA NA NA NA NA NA NA
pict NA "t22" NA NA NA NA NA NA NA NA NA
faci NA NA "t33" NA NA NA NA NA NA NA NA
sens NA NA NA "t44" NA NA NA NA NA NA NA
chen NA NA NA NA "t55" NA NA NA NA NA NA
blen NA NA NA NA NA "t66" NA NA NA NA NA
emma NA NA NA NA NA NA "t77" NA NA NA NA
emre NA NA NA NA NA NA NA "t88" NA NA NA
Fl NA NA NA NA NA NA NA NA NA "phi2l1l" "phi31"
F2 NA NA NA NA NA NA NA NA "phi2l" NA "phi32"
F3 NA NA NA NA NA NA NA NA "phi31l" "phi32" NA
$values

face pict faci sens chen blen emma emre F1 F2 F3
face 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
pict 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
faci 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
sens 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
chen 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0
blen 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0
emma 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0
emre 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
Fl 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.1 0.1
F2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 1.0 0.1
F3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 1.0
Sfree

face pict faci sens chen blen emma emre Fl F2 F3

face TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
pict FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
faci FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
sens FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
chen FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
blen FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE
emma FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE
emre FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
Fl FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
F2 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE TRUE
F3 FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE FALSE

$lbound: No lower bounds assigned.

Subound: No upper bounds assigned.

Now the required matrices for the Stage 2 analysis are created, the model can
be fit to the pooled matrix from Stage 1. As the heterogeneity seems to be substan-
tial, I will fit the model to the Stage 1 matrix from the random effects analysis.
The tssem () function distils the averaged correlation matrix and the asymptotic
variance covariance matrix from the Stage 1 object stagelrandom. As with the
path model I used the diag.constraints = TRUE and I asked for likelihood
based confidence intervals around the parameter estimates.

stage2 random <- tssem2 (stagelrandom, Amatrix=A, Smatrix=S,
Fmatrix=F, diag.constraints=TRUE, intervals="LB")



6.4 Random Effects Analysis 67

The output can be viewed using the summary () function.

95% confidence intervals: Likelihood-based statistic
Coefficients:
Estimate Std.Error 1lbound ubound

L11 0.53025 NA 0.49697 0.56407
L21 0.51982 NA 0.48654 0.55357
L31 0.57671 NA 0.53907 0.61460
L41 0.58797 NA 0.55268 0.62363
L52 0.67185 NA 0.61658 0.72768
162 0.63164 NA 0.57877 0.68495
L73 0.65046 NA 0.60409 0.69766
L83 0.68395 NA 0.63626 0.73287
tll 0.71883 NA 0.68182 0.75302
t22 0.72979 NA 0.69356 0.76327
£33 0.66741 NA 0.62227 0.70940
td44 0.65429 NA 0.61108 0.69455
t55 0.54862 NA 0.47047 0.61983
t66 0.60103 NA 0.53084 0.66503
t77 0.57691 NA 0.51325 0.63508
t88 0.53222 NA 0.46289 0.59518
phi2l 0.60974 NA 0.55321 0.67299
phi3l 0.62987 NA 0.57794 0.68595
phi32 0.66528 NA 0.59029 0.74944
Goodness-of-fit indices:

Value
Sample size 10564.0000
Chi-square of target model 42.2013
DF of target model 17.0000
p value of target model 0.0006
Number of constraints imposed on "Smatrix" 8.0000
DF manually adjusted 0.0000
Chi-square of independence model 2486.1537
DF of independence model 28.0000
RMSEA 0.0118
SRMR 0.0257
TLI 0.9831
CFI 0.9897
AIC 8.2013
BIC -115.3073
OpenMx statusl: 0 ("O" or "1": The optimization is considered
fine.

Other values indicate problems.)

The 8 by 8 pooled correlation matrix on which the model is fitted contains 28
correlation coefficients. The model contains 8 factor loadings, 8 residual variances,
and 3 factor covariances (factor variances were fixed at 1), which sums up to 19
parameters. However, because during estimation the 8 diagonal elements of the esti-
mated covariance are constrained to be 1, this reduces the number of parameters
by 8. Degrees of freedom are therefore equal to 28 — 19 + 8 = 17. The model
does not fit exactly, as the chi-square is significant (x%17) = 42.20, p < 0.05).
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Fig. 6.2 Factor model on the MSCEIT with parameter estimates and 95 % confidence intervals

The RMSEA value of 0.012 indicates close approximate fit, and the CFI of 0.99
also indicated satisfactory fit of the model. The parameter estimates with the confi-
dence intervals could therefore be interpreted. All factor loadings are positive, larger
than 0.50, and significantly larger than zero. The correlations between the three fac-
tors is substantial (0.62, 0.64 and 0.67), but not so large that some factors may be
redundant. Figure 6.2 shows the graphical model with the parameter estimates.

As long as there are no mediating variables in the model, an alternative to
using the argument diag.constraints = TRUE in the tssem?2 () function
is to use diag.constraints = FALSE (or to leave out this argument). This
will lead to the same fit results and parameter estimates, but the way the analy-
sis is performed is different. Without the diagonal constraints, the diagonals are
totally left out of the analysis (the diagonal entries are not counted as observa-
tions), and no residual variances (®) are estimated. Because a correlation matrix is
analyzed, we know that the total variance of each indicator equals 1. The residual
variances can therefore be calculated from the matrix with estimated factor load-
ings (A) and matrix with estimated factor variances and covariances (®) using
O =1 — diag(A®AT), where I is an 8 by 8 identity matrix.
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