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Abstract The process of performing meta-analytic structural equation mod-
eling (MASEM) consists of two stages. First, correlation coefficients that have 
been gathered from studies have to be combined to obtain a pooled correlation 
matrix of the variables of interest. Next, a structural equation model can be fit-
ted on this pooled matrix. Several methods are proposed to pool correlation coef-
ficients. In this chapter, the univariate approach, the generalized least squares 
(GLS) approach, and the Two Stage SEM approach are introduced. The univariate 
approaches do not take into account that the correlation coefficients may be cor-
related within studies. The GLS approach has the limitation that the Stage 2 model 
has to be a regression model. Of the available approaches, the Two Stage SEM 
approach is favoured for its flexibility and good statistical performance in com-
parison with the other approaches.

Keywords Meta-analytic structural equation modeling · Univariate meta-analysis ·  
Multivariate meta-analysis · GLS-approach · Two-stage structural equation 
modeling · MASEM

2.1  Introduction

As shown in Chap. 1, a structural equation model can be fitted to the covariance 
or correlation matrix of the variables of interest, without requirement of the raw 
data. Therefore, if articles report the correlations between the research variables 
(or information that can be used to estimate the correlation), the results can be 
used in a meta-analysis. MASEM combines structural equation modeling with 
meta-analysis by fitting a structural equation model on a meta-analyzed covariance 
or correlation matrix. As the primary studies in a meta-analysis often involve vari-
ables that are measured in different scales, MASEM is commonly conducted using 
a pooled correlation rather than covariance matrix. In the remainder of this book 
I will therefore focus on correlation matrices (but see Beretvas and Furlow 2006; 
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Cheung and Chan 2009). MASEM typically consists of two stages (Viswesvaran 
and Ones 1995). In the first stage, correlation coefficients are tested for homoge-
neity across studies and combined together to form a pooled correlation matrix. 
In the second stage, a structural equation model is fitted to the pooled correlation 
matrix. In the next sections I outline the different approaches to pool correlation 
coefficients under the assumption that the correlations are homogenous across 
studies (fixed effects approaches). Heterogeneity of correlation coefficients and 
random effects approaches are discussed in Chap. 3.

2.2  Univariate Methods

In the univariate approaches, the correlation coefficients are pooled separately 
across studies based on bivariate information only. Dependency of correlation 
coefficients within studies is not taken into account (as opposed to multivariate 
methods, described in the next section). In the univariate approaches, a population 
value is estimated for each correlation coefficient separately. For one correlation 
coefficient, for each study i, the correlation coefficient is weighted by the inverse 
of the estimated sampling variance (the squared standard error), vi. The sampling 
variance of the correlation between variables A and B is given by:

where ni is the sample size in study i, and the observed correlation ri_AB can be 
plugged in for the unknown population correlation ρi_AB. By taking the average of 
the weighted correlation coefficients across the k studies, one obtains the synthe-
sized population correlation estimate:

Weighting by the inverse sampling variance ensures that more weight is given to 
studies with larger sample size (and thus smaller sampling variance). Because the 
sampling variance of a correlation coefficient depends on the absolute value of the 
correlation coefficient, some researchers (e.g. Hedges and Olkin 1985) proposed 
to use Fisher’s z-transformation on the correlation coefficients before synthesizing 
the values. The estimated sampling variance vi of a transformed correlation z in a 
study i is equal to 1/(ni − 3), where ni is the sample size in study i. After obtaining 
the pooled z-value, it can be back-transformed to an r-value for interpretation.

There is no consensus on whether it is better to use the untransformed correla-
tion coefficient r or the transformed coefficient z in meta-analysis (see Corey et al. 
1998). Hunter and Schmidt (1990) argued that averaging r leads to better estimates 
of the population coefficient than averaging z. However, several simulation studies 
(Cheung and Chan 2005; Furlow and Beretvas 2005; Hafdahl and Williams 2009) 
showed that differences between the two methods were generally very small, but 

(2.1)vi_AB = (1−ρi_AB
2)2/ni,

(2.2)ρ̂ =

∑
k

i=1
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ri_AB
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when differences are present, the z approach tends to do better. If a random effects 
model is assumed however, Schulze (2004) recommends r over z.

If the correlation coefficients are pooled across studies (using the r or z 
method), one pooled correlation matrix can be constructed from the separate coef-
ficients. The hypothesized structural model is then fit to this matrix, as if it was an 
observed matrix in a sample.

Apart from the problem that the correlations are treated as independent from 
each other within a study, the univariate methods have more issues (Cheung and 
Chan 2005). Because not all studies may include all variables, some Stage 1 corre-
lation coefficients will be based on more studies than others. This leads to several 
problems. First, it may lead to non-positive definite correlation matrices (Wothke 
1993), as different elements of the matrix are based on different samples. Non-
positive definite matrices cannot be analysed with structural equation modeling. 
Second, correlation coefficients that are based on less studies are estimated with 
less precision and should get less weight in the analysis, which is ignored in the 
standard approaches. Third, if different sample sizes are associated with different 
correlation coefficients, it is not clear which sample size has to be used in Stage 2. 
One could for example use the mean sample size, the median sample size or the 
total sample size, leading to different results regarding fit indices and statistical 
tests in Stage 2. Due to these difficulties, univariate methods are not recommended 
for MASEM (Becker 2000; Cheung and Chan 2005).

2.3  Multivariate Methods

The two best known multivariate methods for meta-analysis are the generalized 
least squares (GLS) method (Becker 1992, 1995, 2009) and the Two-Stage SEM 
method (Cheung and Chan 2005). Both will be explained in the next sections.

2.3.1  The GLS Method

Becker (1992, 1995, 2009) proposed using generalized least squares estimation 
to pool correlation matrices, taking the dependencies between correlations into 
account. This means that not only the sampling variances in each study are used to 
weight the correlation coefficients, but also the sampling covariances. The estimate 
of the population variance of a correlation coefficient was given in Eq. (2.1). The 
population covariance between two correlation coefficients, let’s say between vari-
ables A and B and between the variables C and D, is given by the long expression:

(2.3)

cov (ρi_AB, ρi_CD) = (0.5ρi_ABρi_BC(ρi_AC
2
+ ρi_AD

2
+ ρi_BC

2
+ ρi_BD

2)

+ ρi_ACρi_BD + ρi_ADρi_BC − (ρi_ABρi_ACρi_AD + ρi_ABρi_BCρi_BD

+ ρi_ACρi_BCρi_CD + ρi_ADρi_BDρi_CD))/ni,

2.2 Univariate Methods
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where ρi indicates a population correlation value in study i and ni is the sample size 
in study i (Olkin and Siotani 1976). As the population parameters ρi are unknown, 
the estimates of the covariances between correlations can be obtained by plugging 
in sample correlations for the corresponding ρi’s in Eq. (2.3). However, because the 
estimate from a single study is not very stable, it is recommended to use pooled esti-
mates of ρ, by using the (weighted) mean correlation across samples (Becker and 
Fahrbach 1994; Cheung 2000; Furlow and Beretvas 2005). These pooled estimates 
should then also be used to obtain the variances of the correlation coefficients (by 
plugging in the pooled estimate in Eq. 2.1). This way, a covariance matrix of the cor-
relation coefficients, denoted Vi is available for each study in the meta-analysis. The 
dimensions of Vi may differ across studies. If a study includes three variables, and 
reports the three correlations between the variables, Vi has three rows and three col-
umns. The values of Vi are treated as known (as opposed to estimated) in the GLS 
approach. The Vi matrices for each study are put together in one large matrix, V, 
which is a block diagonal matrix, with the Vi matrix for each study on its diagonal:

V is a symmetrical matrix with numbers of rows and columns equal to the total 
number of observed correlation coefficients across the studies.

For performing the multivariate meta-analysis using the GLS-approach, two 
more matrices are needed: A vector with the observed correlations in all the stud-
ies, r, and a matrix with zeros and ones that is used to indicate which correlation 
coefficients are present in each study. The vector with the observed correlations 
in all studies can be created by stacking the observed correlations in each study 
in a column vector. The length of this vector will be equal to the total number of 
correlations in all studies. If all k studies included all p variables, r will be a pk by 
1 vector. Most often, not all studies include all research variables, in which case 
a selection matrix, X, is needed. For a study i, which for example included vari-
ables A and B but not C (and thus reports ri_AB, but not ri_AC and ri_BC), a selection 
matrix is created by constructing a 3 by 3 identity matrix (a matrix with ones on 
the diagonal and zeros off-diagonal) and removing the row of the missing correla-
tion. In this study the selection matrix will thus look like this:

and in a study which included all three correlations, the selection matrix will be an 
identity matrix:

V =





V1 0 0 0

0 V2 · · · 0

0
...

. . .
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Doing this for all k studies, leads to k small matrices with three columns and num-
ber of rows equal to the number of present correlations. These matrices are then 
stacked to create matrix X, which has three columns and number of rows equal to 
the sum of all correlation coefficients across studies. That is, it has the same num-
ber of rows as the stacked vector of observed correlations, r. Using matrix algebra 
with these three matrices, the estimates of the pooled correlation coefficients can 
be obtained:

where ρ̂ is a p-dimensional column vector with the estimates of the population 
correlation coefficients, as well as the asymptotic covariance matrix of the param-
eter estimates, VGLS:

The only structural model that can be evaluated directly with the GLS method is 
the regression model. This is done by creating a matrix with the estimated pooled 
correlations of the independent variables, say RINDEP, and a vector with estimated 
pooled correlations of the independent variables with the dependent variables, say 
RDEP, and using the following matrix equation to obtain the vector of regression 
coefficients B:

This approach is very straightforward (if you use a program to do the matrix alge-
bra), but it is a major limitation that regression models are the only models that 
can be estimated this way. In order to fit path models or factor models, one has to 
use a SEM-program and use the pooled correlation coefficients as input to the pro-
gram. Treating the pooled correlation matrix as an observed matrix shares prob-
lems with the univariate methods, it is unclear which sample size has to be used, 
and potential differences in precision of correlation coefficients is not taken into 
account. An alternative way to fit a structural equation model on the pooled cor-
relation matrix is to use the VGLS matrix as a weight matrix in WLS estimation, 
similar to the TSSEM, which is explained in the next section. For a detailed and 
accessible description of the GLS method see Becker (1992) and Card (2012).

2.3.2  Two Stage Structural Equation Modeling (TSSEM)

The TSSEM method was proposed by Cheung and Chan (2005). With TSSEM, 
multigroup structural equation modeling is used to pool the correlation coeffi-
cients at Stage 1. In Stage 2, the structural model is fitted to the pooled correlation 
matrix, using weighted least squares (WLS) estimation. The weight matrix in the 
WLS procedure is the inversed matrix with asymptotic variances and covariances 
of the pooled correlation coefficients from Stage 1. This ensures that correlation 

(2.4)ρ̂ = (XT
V
−1

X)−1
X
T
V
−1
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(2.5)VGLS =

(
X
T
V
−1

X

)−1

.

(2.6)B = RINDEP
−1

RDEP.

2.3 Multivariate Methods
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coefficients that are estimated with more precision (based on more studies) in 
Stage 1 get more weight in the estimation of model parameters in Stage 2. The 
precision of a Stage 1 estimate depends on the number and the size of the studies 
that reported the specific correlation coefficient.

Stage 1: Pooling correlation matrices Let Ri be the pi × pi sample correlation 
matrix and pi be the number of observed variables in the ith study. Not all studies 
necessarily include all variables. For example, in a meta-analysis of three variables 
A, B and C, the correlation matrices for the first three studies may look like this:

Here, Study 1 contains all variables, Study 2 misses Variable C, and Study 3 
misses Variable A. Similar to the GLS approach, selection matrices are needed to 
indicate which study included which correlation coefficients. Note however, that 
in TSSEM, the selection matrices filter out missing variables as opposed to miss-
ing correlations in the GLS-approach, and is thus less flexible in handling missing 
correlation coefficients (see Chap. 4).

In TSSEM the selection matrices are not stacked into one large matrix. For the 
three mentioned studies, the selection matrices are identity matrices with the rows 
of missing variables excluded:

Next, multigroup structural equation modelling is used to estimate the popula-
tion correlation matrix R of all p variables (p is three in the example above). Each 
study is then viewed as a group. The model for each group i (study) is:

In this model, R is the p × p population correlation matrix with fixed 1’s on its 
diagonal, matrix Xi is the pi × p selection matrix that accommodates smaller cor-
relation matrices from studies with missing variables (pi < p), and Di is a pi × pi 
diagonal matrix that accounts for differences in scaling of the variables across the 
studies. Correct parameter estimates can be obtained using maximum likelihood 
estimation, optimizing the sum of the likelihood functions in all the studies:

R1 =




1

r1_AB 1

r1_AC r1_BC 1



, R2 =

�
1

r2_AB 1

�
, and R3 =

�
1

r3_BC 1

�
.
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1 0 0

0 1 0

0 0 1
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�
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�
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�
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�
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(2.7)�i = Di

(
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T
i

)
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(2.8)FML =

k∑

i=1

Ni

N
FMLi ,
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where Ni is the sample size in study i, N = N1 + N2 + ··· + Nk, and with FMLi for 
each study as given in Eq. (1.3). Describing the model in Eq. (2.7) in words, it 
means that a model is fitted to the correlation matrices of all studies, with the 
restriction that the population correlations are equal across studies. The diagonal 
Di matrices do not have a particular meaning, other than that they reflect differ-
ences in variances across the studies. They are needed because the diagonal of R is 
fixed at 1, but the diagonals of Σi don’t necessarily have to equal 1 due to differ-
ences in sample variances.1 Fitting the model from Eq. (2.7) with a SEM program 
leads to estimates of the population correlation coefficients, as well as the associ-
ated asymptotic variance covariance matrix.

A chi-square measure of fit for the model in Eq. (2.7) is available by comparing 
its minimum FML value with the minimum FML value of a saturated model that is 
obtained by relaxing the restriction that all correlation coefficients are equal across 
studies. If a separate Ri is estimated for each study, the selection matrices Xi are 
not needed anymore. The model for a specific study then is:

The difference between the resulting minimum FML values of the models in 
Eqs. (2.9) and (2.7), multiplied by the total sample size minus the number of stud-
ies, has a chi-square distribution with degrees of freedom equal to the difference in 
numbers of free parameters. If the chi-square value of this likelihood ratio test is 
significant then the hypothesis of homogeneity must be rejected (see Chap. 3), and 
the fixed effects Stage 2 model should not be fitted to the pooled Stage 1 matrix. In 
the remainder of this chapter we assume that homogeneity holds.

Stage 2: Fitting structural equation models Cheung and Chan (2005) proposed 
to use WLS estimation to fit structural equation models to the pooled correlation 
matrix R that is estimated in Stage 1. Fitting the Stage 1 model provides estimates 
of the population correlation coefficients in R as well as the asymptotic variances 
and covariances of these estimates, V. In Stage 2, hypothesized structural equation 
models can be fitted to R by minimizing the weighted least squares fit function 
(also known as the asymptotically distribution free fit function; Browne 1984):

where r is a column vector with the unique elements in R, rMODEL is a col-
umn vector with the unique elements in the model implied correlation matrix 
(RMODEL), and V−1 is the inversed matrix of asymptotic variances and covariances 
that is used as the weight matrix. For example, in order to fit a factor model with q 
factors, one would specify RMODEL as

1I put an example of an analysis with two groups (studies) on my website (http://suzannejak.nl/ 
masem) to illustrate the function of the D-matrices.

(2.9)�i = DiRiDi.

(2.10)FWLS = (r − rMODEL)
T
V
−1(r − rMODEL),

(2.11)RMODEL = ���T
+�,

2.3 Multivariate Methods
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where Φ is a q by q covariance matrix of common factors, Θ is a p by p (diago-
nal) matrix with residual variances, and Λ is a p by q matrix with factor loadings. 
Minimizing the WLS function leads to correct parameter estimates with appropri-
ate standard errors and a WLS based chi-square test statistic TWLS (Cheung and 
Chan 2005; Oort and Jak 2015).

One can also use the pooled correlation matrix and asymptotic covariance 
matrix from the GLS approach to fit the Stage 2 model with WLS estimation. 
Cheung and Chan (2005) compared the TSSEM method with the GLS method and 
the univariate methods. The GLS method in their study was based on Eq. (2.3), so 
they used the individual study correlation coefficients and not the pooled correla-
tion coefficients as recommended by Becker and Fahrbach (1994) to calculate the 
sampling weights. The simulation research showed that the GLS method rejects 
homogeneity of correlation matrices too often and leads to biased parameter esti-
mates at Stage 2. The univariate methods lead to inflated Type 1 errors, while the 
TSSEM method leads to unbiased parameter estimates and false positive rates 
close to the expected rates. The statistical power to reject an underspecified factor 
model was extremely high for all four methods. The TSSEM method overall came 
out as best out of these methods. Software to apply TSSEM is readily available in 
the R-Package metaSEM (Cheung 2015), which relies on the OpenMx package 
(Boker et al. 2011). This package can also be used for the GLS approach and the 
univariate approaches. More information about the software that can be used to 
perform MASEM can be found in Chap. 4.
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