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Abstract Meta-analysis is a prominent statistical tool in many research disci-
plines. It is a statistical method to combine the effect sizes of separate independ-
ent studies, in order to draw overall conclusions based on the pooled results. 
Structural equation modeling is a multivariate technique to fit path models, fac-
tor models, and combinations of these to data. By combining meta-analysis and 
structural equation modeling, information from multiple studies can be used to 
test a single model that explains the relationships between a set of variables or to 
compare several models that are supported by different studies or theories. This 
chapter provides a short introduction to meta-analysis and structural equation 
modeling.

Keywords Meta-analysis · Introduction · Structural equation modeling · Path 
model · Factor model · Model fit

1.1  What Is Meta-Analysis?

The term “meta-analysis” was introduced by Glass (1976), who differentiated 
between primary analysis, secondary analysis, and meta-analysis. However, the 
techniques on which meta-analysis is based were developed much earlier (see 
Chalmers et al. 2002; O’Rourke 2007). In the terminology of Glass, primary anal-
ysis involves analyzing the data of a study for the first time. Secondary analysis 
involves the analysis of data that have been analyzed before, for example to check 
the results of previous analyses or to test new hypotheses. Meta-analysis then 
involves integration of the findings from several independent studies, by statisti-
cally combining the results of the separate studies. One of the first meta-analyses 
in the social sciences was performed by Smith and Glass (1977), who integrated 
the findings of 375 studies that investigated whether psychotherapy was beneficial 
for patients, a topic that was much debated at the time. By using a quantitative 
approach to standardizing and averaging treatment/control differences across all 
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the studies, it appeared that overall, psychotherapy was effective, and that there 
is little difference in effectiveness across the different types of therapy. Around 
the same time as Smith and Glass performed this meta-analysis, other researchers 
developed similar techniques to synthesize research findings (Rosenthal and Rubin 
1978, 1982; Schmidt and Hunter 1977), which are now all referred to as meta-
analysis techniques. Meta-analysis is used to integrate findings in many fields, 
such as psychology, economy, education, medicine, and criminology.

1.1.1  Issues in Meta-Analysis

Compared with primary analysis, meta-analysis has important advantages. 
Because more data is used in a meta-analysis, the precision and accuracy of esti-
mates can be improved. Increased precision and accuracy also leads to greater sta-
tistical power to detect effects.

Despite the obvious positive contributions of meta-analysis, the technique is 
also criticized. Sharpe (1997) identified the three main validity threats to meta-
analysis: mixing of dissimilar studies, publication bias, and inclusion of poor qual-
ity studies. The mixing of dissimilar studies, also referred to as “mixing apples 
and oranges” problem, entails the issue that average effect sizes are not meaning-
ful if they are aggregated over a very diverse range of studies. Card (2012) coun-
ters this critique by stating that it depends on the inference goal whether it is 
appropriate to include a broad range of studies in the meta-analysis (e.g. if one is 
interested in fruit, it is appropriate to include studies about apples, oranges, straw-
berries, banana’s etc.). Moreover, a meta-analysis does not only entail aggregation 
across the total pool of studies, but can also be used to compare different subsets 
of studies using moderator analysis. The second threat, publication bias, is also 
referred to as the “file drawer” problem, and points to the problem that some stud-
ies that have been conducted may not be published, and are therefore not included 
in the meta-analysis. Publication bias is a real source of bias, because the non-
published studies are probably those that found non-significant or unexpected 
results. Several methods exist that aim at avoiding, detecting and/or correcting for 
publication bias (see Rothstein et al. 2005; van Assen et al. 2014) but there is no 
consensus on the best ways to deal with the problem. The third issue, the inclusion 
of poor quality studies in the meta-analysis is also denoted as the “garbage in, gar-
bage out” problem. Although it may seem logical to leave studies of poor quality 
out of the meta-analysis a priori, it is recommended to code the relevant features 
of the included primary studies that are required for high quality (e.g. randomiza-
tion in an experiment), so that later on one can investigate whether these quality-
conditions are related to the relevant effect sizes (Valentine 2009).

Cooper and Hedges (2009) distinguish six phases of research synthesis: 
Problem formulation, literature search, data evaluation, data analysis, interpreta-
tion of the results and presentation of the results. In this book we focus on the data 
analysis phase, referred to as meta-analysis. The other parts of research synthesis 
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are discussed in for example Borenstein et al. (2009), Card (2012), Cooper et al. 
(2009), and Lipsey and Wilson (2001).

1.1.2  Statistical Analysis

Usually, the units of analysis in a meta-analysis are not the raw data, but sum-
mary statistics (effect size statistics) that are reported in the individual studies. The 
type of effect size statistic that is investigated depends on the nature of the vari-
ables involved. For example, if the interest is in differences between a treatment 
and control group on some continuous outcome variable, the meta-analysis may 
focus on the standardized mean difference (like Cohen’s d or Hedges’ g). If the 
hypothesis is about the association between two continuous variables, the (z-trans-
formed) product moment correlation coefficient may be the focus of the analysis. 
If the interest is in association between two dichotomous variables, the (logged) 
odds ratio is often an appropriate effect size statistic. Once the effect size statistics 
of interest are gathered or reconstructed from the included studies, the statistical 
analysis can start, using fixed effects or random effects analysis.

The fixed effects approach is useful for conditional inference, which means that 
the conclusions cannot be generalized beyond the studies included in the analysis 
(Hedges and Vevea 1998). In the most common fixed effects model, it is assumed 
that the effect size statistics gathered from the studies are estimates of one popula-
tion effect size, and differences between studies are solely the result of sampling 
error. The analysis focuses on obtaining a weighted mean effect size across stud-
ies. The weights are based on the sampling variance in the studies, so that stud-
ies with larger sampling variance (and smaller sample size) contribute less to the 
weighted mean effect size (which is the estimate of the population effect size).

The random effects approach facilitates inferences to studies beyond the ones 
included in the particular meta-analysis (unconditional inference). The random 
effects approach assumes that the population effect sizes vary from study to study, 
and that the studies in the meta-analysis are a random sample of studies that could 
have been included in the analysis. Differences in effect sizes between studies are 
hypothesized to be due to sampling error and other causes, such as differences in 
characteristics of the respondents or operationalization of the variables in the dif-
ferent studies. The random effects analysis leads to an estimate of the mean and 
variance of the distribution of effect sizes in the population.

Apart from the average effect size, it is often also of interest if and why stud-
ies differ systematically in their effect size statistics. Therefore, researchers often 
code study characteristics (e.g. average age of respondents, measurement instru-
ments used, country in which the study was conducted), and investigate whether 
the effect sizes are associated with these study-level variables. This is called mod-
erator analysis, and is used to investigate whether the association between the vari-
ables of interest is moderated by study characteristics. These moderator variables 
may explain variability in the effect sizes. If all variability is explained, a fixed 
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effects model may hold, implying that conditional on the moderator variables, all 
remaining variability is sampling variability. If effect sizes are regressed on study 
level variables in a random effects approach, reflecting that the moderator vari-
ables do not explain all variability across the studies, this is called mixed effects 
meta-analysis.

To be consistent with recent terminology, I use the term “fixed effects model” 
for all models that do not estimate between-studies variance. This terminology 
is common in meta-analysis, but not in line with the statistical literature, where 
the fixed effects model denotes the model in which heterogeneity is explained by 
study-level variables. The model that assumes homogeneity of effect sizes, without 
study-level variables, is also called the “equal effects model” (Laird and Mosteller 
1990). I use the term “fixed effects model” for both these models, and will explic-
itly state when study-level variables are included in the model.

1.2  What Is SEM?

Structural equation modeling (SEM) has roots in two very different techniques 
developed in two very different fields. Path analysis with its graphical represen-
tations of effects and effect decomposition comes from genetics research, where 
Wright (1920) proposed a method to predict heritability of the piebald pattern 
of guinea-pigs. Factor analysis is even older, with an early paper by Spearman 
(1904), and was developed in research on intelligence, to explain correlations 
between various ability tests (Spearman 1928). Jöreskog (1973) coined the name 
LISREL (LInear Structural RELations) for the framework that integrates the tech-
niques of path analysis and factor analysis, as well as for the computer program 
that made the technique available to researchers.

1.2.1  Path Analysis

SEM is a confirmatory technique, which means that a model is formulated based 
on theory, and it is judged whether this model should be rejected by fitting the 
model to data. If multivariate normality of the data holds, the variance covariance 
matrix of the variables of interest and the sample size are sufficient to fit models 
to the data. This is a very convenient aspect of SEM, because it means that as long 
as authors report correlations and standard deviations of their research variables in 
their articles, other researchers are able to replicate the analyses, and to test differ-
ent hypotheses on these data. In order to test hypotheses, these hypotheses have to 
be translated in a statistical model. The statistical model can be formulated in dif-
ferent ways, for example using a graphical display. The graphical displays that are 
used for structural equation models use squares to represent observed variables, 
ellipses to represent latent variables, one-headed arrows to represent regression 
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coefficients, and two-headed arrows to represent covariances. Consider the path 
model in Fig. 1.1, in which the effect of negative and positive relations with teach-
ers is hypothesized to affect student achievement through student engagement.

The four observed variables are depicted in squares. Student engagement 
is regressed on Positive and Negative relations, and Student Achievement is 
regressed on Student Engagement. There are no direct effects of Positive and 
Negative relations on Student Achievement, reflecting the hypothesis that these 
effects are fully mediated by Student Engagement. In this model, Engagement and 
Achievement are called endogenous variables, reflecting that other variables are 
hypothesized to have an effect on them. Variables that are not regressed on other 
variables are called exogenous variables. Positive and Negative relations are exog-
enous variables in this model. The two exogenous variables are assumed to covary, 
indicated by the two-headed arrow between them. There are also two-headed 
arrows pointing from the variable to itself, reflecting the variance of the variable 
(a covariance with itself is equal to a variance). The endogenous variables have a 
latent variable with variance pointing to it. This latent variable is called a residual 
factor, and could be viewed as a container variable representing all other variables 
that also explain variance in the endogenous variable, but that are not included in 
the model. The regression coefficient of the variable on the residual factor is not 
estimated but fixed at 1 for identification of the model. The variance of the resid-
ual factor represents the unexplained variance of the endogenous variable. So, part 
of the variance in Student Engagement is explained by Positive and Negative rela-
tions, and the remaining variance is residual variance (or, unexplained variance). 
Similarly, part of the variance in Student Achievement is explained by Student 
Engagement, and the remaining variance is residual variance. For the exogenous 
variables, actually, all variance is unexplained. So it seems logical to depict two 
more residual factors with variance pointing to Negative and Positive relations, 

Fig. 1.1  Hypothesized path model in which the effects of Positive and Negative relations on 
achievement is fully mediated by engagement

1.2 What Is SEM?
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instead of the double headed arrow pointing to the variables themselves. Indeed, 
this would be correct, but to keep the graphs simple they are often not depicted. 
Actually, the residual factor pointing to an endogenous variables is also often not 
fully depicted, but represented by a small one-sided arrow.

Attached to the arrows in the graphical display, the Greek symbols represent 
the model parameters. In a path model, the direct effects are often denoted by β 
and variances and covariances by ψ. For example, β43 represents the regression 
coefficient of Variable 4 on Variable 3, ψ44 represents the residual variance of 
Variable 4, and ψ21 represents the covariance between Variable 1 and Variable 2. 
The model parameters are collected in matrices. A path model on observed vari-
ables can be formulated using two matrices with parameters, matrix B and matrix 
�, and an identity matrix, I. For the example, these matrices look as follows, 
with rows 1–4 and columns 1–4 corresponding to the variables Positive relations, 
Negative relations, Student Achievement, and Student Engagement, respectively:

Matrix � is a symmetrical matrix, so the covariance between Variables 1 and 2 is 
equal to the covariance between Variable 2 and 1. Using these parameters, a model 
implied covariance matrix (Σmodel) can be formulated. The model implied covari-
ance matrix is a function of the matrices with parameters:

The resulting model implied covariance matrix (Σmodel) for the current example 
can be found in Appendix A. The basic hypothesis that is tested by fitting a struc-
tural equation model to data is:

Note however, that the population covariance matrix, Σ, is generally unavailable to 
the researcher, who only observed a covariance matrix based on a sample, denoted 
S. Suppose that observed covariance matrix of the four variables based on 104 
respondents is as given in Table 1.1.

B =









0 0 0 0

0 0 0 0

β31 β32 0 0

0 0 β43 0









, � =









ψ11

ψ21 ψ22

0 0

0 0

ψ33

0 ψ44









and I =









1 0

0 1

0 0

0 0

0 0

0 0

1 0

0 1









.

(1.1)�model= (I− B)−1
�(I− B)

−1T
.

(1.2)� = �model.

Table 1.1  Variances (on 
diagonal) and covariances 
of four research variables, 
N = 104

Variable 1 2 3 4

1. Positive relations 0.81

2. Negative relations −0.36 1.21

3. Engagement 0.63 −0.60 1.69

4. Achievement 0.14 −0.33 0.50 1.44
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The model parameters that make up Σmodel can be estimated by minimizing a 
discrepancy function. This means that parameters are estimated in order to mini-
mize the difference between the model implied covariance matrix (Σmodel), and 
the observed covariance matrix (S). The more parameters a model has, the easier it 
is to make the Σmodel close to S. The maximum number of parameters that a model 
can have in order to be identified is equal to the number of observed variances 
and covariances in S. In our example with four variables, the number of variances 
and covariances is ten. The number of parameters in the Σmodel equals eight (three 
regression coefficients, one covariance, four variances). The degrees of freedom 
(df) of a model are equal to the difference between these two. This model has 2 
degrees of freedom. The larger the degrees of freedom of a model is, the more 
the model is a simplification of reality. Simple models are generally preferred over 
complicated models. But, the larger the degrees of freedom, the larger the differ-
ence between Σmodel and S will be, meaning that the absolute fit of a model will be 
worse.

Having less parameters than observed variances and covariances is not the 
only requirement for identification of the model. For a model to be identified, all 
parameters in the model need to be identified. See Bollen (1989) for an overview 
of methods to assess the identification of model parameters. If a model is identi-
fied, the parameters can be estimated. The most used estimation method is maxi-
mum likelihood (ML) estimation. The discrepancy function FML that is minimized 
with ML estimation is:

where p is the number of variables in the model. If the model fits the data per-
fectly, the model implied covariance matrix will be equal to S, and FML will 
be zero. If the model does not fit perfectly, FML will be larger than zero. See 
Bollen (1989) for a description of ML and other estimation methods and their 
assumptions.

1.2.2  Model Fit

An important property of the ML estimator is that it provides a test of overall 
model fit for models with positive degrees of freedom. Under the null hypothesis 
(Σ = Σmodel), the minimum FML multiplied by the sample size minus one (n − 1) 
asymptotically follows a chi-square distribution, with degrees of freedom equal to 
the number of non-redundant elements in S minus the number of model param-
eters. If the chi-square value of a model is considered significant, the null hypoth-
esis is rejected. The chi-square of a model may become significant because the 
discrepancy between S and the estimated Σmodel is large, or because the sample 
is large. With a very large sample, small differences between S and the estimated 
Σmodel may lead to a significant chi-square, and thus rejection of the model. Other 

(1.3)FML = log |�model| − log |S| + trace
(

S�model
−1

)

− p,

1.2 What Is SEM?
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fit measures are available in SEM, which do not test exact fit of the model, but are 
based on the idea that models are simplifications of reality and will never exactly 
hold in the population. The Root Mean Squared Error of Approximation (RMSEA, 
Steiger and Lind 1980) is the most prominent fit measure next to the chi-square. 
The RMSEA is interpreted using suggested cut-off values that should be regarded 
as rules of thumb. RMSEA values smaller than 0.05 are considered to indicate 
close fit, values smaller than 0.08 are considered satisfactory and values over 0.10 
are considered indicative of bad fit (Browne and Cudeck 1992). Another promi-
nent fit measure is the Comparative Fit Index (CFI, Bentler 1990) that is based on 
a comparison of the hypothesized model with the “independence model”, which is 
a model in which all variables are unrelated. CFI values over 0.95 indicate reason-
ably good fit. For an overview of these and other fit indices see Schermelleh-Engel 
et al. (2003).

Fitting the model from Fig. 1.1 to the observed covariance matrix in Table 1.1 
gives the following fit indices: χ2 = 2.54, df = 2, p = 0.28, RMSEA = 0.05 and 
CFI = 0.99. So, exact fit of the model is not rejected, and the model also fitted 
the data according to the rules of thumb for the RMSEA and CFI. If the model 
fits the data, the parameter estimates can be interpreted. If a model does not fit 
the data, the parameter estimates should not be interpreted because they will be 
wrong. Table 1.2 gives an overview of the unstandardized parameter estimates, the 
95 % confidence intervals and the standardized parameter estimates of the model. 
See Appendix B for an example of an OpenMx-script to fit the current model.

All parameters in this model differ significantly from zero, as judged by the 
95 % confidence intervals. For interpretation, it is useful to look at the standard-
ized parameter estimates. For example, the standardized β31, means that 1 standard 
deviation increase in Positive relationships is associated with 0.45 standard devia-
tions increase in Engagement, controlled for the effect of Negative relationships. 
The standardized residual variance is interpreted as the proportion of residual 

Table 1.2  Unstandardized parameter estimates, 95 % confidence intervals and standardized 
parameter estimates of the path model from Fig. 1.1

Parameter Unstandardized estimate 95 % confidence interval Standardized 
estimateLower bound Upper bound

β31 0.64 0.40 0.89 0.45

β32 −0.30 −0.50 −0.10 −0.26

β43 0.30 0.13 0.47 0.32

ψ21 −0.36 −0.60 −0.36 −0.36

ψ11 0.81 0.62 1.08 1.00

ψ22 1.21 0.93 1.61 1.00

ψ33 1.10 0.85 1.47 0.65

ψ44 1.29 0.99 1.72 0.90

β31 × β43 0.19 0.08 0.34 0.14

β32 × β43 −0.09 −0.19 −0.03 −0.08
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variance. This means that in the standardized solution, the proportion of explained 
variance in Student achievement is calculated as 1 − ψ44, = 0.10. The propor-
tion of explained variance in Engagement is 0.35. Indirect effects are calculated 
as the product of the two direct effects that constitute the indirect effect. With 
OpenMx, one can estimate confidence intervals for indirect effects as well. The 
indirect effects of Positive and Negative relationships on Student Achievement are 
both small but significant (see the last two rows in Table 1.2). This shows that as 
expected, there is significant mediation. Whether there is full or partial mediation 
can be investigated by testing the significance of the direct effects of Positive and 
Negative relationships on Student Achievement. This is shown in Chap. 5.

1.2.3  Factor Analysis

Factor analysis can also be seen as a special case of structural equation modeling. 
Factor models involve latent variables that explain the covariances between the 
observed variables. Consider the two-factor model on five scales measuring chil-
dren’s problem behavior depicted in Fig. 1.2.

In a factor model, each indicator is affected by a common factor that explains 
the covariances between the indicators. The regression coefficients linking the 
factor to an indicator are called factor loadings. The larger a factor loading is, 
the more variance the factor explains in the indicator. Not all indicator variance 
may be common variance, which is reflected by the residual factors that affect 
each indicator. The variance of these residual factors is called residual variance 
(denoted by θ) and is assumed to consist of random error variance and structural 

Fig. 1.2  A two-factor model on the five problem behavior variables

1.2 What Is SEM?
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variance. For example, there may be a structural component in Somatisation that is 
not correlated with Anxiety or Withdrawn behavior.

With factor analysis, Σmodel is a function of factor loadings, depicted by λ’s, 
factor variances and covariances, depicted by ϕ’s, and residual variances, depicted 
by θ’s. Note that one factor loading for each factor is fixed at 1. This is needed 
to identify the model. As factors are unobserved variables, the scale of the vari-
ables is not known, and a metric has to be given to the factors by fixing one fac-
tor loading per factor. Alternatively, one can fix the factor variances ϕ11 and ϕ22 
at some value (e.g. 1) and estimate all factor loadings. In advanced models (e.g. 
multigroup and longitudinal models) one method of scaling may be preferred over 
the other, but in this example it is arbitrary how the factors are given a metric. The 
unstandardized parameters will differ based on the scaling method, but the model 
fit and the standardized parameter estimates will not. The factor model can be rep-
resented by three matrices with parameters, a full matrix Λ with factor loadings, 
a symmetrical matrix Φ with factor variances and covariances, and a symmetrical 
matrix Θ with residual variances and covariances. For the current model, the three 
matrices look as follows.

The rows of Λ are associated with variables 1 through 5 from Fig. 1.2, as well as 
the rows and columns of Θ. The columns of Λ and the rows and columns of Φ are 
associated with the Internalizing and Externalizing factors respectively.

The factor model is specified using these matrices as:

leading to the model implied covariance matrix given in Appendix C.
Suppose that we observed the covariance matrix of the five variables from a sam-

ple of 155 parents with children suffering from epilepsy that is given in Table 1.3.
Fitting the model from Fig. 1.2 to these data leads to good fit with the following 

fit measures: χ2 = 4.08, df = 4, p = 0.40, RMSEA = 0.01 and CFI = 1.00. The 
unstandardized parameter estimates, 95 % confidence intervals and standardized 

� =













1 0

�21 0

�31 0

0 1

0 �52













, � =

�

ϕ11

ϕ21 ϕ22

�

and � =

�

�

�

�

�

�

�

�

�

�

θ11
0 θ22
0 0 θ33
0 0 0 θ44
0 0 0 0 θ55

�

�

�

�

�

�

�

�

�

�

.

(1.4)�model= ���
T
+�,

Table 1.3  Variances (on 
diagonal) and covariances  
of five research variables

Variable 1 2 3 4 5

1. Withdrawn 12.55

2. Somatization 6.31 10.06

3. Anxiety 11.15 9.64 26.02

4. Delinquency 2.85 2.09 4.84 3.72

5. Aggression 12.44 9.68 22.20 9.96 51.02
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parameter estimates are given in Table 1.4. All standardized factor loadings are larger 
than 0.70, meaning that they are substantially indicative of the common factor on 
which they load. The correlation between the common factors internalizing and exter-
nalizing is significant and quite large, 0.72. The proportion of explained variance is 
largest in indicator 5 (1 − 0.11 = 0.89) and smallest in indicator 2 (1 − 0.51 = 0.49). 
See Appendix D for an annotated OpenMx-script from this example.

In the two examples given in this chapter the input matrix was a covariance 
matrix. Maximum likelihood estimation assumes analysis of the covariance 
matrix, and not of the correlation matrix. However, sometimes only the correlation 
matrix is available. Treating the correlation matrix as a covariance matrix leads 
to incorrect results when estimating confidence intervals or when testing specific 
hypotheses (Cudeck 1989). To obtain correct results, a so-called estimation con-
straint can be added. This constraint enforces the diagonal of the model implied 
correlation matrix to always consist of 1’s during the estimation.

The factor model and path model are the two basic models within the struc-
tural equation modeling framework. Once a factor model has been established, the 
analysis often goes some steps further, for example by including predictor vari-
ables like age to investigate age differences in the latent variables Internalizing and 
Externalizing problems. Another extension is multigroup modeling, in which a 
model is fitted to covariance matrices from different groups of respondents simul-
taneously, giving the opportunity to test the equality of parameters across groups. 
For example, in the path model from Fig. 1.1, it may be hypothesized that the 
effect of Positive and Negative relations on Engagement may be stronger for chil-
dren in elementary school than for children in secondary school.

Some cautions about SEM have to be considered. If a model fits the data 
well, and is accepted by the researcher as the final model, it does not mean that 

Table 1.4  Unstandardized parameter estimates, 95 % confidence intervals and standardized 
parameter estimates of the factor model from Fig. 1.2

Parameter Unstandardized estimate 95 % confidence interval Standardized 
estimateLower bound Upper bound

λ11 1 – – 0.74

λ21 0.85 0.11 8.03 0.70

λ31 1.78 0.18 9.25 0.86

λ42 1 – – 0.77

λ52 4.54 0.50 9.04 0.94

ϕ11 6.78 1.37 4.96 1

ϕ22 2.18 0.43 5.11 1

ϕ21 2.78 0.54 5.16 0.72

θ11 5.69 0.84 6.81 0.46

θ22 5.12 0.707 7.252 0.51

θ33 6.78 1.571 4.314 0.26

θ44 1.52 0.255 5.936 0.41

θ55 5.72 3.945 1.451 0.11

1.2 What Is SEM?
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the model is the correct model in the population. If the model is not rejected, this 
could be due to lack of statistical power to reject the model. Moreover, there may 
be other models that fit the data just as well as the hypothesized model. Therefore, 
it is important to consider equivalent models (MacCallum et al. 1993). If a model 
is rejected however, the conclusion is that the model does not hold in the popula-
tion. This chapter is far too short to discuss all relevant issues in SEM. Several 
books have been written that can be used to learn about SEM, see for example 
Bollen (1989), Byrne (e.g. 1998), Geiser (2012), Loehlin (1998), and Kline (2011).

1.3  Why Should You Combine SEM and MA?

Most research questions are about relations (or differences) between a set of 
variables. The hypothetical model in Fig. 1.1 for example, states that positive 
and negative relations lead to achievement through engagement. Current prac-
tice in meta-analysis is to meta-analyze each effect in this model separately. The 
questions these analyses answer are: What is the pooled effect of positive rela-
tions on engagement? And: What is the pooled effect of engagement on achieve-
ment? However, what the researcher also may want to know is: Is this model a 
good representation of the data? Are the effects of positive and negative relations 
on achievement fully mediated by engagement? Which effects are lacking in this 
model?

Using MASEM, information from multiple studies is used to test a single 
model that explains the relationships between a set of variables or to compare 
several models that are supported by different studies or theories (Becker 1992; 
Viswesvaran and Ones 1995). MASEM provides the researcher measures of over-
all fit of a model, as well as parameter estimates with confidence intervals and 
standard errors. By combining meta-analysis and SEM, some of the difficulties in 
the separate fields may be overcome.

Structural equation modelling requires large sample sizes. Small samples lead 
to low statistical power, and non-rejection of models. If several (small) stud-
ies investigate the same phenomenon, they may end up with very different final 
models, leading to a wide array of models describing the same phenomena. By 
combining the information from several (possibly underpowered) primary stud-
ies, general conclusions can be reached about which model is most appropriate. 
Norton et al. (2013) for example, used MASEM to investigate the factor structure 
of an anxiety and depression scale, by comparing ten different models that were 
proposed based on different primary studies. Furthermore, MASEM can be used 
to answer research questions that are not addressed in any of the primary stud-
ies. Even about models that include a set of variables that none of the primary 
studies included all in their study. For example, Study 1 may report correlations 
between variable A and variable B. Study 2 may report correlations between varia-
bles B and C, and Study 3 between variable A and C. Although none of the studies 
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included all variables, one model can be fit on these three variables using MASEM 
(Viswesvaran and Ones 1995).

I use the term MASEM for the process of fitting a structural equation model on 
the combined data from several studies. SEM can also be used to perform ordinary 
meta-analysis (SEM-based meta-analysis). SEM-based meta-analysis is outside 
the scope of this book, but see Cheung (2008, 2015) for an explanation.

MASEM is a fairly young field of research, and it seems to be growing in popu-
larity, both in substantive and methodological research. At this moment, a special 
issue about MASEM is being edited for the journal Synthesis Research Methods.
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