
File Creation Optimization
for Metadata-Intensive Application

in File Systems

Limin Xiao1,2, Qiaoling Zhong1,2(B), Zhisheng Huo1,2, Ang Li1,2, Li Ruan1,2,
Kelong Liu3, Yuanyuan Zang3, and Zheqi Lu3

1 State Key Laboratory of Software Development Environment,
Beihang University, Beijing, China

qiaoling.0605@163.com
2 School of Computer Science and Engineering, Beihang University,

Beijing 100191, China
{xiaolm,ruanli}@buaa.edu.cn

3 Space Star Technology Co., Ltd, Beijing 100086, China

Abstract. There are many steps among file creation, including creating
metadata files in metadata servers, creating data files in data servers, cre-
ating a directory entry and adding it in the parent directory. The above
steps are generic methods in distributed file system; however, it cannot
achieve good performance in the metadata-intensive application where
many clients create files at the same time, such as checkpointing, gene
biological computing, high energy physics experiments. In this article,
we present a method for file creation, called multi-stage file submission
for metadata, which is used to optimize file creation in the metadata-
intensive situation. This method is designed to make full use of the meta-
data servers’ locality and decrease I/O operations. What we do is to make
some changes among file creation for metadata and metafile storage. The
procedure of file creation is based on Parallel Virtual File System ver-
sion 2.8.2 (PVFS2) and we test the method in a simulation. The result
shows that the throughout reaches to 14.06 kops, contrast to the original
0.92 kops, in the situation of sixteen clients and eight metadata servers.
Of course, this method is used in metadata-intensive creation application.

Keywords: File system · File creation · Multi-stage file submission for
metadata · I/O locality · Throughout

1 Introduction

Nowadays demand for high I/O throughout for large scale storage system is con-
tinuing to be imperative [15]. Many previous researches focus on improving the
scale and performance on the data operations that read and write large amounts
of file data by striping data across many servers or disks [6,10]. Many distributed
file systems, such as PVFS2 [12], Lustre [10], Ceph [18], Hadoop Distributed File

c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015 Workshops, LNCS 9532, pp. 353–363, 2015.
DOI: 10.1007/978-3-319-27161-3 31



354 L. Xiao et al.

System (HDFS) [16], separate metadata from data and storage them on different
servers, which are metadata servers and data servers. The operations of meta-
data are much more than data operation, such as file lookup, file creation and
file search. There are many involved metadata operations among a file opera-
tion. Researches [7,8,14] show that metadata access and modification operation
make up to about seventy percent of file system I/O operations. In large scale
file system, we cannot get the expected performance through deploying more
servers and adapting more sophisticated hardware for the metadata wall [1]. It’s
the key to make metadata effective accessed in the large file system.

The metadata access characteristic of scientific computing and business com-
puting application is intensive. Checkpointing is indispensable fault tolerance
tool, commonly used by high-throughput applications. Checkpoint is massively
parallel application for thousands of computing nodes [3]. File creation is one
kind of intensive-metadata access operation [13]. We must optimize file creation
to meet the metadata-intensive situation.

In this article, we present our method to optimize file creation for metadata-
intensive application, called multi-stage file submission for metadata. The rest
of paper is the following. In Sect. 2, we analyze related work; In section Sect. 3,
we present basic file creation procedure in distributed metadata file system. In
Sect. 4, we would present our method to scale file creation performance, called
multi-stage file creation, which would mainly contain file creation protocol and
metadata storage method. In Sect. 5, we give our experiment result to give evi-
dence of the performance. At last, we give our conclusion.

2 Releted Work

In distributed file system, file creation consists of interaction protocol and meta-
data storage. The file creation interaction protocol charges with the message
passing or data flow between client and server in the procedure of file creation.

There are many steps to accomplish file creation, including creating data
file, creating metadata file, and adding a directory entry in the parent direc-
tory. Devulapalli et al. [5] designed alternative method based on distributed
metadata file creation protocol in PVFS2, which contains compound operation,
handling selection strategies and leased handles, leading to decrease the interac-
tion between metadata servers and data servers and hidden the delay of parallel
operation. Carns et al. [4] also designed a method to avoid several clients to send
many independent file creation requests to decrease overhead, which is based on
collective communication protocol among servers, simplifying the file creation
consistent problem and improving file creation performance. Yi et al. [20] pro-
posed a new protocol, Cx, in which the affected servers Concurrently eXecute
the sub-operations of a cross-server file operation, and respond immediately to
a client. From the above descriptions, the current researches focus on eliminat-
ing metadata accessing bottleneck of single file creation. When multiple clients
create files, they will contend system resources. This leads to locality miss and
degrades performance.



File Creation Optimization for Metadata-Intensive Application 355

When we talk about metadata storage, the current method is to optimize the
data storage of metadata server to improve metadata write performance. Sten-
der et al. [17] presented BabuDB, a database, which stores file system meta-
data relying on LSM-tree-like index structures, which offers better scalability
and performance than equivalent ext4 and Berkeley DB-based metadata server
implementations. Ali et al. [2] presented two metadata management schemes,
both of which remove the need for a separate metadata server and replace it
with object-based storage. All of above storage methods can be concluded to
separate metadata and data for storage, leading the metadata access to be small
I/O and discrete and influencing the metadata write performance.

In massive parallel file creation, the current file creation protocol cannot
enough meet the locality in metadata-intensive situation, degrading write meta-
data performance, because of metadata access interleaving. The storage method
of metadata separates different file metadata among different location. This
makes the disk I/O scheduler choose the best storage location in massive file
creation situation and issues many unordered metadata access requests.

3 Basic File Creation Protocol

Now we firstly introduce the architecture of distributed metadata file system, and
then we give the detail of file creation of distributed file system. The following
Fig. 1 shows the architecture of distributed metadata file system.

Fig. 1. Architecture of distributed file system

Table 1. Components of a file in distributed file system

Entity Description

Multiple data files A large file consists of multiple data file

Metadata file Owner, group, timestamp etc.

An entry in parent directory Directory entry in parent directory

Additional attributes A large file consists of multiple data file

In distributed metadata file system, there are many components in a file,
which is identified by a 64-bits long integer, called handle. Generally, a single



356 L. Xiao et al.

file strips across several data servers and owns multiple entities on data servers
and metadata servers. Table 1 shows components of a file in distributed metadata
file system [12].

Fig. 2. File creation state machine on clients

In order to create a file, a client must get parent attribute to know the
location of parent directory. A client can get the parent directory handle by
lookup method, and then send a request to metadata servers to create a file.
After creating a metafile, client sends request to metadata server and adds a
directory entry in the parent directory. In the Fig. 2, we show the interaction
between client and metadata servers.

Fig. 3. File creation state machine on metadata servers

From the metadata server, if receiving a request from client, it starts to
create a metafile and allocates a handle for this metafile. Then metadata server
sends I/O requests to data servers to create data files for the metafile. At last,
metadata server writes down the information of data files in the metafile (Fig. 3).

4 Design Alternatives

This section talks about our design method. There are several types of meta-
data access operation among file creation, including getting information of parent
directory, file metadata creation, directory entry creation and adding it in par-
ent directory. In massively parallel file creation situation, current file creation



File Creation Optimization for Metadata-Intensive Application 357

cannot take full advantage of the locality in the metadata servers, impacting the
performance of metadata access. At the same time, there are many duplicated
metadata access and discrete metadata operation. In order to obtain high per-
formance, we must decrease duplicated metadata access and translate discrete
metadata operation into serial metadata operation. Figure 4 shows the architec-
ture of our method, called multi-stage file submission for metadata.

Fig. 4. Multi-stage file submission for metadata method

4.1 Client

In order to take advantage of the locality, we want to accommodate sub opera-
tions of file creation. The followings are the steps:

1. If a client sends a file creation request to server, a client must get enough infor-
mation about the process to distinct different sub operation of file creation
from different process.

2. In the client, we apply a monitor on file creation process, and then adjust
file creation to adapt multi-stage file submission for metadata, separating file
creation into multiple file creation sub operation. We set a timer on the sub
operation queue, such as get parentdir queue, create file queue. Therefore,
if a request is send from a client to servers, it would not be transmitted
immediately, only after a time interval.

3. In the last, the processes in the clients add sub operation of file creation into
the relative queue and wait the request to be completed.

Figure 5 shows how clients handle file creation. When a file creation request
from a process send to metadata servers, it would be separated into several
sub operations, which are added into relative queue, such as create file queue,
get parentdir queue. In order to make use of the locality, we add a timer on the
queue. After a time interval, a job request would be send to the metadata servers
to get service. In this way, we expect to make use of the locality of metadata
servers in massively parallel file creation application.



358 L. Xiao et al.

Fig. 5. Multi-stage files submission for metadata on clients

4.2 Metadata Servers

In the situation of metadata-intensive file creation, we adapt metadata I/O
schedule algorithm and metadata storage to improve metadata write perfor-
mance. The metadata I/O schedule algorithm is used to schedule the metadata
I/O and aggregate the same directory file metadata creation requests into one
request, and then only this one request would be send to underlying file system
to complete file creation. The followings are the steps:

1. Based on the metadata request information, such as metadata file creation,
metafile modification, etc., we build several queues about different metafile
operation.

2. After receiving a metadata request from client, metadata server daemon
process add it to the relative queue, such as creation queue. In our method,
we add metafile creation requests in the same directory into the same creation
queue.

3. On the metadata servers, we set a timer interval, which is as an aggregation
time. At the expiration, the metafile creation requests are aggregated into
one metafile creation request and send the underlying I/O operation.

Figures 6 and 7 show the procedure how metadata servers deal with file cre-
ation. Based on the metadata request information, we put metadata file creation
request into creation queue and aggregate several file creation requests in the
same directory into one file creation request after an aggregation time interval.
In this way, we decrease the number of disk I/O, because the disk I/O is a key
factor for improving performance.

5 Experiments and Results

In this section, we would present our experiment environment, including hard-
ware, software and workload trace. After that, we present our result to get our
expectation.



File Creation Optimization for Metadata-Intensive Application 359

Fig. 6. Architecture of metadata servers on multi-stage files submission for metadata

Fig. 7. Metadata servers file creation on multi-stages file submission for metadata

5.1 Experiment Environment

In our pass study, we has developed a simulation about distributed metadata
file system, called DMFSsim [19], which is derived from PFSsim. PFSsim [9] is
a simulation of PVFS2, which can effectively simulate the procedure of inter-
action between clients and servers, including network simulation, and runs in
the OMNet++, an open source simulation tool [11]. Because PFSsim cannot
support multiple metadata servers, we have developed another simulation DMF-
Ssim, which is proved to be high efficiency and useful. In our experiment, we
use DMFSsim to test our method and represent the results. In DMFSsim, all
the nodes are connected with a high speed network with the average latency
of 0.2 ms and the bandwidth of 1 Gbps. We evaluated our design by running
simulations on a server with AMD Quad-core processor, 8 GB RAM, and 1 TB
Seagate 7200 RPM hardware driver.



360 L. Xiao et al.

5.2 Workload and Results

Because we want to prove our method would be effective, we take two steps to
verify our method.

Firstly, we show that only one client would run effectively after adapting this
method in distributed metadata file system. In the experiment, we simulate one
client and eight metadata servers. On the part of client, it runs a trace file to
simulate an application, which runs in distributed metadata file system. In this
simulation, we create a trace file, which stands for file creation workload in the
same directory and is created by a script. In the trace file, we suppose that a
client would create one thousand files continuously. At the same time, we set
several request intervals to make simulation more real.

Fig. 8. Throughout for a client file creation

Fig. 9. Mean response time for a client file creation

The Figs. 8 and 9 show the file creation result for one client and eight meta-
data servers. From the above, if we handle file creation by the original method in
distributed metadata file system, the throughout is about 0.95 kops for different
request intervals. If a client send file creation by multi-stage file submission for
metadata and metadata servers aggregate several metadata files into one meta-
data file, the throughout increases. Increasing of aggregation time, the through-
out increases. For example, if request interval is 0.1 ms and aggregation time is
0.4 ms, the throughout can get up to 6.57 kops, which about times six through-
out of the original method. Even there are different request intervals, throughout
increases. The result shows that if there is less request interval, throughout can
get more improvement. At the same time, response time is important for client.



File Creation Optimization for Metadata-Intensive Application 361

From the experiment result, it shows that the original response time is about
0.5 s. If request interval is 0.1 ms, the response time increases at first and then
decreases with the aggregation time increasing. The response time can get up to
0.03 s when the aggregation time is 0.8 ms. Although there may be more time
to pay on a file creation request, the mean response time can decrease for that
metadata servers can take full advantage of the locality and decrease the number
of I/O.

Secondly, in order to prove that we can scale to multiple clients, we simulate
sixteen clients and eight metadata servers. In this situation, we also make every
client create one thousand file in the same directory.

Fig. 10. Throughout for several clients files creation

Fig. 11. Mean response time for several clients files creation

The Figs. 10 and 11 show the experiment result for sixteen clients and eight
metadata servers. As expected, the throughout is about 0.92 kops in the old
way. There will be an improvement for file creation by using multi-stage files
submission for metadata method. No matter how long is the request interval,
the throughout increases and even gets up to 14.06 kops with 0.8 ms aggregation
time. At the same time, response time is also important for service. From the
Fig. 11, the mean response time decreases. The mean response time is about
8.64 s when using the original method. By this method, the mean response time
decreases to 0.52 s. Of course, we just test file creation operation for distributed
metadata file system. The result shows that this method can scale to more clients,
not only one client for distributed metadata servers.

6 Conclusion

In this paper, we firstly analyze the file creation protocol for distributed meta-
data file system, and then present our method, called multi-stage file submission



362 L. Xiao et al.

for metadata. Of course, our method is just for intensive-metadata creation situ-
ation, which is more high performance. Because distributed metadata file system
is more complex, we hope that this way could help distributed metadata file sys-
tem design more useful for specific situation, especially for intensive-metadata
creation.

Acknowledgments. The works described in this paper are supported by the fund
of the State Key Laboratory of Software Development Environment under Grant No.
SKLSDE-2014ZX-05, the National Natural Science Foundation of China under Grant
No. 61370059 and No. 61232009, the Fundamental Research Funds for the Central
Universities under Grant No.YWF-14-JSJXY-14, Beijing Natural Science Foundation
under Grant No. 4122042, the Open Research Fund of The Academy of Satellite Appli-
cation under grant NO. 2014-CXJJ-DSJ-04.

References

1. Alam, S.R., El-Harake, H.N., Howard, K., Stringfellow, N., Verzelloni, F.: Parallel
I/O and the metadata wall. In: Proceedings of the Sixth Workshop on Parallel
Data Storage, pp. 13–18. ACM (2011)

2. Ali, N., Devulapalli, A., Dalessandro, D., Wyckoff, P., Sadayappan, P.: Revisiting
the metadata architecture of parallel file systems. In: 3rd Petascale Data Storage
Workshop, 2008. PDSW 2008, pp. 1–9. IEEE (2008)

3. Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P., Nunez, J.,
Polte, M., Wingate, M.: PLFS: a checkpoint filesystem for parallel applications.
In: Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, p. 21. ACM (2009)

4. Carns, P.H., Settlemyer, B.W., Ligon III, W.B.: Using server-to-server communi-
cation in parallel file systems to simplify consistency and improve performance. In:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing, p. 6. IEEE
Press (2008)

5. Devulapalli, A., Ohio, P.: File creation strategies in a distributed metadata file
system. In: IEEE International Parallel and Distributed Processing Symposium,
2007, IPDPS 2007, pp. 1–10. IEEE (2007)

6. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system. ACM SIGOPS
Oper. Syst. Rev. 37, 29–43 (2003)

7. Gu, P., Wang, J., Zhu, Y., Jiang, H., Shang, P.: A novel weighted-graph-based
grouping algorithm for metadata prefetching. IEEE Trans. Comput. 59(1), 1–15
(2010)

8. Leung, A.W., Pasupathy, S., Goodson, G.R., Miller, E.L.: Measurement and analy-
sis of large-scale network file system workloads. USENIX Ann. Tech. Conf. 1(2),
5.2 (2008)

9. Liu, Y., Figueiredo, R., Clavijo, D., Xu, Y., Zhao, M.: Towards simulation of par-
allel file system scheduling algorithms with PFSSIM. In: Proceedings of the 7th
IEEE International Workshop on Storage Network Architectures and Parallel I/O,
May 2011

10. Lustre: Lustre. http://lustre.org/. Accessed 08 March 2015
11. OMNeT++: Omnet++ discrete event simulator - home. http://www.omnetpp.

org/. Accessed 08 March 2015

http://lustre.org/
http://www.omnetpp.org/
http://www.omnetpp.org/


File Creation Optimization for Metadata-Intensive Application 363

12. ParallelVirtualFileSystemVersion2: Parallel virtual file system, version 2. http://
www.pvfs.org/. Accessed 08 March 2015

13. Patil, S.V., Gibson, G.A., Lang, S., Polte, M.: Giga+: scalable directories for shared
file systems. In: Proceedings of the 2nd International Workshop on Petascale Data
Storage: Held in Conjunction with Supercomputing 2007, pp. 26–29. ACM (2007)

14. Roselli, D.S., Lorch, J.R., Anderson, T.E., et al.: A comparison of file system
workloads. In: USENIX Annual Technical Conference, General Track, pp. 41–54
(2000)

15. Ross, R., Felix, E., Loewe, B., Ward, L., Nunez, J., Bent, J., Salmon, E., Grider,
G.: High end computing revitalization task force (hecrtf), inter agency working
group (heciwg) file systems and i/o research guidance workshop 2006 (2006)

16. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

17. Stender, J., Kolbeck, B., Hogqvist, M., Hupfeld, F.: BabuDB: fast and efficient file
system metadata storage. In: 2010 International Workshop on Storage Network
Architecture and Parallel I/Os (SNAPI), pp. 51–58. IEEE (2010)

18. Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D., Maltzahn, C.: Ceph: a scalable,
high-performance distributed file system. In: Proceedings of the 7th Symposium on
Operating Systems Design and Implementation, pp. 307–320. USENIX Association
(2006)

19. Wu, Q.M., Xie, K., Zhu, M.F., Xiao, L.M., Ruan, L.: DMFSsim: a distributed
metadata file system simulator. Trans. Tech. Publ. Appl. Mech. Mater. 241, 1556–
1561 (2013)

20. Yi, L., Shu, J., Ou, J., Zhao, Y.: Cx: concurrent execution for the cross-server
operations in a distributed file system. In: 2012 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 99–107. IEEE (2012)

http://www.pvfs.org/
http://www.pvfs.org/

	File Creation Optimization for Metadata-Intensive Application in File Systems
	1 Introduction
	2 Releted Work
	3 Basic File Creation Protocol
	4 Design Alternatives
	4.1 Client
	4.2 Metadata Servers

	5 Experiments and Results
	5.1 Experiment Environment
	5.2 Workload and Results

	6 Conclusion
	References


