
Characterization of Android Applications
with Root Exploit by Using Static

Feature Analysis

Huikang Hao1(B), Zhoujun Li1,2, Yueying He3, and Jinxin Ma4

1 School of Computer Science and Engineering, Beihang University,
Beijing 100191, China

{huikang329,lizj}@buaa.edu.cn
2 Beijing Key Laboratory of Network Technology, Beihang University,

Beijing 100081, China
3 National Computer Network Emergency Response Technical Team/Coordination

Center of China, Beijing 100029, China
4 China Information Technology Security Evaluation Center,

Beijing 100085, China

Abstract. Recently, more and more rootkit tools are provided by some
well-known vendors in the mainstream Android markets. Many people
are willing to root their phones to uninstall pre-installed applications,
flash third-party ROMs and so on. As it is reported, a significant pro-
portion of Android phones are rooted at least one time. However, appli-
cations with root exploit bring critical security threat to users. When the
phone is rooted, the permission system, which enforces access control to
those privacy-related resources in Android phones, could be bypassed.
Thus, the phone will be an easy point for malware to launch attacks.
What’s more, even the phone is unrooted, permission escalation attacks
also can be carried out. Remarkably, an amount of sophisticated Android
malware embeds root exploit payloads. Hence, root exploit always sug-
gests high security risk. It is a pressing concern for researchers to char-
acterize and detect applications with root exploit. In this paper, a novel
method to extract key features of apps with root exploit is proposed.
Contrary to existing works, contrasting the static features between appli-
cations with and without root exploit comprehensively are considered at
the first time. We complete and evaluate the methodology on two clean
apps and two malware dataset, comprising 52, 1859, 463 and 797 appli-
cations respectively. Our empirical results suggest the peculiar features
can be obtained, which can capture the key differences between applica-
tions with and without root exploit to characterize Android root exploit
applications.

Keywords: Android application · Root exploit · Static features ·
Apriori-based feature comparison · Feature combination · Characteri-
zation

c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015 Workshops, LNCS 9532, pp. 153–165, 2015.
DOI: 10.1007/978-3-319-27161-3 14



154 H. Hao et al.

1 Introduction

Nowadays, mobile devices are reaching into almost every corner in our life
rapidly. Due to the advanced smartphone operating system such as Android, IOS,
we can enjoy feature-rich smartphones in which our security-sensitive informa-
tion is stored, including contacts, photos and credentials. Among the mainstream
mobile operating systems, Android dominates the mobile device market. As it
is reported, more than 75 % shipments of smartphones run Android system in
Q1 2015 [1]. The popularity of Android unsurprisingly draws malware authors’
attentions, which results in the surge of Android malware. What’s worse, an
amount of sophisticated Android malware starts to launch attacks with root
exploit. The utilization of root exploit technique makes that Android malware
is more dangerous and difficult to detect.

One of the Android’s most important security mechanisms against malware is
permission control. Critical system resources are protected by permission mech-
anism so that any applications must explicitly declare what permissions they
need to realize expected functions in the AndroidMeanifeast.xml file. When a
user installs an app, a prompt will be raised to list all the critical permissions
with its potential risky behaviors. The risk warning brings a binary choice for
user to grant or reject these permissions that the application requires. Permission
system ensures only the applications granted certain permissions can access cor-
responding resources. Otherwise, the resource access request would be rejected.
To a large extent, we can say that the permissions that an app granted represent
the app’s capability to access system resources. As a result, permission system
provides basic protections for the system resources of Android phones.

Android is a Linux-based platform. In the system design of Linux, users and
groups are used to control access to the system’s files, directories, and periph-
erals. The superuser (root) has complete access to the system resource and its
configuration. An access to system resource with root privilege is almost unre-
stricted. Unprivileged users can use the su and sudo programs for controlled
privilege escalation [2]. Nowadays, a variety of applications that provide one-
click-root function emerge in every mainstream Android market. Many Android
users utilize root exploit to customize their phones. Once a phone is rooted, its
owner can remove the disliked pre-installed apps, customize personalized sys-
tem, backup the phones, and flash third party ROMs. According to the report
of NetQin [3], 23 % Android phones are rooted at least one time in China main-
land by the first half of 2012. But it is important to note that root privilege
brings serious security threats to users. First of all, the unrestricted resource
access capability of root privilege makes it feasible that an application can access
sensitive database files and hardware interfaces without corresponding permis-
sions granted beforehand. That is to say, root exploit can disable the permission
system. Faced with malware with root privilege, one of the Android security
mechanisms, namely permission system, does not play any role. As a result, a
lot of sophisticated malware samples launch attacks by using root exploit. As
Yajin Zhou et al. revealed in [4], around one third (36.7 %) of the collected sam-
ples leverage root exploits to fully compromise the Android security. Moreover,



Characterization of Android Applications with Root Exploit 155

for an once rooted phone, unrooting the phone will not prevent Android system
from suffering security threat. Permission escalation attacks also can be carried
out [5]. Hence, an application with root exploit always suggests high security risk
to Android phone. To deal with this security threat, it is a pressing concern for
users and researchers to characterize and detect applications with root exploit.

In this paper, a novel method to extract critical features of apps with root
exploit is proposed, and these extracted features can be used to characterize root
exploit effectively. We collect a relatively complete dataset of clean apps with
root exploit payload and contrast the static features with other benign apps
comprehensively. It is noted that the contrast is carried out in two groups: a
clean app group and a malicious app group. Each group has one dataset with
root exploit and one dataset without root exploit payloads. In each group, we
calculate the difference values of feature items between two datasets. Note that,
11 static features which compromises permission, API call, 4 components,.so
file. native code, dynamic code, reflection code and obfuscation code are involved
in our method. After comparing feature individually, we filter the items whose
difference value less than 0 for each feature. Thus the left items form the candi-
date itemset for each feature. Then, for the generation of feature combinations,
we join all the candidate itemset as an joint itemset. Apriori-based algorithm
is introduced on the itemset to generate the feature combinations. Eventually,
based on the feature combinations generated from two groups, we contrast the
two sets and authenticate mutually. Hence, the shared and consistent feature
combinations in the two groups are selected as the output of our method. The
contributions of our work can be summarized as follows:

• A novel method to extract the key and peculiar features of apps with root
exploit is proposed and implemented in our paper. These features can be used
to characterize Android applications with root exploit.

• To the best of our knowledge, it is the first attempt to explore the key features
of root exploit by contrasting the static features between applications with root
exploit and other apps.

• We collect a relatively complete dataset of clean apps with root exploit, cov-
ering 7 mainstream Android markets. It may be useful for further research.

The rest of the paper is organised as follows: In Sect. 2, we analysis the root
exploit process and its security threat to the phone as background. Section 3
describes the experimental datasets that we collect for our research. We present
our method for extracting key features of apps with root exploit in Sect. 4. The
implementation and the obtained result are then reported in Sect. 5 along with
a discussion of our findings. Related works are shown in Sect. 6 and finally we
concluded the paper in Sect. 7.

2 Background

In this section, we study the processes and security threat of root exploit. The
basic processes of root exploit are consistent generally, which determines the



156 H. Hao et al.

essential characteristics of root exploit. In addition, the root exploit disable per-
mission system, which brings multiple risks for the phones.

2.1 Processes of Root Exploit

Since the heterogeneity of android os, a variety of rootkit tools are provided
for users to root their phones. The processes of root exploit can be summarized
as the following three steps: firstly, the applications called rootkit tools, exploit
the Linux vulnerabilities to temporarily obtain root privilege. Up to now, the
Linux vulnerabilities that have been exploited include Gingerbreak, RageAgain-
stTheCage, ZergRush, Exploid, ASHMEM, Mempodroid, Levitator, Wunderbar,
Zimperlich and so on. Then, these applications place or replace a customized
“su” binary file into /system/bin or /system/xbin directory. Finally, the root
exploit payload sets the “su” file the s attribute that every user and role in the
system can access it. Thus, the privilege escalation is completed and the system
resource of system can be accessed with root privilege consistently.

2.2 Security Threat of Root Exploit

According to the Android core security design, the data and code execution of
each application are isolated from each other by sandbox. The data and resource
accesses are restricted strictly by the permission system. Because each Android
application operates in a process sandbox, applications must explicitly share
resources and data. The applications realize this by explicitly declaring permis-
sions what they need for expected functions not provided by the basic sandbox.
Thus, permission system, which is an access control mechanism, acts as the key
system security mechanism in Android.

Android is a privilege-separated operating system, in which each application
runs with a distinct system identity (Linux user ID and group ID) [6]. The
Android system gives each app a distinct user ID(UID) at installation time and
the ID cannot be changed all the time unless the app is removed. Generally, the
UIDs of these user applications given by system are bigger than 10000. Thus,
each app in Android system is isolated in its process space and regards as an
unique Linux user. Unfortunately, when the phone is rooted, the UID of an app
could be changed to 0, i.e. the root UID, which is able to match access control
rule of all system resource almost.

The enforcement of permission system concentrates on two modules: Android
system services and Linux kernel [7]. The two modules implement permission
check on different levels, but they are all based on user and group mechanism in
Linux access control.

Android System Services. The resources such as contacts and locations
are protected by Android system services. For example, the location infor-
mation is managed by Location Manager Service. When an app attempts to
acquire these resources protected by system services, the service checks related



Characterization of Android Applications with Root Exploit 157

permissions by invoking the general permission check interfaces(such as check-
Permission,checkCallingPermission,checkUriPermission etc.) of ActivityMan-
agerService. Then the check is redirected to PackageManagerService, which
keeps a table that records the granted permissions for each application. The
PackageManagerService returns the check result according to the records and
the system services which protect resource judges to accept or deny the access of
resource. The parameters of these APIs generally comprise PID(Process ID) and
UID(User ID), which suggests the permissions are verified finally by matching
user ID.

Linux Kernel. The permissions related to file system and hardware interface
such as camera, bluetooth and network etc. are enforced in Linux kernel level.
In Android, each kernel-protected system resource is tagged with corresponding
kernel-enforced permission to protect. Then, the permission is assigned with a
unique GID(Group ID) as indentifier. if an app requests the related permissions
in the manifest, the app,i.e. the UID will become a member of the user group
that is permitted to access the resources. Any app is checked to verify whether
it has the corresponding GID before accessing the protected resources.

When the phone is rooted, an app can run with root UID 0, which can pass all
the permission checks. By analysing the implementation of permission system,
we demonstrate that root exploit disable the permission system fundamentally.
Hence, root exploit brings critical threat to the Android security.

3 Experimental Dataset

In order to contrast the static features effectively, quite a number of applications
embedded root exploit payloads and apps without root exploit are needed to
collect respectively. In our research, we collect 4 data sets in total, i.e. a clean
app set with root exploit payload, a clean data set including benign apps without
root exploit and two malware datasets whose root exploit payloads are at least
one and none individually. For convenience of description, we call above 4 data
set as clean root set, clean set, malicious root set and malicious set successively.
Clearly, the 4 data sets can be divided into two compared groups: a clean set
group and a malicious set group.

The clean root set consists 52 benign apps with root exploit. We collect these
apps from official Google Play and 6 third party Android markets, which cover
the mainstream Android markets nowadays. When collecting this dataset, we
notice that many apps are found to occur repeatedly and one developer may
release new version of identical app with slight variation. To prevent identical
apps from having a large impact on the result, we consolidate duplicate apps into
single instance in the dataset. In clean set, there are 1859 benign applications
that we collect from official Googel Play. These apps in clean set are widely
distributed around all the 44 categories of Google Play. Note that all above two
datasets are verified manually. We have sent original datasets with 60 and 1863
apps to VirusTotal [8] and collect the analysis result. According to the analysis



158 H. Hao et al.

result, we verify that whether the checked app embeds root exploit payload.
Furthermore, the applications flagged as risky by at least 10 anti-virus products
are removed and some applications about which VirusTotal has no information
are also rejected. Eventually we collect 52 verified clean apps for clean root set
and 1859 verified clean apps for our clean set. It is worth noting that 8 malware
samples are found to masquerade as benign ones which claims to root users’
phone in four third party markets(Yingyongbao, Anzhi, Mumayi, Anzhuo).

For our malware datasets, we used Zhou and Jiang’s [4] collection of
1260 malicious applications, which comprises of 49 malware families. From the
authors’ analysis, among 1260 samples in the collection, 463 of them carry at
least one root exploit payload. Here we collect these applications as malicious
root set. The remainder 797 applications are well studied with no root exploit
payload. Hence, we regard the 797 apps as our malicious set.

4 Method

To deal with the security threat, it is an urgent need to characterize and detect
applications with root exploit. In order to extract key features of root exploit
effectively, we propose a method to contrast the static features between apps
with and without root exploit payload systematically. It should be clear that a
complete static feature set is involved in our method, which compromises permis-
sion, API call, 4 components,.so file. native code, dynamic code, reflection code
and obfuscation code. All above 11 individual features and feature combinations
are considered to capture the characteristic of root exploit. Note that the clean
set group and malicious set group are compared respectively by using the same
procedures. The framework of our method is illustrated in Fig. 1 and the major
processes of our method is outlined as follows.

Individual Feature Comparison and Filtering. In this process, 11 static
features extracted from the 4 datasets are compared according to the two groups
division. The purpose of this process is to obtain candidate features for further
generation of feature combinations. For the feature comparison, we implement
an analyzer based on Androguard [9] to extract and analyze all the 11 features.
Androguard [9] is an open static analysis framework, which provides uncompress,
decompilation and analysis of Android .apk file. All the feature items and its
frequency can be obtained by our analyzer for further analysis.

Given Dx is one of the input datasets which contains n applications. Then
for a certain application in Dx, let Si represent a feature of the application. Fur-
thermore, we define Si = {A,B,C,. . . } as the set of possible items for a certain
feature. Each item can be considered as a corresponding feature value as a fea-
ture. For example, permission CAMERA is an item of the feature “permission”.
In this process, we carry on feature comparison and filtering individually. For a
feature Si, given one feature item A, we measure the importance of A by utiliz-
ing the difference of frequency. We calculate the differences in the same group
by diff(A) = freq(A)root − freq(A). Here freq(A)root refers to the frequency



Characterization of Android Applications with Root Exploit 159

Fig. 1. The framework of our method

of item A in the root dataset and freq(A) is the frequency of A in the dataset
without root exploit.

If diff(A) > δ, we add item A to the candidate itemset Fi for Si. Otherwise,
the item A will be discarded. Here, δ is a user-specified threshold value. In our
research, we set the threshold δ 0 for capturing more feature items. After filtering
the feature items, each feature has its corresponding itemset.

Apriori-Based Feature Combination Generation. In the former process,
we obtain 11 candidate itemsets for 11 features individually. However, the behav-
ior of applications is usually reflected in specific patterns and combinations of
the extracted features. To this end, we define the joint set F that comprises all
the 11 candidate itemsets for all the extracted features

F := F1∪F2∪ . . . ∪F10∪F11

Apriori algorithm [10] is an algorithm for frequent item set mining and asso-
ciation rule learning. Here we amend this algorithm to generate the feature
combination patterns. Support is usually used as the measurement for the effec-
tiveness of the item pattern. To put it simple, let a,b⊆F, then the frequency of
the apps that contains feature items a and b simultaneously in the total dataset
is just the support. Here, we define the difference value of the two sets’ sup-
port in one group as the support of the joint candidate itemset. In the practise
of the algorithm, we set support>= ε as a rule to pruning the candidate item
set, where ε is a specific threshold. We start the feature combination genera-
tion by enumerating the single item in F who matches pruning rule. Based on
these single items, we add new items from F one by one to test their support.



160 H. Hao et al.

This joining operation is repeated continuously to increase the number of items
until the support of the item set less than pre-defined ε. In order to list all the
possible feature combination, we take the pruning item set considerable and use
frequent item set to generate new candidate item further. Finally, a set of feature
combinations are formed for each comparing group. All the feature combinations
are sorted according to its support for further analysis.

Feature Combination Contrast and Integration. All above two processes
are conducted on the two group: the clean group and malicious group. After the
previous procedures, two sets of feature combinations are obtained. As the final
step, we contrast the two sets and authenticate mutually. Based on the result of
comparison, we leave the shared feature combinations of the two groups as the
outputs of our method.

5 Implementation and Experimental Result

5.1 Implementation

By using our approach, we complete a demo based on Androguard [9] in Python.
As stated in pervious sections, 11 features in total is selected in our work as
feature to describe applications behavior characteristic. Among them, permission
and API calls are inspected by counting the feature names and their frequency.
Here we focus required permissions and all the API decompiled from .apk file are
considered. For the 4 app components, namely, activity, service,content provider,
broadcast receiver, its numbers in each app are collected in a feature set. What’s
more,.so file are investigated with file name and file number. native code, dynamic
code, reflection code,obfuscation code refer to whether applications have native
code, dynamic code, reflection code and obfuscation code. We test apps with
these features and compute their frequency.

For our implementation, Androguard-based module is used to extract static
features. We amend Androguard [9] so that it can uncompress and decompile
the .apk files to output all checked items of above 11 features. All these features
are written in text file for further analysis. Then we complete analysis modules
according to our algorithm in Python. Two scripts are coded to contrast indi-
vidual features and generate feature combinations respectively. Note that, when
we introduce our Apriori-Based feature combination generation algorithm, we
set the threshold of support ε as 0.5, which is mainly to capture more effective
feature combinations to distinguish root exploit.

5.2 Individual Feature Comparison

Our experiments are conducted on two dataset groups, which covers four datasets
that are described exhaustively in Sect. 3. Then we show the results of individual
feature comparison for the two groups separately.



Characterization of Android Applications with Root Exploit 161

Table 1. A list of top 15 required permissions ordered by difference value for the clean
app group and malicious app group.

The clean group comparison The malicious group comparison

Permission Difference
value

Permission Difference
value

READ PHONE STATE 0.5769 CHANGE WIFI STATE 0.6777

GET TASKS 0.5385 ACCESS WIFI STATE 0.4048

RECEIVE BOOT COMPLETED 0.5192 WRITE EXTERNAL STORAGE 0.3613

ACCESS WIFI STATE 0.5192 READ EXTERNAL STORAGE 0.3117

SYSTEM ALERT WINDOW 0.4423 ACCESS LOCATION EXTRA COMMANDS 0.3094

WRITE SETTINGS 0.4230 GET TASKS 0.1801

WRITE EXTERNAL STORAGE 0.4230 ACCESS NETWORK STATE 0.1340

INSTALL SHORTCUT 0.4038 INSTALL PACKAGES 0.1264

KILL BACKGROUND PROCESSES 0.3846 ACCESS FINE LOCATION 0.0891

MOUNT UNMOUNT FILESYSTEMS 0.3846 RECEIVE BOOT COMPLETED 0.0617

ACCESS MTK MMHW 0.3461 CHANGE CONFIGURATION 0.0501

CHANGE WIFI STATE 0.3269 READ PHONE STATE 0.0267

RESTART PACKAGES 0.3269 ADD SYSTEM SERVICE 0.0204

READ LOGS 0.3077 BROADCAST STICKY 0.0200

GET PACKAGE SIZE 0.2885 MODIFY AUDIO SETTINGS 0.0195

Permission. For the clean group, 112 permissions are involved in total. 45 per-
missions occurs in both the clean root dataset and clean dataset. 33 permissions
are found only in the clean root dataset. The remainder 34 permissions are only
required only by the applications in the clean dataset. For the malicious group,
64 permissions occur at all the time in both two datasets of the group. 16 and
35 permissions appear only in the malicious root set and malicious set respec-
tively. In summary, there are 115 permissions for the malicious group. Note that,
not all the permissions are Android-defined permissions. According to our filter-
ing rules, 68 and 42 permissions are left to incorporate to candidate itemset of
clean group and malicious group respectively. Table 1 lists the top 15 permissions
ordered by difference value for the two groups.

According to the comparison results ordered by difference value, we observe
that there are 20 shared permissions in the candidate itemsets for the two groups.
Specially, among the top 15 required permissions in Table 1, 6 permissions,
i.e. READ PHONE STATE, GET TASKS, RECEIVE BOOT COMPLETED,
ACCESS WIFI STATE, WRITE EXTERNAL STORAGE, CHANGE WIFI
STATE, are common permissions.Permision READ PHONE STATE, GET
TASKS and RECEIVE BOOT COMPLETED are the top 3 for the clean group,
while for the malicious group, thet are CHANGE WIFI STATE, ACCESS
WIFI STATE, WRITE EXTERNAL STORAGE. We notice that READ
PHONE STATE and RECEIVE BOOT COMPLETED are risky permissions
significantly and requested widely in malicious data sets as reported in previous
work [11], which results in that the two permissions don’t have a particularly
significant difference value as in the clean group. However, they are still impor-
tant verifiable characteristic for root exploit. As literature [12] demonstrated the
root exploit example, the rootkit tools collects information needed to exploit as
the first step. So it is necessary to request READ PHONE STATE. Similarly,



162 H. Hao et al.

the rest 5 permissions are needed to complete basic processes for root exploit.
Permission system is the key security design for Android. When a phone is not
rooted, the system resources are restricted by permissions. Once an application
attempts to root the phone, it should require a part of basic permissions for
to complete root exploit. Meanwhile, a mass of permissions related to specific
behaviors can be avoided.

API Calls. API calls are fine-grained descriptions of application behaviors. The
so-called Used Permissions can be reflected by API calls. In our method, all the
API calls that can be extracted from .apk file are involved. For the clean set
group, 73886 APIs are extracted and 10472 API calls are common used by two
datasets. Besides, 28678 API calls are unique ones that only appear in clean root
set. For the malicious set group, 57779 API calls are the total number and 4687
API calls are common ones, 18000 API calls are found only in malicious root
set. After sorting these API calls in accordance with difference values, we select
29792 and 21247 API calls whose values outnumber 0 to add into candidate
itemsets for clean and malicious group respectively. Combining the comparison
result of the two groups, we notice that third-party packages and correspond-
ing APIs are widely used in applications with root exploit. For the clean group,
packages com.tencent.mm.sdk,com.umeng,com.zhiqupk.root,com.feiwo et.al. are
discovered in the clean root set exclusively. These third-party APIs are the
key difference between apps with and without root exploit. Specially, among
the top 10 APIs in the differen value order, 7 APIs are from the pack-
age com.tencent.mm.sdk. Similarly, for the malicious group, the packages
com.google.update,com.keji,net.youmi.android are viewed only in malicious root
set and the packages uk.co.lilhermit.android,com.adwo.adsdk,com.madhouse.
android.ads,com.admogo.adapters,com.vpon.adon.android are common API
packages which can distinguish root exploit effectively.

4 Components. The 4 components reflect the structure of an application. We
extract the number of certain component in an app as the feature item and
compute its corresponding frequency among all the apps in the dataset. For the
clean group, the total numbers of candidate items for activity, content provider,
service and broadcast receiver are 20,5,13 and 12 respectively. On the other hand,
the candidate item number of activity, content provider, service and broadcast
receiver are 21,3,3 and 3 in the malicious group. The difference values of most
the candidate items for the two groups doesn’t exceed 0.1, while only the item
“1” of service in the malicious group is 0.3014, which acts as the significant
feature item.

.so File. The .so files are shared libraries (.so) in an Android application, which
are usually under the dictionaries lib/armeabi and assets. Usually, the authors of
applications dynamically load native code or author-specific code by introducing
.so file. In our method, we compare the usage of .so files in two groups. For
the clean set group, the type number of .so file in clean root set and clean
set are 71 and 41 respectively. The candidate itemset has 71 files, in which
assets/libsecmain.x86.so,assets/libsecexe.x86.so,lib/armeabi/librgsdk.so and the



Characterization of Android Applications with Root Exploit 163

file lib/armeabi/libsmartutils.so are the top 4 files whose difference values are
surpass 0.10. For the malicious set group, the utilization of .so files of all the 463
apps in malicious root set converges on 14 types, while there are 37 types .so
file in malicious set. As a result, 8 files are common in both two dataset and 13
files whose difference values are more than 0 are remainder as candidate items.
Note that, the difference value of lib/armeabi/libnative.so file is 0.6160, which
is much higher than other 12 files. The values of the rest ones in itemset are all
less than 0.0205.

Native Code, Dynamic Code, Reflection Code and Obfuscation Code.
For these 4 features, everyone has only one feature item, which refers to a certain
application has native code, dynamic code, reflection code and obfuscation code
or not. According to the calculation of the 4 feature item frequency, It is noticed
easily that native code is a significant feature that differentiates applications with
root exploit from others. Dynamic code feature is more frequent in applications
without root exploit and obfuscation code feature has made no difference for our
method. As for reflection code feature, it is not consistent in two groups. Finally,
only native code feature item is left for the clean group and native code,reflection
code are for malicious group.

5.3 Feature Combination Generation

After individual feature comparison, candidate itemsets for each feature are
gained. Then, we unite these 11 candidate itemsets into a joint candidate set for
the two groups.Thus 29982 feature items are included into the joint set of clean
group and 21334 ones are in the joint set of malicious group. By introducing our
Apriori-Based feature combination generation algorithm, a set of feature com-
binations are obtained and we display them in Table 2. All the supports of
these feature combinations is over 0.5. We authenticate the result of two groups
mutually and find out that the combination (READ PHONE STATE,ACCESS
WIFI STATE,Native Code) and the combination (ACCESS WIFI STATE,
CHANGE WIFI STATE, lib/armeabi/libnative.so,uk.co.lilhermit.android.core.
Native,Native Code) are generally consistent. ACCESS WIFI STATE and
Native Code are common features of two group and they can group together as a
feature combination to be the output of our method. In addition, the peculiar fea-
ture items that only appears in the clean root set and malicious root set are col-
lected as supplementary method, e.g. APIs in com.tencent.mm.sdk.platformtools
are used only in clean root set, whose difference values doesn’t surpass 0.5. But
when an application uses these APIs, we justify the application has a higher
possibility of embedding root exploit payloads.

6 Related Work

Note that some sophisticated malware samples launch attacks with root exploit,
many techniques have been proposed as a part of malware detection technique.
DroidRanger [13] implements dynamic execution monitoring that focuses on



164 H. Hao et al.

Table 2. A set of feature combinations for the two groups.

Feature combinations

Clean Group (READ PHONE STATE,ACCESS WIFI STATE,Native Code),

(READ PHONE STATE,GET TASK,Native Code)

(RECEIVE BOOT COMPLETED)

Malicious Group (ACCESS WIFI STATE,CHANGE WIFI STATE,lib/armeabi/

libnative.so,uk.co.lilhermit.android.core.Native,Native Code),

(CHANGE WIFI STATE,com.google.update.Dialog,com.google.

update.UpdateService)

system calls used by existing Android root exploits and/or made with the
root privilege. In [14], in order to detect root exploit, the authors distill each
known vulnerability into a corresponding static vulnerability-specific signature
to capture its essential characteristics. Similarly, Rastogi et.al. [15] proposed
the method based on vulnerability conditions, which can be considered as the
signature.

Many tools and frameworks which are devoted exclusively to detect and
prevent root exploit are also designed. Ho et. al. [16] propose PREC, a frame-
work which can identify system calls from high-risk components and execute
those system calls within isolated threads to detect and stop root exploit.In [17],
a system that enables to extract and collect events related to root exploit is
proposed, which can cope with root exploit effectively.

In summary, the methods proposed by the previous works mainly focus on
two points. Many techniques [13,16,17] detect root exploits based on monitor-
ing and searching for system calls and events related to known root exploit
processes dynamically. Compared to these works, our method is implemented
based on static feature analysis and we focus on the reflections of root exploit on
Android code level, but not the system calls or events. On the other hand, such
approaches [14,15] learn the well-studied root exploit vulnerabilities and extract
the preconditions of them as signature for rule-matching. We observe that these
methods are based on behaviors that will be exhibited when the vulnerability is
being exploit. These works draw attentions to root exploit vulnerabilities, while
our method inspects to search for essential features for root exploit on the .apk
file level. Unlike the previous methods, our method provides a new angle to study
the root exploit characterization and detection.

7 Conclusion

Root exploit brings a variety of security threats to the phones. Applications with
root exploit always suggest high risk. To characterize and detect apps with root
exploit, we propose a novel method to extract peculiar features of apps with
root exploit. To the best of our knowledge, this work is the first one to focus on



Characterization of Android Applications with Root Exploit 165

characterizing root exploit from the angle of static feature contrast. By applying
our method, a set of key features and corresponding feature combinations are
obtained to capture the key differences between applications with and without
root exploit.

Acknowledgements. This work was supported in part by National High-tech R&D
Program of China under grant No. 2015AA016004, NSFC under grants No. 61170189
and No. 61370126.

References

1. IDC. http://www.idc.com/getdoc.jsp?containerId=prUS25282214
2. Users and Groups. https://wiki.archlinux.org/index.php/Users and groups#

Group management
3. NetQin: 2012 moblie phone security report (2012). http://cn.nq.com/neirong/

2012shang.pdf
4. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.

In: S&P 2012, pp. 95–109. IEEE (2012)
5. Zhang, Z., Wang, Y., Jing, J., Wang, Q., Lei, L.: Once root always a threat:

analyzing the security threats of android permission system. In: Susilo, W., Mu,
Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 354–369. Springer, Heidelberg (2014)

6. System Permission. http://developer.android.com/intl/zh-cn/guide/topics/
security/permissions.html

7. Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., Wang, X.S., Zang, B.:
Vetting undesirable behaviors in android apps with permission use analysis. In:
CCS 2013, pp. 611–622 (2013)

8. VirusTotal. https://www.virustotal.com
9. Androguard. http://code.google.com/p/androguard

10. Apriori algorithm. https://en.wikipedia.org/wiki/Apriori algorithm
11. Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., Zhang, X.: Exploring permission-

induced risk in android applications for malicious application detection. IEEE
Trans. Inf. Forensics Secur. 9(11), 1869–1882 (2014)

12. Lee, H.-T., Kim, D., Park, M., Cho, S.: Protecting data on android platform against
privilege escalation attack. Int. J. Comput. Math. (ahead-of-print), 1–14 (2014)

13. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. In: NDSS (2012)

14. Grace, M., Zhou, Y., Zhang, Q., Zou, S., Jiang, X.: Riskranker: scalable and accu-
rate zero-day android malware detection. In: Proceedings of the 10th International
Conference on Mobile Systems, Applications, and Services, pp. 281–294. ACM
(2012)

15. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data
and Application Security and Privacy, pp. 209–220. ACM (2013)

16. Ho, T.-H., Dean, D., Gu, X., Enck, W.: Prec: practical root exploit containment
for android devices. In: Proceedings of the 4th ACM Conference on Data and
Application Security and Privacy, pp. 187–198. ACM (2014)

17. Ham, Y.J., Choi, W.-B., Lee, H.-W.: Mobile root exploit detection based on system
events extracted from android platform. In: SAM 2013, 1p. WorldComp (2013)

http://www.idc.com/getdoc.jsp?containerId=prUS25282214
https://wiki.archlinux.org/index.php/Users_and_groups#Group_management
https://wiki.archlinux.org/index.php/Users_and_groups#Group_management
http://cn.nq.com/neirong/2012shang.pdf
http://cn.nq.com/neirong/2012shang.pdf
http://developer.android.com/intl/zh-cn/guide/topics/security/permissions.html
http://developer.android.com/intl/zh-cn/guide/topics/security/permissions.html
https://www.virustotal.com
http://code.google.com/p/androguard
https://en.wikipedia.org/wiki/Apriori_algorithm

	Characterization of Android Applications with Root Exploit by Using Static Feature Analysis
	1 Introduction
	2 Background
	2.1 Processes of Root Exploit
	2.2 Security Threat of Root Exploit

	3 Experimental Dataset
	4 Method
	5 Implementation and Experimental Result
	5.1 Implementation
	5.2 Individual Feature Comparison
	5.3 Feature Combination Generation

	6 Related Work
	7 Conclusion
	References


