
An Efficient Pre-filter to Accelerate Regular
Expression Matching

Chengcheng Xu1(B), Shuhui Chen1, Xiaofeng Wang1, and Jinshu Su1,2

1 College of Computer, National University of Defense Technology,
410073 Changsha, China

{xuchengcheng,shchen,xf wang,sjs}@nudt.edu.cn
2 National Key Laboratory for Parallel and Distributed Processing,
National University of Defense Technology, 410073 Changsha, China

Abstract. Regular expression matching is widely used in content-aware
applications, such as NIDS and protocol identification. However, wire-
speed processing for large scale patterns still remains a great challenge
in practice. Considering low hit rates in NIDS, a compact and efficient
pre-filter is firstly proposed to filter most normal traffics and leave few
suspicious traffics for further pattern matching. Experiment results show
that, the pre-filter achieves a big improvement in both space and time
consumption with its compact and efficient structure.

Keywords: Regular expression matching · Pattern matching · Deep
packet inspection · DPI · Pre-filter

1 Introduction

With the rapid growth in big data, massive network data needs to be captured
and analyzed in real-time, which poses great challenges to traditional network
security field, especially for Deep Packet Inspection (DPI) [7]. DPI requires to
inspect the packet payload for further processing, which also needs real-time
acquisition and analysis for massive network data. Currently, DPI is widely used
in load balancing, traffic billing, Network Instruction Detection (NIDS) and pro-
tocol identification. The inspection process is to match the stream or packet
payload with a set of pre-defined patterns, and the result indicates whether the
stream satisfies some special features, such as a virus or an application-level
protocol.

Regular expression is widely used in pattern matching scenarios for its power-
ful and flexible expression ability, for instance, the open source NIDS of Snort [3]
and the Linux application protocol classifier [1] (L7-filter). Patterns are com-
piled to finite state machine (FSM) for automatic processing, and the matching
process is represented with FSM state traversal which is driven by stream pay-
load. Deterministic finite automata (DFA) and nondeterministic finite automata
(NFA) are traditional FSMs which have opposite performance in memory occu-
pancy and time consumption. NFA state number is linear with pattern length,
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015 Workshops, LNCS 9532, pp. 111–119, 2015.
DOI: 10.1007/978-3-319-27161-3 10



112 C. Xu et al.

while multiple potential states need to be traversed for an input symbol. On the
contrary, only one DFA state needs to be accessed for each character, however,
DFA may bring state explosion, which even makes it infeasible to construct an
integrated DFA in many cases.

Current researches mainly exploit alternative FSMs for trade-off between
FSM size and memory access requirements of per-character processing [5,6,10–
12,14,15,17]. Despite of massive proposals, none of them has solved the problem
satisfactorily, especially for large scale (namely hundreds to thousands) complex
patterns. Yu [16] implemented popular solutions on GPU for large scale pat-
terns, results showed that the highest performance is about 0.2 Gbps which is
orders of magnitude lower than needed. In this work, we firstly propose a fil-
tering mechanism to solve the contradiction between memory requirement and
matching performance thoroughly.

2 Motivations

In matching process, for each input symbol, all current active states should be
traversed to get the next active state set. As FSM is kept as state transition
table (STT) in memories, time is mainly consumed for memory access. For large
scale patterns, STT can only be deployed on high-latency global memories such
as DDR SDRAM, resulting tens to hundreds cycles for per-character processing
[8]. However, most streams cannot hit any of these patterns in applications such
as NIDS and protocol identification. Thus, it’s a huge waste to match all streams
with whole STT in global memories.

In practice, most streams cannot match any pattern, and they are even not
similar with these patterns especially for NIDS. Suppose a filtration process is
carried out to trim the normal flows, then only the left small fraction of suspicious
flows need to be matched with the whole STT. Based on this, if the pre-filter
is compact enough to be deployed on fast on-chip memories, the performance
of filtration process can be orders higher than that of whole pattern matching
in global memories. Furthermore, if the pre-filter is accurate enough to trim
an overwhelming majority of normal streams, the overall performance can be
greatly improved. After filtration, the left suspicious streams should be matched
with the whole pattern set deployed in high-latency global memories for further
inspection and confirmation. In fact, each stream only needs to be matched with
one or several patterns as the filtration process has indicated which rules the
stream may belong to. Thus, there is no need to construct an integrated FSM for
the whole pattern set. One FSM each pattern strategy is adopted to avoid state
inflation brought by pattern interaction, and the strategy is definitely a practical
method to solve state explosion. Figure 1 illustrates the matching process with
Pre-filter. The patterns are compiled to an integrated FSM for filtration in front-
end and separate FSMs for whole matching in back-end. Each stream should be
matched with the Pre-filter FSM firstly, and only matched streams in front-end
Pre-filter need to be sent to the corresponding back-end FSMs for further whole
matching. As the back-end FSMs are deployed in large capacity memories where
storage is not a problem, DFAs are employed for fast back-end matching.



An Efficient Pre-filter to Accelerate Regular Expression Matching 113

Fig. 1. Pattern matching process with Pre-filter

3 Pre-filter Design

To achieve the expected high throughput, the Pre-filter must be compact and
accurate enough to filter most normal streams. Furthermore, to keep matching
correctness, false positive can be eliminated by back-end traditional FSMs. While
for false negative, the languages identified by the Pre-filter must be a superset
of languages identified by the original pattern sets. For above purposes, we pro-
pose to construct a compact Pre-filter by extracting string segments from original
regular patterns. The idea is motivated by observations that most streams are
benign, and they are not even similar with malicious patterns, which means
that they even don’t contain the sub-strings in these patterns. By extracting
string segments, a compact and efficient DFA-like automata can be constructed
to filter most benign streams. The Pre-filter is composed of an improved AC [4]
automaton and a state dependency table which records the order and depen-
dencies among these extracted string segments. Traditional AC algorithm can
only handle exact strings, with assistance of the state dependency table, the
enhanced AC can deal with languages described by a fixed sequence of exact
string segments.

For example, the integrated minimum DFA for pattern set of regular[a − z]
{10}pattern. ∗ set and ab\d + cd has 198 states,while the corresponding NFA
has only 36 states. State explosion comes from dot-star and character class with
length restriction. However, most normal streams even do not contain the ordered
string segments in these patterns. A Pre-filter as shown in Fig. 2 where some
transitions have been omitted for clarity, associated with the state dependency
Table 1 can trim such normal streams. The dependency table is similar with
tables in [9,13], while their target are solving all kinds of regular expressions
which will have lots of limitations especially for overlaps. Our method has no



114 C. Xu et al.

such limitations, because our goal is filtration not matching. In Fig. 2, the original
pattern regular[a−z]{10}pattern.∗set is split into segments of regular, pattern,
set which are matched simultaneously. A stream can pass through the Pre-filter
for fully matching only when all these segments are matched in order, which is
guaranteed by inquiring and updating the dependency status in Table 1. The
match of any segment may trigger two actions, test and set operations. If the
status label of the previous segment denoted by dependency state region is 0,
which means the prior segment has not appeared, then no more operations will
be taken. Else, the status label of the current segment will be set to 1. Further, if
this segment is the last segment, a pre-filtration matching is hit and the stream
will be sent to the corresponding back-end FSM for exact matching, as the
stream 3 and stream 6 in Fig. 1. Finally, only stream 6 matches the original
regular pattern 3. If a stream cannot hit any of these extracted patterns, it will
never match the original patterns, as the other streams in Fig. 1, obviously there
is no need to send these streams to back-end matching.

Fig. 2. FSM part of Pre-filter for patters regular[a−z]{10}pattern.∗set and ab\d+cd

Table 1. The state dependency table for Pre-filter in Fig. 2

State id Status label Dependency state Matched rule

7 0/1 - -

14 0/1 7 -

17 0/1 14 1

19 0/1 - -

21 0/1 19 2

Next, we will give some examples covering all possible situations to illustrate
the matching process. For input sequence regularabset, state 7 is activated after
processing regular, as state 7 is the last state of segment regular and there is
no dependency state for it, the status label of state 7 is set to 1. Then for input



An Efficient Pre-filter to Accelerate Regular Expression Matching 115

ab, state 19 becomes the current active state, and just like state 7, there is no
dependency state for state 19, thus its label is set to 1. Next for input set, state 17
will be activated, as it is the last state of segment set, its dependency state (state
14) should be checked for further operation. As the label of state 14 is 0, thus
the label of state 17 cannot be set to 1 and no matching occurs for Pre-filtration
even it has matched the last segment of the first pattern. For another input
sequence abefcd, the input ab will activate state 19 and set the corresponding
label to 1. Then the following e will make a transition to state 0, and f will stay
in state 0. Next, the input cd will activate state 21, as the label of corresponding
state 19 is set to 1, the label of state 21 will be set to 1 and a pre-filtration
matching occurs. Then the whole sequence abefcd will be sent to back-end FSM
corresponding to the original pattern ab\d + cd for confirmation, obviously no
matching occurs in the back-end FSM. While for another input sequence ab123cd,
it can also pass through the pre-filtration as abefcd, and further it can make
a full matching in the back-end FSM. In practice, the probabilities for above
three situations are in a descending order, and most streams belong to the first
situation. This distribution is very significant as we can trim most streams with
a very compact and efficient FSM deployed in fast memories. In other words, a
great improvement can be achieved with the Pre-filter mechanism.

4 Experiments

The experiments were conducted on an Intel Core i7 3770 platform (CPU:
3.40 GHz, L1 Cache: 32 KB, L2 Cache: 256 KB, L3 Cache: 8 MB) with 8 GB
RAM and Linux system. We chose pcre-type rules from Snort pattern file back-
door.rules and traces from DARPA [2] intrusion detection data sets. We com-
pared the Pre-filter scheme with traditional NFA, DFA and state of the art
Hybrid-FA [5] from FSM construction time, memory footprint and matching
speed. Table 2 shows part of the state number statistics for different FSMs with
increasing pattern scales. As memory footprint is nearly linear with state num-
ber, results in Table 2 can be regarded as memory consumption comparisons
among these automatons. Despite of the back-end DFAs in Pre-filter, its size is
orders lower than Hybrid-FA and DFA, and even comparable with traditional
NFA. The main reasons are that separate compilation hinders the interactions
among different rules and little explosion occurs in a single rule. Comparison
between column 3 and column 7 also give a visual representation of how the
pattern interaction can contribute to state explosion. Furthermore, compressing
algorithms such as D2FA [11] can be employed in back-end standard DFAs to
achieve more than 90 % space reduction.

The construction time of Pre-filter scheme consists of two parts: front-end
filter compilation and back-end DFAs compilation. As the back-end DFAs can
be compiled separately on parallel platforms, we only focuse on the filter compi-
lation time. Figure 3 shows construction time comparisons among these automa-
tons, and DFA is omitted for clarity as it is orders higher than the others. Results
show that construction time of both NFA and Pre-filter are linear with increasing



116 C. Xu et al.

Table 2. State number statistics for different FSMs with increasing pattern scale

No of rules NFA size DFA size HFA Pre-filter

head size tail size front size back size

10 386 299 299 0 348 313

30 1151 13943 9101 41 952 1063

50 1811 120675 21492 109 1553 3863

100 3069 >2M 69218 371 2841 13180

pattern number. While, the construction time for Pre-filter is a little more than
NFA as it needs additional time for AC determination and building state depen-
dency table, but it is far more less than that of Hybrid-FA and DFA because no
state explosion occurs in Pre-filter.

Fig. 3. Construction time comparison among NFA, Hybrid-FA and Pre-filter

The performance of Pre-filter highly depends on the filtration rate, if most
streams need to be further processed in back-end DFAs, the overall throughput
will drop rapidly. We employed four different DARPA files with average size of
more than 300 MB to test the filtration effect, and results are presented in Fig. 4.
All the traces achieve similar filtration ratios, and the filtration ratio declines
with the increasing pattern set as streams filtered out by smaller filter may match
with filter for larger rule set. Even with the declining trend, the filtration rate
can still reach more than 95 % with 100 patterns, which contributes a lot to the
overall high speed. Performance estimation is shown in Fig. 5, only part of DFA
result is displayed as no DFA has been constructed for more than 70 rules in
our platform. DFA and Hybrid-FA perform better when the pattern number is
less than 20, it is because most transitions are accessed in the high-speed caches.



An Efficient Pre-filter to Accelerate Regular Expression Matching 117

With the increase of pattern set, state explosion results in rapid speed decline for
both DFA and Hybrid-FA. While for Pre-filter, the matching speed is insensitive
to the pattern scale as the memory footprint for Pre-filter is linear with pattern
size. As most streams have been filtered as shown in Fig. 4, matching speed for
Pre-filter declines very slowly with the increasing patterns.

Fig. 4. Filtration rate statistics with different trace files and increasing pattern scale

Fig. 5. Average cycles to process one input symbol

5 Conclusion

Considering that few streams can match the regular expression patterns in NIDS
applications, we firstly proposed a Pre-filter matching mechanism which employs



118 C. Xu et al.

a compact and efficient filter to eliminate most benign streams and leaves the left
suspicious streams for whole pattern matching. As the filter is compact enough to
deployed in small fast memories, most streams can be processed efficiently. Fur-
ther, benefiting from the high filtration rates in front-end, this method achieves
high overall throughput as few streams need further whole matching. Compared
with the state of art Hybrid-FA, our method performs better both in memory
consumption and time complexity.

Future work will improve from the following aspects to achieve lower memory
consumption and higher matching speed: (1) extending the front-end filter with
multi-stride, (2) implementing the matching prototype with FPGA or ASIC,
(3) employing compressing algorithms in back-end DFAs.

Acknowledgements. This work is sponsored by National Natural Science Founda-
tion of China under Grant No. 61379148.

References

1. Application layer packet classifier for linux (2009). http://l7-filter.sourceforge.net/
2. Darpa intrusion detection data sets (1999). http://www.ll.mit.edu/mission/

communications/ist/corpora/ideval/data/index.html/
3. Snort v2.9 (2014). http://www.snort.org/
4. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.

Commun. ACM 18(6), 333–340 (1975)
5. Becchi, M., Crowley, P.: A hybrid finite automaton for practical deep packet inspec-

tion. In: Proceedings of the 2007 ACM CoNEXT conference, p. 1. ACM (2007)
6. Becchi, M., Crowley, P.: A-dfa: a time-and space-efficient dfa compression algo-

rithm for fast regular expression evaluation. ACM Trans. Archit. Code Optim.
(TACO) 10(1), 4 (2013)

7. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and
technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

8. Chen, S., Lu, R.: A regular expression matching engine with hybrid memories.
Comput. Stan. Interfaces 36(5), 880–888 (2014)

9. Khalid, A., Sen, R., Chattopadhyay, A.: Si-dfa: Sub-expression integrated deter-
ministic finite automata for deep packet inspection. In: 2013 IEEE 14th Inter-
national Conference on High Performance Switching and Routing (HPSR), pp.
164–170. IEEE (2013)

10. Kumar, S., Chandrasekaran, B., Turner, J., Varghese, G.: Curing regular expres-
sions matching algorithms from insomnia, amnesia, and acalculia. In: Proceedings
of the 3rd ACM/IEEE Symposium on Architecture for Networking and Commu-
nications systems, pp. 155–164. ACM (2007)

11. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Comput. Commun. Rev. 36(4), 339–350 (2006)

12. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata. ACM SIGCOMM Comput.
Commun. Rev. 38(4), 207–218 (2008)

http://l7-filter.sourceforge.net/
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html/
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/data/index.html/
http://www.snort.org/


An Efficient Pre-filter to Accelerate Regular Expression Matching 119

13. Wang, K., Li, J.: Towards fast regular expression matching in practice. In: Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM, pp. 531–532.
ACM (2013)

14. Xu, Y., Jiang, J., Wei, R., Song, Y., Chao, H.J.: TFA: A tunable finite automaton
for pattern matching in network intrusion detection systems (2014)

15. Yang, Y., Prasanna, V.K.: Space-time tradeoff in regular expression matching with
semi-deterministic finite automata. In: 2011 IEEE Proceedings of INFOCOM, pp.
1853–1861. IEEE (2011)

16. Yu, X., Becchi, M.: Gpu acceleration of regular expression matching for large
datasets: exploring the implementation space. In: Proceedings of the ACM Inter-
national Conference on Computing Frontiers, p. 18. ACM (2013)

17. Zheng, K., Cai, Z., Zhang, X., Wang, Z., Yang, B.: Algorithms to speedup pattern
matching for network intrusion detection systems. Comput. Commun. 62, 47–58
(2015)


	An Efficient Pre-filter to Accelerate Regular Expression Matching
	1 Introduction
	2 Motivations
	3 Pre-filter Design
	4 Experiments
	5 Conclusion 
	References


