
Side Channel Cryptanalysis of Streebog

Gautham Sekar(B)

Indian Statistical Institute, Chennai Centre,
SETS Campus, MGR Knowledge City,

Taramani, Chennai 600113, India
sgautham@isichennai.res.in

Abstract. Streebog is the cryptographic hash function standard of the
Russian Federation. It comprises two hash functions corresponding to
two digest sizes, 256 bits and 512 bits. This paper presents a side channel
attack that uses processor flag information to speed up message recov-
ery by a factor of 2. Success is nearly guaranteed if the flag is set; the
probability is 0.668 otherwise.

Keywords: Cryptographic hash function · Streebog · Side channel
cryptanalysis · Carry flag · Message recovery · HMAC

1 Introduction

A hash function F takes an arbitrarily long bit string m as input and outputs
a fixed length bit string H (called hash value or digest). A cryptographic hash
function is meant to satisfy certain security properties, the most important of
which are the following.

– (First) preimage resistance: given H, it is computationally infeasible to
find an m′ such that F (m′) = H.

– Second preimage resistance: given an m and F (m), it is computationally
infeasible to find an m′ �= m such that F (m′) = F (m).

– Collision resistance: it is computationally infeasible to find an m and an
m′ �= m such that F (m) = F (m′).

The general model for cryptographic hash functions involves what is called a
compression function. The function transforms a bit string of a fixed length into
a shorter string of a fixed length. The arbitrarily long message is partitioned into
blocks after a process called padding (described later in the context of Streebog).
The blocks are then sequentially processed, with the compression function acting
on every block until all the blocks are processed. The final output is the hash
value. The general model is described in good detail in [9, Sect. 2.4.1].

Streebog is a set of two hash functions and a Russian cryptographic stan-
dard (GOST R 34.10–2012) [5]. It was developed by the Center for Informa-
tion Protection and Special Communications of the Federal Security Service of
the Russian Federation, with participation of the Open Joint-Stock Company
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 154–162, 2015.
DOI: 10.1007/978-3-319-27152-1 8

Side Channel Cryptanalysis of Streebog 155

“Information Technologies and Communication Systems” (JSC “InfoTeCS”) [5],
following a demand for “a hash function to meet modern requirements for cryp-
tographic strength” [5]. In 2012, Streebog replaced GOST R 34.11–94 as the
national standard.

The hash functions comprising Streebog have 256 bits and 512 bits as their
digest lengths. We shall call the hash functions “Streebog-256” and “Streebog-
512”, respectively. The compression function, common to both the versions, oper-
ates on 512-bit blocks in the Miyaguchi-Preneel mode, has 13 rounds, is based
on a substitution-permutation network and uses a linear transformation.

In 2010–2011, open research workshops were organised by the Chinese Acad-
emy of Sciences to discuss cryptographic algorithms proposed for inclusion in
the LTE/4G mobile standards. In a seemingly similar fashion, between 2013 and
2015, the Russian Technical Committee for Standardization “Cryptography and
Security Mechanisms” (TC 26), with the participation of the Academy of Cryp-
tography of the Russian Federation and support from the JSC InfoTeCS, held
an open research competition for the analysis of Streebog. In this period, several
results were reported, notably in [1–3,6,10].

In [1,10], the rebound attack is used to find (semi-free-start) collisions for
reduced versions of the Streebog compression function; [2] presents integral dis-
tinguishers on up to 7 rounds of the compression function; [3] reports preim-
ages for 6-round Streebog; and [6] describes second preimage attacks on the full
Streebog-512. The drawback of the attacks in [6] is that they work well only with
long messages. For instance, if the length of the message is at least 2188 bits,
then 2342 compression function evaluations are required. The time complexity
can be brought down to as low as O(2266) provided that the message is at least
2268 bits in length. For shorter messages, of bit-length γ < 2188 (but greater
than 512 bits), the number of compression function evaluations is estimated at
(log2 γ − 9) · 2522−log2 γ . We present in this paper the first side channel attack on
the full Streebog. We also discuss the implications of our attack on the security
of Streebog-based keyed-hash message authentication code (HMAC).

Processors have registers that store information on operations performed by
their ALUs. For example, in the Intel IA-32 architecture, the status flags of the
EFLAGS register indicate the result of arithmetic instructions such as ADD and
DIV (divide) [7]. One of these flags, known as the carry flag, is a single bit that
indicates an overflow in unsigned integer arithmetic. For instance, when two
unsigned integers are added, the carry flag is set (to 1) if a carry is generated by
the addition at the most significant bit position (we shall call this an end carry)
and the flag is cleared (i.e., 0) otherwise. This may be exploited by an attacker
as in [8] where Kelsey et al. use carry flag information to attack the block cipher
RC5. In our side channel attack too we use the state of the carry flag. Our attack
recovers a message block in about 2511 time with 99.9 % success rate (number of
successful recoveries per 100 messages uniformly distributed at random) if the
carry flag is set and 66.8 % otherwise. The only other attack known on the full
Streebog is due to Guo et al. [6].

156 G. Sekar

Table 1. Notation and conventions

Symbol/notation Meaning

|W | length of W in bits

Γi(W) ith 64-bit word of W ; i = 0 denotes the least
significant word

W(i) ith bit of W ; i = 0 denotes the least significant bit

‖ concatenation

⊕ exclusive OR

fg, where f and g are functions f ◦ g (composition of f and g)

LSB least significant bit

MSB most significant bit

The paper is organised as follows. Section 2 describes Streebog and Sect. 3
details our meesage recovery attack. We propose countermeasures to our attack
in Sect. 4 and conclude in Sect. 5.

2 Description of Streebog

Table 1 lists the notation and conventions followed in the rest of this paper.
Streebog is a simple design that uses only a few elementary arithmetic oper-

ators such as XOR and modular addition, and simple functions such as substi-
tution, permutation and linear transformation. The hash function accepts any
message M of length less than 2512 bits and returns a digest of length 256 bits
or 512 bits. The round function or compression function has 13 iterations, the
first twelve of which involve a substitution-permutation layer. If 512 � |M |, then
padding prefixes M with a bit string pad:={0}511−(|M | mod 512)‖1. The padded
message is then partitioned into (k + 1) 512-bit blocks Mk,Mk−1, . . . ,M0; i.e.,
pad‖M = Mk‖Mk−1‖ · · · ‖M0. The compression function g that processes the
message block Mi takes as additional inputs the chaining value Hi (of size 512
bits) and a length counter Ni, and outputs Hi+1. Algorithm 1 describes the work-
ing of Streebog. The IV in the algorithm is the initial value H0 (Streebog-256
and Streebog-512 use different 512-bit IV s).

The substitution-permutation layer includes the following components.

– Substitution function S: The input, a 512-bit string, is first partitioned into
bytes. Every byte is then substituted by a byte from a set π′, which is a
permutation of {0, 1, . . . , 255}, and concatenated.

– Permutation function P : Partitions its 512-bit input into bytes, permutes the
bytes (i.e., shuffles their positions) and concatenates them.

– Linear transformation L: This is also a 512-bit-to-512-bit mapping. If the
input is W , then L(W) = �(Γ7(W))‖�(Γ6(W))‖ · · · ‖�(Γ0(W)), where � is a
64-bit-to-64-bit linear transformation that outputs the right multiplication of
its input with a constant matrix A over GF (2).

Side Channel Cryptanalysis of Streebog 157

Algorithm 1. The Streebog algorithm
Require: The message M , |M | < 2512

Ensure: A 256-bit or a 512-bit digest
1: M → pad‖M → Mk‖Mk−1‖ · · · ‖M0;
2: H0 = IV ;
3: N0 = 0;
4: for i = 0 to (k − 1) do
5: Hi+1 = g(Hi, Mi, Ni);
6: Ni+1 = Ni + 512 mod 2512;
7: Σ ← Σ + Mi mod 2512;
8: Hk+1 = g(Hk, Mk, Nk);
9: Nk+1 = Nk + α mod 2512 , where α = 512 − |pad|;

10: Σ ← Σ + Mk mod 2512;
11: Hk+2 = g(Hk+1, Nk+1, 0);
12: H = g(Hk+2, Σ, 0);
13: Output H if Streebog-512, else output H � 256;

– The function X[·]: If K and W are 512-bit strings, then X[K](W) = K ⊕ W .

The compression function g is now given by:

g(Hi,Mi, Ni) = E(L(P (S(Hi ⊕ Ni))),Mi) ⊕ Hi ⊕ Mi , (1)

where

E(L(P (S(Hi ⊕ Ni))),Mi) = X[K13]LPSX[K12]LPSX[K11] . . .
LPSX[K1](Mi) , (2)

(recall from Table 1 that fg = f ◦ g) and

K0 = LPS(Hi ⊕ Ni) , (3)
Kj+1 = LPS(Kj ⊕ Cj) , for j = 0, 1, . . . , 12, and constants Cj . (4)

The subkeys K1,K2, . . . , k13 are the round keys; in deriving them, K0 is used as
an initial value.

3 The Message Recovery Attack

The functions S and P do not involve modular addition or multiplication. The
function X is a simple XOR operation. The linear transformation � works as
follows. Denoting its 64-bit input by β:=β(63)‖β(62)‖ · · · ‖β(0), we have:

�(β) =
63⊕

i=0

β(63−i) � A[i] ,

158 G. Sekar

where the product � is defined as follows:

β(63−i) � A[i] =

{
{0}64 β(63−i) = 0 ;
A[i] β(63−i) = 1 .

Hence, from (1)–(4), it immediately follows that Streebog compression does not
involve any operation, such as addition modulo 2512, that can alter the state of
the carry flag. This means that only steps 6, 7, 9 and 10 of Algorithm 1 can
potentially affect the carry flag.1

Now, the maximum length of M is 2512 − 1. Given a message of this length,
the number of blocks will be �(2512 − 1)/512� = 2503.2 If k + 1 < 2503 (to
simply calculations, this can be considered a sure event as it happens with a
probability that is very close to 1 if |M | is uniformly distributed at random over
{0, 1, . . . , 2512 − 1}), then Nk = 512k, 512k < Nk+1 ≤ 512(k + 1), and the carry
flag will be unaffected by steps 6 and 9. This leaves us with steps 7 and 10. Now,

Σ =

(
k−1∑

i=0

Mi

)
mod 2512 + Mk mod 2512 . (5)

= Tk−1 + Mk mod 2512 , say. (6)

Let C:=[C(511)C(510) · · · C(0)] denote the vector of carries generated in (6)
such that C(0) is the carry at the LSB position. When k ≥ 1 (this can also be
considered a sure event), we have the following attack.

Scenario 1: Suppose that the carry flag is set at the end of Algorithm 1. If
|pad| ≥ 2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then Tk−1(511) =
C(511) = 1. If the attacker knows M0,M1, . . . ,Mk−2, and all but the MSB
of Mk−1, then she can recover Mk−1(511) from Tk−1(511) = 1 performing
k − 1 < 2503 − 2 additions (recall (5) and (6)).

If |pad| = 0 and Mk(511) = 1, or |pad| = 1 ⇒ Mk(511) = 1, then there are
three possibilities: (i) Tk−1(511) = C(511) = 1, (ii) Tk−1(511) = 0 and C(511) = 1,
(iii) Tk−1(511) = 1 and C(511) = 0. Assuming these cases to be equally likely,3

the attacker can assume with 2/3 probability that Tk−1(511) = 1, and recover
Mk−1(511).

Table 2 lists the above cases and their probabilities assuming that (i) |Mk|
is uniformly distributed at random over {0, 1, . . . , 511}, and (ii) every message
1 The for-loop of Algorithm 1 is implemented differently in [5]. To obtain M0, the least

significant 512-bit word of the padded message is extracted. The leftover message
replaces the padded message and its 512 LSBs are extracted as M1. This process is
repeated until all the message blocks have been extracted. The carry flag is evidently
unaffected by the process.

2 Therefore, even if we go with the for-loop implementation (Algorithm 1), it will
have no bearing on the carry flag.

3 Since the distribution of |Mk| is uniform, given the padding scheme employed, the
distribution of Mk is not uniform. This makes it tedious to compute the distribution
of the carry vector C. Hence the assumption.

Side Channel Cryptanalysis of Streebog 159

block other than Mk is uniformly distributed at random over {0, 1, . . . , 2512−1}.
The attack methodology is as follows. The attacker, knowing M0,M1, . . . ,Mk−2

and Mk, makes a guess for the 511 LSBs of Mk−1, obtains a value for the
MSB of Mk−1 (assuming that Tk−1(511) = 1), hashes Mk‖Mk−1‖ · · · ‖M0, and
compares the digest with the given hash value. If the values do not agree, the
guess is incorrect and the attacker makes another guess. The process is repeated
until the hash values agree. The sum σ of M0,M1, . . . ,Mk−2 modulo 2512 can
be precomputed (cost is k − 2); σ + Mk−1 mod 2512 can be performed at each
guess and, in doing so, can be avoided while computing the digest (i.e., σ+Mk−1

mod 2512 can be stored and reused). To minimise memory usage, the storage
element can be rewritten at the next guess. The probability of success is the
probability that Tk−1(511) = 1 holds true. From Table 2, this probability is simply
510/512 + 1/768 + 1/1024 + 1/1536 ≈ 0.999. The attack requires 2511 hash
function evaluations plus a precomputation cost of k − 2 < 2503 − 3. Memory
requirements are negligible.

Table 2. Computing Pr(Tk−1(511) = 1) when the carry flag is 1; the probability q is
given the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)

≥ 2 510/512 0 1 1 1 510/512

1 1/512 1 1 1 2/3 1/768

0 1/512 0 1/2 1 1 1/1024

0 1/512 1 1/2 1 2/3 1/1536

Scenario 2: Suppose that the carry flag is 0 at the end of Algorithm 1. If |pad| ≥
2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then at least one of Tk−1(511)

and C(511) is 0. Knowing M0,M1, . . . ,Mk−2, and all but the MSB of Mk−1, the
attacker can recover Mk−1(511) assuming that Tk−1(511) = 0. The assumption
is valid in two out of the three possible cases: (i) Tk−1(511) = C(511) = 0, (ii)
Tk−1(511) = 0 and C(511) = 1, (iii) Tk−1(511) = 1 and C(511) = 0. Assuming that
these cases are equally likely, Pr(Tk−1(511) = 0) = 2/3.

When |pad| = 0 and Mk(511) = 1 or when |pad| = 1 ⇒ Mk(511) = 1, then
Tk−1(511) = C(511) = 0.

Table 3 lists the above cases and their probabilities under the assumption
that (i) |Mk| is uniformly distributed at random over {0, 1, . . . , 511}, and (ii)
every message block other than Mk is uniformly distributed at random over
{0, 1, . . . , 2512 − 1}. The attack methodology is identical to that described under
Scenario 1, except that the attacker here assumes that Tk−1(511) = 0. The prob-
ability of success is the probability that Tk−1(511) = 0 holds true. From Table 3,
this probability is 170/256 + 1/512 + 1/1536 + 1/1024 ≈ 0.668. The time com-
plexity and memory requirements are the same as that in Scenario 1.

160 G. Sekar

Note: The probability that Tk−1 = 0 given that the carry flag is 0 and
Mk(511) = 0 is at least 1/2 since Pr(case (i) or case (ii)) = Pr(Tk−1) = 1/2
(given the assumption that the message blocks other than Mk are uniformly
distributed). Even if the conditional probability is 1/2, the success probabil-
ity will be 255/512 + 1/512 + 1/2048 + 1/1024 > 1/2 (see Table 3). The suc-
cess probability calculated from Table 2 changes negligibly when 2/3 is replaced
by 1/2.
�

Table 3. Computing Pr(Tk−1(511) = 0) when the carry flag is 0; the probability q is
given the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)

≥ 2 510/512 0 1 0 2/3 170/256
1 1/512 1 1 0 1 1/512
0 1/512 0 1/2 0 2/3 1/1536
0 1/512 1 1/2 0 1 1/1024

In summary, by simply guessing Tk−1(511) to be equal to the carry flag, the
attacker is able to recover Mk−1 with 2511 hash function evaluations and k−2 pre-
computations. The number of precomputations can be negligible in comparison
to 2511 and even the maximum number of precomputations (2503 − 4) is consid-
erably smaller than 2511. Moreover, each precomputation is only an addition of
two 512-bit integers. Consequently, the precomputation cost can be ignored. The
success probability is 0.668 if the carry flag is 0 and 0.999 otherwise. Arriving at
a single value for the probability is involved given the difficulty in determining
the distribution of the carry vector C. It is easy to see that the attack works
for any i ∈ {0, 1, . . . , k − 2} in place of k − 1. In the ideal case, either 2512 hash
function evaluations are required or the success probability is 1/2 for 2511 eval-
uations.4 Since the compression functions of Streebog-256 and Streebog-512 are
identical, our attack applies to both the hash functions.

3.1 Implications of Our Attack

Our attack may be particularly relevant to HMACs. Proposed by Bellare et al.
[4] as a message integrity checking mechanism, a HMAC employs a hash function
h in conjunction with a secret key K and generates a MAC value as follows:

HMAC(K,m) = h((K0 ⊕ opad)‖h((K0 ⊕ ipad)‖m)) ,

where m is the message, opad and ipad are public constants, and K0 is the secret
key or a function of K. The lengths of K0, opad and ipad equal the length of a
4 This does not apply to Mk unless |pad| = 0. Knowing |pad| and M0, M1, . . . , Mk−1,

the attacker can recover Mk in 2512−|pad| time. Our attack is not intended to recover
Mk.

Side Channel Cryptanalysis of Streebog 161

message block. Given the HMAC value and h((K0 ⊕ ipad)‖m), in certain cases,
our attack appears to speed up the recovery of K0 by a factor of 2. This is being
further investigated.

4 Countermeasures

A simple way to preclude our attack is to introduce a low-cost arithmetic opera-
tion, after step 12 of Algorithm 1, that permanently sets or clears the carry flag.
However, the approach fails if the attack model assumes that the attacker can
determine the status of the carry flag after step 12.5

A faster and safer countermeasure is to implement the checksum using XOR;
i.e., replace the addition modulo 2512 in steps 7 and 10 of Algorithm 1 with XOR.

5 Conclusions

In this paper, we have presented the first known side channel attack on Streebog.
The attack speeds up message recovery by a factor of 2 with a probability that
lies in [0.668, 0.999]. The attack is conjectured to be applicable to Streebog-based
HMAC. We have also proposed some countermeasures.

It may be possible to improve the attack by recovering bits other than the
MSB, but calculating the success probabilities is involved and beyond the scope
of this paper. We leave it as a problem for future work. Use of other processor
flags such as the parity flag is also worth investigating.

References

1. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound attacks on Stribog. In: Lee,
H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 175–188. Springer,
Heidelberg (2014)

2. AlTawy, R., Youssef, A.M.: Integral distinguishers for reduced-round Stribog. Inf.
Process. Lett. 114(8), 426–431 (2014)

3. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round Stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
109–125. Springer, Heidelberg (2014)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Federal Agency on Technical Regulation and Metrology, “NATIONAL STAN-
DARD OF THE RUSSIAN FEDERATION GOST R 34.11-2012” (English Ver-
sion), 1 January 2013

6. Guo, J., Jean, J., Leurent, G., Peyrin, T., Wang, L.: The usage of counter revisited:
second-preimage attack on new Russian standardized hash function. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 195–211. Springer, Heidelberg
(2014)

5 A similar assumption is made in [8].

162 G. Sekar

7. Intel, “IA-32 Intel Architecture Software Developer’s Manual”, vol. 1 (Basic Archi-
tecture), p. 426 (2003). http://flint.cs.yale.edu/cs422/doc/24547012.pdf

8. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. J. Comput. Secur. 8, 141–158 (2000)

9. Preneel, B.: Analysis and Design of Cryptographic Hash Functions, PhD thesis,
Katholieke Universiteit Leuven (1993)

10. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R hash function. Inf. Process.
Lett. 114(12), 655–662 (2014)

http://flint.cs.yale.edu/cs422/doc/24547012.pdf

	Side Channel Cryptanalysis of Streebog
	1 Introduction
	2 Description of Streebog
	3 The Message Recovery Attack
	3.1 Implications of Our Attack

	4 Countermeasures
	5 Conclusions
	References

