
Analysis of the PKCS#11 API Using
the Maude-NPA Tool

Antonio González-Burgueño1, Sonia Santiago2, Santiago Escobar3,
Catherine Meadows4(B), and José Meseguer2(B)

1 University of Oslo, Oslo, Norway
antonigo@ifi.uio.no

2 University of Illinois at Urbana-Champaign, Champaign, USA
{soniasp,meseguer}@illinois.edu

3 DSIC-ELP, Universitat Politècnica de València, Valencia, Spain
sescobar@dsic.upv.es

4 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

Abstract. Cryptographic Application Programmer Interfaces (Crypto
APIs) are designed to allow a secure interoperation between applica-
tions and cryptographic devices such as smartcards and Hardware Secu-
rity Modules (HSMs). However, several Crypto APIs have been shown
to be subject to attacks in which sensitive information is disclosed to an
attacker, such as the RSA Laboratories Public Key Standards PKCS#11,
an API widely adopted in industry. Recently, there has been a growing
interest on applying automated crypto protocol analysis methods to for-
mally analyze APIs. However, the PKCS#11 has been proven difficult
to analyze using such methods since it involves non-monotonic muta-
ble global state. In this paper we specify and analyze the PKCS#11 in
Maude-NPA, a general purpose crypto protocol analysis tool.

Keywords: PKCS#11 · Cryptographic application programming inter-
faces (cryptographic APIs) · Symbolic cryptographic protocol analysis ·
Maude-NPA

1 Introduction

Standards for cryptographic protocols have long been attractive candidates for
formal verification. Cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are secure.
Furthermore, when protocols that are known to be secure are implemented as

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.
This work has been partially supported by NSF grant CNS 13-19109, by the EU
(FEDER) and the Spanish MINECO under grant TIN 2013-45732-C4-1-P, and by
Spanish Generalitat Valenciana under grant PROMETEOII/2015/013.

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 86–106, 2015.
DOI: 10.1007/978-3-319-27152-1 5

Analysis of the PKCS#11 API Using the Maude-NPA Tool 87

standards, the modifications that are made during the standardization process
may introduce new security flaws. Thus a considerable amount of work has
been done in the application of formal methods to cryptographic protocol stan-
dards [1,7,27,29]. In this work the protocols are treated symbolically, with the
cryptosystems treated as black-box function symbols. A formal methods tool
attempts to show that there is no way an attacker, by interacting with the pro-
tocol and applying the cryptographic functions symbols in any order, can break
the security of the protocol. Such tools can be used both to search for attacks
and to prove security with respect to the symbolic model.

Such symbolic formal analyses can be of great benefit to standards develop-
ment in two ways. First of all, they offer means of verifying claims for security
made by the standard, so that people can use it with more confidence. Further-
more, they can be useful in improving the standard, by discovering vulnerabilities
in the protocols and attacks that can be mounted through exploiting the vul-
nerabilities. The explicit attacks discovered by the tools are particularly useful
in that they provide the protocol designers information that can be used to help
assess and repair the vulnerability.

For most analyses it has been the case that the same tool and general app-
roach has been used to both verify the security of a protocol and to find attacks.
Many of the tools employ methods that allow one to conclude that the protocol
is secure if the tool terminates without finding an attack, such as heuristics that
allow one to rule out redundant or useless paths (e.g. OFMC [3], Maude-NPA
[14], Tamarin [30]) or abstractions (e.g. ProVerif [4]). Thus, one can use the tool
first to find vulnerabilities, and then to verify security of the protocol once the
vulnerabilities have been fixed. In a number of cases this has facilitated collabo-
ration between standards developers and formal methods experts, e.g. as in [28].
This approach has worked particularly well for standards for key generation and
secure communication, and these are the types of protocols that are most widely
standardized, and the most well understood from the point of view of symbolic
formal analysis.

However, recently another type of application has begun to attract interest:
Cryptographic Application Programming Interfaces, or cryptographic APIs for
short. A cryptographic API is a set of instructions by which a developer of an
application may allow it to take advantage of the cryptographic functionality of a
secure module. These APIs allow an application to perform such functions as cre-
ating keys, using keys to encrypt and decrypt data, and exporting and importing
keys to and from other devices. Cryptographic APIs should also enforce security
policies. In particular, no application should be able to retrieve a key in the
clear.

Developers of cryptographic APIs have traditionally concentrated on provid-
ing functionality, not on guaranteeing security properties. This has resulted in
a number of attacks on cryptographic APIs in which researchers have shown
how many popular APIs can be led into an unsafe state (e.g. one in which a
key is revealed to an untrusted application) via a series of legal steps. Indeed,
much of the earliest work on formal analysis of cryptographic protocols focused
on cryptographic APIs, e.g. [21,25,26]. However, the analysis of cryptographic

88 A. González-Burgueño et al.

APIs, did not become an area of research on its own until the early 2000’s
in particular after the attack found by Bond [5] in 2001 on IBM’s CCA API.
Many more attacks on CCA and other systems, as well as new techniques for ver-
ifying the security of APIs, have followed; see for example the attacks described
in Chap. 18 of Ross Anderson’s Security Engineering [2].

One API that has attracted particularly wide attention is PKCS#11 [24].
This is a standard that provides both a set of commands that could be used by
a cryptographic API and mechanisms for setting and enforcing security policies.
These security policies are specified in terms of attributes on keys and other data
that declare which operations using these terms are legal or illegal. However,
no guidance is provided on what sort of restrictions should be put on setting
attributes on keys and other data so that undesirable states are avoided. Indeed,
if no restrictions at all are put on the way attributes are set, it is possible to
wind up with an application learning a key in the clear in just a very few steps,
as Clulow points out in [9].

Since PKCS#11 is a widely used standard, much attention has been focused
on correcting these deficiencies, in particular on developing means for formally
verifying that a policy rules out undesirable states. But because PKCS#11 is
intended to be applied to a wide variety of platforms, the problem is harder
than verifying the security of an API such as IBM’s CCA [20], which was only
intended to be used for applications running on certain IBM systems. For one
thing, the set of attributes forms a mutable global state which must be accounted
for. Secondly, any formal verification system must be capable of verifying not
just one or two policies specified by the developers of the API, as was the case
of CCA, but any of a large class of policies that could be specified by a user.

Because of the complexity of the problem, researchers have tended to narrow
their focus when applying cryptographic protocol analysis tools to PKCS#11.
Most use of tools for the analysis of PKCS#11 makes some restriction on the
policies analyzed, usually with an appeal to practicality or common use cases.
They may also develop tools specifically designed for PKCS#11 analysis, or at
the very least prove additional results specific to PKCS#11 that allow them to
limit the size of the search space. Finally, they may concentrate primarily on
either proving security or finding attacks, but not both.

In this paper we investigate the applicability of cryptographic protocol verifi-
cation tools, in particular the Maude-NRL Protocol Analyzer (Maude-NPA) [14],
to the analysis of cryptographic APIs such as PKCS#11, primarily concentrat-
ing on assessing its ability to find attacks. In order to perform the verification of
PKCS#11, we make use of the results in [18] which show that, for a large class of
reasonable policies, it is sufficient to assume that attributes never change; that is,
that policies are static. We then show how, assuming static policies, it is possible
to specify policies that put restrictions on what combination of attributes can be
set to true for a particular key using Maude-NPA never patterns, a feature that
allows the user to specify what events Maude-NPA should avoid in generating
an attack. Since most policies proposed to date for PKCS#11 are expressed in
this form, this leaves us in a good position to express both the API and policies

Analysis of the PKCS#11 API Using the Maude-NPA Tool 89

in Maude-NPA. We then use Maude-NPA to reproduce the attacks found by
Delaune et al. in [12]. Finally, we discuss the performance of Maude-NPA and
compare it with other applications of cryptographic protocol analysis tools to
the analysis of PKCS#11, in particular the use of the AVISPA tool in [32] and
the use of Tamarin in [23].

The contributions of this paper are twofold. First, we advance investigation
of the verification of PKCS#11 by performing the analysis of this API in a
model more general than those in other works in the literature, namely a fully-
unbounded session model with no abstraction nor approximation of fresh values,
and making no other restrictions on policies other than that they are static.
Second, we provide a new example of applicability of Maude-NPA to the analysis
of cryptographic APIs. This paper extends the work presented in [19] on the
analysis of IBM CCA by showing that Maude-NPA does not only support the
specification of these APIs, but also the specification of policies restricting their
behavior.

The rest of the paper is organized as follows. In Sect. 2 we give a high-
level summary of Maude-NPA and its use of never patterns. In Sect. 3 we give
an overview of PKCS#11 along with previous attacks and formal analyses. In
Sect. 4 we describe how we specify the PKCS#11 API and policies in Maude-
NPA. In Sect. 5 we describe the experiments we conducted and explain the results
obtained. In Sect. 6 we discuss related work. Finally, in Sect. 7 we conclude the
paper and discuss future work.

2 Maude-NPA

In this section we give a high-level summary of Maude-NPA. For further infor-
mation, please see [14].

2.1 Preliminaries on Unification and Narrowing

We assume an order-sorted signature Σ = (S,≤, Σ) with a poset of sorts
(S,≤) and an S-sorted family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the set
of ground terms of sort s. We write TΣ(X) and TΣ for the corresponding order-
sorted term algebras. For a term t, Var(t) denotes the set of variables in t.

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence ε. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X
to TΣ(X). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ to
a term t is denoted by tσ.

90 A. González-Burgueño et al.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Σ and a set E of Σ-equations, The E-equivalence class of a term
t is denoted by [t]E and TΣ/E(X) and TΣ/E denote the corresponding order-
sorted term algebras modulo E. An equational theory (Σ,E) is a pair with Σ
an order-sorted signature and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (σ ◦ η)|W =E ρ|W); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a
set of rewrite rules. The (R,E) rewriting relation →R,E on TΣ(X) is defined as:
t →p,R,E t′ iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p.

Let t be a term and W be a set of variables such that Var(t) ⊆ W , the
R,E-narrowing relation on TΣ(X) is defined as t �p,σ,R,E t′ if there is a non-
variable position p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. (Var(l) ∪
Var(r)) ∩ W = ∅, and a unifier σ ∈ CSUW ′

E (t|p = l) for W ′ = W ∪ Var(l), such
that t′ = (t[r]p)σ.

2.2 Maude-NPA Syntax and Semantics

Given a protocol P, states are modeled as elements of an initial algebra TΣP/EP ,
where ΣP is the signature defining the sorts and function symbols (for the
cryptographic functions and for all the state constructor symbols) and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t]E ∈ TΣP/EP with t a ground ΣP -term.

In Maude-NPA a state pattern for a protocol P is a term t of sort State (i.e.,
t ∈ TΣP/EP (X)State) which has the form {S1 & · · · &Sn & {IK}} where &is an
associative-commutative union operator with identity symbol ∅. Each element
in the set is either a strand Si or the intruder knowledge {IK} at that state.

The intruder knowledge {IK} belongs to the state and is represented as a
set of facts using the comma as an associative-commutative union operator with
identity element empty. There are two kinds of intruder facts: positive knowl-
edge facts (the intruder knows m, i.e., m∈I), and negative knowledge facts (the
intruder does not yet know m but will know it in a future state, i.e., m/∈I), where
m is a message expression.

A strand [16] specifies the sequence of messages sent and received by a
principal executing the protocol and is represented as a sequence of messages
[msg−

1 ,msg+
2 ,msg−

3 , . . . ,msg−
k−1,msg+

k] such that msg−
i (also written −msgi)

Analysis of the PKCS#11 API Using the Maude-NPA Tool 91

represents an input message, msg+
i (also written +msgi) represents an output

message, and each msgi is a term of sort Msg (i.e., msgi ∈ TΣP/EP (X)Msg).
Strands are used to represent both the actions of honest principals (with a

strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [m1

±, . . . , mi
± | mi+1

±, . . . , mk
±], messages m±

1 ,
. . . ,m±

i are the past messages, and messages m±
i+1, . . . ,m

±
k are the future mes-

sages (m±
i+1 is the immediate future message). A strand [msg±

1 , . . . ,msg±
k] is

shorthand for [nil | msg±
1 , . . . ,msg±

k , nil]. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder knowledge
has no fact of the form m∈I. A final state is a state where the bar is at the end
for all strands in the state and there is no intruder fact of the form m/∈I.

Since Fresh variables must be treated differently from other variables by
Maude-NPA, we make them explicit by writing :: r1, . . . , rk :: [m±

1 , . . . ,m±
n],

where each ri first appears in an output message m+
ji

and can later appear in
any input and output message of m±

ji+1, . . . ,m
±
n . If there are no Fresh variables,

we write :: nil :: [m±
1 , . . . ,m±

n].

Example 1. Let us consider a subset of the PKCS#11 API. A symmetric key
generated by principal A is denoted by skey(A, r), where r is a unique Fresh
variable and A denotes who generated the key. The symmetric encryption of
a message M with a key skey(A, r) is denoted by senc(M, skey(A, r)). The
intruder’s ability to generate its own symmetric keys is specified in Maude-NPA
by the strand:

:: r :: [skey(i, r)+]

where i is a constant denoting the intruder’s name. Note that we have made
explicit that the fresh variable r is generated in this strand. In this protocol the
intruder is allowed to perform the symmetric encryption of a message M with
a key K, assuming that it has received both M and K. This ability is specified
by the following strand:

:: nil :: [M−, K−, (senc(M,K)+)]

where M is a variable of the sort for messages and K is a variable of the sort
for symmetric keys. Note that no fresh variables are generated in this strand.

Since the number of states TΣP/EP is in general infinite, rather than exploring
concrete protocol states [t]EP ∈ TΣP/EP Maude-NPA explores symbolic state
patterns [t(x1, . . . , xn)]EP ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set
of variables X . In this way, a state pattern [t(x1, . . . , xn)]EP represents not a
single concrete state but a possibly infinite set of such states, namely all the
instances of the pattern [t(x1, . . . , xn)]EP where the variables x1, . . . , xn have
been instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that
describe how a protocol moves from one state to another via the intruder’s inter-
action with it. One uses Maude-NPA to find an attack by specifying an insecure

92 A. González-Burgueño et al.

state pattern called an attack pattern. Maude-NPA attempts to find a path from
an initial state to the attack pattern via backwards narrowing (narrowing using
the rewrite rules with the orientation reversed).

Example 2. Let us continue Example 1. In order to analyze whether the intruder
can learn an honest key we specify the following attack pattern below:

{SS & {skey(a, r)∈I, IK}}

where SS and IK are variables of the sort for sets of strands and for the intruder’s
knowledge, respectively. This attack pattern represents an insecure situation in
which the intruder has learnt the honest key skey(a, r). Note that a is a constant
of the sort for names, which is different to the intruder’s name i.

The backwards narrowing sequence from an initial state to an attack state
is called a backwards path from the attack state to the initial state. Maude-NPA
attempts to find paths until it can no longer form any backwards narrowing steps,
at which point it terminates. If at that point it has not found an initial state,
the attack pattern is judged unreachable. Note that Maude-NPA puts no bound
on the number of sessions, so reachability is undecidable in general. Note also
that Maude-NPA does not perform any data abstraction such as bound number
of nonces. However, the tool makes use of a number of sound and complete
state space reduction techniques that help to identify unreachable and redundant
states [15], and thus make termination more likely.

2.3 Never Patterns in Maude-NPA

It is often desirable to exclude certain patterns from transition paths leading to
an attack state. For example, one may want to determine whether or not authen-
tication properties have been violated, e.g., whether it is possible for a responder
strand to appear without the corresponding initiator strand. For this there is an
optional additional field in the attack state containing the never patterns. Each
never pattern is itself a state pattern. When we provide an attack pattern A and
some never patterns NP1, . . . , NPk to Maude-NPA, every time the tool pro-
duces a state S via backwards narrowing from A, it checks whether there is a
substitution θ such that NPiθ =EP S. If that is the case, the state is discarded1.
We will write an attack pattern A with the never patterns NP1, . . . , NPk as
A || never(NP1) . . . || never(NPk).

Although never patterns were introduced as a means for specifying authen-
tication properties, they can also be used to reduce the search space in a not
necessarily complete way (an attack could be missed). In this work we only found
it necessary to use such never patterns once in analysis (see Sect. 5).

Example 3. Let us continue Example 2. In order to exclude from the backwards
path from the attack pattern of Example 2 the case in which the intruder uses
1 Maude-NPA also checks whether NPiθ satisfies irreducibility constraints, as

described in [13].

Analysis of the PKCS#11 API Using the Maude-NPA Tool 93

the key skey(a, r) to perform the symmetric encryption of any message M , we
extend the attack pattern above with a never pattern as shown below:

{SS & {skey(a, r)∈I, IK}
|| never({ :: nil :: [(M)−, (skey(a, r))−, (senc(M, skey(a, r)))+] & SS′ & {IK′}})

where SS′ and IK ′ are variables of the sort for sets of strands and for the
intruder’s knowledge, respectively.

3 PKCS#11

RSA Laboratories originally developed the Public Key Standards (PKCS) #11
in order to define a platform-independent API “Cryptoki”for the management of
cryptographic tokens. Recently (in 2012) the responsibility of the maintenance
of the standard was transitioned to the OASIS standards committee [31], but
the standard is still referred to as PKCS#11.

PKCS#11 is intended to protect sensitive cryptographic keys as follows [17].
Once a session is initiated, the application may access the objects stored in the
token, such as keys and certificates. However, access to the objects is controlled
in the API via handles (which can be thought of as pointers to, or names for, the
objects). These objects have attributes, e.g. boolean flags signalling properties of
the object, namely wrap, unwrap, encrypt, decrypt, sensitive and extract.
These flags can be either in positive form (l) or in negative form (¬l), denoting
that an attribute l is set or unset, respectively. Depending on whether these
attributes are set or unset, certain API commands may be enabled or disabled.

New handles can be created by calling a key generation command, or by
“unwrapping” an encrypted key packet. For example, if the encrypt function
is called with the handle for a particular key, that key must have its encrypt
attribute set. Also, a key may be exported outside the device if it is encrypted
by another key, but only if it has the attributes sensitive and extract set. It
is important to know that protection of the keys essentially relies on these two
attributes, sensitive and extract.

Table 1 provides an informal description of a subset of the PKCS#11 key
management commands. There are two kinds of commands. First, there are
commands that correspond to PKCS#11 actions: the ones for wrapping and
unwrapping keys, namely “Wrap” and “Unwrap”, respectively; and for symmet-
ric and asymmetric encryption and decryption, e.g. “SEncrypt” is the command
for symmetric encryption, whereas “ADecrypt” corresponds to the command for
asymmetric decryption. Note that there are several possibilities for the “Wrap”
and “Unwrap” commands, depending on whether they use symmetric or asym-
metric keys. Second, there are commands to modify attribute values, namely the
“Set” and “Unset” commands. For example, “Set-Wrap” sets to true the wrap
attribute of a key, whereas “Unset-Wrap” sets it to false.

The behavior of each command is described in Table 1 by rules of the form
T ;L new ñ→ T ′;L′. T is the set of messages that need to be received, whereas
T ′ denotes the set of messages that are sent as a result of the messages in T

94 A. González-Burgueño et al.

Table 1. Subset of PKCS#11 v2.01 key management commands

Name API Command Description

Wrap (sym-sym) h(n1, k1), h(n2, k2) ; wrap(n1), extract(n2) → senc(k2, k1)

Wrap (sym-asym) h(n1, priv(z)), h(n2, k2) ; wrap(n1), extract(n2) → aenc(k2, pub(z))

Unwrap (sym-sym) h(n1, k2), senc(k1, k2) ; unwrap(n1)
new r→ h(r, k1) ; extract(r), L

Unwrap (sym-asym) h(n1, priv(z)), aenc(k1, pub(z)) ; unwrap(n1)
new r−→ h(r, k1) ; extract(r), L

SEncrypt h(n, k), m ; encrypt(n) → senc(m, k)

SDecrypt h(n, k), senc(m, k) ; decrypt(n) → m

AEncrypt h(n, priv(z)), m ; encrypt(n) → aenc(m, pub(z))

ADecrypt h(n, priv(z)), aenc(m, pub(z)) ; decrypt(n) → m

Set-Wrap h(n, k) ; ¬wrap(n) → wrap(n)

Set-Encrypt h(n, k) ; ¬encrypt(n) → encrypt(n)

Unset-Wrap h(n, k) ; wrap(n) → ¬wrap(n)

Unset-Encrypt h(n, k) ; encrypt(n) → ¬encrypt(n)

L = ¬wrap(r), ¬unwrap(r), ¬encrypt(r), ¬decrypt(r), ¬sensitive(r)

being received. L and L′ are sets of attributes. More specifically, L denotes
the attributes that must be set in order to execute the command, whereas L′

denotes the value of the attributes after the command is executed. L′ can include
attributes in negative form and attributes related to freshly generated handles
not appearing in L. The expression new ñ represents the generation of fresh data
that will appear in T ′ and L′.

The set L′ is assumed to be satisfiable, i.e., it cannot contain two literals l
and ¬l. Any variable appearing in T ′ must appear in T , i.e. Var(T ′) ⊆ Var(T)
and any variable appearing in L′ also appears in L, i.e. Var(L′) ⊆ Var(L). The
only new variables that can appear in T ′ and L′ are those indicated in new ñ.

In Table 1 public and private keys are represented by terms of the form pub(A)
and priv(A), respectively. Handles for keys are specified as terms of the form
h(N,K), where N is a nonce uniquely identifying the handle and K is the key.
Symmetric and asymmetric encryption of a message M with a key K is denoted
by terms senc(M,K) and aenc(M,K) respectively. Finally the attributes are
specified as terms of the form l(N), where l is the attribute’s name, and N is a
nonce that refers to a unique handle h(N,K).

Example 4. Let us consider the rule corresponding to the “Wrap (sym-sym)”
command. This rule allows wrapping a symmetric key using another symmetric
key. If the attacker knows the handles h(n1, k1) and h(n2, k2), i.e., references to
symmetric keys k1 and k2, the handle h(n1, k1) has the attribute wrap set, and
the handle h(n2, k2) has the attribute extract set, then the attacker can learn
the symmetric encryption of k2 with k1, represented by the term senc(k2, k1).

In a cryptographic API threat model we assume that the application is mali-
cious and in league with the adversary. Thus, in particular applications should
not learn keys in the clear. In [9] Clulow presented a number of attacks in which
sensitive keys are compromised. One of the best-known attacks is the so-called
“key separation attack”. The name refers to the fact that the attributes of a key
can be set and unset in such a way as to give a key conflicting roles, allowing the
attacker to learn sensitive keys. Figure 1 shows an example of a key separation
attack presented in [9]. In this attack the attacker learns the value of a sensitive

Analysis of the PKCS#11 API Using the Maude-NPA Tool 95

Initial knowledge: The intruder knows h(n1, k1) and h(n2, k2); n2 has
the attributes wrap and decrypt set, whereas n1 has the attributes
sensitive and extract set.

Trace:
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
SDecrypt: h(n2, k2), senc(k1, k2) → k1

Fig. 1. Decrypt/Wrap attack in PKCS#11 v2.01

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2)
and the key k3; n1 has the attributes sensitive and extract set
whereas n2 has the attributes unwrap and encrypt set.

Trace:
SEncrypt: h(n2, k2), k3 → senc(k3, k2)

Unwrap: h(n2, k2), senc(k3, k2)
new n3→ h(n3, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Fig. 2. Encrypt/Unwrap attack in PKCS#11 v2.01

key by wrapping it and then decrypting the resulting cyphertext with a key that
has the attributes for decryption (decrypt) and wrapping (wrap) set.

Clulow suggested that this attack could be avoided by restricting key
attribute changing operations so that a stored key could not have both the
decrypt and wrap attributes set. However, as described in [12], this restriction
does not prevent other key separation attacks not discovered by Clulow. For
example, as shown in Fig. 2, if the attacker imports its own key by first encrypt-
ing it under a key k2 whose handle has the attributes unwrap and encrypt set,
and then unwrapping it, then it can export a sensitive key k1 under k3 to discover
its value.

Again, in [12] the authors showed that restricting key attribute changing
operations to avoid the attacks shown in Figs. 1 and 2 is not enough to make the
API secure. The attacker can learn a sensitive key k1 performing the sequence
of commands shown in Fig. 3 if it knows a handle h(n2, k2) which has both the
wrap and unwrap attributes set.

Furthermore, when asymmetric encryption is considered, PKCS#11 is sub-
ject to the “Trojan Wrapped Key” attack, first discovered in [9], and found later
on in [12], too. In this attack the attacker has the ability to smuggle a key of his
own choice onto the token. If there is a key pair pub(s1), priv(s1) on the token
such that pub(s1) can be used for encrypting data and priv(s1) for unwrap-
ping keys then the attacker can first encrypt a known key k3 under pub(s1) and
then plant its trojan key by unwrapping k3 into a new handle. The attacker can
then use this Trojan key to export other keys from the device, which it can then
decrypt and recover. Figure 4 shows the exchange of messages of this attack.

96 A. González-Burgueño et al.

Initial state: The intruder knows the handles h(n1, k1) and h(n2, k2), and the
key k3; n1 has the attributes sensitive and extract set, n2 has the attribute
extract set. The intruder also knows the public key pub(s1) and its associated
handle h(n3, priv(s1)).

Trace:
Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n2, k2) → senc(k2, k2)
Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), senc(k2, k2)
new n4→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Set decrypt: h(n4, k2) → decrypt(n4)
SDecrypt: h(n4, k2), senc(k1, k2) → k1

Fig. 3. Wrap/Unwrap attack in PKCS#11 v2.01

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and the
key k3; n1 has the attributes sensitive and extract set, n2 has the attribute
extract set. The intruder also knows the public key pub(s1) and its
associated handle h(n3, priv(s1)).

Trace:
Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1)), h(n3, priv(s1))
new n4→ h(n4, k3)

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Fig. 4. Trojan Wrapped Key attack in PKCS#11 v2.01

Another experiment performed in [12] shows that more recent versions of
the API that include new mechanisms to improve security are still subject to
the same type of attacks. For example, version 2.20 of the PKCS#112 stan-
dard uses two more attributes: wrap with trusted and trusted. Whenever the
“Wrap” command is executed, it tests whether if the key to be wrapped has
wrap with trusted set then the wrapping key has trusted set. However, this
does not prevent the attack shown in Fig. 5, where the attacker first attacks the
trusted wrapping key, and then obtains the sensitive key k1.

4 Specification of PKCS#11 in Maude-NPA

In this section we explain how to specify and analyze the core key manage-
ment commands of PKCS#11 in Maude-NPA. First, in Sect. 4.1 we provide a

2 Attacks shown in Figs. 1-4 actually correspond to attacks of PKCS#11 version 2.01,
whereas the attack shown in Fig. 5 is an attack discovered for PKCS#11 version 2.20.

Analysis of the PKCS#11 API Using the Maude-NPA Tool 97

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and the key k3;
n1 has the attributes sensitive, extract and wrap with trusted set , whereas n2

has the attributes extract and trusted set. The intruder also knows the public key
pub(s1) and its associated handle h(n3, priv(s1));n3 has the attribute unwrap set.

Trace:
Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1)), h(n3, priv(s1))
new n4→ h(n4, k3)

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n2, k2) → senc(k2, k3)
Intruder: senc(k2, k3), k3 → k2
Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Intruder: senc(k1, k2), k2 → k1

Fig. 5. Wrap with trusted key attack in PKCS#11 v2.20

high-level description of how we model PKCS#11 API version 2.20 in Maude-
NPA. Then, in Sect. 4.2 we show in detail the specification of the PKCS#11
commands in Maude-NPA’s syntax.

4.1 Formal Model of PKCS#11 in Maude-NPA

It is well-known that specifying and verifying API protocols in protocol analy-
sis tools is challenging. Although this is not the first time an API protocol is
analyzed in Maude-NPA (see [19]), there are specific features of PKCS#11 API
that make its specification and analysis in Maude-NPA a non-trivial task.

First, the number of keys and handles is infinite a priori, e.g., the “Unwrap”
command allows creating new handles for an existing key. The approach taken
in [12] bounds the number of keys and handles for each key that can be created.
For example, to find the attack shown in Fig. 1 the authors allow a maximum of
3 symmetric keys and 2 handles for each symmetric key (see [12] Sect. 5). In [18]
the authors assume a bound on the number of fresh values that are generated
in the course of an attack, and prove that it is sound and complete for the
static policies of the specific systems they consider. However, these bounds may
not apply to other systems. By contrast, in this paper we do not impose these
restrictions and perform the analyses in an unbounded session model, making
no abstractions of fresh data, e.g., an infinite number of keys an nonces can be
generated. There was one exception, the analysis where attack shown in Fig. 5,
where ultimately we had to restrict the number of keys the attacker generates
to prevent state space explosion. However, in this case the attacker could still
generate an unbounded number of fresh handles by executing the “Unwrap”
command. The work presented in [23] also considers an unbounded session model
using no abstraction, but its goal is different from ours (see Sect. 6 for further
details).

98 A. González-Burgueño et al.

Another feature of PKCS#11 is use of a global mutable state consisting of
attributes. We avoid this issue by taking advantage of previous work in this
area by Fröschle and Steel [18] to simplify the types of policies that need to
be analyzed. In [18] Fröschle and Steel define a construct they call an attribute
policy, and show that, for a large class of “reasonable” attribute policies called
complete policies, it is enough to prove security in the case of static policies,
in which the attributes of a key are never changed after it is created. In [18]
the attribute state is a function assigning attribute valuations (specifications
of which attributes are set and which are not) to keys. An attribute policy is
a finite directed graph whose nodes are the set of allowable states, and whose
edges are allowed transitions between states. A complete policy is one in which
the transition policy consists of a collection of disjoint, disconnected cliques,
and for each clique C, and each pair of states c0, c1 ∈ C, we have c0 ∪ c1 ∈ C.
This allows for certain natural behaviors for which Fröschle and Steel point out
that any well-designed policy should take into account. They then show that
each clique has a unique end point in which the attacker has the greatest power.
Thus any attacker behavior allowed by the policy in which each clique is replaced
by the end point is allowed by any node in the clique. Thus analysis of the end
point policy will tell us whether or not the original policy was safe. Moreover,
since the end point policy is static, it is enough to be able to analyze static
policies.

The main difference between the Fröschle-Steel paper and the model used
in the Maude-NPA analysis is in the definition of attribute state. The Maude-
NPA analysis has no such notion of attribute state. However, it does keep a
history that may include the setting and unsetting of attribute values, and these
can be mapped to allowable states. For example, if the attribute wrap was set
for a key, and it was not subsequently unset, we may conclude that that key
currently has its attribute wrap set. It is thus also possible to define policies for
PKCS#11 keys as they are represented in Maude-NPA by mapping the states
both before and after a transition T to attribute states, and then determining
whether the two states and the transition edge connecting them belong to the
policy. This in particular allows us to define both complete and static policies
in terms of Maude-NPA histories and thus apply the results of Fröschle-Steel to
analyze only static policies with the assurance that this analysis applies to the
associated complete policies as well.

The use of static policies means that we do not need to represent attribute val-
ues explicitly. Instead, we can express policies defined in terms of what attributes
can be set for a given key in terms of what combinations of actions enabled by
those attributes are allowed using specific keys, without compromising complete-
ness. Thus, instead of saying that the attributes decrypt(n) and wrap(n) cannot
both we set, we say that the attacker cannot perform both “decrypt” and “wrap”
actions using the same key. This allows us, as in [18], to dispense with global
state entirely.

Another issue is to what extent we can use Maude-NPA to search for attacks
assuming a certain policy is being enforced. Fortunately, this is easy for static
policies that require that certain pairs of conflicting attributes not be both set

Analysis of the PKCS#11 API Using the Maude-NPA Tool 99

for the same key. This policy is enforced if and only if there is no history in
which the functions associated with each of the two conflicting attributes are
executed on the same key. This allows us to specify policies using never patterns
as described in Sect. 2.3. For example, in order to enforce a policy requiring, say,
that no key can have the attributes wrap and decrypt set we specify a never
pattern describing a generic state in which both wrap and decrypt strands have
executed using the same key. Such a policy is shown in Example 6. Note that
the never pattern does not specify which strand completed first, just that each
should have executed at some time in the past.

4.2 Specification of PKCS#11 in Maude-NPA’s Syntax

In this section we describe the specification of the PKCS#11 v2.20 key man-
agement commands in Maude-NPA’s syntax. The API’s signature is specified
as follows. A nonce generated by principal A is denoted by n(A, r), where r is
a unique variable of sort Fresh and A denotes the principal that generated the
nonce. This representation makes it easier to specify and keep track of the origin
of nonces. E.g., one can use the notation to specify a state in which a principal
accepts a nonce as coming from A when it actually comes from some B �= A.
Handles are represented by terms of the form h(n(A, r),K), where K can be
either a symmetric or an asymmetric key. Symmetric keys are represented by
terms of the form skey(A, r′), where A denotes a name and r′ is a fresh variable.
Public and private keys, and symmetric and asymmetric encryption are specified
similarly as explained in Sect. 3.

Each command of the PKCS#11 API is specified in Maude-NPA as a
strand. Table 2 shows the specification of the commands of Table 1 representing
PKCS#11 actions in Maude-NPA’s syntax as an example. More specifically, for
each rule T ;L new ñ→ T ′;L′, messages in T are represented as received messages,
i.e., terms of the form −(M), whereas messages in T ′ are represented as sent
messages, i.e., terms of the form +(M). The generation of fresh data denoted
by new ñ is represented by variables r1, . . . , ri of sort Fresh made explicit at the
beginning of the strand.

Example 5. The “Unwrap (sym-sym)” command of Table 1, which generates a
new fresh data r, is specified in Maude-NPA as the following strand:

:: r :: [−(h(N2, K2)), −(senc(K1, K2)), +(h(n(A, r), K1))]

where N2 is a variable of the sort for nonces, K1 and K2 are variables of the sort
for symmetric keys, and r is a variable of sort Fresh used to create a new handle
for K1.

Additionally, in PKCS#11 the attacker can perform symmetric encryption
and decryption and create any number of symmetric keys. We assume it knows
any public key and can generate only its private key. The attacker can perform
asymmetric encryption with any public or private key it knows. As explained in
Sect. 2, we specify each one of these capabilities as a strand in Maude-NPA.

100 A. González-Burgueño et al.

Table 2. PKCS#11 key management commands in Maude-NPA

Command Specification in Maude-NPA

Wrap (sym/sym) :: nil :: [−(h(N1, K1)), −(h(N2, K2)), +(senc(K2, K1))]

Wrap (sym/asym) :: nil :: [−(h(N1, priv(A))), −(h(N2, K2)), +(aenc(K2, pub(A)))]

Unwrap (sym/sym) :: r :: [−(h(N2, K2)), −(senc(K1, K2)), +(h(n(A, r), K1))]

Unwrap (sym/asym) :: r :: [−(h(N1, priv(B))), −(aenc(K1, pub(B))), +(h(n(A, r), K1))]

SDecrypt :: nil :: [−(h(N, K)), −(senc(M, K)), +(M)]

SEncrypt :: nil :: [−(h(N, K)), −(M), +(senc(M, K))]

ADecrypt :: nil :: [−(h(N, priv(A))), −(aenc(M, pub(A))), +(M)]

AEncrypt :: nil :: [−(h(N, priv(A))), −(M), +(aenc(M, priv(A)))]

We specify constraints on conflicting attributes as follows. Since in our model
we do not explicitly represent attributes, we express these conditions in terms of
the commands enabled when the conflicting attributes are set by adding never
patterns (see Sect. 2.3) to the attack states we use to perform the analysis in
Maude-NPA. More specifically, these never patterns are specified in such a way
that they discard states where these commands are executed using the same
handle. Let us illustrate this idea with the example below.

Example 6. Let us consider the attack shown in Fig. 2 where wrap and decrypt
are considered as conflicting attributes, i.e., a given handle cannot have both the
wrap and decrypt attributes set. In order to search for this attack in Maude-
NPA one can specify the attack pattern shown below, which has a never pattern
that discards any state that has, at least, two strands using the same handle
(h(N,K)): one for wrapping, and the other one for decryption.

{SS & {skey(A, r1′)∈I, IK}
|| never({ :: nil ::[−(h(N, K)), −(h(N1, K1)), +(senc(K1, K))] &

:: nil ::[−(h(N, K)), −(senc(M, K)), +(M)]

SS′ & {IK′}})

Note that SS and SS′ are variables of the sort for sets of strands, IK and IK ′

are variables of the sort for the intruder knowledge, A is a variable of the sort
for names, and K1 and K are variables of the sort for keys, and M is a variable
of the sort for messages. The term skey(a, r1′) represents a sensitive key that
should not be revealed to the attacker.

5 Experiments

We have specified the PKCS#11 API and analyzed several configurations in
Maude-NPA following the methodology explained in Sect. 4. More specifically,
we have rediscovered the attacks shown in Figs. 1, 2, 3, 4, and 5 (see Sect. 3).

Note that, unlike the experiments performed in [12] and in [18], we have not
bounded the number of keys and handles that can be generated. The protocol
specifications to reproduce our experiments are available on-line at http://www.

dsic.upv.es/∼sescobar/Maude-NPA/pkcs.html.

http://www.dsic.upv.es/~sescobar/Maude-NPA/pkcs.html
http://www.dsic.upv.es/~sescobar/Maude-NPA/pkcs.html

Analysis of the PKCS#11 API Using the Maude-NPA Tool 101

Table 3. Experimental Results

Attack Length dec / wrap enc/ unwrap wrap/ unwrap

Fig. 1 4 - - -
Fig. 2 7 � - -
Fig. 3 6 � � -
Fig. 4 7 � � �
Fig. 5 9 � � �

Table 3 gathers the results of our experiments. For each one of the attacks
explained in Sect. 3 we specify in the second column the length of the backwards
reachability analysis performed by Maude-NPA until each attack was found.
In the third, fourth, and fifth columns we show the different constraints on
conflicting attributes that have been considered in each experiment. For example,
the attack of Fig. 1 was found by Maude-NPA after 4 reachability steps, and
no restriction on conflicting attributes was considered. The attack shown in
Fig. 3 was found by Maude-NPA after 6 reachability steps and we considered
two restrictions, namely that decrypt and wrap, and encrypt and unwrap are
conflicting attributes.

In the experiments to find the attacks shown in Figs. 2 to 5 we used never
patterns to specify policies on conflicting attributes. Additionally, in the case of
the attack shown in Fig. 5 in order to control the size of the state search space
we added an attack preserving never pattern (see [19]) that forces Maude-NPA
to only search for states in which the attacker generated the minimal number of
keys.

we added a never pattern to discard states containing more than one instance
of the initial knowledge strand to reduce the state search space. Note that this
never pattern preserves the completeness of the analysis because this PKCS#11
configuration is subject to an attack. That is, if Maude-NPA finds the attack
when only one instance of the initial knowledge strand is allowed, it will still
find the same attack (or an equivalent one) if several instances are allowed.

6 Related Work

There is a vast amount of research on the formal analysis of cryptographic APIs,
so in this related work section we will concentrate on the work that is closest to
ours, namely the formal analysis of PKCS#11 and PKCS#11-like systems and
the use of cryptographic protocol analysis tools to analyze APIs.

Besides the work on formalizing and verifying PKCS#11 that we have already
discussed, there has been further work focused on building tools for analyzing
policies for PKCS#11 and PKCS#11-like systems. In [8] Centenaro et al. design
a typed-base system for reasoning about the security of PKCS#11 policies, and
use it to verify the security of new classes of PKCS#11 security policies they
propose. This work is even able to verify implementations of PKCS#11. In [10]

102 A. González-Burgueño et al.

Cortier and Steel develop a generic model for PKCS#11-like systems, and an
algorithm and tool for verifying policies in this model. Interestingly, they show
that a number of cryptographic protocols can also be modeled using their system,
and they demonstrate their tool on them as well, thus showing that the relation-
ship between cryptographic APIs and cryptographic protocols runs both ways.

The Tookan tool [6] can be used on PKCS#11 implementations. It reverse
engineers security tokens, builds a formal model similar to that of [12], whose
security can be checked by a model checker, and then runs any attack trace found
directly on the token to validate it. The methods used by Tookan were further
developed and commercialized in the commercial tool Cryptosense [11], which
includes a component Cryptosense Analyzer that analyzes PKCS#11 configura-
tions for insecurities and then tests attack traces on the system. Thus, analysis
of PKCS#11 and systems like it, although challenging, has proved achievable
enough to have potential commercial application.

An approach closer to ours is the work of Künnemann presented in [23], in
that it relies on a protocol analysis tool, Tamarin [30] with some features in
common with Maude-NPA (in particular, it performs backwards search over an
unbounded number of sessions using no abstraction). In this paper Künnemann
models PKCS#11 v2.20 in the Sapic calculus presented in [22], a variant of
the applied pi calculus augmented with operators for state manipulation. This
high-level protocol specification is then translated to a multiset rewrite system
that can be verified using Tamarin. Using this tool-chain the author provides a
configuration of the API and proves that it preserves the secrecy of sensitive keys.

However, the goal in [23] is different from ours. Instead of searching for
attacks, Künnemann uses Tamarin to prove security of a particular configu-
ration of PKCS#11 v2.20. This allows him to define a more restrictive model
that includes their secure configuration but rules out others, in particular many
of the configurations we analyzed with Maude-NPA. It also allows him to leave
out certain features, such as asymmetric encryption, which, given the restrictions
of his model does not give the intruder any more capabilities than symmetric
encryption, and so can be omitted as redundant.

For the case of applying cryptographic protocol analysis tools one of the
biggest issues facing the analysis of cryptographic APIs, is the problem of keeping
the search space of a manageable size. Solutions that work for key distribution
protocols, such as bounding the number of sessions, do not apply as well to
cryptographic APIs, where the number and kind of “sessions” executed is under
complete control of the adversary. The earliest work on formal analysis of APIs
[21,25,26] dealt with the problem by relying to an extent on user input. For
example, the analysis in [25] allowed users to tell the tool when they thought a
state was reachable, and the analysis in [26] relied on lemmas that were conceived
of and proved by the user, with machine assistance. More recently, the AVISPA
analysis of PKCS#11 reported by Tsalapati in [32] uses simplifications such as
a monotonic state and allowing only one handle per key.3 According to [12],

3 The thesis in which this work is contained is not publicly available, so we are relying
on the account given in [12].

Analysis of the PKCS#11 API Using the Maude-NPA Tool 103

Steel and Carbone were able to enrich Tsalapati’s AVISPA model to include
non-monotonic state; however the number of sessions still needed to be bounded
for analysis to be tractable, and the bounds needed to be relatively small. The
Maude-NPA analysis of IBM’s CCA API described in [19] relies on the use of
never patterns, which can be used to tell Maude-NPA ignore classes of states
specified by the user.

In [23], termination of the analysis is achieved, not only by restricting the
kinds of configurations considered, but also by specifying model-specific heuris-
tics that allow a more efficient evaluation of the operations that manipulate
the protocol’s state. In order to reduce the state search space and speed up
the analysis the author defined a number of model-specific helping lemmas to
rule out some states describing impossible situations or actions that do not allow
the attacker to learn more knowledge in their model.

Another issue is the type of policies that need to be considered. In IBM CCA
policies are represented in terms of separation of duties, which are straight-
forward to model in a tool such as Maude-NPA. For PKCS#11 the problem is
apparently harder, since policies are expressed in terms of a global mutable state,
Our first attempt to analyze PKCS#11 included a faithful model of PKCS#11
state, and analysis with respect to this model proved to be intractable. Steel and
Carbone seemed to have encountered similar problems in their AVISPA analysis.

However, closer study reveals that there are natural restrictions on policies
one can enforce. Fröschle and Steel [18] in particular show that it is possible to
safely assume that policies are static, if one imposes some very natural restric-
tions on them. This means that one can specify policies in terms of which com-
binations of attributes are allowable. Künnemann also argues for static policies
in [23], on the grounds of practicality and safety: the ability to turn attributes
on and off is not needed, and can lead to security problems. The Tookan tool [6]
restricts itself to a combination of static, sticky-on (once an attribute is turned
on, it can’t be turned off), and sticky-off (once an attribute is turned off, it
can’t be turned back on) attributes, on the grounds that this is what is normally
seen in real implementations. These restrictions do much to make analyses more
tractable and to limit the complexity of state representation. Indeed, in our
Maude-NPA analysis we found we did not need to model state explicitly at all.

7 Conclusions

In this paper we have described the analysis of some PKCS#11 configurations
in Maude-NPA, a cryptographic protocol analyzer tool that operates in the
unbounded session model. This allowed us to perform the analysis of this API
in a fully-unbounded session model making no abstraction nor approximation of
fresh values, and with no assumptions about the policies other than that they
were static. This in particular allowed us to reproduce attacks on PKCS#11
configurations found by Delaune et al. in [12].

We consider our work as complementary to that of [23]. In [23] Künnemann
uses the protocol analysis tool Tamarin to prove security of a configuration in

104 A. González-Burgueño et al.

a restricted model. We use the protocol analysis tool Maude-NPA to reproduce
attacks in a less restrictive model. This provides evidence that these tools can
be of assistance in both proving security and in finding attacks, as they are for
key generation and secure communication protocols.

What remains to be seen is how generally applicable these tools are to
PKCS#11 and similar APIs. In particular, we note that our PKCS#11 analysis,
although it was successful at reproducing attacks, did not achieve termination, so
it is likely that Maude-NPA would not be helpful in proving security within the
rather general model we use without some further improvements. However, we
plan to keep on investigating this to determine to what degree performance can
be improved, for example via the use of state space reduction techniques specific
to these types of models. For example, it would be interesting to investigate the
model-specific lemmas in [23] to see if they could be used in Maude-NPA. We
also plan to investigate whether lemmas appropriate to other classes of models
could be formulated and proved.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM
Trans. Inf. Syst. Secur. 10(3) (2007). doi:10.1145/1266977.1266978. http://dblp.
uni-trier.de/rec/bib/journals/tissec/AbadiBF07

2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distrib-
uted Systems, 2nd edn. Wiley Publishing (2008). http://dblp.uni-trier.de/rec/bib/
books/daglib/0020262

3. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for secu-
rity protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Breton,
Nova Scotia, Canada, pp. 82–96. IEEE Computer Society, June 2001

5. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

6. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing pkcs#
11 security tokens. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pp. 260–269. ACM (2010)

7. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: A formal analysis of some
properties of kerberos 5 using msr. In: CSFW, p. 175. IEEE Computer Society
(2002)

8. Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of PKCS#11 key
management. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust.
LNCS, vol. 7215, pp. 349–368. Springer, Heidelberg (2012)

9. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

10. Cortier, V., Steel, G.: A generic security API for symmetric key management on
cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol.
5789, pp. 605–620. Springer, Heidelberg (2009)

11. Cryptosense. Cryptosense Web Page. https://cryptosense.com/

http://dx.doi.org/10.1145/1266977.1266978
http://dblp.uni-trier.de/rec/bib/journals/tissec/AbadiBF07
http://dblp.uni-trier.de/rec/bib/journals/tissec/AbadiBF07
http://dblp.uni-trier.de/rec/bib/books/daglib/0020262
http://dblp.uni-trier.de/rec/bib/books/daglib/0020262
https://cryptosense.com/

Analysis of the PKCS#11 API Using the Maude-NPA Tool 105

12. Delaune, S., Kremer, S., Steel, G.: Formal analysis of pkcs#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, 23–25 June
2008, Pittsburgh, Pennsylvania, pp. 331–344. IEEE Computer Society (2008)

13. Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C., Meadows, C., Meseguer,
J., Narendran, P., Santiago, S., Sasse, R.: Effective symbolic protocol analysis via
equational irreducibility conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

14. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, J., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

15. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the
Maude-NRL Protocol Analyzer. Inf. Comput. 238, 157–186 (2014)

16. Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand spaces: what makes a secu-
rity protocol correct? J. Comput. Secur. 7, 191–230 (1999)

17. Focardi, R., Luccio, F.L., Steel, G.: An introduction to security API analysis. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 35–65. Springer,
Heidelberg (2011)

18. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with
unbounded fresh data. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009.
LNCS, vol. 5511, pp. 92–106. Springer, Heidelberg (2009)

19. González-Burgueño, A., Santiago, S., Escobar, S., Meadows, C., Meseguer, J.:
Analysis of the IBM CCA security API protocols in Maude-NPA. In: Chen, L.,
Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 111–130. Springer, Heidelberg
(2014)

20. IBM. CCA basic services reference and guide: CCA basic services reference and
guide for the IBM 4758 PCI and IBM 4764 (2008). http://www-03.ibm.com/
security/cryptocards/pdfs/bs327.pdf.

21. Kemmerer, R.A.: Using formal verification techniques to analyze encryption proto-
cols. In: IEEE Symposium on Security and Privacy, pp. 134–139. IEEE Computer
Society (1987)

22. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, 18–21 May,
2014, Berkeley, CA, USA, pp. 163–178 (2014)

23. Künnemann, R.: Automated backward analysis of PKCS#11 v2.20. In: Focardi, R.,
Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 219–238. Springer, Heidelberg
(2015)

24. RSA Laboratories. PKCS#11: Cryptographic token interface standard. https://
www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-
token-interface-standard.htm

25. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Comput. Secur. 11(1), 75–89 (1992)

26. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. J. Comput. Secur. 1(1) (1992)

27. Meadows, C., Cervesato, I., Syverson, P.: Specification and analysis of the group
domain of interpretation protocol using NPATRL and the NRL protocol analyzer.
J. Comput. Secur. 12(6), 893–932 (2004)

28. Meadows, C., Syverson, P.F., Cervesato, I.: Formal specification and analysis of
the group domain of interpretation protocol using NPATRL and the NRL protocol
analyzer. J. Comput. Secur. 12(6), 893–931 (2004)

http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

106 A. González-Burgueño et al.

29. Meadows, C.: Analysis of the internet key exchange protocol using the NRL pro-
tocol analyzer. In: IEEE Symposium on Security and Privacy, pp 216–231. IEEE
Computer Society (1999)

30. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

31. OASIS. OASIS PKCS 11 TC. OASIS PKCS 11 TC Home Page. https://www.
oasis-open.org/committees/tc home.php?wg abbrev=pkcs11

32. Tsalapati, E.: Analysis of PKCS#11 using AVISPA tools. Master’s thesis, Univer-
sity of Edinburgh (2007)

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

	Analysis of the PKCS#11 API Using the Maude-NPA Tool
	1 Introduction
	2 Maude-NPA
	2.1 Preliminaries on Unification and Narrowing
	2.2 Maude-NPA Syntax and Semantics
	2.3 Never Patterns in Maude-NPA

	3 PKCS#11
	4 Specification of PKCS#11 in Maude-NPA
	4.1 Formal Model of PKCS#11 in Maude-NPA
	4.2 Specification of PKCS#11 in Maude-NPA's Syntax

	5 Experiments
	6 Related Work
	7 Conclusions
	References

