
Robust Authenticated Key Exchange
Using Passwords and Identity-Based Signatures

Jung Yeon Hwang1, Seung-Hyun Kim1, Daeseon Choi2, Seung-Hun Jin1,
and Boyeon Song3(B)

1 Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea
{videmot,ayo,jinsh}@etri.re.kr

2 Department of Medical Information, Kongju University, Nonsan-si, Korea
sunchoi@kongju.ac.kr

3 Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
bysong@kisti.re.kr

Abstract. In the paper we propose new authenticated key exchange
(AKE) protocols from a combination of identity-based signature (IBS)
and a password-based authentication. The proposed protocols allows for
a client to execute a convenient authentication by using only a human-
memorable password and a server’s identity. The use of an IBS gives
security enhancements against threats from password leakage. A server
authentication method is based on an IBS, which is independent of a
password shared with a client. Even if a password is revealed on the side
of a client protected poorly, server impersonation can be prevented effec-
tively. In addition, our protocols have resilience to server compromise by
using ‘password verification data’, not a true password at the server. An
adversary cannot use the data revealed from server compromise directly
to impersonate a client without additional off-line dictionary attacks. We
emphasize that most of existing password-based AKE protocols are vul-
nerable to subsequent attacks after password leakage.

Our first hybrid AKE protocol is constructed using concrete parame-
ters from discrete logarithm based groups. It is designed to give resilience
to server compromise. Our second protocol is a simplified version of the
first protocol where the computation cost of a client is cheap. Gener-
alizing the basic protocols, we present a modular method to convert
Diffie-Hellman key exchange into an AKE protocol based on a password
and an IBS. Finally, we give performance analysis for our protocols and
comparison among known hybrid AKE protocols and ours. As shown
later in the paper, our protocols provide better performance. Our exper-
imental results show that the proposed protocols run in at most 20 ms.
They can be widely applied for information security applications.

Keywords: Authentication · Password · Identity-based signature · Key
exchange

This work was supported by the ICT R&D program of MSIP/IITP [B1206-15-1007,
Development of Universal Authentication Platform Technology with Context-Aware
Multi-Factor Authentication and Digital Signature].

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 43–69, 2015.
DOI: 10.1007/978-3-319-27152-1 3

44 J.Y. Hwang et al.

1 Introduction

Explosive growth of computing environment is opening the era of big data. Appli-
cation domains of the pervasive computing are connected densely, and entities
with smart devices exchange information frequently in the advanced network.
Massive amounts of data can be collected from various sources and processed
for user-centric services. Furthermore, automated analysis and deep learning
technologies are actively developed to extract highly valuable knowledge from
a huge amount of data. In the upcoming future, a user will be able to enjoy
unprecedented convenience timely from the advanced information service.

These services will be available when not only feasibility but also security
properties are well provided. For secure data transmission between entities,
key exchange is one of the most crucial and fundamental protocols. That is,
to access valuable data resources on a server (or a service provider), a client
should establish a temporal digital key with the server securely. The shared
key builds a secure channel between a client and a server, which provides secu-
rity properties including data integrity and confidentiality. Diffie-Hellman (DH)
key exchange (KE) [19] is a well-known popular protocol for key establishment
between two entities.

In general, a network used to establish a shared key is public and insecure,
where an adversary may control exchanged messages in an adaptive way. An
adversary is able to perform impersonation attacks to a user by intercepting
and/or modifying messages. Thus, authentication of legal participants is neces-
sary for secure key exchange. An authenticated key exchange (AKE) protocol
has been widely studied and developed for a long time, to achieve key establish-
ment and authentication of participants over a public network. AKE is mainly
constructed by combining the DH KE and an authentication method, for which
entities’ computing capability and users’ convenience should be considered. In a
client-server model, a client is a typically human who has a device(s) with lim-
ited computing resources, while a server is a powerful machine which can store
high-entropy secret numbers.

In a client-server model, a password is a commonly used authentication fac-
tor, because a client can generate and memorize it easily. In practice, most of IT
services use ID/password as a log-in method. To construct a secure password-
based AKE (PAKE) lots of research have been performed [7,32,40]. As a pass-
word used for authentication is low-entropy, PAKE is vulnerable to dictionary
attacks which systematically check all possible passwords from a password space
of small size until the correct one is found. Dictionary attacks can be mounted
in two types, i.e., on-line and off-line. An on-line dictionary attack is mounted
by using guessed passwords. It is easy to prevent it just by limiting the number
of on-line password trials. An off-line dictionary attack is performed without
interaction with a server, when some information to confirm a true password is
obtained. Thus, to resist an off-line dictionary attack, a PAKE protocol makes
sure not to reveal any information related to a password. when sending a message
including the password.

Robust Authenticated Key Exchange Using Passwords and IBS 45

For this reason, Encrypted Key Exchange (EKE) was introduced in [7], where
at least one party encrypts a key value using a password and sends it to a second
party who decrypts it to negotiate a shared key with the first party. Since then,
EKE has been modified and extended in various ways. Some PAKE protocols
have been developed as international standards by IEEE [31], IETF, ISO/IEC
JTC 1/SC 27 [32], and ITU-T [33]. Most PAKE protocols including EKE are
constructed in a shared-password authentication model where a client and a
server identifies each other by using a shared password (or variant of a pass-
word). Intrinsically, the model is vulnerable to threats from password exposure,
in the sense that a password stolen from one party can be used to impersonate the
other party. There are various possibilities to leak a password, for example, by
malware, hacking, shoulder surfing attacks or from lost/stolen portable devices.1

Since a client’s device may be insufficiently protected, password exposure could
be more realistic. When a password of a client is revealed, it is inevitable that
an adversary impersonate the client. But, if a server can be impersonated to
the client, it will bring more dangerous and serious risks. For example, mali-
cious modification of critical information such as clients’ financial services or
healthcare will be possible.

As a solution to the above issue, a hybrid AKE has been introduced which is
constructed in conjunction of an asymmetric encryption scheme and password-
based authentication. The protocols by [23,25] make use of a public key encryp-
tion, and the protocol of [53] is based on an identity-based encryption (IBE).
The intuition to prevent server impersonation attacks is to use an independent
decryption key for a server. For password-based authentication, the protocols
take a simple approach to encrypt a password with a server’s public key. To
guarantee confidentiality on a password, they apply a highly secure encryption
to meet so-called CCA-security.2

Hybrid protocols based on IBE may be preferable in a client-server model
because a client is assumed to be a human who can merely memorize limited
information such as a password or server’s ID. However, CCA-secure IBE encryp-
tion entails relatively complex computation of parameters. It will impose expen-
sive computation or communication costs on a client side using a device with a
limited resource. In addition, the above-mentioned hybrid protocols do not con-
sider server compromise. A server manages a password file for a large number of
clients. The file contains secret values to be used to authenticate clients. If the
password file is revealed, it will cause disastrous results, because any client can
be immediately subject to impersonation.

1.1 Our Contributions

In the paper, we propose new efficient yet robust AKE protocols from a combina-
tion of a password-based authentication and an identity-based signature (IBS).
1 These are different from dictionary attacks to reveal a password.
2 The notion of CCA security means that a PKE scheme should reveal no meaningful

information about the original message from public ciphertexts to attackers who can
probe the decryption oracle with chosen ciphertexts.

46 J.Y. Hwang et al.

For distinction, they are called IBS-PAKE protocols. An IBS can be used by not
only a powerful server but also a client, while a client is enough to memorize a
password to invoke the protocol. The adoption of an IBS gives desired solutions
to party compromise issues as follows.

– Basically, a server executes an independent authentication based on an IBS.
Even if a password is revealed from a client, server impersonation is impossible
without access to the server’s IBS key. It will be reasonable for a server to
manage a sinlge key secretly, rather than the whole password file of large size.

– In an IBS scheme, a public key may be defined by an arbitrary public string
such as an e-mail address or a company/brand name. A client can authenticate
a server by verifying a server’s IBS with a server’s publicly known identity. For
himself or herself, the client executes password-based authentication. Thus he
or she can do a convenient authentication based on only a human-memorable
password and a server’s identity without holding a high entropy secret key.

– Finally, our protocol allows for a client to use an IBS by accessing an IBS
key stored at a server. More concretely, the client receives an encryption of
the IBS key from the server and decrypt it with his or her password. The
client should know the original password to obtain the correct signing key. It
involves a kind of a knowledge proof of a password. This idea can be applied to
achieve resilience to server compromise [24]. Assume that the knowledge proof
is required to a client for each login. An adversary cannot use the password file
stolen the server directly for impersonation attacks but additionally making
an off-line dictionary attack to extract clients’ real passwords.

In order to construct an IBS-PAKE protocol, we take a modular approach
first, that is, present two modular methods to yield IBS-PAKE protocols gener-
ically when a symmetric PAKE and an IBS are given. The first method is
designed to achieve resilience to server compromise. The underlying idea to
achieve resilience to server compromise is similar to that of [24] based on a nor-
mal signature scheme. However, there is a difference between the ideas because
a public verification key, i.e., a client’s identity is known to an adversary in our
protocol while hidden in [24]. Our second one is a simplified version of the first
method, to handle the situation that server compromise is not mainly considered
due to strong security at the side of a server. Compared to the first method, it
can run in a single round which consists of two passes independently sent from
a client and a server. In addition, the computation cost at the side of a client is
quite cheap.

In the modular methods, IBS schemes can be selected flexibly and indepen-
dently according to a design strategy. For example, we can pick an IBS scheme
with low signing (or verifying) cost for a client. Also, an IBS-PAKE protocol
can be constructed from more realistic hardness assumptions. As instances of
IBS-PAKE resulting from the modular methods, two protocols are presented by
using concrete discrete logarithm parameters. They are built on the IBS scheme
constructed from the Schnorr signature.

Finally, we give performance analysis for our protocols and comparison
among known AKE protocols using an identity-based cryptosystem and a

Robust Authenticated Key Exchange Using Passwords and IBS 47

password [53], and ours. As shown in the comparison table, our AKE protocols
provide better performance with a robust security property. We also present
experimental results to show that the proposed protocol runs in at most 20 ms.

1.2 Related Work

Since the introduction of Diffie-Hellman KE protocol [19], KE protocols have
been widely studied to achieve various authentication goals [10,11,37]. AKE
protocols have been developed largely according to two authentication types,
i.e., symmetric and asymmetric. Symmetric authentication type assumes that
participants share a secret key before running a protocol [10,11]. A password-
based KE (PAKE) protocol is a primary example of symmetric authentication
where a client and a server share a password as an authentication factor. The for-
mal treatment for PAKE was given in [8,10]. Refer to [40] for a survey of PAKE.
Some research proposes PAKE protocols with security under standard assump-
tions [3,35]. Recently, research on PAKE protocols [3] focuses on meeting highly
theoretical security requirement such as UC model [16]. Asymmetric authenti-
cation type assumes that a participant uses a secret key and its corresponding
public key. The secret key is kept secret by the participant while the public key
is set to be public and so anyone can access it. Since the secret key is a random
long bit string, a client needs a mean to store it. For example, we can consider
KE based on a standard public key digital signature [37] and identity-based KE
[17]. A hybrid authentication type combines symmetric and asymmetric types to
gain merits of the two types [25]. In contrast to the symmetric and asymmetric
types, hybrid authentication and KE have not been studied intensively.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
some preliminaries. In Sect. 3 we give a security model for an IBS-PAKE. In
Sect. 4 we present an IBS scheme based on Schnorr signature. In Sect. 5 we
present modular methods to yield IBS-PAKE protocols, and also concrete IBS-
PAKE protocols using discrete logarithm parameters and prove the security.
In Sect. 6 we give a performance analysis and comparison among known AKE
protocols. Finally, we conclude in Sect. 7.

2 Preliminaries

In this section, we review some background knowledge for our construction.
Let poly(λ) denote a polynomial in variable λ. We define that ν(λ) is a neg-

ligible function if ν(λ) < 1/poly(λ) for any poly(λ) and sufficiently large λ. We
denote by A

?= B the equality test between two group elements, A and B. We
denote by s

R← S the operation that picks an element s of set S uniformly at
random. We denote by ‘||’ the concatenation operation on strings.

48 J.Y. Hwang et al.

Computational Assumptions. For the security of our construction, compu-
tational assumptions such as discrete logarithm, decisional Diffie-Hellman, and
computational Diffie-Hellman assumptions, are needed. For more details, refer
to Appendix.

Symmetric Encryption. A symmetric encryption (SE) scheme consists of two
functions, E and D associated to key space KSE={0, 1}λ.

– Ek(m). It takes as input a key k ∈ KSE and a message m ∈ {0, 1}n and
outputs a ciphertext χ ∈ {0, 1}n.

– Dk(χ). It takes as input a key k and a ciphertext χ ∈ {0, 1}n, and then outputs
a message m ∈ {0, 1}n.

To define one-time indistinguishability for SE, we consider the following game:

Challenge : (m0,m1, η) ← A(1λ)
Response : k

R← KSE , b
R← {0, 1}, χ∗ ← Ek(mb)

Guess : b′ ← A(η, χ∗)

Assume that m0 and m1 has a same length. We define AdvIND-OTK
A,SE (t)= |Pr[b =

b′] − 1/2|, where A runs in time t, and AdvIND-OTK
SE (t) = maxA[AdvIND-OTK

A,SE (t)]
where the maximum is taken over all A. We say that SE is one-time secure if
AdvIND-OTK

SE (t) is negligible.

Identity-Based Signature. An IBS scheme consists of four algorithms for
setup, private key extraction, signing, and verifying [9,45]. These are denoted
by Setup, KeyExt, Sign, and Vrfy, respectively.

– Setup takes as input a security parameter λ, and outputs a master secret key,
msk and a set of public parameters, pp.

– KeyExt takes as input (pp,msk) and an identity ID ∈ {0, 1}�id for �id ∈ N, and
then outputs a private key, skID.

– Sign takes as input pp, an identity ID, a key skID, a message m ∈ {0, 1}∗,
and then outputs a signature, σ.

– Vrfy takes as input pp, ID, a signature σ, and a message m, then outputs 0
(meaning ‘invalid’) or 1 (meaning ‘valid’).

We say that an IBS scheme is correct if the following condition holds:
1 ← Vrfy(pp, ID, σ,m) for any pair of (m, ID) where (pp,msk) ← Setup(1κ),
skID ← KeyExt(pp,msk, ID), and σ ← Sign(pp, ID, skID,m).

Next we consider a game to define the existential unforgeability under chosen
message and identity attacks (CMIDA) for IBS = (Setup, KeyExt, Sign, Vrfy). The
game consists of Setup, Query, and Forge phases. Let EQ and SQ denote
an extraction query and a signing query, respectively. In the Query phase, F is
allowed to make extraction and signing queries to the key extraction and signing
oracles adaptively.

Robust Authenticated Key Exchange Using Passwords and IBS 49

Setup: (pp,msk) ← Setup(1κ)
Query : EQ(ID) ← F , skID ← KeyExt(pp,msk, ID)

SQ(ID′,m) ← F , σ ← Sign(pp, ID′, skID′ ,m)
Forge : (ID∗,m∗, σ∗) ← F

Let LEx and LSign denote a list of all extraction and signing queries that F
have made. We say that the forgery, (ID∗,m∗, σ∗) is valid if ID∗ /∈ LEx and
(ID∗,m∗) /∈ LSign, and Vrfy(pp, ID∗, σ∗,m∗)=1. The EUF-CMIDA-advantage
of adversary F , denoted by AdvEUF-CMIDA

IBS (F), is defined as the probability that
F outputs a valid forgery in the above experiment. That is, AdvEUF-CMIDA

F,IBS (t)=
Pr[ID∗ /∈ LEx∧Vrfy(pp,m∗, ID∗, σ∗) = 1], where F runs in time t. We also define
that AdvEUF-CMIDA

IBS (t) = maxF [AdvEUF-CMIDA
F,IBS (t)] where the maximum is taken

over all F . We say that IBS is existentially unforgeable if AdvEUF-CMIDA
IBS (t) is

negligible.

Various IBS schemes have been proposed from various mathematical para-
meters such as DL, composite numbers, and bilinear maps [9,45].

3 Security Model

We present a security model for a hybrid AKE protocol based on a password
and an IBS by modifying known security models for AKE such as [10,24,37]
and extending the model of [15,53]. Our model captures security by considering
resilience to server compromise.

Participants. Let Clients and Servers denote sets of clients and servers,
respectively. Let U be a set of all principals and defined by Clients ∪ Servers.
The number of principals is bounded by a polynomial in a security parameter.
We assume that each principal is labeled by a unique identity of a �id-bit string
for a positive integer �id. For example, IDC and IDS are used to denote client
C and server S, respectively.

In the model, we assume that there is a trusted third party, called KGA
(Key Generation Authority) who manages the key extraction algorithm, KeyExt
of an IBS scheme and keeps the master secret key, msk.3 Whenever a principal
requests, KGA issues a long-term secret signing key corresponding to the iden-
tity of the principal. A principal with ID obtains a long-term secret signing key
skID from KGA. We note that a client is enough to use only a human-memorable
password to execute the protocol. The password or its verifier is shared between
a client and a server. However, though the client holds no long-term secret key of
high-entropy, he or she can use the IBS key transmitted from the server during
a run of a protocol.

3 To prevent misuse of the master secret key, the authority of KGA can be distributed
into multiple authorities by using known threshold techniques [4,12].

50 J.Y. Hwang et al.

Initialization. In the initialization phase, Setup, Extract, and Registration
processes are executed. Setup generates global system parameters and keys
including the master secret key, msk of IBS. The global system parameters,
denoted by pp and identities, IDU are publicly known to a client and a server,
and also an adversary. Through Extract, a principal obtains a signing key corre-
sponding to an identity. An IBS generated by the signing key can be verified by
the identity. We assume that a principal is identified in a pre-defined way before
issuing a key.

Whenever a client of IDC wants to join as a valid user (of a service) to a
server of IDS , Registration is executed between them. Let DPW denote a pass-
word space, i.e., a dictionary of passwords. Assume that a password, pwC ∈ DPW

is generated by the client according to a pre-defined password creation policy.
After completing the registration, the server stores a password verifier, pvC which
is derived from pwC . For example, pvC can be computed from a hash function
or some deterministic function with input pwC . Let πS [C] = (IDC , pvC) and
PFS = {πS [C]}C∈Clients, which is called a password file, including all authen-
tication information registered for clients.

Protocol Execution. A principal is allowed to invoke the protocol (multiple
times) with a partner principal to establish a session key. It can be run in a
concurrent way. Multiple executions of a principal is modeled via instance. Let
s be a positive integer. The sth instance of a principal with IDU is represented
by Πs

U where U ∈ U = Clients ∪ Servers. The index, s sequentially increases
according to the number of executions of the principal [11,37].

Partnering. A session id of instance Πs
U is defined as the concatenation of all

transcripts sent and received between an instance of a client and an instance of a
server during the execution of the protocol. For U ∈ U , let sids

U denote a session
id for instance sids

U .
Partner identifier pids

U for instance Πs
U is defined by a set of the identities of

protocol participants who intend to establish a session key. We say that instance
Πs

U accepts when it computes a session key, sks
U . Let accs

U denote an boolean
variable to show whether a given instance has accepted or not. Assume that, if
an instance computes a session key, sks

U , it outputs (sids
U , sks

U). For C ∈ Clients
and S ∈ Servers, we say that Πi

C and Πj
S are partnered if and only if (1)

pidi
C = pidj

S ; (2) sidi
C = sidj

S and (3) they have both accepted.

Adversarial model. An adversary A is a PPT algorithm that has complete
control over all the communications. Attacks that A can make are modeled via
the following queries.

– Extract(IDU): By this query, A is given the long-term secret key of IDU where
U ∈ U = Clients ∪ Servers.

– Execute(IDC , IDS): A is given the complete transcripts of an honest execution
between C and S. It models passive attacks eavesdropping an execution of the
protocol.

Robust Authenticated Key Exchange Using Passwords and IBS 51

– Send(Πs
U ,m): A is given the response generated by Πs

U according to the pro-
tocol, when m is given to Πs

U . It models an active attack where the adversary
controls messages elaborately. By this query, a message m can be sent to
instance Πs

U .
– Reveal(Πs

U): A is given the session key that instance Πs
U has generated. It

models a known key attack.
– Corrupt(IDU): It models exposure of the long-term secret key held by IDU

where U ∈ U . A is given PFS = {πS [C]}C∈ Clients if U ∈ Servers, and
otherwise pwU .

– Test(Πs
U): It is used to define the advantage of A. When A asks this query

to an instance Πs
U , a random bit b is chosen; if b = 1 then the session key is

returned. Otherwise, a random string is drawn from the space of session keys,
and returned. A is allowed to make a Test query once, at any time.

In the model we consider two types of adversaries according to their attack types.
The attack types are simulated by the queries issued by an adversary. A passive
adversary is allowed to issue Execute, Reveal, Corrupt, and Test queries, while an
active adversary is additionally allowed to issue Send and Extract queries. Even
though Execute query can be using Send queries repeatedly, we use Execute query
for more concrete analysis.

Freshness. An instance Πs
U is said fresh (or holds a fresh key ssk) if the

following conditions hold:

1. Reveal(Πs
U) has not been asked for all U ∈ pids

U ,
2. Corrupt(IDU ′) has not been asked for U ′ ∈ pids

U .

An instance Πs
U is said semi-fresh (or holds a semi-fresh key ssk) if the

following conditions hold:

1. Reveal(Πs
U) has not been asked for all U ∈ pids

U ,
2. Corrupt(IDU) has not been asked, and
3. Corrupt(IDS) has not been asked for U ∈ Clients.

AKE Security. Let P be an IBS-PAKE protocol and A an adversary to attack
it. A is allowed to make oracle queries in an adaptive way and receives the
corresponding responses from oracles. At some point during the game a Test
query is asked to a fresh or semi-fresh oracle, and A may continue to make other
queries. Finally A outputs its guess b′ for the bit b used by the Test oracle, and
terminates. Let Succ denote an event that A correctly guesses the bit b. The
advantages of A must be measured in terms of the security parameter λ.

The IBS-PAKE-advantage, AdvIBS-PAKE
P (A) of A is defined as the probability

that A correctly guesses the bit in the above experiment. That is, AdvIBS-PAKE
A,P

(λ) = 2 · Pr[Succ] − 1, where A runs in time t. We also define that AdvIBS-PAKE
P

(λ) = maxA[AdvIBS-PAKE
A,P (λ)] where the maximum is taken over all A.

52 J.Y. Hwang et al.

Let |DPW | be the size of the password space. Let qs be the maximum number
of Send queries. We say a protocol P is a secure IBS-PAKE protocol if the fol-
lowing condition hold: For a negligible function ε(λ), AdvIBS-PAKE

P (λ) is bounded
by qS

|DPW | + ε(λ).

4 Our Identity-Based Signature Scheme

In this section, we present an IBS scheme that works with discrete logarithm
parameters. It will be used for our AKE as a building block in the next section.

– Setup. For a given security λ, it generates a cyclic group, G of prime order
q and a random generator, g of G. It picks θ ∈ Z

∗
q uniformly at random and

computes u = gθ. It also generates independent cryptographic hash functions,
H : {0, 1}∗ → {0, 1}�. It outputs the system public parameters pp = (G, q, g,
u, H) and the corresponding master secret key msk = θ.

– KeyExt(pp, msk, ID). It picks r ∈ Z
∗
q uniformly at random. It computes R =

gr, w = H(ID,R), and v = r + θw (mod q). It then returns skID = (R, v).
– Sign(pp, skID, ID,m). It takes as input pp, a message m ∈ {0, 1}∗, an identity

ID and a key skID = (R, v). It picks e ∈ Z
∗
q and compute E = ge, z =

H(m, ID,E) and d = e − vz (mod q). The signature on m is σ = (d, z,R).
– Vrfy(pp, ID, σ,m). It takes as inputs pp, a message m, ID and a signature

σ = (d, z,R). It computes E′ = gd · (R · uw)z and w = H(ID,R). Finally,
it checks if z = H(m, ID,E′) holds. If the equality holds, it outputs 1, and
otherwise, 0.

The above IBS scheme is correct because we have gd ·(Rz ·uwz) = ge−(r+θw)z ·
(grz · gθwz) = ge and so z = H(m, ID,E) = H(m, ID, gd · Rz · uwz) where
w = H(ID,R) and (R = gr, v = r + θw) is generated from KeyExt for ID.

The idea behind the above construction is to combine two Schnorr signatures
[46] sequentially. Similar constructions are known in the literature [22]. Using
the DL assumption in a group G, we can formally prove the security of the above
IBS scheme, that is, existential unforgeability against adaptive chosen message
and identity attacks in the random oracle model. A proof idea is actually similar
to that of [22] with a slight modification on the so-called Forking Lemma [42].
For more details, refer to the full version of this paper. Our IBS consists of one
group element and two hash outputs, while the IBS of [22] consists of two group
elements and one hash output. Since the size of a hash output is smaller than
that of an group element, our scheme gives a shorter IBS.

5 Our IBS-PAKE Protocols

In this section, we present IBS-PAKE protocols, i.e., AKE protocols using a
password and an IBS as authentication means. First we present two generic
methods to construct IBS-PAKE protocols. We then present two concrete IBS-
PAKE protocols using DL parameters.

Robust Authenticated Key Exchange Using Passwords and IBS 53

5.1 Generic Construction

Our generic methods are presented by using two-party PAKE and an IBS in
a modular way. The first generic method gives resilience to server compromise.
That is, even if a password file is revealed from a server compromised, an adver-
sary can only obtain password verification information, not a real password.
Thus, to impersonate a client, he or she must mount an offline dictionary attack
additionally. In the protocol, an IBS scheme is used for both of a client and a
server. A server uses an IBS to authenticate itself to a client. A client uses an
IBS to prove the possession of his or her own password.

Let PAKE denote a two-party PAKE protocol. For example, we can consider
EKE [7], PAK [8], SRP, SPEKE, and AMP [32].

Assume that an IBS scheme, IBS = (Setup, KeyExt, Sign, Vrfy) and a sym-
metric encryption scheme, SE = (E ,D) are given. A client or a server obtains a
signing key from KGA running KeyExt in the initialization phase. For distinction,
a set of public parameters of IBS is denoted by ppIBS.

The protocol consists of two phases, initialization and key establishment as
follows.

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows. Let pwU ∈ DPW denote a password chosen by a user, U .

– Setup: For a given security parameter λ, it generates ppPAKE for the given
PAKE protocol. It also generates independent cryptographic hash functions,
Hi : {0, 1}∗ → {0, 1}�i for i = 1, 2, 3. It runs Setup of the IBS scheme to
generate (msk, ppIBS). It outputs the system public parameters, pp = (ppPAKE,
ppIBS, Hi=1,2,3, SE). The master secret key, msk is kept secret.

– Extract. For a given identity ID, KeyExt is run (by KGA) to output a private
key, skID. Assume that the private key is transmitted to the user ID via a
secure channel.

– Registration. A client, C generates a password, pwC according to a pre-defined
password creation policy. Let skIDC

be a signing key of C. Assume that
a secure channel is established between the client and a server, S. To reg-
ister a service, C sends (Register-Request, IDC , π1 = H1(pwC), ESK =
EH2(pwC)(skIDC

))) to the server via a secure channel.4

Key Establishment Phase. A client, C and a server, S execute a run of the
protocol to agree on a temporal key to be used for a session as follows. See Fig. 1.

1. PAKE-Client. The client C computes π1 = H1(pwC). Using π1 instead of
pwC , the client performs its part in PAKE with the following modification:
Whenever the client receives a pair of a message and a signature, (mS , σS)
from the server S, the client verifies the signature, σS on mS , that is, checks
if 1 = Vrfy(ppIBS, IDS , σS ,mS). If the signature is valid then C performs its
part of PAKE for mS . Finally, C obtains a common key K.

4 Note that a secure channel is needed because π1 = H1(pwC) or ESK =
EH2(pwC)(skIDC) can be used to mount off-line dictionary attacks by an adversary.

54 J.Y. Hwang et al.

Client C Server S
pp = {ppPAKE, ppIBS, Hi=1,2,3, SE} pp = {ppPAKE, ppIBS, Hi=1,2,3, SE}

[IDC , pwC [] IDS , skIDS
]

πS [C] = (IDC , π1 = H1(pwC),

ESK = EH2(pwC)(skIDC
))

Using π1 = H1(pwC) instead of pwC , Modified perform its part in PAKE

perform its part in PAKE Execution with the following modification:

with the following modification: of PAKE For each mS to be sent to C in PAKE,

Whenever (mS , σS) is received, with H1(pwC)−−−−−−−−−−→ σS ← Sign(ppIBS, IDS , skIDS
, mS),

if 0 = Vrfy(ppIBS, IDS , σS , mS), abort. ←−−−−−−−−−−− and then send (mS , σS).

Otherwise, perform the client’s part

for given mS in PAKE.

Output K Output K

ek = H3(K), ESK||σS = Dek(CTS) IDS ,CTS←−−−−−−−−−−− ek = H3(K), CTS = Eek(ESK||σS)

MS = IDS ||TPAKE||ESK σS ← Sign(ppIBS, IDS , skIDS
, MS),

If 0 = Vrfy(ppIBS, IDS , σS , MS), abort. MS = IDS ||TPAKE||ESK

Otherwise, skIDC
= DH2(pwC)(ESK)

σC ← Sign(ppIBS, IDC , skIDC
, MC)

where MC = IDC ||TPAKE||CTS

CTC = Eek(σC) IDC ,CTC−−−−−−−−−−−→ σC = Dek(CTC)
MC = IDC ||TPAKE||CTS

If 0 = Vrfy(ppIBS, IDC , σC , MC), abort.

Otherwise,

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = TPAKE||IDS ||CTS ||IDC ||CTC sidS = TPAKE||IDS ||CTS ||IDC ||CTC

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K)

Fig. 1. Generic construction of an IBS-PAKE protocol.

2. PAKE-Server. The server S performs its part in PAKE with the following
modification: For each mS to be sent to C in PAKE, S generates σS ←
Sign(ppIBS, IDS , skIDS

,mS), and then sends (mS , σS). Finally, S obtains a
common key K.

3. Server. Let TPAKE denote a concatenation of all transcripts generated from
a run of PAKE. S generates σS ← Sign(ppIBS, IDS , skIDS

,MS) for MS =
IDS ||TPAKE||ESK. It computes ek = H3(K) and CTS = Eek(ESK||σS), and
then sends (IDS , CTS).

4. Client. Upon receiving [IDS , CTS], the client C computes ek = H3(K)
and obtains ESK||σS = Dek(CTS). Then C checks if σS is valid, i.e.,
1 = Vrfy(ppIBS, IDS , σS ,MS) for MS = IDS ||TPAKE||ESK. If the validity does
not hold then the session is aborted. Otherwise, C computes π2 = H2(pwC)
and skIDC

= Dπ2(ESK). Using skIDC
, the client generates a signature,

σC ← Sign(ppIBS, IDC , skIDC
,MC) on MC = IDC ||TPAKE||CTS . Then the

client generates CTC = Eek(σC) and sends [IDC , CTC] to S.

Robust Authenticated Key Exchange Using Passwords and IBS 55

Finally, the client computes a secret session key, ssk = H3(pidC ||sidC ||K)
where pidC = IDC ||IDS and sidC = TPAKE||IDS ||CTS ||IDC ||CTC .

5. Server. Upon receiving [IDC , CTC], the server computes σC = Dek(CTC)
and checks if σC is valid, i.e., 1 = Vrfy(ppIBS, IDC , σC ,MC) for MC = IDC

||TPAKE||CTS . If it is not valid then the session is aborted. Otherwise, C com-
putes a secret session key ssk = H3(pidS ||sidS ||K) where pidS = IDC ||IDS

and sidS = TPAKE||IDS ||CTS ||IDC ||CTC .

In the above construction, different IBS schemes can be used for partici-
pants, to gain advantages. Assume that an IBS scheme has an efficient verifying
algorithm and another IBS scheme has an efficient signing algorithm. A client’s
performance can be significantly improved if a server and a client use the first
and the second IBS schemes, respectively.

The second generic method is a simplified version of the first method to omit
executing a knowledge proof that a client is aware of the original password. In
certain applications, a server can be managed systematically and sufficiently
protected from a well-organized security architecture. For the situation, we can
relax the security requirement on server compromise. An IBS-PAKE protocol
is constructed by eliminating the third flow of the first method. The resulting
protocol reduces the client’s computation significantly. See Fig. 3.

In the above generic methods, a server authenticates himself to a client using
two factors, i.e., a password of low entropy and an IBS of high entropy.

5.2 Instances

As instances resulting from the generic methods, we present two IBS-PAKE pro-
tocols using PAK [8] and the IBS scheme in Sect. 4. The instances are constructed
not exactly following the generic methods but with a modification where a server
use a single authentication factor, i.e., an IBS.5 The first protocol is, for short
called PWIBS-AKE. Each phase of PWIBS-AKE is given as follows.

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows. Let pwC ∈ DPW denote a password chosen by a client, C.

– Setup(λ): For a given security parameter λ, it generates a cyclic group, G of
prime order q and two random generators, g and g1 of G. It generates θ ∈
Z

∗
q uniformly at random and computes u = gθ. It also generates independent

cryptographic hash functions, H : {0, 1}∗ → {0, 1}�, H1 : {0, 1}∗ → Z
∗
q ,

Hi : {0, 1}∗ → {0, 1}�i for i = 2, 3. It outputs public parameters pp = (G, g,
g1, u, H, Hi=1,2,3) and the corresponding master secret key msk = θ.

– Extract(msk=θ, ID). For a given identity ID, it picks r ∈ Z
∗
q uniformly at

random. It computes R = gr, w = H(ID,R), and v = r + θw (mod q). It
then returns skID = (R, v). Assume that the private key is transmitted via a
secure channel.

5 It is not difficult to fix the instances to follow the generic methods.

56 J.Y. Hwang et al.

– Registration(C,S). First, a client, C generates its password, pwC according
to a pre-defined password creation policy. Also, C obtains a signing key,
skIDC

= (vC , RC) from Extract. Assume that a secure channel is established
in advance between C and S. To register a service, C sends (Register-Req,
IDC , g

−H1(pwC)
1 , EH2(pwC)(vC), RC) to the server, S over the secure channel.

The server appends πS [C] = (IDC , g
−H1(pwC)
1 , EH2(pwC)(vC), RC) to PF .

Key Establishment Phase. A client, C and a server, S execute a run
of PWIBS-AKE to agree on a temporal session key. The concrete protocol is
described as follows (See Fig. 2).

1. C picks x ∈ Z
∗
q uniformly at random and computes W = gxg

H1(pwC)
1 ∈ G

using the password, pwC . Then, C sends [IDC ,W] to S.
2. Upon receiving [IDC ,W], S picks y ∈ Z

∗
q uniformly at random and computes

Y = gy ∈ G, and also X ′ = Wg
−H1(pwC)
1 and K ′ = (X ′)y. It finds πS [C]

corresponding to IDC , i.e., [IDC , g
−H1(pwC)
1 , ESK = EH2(pwC)(vC), RC] from

a database. Using its signing key, skIDS
= (RS , vS), the server generates a

signature, σS = (dS , zS , RS) on MS = IDS ||W ||Y ||ESK, where ES = geS ,
zS = H(MS , IDS , ES) and dS = eS − vSzS (mod q) for random rS , eS ∈ Z

∗
q .

Also, using ek = H1(K ′) as an encryption key, S generates a ciphertext,
CTS = Eek(ESK||σS). Then S sends [IDS , Y , CTS] to C.

3. Upon receiving [IDS , Y , CTS], the client C computes K = Y x and ek =
H1(K), and ESK||σS = Dek(CTS). It checks if the signature, σS is valid,
i.e., the equality of zS = H(MS , IDS , gdS · (RzS

S · uwS ·zS)) holds for MS =
IDS ||W ||Y ||ESK and wS = H(IDS , RS). If the validity does not hold then
the session is aborted. Otherwise, the client computes π1 = H2(pwC) and
decrypts ESK to obtain vC = Dπ1(ESK). Using vC , the client generates
a signature share, σC = (dC , zC) where zC = H(MC , IDC , EC) and dC =
eC − vCzC (mod q) for random rC , eC ∈ Z

∗
q , MC = IDC ||W ||Y ||CTS . Let

σ′
C = (zC , dC). The client computes CTC = Eek(σ′

C). Finally, the client sends
[IDC , CTC] to S.
Then the client computes a secret session key, ssk = H3(pid||sidC ||K) where
pidC=IDC ||IDS and sidC = IDC ||W ||Y ||CTS ||CTC .

4. Upon receiving [IDC , CTC], the server decrypts CTC to obtain (zC , dC) =
σ′

C = Dek(CTC) and checks if the signature is valid, i.e., the equality of
zC = H(MC , IDC , gdC (RCuwC)zC) holds. Here RC is the value stored at the
database, and MC = IDC ||W ||Y ||CTS and wC = H(IDC , RC). If the validity
does not hold then the session is aborted. Otherwise, the server computes a
secret session key, ssk = H3(pid||sidS ||K ′) where pidS=IDC ||IDS and sidS =
IDC ||W ||Y ||CTS ||CTC .

At Step 3, σ′
C = (zC , dC) is generated by the client. It does not consist of a

full IBS because RC is not given, and thus nobody can check its validity. Instead
of an encryption of σ′

C , we can send σ′
C to the server. However, since RC is

stored at the server, the server is able to verify it. Note that RC is a global value

Robust Authenticated Key Exchange Using Passwords and IBS 57

included in all signatures generated by a client. This modification will alleviate
the computation and communication cost on the client side.

A simplified IBS-PAKE protocol can be constructed from PWIBS-AKE by
omitting a knowledge proof for an original password. The resulting protocol can
run in two independent passes. For more details, refer to the appendix.

5.3 Security Proofs

In this section we prove the security of the proposed protocols in the model of
Sect. 3. We prove that our first protocol provides AKE security and resilience to
server compromise. That is, an adversary attacking the protocol cannot obtain
useful information about session keys of fresh and semi-fresh instances with
greater advantages than that of an on-line dictionary attack.

Theorem 1. Assume that the IBS scheme, DL-IBS is used for PWIBS-AKE.
Also, assume that the CDH assumption holds in G. The proposed AKE protocol,
PWIBS-AKE is AKE-secure in the random oracle model under the security model
of Sect. 3.

Proof. In the proof we consider a series of protocols, Pi (i = 0, 1, .., 7) which are
modified sequentially from the original protocol, P0 = PWIBS-AKE. For each
modification, we shall show that the advantage of an adversary increases with
a negligible fraction. In the final protocol, P7, the adversary will be able to get
only an advantage from an on-line-guessing attack.

Assume that an adversary A can make at most qex and qs queries to the
Execute and the Send oracles. In the original protocol, P0, we consider the random
oracle model where hash functions are considered random functions. For each
new hash query, a fresh random output is returned. To make consistent responses
to hash queries, lists LH and LHi=1,2,3 are maintained.

– Hash query. On a H(m)-query for H = H,Hi, returns h as follows. Let h = ρ

if (m, ρ) exists in LH, and otherwise, let h = ρ′ R← D where D is the domain
of H. LH is updated with (m, ρ′).

Next we describe Pi for i = 0, 1, ..., 7 concretely.

P0: It is the original protocol, PWIBS-AKE defined in Subsect. 5.2 under the ran-
dom oracle model.

P1: It is modified from P0 as follows. Let Rep denote the event that honest parties
do not generate W = gxg

H1(pwC)
1 or Y = gy twice. In P1, we assume that Rep

does not occur. Let q be the order of the group G. We have Pr[Rep] ≤ (qs+qex)
2

q

by using a similar analysis of [37]. It is negligible because q is assumed to be suf-
ficiently large. P0 and P1 are indistinguishable except the negligible probability.

58 J.Y. Hwang et al.

P2: It is modified from P1 as follows. In P2, we assume that the adversary cannot
generate a valid server’s signature without making a Corrupt query to a server. As
shown in Sect. 4, the given IBS scheme is existentially unforgeable. It is obvious
that by this assumption, P1 and P2 are indistinguishable except a negligible
probability from existential unforgeability, i.e., AdvEUF-CMIDA

A,DL-IBS . An adversary is
able to use only (IDS , Y, CTS) which has been generated by a server, in order
to make a Send query to a client instance.

In the protocol, a password-based authentication and an IBS works indepen-
dently. Even if a password is revealed on a client side, a server’s IBS key cannot
be compromised.

P3: It is modified from P2 as follows. When an H3 query is issued, P3 does not
check consistency against Execute queries, but returns a random output. The
response to an Execute query is a collection of transcripts generated from an hon-
est execution of the protocol. That is, it has the form, [(IDC ,W), (ID, Y,CTS),
(IDC , CTC)], where CTS = Eek(ESK||σS), CTC = Eek(σ′

C) and ek = H3(gab).
The way that an adversary know the inconsistency can be used to solve a

CDH problem as follows. For a given CDH problem (A = ga, B = gb), we plug
in A and B for X and Y , respectively. We have ek = H3(gab). The adversary
would have made a H3 query with gab to distinguish the distribution of ek. We
can get gab for the solution to the CDH problem.

In other words, P2 and P3 are indistinguishable except the negligible proba-
bility to solve the CDH problem. Since a random output is used as an encryption
key, ek, the ciphertext Eek(·) looks random from a viewpoint of an adversary.
Also, in the above case, a session key is defined by a random value because it
is an output of H3. Hence, if Test query is asked to an instance which was ini-
tialized via an Execute query, AdvIBS-PAKE

A,PWIBS-AKE is upper bounded by a negligible
probability.

P4: It is modified from P3 as follows. We assume that P4 halts if a correct guess
for a password is made against a client instance or a server instance before a
Corrupt query. We can determine whether a password is correctly guessed or not,
by an H3 query using a correct input to compute ek and ssk. In this case, P3

and P4 are identical.
In the case of semi-freshness, the following assumption is added. If a cor-

rect password guess is made against a server instance before a Corrupt query to
a client instance, P4 halts. We can determine whether a password is correctly
guessed or not, by an Hi=1,2 query with the correct password and a Corrupt
query to a server. P4 is identical to P3 except that off-line dictionary attacks
occurs.

P5: It is modified from P4 as follows. We assume that the adversary cannot make
a password guess against client and server instances which are partnered. To
argue the impossibility, we show that the capability to make a password guess can
be used to solve a CDH problem. Let (IDC ,W) be the first protocol transcript

Robust Authenticated Key Exchange Using Passwords and IBS 59

which is generated via a Send query to a client instance or directly given by the
adversary. Let W = gα. Then, to a Send query with (IDC ,W = gα) to a server
instance, the response, which is also the second transcript, (ID, Y,CTS) is gen-
erated as follows. Let (g,A = ga, B = gb) be a given CDH problem. We plug in A

for g1 and B for Y and returns a random value for ek. Define ek = H3(gαbg−γb
1)

where γ = H2(pwC). Let CTS = Eek(ESK||σS). We have g−γy
1 = (gab)−γ . To

guess a password, the adversary must know gab which is the CDH solution.
Hence, a correct password guess from client and server instances which are part-
nered, is impossible under the CDH assumption.

P6: It is modified from P5 as follows. We assume that the adversary cannot gen-
erate a client’s valid signature share, (zC , dC) without making H2 query with
the correct password and a Corrupt query to a server. It is easy to see that the
adversary get no useful information about the secret key. Note that RC = grC

for rC ∈ Z
∗
q is used as a signature part but is stored by a server and so the adver-

sary cannot be aware of it. Thus, the probability that the adversary generates
(zC , dC) verified with RC is upper bounded by 1/q.

P7: It is modified from P6 as follows. We assume that a password guess can be
checked by a password oracle, that is, whether it is correct or not. Let cguess
denote an event that the adversary guesses a password correctly. P7 accepts a
Corrupt(U) query and returns PFS = {πS [C]}C∈Clients if U ∈ Servers, and
otherwise pwU . For freshness, there are at most qs queries before a Corrupt
query. Thus, we have Pr[cguess] ≤ qs

|DPW | . For semifreshness, qH1 + qH2 more
queries are considered before a Corrupt query to a client. Here, let qHi

denote the
maximum number of Hi queries. Since these occur if there has been a Corrupt
query to a server, we have Pr[cguess] ≤ qs+qH1+qH2

|DPW | .
Overall, the success probability of the adversary can be evaluated by expand-

ing with the event of cguess. That is, we have Pr[SuccP7] = Pr[cguess] +
Pr[SuccP7 |cguess] where cguess denotes the negation of cguess. As we shown
in a series of the protocol modification above, Pr[SuccP7 |cguess] can be upper
bounded by the negligible probability under the CDH assumption and existential
unforgeability of the given IBS scheme. Therefore we obtain the desired results.

Based on the security of a given PAKE and an IBS scheme, we can prove that
the first modular method (defined in Fig. 1) to yield an IBS-PAKE protocol is
AKE secure and resilient to server compromise. That is, an adversary attacking
the protocol cannot obtain useful information about session keys of fresh and
semi-fresh instances with greater advantages than that of an on-line dictionary
attack. The security proof for the modular method can be completed by following
the security proof of PAKE with consideration for unforgeability of the under-
lying IBS scheme. As in the PWIBS-AKE, a client’s signature, σC is encrypted
and so not revealed to an adversary in the modular method. An adversary gains
no meaningful advantage for a password guess from CTC = Eek(σC).

60 J.Y. Hwang et al.

Also, a similar proof idea can be applied with a slight modification, to prove
the AKE security of the simplified PWIBS-AKE and AKE protocols generated
from our second modular method (defined in Fig. 3), equivalently that an adver-
sary attacking the protocol cannot obtain useful information about session keys
of fresh instances with greater advantages than that of an on-line dictionary
attack. Actually, the proofs can be completed by simplifying the security proof
of Theorem 1, i.e., P4 because the protocols do not consider semi-fresh to capture
‘server compromise’.

6 Performance Analysis

In this section, we compare performance between our protocols and other known
AKE protocols using a combination of a password and an asymmetric techniques
[53]. We also give experimental results for our protocols.

6.1 Performance Comparison

The performance is analyzed in terms of communication and computation over-
head. Our protocols work with discrete logarithm parameters. Let G be a group
of prime order q. Let �q and �G denote the bit-length of the order of G and an
element of G, respectively. Let �H denote the bit-length of a hash output. Let
Expt denote simultaneous multi-exponentiation (or scalar multiplication) using t
group elements. In the communication analysis, we exclude identifiers commonly
required for every protocol.

In PWIBS-AKE, a client transmits IDC ,W in the first round, and IDC ,
CTC = Eek(σ′

C) in the third round where σ′
C = (zC , dC). Since W is an element

of G, and zC and dC are elements of Zq, a client transmits a (�G + 2�q)-bit
string. A client executes two Exp1, one Exp2, and one Exp3 and two decryption,
i.e., D of a symmetric encryption scheme. A server transmits IDS , Y, CTS =
Eek(ESK||σS) where σS = (zS , dS , RS) and ESK is a ciphertext of vC , i.e.,
ESK = EH1(pwC)(vC). Since vC is an elements of Zq, we can assume that the
bit length of CTS is 2�G + 3�q. Note that W and RS are elements of G, and zS

and dS are elements of Zq. Thus a server must transmit a (2�G + 3�q)-bit string.
Also, a server executes three Exp1, one Exp3 and one encryption, i.e., E of a
symmetric encryption scheme. When an elliptic curve group with �p = 192 and
�G = 192 is considered, a client’s transcript length is about 576 bits or 72 bytes.
In the simplified PWIBS-AKE, reduced computation and smaller transcripts are
required for a client and a server.

In Table 1, we summarizes comparison results among PAKE, IBE-PAKE, and
our IBS-PAKE protocols, PWIBS-AKE and the simplified PWIBS-AKE (denoted
by Sim-PWIBS in the table). For PAKE, we consider SPEKE [28,30], J-PAKE
[1,27], SRP6 [51], AMP [34], and SK [49] which are presented in ISO/IEC 11770-
4 [32] or IEEE P1363.2 [31]. For IBE-PAKE, we consider the protocols of [53] con-
structed from two different IBE schemes, i.e., the pairing-based Boneh-Franklin
(BF) IBE [4] and TDL-based IBE [43] with the CCA-security. In the table,

Robust Authenticated Key Exchange Using Passwords and IBS 61

Table 1. Comparison of AKE protocols

Protocol RSI RSC Round

(Pass)

Client Server

Comm. Comp. Comm. Comp.

PAKE

(ISO/IEC)

[32]

SPEKE X X 1(2) �G 2Exp1 �G 2Exp1

J-PAKE X X 2(4) 6�G+3�H 6Exp1+4Exp2 6�G + 3�H 6Exp1+4Exp2

SRP6 X O 2(4) 1�
G′′+1�H 2Exp1 1�

G′′ + 1�H 1Exp1+1Exp2

AMP X O 2(4) 1�G+1�H 2Exp1 1�G + 1�H 2Exp2

SK X O 2(4) 1�G+1�H 2Exp1 1�G + 1�H 1Exp1+1Exp2

IBE-PAKE

[53]

w/BF [4] O X 2(2) 2�G1+2�H 1P + 6Exp 2�G1 1P + 4Exp

w/TDL [43] O X 2(2) 2�
G′+2�H 6Exp 2�

G′ 5Exp

IBS-PAKE PWIBS-AKE O O 3(3) 1�G+2�q 2Exp1 + Exp2
+Exp3+2D + E

2�G + 3�q 3Exp1+Exp3
+D + E

Sim-PWIBS O X 1(2) 1�G Exp1+ Exp2+ Exp3 2�G + 2�q 3Exp1

let ‘RSI’ and ‘RSC’ denote ‘Robustness to Server Impersonation (when a pass-
word is revealed)’ and ‘Resilience to Server Compromise’, respectively. Also, let
‘Comm.’ and ‘Comp.’ denote the communication length and the computation
cost, respectively. Let G

′ and G
′′ be a TDL group defined with RSA parame-

ters and a multiplicative group of a finite field, respectively. Thus �G′ or �G′′

should be larger than at least 1024. ‘P’ denotes a pairing operation and let G1

be a bilinear group. It is known that a pairing operation is more expensive than
(or comparable to) an exponentiation or a scalar multiplication when a similar
security level is assumed [5,6,20]. Our protocols can be efficiently performed
without requiring any pairing operation. Similarly, our generic construction can
be efficiently performed.

6.2 Experimental Results

The test for our experimental results has been performed on an Intel Pentium
model CPU clocked at 2.40GHz. The algorithms were written in Python 2.7 and
based on Charm-Crypto [14] and PyCrypto [41] libraries.6 Each result is the
average of 1,000 tests.

For a mathematical group in the protocol, we use four elliptic curve groups,
‘prime192v1’, ‘sect193r1’, ‘secp224r1’, and ‘sect163k1’. ‘prime192v1’ represents
NIST/X9.62/SECG curve over a 192 bit prime field [48]. ‘sect193r1’ represents
SECG curve over a 193 bit binary field [47]. ‘secp224r1’ represents NIST/SECG
curve over a 224 bit prime field [48]. ‘sect163k1’ represents NIST/SECG/WTLS
curve over a 163 bit binary field [48]. As a symmetric encryption scheme we use
AES with the CBC mode. The bit sizes of a key used for AES are 128 and 256.

Table 2 shows the running time of PWIBS-AKE. According to the distinct
tasks by a communication round, the protocol can be divided into four sub-
modules, Client.s1, Server.s2, Client.s3, and Server.s4. Client.s1 represents the
6 Even though Charm is not optimised, our results are enough to show feasible and

efficient implementation of our protocols.

62 J.Y. Hwang et al.

Table 2. Experimental results of PWIBS-AKE (time:msec)

EC Group AES key(bit) Client.s1 Server.s2 Client.s3 Server.s4 Total

prime192v1 256 1.28 2.21 3.80 2.24 9.53

128 1.30 2.25 3.90 2.27 9.66

sect193r1 256 2.28 4.01 6.58 3.83 16.7

128 2.51 4.21 6.86 4.01 17.59

secp224r1 256 1.64 3.01 5.03 2.92 12.6

128 1.64 3.01 5.01 2.90 12.56

sect163k1 256 1.85 2.87 4.84 2.87 12.43

128 1.74 2.71 4.54 2.71 11.7

generation of W = gxg
H1(pwC)
1 by a client. Server.s2 represents the generation

of (Y = gy, σS = (zS , dS , RS)) and CTS = Eek(ESK||σS) by a server. Client.s3
represents the verification of σS , the computation of K = Y x, the generation
of σC = (zC , dC), and the computation of a session key by a client. Server.s4
represents the verification of σC = (zC , dC) and the computation of a session
key by a server.

Table 3 shows the running time of the simplified PWIBS-AKE. In the experi-
ment, the protocol is divided into four submodules, Client.s1, Server.s2, Client.s3,
and Server.s4. As a client does not generate a signature for the possession proof
of a password, Client.s3 of the simplified PWIBS-AKE is faster than that of
PWIBS-AKE.

In both of the tables, ‘Total’ represents the sum of running time of all sub-
modules. As shown in the tables, the protocols give different experimental results
according to elliptic curve groups used. The most time-consuming task occurs
in Client.s3. However, the total running time is only at most 0.02 s.

7 Conclusion

We have proposed efficient AKE protocols based on a password and an IBS.
A client is able to do an easy authentication using a human-memorable password
and an ID-based signature as authentication means. The use of an IBS gives two
security enhancements against party compromise, i.e., resistance to sever imper-
sonation attacks from client compromise and resilience to client impersonation
attacks from server compromise. The proposed protocols also give good per-
formance compared to known AKE protocols. They can be applied for various
applications.

A Bilinear Maps [21,39]

Let G1 and G2 be additive groups and GT a multiplicative group. Assume that
the groups have the same prime order, q. We say that e: G1 × G2 → GT is an

Robust Authenticated Key Exchange Using Passwords and IBS 63

admissible bilinear map (or a pairing) if the following properties are satisfied:
(1) Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1 and Q ∈ G2, and a, b ∈ Z

∗
q .

(2) Non-degeneracy: There exist P ∈ G1 and R ∈ G2 such that e(P,R) �= 1. (3)
Computability: There exists an efficient algorithm to compute e(P ′, Q′) for all
P ′ ∈ G1 and Q′ ∈ G2.

Bilinear maps can be classified in three types, i.e., Type I, II, III accord-
ing to the existence of morphisms between G1 and G2. Type I pairings, called
‘symmetric’, have G1 = G2. Type II pairings have an efficiently computable iso-
morphism from G1 to G2 or from G2 to G1 but none in the reverse direction.
Type III pairings have no efficiently computable isomorphism between G1 and
G2. Type II and III pairings are called ‘asymmetric’. For more details, refer to
[21,39].

B Computational Assumptions

Discrete Logarithm (DL) Assumption. Assume that a group G of order q
and a generator g of G are given. To define Discrete Logarithm (DL) problem,
we consider the following game:

Initialization: x
R← Zq, g1 = gx,

Output : r ← A(G, g, g1 = gx)

We define AdvDL
A,G(t)= Pr[r = x], where A runs in time t. We define that AdvDL

G (t)
= maxA[AdvDL

G (t)] where the maximum is taken over all A. We say that DL
assumption holds for G if AdvDL

G (t) is negligible.

Decisional Diffie-Hellman (DDH) Assumption. Assume that a group G

of order q and a generator g of G are given. To define Decisional Diffie-Hellman
(DDH) problem, we consider the following distinguishability game:

Initialization: x, y, r
R← Zq, e0 = xy, e1 = r,

b
R← {0, 1}, h = geb

Guess: b′ ← A(G, g, gx, gy, h)

We define AdvDDH
A,G (t)= |Pr[b = b′] − 1/2|, where A runs in time t. We define

that AdvDDH
G (t) = maxA[AdvDDH

G (t)] where the maximum is taken over all A.
We say that DDH assumption holds for G if AdvDDH

G (t) is negligible.

Computational Diffie-Hellman (CDH) Assumption. Assume that a
group G of order q and a generator g of G are given. To define Computational
Diffie-Hellman (CDH) problem, we consider the following game:

Initialization: x, y
R← Zq, g1 = gx, g2 = gy,

Output : gz ← A(G, g, gx, gy)

We define AdvCDH
A,G (t)= Pr[z = xy], where A runs in time t. We define that

AdvCDH
G (t) = maxA[AdvCDH

G (t)] where the maximum is taken over all A. We
say that CDH assumption holds for G if AdvCDH

G (t) is negligible.

64 J.Y. Hwang et al.

Table 3. Experimental results of our simplified PWIBS-AKE (time:msec)

EC Group Client.s1 Server.s2 Client.s3 Server.s4 Total

prime192v1 1.33 1.52 3.01 0.84 6.7

sect193r1 2.36 2.58 5.11 1.36 11.41

secp224r1 1.66 2.01 3.82 1.09 8.58

sect163k1 1.75 1.76 3.53 0.92 7.96

C Simplified IBS-PAKE Protocols

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows.

– Setup and Extract are the same to those of PWIBS-AKE.
– Registration(C,S). First, a client, C generates his or her password, pwC accord-

ing to a pre-defined password creation policy. To register a service, C sends
(Register-Req, IDC , g

−H1(pwC)
1) to the server, S over a secure channel. The

server appends πS [C] = (IDC , g
−H1(pwC)
1) to PF .

Key Establishment Phase. A client, C and a server, S execute the protocol
to agree on a temporal key to be used for a session. The concrete protocol is
described as follows (See Fig. 4).

1. C picks x ∈ Z
∗
q uniformly at random and computes W = gxg

H1(pwC)
1 ∈ G

using the password, pwC . Then, C sends [IDC ,W] to S.
2. S picks y ∈ Z

∗
q uniformly at random and computes Y = gy∈ G. Also, using

its signing key, skIDS
= (RS , vS), the server generates a signature, σS =

(dS , zS , RS) on MS = IDS ||Y , where ES = geS , z = H(m, IDS , ES) and
dS = eS − vSzS (mod q) for random rS , eS ∈ Z

∗
q . Then S sends [IDS ,Y ,σS]

to C. From the receipt message [IDC ,W], the server finds authentication
information corresponding to IDC , i.e., [IDC , g

−H1(pwC)
1] from a database.

It then computes X ′ = Wg
−H1(pwC)
1 and K ′ = (X ′)y. Finally, S computes

ssk = H3(pidS ||sidS ||K ′), where sidS = IDC ||W ||Y ||σS .
3. Upon receiving [IDS , Y , σS], the client C checks if the signature, σS is valid,

i.e., the equality of zS = H(MS , IDS , gdS · (RS · uwS)zS) holds. Here MS =
IDS ||Y and wS = H(IDS , RS). If the validity does not hold then the session
is aborted. Otherwise, the client computes K = Y x. Finally, S computes
ssk = H3(pidS ||sidS ||K ′), where sidS = IDC ||W ||Y ||σS .

Robust Authenticated Key Exchange Using Passwords and IBS 65

Client C Server S
pp = {G, g, g1, u, H, H1, H2, H3} pp = {G, g, g1, u, H, H1, H2, H3}

[IDC , pwC [] IDS , skIDS
= (vS , RS)]

πS [C] = (IDC , g
−H1(pwC)
1 ,

ESK = EH2(pwC)(vC), RC))

π1 = H1(pwC)

x
R← Z

∗
q , W = gxg

π1
1

IDC ,W−−−−−−−−−−−→ y
R← Z

∗
q , Y = gy

X′ = Wg
−H1(pwC)
1 , K′ = (X′)y

eS
R← Z

∗
q , ES = geS

zS = H(MS , IDS , ES)

dS = eS − vSzS (mod q)

where MS = IDS ||W ||Y ||ESK

σS = (zS , dS , RS)

K = Y x, ek = H3(K) IDS ,Y,CTS←−−−−−−−−− ek = H3(K
′), CTS = Eek(ESK||σS)

ESK||σS = Dek(CTS)

MS = IDS ||W ||Y ||ESK

hS = gdS (RSuwS)zS

If zS �= H(MS , IDS , hS), abort

Otherwise, proceed as follows

vC = DH2(pwC)(ESK)

eC
R← Z

∗
q , EC = geC

zC = H(MC , IDC , EC)

dC = eC − vCzC (mod q)

where MC = IDC ||W ||Y ||CTS

σ′
C = (zC , dC)

CTC = Eek(σ
′
C) IDC ,CTC−−−−−−−−→ σ′

C = Dek(CTC)

MC = IDC ||W ||Y ||CTS

hC = gdC (RCuwC)zC

If zC �= H(MC , IDC , hC), abort

Otherwise, proceed as follows

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = IDC ||W ||Y ||CTS ||CTC sidS = IDC ||W ||Y ||CTS ||CTC

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K′)

Fig. 2. PWIBS-AKE: AKE from a combination of PAK and a Schnorr-based IBS

66 J.Y. Hwang et al.

Client C Server S
pp = {G, g, ppIBS, Hi=1,2,3, SE} pp = {G, g, ppIBS, Hi=1,2,3, SE}

[IDC , pwC [] IDS , skIDS
]

πS [C] = (IDC , π1 = H1(pwC))

Using π1 = H1(pwC) instead of pwC , Modified perform its part in PAKE

perform its part in PAKE Execution with the following modification:

with the following modification: of PAKE For each mS to be sent to C,

Whenever (mS , σS) is received, withH1(pwC)−−−−−−−−−−→ σS ← Sign(ppIBS, IDS , skIDS
, mS),

if 0 = Vrfy(ppIBS, IDS , σS , mS), abort. ←−−−−−−−−−−− and then send (mS , σS).

Otherwise, perform the client’s part

for given mS in PAKE.

Output K Output K

pidC = IDC ||IDS , sidC = TPAKE pidS = IDC ||IDS , sidS = TPAKE

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K)

Fig. 3. Generic construction of a simplified IBS-PAKE protocol

Client C Server S
pp = {G, g, g1, u, H, H1, H2} pp = {G, g, g1, u, H, H1, H2}

[IDC , pwC] [IDS , skIDS
= (dS , zS , RS)]

πS [C] = (IDC , g
−H1(pwC)
1)

x
R← Z

∗
q , W = gxg

H1(pwC)
1

IDC ,W−−−−−−−−−→ y
R← Z

∗
q , Y = gy

If 0 = Vrfy(pp, IDS , σS , IDS ||Y), abort IDS ,Y,σS←−−−−−−−−−− σS ← Sign(pp, IDS , skIDS
, MS)

where MS = IDS ||Y
Otherwise, K = Y x X′ = Wg

−H1(pwC)
1 , K′ = (X′)y

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = IDC ||W ||Y ||σS sidS = IDC ||W ||Y ||σS

ssk = H2(pidC ||sidC ||K) ssk = H2(pidS ||sidS ||K′)

Fig. 4. Simplified PWIBS-AKE

References

1. Abdalla, M., Benhamouda, F., Mackenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: IEEE Symposium on Security and Privacy
2015, pp. 571–587. IEEE Computer Society (2015)

2. Boyarsky, M.K.: Public-key cryptography and password protocols: the multi-user
case. In: ACMCCS 1999, pp. 63–72. ACM, New York (1999)

3. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

Robust Authenticated Key Exchange Using Passwords and IBS 67

5. Barreto, P.S.L.M., Galbraith, S.D., hÉigeartaigh, C.Ó., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing based
cryptosystems. J. Cryptol. 17, 321–334 (2004). Springer-Verlag

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocol
secure against dictionary attack. In: IEEE Symposium on Research in Security
and Privacy, pp. 72–84 (1992)

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

9. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

12. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust
authorities in pairing based cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O.
(eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)

13. Clancy, T.: Eap password authenticated exchange, draft archive (2005). http://
www.cs.umd.edu/clancy/eap-pax/

14. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Crypt. Eng. 3(2), 111–128 (2013)

15. Choi, K.Y., Hwang, J.Y., Cho, J., Kwon, T.: Constructing efficient PAKE proto-
cols from identity-based KEM/DEM, Cryptology ePrint Archive, Report 2015/606
(2015). http://eprint.iacr.org/2015/606. (To appear in WISA 2015)

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

17. Choi, K.Y., Hwang, J.Y., Lee, D.-H.: Efficient ID-based group key agreement with
bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 130–144. Springer, Heidelberg (2004)

18. Dent, A.W., Galbraith, S.D.: Hidden pairings and trapdoor DDH groups. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 436–451. Springer,
Heidelberg (2006)

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

20. Elashry, I., Mu, Y., Susilo, W.: Jhanwar-Barua’s identity-based encryption revis-
ited. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792,
pp. 271–284. Springer, Heidelberg (2014)

21. Gallbraith, S.: Pairings, Advances in Elliptic Curve Cryptography, vol. 317,
Chapter IX, pp. 183–213. Cambridge University Press (2005)

22. Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signature
scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–
148. Springer, Heidelberg (2009)

23. Gong, L.A., Lomas, T.M., Needham, R., Saltzwe, J.: Protecting poorly chosen
secrets from guessing attacks. IEEE J. Sel. Areas Commun. 11(5), 648–656 (1993)

http://www.cs.umd.edu/clancy/eap-pax/
http://www.cs.umd.edu/clancy/eap-pax/
http://eprint.iacr.org/2015/606

68 J.Y. Hwang et al.

24. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

25. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. 2(3), 230–268 (1999)

26. Housley, R., Polk, T.: Planning for PKI: Best Practices Guide for Deploying Public
Key Infrastructure. Wiley, Chichester (2001)

27. Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by juggling. In:
Christianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols
2008. LNCS, vol. 6615, pp. 159–171. Springer, Heidelberg (2011)

28. Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. In: Chen, L., Mitchell,
C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 26–38. Springer, Heidelberg (2014). Cryp-
tology ePrint Archive, Report 2014/585. http://eprint.iacr.org/2014/585

29. Internet Engineering Task Forces, Eap password authenticated exchange (2005).
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt

30. Jablon, D.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

31. IEEE 1363.2:2008 Specification For Password-based Public-key Cryptographic
Techniques

32. ISO/IEC 11770–4:2006 Information technology - Security techniques - Key man-
agement - Part 4: Mechanisms based on weak secrets

33. ITU-T Recommendation X. 1035: Password-Authenticated Key Exchange (PAK)
Protocol. https://www.itu.int/rec/T-REC-X.1035/en

34. Kwon, T.: Addendum to Summary of AMP, In Submission to the IEEE P1363
study group for future PKC standards (2003)

35. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

36. Kolesnikov, V., Rackoff, C.: Key exchange using passwords and long keys. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 100–119. Springer,
Heidelberg (2006)

37. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer,
Heidelberg (2003)

38. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based Encryption Based on
Trapdoor DL Using Pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011). http://eprint.iacr.org/2011/187

39. Paterson, K.: Cryptography from pairings, Advances in Elliptic Curve Cryptog-
raphy, vol. 317, Chap. X, pp. 215–251. Cambridge University Press, Cambridge
(2005)

40. Pointcheval, D.: Password-based authenticated key exchange. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 390–397.
Springer, Heidelberg (2012)

41. Litzenberger, D.C.: Pycrypto-the python cryptography toolkit (2014). https://
www.dlitz.net/software/pycrypto

42. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

43. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Crypt. 52(2), 219–241 (2009)

http://eprint.iacr.org/2014/585
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt
https://www.itu.int/rec/T-REC-X.1035/en
http://eprint.iacr.org/2011/187
https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto

Robust Authenticated Key Exchange Using Passwords and IBS 69

44. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1976)

45. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

46. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

47. Certicom, S.E.C.: SEC 2: Recommended elliptic curve domain parameters. In:
Proceeding of Standards for Efficient Cryptography, Version 1 (2000)

48. Brown, D.: SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2
(2010). http://www.secg.org/sec2-v2.pdf

49. Shin, S., Kobara, K.: Efficient Augumented Password-only Authentication and Key
Exchange for IKEv2, RFC 6628, ISSN 2070–1721, IETF (2012)

50. Sakai, R., Kasahara, M.: ID Based Cryptosystems with Pairing over Elliptic Curve,
Cryptology ePrint Archive, Report 2003/054. http://eprint.iacr.org/2003/054

51. Wu, T.: SRP-6: Improvements and Refinements to the Secure Remote Password
Protocol, In Submission to the IEEE P1363 Working Group (2002)

52. Yi, X., Tso, R., Okamoto, E.: ID-based group password-authenticated key
exchange. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp.
192–211. Springer, Heidelberg (2009)

53. Yi, X., Tso, R., Okamoto, E.: Identity-based password-authenticated key exchange
for client/server model. In: SECRYPT 2012, pp. 45–54 (2012)

54. Yi, X., Hao, F., Bertino, E.: ID-based two-server password-authenticated key
exchange. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol.
8713, pp. 257–276. Springer, Heidelberg (2014)

http://www.secg.org/sec2-v2.pdf
http://eprint.iacr.org/2003/054

	Robust Authenticated Key Exchange Using Passwords and Identity-Based Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Security Model
	4 Our Identity-Based Signature Scheme
	5 Our IBS-PAKE Protocols
	5.1 Generic Construction
	5.2 Instances
	5.3 Security Proofs

	6 Performance Analysis
	6.1 Performance Comparison
	6.2 Experimental Results

	7 Conclusion
	A Bilinear Maps
	B Computational Assumptions
	C Simplified IBS-PAKE Protocols
	References

