
Generating Unlinkable IPv6 Addresses

Mwawi Nyirenda Kayuni, Mohammed Shafiul Alam Khan, Wanpeng Li,
Chris J. Mitchell(B), and Po-Wah Yau

Information Security Group, Royal Holloway, University of London, Egham, UK
{Mwawi.NyirendaKayuni.2011,Wanpeng.Li.2013}@live.rhul.ac.uk,

shafiulalam@gmail.com, {C.Mitchell,P.Yau}@rhul.ac.uk

Abstract. A number of approaches to the automatic generation of IPv6
addresses have been proposed with the goal of preserving the privacy of
IPv6 hosts. However, existing schemes for address autoconfiguration do
not adequately consider the full context in which they might be imple-
mented, in particular the impact of low quality random number gener-
ation. This can have a fundamental impact on the privacy property of
unlinkability, one of the design goals of a number of IPv6 address auto-
configuration schemes. In this paper, the potential shortcomings of pre-
viously proposed approaches to address autoconfiguration are analysed
in detail, focussing on what happens when the assumption of strong ran-
domness does not hold. Practical improvements are introduced, designed
to address the identified issues by making the random generation require-
ments more explicit, and by incorporating measures into the schemes
designed to ensure adequate randomness is used.

1 Introduction

The move from IPv4 to IPv6 brings with it a range of challenging security and
privacy issues. Of course, the vastly larger address space of IPv6 is a huge advan-
tage, allowing the use of globally unique identifiers for all Internet-connected
devices. However, this very advantage brings with it possible user privacy prob-
lems [1].

That is, if each device has a long-term and globally unique identifier, then use
of this identifier enables devices to be tracked. As stated in RFC 4941 [1], if part
of the IPv6 address remains fixed then privacy problems arise for mobile devices,
since the fixed part of the address can be used to track use of a particular device
across networks.

This privacy threat has become increasingly serious with the proliferation of
network-enabled personal devices, including phones and tablets. That is, tracking
of IP addresses on such devices could enable the movements and activities of a
single user to be recorded. This threat will become even more apparent as an
increasing variety of devices become IP-enabled, particularly with the emergence
of the Internet of Things (IoT).

As a result, a method is needed to enable devices to generate new unique IPv6
addresses on a regular basis with the property that pairs of addresses generated

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 185–199, 2015.
DOI: 10.1007/978-3-319-27152-1 10

186 M.N. Kayuni et al.

by the same device are unlinkable. That is, given two IPv6 addresses generated
by the method, it should not be possible for a third party to learn anything from
the addresses themselves regarding whether or not they belong to the same or
distinct devices.

Of course, there is already a substantial body of work addressing this prob-
lem, including RFC 4941 [1], discussed further in Sect. 2 below. However, as we
discuss in this paper, there are serious practical problems with all the existing
approaches. In essence, the existing solutions all depend on the availability of
either high quality random bit streams or long-term state (or both) within the
device generating its own IPv6 addresses. Meeting these requirements could be
very challenging in certain classes of device, particularly those small portable
platforms for which the privacy threat may well be greatest. As a result, new
solutions are required which can work on a wide variety of platforms while still
providing acceptable levels of address privacy.

In this paper, as well as pointing out the scale and scope of the ‘random-
ness’ problems with the prior art, we make a detailed proposal for the use of
randomness in the existing address generation schemes. The solutions proposed
are designed to be readily implemented on current platforms, and should enable
significant improvements in the level of privacy offered by the various approaches
to dynamic IP address generation.

The remainder of this paper is structured as follows. Section 2 describes pre-
vious work on IPv6 autoconfiguration, focussing on proposals for addressing the
privacy issue. The limitations of previous approaches are considered in Sect. 3,
which leads to Sect. 4 in which new approaches to IPv6 address autoconfigura-
tion are explored. Section 5 summarises the main findings and recommendations,
and notes possible directions for future work.

2 Background

2.1 Stateless Address Autoconfiguration (SLAAC)

An IPv6 address is a 128-bit identifier [2] for a specific network interface within
a device (referred to as a host throughout). That is, a network interface cannot
communicate in an IPv6 network unless it has one or more suitably configured
IPv6 addresses. Hosts may need to automatically generate (autoconfigure) their
own IPv6 addresses. This need is addressed by the IPv6 Stateless Address Auto-
configuration protocol, or SLAAC, specified in RFC 4862 [3]. SLAAC involves
a host first generating a global address via stateless address autoconfiguration,
and then using the Duplicate Address Detection (DAD) procedure to verify the
local uniqueness of the global address. The mechanism ‘allows a host to generate
its own [global] addresses using a combination of locally available information
and information advertised by routers’.

SLAAC operates in the following general way. A router advertises a 64-bit
prefix that identifies the subnet to which the host is attached. The host then gen-
erates a 64-bit interface identifier, uniquely identifying the host on the subnet.
The 128-bit IPv6 address is simply the concatenation of these two values.

Generating Unlinkable IPv6 Addresses 187

The source of the interface identifier, which must be in modified EUI-64
format [2], will depend on the underlying link-layer protocol. In many cases,
an interface’s identifier will be derived directly from that interface’s link-layer
address [2]. For example, it may be derived from an IEEE 802 48-bit MAC layer
address.

This approach is appropriate ‘when a site is not particularly concerned with
the exact addresses hosts use, so long as they are unique and properly routable’.
SLAAC is an alternative to the Dynamic Host Configuration Protocol for IPv6
(DHCPv6) [4], appropriate when a site requires tighter control over exact address
assignments.

2.2 Privacy Extensions to SLAAC

We first observe that, although the first 64 bits of a SLAAC-generated address
will change when a host switches subnets, the last 64 bits will stay constant, since
they are generated from a fixed interface identifier. This issue has motivated the
development of RFC 4941 [1]. As stated in Sect. 2.3 of this RFC, problems arise
if the interface identifier contained within the IPv6 address remains fixed and,
in such a case, ‘the interface identifier can be used to track the movement and
usage of a particular machine’ (this threat is, of course, particularly relevant
to mobile devices). More detailed discussions of the privacy issues arising from
the use of SLAAC are provided in Sect. 1 of Gont [5] and in Cooper, Gont and
Thaler [6].

The goal of RFC 4941 is to describe methods for a host to automatically
generate IPv6 addresses that change over time and which cannot be linked to
each other, thereby giving a level of pseudonymity to a host. The focus of RFC
4941 is on the case where the interface identifier used in SLAAC is generated
from a fixed IEEE MAC layer address. RFC 4941 seeks to propose new methods
for address generation that minimise the changes to SLAAC, and that enable a
sequence of apparently random addresses to be generated. RFC 4941 addresses
are expected to be used for a ‘short period of time (hours to days)’ ([1], Sect. 3).

The main change to SLAAC is to replace the fixed interface identifier with
a randomised value. Two approaches are described for generating such a ran-
domised identifier.

1. Method 1 (When stable storage is present). As the title suggests, this app-
roach assumes that the software responsible for generating the randomised
interface identifiers has access to a means of storing changeable data long-
term. More specifically, the scheme requires the storage of a 64-bit history
value H. The scheme also requires the software to have access to a 64-bit ran-
dom value which is used to initialise the history value. It is further assumed
that the 64-bit fixed interface identifier I is available, e.g. as derived from the
MAC layer address.

Whenever a new randomised interface identifier is required, the following
steps are performed.

188 M.N. Kayuni et al.

(a) Compute V = h(H||I), where h is the MD5 cryptographic hash function
[7], and here, as throughout, || denotes concatenation of bit-strings. Hence
V is a 128-bit value.

(b) Set the new history value H to be the rightmost 64 bits of V, and store
this value.

(c) Let J be the leftmost 64 bits of V, after setting the 7th bit (counting from
the left) to zero to indicate an address of local significance only.

(d) Compare J against a list of reserved interface identifiers and those already
assigned to an address on the host (on a different network interface). If
J matches a forbidden address then restart the process; otherwise use J
as the randomised interface identifier.

The use of MD5 is not mandatory; that is, h could be instantiated as any
other suitable cryptographic hash function with an output length of at least
128 bits (longer output lengths can be truncated).

2. Method 2 (In the absence of stable storage). In this case it is proposed that
the interface identifier can simply be generated ‘at random’. No method is
specified for random generation, although it is suggested that host-specific
configuration information (such as a user identity, security keys, and/or serial
numbers) could be concatenated with random data and input to MD5 to
generate the interface identifier.

2.3 The Gont Approach

Gont [5] notes that temporary addresses, as proposed in RFC 4941, bring dif-
ficulties. From a network management perspective, ‘they tend to increase the
complexity of event logging, trouble-shooting, enforcement of access controls and
quality of service, etc. As a result, some organizations disable the use of tempo-
rary addresses even at the expense of reduced privacy [8]. Temporary addresses
may also result in increased implementation complexity, which might not be
possible or desirable in some implementations (e.g., some embedded devices)’.

As a result, Gont [5] proposes another approach to generating user-privacy-
protecting interface identifiers. This scheme generates interface identifiers that
are stable within a subnet, but which vary between subnets. That is, when
a host migrates from one subnet to another, both the first and second 64-bit
components of the IPv6 address change, preventing tracking of hosts as they
migrate. As with the RFC 4941 scheme, it is intended that a generated interface
identifier cannot be linked to a long-term host identifier (such as the SLAAC
interface identifier).

Use of the scheme requires choice of a pseudorandom function f giving a 64-
bit output that must be difficult to invert. The choice for f is not mandated, but
it is suggested that it could be computed by taking the 64 least significant bits
of the output of SHA-1 or SHA-256 [9]. The scheme also requires the address-
generating software to have access to a host-unique secret key K (of length at
least 128 bits), which is chosen at random at system installation time. It is
further assumed that, as in RFC 4941, a fixed network interface identifier I is
available, e.g. as derived from the MAC layer address. The scheme then operates
as follows.

Generating Unlinkable IPv6 Addresses 189

1. Compute J = f(P ||I||N ||D||K), where f , I and K are as above, P is the
64-bit SLAAC prefix, e.g. as obtained from a router advertisement message,
N is an identifier for the network interface for the generated identifier, and
D is a counter used to resolve DAD conflicts (initialised to zero every time
this process is run). Hence J is a 64-bit value.

2. Compare J against a list of reserved interface identifiers and those already
assigned to an address on the host (on a different network interface). Also
perform DAD. If J matches a forbidden address or DAD fails then increment
D and restart the process; otherwise use J as the subnet-specific interface
identifier.

Including P in the computation ensures that J is subnet-specific; similarly,
including N ensures, with high probability, that different network interfaces on
the same host have different values of J .

2.4 The Rafiee-Meinel Scheme

In a recent paper, Rafiee and Meinel [10] propose yet another approach to
randomised interface identifier generation. They reject the Gont approach (see
Sect. 2.3) on the basis that fixing the interface identifier for a given subnet is
potentially privacy-compromising, since all accesses to this subnet will be track-
able. They also criticise method 1 of RFC 4941 [1] on the basis that stable storage
may not be available.

The Rafiee-Meinel scheme can be regarded as a specific instantiation of
method 2 of RFC 4941, i.e. it is a specific method of generating randomised
interface identifiers that does not make use of stable storage. It assumes that
the system generating the identifier has access to the current system time T
in the form of a 64-bit integer denoting the number of milliseconds since the
beginning of 1970. The scheme operates as follows.

1. Generate a 128-bit random value R.
2. Compute V = h(R||T ||P), where T is a timestamp (as above), P is the 64-bit

subnet prefix, e.g. as obtained from a router advertisement message, and h is
SHA-256 [9]. V is thus a 256-bit value.

3. Let J be the leftmost 64 bits of V .
4. Perform DAD. If DAD fails then increment R and restart the process; other-

wise use J as the subnet-specific interface identifier.

2.5 Other Schemes

Before proceeding we also briefly mention two other papers which describe IPv6
address generation schemes which are apparently relevant. Al’Sadeh, Rafiee and
Meinel [11] and Rafiee and Meinel [12] describe modified versions of Crypto-
graphically Generated Addresses (CGA) [13] designed to address the privacy
problem discussed above. CGA is a method of generating 64-bit IPv6 interface

190 M.N. Kayuni et al.

identifiers designed to enable a host that owns an identifier to prove its owner-
ship. To use CGA, a host must generate an asymmetric signature key pair and
then calculate the interface identifier as a SHA-1 hash of the public key and
certain other parameters. If a third party challenges the host to prove ownership
of the identifier, the host can release both the public key and a signature on a
third-party-provided challenge created using the signature key.

Clearly CGA-generated interface identifiers are, by definition, random in
appearance, and hence appear to address the privacy issue. Thus regular use of
CGA would provide ‘unlinkable’ short-term IPv6 addresses. However, the gen-
eration of a key pair is a non-trivial operation, and it would seem that the only
reason to adopt such an approach is if the security provided by CGA is required.
Of course, improvements in the efficiency of CGA (as claimed in the two papers
referred to above) are welcome, but do not change this conclusion. Thus, since
the resource requirements of implementing CGA limit its applicability as a gen-
eral solution, we do not consider CGA, and variants thereof, further here.

2.6 A Summary

If we ignore the CGA variants, three basic approaches have been proposed to
generate privacy-protecting interface identifiers:

– RFC 4941 [1] method 1, which enables the generation of a sequence of ran-
domised interface identifiers based on an initial random value;

– RFC 4941 method 2, including a specific instance due to Rafiee and Meinel [10],
which enables the generation of a sequence of random identifiers based on ‘one
off’ random values;

– the approach due to Gont [5] which involves the generation of fixed, but
unlinkable, subnet-specific interface identifiers.

3 Practical Limitations to Privacy

In practice the schemes we have described all have potential shortcomings arising
from poor use of randomness. Before analysing the individual schemes we first
consider the use and abuse of random values.

3.1 Use of Randomness

Perhaps the first question that springs to mind when considering the prior art
is ‘Why not just generate interface identifiers at random?’ Indeed, the tech-
niques we have described all, to some extent at least, require the generation
of random numbers. This issue is addressed in 3.2.1 of RFC 4941 [1], where it
is stated that ‘In practice, however, generating truly random numbers can be
tricky. Use of a history value [as in method 1] is intended to avoid the particular
scenario where two nodes generate the same randomized interface identifier, both
detect the situation via DAD, but then proceed to generate identical randomized

Generating Unlinkable IPv6 Addresses 191

interface identifiers via the same (flawed) random number generation algorithm.
The above algorithm avoids this problem by having the interface identifier (which
will often be globally unique) used in the calculation that generates subsequent
randomized interface identifiers’.

That is, the authors of the RFC were very well aware of the difficulties of
generating random values, and the possibility that, in practice, a flawed random
number generator might be used. Examining the various proposals in more detail,
it is clear that in no case are precise instructions provided covering how to
generate the necessary random values.

– The specifications of the two methods in RFC 4941 simply contain pointers to
RFC 4086 [14] for guidance on how to generate random values. RFC 4086 cer-
tainly contains much excellent advice, but does not contain a specific proposal
for a random number generator.

– Exactly the same situation holds for Gont [5], who simply refers to RFC 4086
for advice on generating random values.

– Rafiee and Meinel [10] do not address the issue of randomness generation
at all.

In the absence of very clear and specific instructions on how random num-
bers must be generated, or at least a reference to such instructions, there is
a great danger that implementers will choose simple, but ineffective, methods
for ‘random’ number generation. Certainly, past experience suggests that imple-
menters cannot be relied upon to make good security decisions, particularly when
called upon to generate random values. Examples demonstrating this include the
following.

– After conducting a large scale survey of RSA public keys, Lenstra et al.
[15] showed that a small but significant proportion offered no security what-
ever; specifically, 12720 of 4.7 million sampled RSA moduli had a single large
prime factor in common. Moreover, ‘of 6.4 million distinct RSA moduli, 71052
(1.1 %) occur more than once, some of them thousands of times’. This could
only occur because the RSA key generation software used by significant num-
bers of users makes very poor use of ‘randomness’.

– Bond et al. [16] have shown that many EMV (chip and PIN) terminals have
a very worrying defect. The EMV protocol requires the terminal to send an
‘unpredictable number’ to a payment card, which is then used to compute
a response to the terminal; the terminal uses this response to authenticate
the card, with the unpredictable number being a guarantee of the response’s
freshness. However, in practice, many terminals (including those from highly
reputable manufacturers) generate this unpredictable number in a very pre-
dictable way, i.e. very little genuine randomness is involved, meaning that
security vulnerabilities result.

– In fact, even when security specifications are apparently precise, implementers
cannot be relied upon to implement security correctly. As part of research into
the security of IPsec, Degabriele and Paterson [17] looked at six open source
IPsec implementations, including those for Linux, FreeBSD and OpenSolaris.

192 M.N. Kayuni et al.

Their surprising, and very worrying, finding was that not one of them correctly
implemented a security-critical part of the protocol. Further evidence of poor
use of security specifications has been provided by two separate recent studies
[18,19], which have shown that a wide range of serious vulnerabilities can be
found in SSL implementations.

This experience suggests that specifications of security protocols need to be
absolutely explicit about measures to be taken by implementers. Providing point-
ers to good advice is not enough.

As a result of the lack of clear specifications of randomness generation in all
the schemes we have examined, there is a danger that the unlinkability property
of addresses generated by these schemes will be compromised. We examine each
of the schemes in greater detail below, following the ordering given in Sect. 2.6
above.

3.2 Privacy Goals

Before analysing the effectiveness of the various schemes, it is important to
understand their privacy goals. The two methods proposed in RFC 4941 and
the Rafiee-Meinel scheme all aim to provide a degree of privacy protection both
within a subnet and between subnets. That is, they provide a means of generating
pseudonymous addresses for devices so that no two addresses can be linked either
when they are used on the same subnet or when used on different subnets. Of
course the degree of privacy obtained from these approaches will depend on a
range of other factors, including how long an address is used, but these are
outside the scope of the discussion here — that is we focus here purely on the
linkability of addresses.

The privacy goal of the other scheme we examine, namely the Gont scheme,
is rather different. It proposes use of a fixed address on each subnet, and the
only privacy goal is unlinkability of addresses used on different subnets.

In the remainder of this section we consider for each scheme the degree to
which its privacy goals are met, and in the next section we consider how the
various schemes can be improved to try to more effectively meet their goals.

3.3 RFC 4941 Method 1

The provision of privacy of this scheme clearly relies on the initial assignment
of a random value to H. In RFC 4941 it is simply stated that the the initial
history value should be hard to guess, and a reference to RFC 4086 is given. All
the randomised interface identifiers J are derived as a function of H and I (the
fixed interface identifier, e.g. derived from the MAC address).

If the initial value of H has full 64-bit entropy, i.e. it is a 64-bit truly random
value, and we assume that h is one-way (and, despite its shortcomings with
respect to collisions, MD5 is not known to be not one-way), then the scheme
appears secure, assuming that a search of size 263 is infeasible.

Generating Unlinkable IPv6 Addresses 193

However, if H has much less entropy and the method of generation is known
to an attacker, then the privacy properties of the scheme are at grave risk. To
see why, suppose that the initial value of H has k bits of entropy (k << 64)
and that an attacker knows how to search through the possible initial values of
H in 2k steps. Now suppose also that such an attacker is temporarily on the
same subnet as the target host, and is thus able to observe both the current
temporary interface identifier J and also the host’s MAC address (and hence
can compute I).

If we assume that the host changes addresses once a day, and that the device
was initialised less than a year ago, the attacker can perform a simple search
through all possible values of H, in each case generating all 365 possible tem-
porary addresses and comparing the generated values with J . Such a search has
complexity 365×2k hash operations (and comparisons). If, for example, we sup-
pose that k = 32, this means that an exhaustive search for the initial value of
H can be completed in a little over 240 operations. Once the initial value of H
is known then all future interface identifiers for this host are simple to compute,
i.e. the scheme has been broken.

This analysis makes clear that the address unlinkability property provided by
of the scheme is at significant risk if anything other than a very robust method
for initialising H is used. Unfortunately, as previous experience shows, this seems
to be a very strong and risky assumption.

3.4 RFC 4941 Method 2 and the Rafiee-Meinel Scheme

There is not much one can say about method 2 as described in RFC 4941, except
to reiterate the difficulties of generating random values. We instead turn our
attention to the Rafiee-Meinel scheme as an example of an attempt to provide
a specific implementation of method 2.

This approach requires the host to generate a 128-bit random value R. The
correct operation of the scheme depends to a considerable extent on the quality of
this value, but no guidance is provided. One is tempted to suspect that in practice
this value may be taken from a pseudorandom number function provided by the
development environment, which could mean that R has very little entropy.
That is, if two devices both attempt to generate a temporary address on the
same subnet at the same instant, then they may very well generate the same
value J . If replicated across large numbers of devices this could cause significant
duplicate address problems, which is precisely why RFC 4941 method 1 was
proposed. Whilst this address-collision issue is not privacy-threatening, anything
that threatens network connectivity is a major problem, which raises significant
doubts about this approach.

3.5 The Gont Scheme

This scheme, like method 1 of RFC 4941, requires the generation of an initial
random secret key K, but does not use randomness thereafter. Assuming the
robustness of the function f , the security of the scheme rests completely on the

194 M.N. Kayuni et al.

entropy in K. Gont [5] simply states that K shall not be known by the attacker,
and points to RFC 4086 [14] for advice on generating random values.

If K has close to 128 bits of entropy, then the scheme appears to be secure.
However, if K has much less entropy and the method of generation is known to an
attacker (including knowledge of N , the identifier for the network interface used
in this particular implementation), then the privacy properties of the scheme
are at serious risk. Demonstrating why is rather similar to the attack on RFC
4941 method 1 given above. Suppose the value of K has k bits of entropy (k <<
128) and that an attacker knows how to search through the possible values of
K in 2k steps. Now suppose also that such an attacker is temporarily on the
same subnet as the target host, and is thus able to observe both the current
temporary interface identifier J and also the host’s MAC address (and hence
can compute I).

Then, for each candidate value K∗ for K (from a set of size 2k) the attacker
computes V ∗ = f(P ||I||N ||0||K∗), which is possible since we assume that the
attacker knows P , I and N . The attacker then simply compares V ∗ against J ;
if they agree then there is a high probability that K = K∗, i.e. the attacker has
found K.

Thus the privacy property of this scheme, like RFC 4941 method 1, is at
significant risk if anything other than a very robust method for initialising K is
used. As discussed above, this appears to be a very risky assumption.

4 Practical Measures to Improve Randomness Generation

Our objective here is to consider ways in which the operational privacy of pre-
vious proposals could be improved, even when the host device has very limited
capabilities for generating random values. We start by considering the random-
ness generation problem and the nature of randomness sources that might be
available to an implementer. We then consider ways in which the privacy prop-
erties of RFC 4941 method 1 and the Gont scheme might be improved. We do
not consider the Rafiee-Meinel scheme further here because of the issues with
regard to recurring address collisions.

4.1 Generating Randomness

We start by observing that internationally standardised means of generating
random bits are given in ISO/IEC 18031 [20]. The models introduced there for
random bit generators (RBGs) are particularly relevant. The means used in RFC
4941 method 1 to generate the sequence of history values H falls into the class
of Pure Deterministic RBGs (Pure DRBGs). The scheme is a pure DRBG since
entropy is only used once, to generate the initial ‘seed value’ H, and the method
to generate subsequent values of H is purely deterministic. This contrasts with
what ISO/IEC 18031 calls a Hybrid DRBG, in which a source of entropy is also
used as part of the state update function. ISO/IEC 18031 ([20], 7.3) discusses
the security advantages of such hybrid DRBGs.

Generating Unlinkable IPv6 Addresses 195

Any DRBG, whether pure or hybrid, relies on a source of randomness to
initialise it, and possibly to provide further input during use. We therefore briefly
consider possible sources of randomness that are likely to be available to almost
any platform. It is important to note that combining a number of sources of
randomness, each yielding a modest number of bits of entropy, is just as effective
as using a single source of larger quantities of randomness.

– We start by considering the use of timestamps from a system clock, as incor-
porated into the scheme of Rafiee and Meinel discussed in Sect. 2.4. Such an
approach has the great advantage that almost any device will incorporate a
system clock, and hence this approach is universally applicable. Moreover, if
the clock has a resolution to the millisecond level, then, assuming that the
precise time of sampling is not available to an attacker, use of a clock would
appear to be able to yield between 10 and 20 bits of entropy.
However, there are issues with the use of a clock value as a source of entropy.
RFC 4086 [14] observes that ‘One version of an operating system running on
one set of hardware may actually provide, say, microsecond resolution in a
clock, while a different configuration of the same system may always provide
the same lower bits and only count in the upper bits at much lower resolution.
This means that successive reads of the clock may produce identical values
even if enough time has passed that the value should change based on the
nominal clock resolution’.

Note that this issue raises further doubts about the operation of the Rafiee-
Meinel scheme, i.e. in certain implementations address collisions may be more
likely than one might expect. Nonetheless, and despite the words of caution in
RFC 4086, a millisecond-accurate clock would appear to be a very valuable and
almost ubiquitous source of a modest number of bits of randomness (entropy).

– Memory state information, in particular the number of free (or used) bytes
in long-term storage or in RAM, would appear to be a possible source for a
few bits of randomness. Again, whilst the number of bits available from each
sampling may be modest, this would appear to be a reliable and ubiquitous
source of randomness.

– Timings and values of external events make up another source of randomness
that is discussed in RFC 4086. One example might be the timings of packet
arrivals. In circumstances where an ‘entropy-harvesting’ process is running
continuously in the background, e.g. as part of a hybrid DRBG, such an
approach could again be a valuable contributor of modest numbers of bits of
entropy.

– Modern mobile devices are equipped with a range of sensors, any of which
could be used as a source of randomness. Microphones and cameras will gen-
erate large volumes of data likely to be highly unpredictable. A GPS receiver
will similarly generate hard to predict data. Even a simple motion sensor, e.g.
as used to determine the screen orientation for a portable device, could gener-
ate useful material. Of course, some sensors are highly privacy-compromising
and hence may not be usable by the address generation software; however
others, such as motion sensors, are far less sensitive, and could be readily
available.

196 M.N. Kayuni et al.

– Of course, hardware-based non-deterministic sources of randomness, such as
those built into implementations of the Trusted Platform Module (TPM)
incorporated into large numbers of notebook and desktop PCs (see, for exam-
ple, Gallery [21]), would be ideal, and should clearly be employed where avail-
able. However, not all devices performing address autoconfiguration will have
access to such random sources, and the main purpose of this paper is to make
provision for devices without a good single source of randomness.

4.2 A Simple Improvement to RFC 4941 Method 1

As we have discussed above, problems potentially arise with RFC 4941 method 1
if the 64-bit ‘random value’ used to initialise the history value H contains insuffi-
cient entropy. Because a pure DRBG is used, if any instance of the history value
ever becomes known, then all future outputs can be determined. This is clearly
undesirable.

It should be clear that adoption of a hybrid DRBG, incorporating new ran-
domness whenever a new address is generated, would address this problem. Over
the long term entropy will ‘accumulate’, making future address prediction impos-
sible unless almost every address is tracked.

Such an approach is also simple to achieve. Whatever source of entropy is
available to generate the initial value of H can be re-used to provide new entropy
for each subsequent history value update. We therefore propose the following
very simple change to the generation of the value V in step 1, namely to put:

V = h(H||I||R)

where R is a ‘random’ value containing new entropy. This should not significantly
increase the complexity of using this method, but will ensure a sufficient level
of entropy is used to generate each new address, irrespective of the randomness
properties of H.

We further propose that R should be mandated to be constructed as the
concatenation of:

– a timestamp accurate to the nearest millisecond (guaranteeing 10–15 bits of
entropy)1;

– (optionally, but highly recommended) the number of bytes free in short-term
and/or long-term memory;

– (optionally) any other values which contain unpredictable information, notably
including the outputs of any device sensors available to the DRBG.

Further items could be added to the list if they are deemed to be likely to
be readily available.
1 One possible issue with using this as a source of randomness in this context is that
address updates may occur at fixed times, e.g. at the same time every day. If this is
the case then the number of bits of randomness obtained is likely to be significantly
reduced.

Generating Unlinkable IPv6 Addresses 197

4.3 Making the Gont Scheme More Robust

A second challenge is to find ways of making the Gont scheme more robust
against attacks arising from poor sources of randomness. This is more prob-
lematic, since one goal of the scheme is that the same ‘randomised’ interface
identifier will be generated whenever the device is attached to the same sub-
net. This makes it highly problematic to introduce new randomness during the
lifetime of the system.

The only practical solution would therefore appear to be to require the gath-
ering of entropy over a period before generating the key value K. This would
involve building an ‘entropy-harvesting’ hybrid DRBG, with a state of at least
128 bits. The initial state would be set using whatever sources of randomness
are available. The system would then be required to be cycled through a number
of iterations over a period of hours. On each iteration, additional randomness
should be included as part of the state update function. At the completion of
such a process, the state of the DRBG should contain a large number of bits of
entropy, preventing key-guessing attacks of the type discussed in Sect. 3.5.

A question that naturally arises is in this context is ‘How many iterations
would be required in practice’? Of course this depends on the number of bits
of entropy introduced in each iteration. As a result, one way of deciding on the
number of iterations would be to require the implementer to make an estimate for
the number of bits of entropy, b say, that are harvested during any one iteration.
To try to ensure that the DRBG 128-bit state is ‘fully randomised’, a minimum
of �128/b� entropy-harvesting iterations will be required.

During the initial period while the key K is being generated, the fixed IPv6
address provided by SLAAC could be used by the device. After all, the main
privacy threat arises from use of a single address over a long period of time and
across multiple networks. As a result, use of the fixed address for a day or two
is unlikely to pose a significant threat.

5 Summary and Conclusions

We have examined three proposed methods for ‘randomised’ IPv6 address auto-
configuration. Significant shortcomings have been identified in all three of these
methods. Two of them do not adequately protect user privacy if only weak
sources of randomness are available. The other approach appears likely to give
problems with address collisions, at least in some operational environments.

Modifications to two of the three methods have been proposed which are
designed to mitigate the threats arising from implementations of systems on
devices without hardware RBGs. These modifications have been deliberately
designed to involve only minor changes, and should not significantly increase
implementation complexity. It would therefore appear reasonable to explore ways
of modifying RFC 4941 and the Gont internet draft to incorporate the simple
modifications proposed.

Possible future work would include looking at real-life implementations of the
schemes we have examined in this paper. It would be particularly interesting to

198 M.N. Kayuni et al.

test the degree of entropy actually being deployed in a range of devices imple-
menting RFC 4941. In some cases, e.g. on smart phones or PCs, implementers
may choose to use the random number generation facilities provided by the oper-
ating system, in which case the robustness of the solution will very much depend
on the quality of the provided random numbers. However, the situation may be
very different for small, low-power devices. Finally, it would also appear to be
worth building prototype implementations of the proposed modified schemes, to
test their randomness properties in practice.

References

1. Narten, T., Draves, R., Krishnan, S.: Privacy extensions for stateless address auto-
configuration in IPv6. RFC 4941, Internet Engineering Task Force (2007)

2. Hinden, R., Deering, S.: IP version 6 addressing architecture. RFC 4291, Internet
Engineering Task Force (2006)

3. Thomson, S., Narten, T., Jinmei, T.: IPv6 stateless address autoconfiguration.
RFC 4862, Internet Engineering Task Force (2007)

4. Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M.: Dynamic host
configuration protocol for IPv6 (DHCPv6). RFC 3315, Internet Engineering Task
Force (2003)

5. Gont, F.: A method for generating semantically opaque interface identifiers with
IPv6 Stateless address autoconfiguration (SLAAC). Internet Engineering Task
Force, Internet draft-ietf-6man-stable-privacy-addresses-17 (2014)

6. Cooper, A., Gont, F., Thaler, D.: Privacy considerations for IPv6 address genera-
tion mechanisms. Internet Engineering Task Force, Internet draft-ietf-6man-ipv6-
address-generation-privacy-01 (2014)

7. Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321, Internet Engineering
Task Force (1992)

8. Broersma, R.: IPv6 everywhere: living with a fully IPv6-enabled environment.
Presentation at the Australian IPv6 Summit 2010, Melbourne, Australia (2010)

9. International Organization for Standardization Genève, Switzerland: ISO/IEC
10118–3, Information technology – Security techniques – Hash-functions – Part
3: Dedicated hash-functions. 3rd edn. (2004)

10. Rafiee, H., Meinel, C.: Privacy and security in IPv6 networks: challenges and pos-
sible solutions. In: Elci, A., Gaur, M.S., Orgun, M.A., Makarevich, O.B. (eds.) The
6th International Conference on Security of Information and Networks, SIN 2013,
26–28 November 2013, Aksaray, Turkey, pp. 218–224. ACM (2013)

11. AlSa’deh, A., Rafiee, H., Meinel, C.: IPv6 stateless address autoconfiguration: bal-
ancing between security, privacy and usability. In: Garcia-Alfaro, J., Cuppens, F.,
Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp.
149–161. Springer, Heidelberg (2013)

12. Rafiee, H., Meinel, C.: SSAS: a simple secure addressing scheme for IPv6 autocon-
figuration. In: Castella-Roca, J., Domingo-Ferrer, J., Garcia-Alfaro, J., Ghorbani,
A.A., Jensen, C.D., Manjon, J.A., Onut, I.V., Stakhanova, N., Torra, V., Zhang, J.
(eds.) Eleventh Annual International Conference on Privacy, Security and Trust,
PST 2013, 10–12 July 2013, Tarragona, Catalonia, Spain, pp. 275–282. IEEE (2013)

13. Aura, T.: Cryptographically generated addresses (CGA). RFC 3972, Internet Engi-
neering Task Force (2005)

Generating Unlinkable IPv6 Addresses 199

14. Eastlake, D., Schiller, J., Crocker, S.: Randomness requirements for security. RFC
4086, Internet Engineering Task Force (2005)

15. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive: Report 2012/62 (2012)

16. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip and
Skim: cloning EMV cards with the pre-play attack (2012). arXiv:1209.2531 [cs.CY]

17. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-
only configurations. In: Proceedings of the 2007 IEEE Symposium on Security and
Privacy (S&P 2007), 20–23 May 2007, Oakland, California, USA, pp. 335–349.
IEEE Computer Society Press, Los Alamitos (2007)

18. Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why Eve and Mallory love Android: an analysis of Android SSL (in)security. In:
Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM Conference on Computer and Com-
munications Security, CCS 2012, 16–18 October 2012, Raleigh, NC, USA, pp. 50–
61. ACM (2012)

19. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer
and Communications Security, CCS 2012, 16–18 October 2012, Raleigh, NC, USA,
pp. 38–49. ACM (2012)

20. International Organization for Standardization Genève, Switzerland: ISO/IEC
18031:2011, Information technology – Security techniques – Encryption algorithms
– Random bit generation. 2nd edn. (2011)

21. Gallery, E.: An overview of trusted computing technology. In: Mitchell, C.J. (ed.)
Trusted Computing, pp. 29–114. IEE Press, London (2005)

http://arxiv.org/abs/1209.2531

	Generating Unlinkable IPv6 Addresses
	1 Introduction
	2 Background
	2.1 Stateless Address Autoconfiguration (SLAAC)
	2.2 Privacy Extensions to SLAAC
	2.3 The Gont Approach
	2.4 The Rafiee-Meinel Scheme
	2.5 Other Schemes
	2.6 A Summary

	3 Practical Limitations to Privacy
	3.1 Use of Randomness
	3.2 Privacy Goals
	3.3 RFC 4941 Method 1
	3.4 RFC 4941 Method 2 and the Rafiee-Meinel Scheme
	3.5 The Gont Scheme

	4 Practical Measures to Improve Randomness Generation
	4.1 Generating Randomness
	4.2 A Simple Improvement to RFC 4941 Method 1
	4.3 Making the Gont Scheme More Robust

	5 Summary and Conclusions
	References

