
Liqun Chen
Shin'ichiro Matsuo (Eds.)

 123

LN
CS

 9
49

7

Second International Conference, SSR 2015
Tokyo, Japan, December 15–16, 2015
Proceedings

Security
Standardisation
Research

Lecture Notes in Computer Science 9497

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Liqun Chen • Shin’ichiro Matsuo (Eds.)

Security
Standardisation
Research
Second International Conference, SSR 2015
Tokyo, Japan, December 15–16, 2015
Proceedings

123

Editors
Liqun Chen
Hewlett Packard Laboratories
Bristol
UK

Shin’ichiro Matsuo
NICT
Tokyo
Japan

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-27151-4 ISBN 978-3-319-27152-1 (eBook)
DOI 10.1007/978-3-319-27152-1

Library of Congress Control Number: 2015955372

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

The Second International Conference on Research in Security Standardisation was
hosted by the Internet Initiative of Japan, in Tokyo, Japan, during December 15–16,
2015. This event was the second in what is planned to become a series of conferences
focusing on the theory, technology, and applications of security standards.

SSR 2015 built on the successful SSR 2014 conference, held at Royal Holloway,
University of London, UK, in December 2014. The proceedings of SSR 2014, con-
taining 14 papers, were published in volume 8893 of the Lecture Notes in Computer
Science.

The conference program consisted of two invited talks, 13 contributed papers, and a
panel session. We would like to express our special thanks to the distinguished keynote
speakers, Kenny Paterson and Pindar Wong, who gave very enlightening talks. Special
thanks are due also to the panel organizer, Randall Easter, and the panel members.

Out of 18 submissions from 10 countries, 13 papers were selected, presented at the
conference, and are included in these proceedings. The accepted papers cover a range
of topics in the field of security standardisation research, including Bitcoin and pay-
ment, protocol and API, analysis of cryptographic algorithms, privacy, and trust and
formal analysis.

The success of this event depended critically on the hard work of many people,
whose help we gratefully acknowledge. First, we heartily thank the Program Com-
mittee and the additional reviewers, listed on the following pages, for their careful and
thorough reviews. Each paper was reviewed by at least three people, and most by four.
A significant amount time was spent discussing the papers. Thanks must also go to the
hard-working shepherds for their guidance and helpful advice on improving a number
of papers. We also thank the general co-chairs for their excellent organization of the
conference.

We sincerely thank the authors of all submitted papers. We further thank the authors
of accepted papers for revising papers according to the various reviewer suggestions
and for returning the source files in good time. The revised versions were not checked
by the Program Committee, and thus authors bear final responsibility for their contents.

Thanks are due to the staff at Springer for their help with producing the proceedings.
We must further thank the developers and maintainers of the EasyChair software,
which greatly helped simplify the submission and review process.

December 2015 Liqun Chen
Shin’ichiro Matsuo

Security Standardisation Research 2015

Tokyo, Japan
December 15–16, 2015

General Chairs

Yuji Suga Internet Initiative Japan, Japan
Hajime Watanabe National Institute of Advanced Industrial Science

and Technology, Japan

Program Chairs

Liqun Chen Hewlett-Packard Laboratories, UK
Shin’ichiro Matsuo NICT, Japan

Steering Committee

Liqun Chen Hewlett-Packard Laboratories, UK
Shin’ichiro Matsuo NICT, Japan
Chris Mitchell Royal Holloway, University of London, UK
Bart Preneel Katholieke Universiteit Leuven, Belgium
Sihan Qing Peking University, China

Program Committee

David Chadwick University of Kent, UK
Lily Chen NIST, USA
Liqun Chen Hewlett-Packard Laboratories, UK
Takeshi Chikazawa IPA, Japan
Cas Cremers University of Oxford, UK
Andreas Fuchsberger Microsoft, Germany
Phillip H. Griffin Griffin Information Security Consulting, USA
Feng Hao Newcastle University, UK
Jens Hermans KU Leuven - ESAT/COSIC and iMinds, Belgium
Dirk Kuhlmann HP, UK
Eva Kuiper Hewlett-Packard, Canada
Pil Joong Lee Postech, Republic of Korea
Peter Lipp IT-Security, Austria
Joseph Liu Monash University, Australia
Javier Lopez University of Malaga, Spain
Shin’Ichiro Matsuo NICT, Japan
Catherine Meadows NRL, USA
Jinghua Min China Electronic Cyberspace Great Wall Co., Ltd., China

Chris Mitchell Royal Holloway, University of London, UK
Atsuko Miyaji School of Information Science, Japan Advanced Institute

of Science and Technology, Japan
Kenny Paterson Royal Holloway, University of London, UK
Angelika Plate HelpAG, UAE
Kai Rannenberg Goethe University Frankfurt, Germany
Christoph Ruland University of Siegen, Germany
Mark Ryan University of Birmingham, UK
Gautham Sekar The Indian Statistical Institute, India
Ben Smyth Huawei, France
Jacques Traore Orange Labs, France
Vijay Varadharajan Macquarie University, Australia
Claire Vishik Intel Corporation, UK
Debby Wallner National Security Agency, USA
Michael Ward MasterCard, UK
Yanjiang Yang Institute for Infocomm Research, Singapore

Additional Reviewers

Batten, Ian
Chen, Jiageng
Costello, Craig
Franklin, Joshua
Hegen, Marvin
Kim, Geonwoo
Künnemann, Robert
Lee, Jinwoo

Mancini, Loretta
Moody, Dustin
Omote, Kazumasa
Pape, Sebastian
Schantin, Andreas
Shin, Jinsuh
Slamanig, Daniel

VIII Security Standardisation Research 2015

Contents

Bitcoin and Payment

Authenticated Key Exchange over Bitcoin . 3
Patrick McCorry, Siamak F. Shahandashti, Dylan Clarke,
and Feng Hao

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 21
Maryam Mehrnezhad, Feng Hao, and Siamak F. Shahandashti

Protocol and API

Robust Authenticated Key Exchange Using Passwords and Identity-Based
Signatures . 43

Jung Yeon Hwang, Seung-Hyun Kim, Daeseon Choi, Seung-Hun Jin,
and Boyeon Song

Non-repudiation Services for the MMS Protocol of IEC 61850 70
Karl Christoph Ruland and Jochen Sassmannshausen

Analysis of the PKCS#11 API Using the Maude-NPA Tool 86
Antonio González-Burgueño, Sonia Santiago, Santiago Escobar,
Catherine Meadows, and José Meseguer

Analysis on Cryptographic Algorithm

How to Manipulate Curve Standards: A White Paper for the Black Hat
http://bada55.cr.yp.to . 109

Daniel J. Bernstein, Tung Chou, Chitchanok Chuengsatiansup,
Andreas Hülsing, Eran Lambooij, Tanja Lange, Ruben Niederhagen,
and Christine van Vredendaal

Security of the SM2 Signature Scheme Against Generalized Key
Substitution Attacks. 140

Zhenfeng Zhang, Kang Yang, Jiang Zhang, and Cheng Chen

Side Channel Cryptanalysis of Streebog . 154
Gautham Sekar

Privacy

Improving Air Interface User Privacy in Mobile Telephony 165
Mohammed Shafiul Alam Khan and Chris J. Mitchell

http://dx.doi.org/10.1007/978-3-319-27152-1_1
http://dx.doi.org/10.1007/978-3-319-27152-1_2
http://dx.doi.org/10.1007/978-3-319-27152-1_3
http://dx.doi.org/10.1007/978-3-319-27152-1_3
http://dx.doi.org/10.1007/978-3-319-27152-1_4
http://dx.doi.org/10.1007/978-3-319-27152-1_5
http://dx.doi.org/10.1007/978-3-319-27152-1_6
http://dx.doi.org/10.1007/978-3-319-27152-1_6
http://dx.doi.org/10.1007/978-3-319-27152-1_7
http://dx.doi.org/10.1007/978-3-319-27152-1_7
http://dx.doi.org/10.1007/978-3-319-27152-1_8
http://dx.doi.org/10.1007/978-3-319-27152-1_9

Generating Unlinkable IPv6 Addresses . 185
Mwawi Nyirenda Kayuni, Mohammed Shafiul Alam Khan, Wanpeng Li,
Chris J. Mitchell, and Po-Wah Yau

Trust and Formal Analysis

A Practical Trust Framework: Assurance Levels Repackaged Through
Analysis of Business Scenarios and Related Risks. 203

Masatoshi Hokino, Yuri Fujiki, Sakura Onda, Takeaki Kaneko,
Natsuhiko Sakimura, and Hiroyuki Sato

First Results of a Formal Analysis of the Network Time Security
Specification. 218

Kristof Teichel, Dieter Sibold, and Stefan Milius

Formal Support for Standardizing Protocols with State. 246
Joshua D. Guttman, Moses D. Liskov, John D. Ramsdell,
and Paul D. Rowe

Author Index . 267

X Contents

http://dx.doi.org/10.1007/978-3-319-27152-1_10
http://dx.doi.org/10.1007/978-3-319-27152-1_11
http://dx.doi.org/10.1007/978-3-319-27152-1_11
http://dx.doi.org/10.1007/978-3-319-27152-1_12
http://dx.doi.org/10.1007/978-3-319-27152-1_12
http://dx.doi.org/10.1007/978-3-319-27152-1_13

Bitcoin and Payment

Authenticated Key Exchange over Bitcoin

Patrick McCorry(B), Siamak F. Shahandashti, Dylan Clarke, and Feng Hao

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{patrick.mccorry,siamak.shahandashti,dylan.clarke,

feng.hao}@ncl.ac.uk

Abstract. Bitcoin is designed to protect user anonymity (or pseudo-
nymity) in a financial transaction, and has been increasingly adopted
by major e-commerce websites such as Dell, PayPal and Expedia. While
the anonymity of Bitcoin transactions has been extensively studied, little
attention has been paid to the security of post-transaction correspon-
dence. In a commercial application, the merchant and the user often
need to engage in follow-up correspondence after a Bitcoin transaction
is completed, e.g., to acknowledge the receipt of payment, to confirm
the billing address, to arrange the product delivery, to discuss refund
and so on. Currently, such follow-up correspondence is typically done
in plaintext via email with no guarantee on confidentiality. Obviously,
leakage of sensitive data from the correspondence (e.g., billing address)
can trivially compromise the anonymity of Bitcoin users. In this paper,
we initiate the first study on how to realise end-to-end secure commu-
nication between Bitcoin users in a post-transaction scenario without
requiring any trusted third party or additional authentication creden-
tials. This is an important new area that has not been covered by any
IEEE or ISO/IEC security standard, as none of the existing PKI-based
or password-based AKE schemes are suitable for the purpose. Instead,
our idea is to leverage the Bitcoin’s append-only ledger as an additional
layer of authentication between previously confirmed transactions. This
naturally leads to a new category of AKE protocols that bootstrap trust
entirely from the block chain. We call this new category “Bitcoin-based
AKE” and present two concrete protocols: one is non-interactive with no
forward secrecy, while the other is interactive with additional guarantee
of forward secrecy. Finally, we present proof-of-concept prototypes for
both protocols with experimental results to demonstrate their practical
feasibility.

Keywords: Authenticated key exchange · Bitcoin · Diffie-Hellman ·
YAK

1 Introduction

Bitcoin [22] is an online currency whose value is not endorsed by any central
reserve, but is based on the perception of its users [15]. In recent years it
has surged in value, reaching a peak of $1147 per bitcoin in December 2013.
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 3–20, 2015.
DOI: 10.1007/978-3-319-27152-1 1

4 P. McCorry et al.

The currency is supported by a decentralised network of users whose collec-
tive computational power provides a guarantee of integrity for an append-only
ledger. Any attempt to change the ledger’s history (a history-revision attack [4])
would require an adversary with at least, in theory 51 % of the networks com-
putational resources to be successful1. Several central banks have evaluated the
value of digital currencies and their potential impact on society [15,25,29].

Bitcoin is increasingly being accepted by many e-commerce websites as a
form of payment. For example, Dell, one of the largest computer retailers in
the world, now allows customers to use Bitcoin to pay for online purchases on
the Dell website [9]. Recently, PayPal [5] and Expedia [24] have also endorsed
support for using Bitcoin. Similarly, many community-driven organisations allow
anonymous donations using Bitcoin. Examples include the TOR project [27],
Mozilla Foundation [21] and the Calyx Institute [18],

While Bitcoin is designed to support anonymity (or pseudonymity) in a trans-
action, little attention has been paid to the anonymity in the post-payment sce-
nario. As with any on-line payment system, the payer and the payee may need
to engage in follow-up correspondence after the payment has been made, e.g., to
acknowledge the receipt, to confirm billing information, to amend discrepancies
in the order if there are any and to agree on the product delivery or pick-up.
Such correspondence can involve privacy-sensitive information, which, if leaked
to a third party, may trivially reveal the identity of the user involved in the ear-
lier transaction (e.g., information about product delivery may contain the home
address).

Currently, the primary mechanism to support follow-up correspondence after
a Bitcoin transaction is through email. The Dell website requires shoppers to
provide their email address when making a Bitcoin payment to facilitate post-
payment correspondence. The Calyx Institute, a non-profit research organization
dedicated to providing “privacy by design for everyone”, also recommends using
e-mails for follow-up correspondence after a donation is made in Bitcoin. On its
website, the instruction is given as the following [18]:

“Note that if you make a donation by Bitcoin, we have no way to connect
the donation with your email address. If you would like us to confirm
receipt of the donation (and send a thank you email!), you’ll need to
send an email with the details of the transaction. Otherwise, you have
our thanks for your support in advance”.

However, emails are merely a communication medium and have no built-in
guarantees of security. First of all, there is no guarantee that the sender of the
email must be the same person who made the Bitcoin payment. The details of
the transaction cannot serve as a means of authentication, since they are publicly
available on the Bitcoin network. Furthermore, today’s emails are usually not
encrypted. The content of an email can be easily read by third parties (e.g., ISPs)
during the transit over the Internet. The leakage of privacy-sensitive information

1 An adversary may not require 51 % of computational power in reality [3,4,10].

Authenticated Key Exchange over Bitcoin 5

in email can seriously threaten the anonymity of the user who has made an
“anonymous” payment in Bitcoin previously.

So far the importance of protecting post-payment communication has been
largely neglected in both the Bitcoin and the security research communities.
To the best of our knowledge, no solution is available to address this practical
problem in the real world. This is a gap in the field, which we aim to bridge in
our work.

One trivial solution is to apply existing Authenticated Key Exchange (AKE)
protocols to establish a secure end-to-end (E2E) communication channel between
Bitcoin users. Two general approaches for realising secure E2E communication in
cryptography include using 1) PKI-based AKE (e.g., HMQV), and 2) Password-
based AKE (e.g., EKE and SPEKE). The former approach would require Bit-
coin users to be part of a global PKI system, with each user holding a public
key certificate. This is not realistic in current Bitcoin applications. The second
approach requires Bitcoin users to have a pre-shared secret password. However,
securely distributing pairwise shared passwords over the internet is not an easy
task. Furthermore, passwords are a weak form of authentication and they may
be easily guessed or stolen (e.g. by shoulder-surfing). A solution that can pro-
vide a stronger form of authentication without involving any passwords will be
desirable.

Following the decentralised and anonymity-driven nature of the Bitcoin net-
work [17], we propose new AKE protocols to support secure post-payment com-
munication between Bitcoin users, without requiring any PKI or pre-shared pass-
words. Our solutions leverage the transaction-specific secrets in the confirmed
Bitcoin payments published on the public blockchain to bootstrap trust in estab-
lishing an end-to-end secure communication channel. Given each party’s transac-
tion history and our AKE protocols, both parties are guaranteed to be speaking
to the other party who was involved in the transactions, without revealing their
real identities.

Contributions. Our contributions in this paper are summarised below.

– We propose two authenticated key exchange protocols – one interactive and
the other non-interactive – using transaction-specific secrets and without the
support of a trusted third party to establish end-to-end secure communica-
tion. These are new types of AKE protocols, since they bootstrap trust from
Bitcoin’s public ledger instead of a PKI or shared passwords.

– We provide proof-of-concept implementations for both protocols in the Bitcoin
Core client with performance measurements. Our experiments suggest that
these protocols are feasible for practical use in real-world Bitcoin applications.

Organization. The rest of the paper is organised as follows. Section 2 explains
the background of Bitcoin and the ECDSA signature that is used for authenticat-
ing Bitcoin transactions. Section 3 proposes two protocols to allow post-payment
secure communication between users based on their transaction history. One
protocol is non-interactive with no forward secrecy, while the other is interac-
tive with the additional guarantee of forward secrecy. Security proofs for both

6 P. McCorry et al.

Fig. 1. Transactions stored on the Blockchain based on [19]

protocols are provided in Sect. 4. Section 5 describes the proof-of-concept imple-
mentations for both protocols and reports the performance measurements.
Finally, Sect. 6 concludes the paper.

2 Background

In this section, we will provide brief background information about the Bitcoin
protocol, the transaction signature and the underlying Elliptic Curve Digital Sig-
nature Algorithm (ECDSA). This information will be needed for understanding
the two protocols presented in this paper.

2.1 Bitcoin

Bitcoin is a digital currency that allows a network of nodes to access a public
ledger and to agree upon append-only changes periodically. We will outline the
three main mechanisms in the Bitcoin protocol which include Bitcoin addresses,
transactions and the Blockchain. Together, they allow users to identify each
other pseudonymously, transfer bitcoins and record the transaction in the pub-
lic ledger.

Each user is responsible for generating their Bitcoin address, which is simply
the hash of an ECDSA public key. The corresponding private key is required to
spend bitcoins. This approach for user identification is considered appropriate
as the probability that two users generate the same public key is negligible due
to the high number of possible ECDSA public keys.

A common belief in the community is that Bitcoin offers pseudonymity that
can help disguise their real-world identity due to the random nature of ECDSA
public keys. This belief is bolstered as users are recommended to create a new
Bitcoin address per transaction to increase the difficulty of tracking their transac-
tions. However, it should be noted that Bitcoin was not designed with anonymity

Authenticated Key Exchange over Bitcoin 7

Algorithm 1. ECDSA Signature Generation algorithm [11]
Input: Domain parameters D = (q, P, n,Curve), private key d, message m.
Output: Signature (r, s).

1: Select k ∈R [1, n − 1].
2: Compute kP = (x1, y1) where x1 ∈R [0, q − 1]
3: Compute r = x1 mod n. If r = 0, then go to Step 1.
4: Compute e = H(m).
5: Compute s = k−1(e + dr) mod n. If s = 0, then go to Step 1.
6: Return (r, s).

in mind [23] and studies have shown with limited success that it is possible to
link Bitcoin addresses to real-world identities [3,23,26].

Transactions are created by users to send bitcoins. All transactions are sent
to the network and its correctness is verified by other peers before it is accepted
into the public ledger. Each transaction has a list of ‘inputs’ and ‘outputs’. The
output states the new owner’s bitcoin address and the quantity to be transferred.
The input will contain a signature to authorise the payment and a reference to a
previous transaction whereby the user received the bitcoins. Figure 1 highlights
how transactions are linked, which allows peers to perform the verification, by
comparing the received transaction with their local copy of the ledger.

A special ‘miner’ will collect the most recent set of transactions from the
network to form a ‘block’. This block is appended to the longest chain of blocks
(Blockchain) approximately every ten minutes by solving a computationally diffi-
cult problem (proof of work) in return for a subsidy of bitcoins. This append-only
ledger has become a relatively secure time stamp server [7], since reversing trans-
actions that are committed on the Blockchain is considered infeasible. Figure 1
demonstrates how transactions are stored aperiodically on the Blockchain.

2.2 Transaction Signature

Figure 1 presented earlier demonstrates that the signature is stored in the input
of a transaction. This signature must be from the Bitcoin address mentioned in
the previous transaction’s output. Briefly, it is important to highlight that the
user will create the transaction, specify the inputs and outputs, hash this trans-
action and then sign it using their private key. This prevents an adversary from
modifying the contents of a transaction or claiming ownership of the bitcoins
before it is accepted into the Blockchain.

Bitcoin incorporates the OpenSSL suite to execute the ECDSA algorithm.
The NIST-P256 curve is used and all domain parameters over the finite field
including group order n, generator P and modulus q can be found in [6]. An out-
line of the signature generation algorithm is presented in Algorithm1 to highlight
the usage of k as this will be required for the authenticated key exchange pro-
tocols. The verification algorithm follows what is defined in [13]. The notations
and symbols used in our paper are summarised in Table 1.

8 P. McCorry et al.

3 Key Exchange Protocols

Key exchange protocols allow two or more participants to derive a shared cryp-
tographic key, often used for authenticated encryption. In this section we will
present two authenticated key exchange protocols: Diffie-Hellman-over-Bitcoin
and YAK-over-Bitcoin. These protocols will take advantage of a random nonce
k from an ECDSA signature. Our aim is to achieve transaction-level authenti-
cation by taking advantage of a secret that only exists due to the creation of a
transaction that is stored on the Blockchain.

Both of these protocols will use k as a transaction-specific private key and
Q = kP as a transaction-specific public key. Diffie-Hellman-over-Bitcoin will be
a non-interactive protocol without forward secrecy and YAK-over-Bitcoin will
be an interactive protocol with forward secrecy. All domain parameters D for
both protocols are the same as the ECDSA algorithm.

Table 1. Summary of notations and symbols

ZKP{w} Zero knowledge proof of knowledge of w
(V, z) Schnorr zero knowledge proof values

KDF (.) Key derivation function
Uncompress(x, sign) Uncompresses public key using x co-ordinate and sign ∈ {+, −}

(x, y) Represents a point on the elliptic curve
P Generator for the elliptic curve

(r, s) Signature pair that is stored in a transaction
A, B Alice and Bob’s bitcoin addresses: H(dP)
dA, dB Alice and Bob’s private key for their Bitcoin address
kA, kB Alice and Bob’s transaction-specific private key
̂kA, ̂kB Alice and Bob’s estimated transaction-specific private key
QA, QB Alice and Bob’s transaction-specific public key
̂QA, ̂QB Alice and Bob’s estimated transaction-specific public key
wA, wB Alice and Bob’s ephemeral private keys used for YAK

κAB Shared key for Alice and Bob

3.1 Setting the Stage

We will have two actors, Alice and Bob. A single transaction TA is used by
Alice to send her payment (anonymously or not) to Bob. For our protocols, we
will assume that Bob has created a second transaction Tb using his ECDSA
private key, so the Blockchain contains both Alice and Bob’s ECDSA signature.
This is a realistic assumption as Bob naturally needs to spend the money or
re-organise his bitcoins to protect against theft. In one possible implementation,
upon receiving Alice’s payment, Bob can send back to Alice a tiny portion of
the received amount as acknowledgement, so his ECDSA signature is published
on the blockchain (the signature serves to prove that Bob knows the ECDSA
private key). This is just one way to ensure that the Blockchain contains both
actors’ signatures, and there may be many other methods to achieve the same.

Authenticated Key Exchange over Bitcoin 9

Blockchain contains (rA, sA) and (rB, sB) from TA and TB

Alice (A, dA (boB) B, dB)
1. kA = (H(TA) + dArA)s−1

A kB = (H(TB) + dBrB)s−1
B

2. QB = Uncompress(rB, +) QA = Uncompress(rA, +)

3. kAQB = (xAB, ±yAB) kBQA = (xAB, ±yAB)
κ = KDF(xAB) κ = KDF(xAB)

Fig. 2. The Diffie-Hellman-over-Bitcoin Protocol

The owner of a transaction will be required to derive the transaction-specific
private key (random nonce) k from their signature before taking part in the
key exchange protocols. For both protocols, we assume the transactions TA, TB

between Alice and Bob have been sent to the network and accepted to the
Blockchain with a depth of at least six blocks, which is considered the standard
depth to rule-out the possibility of a double-spend attack [14].

In both protocols, each user will need to extract their partner’s signature (r, s)
and attempt to derive their partner’s transaction-specific public key Q = (x, y).
Algorithm 1 demonstrates that the r value from the signature is equal to the x
co-ordinate modulo n (note that there is a subtle difference in the data range,
since r ∈ Zn and x ∈ Zq, but this has an almost negligible effect on the working
of the protocols as we will explain in detail in Sect. 5.2). However, the y co-
ordinate of Q is not stored in the transaction, and it can be either of the two
values (above/below the x axis).

We define the uncompression function as Uncompress(x, sign) by using the x
co-ordinate from their partner’s signature and the y co-ordinate’s sign ∈ {+,−}.
Using point uncompression and assuming one of the two possible signs for the
y co-ordinate, Alice or Bob will be able to derive a value ̂Q which we call the
estimated transaction-specific public key for their partner. This ̂Q could be either
Q = (x, y) or its additive inverse −Q = (x,−y). This ̂Q will correspond to the
estimated transaction-specific private key ̂k, which could be either k or −k.

3.2 Authentication

Our definition of authentication will refer to data origin authentication and
we will use the Blockchain as a trusted platform for storing digital signatures.
Knowledge of the private key d for a bitcoin address or the random nonce k in a
signature will prove the identities of pseudonymous parties. We will define two
concepts for authentication using Bitcoin:

1. Bitcoin address authentication. Knowledge of the discrete log d for a
Bitcoin address.

2. Transaction authentication. Knowledge of the discrete log k from a single
digital signature in a transaction.

Bitcoin address authentication is well-known in the community and has been
used for other protocols. However, transaction authentication is a special case

10 P. McCorry et al.

Blockchain contains (rA, sA) and (rB, sB) from TA and TB

Alice (A, dA (boB) B, dB)
1. kA = (H(TA) + dArA)s−1

A kB = (H(TB) + dBrB)s−1
B

2. QA = (rA, yA) = kAP QB = (rB, yB) = kBP

3. QA = Uncompress(rA, +) QB = Uncompress(rB, +)

If QA = QA then kA = kA If QB = QB then kB = kB

else kA = −kA else kB = −kB

4. QB = Uncompress(rB, +) QA = Uncompress(rA, +)
5. wA ∈R [1, n − 1], WA, ZKP{wA} wB ∈R [1, n − 1],

WA = wA WP B = wBP

WB, ZKP{wB}
6. Verify ZKP{wB} Verify ZKP{wA}
7. (xAB, yAB (=) xAB, yAB) =

(kA + wA)(QB + WB) (kB + wB)(QA + WA)
κ = KDF(xAB) κ = KDF(xAB)

−−−−−−−−−−−→

←−−−−−−−−−−−

Fig. 3. YAK-over-Bitcoin Protocol

that our protocols will exploit. Although k and d are equivalent in proving own-
ership of a Bitcoin address or transaction, k is randomly generated for every
ECDSA signature and is unique for each new transaction.

We will show that Alice and Bob can authenticate each other based on the
knowledge of the k. This relies on participants trusting the integrity of the
Blockchain as the cornerstone for authentication. For an adversary to mount
a man-in-the-middle attack in this scene, he would need to perform a history-
revision attack to modify the ECDSA signatures stored in the Blockchain.

3.3 Diffie-Hellman-over-Bitcoin Protocol

Based on the concept of transaction authentication, the first protocol that
we present is ‘Diffie-Hellman-over-Bitcoin’. The protocol is non-interactive; the
shared secret is generated using the signatures from two transactions and
no additional information from the participants is required. However, forward
secrecy is not provided, as we will illustrate in the security analysis.

Figure 2 presents an outline of the protocol. Initially, each user will derive the
random nonce k from their own signatures and fetch their partner’s transaction
from the Blockchain. Each user will gain an estimation of their partner’s public
key ̂Q before using their own transaction-specific private key k to derive the
shared secret (xAB,±yAB). Regardless of whether ̂QA = ±QA (or ̂QB = ±QB),
the x co-ordinate of kB ̂QA will be the same as that of kA ̂QB. Following the
Elliptic Curve Diffie Hellman (ECDH) [20] approach, the xAB co-ordinate will
be used to derive the key KDF (xAB) = κ.

Authenticated Key Exchange over Bitcoin 11

Algorithm 2. Schnorr Zero Knowledge Proof Generation Algorithm
Input: Domain parameters D = (q, P, n,Curve), signer identity ID, secret value w
and public value W .
Output: (V, z)

1: Select v ∈R [1, n − 1], Compute V = vP
2: Compute h = H(D,W, V, ID)
3: Compute z = v − wh mod n
4: Return (V, z)

3.4 YAK-over-Bitcoin Protocol

The second protocol we present is ‘YAK-over-Bitcoin’. This is based on adapt-
ing a PKI-based YAK key exchange protocol [12] to the Bitcoin application
by removing the dependence on a PKI and instead relying on the integrity of
the Blockchain. We chose YAK instead of others (e.g., station-to-station, MQV,
HMQV, etc.), as YAK is the only PKI-based AKE protocol that requires each
sender to demonstrate the proof of knowledge of both the static and ephemeral
private keys. This requirement is important for the security proofs of our system
as we will detail in Sect. 4. As well, we will show in the security analysis that
the protocol allows the participants to have full forward secrecy.

An outline of our protocol is presented in Fig. 3. Initially, each user will follow
the same steps as seen in the previous ‘Diffie-Hellman-over-Bitcoin’ protocol to
derive their secret k and their partner’s estimated public key ̂Q. However, a
subtle difference requires each user to compare their real public key Q with the
estimation of their own key ̂Q to determine if they are equal. If these public keys
are different, then the user will use the additive inverse of k as their estimated
transaction-specific private key and we will denote this choice between the two
keys as ̂k. This subtle change will allow both parties to derive the same shared
secret (xAB, yAB) which would be expected in an interactive protocol without
exchanging their real y co-ordinates.

Each user generates an ephemeral private key w and computes the corre-
sponding public key W = wP . As required in the original YAK paper [12],
each user must also construct a zero knowledge proof to prove possession of
the ephemeral private key w. These zero knowledge proofs can be sent over an
insecure communication channel to their partners. Here, we will use the same
Schnorr signature as in [12] to realise the ZKP. Details of the Schnorr ZKP are
summarised in Algorithms 2 and 3. The definition of the Schnorr ZKP includes
a unique signer identity ID, which prevents an attacker replaying the ZKP back
to the signer herself [12]. In our case, we can simply use the unique r value from
the user’s ECDSA signature (r, s) in the associated Bitcoin transaction T as the
user’s identity.

Once the ZKPs have been verified, each user will derive (xAB, yAB) using their
secret w,̂k, public value W and their partners’ estimated transaction-specific
public key ̂Q. It should be easy to verify that although the shared secret has four
different combinations (±̂kA +wA)(±̂kB +wB)P , the secret key derived between

12 P. McCorry et al.

Alice and Bob will always be identical (due to each participant predicting the
estimated public key ̂Q that their partner will choose).

4 Security Analysis

Our protocols are based on reusing the signature-specific random value k
in ECDSA as the transaction-specific secret on which the authenticated key
exchange protocol is based. Hence, the security of both the ECDSA signature
and the key exchange protocols needs to be analysed to make sure the reusing
of k is sound in terms of security.

Algorithm 3. Schnorr Zero Knowledge Proof Verification Algorithm
Input: Domain parameters D = (q, P, n,Curve), signer identity ID, public value W ,
Schnorr zero knowledge proof values (V, z)
Output: Valid or invalid

1: Perform public key validation for W [13]
2: Compute partners h = H(D,W, V, ID)

3: Return V
?
= zP + hW mod n

For the AKE protocols, following the security analysis of YAK [12], we con-
sider three security requirements, informally defined in the following:

– Private key security: The adversary is unable to gain any extra2 informa-
tion about the private key of an honest party by eavesdropping her communi-
cation with other parties, changing messages sent to her, or even participating
in an AKE protocol with her.

– Full forward secrecy: The adversary is unable to determine the shared
secret of an eavesdropped AKE session in the past between a pair of honest
parties, even if their private keys are leaked subsequently.

– Session key security: The adversary is unable to determine the shared
secret between two honest parties by eavesdropping their communication or
changing their messages.

Note that in our security arguments we consider the security of shared secrets
(xAB in Figs. 2 and 3), as opposed to that of the subsequently calculated shared
session keys (κ in the same figures). We henceforth denote the shared secret by
K, i.e., κ = KDF(K). We require the shared secret to be hard to determine
for the adversary in the full forward secrecy and session key security require-
ments. A good key derivation function (KDF) derives from such a shared secret
a session key which is indistinguishable from random. Our security proofs can be
easily adapted to prove indistinguishability based on the decisional rather than
computational Diffie-Hellman assumption.
2 By “extra” information, we mean information other than what is derivable from the

honest party’s already available public key.

Authenticated Key Exchange over Bitcoin 13

For ECDSA signature, we require that it remains unforgeable against chosen-
message attacks despite the randomness k being reused in subsequent AKE
protocols. Although ECDSA has withstood major cryptanalysis, the security
of ECDSA has only been proven under non-standard assumptions or assuming
modifications (see [28] for a survey of these results). In our analysis, we consider
extra information available to an attacker as a result of k being reused in AKE
protocols, and show that it does not degrade the security of ECDSA.

We assume ECDSA to be a (non-interactive honest-verifier) zero-knowledge
proof of knowledge of the private key d. This is a reasonable assumption in the
random oracle model which follows the work of Malone-Lee and Smart [16]3. In
practice, people accept bitcoin transactions only when the ECDSA signatures are
verified successfully4. Verifying the ECDSA signature is tantamount to verifying
the knowledge of the ECDSA private key d that should only be held by the
legitimate bitcoin user.

We also note that given an ECDSA message-signature pair, m, (r, s), knowl-
edge of the private key d is equivalent to knowledge of the randomness k since
given either the other can be calculated from sk = H(m) + dr mod n.

4.1 Security of Diffie-Hellman-over-Bitcoin

This protocol is an Elliptic Curve Diffie-Hellman key exchange and the public
values are bound to two transactions in the Blockchain. Private key security con-
siders a malicious active adversary “Mallory”, and session key security considers
an eavesdropper adversary “Eve”. The protocol does not provide full forward
secrecy. We will provide a sketch of the proof of security for each property in
the following. In each proof, we follow the same approach as in [12] to assume
an extreme adversary, who has all the powers except those that would allow the
attacker to trivially break any key exchange protocol.

Theorem 1 (Private Key Security). Diffie-Hellman-over-Bitcoin provides
private key security under the assumption that ECDSA signature is a zero knowl-
edge proof of knowledge of the ECDSA secret key.

3 Note that the results apply to a slightly modified version of ECDSA in which
e = H(r|m) where | denotes concatenation. Although the Bitcoin Core implementa-
tion is based on the original ECDSA standard, the above modification is included
in more recent standards of ECDSA such as ISO/IEC 14888 [1]. Furthermore, as
another option for signing, the Bitcoin community is considering including Schnorr
signature [2], which is proven to be a zero-knowledge proof of knowledge of the
private key.

4 A bug in the Bitcoin implementation for the SIGHASH SINGLE flag allows the
message that is signed to authorise the transaction to be 1 instead of the hash of the
transaction [8]. This bug is not likely to be fixed in the near-future as it is consensus-
critical code. To address this bug, we assume that an implementation of our protocol
properly checks that the message signed is a hash of a valid transaction as published
on the Blockchain rather than 1.

14 P. McCorry et al.

TA TM· · · · · ·· · ·

Alice

kA

Mallory

kMK K

Bob

kB

Blockchain

i. private key security ii. session key security

TA TB· · · · · ·· · ·

Alice

kA K K

Blockchain

Fig. 4. Security of Diffie-Hellman-over-Bitcoin. Light grey denotes what the adversary
(Mallory in (i), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory)
chooses.

Proof (sketch). The goal of an adversary Mallory is to be able to gain some extra
information on Alice’s transaction-specific private key kA through the following
attack. Mallory is given the public parameters of the system and access to the
Blockchain which includes Alice’s transaction TA, then she provides a transaction
TM which is included in the Blockchain, then she carries out a Diffie-Hellman-
over-Bitcoin protocol with Alice (which is non-interactive), and eventually is
able to calculate the shared secret K. The attack is depicted in Fig. 4(i). Alice’s
ECDSA signature in TA is assumed to be zero knowledge and hence does not
reveal any information about her private key. Furthermore, since Mallory’s trans-
action TM includes an ECDSA signature by her, and ECDSA signature is a proof
of knowledge of Mallory’s ECDSA secret key dM, Mallory must know dM, and
hence kM. Hence, Mallory does not gain any extra knowledge from calculating
K, since knowledge of kM and Alice’s public key enables her to simulate K on
her own. ��

Theorem 2 (Session Key Security). Diffie-Hellman-over-Bitcoin provides
session key security based on the computational Diffie-Hellman assumption under
the assumption that ECDSA signature is a zero knowledge proof of knowledge of
the ECDSA secret key.

Proof (sketch). Assume there is a successful adversary Eve that is able to cal-
culate the shared secret K for a key exchange between two honest parties Alice
and Bob, without knowing either Alice or Bob’s transaction-specific secret keys,
kA or kB. The attack is depicted in Fig. 4(ii). Note that since the protocol is
non-interactive, the adversary is reduced to a passive adversary. A successful
attack would contradict the computational Diffie-Hellman (CDH) assumption
since given an instance of the CDH problem (P, αP, βP), one is able to leverage
Eve and solve the CDH problem by setting up Alice and Bob’s transaction-
specific secrets as kA = α and kB = β, which results in K = αβP . A successful
Eve implies that CDH can be solved efficiently. ��

Authenticated Key Exchange over Bitcoin 15

wAP,ZKP{wA}
wMP,ZKP{wM}

TA TM· · · · · ·· · ·

Alice
wAkA

Mallory
wMkM

wAP,ZKP{wA}
wBP,ZKP{wB}

TA TB· · · · · ·· · ·

wAP,ZKP{wA}
wMP,ZKP{wM}

TA TB· · · · · ·· · ·

Mallory
wM

Bob

kB

K K

Alice
wAkA K

Bob
wBkB K

niahckcolBniahckcolB

Blockchain

Alice
wAkA K

i. private key security ii. full forward secrecy

iii. session key security

Fig. 5. Security of YAK-over-Bitcoin. Light grey denotes what the adversary (Mallory
in (i) and (iii), Eve in (ii)) knows. Dark grey denotes what the adversary (Mallory)
chooses.

4.2 Security of YAK-over-Bitcoin

This protocol is an Elliptic Curve YAK key exchange and the public values are
bound to two transactions in the Blockchain. Private key security and session
key security consider a malicious active adversary “Mallory”, and full forward
secrecy considers an eavesdropper adversary “Eve”. Similar as before, we assume
an extreme adversary who has all the powers except those that would trivially
allow the attacker to break any key exchange protocol. Under this assumption,
we provide a sketch of the proof of security for each property in the following.

Theorem 3 (Private Key Security). YAK-over-Bitcoin provides private key
security under the assumption that ECDSA signature is a zero knowledge proof
of knowledge of the ECDSA secret key.

Proof (sketch). The goal of an adversary Mallory is to be able to gain some extra
information on Alice’s transaction-specific private key kA through the following
attack. Mallory is given the public parameters of the system and access to the
Blockchain which includes Alice’s transaction TA, then she provides a transaction
TM which is included in the Blockchain, then she carries out a YAK-over-Bitcoin
protocol with Alice, in which Alice sends the message (wAP,ZKP{wA}) and
Mallory sends the message (wMP,ZKP{wM}). Alice’s ephemeral secret wA is
also assumed to be leaked to Mallory. The attack is depicted in Fig. 5(i). Alice’s
ECDSA signature in TA is assumed to be zero knowledge and hence does not
reveal any information about her private key. Furthermore, since the ECDSA
signature in Mallory’s transaction and her message in the protocol are proofs
of knowledge of dM (equivalently kM) and wM, respectively, Mallory must know
both kM and wM. Note that she receives (wAP,ZKP{wA}) and wA and hence
will be able to calculate K = (kM + wM)(kAP + wAP). Hence, Mallory does not

16 P. McCorry et al.

gain any extra knowledge from the values she receives, since wA is independent
of kA and knowledge of wA, kM, and wM enables Mallory to simulate all the
values she receives. ��
Theorem 4 (Full Forward Secrecy). YAK-over-Bitcoin provides full forward
secrecy based on the computational Diffie-Hellman assumption.

Proof (sketch). Assume there is a successful adversary Eve that is able to calcu-
late the shared secret K for a previous key exchange between two honest parties
Alice and Bob through the following attack. Both Alice and Bob’s transaction-
specific secret keys kA and kB are assumed to be leaked to Eve. Eve is also
assumed to have access to all the protocol messages exchanged between Alice
and Bob, as well as the Blockchain of course. The attack is depicted in Fig. 5(ii).
Given an instance of the CDH problem (P, αP, βP) one is able to leverage Eve
and solve the problem as follows. The protocol is set up with the ephemeral secret
values wA = α and wB = β and all other parameters as per the protocol descrip-
tion. When Eve calculates K, the value S = K − kAkBP − kA(βP) − kB(αP)
is calculated and returned as the solution to the CDH problem. Note that since
K = (kA + wA)(kB + wB)P , we have S = αβP . A successful Eve implies that
CDH can be solved efficiently. ��
Theorem 5 (Session Key Security). YAK-over-Bitcoin provides session
key security based on the computational Diffie-Hellman assumption under the
assumption that ECDSA signature is a zero knowledge proof of knowledge of the
ECDSA secret key.

Proof (sketch). Assume there is a successful adversary Mallory that is able to
calculate the shared secret K for a key exchange between two honest parties
Alice and Bob through the following attack by impersonating Bob to Alice.
Alice believes she is interacting with Bob, whereas in reality she is interact-
ing with an impersonator Mallory who replaces Bob’s message in the protocol
with her own (wMP,ZKP{wM}). Alice’s transaction-specific secret key kA is
assumed to be leaked to Mallory as well. However, Mallory does not know Bob’s
transaction-specific secret key kB. The attack is depicted in Fig. 5(iii). Given
an instance of the CDH problem (P, αP, βP) one is able to leverage Mallory
and solve the problem as follows. The protocol is set up with Alice’s ephemeral
secret wA = α and Bob’s transaction-specific secret kB = β and all other para-
meters as per the protocol description. When Mallory calculates K, the value
S = K − kAwBP − wA(βP) − wB(αP) is calculated and returned as the solu-
tion to the CDH problem. Note that since K = (kA + wA)(kB + wB)P , we have
S = αβP . A successful Mallory implies that CDH can be solved efficiently. ��

4.3 Security of ECDSA Signatures

Diffie-Hellman-over-Bitcoin is a non-interactive protocol and the protocol par-
ticipants do not send any messages to each other that would potentially have an
impact on the security of ECDSA signatures.

Authenticated Key Exchange over Bitcoin 17

In ‘YAK-over-Bitcoin’, the messages that the protocol participants send each
other include information about their ephemeral keys wA and wB only, which are
chosen independently of all the secret values related to the ECDSA signatures in
TA and TB. As shown in Theorem 1 in Sect. 4.2, the protocol does not reveal any
information about the static private key (i.e., k), and hence not any information
about the ECDSA private key (i.e., d) since the two values are linearly related.
One can compute d from k, or vice versa. The key element in the proof of Theo-
rem 3 is that each party is required to demonstrate knowledge of both the static
and ephemeral keys. This also explains our choice of the YAK protocol, as YAK
is the only PKI-based AKE protocol that has the requirement that each party
must demonstrate the proof of knowledge for both the static and ephemeral keys
(the former is realized by the Proof of Possession at the Certificate Authority
registration while the later is achieved by Schnorr Non-interactive ZKP).

Table 2. Time performance for Alice executing Diffie-Hellman-over-Bitcoin and
YAK-over-Bitcoin

emiTnoitpircseDpetS
Diffie-Hellman-over-Bitcoin

1-2 Compute kA and ̂QB 0.08 ms
3 Compute shared secret KAB and key κAB 0.51 ms

Total: 0.59 ms

YAK-over-Bitcoin

1-4 Compute kA, QA, ̂QA and ̂QB 0.53 ms
5 Compute wA, WA and ZKP{wA} 0.90 ms
6 Verify Bob’s ZKP{wB} 0.69 ms
7 Compute shared secret KAB and key κAB 0.43 ms

Total: 2.55 ms

5 Implementation

Our implementation is a modification of the Bitcoin Core client and is considered
a proof of concept. We have included three new remote procedure commands
(RPC) that will allow the client to perform a non-interactive Diffie-Hellman
key exchange, generate a zero knowledge proof to be shared with their partner
and verify a partner’s zero knowledge proof before revealing the shared secret.
Our modified implementation was executed using the -txindex parameter which
allows us to query the Blockchain and retrieve the raw transaction data.

Two transactions were created using a non-modified implementation on the
10th December, 2013 to allow us to test our key exchange on the real network.
All tests were carried out a MacBook Pro mid-2012 running OS X 10.9.1 with
2.3GHz Intel Core i7 and 4 cores and 16 GB DDR3 RAM. Each protocol is
executed 100 times from Alice’s perspective and the average times are reported.

18 P. McCorry et al.

5.1 Time Analysis

Preliminary steps for both protocols involve fetching the transactions from the
Blockchain 0.04 ms and retrieving the signatures (r, s) stored in the transaction
0.08 ms. Overall, these steps on average require 0.12 ms.

This ‘Diffie-Hellman-over-Bitcoin’ protocol is non-interactive as participants
are not required to exchange information before deriving the shared secret.
Table 2 demonstrates an average time of 0.08 ms to derive Alice’s transaction-
specific private key kA and Bob’s estimated public key ̂QB and 0.051 ms to com-
pute the shared key κAB. Overall, on average the protocol executes in 0.59 ms
which is reasonable for real-life use.

The ‘YAK-over-Bitcoin’ protocol is interactive as it requires each party to
send an ephemeral public key together with a non-interactive Schnorr ZKP to
prove the knowledge of the ephemeral private key. Table 2 shows that comput-
ing and verifying zero knowledge proofs is the most time-consuming operation.
However, a total execution time of 2.55 ms is still reasonable for practical appli-
cations.

5.2 Note About Domain Parameters

Our investigation highlighted that q > n as seen in [6] which could obscure the
relationship between k and r as the x co-ordinate can wrap around n. However,
the probability that this may occur can be calculated as (q − n)/q ≈ 4 × 10−39

and is unlikely to occur in practice. However, in the rare chance that this does
happen then it is easily resolved by r′ = r + n. This does not require any
modification to the underlying signature code as it is simply an addition of the
publicly available r with the modulus n. Once resolved, both parties can continue
with the protocol. For reference, q and n are defined below:

q=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
n=FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141

6 Conclusion

In this paper, we have demonstrated transaction authentication by using the
digital signatures stored in Bitcoin transactions to bootstrap key exchange. We
proposed two protocols to allow for interactive and non-interactive key exchange,
the latter offering an additional property of forward-secrecy. We encourage the
community to try our proof-of-concept implementation and to take advantage
of this new form of authentication to enable end-to-end secure communication
between Bitcoin users.

Acknowledgements. The second, third and fourth authors are supported by the
European Research Council (ERC) Starting Grant (No. 306994). We also thank Greg
Maxwell for bringing the SIGHASH SINGLE implementation bug to our attention.

Authenticated Key Exchange over Bitcoin 19

References

1. ISO/IEC 14888: Information technology - Security techniques - Digital signatures
with appendix (2008)

2. Andersen, G.: Conversation about OP SCHNORRVERIFY. Freenode IRC bitcoin-
wizards, October 2014. https://botbot.me/freenode/bitcoin-wizards/

3. Androulaki, E., Karame, G.O., Roeschlin, M., Scherer, T., Capkun, S.: Evaluat-
ing user privacy in bitcoin. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859,
pp. 34–51. Springer, Heidelberg (2013)

4. Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a
better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414.
Springer, Heidelberg (2012)

5. BBC: New Paypal partnership enables limited Bitcoin payments (2015). http://
www.bbc.co.uk/news/technology-29341886. Accessed 06 January 2015

6. Research, Certicom: SEC 2: Recommended Elliptic Curve Domain Parameters.
Standards for Efficient Cryptography Group, September 2000

7. Clark, J., Essex, A.: CommitCoin: carbon dating commitments with bitcoin. In:
Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 390–398. Springer, Heidelberg
(2012)

8. Corallo, M.: [Bitcoin-development] Warning to rawtx creators: bug in
SIGHASH SINGLE (2012). http://sourceforge.net/p/bitcoin/mailman/message/
29699385/. Accessed 16 September 2015

9. Dell: Were Now Accepting Bitcoin on Dell.com (2015). http://en.community.
dell.com/dell-blogs/direct2dell/b/direct2dell/archive/2014/07/18/we-re-now-
accepting-bitcoin-on-dell-com. Accessed January 06 2015

10. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable (2013).
arXiv preprint arXiv:1311.0243

11. Hankerson, D., Vanstone, S., Menezes, A.: Guide to Elliptic Curve Cryptography.
Springer Professional Computing. Springer, New York (2004)

12. Hao, F.: On robust key agreement based on public key authentication. In: Sion, R.
(ed.) FC 2010. LNCS, vol. 6052, pp. 383–390. Springer, Heidelberg (2010)

13. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

14. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-
coin. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 906–917. ACM (2012)

15. Lo, S., Wang, J.: Bitcoin as money? current policy and perspectives, September
2014

16. Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: Nyberg, K., Heys, H.M.
(eds.) SAC 2002. LNCS, vol. 2595, pp. 1–12. Springer, Heidelberg (2003)

17. Maurer, B., Nelms, T., Swartz, L.: When perhaps the real problem is money itself!:
the practical materiality of Bitcoin. Soc. Semiot. 23(2), 261–277 (2013)

18. Merrill, N.: The Calyx institute: privacy by design for everyone (2015). https://
www.calyxinstitute.org/support-us/donate-via-bitcoin. Accessed January 06 2015

19. Miers, I., Garman, C., Green, M., Rubin, A.: Zerocoin: anonymous distributed
E-cash from Bitcoin. In: 2013 IEEE Symposium on Security and Privacy (SP),
pp. 397–411. IEEE (2013)

20. Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.)
CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)

https://botbot.me/freenode/bitcoin-wizards/
http://www.bbc.co.uk/news/technology-29341886
http://www.bbc.co.uk/news/technology-29341886
http://sourceforge.net/p/bitcoin/mailman/message/29699385/
http://sourceforge.net/p/bitcoin/mailman/message/29699385/
http://en.community.dell.com/dell-blogs/direct2dell/b/direct2dell/archive/2014/07/18/we-re-now-accepting-bitcoin-on-dell-com
http://en.community.dell.com/dell-blogs/direct2dell/b/direct2dell/archive/2014/07/18/we-re-now-accepting-bitcoin-on-dell-com
http://en.community.dell.com/dell-blogs/direct2dell/b/direct2dell/archive/2014/07/18/we-re-now-accepting-bitcoin-on-dell-com
http://arxiv.org/abs/1311.0243
https://www.calyxinstitute.org/support-us/donate-via-bitcoin
https://www.calyxinstitute.org/support-us/donate-via-bitcoin

20 P. McCorry et al.

21. Mozilla: Help protect the open Web (2015). https://sendto.mozilla.org/page/
content/give-bitcoin/. Accessed January 06 2015

22. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
23. Reid, F., Harrigan, M.: An analysis of anonymity in the bitcoin system. In: 2011

IEEE Third International Conference on Social Computing (socialcom) Privacy,
Security, Risk and Trust (Passat), pp. 1318–1326, October 2011

24. Rizzo, P.: Expedia exec says bitcoin spending has exceeded estimates
(2015). http://www.coindesk.com/expedia-exec-bitcoin-payments-have-exceeded-
estimates/. Accessed January 06 2015

25. Robleh, A., Barrdear, J., Clews, R., Southgate, J.: The economics of digital cur-
rencies. Q. Bull. 54, Q3 (2014)

26. Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013)

27. Tor: Make A Donation. 2015. https://www.torproject.org/donate/donate.html.en.
Accessed January 06 2015

28. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2002)

29. Woo, D., Gordon, I., Iaralov, V.: Bitcoin: a first assessment. Bank of America
Merrill Lynch, December 2013

https://sendto.mozilla.org/page/content/give-bitcoin/
https://sendto.mozilla.org/page/content/give-bitcoin/
http://www.coindesk.com/expedia-exec-bitcoin-payments-have-exceeded-estimates/
http://www.coindesk.com/expedia-exec-bitcoin-payments-have-exceeded-estimates/
https://www.torproject.org/donate/donate.html.en

Tap-Tap and Pay (TTP): Preventing the Mafia
Attack in NFC Payment

Maryam Mehrnezhad(B), Feng Hao, and Siamak F. Shahandashti

School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
{m.mehrnezhad,feng.hao,siamak.shahandashti}@newcastle.ac.uk

Abstract. Mobile NFC payment is an emerging industry, estimated to
reach $670 billion by 2015. The Mafia attack presents a realistic threat to
payment systems including mobile NFC payment. In this attack, a user
consciously initiates an NFC payment against a legitimate-looking NFC
reader (controlled by the Mafia), not knowing that the reader actually
relays the data to a remote legitimate NFC reader to pay for something
more expensive. In this paper, we present “Tap-Tap and Pay” (TTP), to
effectively prevent the Mafia attack in mobile NFC payment. In TTP, a
user initiates an NFC payment by physically tapping her mobile phone
against the reader twice in succession. The physical tapping causes tran-
sient vibrations at both devices, which can be measured by the embedded
accelerometers. Our experiments indicate that the two measurements are
closely correlated if they are from the same tapping, and are different
if obtained from different tapping events. By comparing the similarity
between the two measurements, we can effectively tell apart the Mafia
fraud from a legitimate NFC transaction. To evaluate the practical fea-
sibility of this solution, we present a prototype of the TTP system based
on a pair of NFC-enabled mobile phones and also conduct a user study.
The results suggest that our solution is reliable, fast, easy-to-use and has
good potential for practical deployment.

Keywords: Near Field Communication · Mobile NFC payment · Mafia
attack · MITM attack · Mobile sensor · Accelerometer · Security ·
Usability

1 Introduction

NFC Payment: Near Field Communication (NFC) payment is an upcoming
technology that uses Radio Frequency Identification (RFID) to perform contact-
less payments. An RFID system has two parts: the RFID tag (card) that can be
attached to any physical object to be identified; and the RFID reader that can
interrogate a tag within physical proximity, via radio frequency communication.
An NFC-enabled payment card has an embedded RFID tag. To make an NFC
payment, the user just needs to hold the card in front of an NFC reader for
a short while and wait for confirmation. NFC payments are usually limited to
rather small-value purchases1.
1 For instance, the contactless limit increased from £20 to £30 in 2015 in the UK.

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 21–39, 2015.
DOI: 10.1007/978-3-319-27152-1 2

22 M. Mehrnezhad et al.

Fig. 1. The Mafia attack: a malicious reader colludes with a malicious card and fools
the honest card to pay for something more expensive to a legitimate reader

A mobile phone can also be used as an NFC payment card. HSBC Hong
Kong Mobile Payment2, Google Wallet3, Apple Pay4, and Android Pay5 are
examples of NFC payment mobile apps. Using a mobile phone for NFC payment
is considered convenient since people can save all of their cards in their phones. It
is estimated that mobile payments using NFC will total 670 billion US dollars by
2015 [9]. To support this trend, new generations of smart phones have commonly
been equipped with NFC sensors. In this paper, we focus on mobile payment
using NFC. Hence unless stated otherwise, by “NFC card”, we refer to an NFC-
enabled mobile phone functioning as a payment card. By “NFC reader”, we refer
to a payment terminal that communicates with the card via NFC. A legitimate
NFC reader is one that is authorised by the banking network and is connected
to the back-end banking network for payment processing.

It is known that NFC payment is vulnerable to different types of Man-In-The-
Middle (MITM) attacks [21], also known in the literature as relay, or wormhole
attacks [19]. In a simple form of a relay attack known as ghost-and-leech attack
[22], the attacker places an NFC reader so as to secretly interrogate the user’s
NFC card without the user’s awareness, and relays the card response to a remote
NFC reader to obtain a payment from the victim’s account. Such an attack is
demonstrated in [20,21].

Relay attacks can be countered in a number of ways. A simple solution is
to put the NFC card within an NFC protective shield such as Id Stronghold6.
Equivalently, one can add an activation button so that the NFC function on
the phone is only turned on with an explicit user action. More advanced coun-
termeasures are proposed in the literature, including Secret Handshakes [18],
UWave [32], Still and Silent [37], and Tap-Wave-Rub [30]. However, none of
these solutions can prevent a more severe type of attack as we explain below.

Mafia Attack: Another type of the MITM attack is called the Mafia attack,
which is also known as Mafia fraud [19] or the reader-and-ghost attack [22,38].
In this more severe attack, the user consciously initiates an NFC payment with a
legitimate-looking reader controlled by the Mafia; but the reader actually relays
the card response to a remote legitimate NFC reader – via a malicious card – to
2 www.hsbc.com.hk.
3 http://wallet.google.com.
4 www.apple.com/iphone-6/apple-pay.
5 www.android.com/intl/en us/pay.
6 www.idstronghold.com.

www.hsbc.com.hk
http://wallet.google.com
www.apple.com/iphone-6/apple-pay
www.android.com/intl/en_us/pay
www.idstronghold.com

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 23

pay for something more expensive. Figure 1 shows an example of such an attack.
This attack has been shown to be feasible in [19].

Unlike simple relay attacks, the Mafia attack cannot be prevented by using a
protective shield or an activation button since the user consciously initiates the
payment. For the same reason, various user-movement-based unlocking mecha-
nisms [18,30,32,37] cannot stop the attack either. We will explain the current
countermeasures to this attack by first reviewing the NFC payment standards
and specifications.

NFC Payment Standards and Specifications: EMV is the primary protocol
standard for smart card payments in Europe. The EMV standards are managed
by EMVCo7, a consortium of multinational companies such as Visa, Master-
card, and American Express. These standards use smart-cards including contact
and contactless cards and are based on ISO/IEC 7816 [4] and ISO/IEC 14443.
Mobile NFC payment technologies, such as Android Host-based Card Emulation
(HCE)8, are also based on ISO/IEC 14443, which is an international standard
in four parts, defining the technology-specific requirements for proximity cards
used for identification [2,3,7,8].

The extensive EMV specifications—presented in 10 books: A [10], B [11],
C1–C7 (e.g. [12,13]), and D [14]—provide the details of EMV-compliant pay-
ment system design. Furthermore, EMVCo provides a book on security and key
management [1] as a part of EMV 4.3 specifications as well as additional security
guidelines for acquirers [5] and issuers [6] of EMV payment cards.

The risk of MITM attacks in payment systems has been generally neglected
in the above standards and specifications (except in a recent 2015 EMV Contact-
less payment specifications Book C-2 [12], as we will explain). As explained by
Drimer et al. in [19], such attacks are commonly perceived to be too expensive
to work. However, in the same paper, Drimer et al. show this is a misperception
by demonstrating practical MITM attacks in a set of live experiments against
the UK’s EMV system. Given the practicality of deploying such attacks [19] and
the projected rapid growth in the size of the contactless payment industry [9],
we believe that it is important for the payment industry to seriously consider
the security concerns posed by such attacks and the countermeasures that are
needed.

Distance Bounding Protocols: Distance bounding protocols have been con-
sidered a potential solution to this problem. In the latest MasterCard EMV
specifications (Book C-2 [12] released in March 2015), a distance bounding pro-
tocol (called the Relay Resistance Protocol in the specifications) is defined. This
protocol starts with the reader sending the card a random challenge and the card
replying with a digitally signed response. The reader verifies the digital signa-
ture and also checks the response time is within a specified range. This protocol
requires an additional private key and a public key certificate installed on the
card. Furthermore, the card needs to perform expensive public key operations,
7 www.emvco.com.
8 http://developer.android.com/guide/topics/connectivity/nfc/hce.html.

www.emvco.com
http://developer.android.com/guide/topics/connectivity/nfc/hce.html

24 M. Mehrnezhad et al.

which may incur a notable processing delay. To minimize the processing delay
on the card, most distance bounding protocols defined in the literature [16,19]
resort to using only symmetric key operations, such as hash and symmetric-
cipher encryptions. However, applying those solutions to NFC payment would
require the card and the reader to have a pre-shared symmetric key. In the
current practice, the card only has a pre-shared key with the issuing bank. By
contrast, our solution does not require any additional cryptographic keys. In fact,
it is orthogonal to distance bounding protocols and can be used in conjuction
with any one of them.

Other Countermeasures: Other countermeasures to the MITM attack have
been actively explored by a number of researchers. One straightforward solution
is to require user vigilance at the time of making the NFC payment. However,
it has been generally agreed that user vigilance alone is not sufficient [22,33,38].
It is desirable to design a countermeasure that can effectively prevent Mafia
attacks without having to rely on user vigilance. Current solutions generally
involve using ambient sensors to measure the characteristics of the surrounding
environment, such as light [22], sound [22], location via GPS [33] and a combina-
tion of temperature, humidity, precision gas, and altitude [38]. The underlying
assumption is that the malicious and legitimate readers will be in two differ-
ent locations with distinct ambient environments. However, the validity of this
assumption may be challenged in some situations where the two readers are in
similar environments (e.g., nearby stalls in the same mall).

Overview of our Idea: Our idea is based on the following observation: as a
result of the physical tapping between a pair of devices (a card and a reader
quipped with accelerometers), the tapping creates transient vibrations, which
can be measured using embedded accelerometer sensors. By comparing the sim-
ilarity of the two measurements, we are able to determine if the two devices
were involved in the same tapping event. This effectively distinguishes the Mafia
attack from a normal NFC transaction.

In contrast to the mentioned solutions, we do not assume that the attacker’s
reader is in an environment different from that of the legitimate reader. Thus
our threat model considers a more severe attack.

Contributions: Our main contributions are summarised below:

1. We propose “Tap-Tap and Pay” (TTP) as a new countermeasure to prevent
Mafia attacks. Our solution is the first that works even if the malicious and
legitimate readers are in similar environments.

2. We present a proof-of-concept implementation of TTP by using a pair of NFC-
enabled smartphones. Experiments confirm that vibrations induced from the
same tapping event are closely correlated between the card and the reader,
while they are not if originating from different tapping events.

3. We conduct user studies to evaluate the usability of our TTP prototype.
Based on the feedback, users generally find the suggested solution fast and
easy to use.

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 25

A) Physically tapping the B) Recording accelerometer
mobile to the reader measurements on both sides

acc card acc reader

C) Sending the accelerometer measurements to the bank via the reader

1. challenge card 3. response card,

acc reader

2. response card =
(challenge, acc card, . . .)key 4. result

Fig. 2. Overview of the proposed solution: Tap-Tap and Pay

2 Our Solution: Tap-Tap and Pay (TTP)

2.1 Threat Model

We assume a user consciously initiates an NFC payment against a legitimate-
looking NFC reader without realizing that it is a malicious one controlled by the
Mafia. The difference between the malicious reader and the legitimate reader
is that the former is not connected to the back-end banking network while the
latter is. We assume the Mafia does not want to directly connect to the banking
network, as that will run the risk of being caught by the bank. The malicious
reader relays the victim’s card to a remote legitimate reader to pay for something
more expensive, through the help of an accomplice who holds a legitimate-looking
NFC card (see Fig. 1). From the perspective of the legitimate merchant, there is
nothing suspicious – a customer uses a mobile phone to make an NFC payment.
The amount of the payment may be near the upper end of the limit, but that is
perfectly acceptable (see [19] for a demonstration of successful Mafia attacks on
the UK’s EMV payment system using contact chip-and-PIN cards; the attacks
on the contactless payment work in the same way).

Furthermore, we assume the attacker is able to put the NFC reader in an
ambient environment that is very similar to the legitimate reader. In one sce-
nario, the attacker may set up a mobile temporary stall near a shopping mall.
He may pretend to sell cheap items such as coffee, tea or confectionery, and show
the buyer a small amount on the reader’s screen. While accepting the buyer’s
NFC payment, the attacker relays it to one of his accomplices in nearby shops
to buy something more expensive. The attacker and his accomplices can avoid
detection by constantly changing the location. Once they make enough profit in
a day, they will disappear and repeat the same attack at a different place. Under
the above threat model, previous ambient-sensor-based solutions may fail com-
pletely. However, despite the assumption of a stronger attacker, we will present
a solution that can effectively prevent Mafia attacks under the same condition.

26 M. Mehrnezhad et al.

The practical feasibility of such Mafia attacks [19], compounded by the fact
that they are undetectable by banks in the backend, can prove problematic.
This can have serious implications on the liability if the security of the system
only depends on user vigilance. In practice, if any dispute arises regarding the
discrepancy of the amount charged for an NFC payment, users will be to blame
by default since they are required to be “vigilant”. We believe this is not fair to
users. Our solution addresses this problem by providing banks more evidence so
they can tell apart a legitimate NFC payment from a Mafia fraud. This is done
at the minimum inconvenience to users, as we explain in the next section.

2.2 Overview of the Solution

An overview of our solution is shown in Fig. 2. First, the user physically taps the
mobile phone against the reader twice to make an NFC payment. The tapping
causes transient vibrations at both devices, which are measured by the embedded
accelerometer sensors. The user then holds the card close to the reader. At this
point, the reader detects the presence of an NFC card within physical proximity
and starts a standard challenge-and-response process for the NFC payment. At a
high level, this involves the reader sending a challenge to the card, and the card
replying with a response authenticated by a pre-shared key via MAC with the
issuing bank. Our solution does not alter this existing data flow; but within the
card response, we propose to add an additional item acc card to the items being
sent by the card. This new item represents the measurement of the vibration
by the card accelerometer. When the reader forwards the card’s response to
the issuing bank through a secure back-end network, it appends acc reader ,
which is the measurement of the vibration by the reader accelerometer. The
bank compares the two measurements and approves the transaction only if it
finds the two sufficiently similar. Recall that in Fig. 1, the user’s NFC card
and the legitimate NFC reader are honest devices and can perform trustworthy
measurements.

TTP suggests two taps because we found it to be the minimum number
of taps needed to obtain both sufficiently correlated measurements of the same
tapping, and at the same time sufficiently uncorrelated measurements of different
tappings. Of course with more than two taps, more features can be extracted,
but at the expense of user convenience. Hence, we chose double-tap as the default
setting for our solution.

2.3 Sensor Data Preprocessing

To enable data collection, we developed two Android apps: Card app and Reader
app and installed them on two NFC-enabled smartphones, two Nexus 5 devices9,
which are equipped with a range of different sensors.
9 Prototyping of our TTP protocol requires the facility of bidirectional NFC using

Host-based Card Emulation (HCE). At the time of experiments, Nexus 5 was the
only device allowing that facility.

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 27

0 50 100 150
0

5

10

15

20

25

30
Accelerometer measurements

0 20 40 60 80 100 120 140
-20

-15

-10

-5

0

5

10
Derivatives

Sample/ Time

Card
Rerader

Fig. 3. Final sequences obtained from Eq. 1 (top), and their derivatives from Eq. 2
(bottom) of a sample of double tapping

Accelerometer Data: We use the embedded accelerometer sensor on the
mobile phone to capture vibration changes during physical tapping. The
accelerometer sensor returns acceleration data in three dimensions, obtained
by measuring forces (including the force of gravity) applied to the sensor along
the local x, y and z axes. The coordinate system is defined with reference to
the phone screen in its portrait orientation; x is horizontal in the plane of the
screen from left of the screen towards right, y vertical from the bottom of the
screen towards up, and z perpendicular to the plane of the screen from inside
the screen towards outside. We consider the sequence representing the length
of the three-dimensional vector obtained through accelerometer measurements
calculated from Eq. 1 where the components represent the i-th measurement in
the three dimensions (accxi, accyi, acczi):

acci =
√

acc2xi + acc2yi + acc2zi (1)

Figure 3 (top) shows the above vector length sequences acci for a typical
double-tapping as measured on a card and a reader. From now on, we refer to
this vector length sequence acci simply as accelerometer measurement.

Derivatives: As shown in Fig. 3 (top), the accelerometer measurement made by
the card is more vibrant than that by the reader, since the card is moving in the

28 M. Mehrnezhad et al.

hand of the user. They are also different in scale, depending on the start status
of accelerometers. In order to smooth out irrelevant movements specially on the
card side, we apply the following equation (based on [26]) to approximate the
first derivatives of the sequences. The results are displayed in Fig. 3 (bottom).

Di =
(acci − acci−1) + ((acci+1 − acci−1)/2)

2
(2)

Sequence Alignment: After obtaining the derivatives, we align the two
sequences by identifying the peaks. This can be simply achieved by searching for
the extreme values (max or min) with a minimum gap between them. The two
sequences are then aligned based on the first peak (with a few linear shifts to get
the best matching by trial-and-error). Based on our evaluation of the collected
data, we found that this simple alignment algorithm is accurate and fast.

After the alignment of the two sequences, we cut a segment of each sequence,
starting from 0.2 s before the first peak until 0.2 s after the second peak. This
covers the whole significant variation of the accelerometer data. Our analysis
shows that with this setting, the whole recording time is in the range of 0.6
and 1.5 s.

2.4 Similarity Comparison

Suggested sensor data comparison methods include correlation coefficients,
covariance, cross covariance (e.g. [15]) and cross correlation (e.g. [18,22]) in the
time domain, and coherence (e.g. [36]) in the frequency domain. We found the
correlation coefficients in the time domain and the coherence in the frequency
domain to be the two most effective ones on our collected data. Here we use
them along with the energy of the series as well as the distance between the two
peaks as the inputs of our suggest TTP decision maker.

Correlation Coefficient (Time Domain): The correlation coefficient is com-
monly used to compare the similarity of the shapes of two signals. The intuition
is that if the two measurements originate from the same double-tap, their signal
shapes, especially their tap shapes, would be highly correlated, and otherwise
they would not be correlated. Given two sequences X and Y and Cov(X,Y)
denoting covariance between X and Y, the correlation coefficient is computed as
below, where Cov(X,X) = σ2

X and Cov(Y, Y) = σ2
Y :

RXY =
Cov(X,Y)

√

Cov(X,X) · Cov(Y, Y)
(3)

Coherence (Frequency Domain): To obtain a similarity measure in the
frequency domain, we apply the coherence method which indicates the level of
matching of features in the frequency domain between two time series. Given
two sequences X and Y , we compute the magnitude squared coherence based on

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 29

the following equation, where PXX(f) and PY Y (f) are power spectral densities
of X and Y , and PXY (f) the cross power spectral density between X and Y :

CXY (f) =
|PXY (f)|2

PXX(f) · PY Y (f)
(4)

We define the similarity rate between the two signals based on magnitude squared
coherence as the sum of the squares of the magnitudes of coherence values at all
frequencies as follows:

FXY =
∑

f

CXY (f) (5)

Energy Difference: Our analysis shows that different users tap devices with
different strengths; some taps are very gentle, some are of medium strength, and
some are very strong. We found that the total energy levels of the card and reader
sequences of the same tap are strongly correlated, while they are distinctive if
obtained from different taps. Hence, we use the following measure to capture the
distance of two signals X and Y in term of the total signal energy levels:

DXY =

∣

∣

∣

∣

∣

∑

t

X(t)2 −
∑

t

Y (t)2
∣

∣

∣

∣

∣

(6)

Peak Gap Difference: Last but not least, the distance between the two peaks
in each measured sequence is an important factor in deciding if two measure-
ments come from the same double tapping or not. We define GXY in Eq. 7 where
GapX is the distance between the two extremums of sequence X and GapY is
the distance defined similarly for sequence Y :

GXY = |GapX − GapY | (7)

TTP Decision Engine: Our TTP decision engine has two steps. First, we
have an initial check according to the peak gap defined in Eq. 7 and then we use
a combined method to include the other three similarity measures. We suggest
a simple linear fusion method by using the weighted sum of the three measures:
correlation coefficient, coherence, and the energy similarity. Therefore, the ulti-
mate decision is made based on comparing the peak gap against a threshold
and if successful comparing the weighted sum of the combined method against
another threshold. Hence according to the output of the decision engine, the
bank decides to authorize or decline the transaction.

We use a simple linear normalisation that maps the three values to the inter-
val [0, 1]. Let us denote these normalised versions by R̄XY , F̄XY , and D̄XY ,
respectively. Since unlike the other two measures, D̄XY decreases with similar-
ity, we define ĒXY as below. Note that ĒXY is also a normalised value belonging
to the interval [0, 1].

ĒXY = 1 − D̄XY (8)

30 M. Mehrnezhad et al.

Fig. 4. Data collection environment (left), Card app (centre), and Reader app (right)

Given R̄XY , F̄XY and ĒXY , TXY calculates the total similarity rate of two
signals X and Y as below, where a, b and c are the weights of each method:

TXY = a · R̄XY + b · F̄XY + c · ĒXY (9)

The weight parameters are determined through experiments based on the col-
lected user data by testing all possible weights up to two decimal places for a, b,
and c – under the condition that the sum of them is equal to 1 – and observing
the equal error rate. The values which gave us the best error rate have been fixed
as a = 0.45, b = 0.21, and c = 0.33.

3 System Evaluation

3.1 Experiment Setup and Data Collection

We implemented a proof-of-concept prototype for the TTP system by develop-
ing two Android apps (card and reader). When the user taps the reader, the
two apps independently record the accelerometer data. Once the NFC card is
detected by the reader in close proximity, the two devices start a two way NFC
communication and simulate an NFC payment.

In order to evaluate the system performance based on real user data, we
recruited 23 volunteers (university students and staff, 10 males and 13 females)
to participate in the data collection, each performing five double tapping actions.
We made a short self-explanatory training video to demonstrate how to do the
double-tap and showed it to the users before the experiment. Users generally
found the video guide useful in helping them quickly grasp the instruction of
“Tap-Tap and Pay”.

We fixed the reader phone to the table using double-sided tape, as shown in
Fig. 4(left). The front of the phone faced downwards and the back was labelled

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 31

Table 1. Equal error rates for different suggested methods

Method Equal error rate

Correlation coefficients 19.15 %

Coherence 27.91 %

Total energy 23.48 %

Peak gap 14.09 %

TTP decision algorithm 9.99%

“Reader”. We used MyMobiler10 to operate the reader through a USB connec-
tion. The GUIs of the reader and card apps are shown in Fig. 4, right and centre,
respectively. After launching the card app, the user just double tapped the phone
to the reader and kept it close to complete an NFC payment. Once she was noti-
fied of a successful completion, she could repeat the experiment. The recorded
sensor data were saved into a file for further analysis in Matlab.

3.2 Results

We use the False Negative Rate (FNR) and the False Positive Rate (FPR) to
evaluate the performance. The FNR is the rate that two measurements from the
same tap event are determined as not matching. The FPR is the rate that two
measurements from two different tap events are determined as matching. FNR
and FPR vary according to a threshold. The Equal Error Rate (EER) is the rate
where the FNR and the FPR curves intersect. The EER is commonly used as
a measure to evaluate the overall performance of a system. We computed the
EERs based on the similarity comparison methods as described in Sect. 2.4. The
results for EER are presented in Table 1. Overall, the Equal Error Rate of our
prototype system is 9.99 % using the combined method (Table 1). Therefore with
this setting, we have FNR= FPR= 9.99 %. Hence, a legitimate NFC transaction
may be falsely rejected with a probability of 9.99 %. Then the user would need
to try again. On average, it takes 1/(1 − 0.099) = 1.1 attempts for a legitimate
user to complete an NFC payment transaction. On the other hand, if the Mafia
attack takes place during the NFC payment, the transaction is more likely to be
denied by the bank due to inconsistent data measurements. The Mafia may trick
the user to try again, but it would require on average 1/0.099 = 10 attempts
to get a fraudulent transaction to come through. However, consecutively failed
verifications for a single NFC transaction will likely trigger an alert at the back-
end banking network, prompting an investigation. Furthermore, when the user
gets repeated denials from the NFC payment (say three times), she might not
try further and may choose to query her bank instead. All this can significantly
increase the chance of having the Mafia attack exposed.
10 www.mymobiler.com.

www.mymobiler.com

32 M. Mehrnezhad et al.

3.3 Online and Offline Modes

So far, the description of our TTP solution assumes that the NFC transaction is
online i.e., the reader is connected to the banking network, so that the backend
system is able to evaluate the received measurements and authorize the payment
in real-time. The same assumption is made in other researchers’ solutions [22,
33,38] (which we will detail in Sect. 5).

However in practice, an NFC transaction may be performed offline. Accord-
ing to the EMV specifications, an EMV transaction flow includes several steps
including offline data authentication and online transaction authorisation.
Depending on the result of the negotiation between the card and the reader,
the card may decide to go with offline authorisation. This decision is based on
different factors including the transaction value, the type, and the card’s record
of recent offline transactions. Our solution will be less effective in the offline
mode, however, we believe it still provides important added value in preserving
critical evidence when a dispute regarding Mafia attacks occurs and a retrospec-
tive fraud investigation is needed.

4 Usability Study

4.1 Experiment Setup and Data Collection

We performed a second experiment to evaluate usability aspects of the system.
We asked 22 different users (partially overlapped the previous user set, university
students and staff, 15 males and 7 females) to perform two NFC payments; first
by using the contactless method, and second by using TTP. We developed two
Android apps (card and reader) to simulate the two tasks. Before the experiment,
we presented users a study description, including a short introduction of mobile
contactless payment using NFC, followed by a general description of mobile
payment using TTP. In the first task, the user was asked to hold the phone near
the reader and wait for the confirmation message. In the second task, the user
was asked to double-tap the reader, keep the phone near the reader and wait for
the confirmation. Figure 5 shows the GUIs of the two tasks in this experiment.

4.2 Findings

After completing the two tasks, the users were asked to fill in a questionnaire and
rate the level of convenience, speed, and feeling of the security of each payment
method in a Likert scale from level 5 to 1 (corresponding to “strongly agree”,
“agree”, “neutral”, “disagree”, and “strongly disagree”). They were also asked
to write free comments about their experience in this experiment. Figure 6 shows
the average user rating of using the contactless payment and the TTP method.

As shown in Fig. 6, users generally found contactless payment more conve-
nient than TTP. Including a physical action makes it less convenient for some
users. As one user commented: “... the fact that I need to keep the device close
to the reader after tapping made the experience less convenient”.

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 33

Fig. 5. User study Card app; Task 1: Contactless payment (left), Task 2: TTP (right)

However, in contrast to convenience, many users considered TTP faster than
the contactless method, since they were able to precisely sense the start of the
action by tapping, while it took them some time to find the proper distance
in contactless payment. The uncertainty about when contactless payment would
start made some people feel that the process took longer than how long it actually
took. As one user commented: “Even [though] I had to tap twice, but the process
felt faster comparing to the first one. I feel after tapping I automatically bring
the phone close enough to the reader, but in first task, my phone was not close
for a while and it took longer”.

Moreover, users felt TTP is more secure than contactless payment. By per-
forming a physical tapping action, users felt in control of the transaction and
would worry less about accidental payments. As one of the users commented:
“As before [i.e. task 1] payment is very easy. I like the action of tapping the
reader as this made me feel more in control of when the transaction took place.
I felt this method [TTP] was more secure due to the action of tapping to start
the transaction. This meant I know when the transaction took place”. A similar
view was expressed by another user in the comment: “The payment [in task 1]
is very easy, but I don’t know when the connection between wallet and reader is
made; range or time, so I would keep my payment device away from the reader
to be sure until I want to pay.”

5 Comparison with Previous Works

Table 2 briefly compares TTP with previous ambience sensing based solutions.
In terms of security, TTP is the first solution able to prevent the Mafia attack
even when both readers share the same ambient environment. Ambience sensing
solutions are inherently incapable of detecting the attack in this condition.

34 M. Mehrnezhad et al.

Fig. 6. User study: average user rating of contactless payment and TTP

We now review the error rates reported in the previous works based on mea-
suring the ambient environment. Halevi et al. [22] (sensors: audio and light)
report false positive and false negative rates of 0 % for audio sensor, and around
5 % for light sensor for distinguishing different business types (such as library,
concert hall, restaurant, etc.). Ma et al. [33] (sensor: GPS) report a 0 % false
negative rate under the assumption that the attacker is located 20 meters or
farther, 67.5 % when the distance is more that 5 meters, and 100 % when the
distance is less than one meter. False positive rates are not reported in their
work. Shrestha et al. [38] (sensors: multiple sensors) report false negative rates
approximately in the range of 10 %–25 % and false positive rates approximately
in the range of 15 %–30 % for individual sensors. By combining the sensor read-
ings, they achieve a false negative rate of about 3 % and a false positive rate of
about 6 %.

The equal error rate of 9.99 % in our result is comparable to those reported
in the previous works. However, when the two readers are in nearby locations
and share the same or similar ambient environments, the reported error rates
in [22,33,38] are no longer meaningful and all previous ambient-sensor based
solutions may fail completely. By contrast, our TTP solution works regardless
of whether or not the two readers share similar ambient environments.

In terms of usability, our protocol needs a sensor recording of only 0.6 to
1.5 s which is sufficiently fast for contactless payment. Schemes based on audio
and light sensors [22] achieve similar timings. However, the GPS-based proto-
col [33] requires 10 s of sensor recording which makes the system not suitable
for contactless payment. Our scheme is based on accelerometer which is read-
ily available on most mobile devices, as are microphones (audio), light sensors,
and GPS. However, meteorological sensors [38] are only available on specialised
devices which is a barrier in adopting such protocols in practice.

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 35

Table 2. Comparing TTP with ambient sensors based solutions

Sensor/ Solution Prevents attacker at
same environment

Recording
duration
(sec)

Embedded
mobile
sensors

Based on
ambience
or device

Audio [22] ✗ 1 ✓ Ambience

Light [22] ✗ 2 ✓ Ambience

GPS [33] ✗ 10 ✓ Ambience

Temperature (T) [38] ✗ instant ✗ Ambience

Precision Gas (G) [38] ✗ instant ✗ Ambience

Humidity (H) [38] ✗ instant ✗ Ambience

Altitude (A) [38] ✗ instant ✗ Ambience

THGA [38] ✗ instant ✗ Ambience

Accelerometer (TTP) ✓ 0.6–1.5 ✓ Device

In summary, our solution presents a new approach in tackling the Mafia
attack with promising initial results in terms of security, efficiency and usability.
Being orthogonal ways to solve the same problem, TTP and ambient-sensor-
based solutions could potentially be combined to achieve even better results. We
leave this as a subject for further investigation in future.

6 Further Related Works

In this section, we present some other related works that either use Tap gesture,
or accelerometer sensor data for other security purposes, and explain how TTP
differs from them.

Bump. Using the tap gesture to establish device to device communication has
been suggested before. Bump11 is probably the most well-known example in this
category. Two users bumps their mobile phones together to exchange contacts,
photos and files. Each phone sends a set of data to a remote server, including
the device’s location (via GPS), the IP address, the timestamp of bumping and
the accelerometer measurement. The server matches the devices based on the
received data and transfers the data between the two matched devices. Bump
and TTP are clearly distinct as they solve different problems and they assume
different threat models. Our threat model assumes a malicious reader, whereas in
the Bump model, the two devices bumped to each other are assumed to be both
legitimate. Consequently, our main goal is to protect against MITM adversaries
whereas Bump’s main goal is to identify devices being bumped together. In fact,
it has been shown that Bump is vulnerable to MITM attacks [39] due to timing
issues. It is worth mentioning that privacy concerns that arise from environment
sensing also apply to Bump since at least the locations and IP addresses of all
11 www.bu.mp.

www.bu.mp

36 M. Mehrnezhad et al.

users in the system are communicated with the Bump server each time the app
is used. Since January 2014, Bump has been discontinued with all apps removed
from App Store and Google Play [31].

Tap Identification Proposals. Performing a tap gesture in order to synchro-
nise multiple devices has been proposed in Synchronous Gestures [24]. Tap iden-
tification using mobile accelerometer is another problem which could also be
applied for security purposes. For example Tap-Wave-Rub [30] suggests a sys-
tem for malware prevention for smarphones. Although similar sensors are used
in these proposals, they are in general orthogonal to our solution since they are
designed to solve an identification problem for legitimate devices, whereas our
solution is designed to resist Mafia attacks in an environment where one of the
devices behaves maliciously. Consequently, these solutions can be used alongside
our proposal to provide a system in which tapping is used to both unlock the
device and secure the payment.

Shake to Pair. The idea of shaking two devices for device pairing has been
suggested by multiple works [15,27,28,34–36]. While both TTP and the men-
tioned works use accelerometer, the amount of entropy produced by shaking,
the eventual application, the threat model, and the problem solved by these
works are all different from ours. In these works, the user needs to shake the two
devices together for a while until both devices generate and agree on a shared
key, whereas in our work we do not aim to generate shared keys and we only
need the user to tap her device to the reader twice. Device pairing, and more
generally key exchange cannot prevent Mafia attacks due to the involvement of
the malicious reader. Device pairing and securing NFC payments are distinct
security problems. While the former has been explored by researchers for a long
time [17,25,29], the latter is less explored. However, with the impending global
deployment of NFC payments, we believe the security of NFC payments deserves
more attention by the security community.

7 Conclusion

In this paper, we have proposed a simple and effective solution, called “Tap-Tap
and Pay” (TTP), to prevent the Mafia attack in NFC payment by sing mobile
sensors. Our solution leverages the characteristics of vibration when an NFC
card is physically tapped on an NFC reader. We observed that the accelerometer
measurements produced by both devices were closely correlated within the same
tapping, while they were different if obtained from different tapping events. The
experimental results and the user feedback suggest the practical feasibility of the
proposed solution. As compared with previous ambient-sensor based solutions,
ours has the advantage that it works even when the attacker’s reader and the
legitimate reader are in nearby locations or share similar ambient environments.

The TTP solution can be easily integrated into existing EMV standards and
requires minimal infrastructural change to the EMV system. The structure of
the payment protocol remains the same; only an extra string of accelerome-
ter measurement is added in the transmitted message. In terms of hardware,

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 37

deploying TTP requires the integration of accelerometer sensors in contactless
readers. This can be done progressively by equipping the next generation of the
readers with accelerometer sensors which are quite inexpensive (e.g., iPhone 4
accelerometers are estimated to cost 65 cents each [23]). Furthermore, TTP can
be rolled out gradually since the protocols remain backward compatible.

In future work, we plan to investigate how to further improve system perfor-
mance by e.g., combining different sensor measurements and using more precise
sensors on newer mobile phones. Moreover, it will also be interesting to explore
if it is feasible to apply TTP to other NFC-based payment solutions such as
NFC-enabled credit/debit cards, and Barclays bPay band12 to defend against
the Mafia attack by retrofitting accelerometers to such devices.

Acknowledgements. We thank all the participants who contributed to our experi-
ments. We also thank the anonymous reviewers of this paper. The second and the third
authors are supported by ERC Starting Grant No. 306994.

References

1. Book 2 - Security and Key Management (2011). http://www.emvco.com/
specifications.aspx?id=223

2. International Organization for Standardization, BS ISO/IEC 14443–
1:2008+A1:2012 Identification cards. Contactless integrated circuit cards.
Proximity cards. Physical characteristics (2012). http://www.bsol.bsigroup.com

3. International Organization for Standardization, BS ISO/IEC 14443–
2:2010+A2:2012 Identification cards. Contactless integrated circuit cards.
Proximity cards. Radio frequency power and signal interface (2012). http://www.
bsol.bsigroup.com

4. International Organization for Standardization, BS ISO/IEC 7816–4:2013, Identi-
fication cards. Integrated circuit cards. Organization, security and commands for
interchange (2013). http://www.bsol.bsigroup.com

5. EMV Acquirer and Terminal Security Guidelines (2014). http://www.emvco.com/
specifications.aspx?id=71

6. EMV Issuer and Application Security Guidelines (2014). http://www.emvco.com/
specifications.aspx?id=71

7. International Organization for Standardization, BS ISO/IEC 14443–
3:2011+A6:2014 Identification cards. Contactless integrated circuit cards. Proximity
cards. Initialization and anticollision (2014). http://www.bsol.bsigroup.com

8. International Organization for Standardization, BS ISO/IEC 14443–
4:2008+A4:2014 Identification cards. Contactless integrated circuit cards.
Proximity cards. Transmission protocol (2014). http://www.bsol.bsigroup.com

9. Mobile payment strategies: Remote, contactless & money transfer 2014–2018. Mar-
ket leading report by Juniper Research, July 2014. http://www.juniperresearch.
com/reports.php?id=726

10. EMV Contactless Specifications for Payment Systems, Book A: Architecture and
General Requirements (2015). http://www.emvco.com/specifications.aspx?id=21

12 www.bpayband.co.uk.

http://www.emvco.com/specifications.aspx?id=223
http://www.emvco.com/specifications.aspx?id=223
http://www.bsol.bsigroup.com
http://www.bsol.bsigroup.com
http://www.bsol.bsigroup.com
http://www.bsol.bsigroup.com
http://www.emvco.com/specifications.aspx?id=71
http://www.emvco.com/specifications.aspx?id=71
http://www.emvco.com/specifications.aspx?id=71
http://www.emvco.com/specifications.aspx?id=71
http://www.bsol.bsigroup.com
http://www.bsol.bsigroup.com
http://www.juniperresearch.com/reports.php?id=726
http://www.juniperresearch.com/reports.php?id=726
http://www.emvco.com/specifications.aspx?id=21
www.bpayband.co.uk

38 M. Mehrnezhad et al.

11. EMV Contactless Specifications for Payment Systems, Book B: Entry Point (2015).
http://www.emvco.com/specifications.aspx?id=21

12. EMV Contactless Specifications for Payment Systems, Book C2: Kernel 2 Specifi-
cation (2015). http://www.emvco.com/specifications.aspx?id=21

13. EMV Contactless Specifications for Payment Systems, Book C3: Kernel 3 Specifi-
cation (2015). http://www.emvco.com/specifications.aspx?id=21

14. EMV Contactless Specifications for Payment Systems, Book D: Contactless Com-
munication Protocol (2015). http://www.emvco.com/specifications.aspx?id=21

15. Bichler, D., Stromberg, G., Huemer, M., Löw, M.: Key generation based on accel-
eration data of shaking processes. In: Krumm, J., Abowd, G.D., Seneviratne, A.,
Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 304–317. Springer, Heidel-
berg (2007)

16. Brands, S., Chaum, D.: Distance bounding protocols. In: Helleseth, T. (ed.) EURO-
CRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994)

17. Chong, M.K., Gellersen, H.: How users associate wireless devices. In: Proceedingsof
the SIGCHI Conference on Human Factors in Computing Systems, CHI 2011, pp.
1909–1918. ACM, New York, (2011)

18. Czeskis, A., Koscher, K., Smith, J.R., Kohno, T.: RFIDs and secret hand-
shakes: defending against ghost-and-leech attacks and unauthorized reads with
contextawarecommunications. In: Proceedings of the 15th ACM conference on
Computerand communications security, pp. 479–490. ACM (2008)

19. Drimer, S., Murdoch, S.J.: Keep your enemies close: distance bounding against
smartcard relay attacks. In: Proceedings of 16th USENIX Security Symposium
on USENIX Security Symposium, SS 2007, pp. 7:1–7:16. USENIX Association,
Berkeley (2007)

20. Emms, M., van Moorsel, A.: Practical attack on contactless payment cards. In:
HCI2011 Workshop-Heath, Wealth and Identity Theft (2011)

21. Francis, L., Hancke, G.P., Mayes, K., Markantonakis, K.: Practical relay attack on
contactless transactions by using nfc mobile phones. In: IACR Cryptology ePrint
Archive, p. 618 (2011)

22. Halevi, T., Ma, D., Saxena, N., Xiang, T.: Secure proximity detection for nfc
devices based on ambient sensor data. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 379–396. Springer, Heidelberg (2012)

23. Hesseldahl, A.: Apple iPhone 4 parts cost about $188. Bloomberg Busi-
ness, June 2010. http://www.bloomberg.com/bw/technology/content/jun2010/
tc20100627 763714.htm

24. Hinckley, K.: Synchronous gestures for multiple persons and computers. In: Pro-
ceedings of the 16th Annual ACM Symposium on User Interface Software and
Technology, UIST 2003, pp. 149–158. ACM, New York (2003)

25. Ion, I., Langheinrich, M., Kumaraguru, P., Čapkun, S.: Influence of user perception,
security needs, and social factors on device pairing method choices. In: Proceedings
of the Sixth Symposium on Usable Privacy and Security, SOUPS 2010, pp. 6:1–
6:13. ACM, New York (2010)

26. Keogh, E.J., Pazzani, M.J.: Derivative dynamic time warping. In: The 1st SIAM
International Conference on Data Mining (SDM-2001). SIAM, Chicago (2001)

27. Kirovski, D., Sinclair, M., Wilson, D.: The martini synch. Technical report MSR-
TR-2007-123, Microsoft Research, September 2007

28. Kirovski, D., Sinclair, M., Wilson, D.: The martini synch: device pairing via joint
quantization. In: IEEE International Symposium on Information Theory, 2007.
ISIT 2007, pp. 466–470, June 2007

http://www.emvco.com/specifications.aspx?id=21
http://www.emvco.com/specifications.aspx?id=21
http://www.emvco.com/specifications.aspx?id=21
http://www.emvco.com/specifications.aspx?id=21
http://www.bloomberg.com/bw/technology/content/jun2010/tc20100627_763714.htm
http://www.bloomberg.com/bw/technology/content/jun2010/tc20100627_763714.htm

Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment 39

29. Kobsa, A., Sonawalla, R., Tsudik, G., Uzun, E., Wang, Y.: Serial hook-ups: a
comparative usability study of secure device pairing methods. In: Proceedings of
the 5th Symposium on Usable Privacy and Security, SOUPS 2009, pp. 10:1–10:12.
ACM, New York (2009)

30. Li, H., Ma, D., Saxena, N., Shrestha, B., Zhu, Y.: Tap-Wave-Rub: lightweight mal-
ware prevention for smartphones using intuitive human gestures. In: Proceedings
of the Sixth ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec 2013, pp. 25–30. ACM, New York (2013)

31. Lieb, D.: All good things (2014). http://blog.bu.mp/post/71781606704/
all-good-things

32. Liu, J., Zhong, L., Wickramasuriya, J., Vasudevan, V.: uWave: accelerometer-based
personalized gesture recognition and its applications. Pervasive Mob. Comput.
5(6), 657–675 (2009)

33. Ma, D., Saxena, N., Xiang, T., Zhu, Y.: Location-aware and safer cards: enhancing
RFID security and privacy via location sensing. IEEE Trans. Dependable Secure
Comput. 10(2), 57–69 (2013)

34. Mayrhofer, R.: The candidate key protocol for generating secret shared keys from
similar sensor data streams. In: Stajano, F., Meadows, C., Capkun, S., Moore, T.
(eds.) ESAS 2007. LNCS, vol. 4572, pp. 1–15. Springer, Heidelberg (2007)

35. Mayrhofer, R., Gellersen, H.-W.: Shake well before use: authentication based on
accelerometer data. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Per-
vasive 2007. LNCS, vol. 4480, pp. 144–161. Springer, Heidelberg (2007)

36. Mayrhofer, R., Gellersen, H.: Shake well before use: intuitive and secure pairing of
mobile devices. IEEE Trans. Mob. Comput. 8(6), 792–806 (2009)

37. Saxena, N., Voris, J.: Still and silent: motion detection for enhanced RFID security
and privacy without changing the usage model. In: Ors Yalcin, S.B. (ed.) RFIDSec
2010. LNCS, vol. 6370, pp. 2–21. Springer, Heidelberg (2010)

38. Shrestha, B., Saxena, N., Truong, H.T.T., Asokan, N.: Drone to the rescue: relay-
resilient authentication using ambient multi-sensing. In: Christin, N., Safavi-Naini,
R. (eds.) FC 2014. LNCS, vol. 8437, pp. 344–359. Springer, Heidelberg (2014)

39. Studer, A., Passaro, T., Bauer, L.: Don’t bump, shake on it: the exploitation of
a popular accelerometer-based smart phone exchange and its secure replacement.
In: Proceedings of the 27th Annual Computer Security Applications Conference,
ACSAC 2011, pp. 333–342. ACM, New York (2011)

http://blog.bu.mp/post/71781606704/all-good-things
http://blog.bu.mp/post/71781606704/all-good-things

Protocol and API

Robust Authenticated Key Exchange
Using Passwords and Identity-Based Signatures

Jung Yeon Hwang1, Seung-Hyun Kim1, Daeseon Choi2, Seung-Hun Jin1,
and Boyeon Song3(B)

1 Electronics and Telecommunications Research Institute (ETRI), Daejeon, Korea
{videmot,ayo,jinsh}@etri.re.kr

2 Department of Medical Information, Kongju University, Nonsan-si, Korea
sunchoi@kongju.ac.kr

3 Korea Institute of Science and Technology Information (KISTI), Daejeon, Korea
bysong@kisti.re.kr

Abstract. In the paper we propose new authenticated key exchange
(AKE) protocols from a combination of identity-based signature (IBS)
and a password-based authentication. The proposed protocols allows for
a client to execute a convenient authentication by using only a human-
memorable password and a server’s identity. The use of an IBS gives
security enhancements against threats from password leakage. A server
authentication method is based on an IBS, which is independent of a
password shared with a client. Even if a password is revealed on the side
of a client protected poorly, server impersonation can be prevented effec-
tively. In addition, our protocols have resilience to server compromise by
using ‘password verification data’, not a true password at the server. An
adversary cannot use the data revealed from server compromise directly
to impersonate a client without additional off-line dictionary attacks. We
emphasize that most of existing password-based AKE protocols are vul-
nerable to subsequent attacks after password leakage.

Our first hybrid AKE protocol is constructed using concrete parame-
ters from discrete logarithm based groups. It is designed to give resilience
to server compromise. Our second protocol is a simplified version of the
first protocol where the computation cost of a client is cheap. Gener-
alizing the basic protocols, we present a modular method to convert
Diffie-Hellman key exchange into an AKE protocol based on a password
and an IBS. Finally, we give performance analysis for our protocols and
comparison among known hybrid AKE protocols and ours. As shown
later in the paper, our protocols provide better performance. Our exper-
imental results show that the proposed protocols run in at most 20 ms.
They can be widely applied for information security applications.

Keywords: Authentication · Password · Identity-based signature · Key
exchange

This work was supported by the ICT R&D program of MSIP/IITP [B1206-15-1007,
Development of Universal Authentication Platform Technology with Context-Aware
Multi-Factor Authentication and Digital Signature].

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 43–69, 2015.
DOI: 10.1007/978-3-319-27152-1 3

44 J.Y. Hwang et al.

1 Introduction

Explosive growth of computing environment is opening the era of big data. Appli-
cation domains of the pervasive computing are connected densely, and entities
with smart devices exchange information frequently in the advanced network.
Massive amounts of data can be collected from various sources and processed
for user-centric services. Furthermore, automated analysis and deep learning
technologies are actively developed to extract highly valuable knowledge from
a huge amount of data. In the upcoming future, a user will be able to enjoy
unprecedented convenience timely from the advanced information service.

These services will be available when not only feasibility but also security
properties are well provided. For secure data transmission between entities,
key exchange is one of the most crucial and fundamental protocols. That is,
to access valuable data resources on a server (or a service provider), a client
should establish a temporal digital key with the server securely. The shared
key builds a secure channel between a client and a server, which provides secu-
rity properties including data integrity and confidentiality. Diffie-Hellman (DH)
key exchange (KE) [19] is a well-known popular protocol for key establishment
between two entities.

In general, a network used to establish a shared key is public and insecure,
where an adversary may control exchanged messages in an adaptive way. An
adversary is able to perform impersonation attacks to a user by intercepting
and/or modifying messages. Thus, authentication of legal participants is neces-
sary for secure key exchange. An authenticated key exchange (AKE) protocol
has been widely studied and developed for a long time, to achieve key establish-
ment and authentication of participants over a public network. AKE is mainly
constructed by combining the DH KE and an authentication method, for which
entities’ computing capability and users’ convenience should be considered. In a
client-server model, a client is a typically human who has a device(s) with lim-
ited computing resources, while a server is a powerful machine which can store
high-entropy secret numbers.

In a client-server model, a password is a commonly used authentication fac-
tor, because a client can generate and memorize it easily. In practice, most of IT
services use ID/password as a log-in method. To construct a secure password-
based AKE (PAKE) lots of research have been performed [7,32,40]. As a pass-
word used for authentication is low-entropy, PAKE is vulnerable to dictionary
attacks which systematically check all possible passwords from a password space
of small size until the correct one is found. Dictionary attacks can be mounted
in two types, i.e., on-line and off-line. An on-line dictionary attack is mounted
by using guessed passwords. It is easy to prevent it just by limiting the number
of on-line password trials. An off-line dictionary attack is performed without
interaction with a server, when some information to confirm a true password is
obtained. Thus, to resist an off-line dictionary attack, a PAKE protocol makes
sure not to reveal any information related to a password. when sending a message
including the password.

Robust Authenticated Key Exchange Using Passwords and IBS 45

For this reason, Encrypted Key Exchange (EKE) was introduced in [7], where
at least one party encrypts a key value using a password and sends it to a second
party who decrypts it to negotiate a shared key with the first party. Since then,
EKE has been modified and extended in various ways. Some PAKE protocols
have been developed as international standards by IEEE [31], IETF, ISO/IEC
JTC 1/SC 27 [32], and ITU-T [33]. Most PAKE protocols including EKE are
constructed in a shared-password authentication model where a client and a
server identifies each other by using a shared password (or variant of a pass-
word). Intrinsically, the model is vulnerable to threats from password exposure,
in the sense that a password stolen from one party can be used to impersonate the
other party. There are various possibilities to leak a password, for example, by
malware, hacking, shoulder surfing attacks or from lost/stolen portable devices.1

Since a client’s device may be insufficiently protected, password exposure could
be more realistic. When a password of a client is revealed, it is inevitable that
an adversary impersonate the client. But, if a server can be impersonated to
the client, it will bring more dangerous and serious risks. For example, mali-
cious modification of critical information such as clients’ financial services or
healthcare will be possible.

As a solution to the above issue, a hybrid AKE has been introduced which is
constructed in conjunction of an asymmetric encryption scheme and password-
based authentication. The protocols by [23,25] make use of a public key encryp-
tion, and the protocol of [53] is based on an identity-based encryption (IBE).
The intuition to prevent server impersonation attacks is to use an independent
decryption key for a server. For password-based authentication, the protocols
take a simple approach to encrypt a password with a server’s public key. To
guarantee confidentiality on a password, they apply a highly secure encryption
to meet so-called CCA-security.2

Hybrid protocols based on IBE may be preferable in a client-server model
because a client is assumed to be a human who can merely memorize limited
information such as a password or server’s ID. However, CCA-secure IBE encryp-
tion entails relatively complex computation of parameters. It will impose expen-
sive computation or communication costs on a client side using a device with a
limited resource. In addition, the above-mentioned hybrid protocols do not con-
sider server compromise. A server manages a password file for a large number of
clients. The file contains secret values to be used to authenticate clients. If the
password file is revealed, it will cause disastrous results, because any client can
be immediately subject to impersonation.

1.1 Our Contributions

In the paper, we propose new efficient yet robust AKE protocols from a combina-
tion of a password-based authentication and an identity-based signature (IBS).
1 These are different from dictionary attacks to reveal a password.
2 The notion of CCA security means that a PKE scheme should reveal no meaningful

information about the original message from public ciphertexts to attackers who can
probe the decryption oracle with chosen ciphertexts.

46 J.Y. Hwang et al.

For distinction, they are called IBS-PAKE protocols. An IBS can be used by not
only a powerful server but also a client, while a client is enough to memorize a
password to invoke the protocol. The adoption of an IBS gives desired solutions
to party compromise issues as follows.

– Basically, a server executes an independent authentication based on an IBS.
Even if a password is revealed from a client, server impersonation is impossible
without access to the server’s IBS key. It will be reasonable for a server to
manage a sinlge key secretly, rather than the whole password file of large size.

– In an IBS scheme, a public key may be defined by an arbitrary public string
such as an e-mail address or a company/brand name. A client can authenticate
a server by verifying a server’s IBS with a server’s publicly known identity. For
himself or herself, the client executes password-based authentication. Thus he
or she can do a convenient authentication based on only a human-memorable
password and a server’s identity without holding a high entropy secret key.

– Finally, our protocol allows for a client to use an IBS by accessing an IBS
key stored at a server. More concretely, the client receives an encryption of
the IBS key from the server and decrypt it with his or her password. The
client should know the original password to obtain the correct signing key. It
involves a kind of a knowledge proof of a password. This idea can be applied to
achieve resilience to server compromise [24]. Assume that the knowledge proof
is required to a client for each login. An adversary cannot use the password file
stolen the server directly for impersonation attacks but additionally making
an off-line dictionary attack to extract clients’ real passwords.

In order to construct an IBS-PAKE protocol, we take a modular approach
first, that is, present two modular methods to yield IBS-PAKE protocols gener-
ically when a symmetric PAKE and an IBS are given. The first method is
designed to achieve resilience to server compromise. The underlying idea to
achieve resilience to server compromise is similar to that of [24] based on a nor-
mal signature scheme. However, there is a difference between the ideas because
a public verification key, i.e., a client’s identity is known to an adversary in our
protocol while hidden in [24]. Our second one is a simplified version of the first
method, to handle the situation that server compromise is not mainly considered
due to strong security at the side of a server. Compared to the first method, it
can run in a single round which consists of two passes independently sent from
a client and a server. In addition, the computation cost at the side of a client is
quite cheap.

In the modular methods, IBS schemes can be selected flexibly and indepen-
dently according to a design strategy. For example, we can pick an IBS scheme
with low signing (or verifying) cost for a client. Also, an IBS-PAKE protocol
can be constructed from more realistic hardness assumptions. As instances of
IBS-PAKE resulting from the modular methods, two protocols are presented by
using concrete discrete logarithm parameters. They are built on the IBS scheme
constructed from the Schnorr signature.

Finally, we give performance analysis for our protocols and comparison
among known AKE protocols using an identity-based cryptosystem and a

Robust Authenticated Key Exchange Using Passwords and IBS 47

password [53], and ours. As shown in the comparison table, our AKE protocols
provide better performance with a robust security property. We also present
experimental results to show that the proposed protocol runs in at most 20 ms.

1.2 Related Work

Since the introduction of Diffie-Hellman KE protocol [19], KE protocols have
been widely studied to achieve various authentication goals [10,11,37]. AKE
protocols have been developed largely according to two authentication types,
i.e., symmetric and asymmetric. Symmetric authentication type assumes that
participants share a secret key before running a protocol [10,11]. A password-
based KE (PAKE) protocol is a primary example of symmetric authentication
where a client and a server share a password as an authentication factor. The for-
mal treatment for PAKE was given in [8,10]. Refer to [40] for a survey of PAKE.
Some research proposes PAKE protocols with security under standard assump-
tions [3,35]. Recently, research on PAKE protocols [3] focuses on meeting highly
theoretical security requirement such as UC model [16]. Asymmetric authenti-
cation type assumes that a participant uses a secret key and its corresponding
public key. The secret key is kept secret by the participant while the public key
is set to be public and so anyone can access it. Since the secret key is a random
long bit string, a client needs a mean to store it. For example, we can consider
KE based on a standard public key digital signature [37] and identity-based KE
[17]. A hybrid authentication type combines symmetric and asymmetric types to
gain merits of the two types [25]. In contrast to the symmetric and asymmetric
types, hybrid authentication and KE have not been studied intensively.

1.3 Organization

The remainder of this paper is organized as follows. In Sect. 2, we briefly review
some preliminaries. In Sect. 3 we give a security model for an IBS-PAKE. In
Sect. 4 we present an IBS scheme based on Schnorr signature. In Sect. 5 we
present modular methods to yield IBS-PAKE protocols, and also concrete IBS-
PAKE protocols using discrete logarithm parameters and prove the security.
In Sect. 6 we give a performance analysis and comparison among known AKE
protocols. Finally, we conclude in Sect. 7.

2 Preliminaries

In this section, we review some background knowledge for our construction.
Let poly(λ) denote a polynomial in variable λ. We define that ν(λ) is a neg-

ligible function if ν(λ) < 1/poly(λ) for any poly(λ) and sufficiently large λ. We
denote by A

?= B the equality test between two group elements, A and B. We
denote by s

R← S the operation that picks an element s of set S uniformly at
random. We denote by ‘||’ the concatenation operation on strings.

48 J.Y. Hwang et al.

Computational Assumptions. For the security of our construction, compu-
tational assumptions such as discrete logarithm, decisional Diffie-Hellman, and
computational Diffie-Hellman assumptions, are needed. For more details, refer
to Appendix.

Symmetric Encryption. A symmetric encryption (SE) scheme consists of two
functions, E and D associated to key space KSE={0, 1}λ.

– Ek(m). It takes as input a key k ∈ KSE and a message m ∈ {0, 1}n and
outputs a ciphertext χ ∈ {0, 1}n.

– Dk(χ). It takes as input a key k and a ciphertext χ ∈ {0, 1}n, and then outputs
a message m ∈ {0, 1}n.

To define one-time indistinguishability for SE, we consider the following game:

Challenge : (m0,m1, η) ← A(1λ)
Response : k

R← KSE , b
R← {0, 1}, χ∗ ← Ek(mb)

Guess : b′ ← A(η, χ∗)

Assume that m0 and m1 has a same length. We define AdvIND-OTK
A,SE (t)= |Pr[b =

b′] − 1/2|, where A runs in time t, and AdvIND-OTK
SE (t) = maxA[AdvIND-OTK

A,SE (t)]
where the maximum is taken over all A. We say that SE is one-time secure if
AdvIND-OTK

SE (t) is negligible.

Identity-Based Signature. An IBS scheme consists of four algorithms for
setup, private key extraction, signing, and verifying [9,45]. These are denoted
by Setup, KeyExt, Sign, and Vrfy, respectively.

– Setup takes as input a security parameter λ, and outputs a master secret key,
msk and a set of public parameters, pp.

– KeyExt takes as input (pp,msk) and an identity ID ∈ {0, 1}�id for �id ∈ N, and
then outputs a private key, skID.

– Sign takes as input pp, an identity ID, a key skID, a message m ∈ {0, 1}∗,
and then outputs a signature, σ.

– Vrfy takes as input pp, ID, a signature σ, and a message m, then outputs 0
(meaning ‘invalid’) or 1 (meaning ‘valid’).

We say that an IBS scheme is correct if the following condition holds:
1 ← Vrfy(pp, ID, σ,m) for any pair of (m, ID) where (pp,msk) ← Setup(1κ),
skID ← KeyExt(pp,msk, ID), and σ ← Sign(pp, ID, skID,m).

Next we consider a game to define the existential unforgeability under chosen
message and identity attacks (CMIDA) for IBS = (Setup, KeyExt, Sign, Vrfy). The
game consists of Setup, Query, and Forge phases. Let EQ and SQ denote
an extraction query and a signing query, respectively. In the Query phase, F is
allowed to make extraction and signing queries to the key extraction and signing
oracles adaptively.

Robust Authenticated Key Exchange Using Passwords and IBS 49

Setup: (pp,msk) ← Setup(1κ)
Query : EQ(ID) ← F , skID ← KeyExt(pp,msk, ID)

SQ(ID′,m) ← F , σ ← Sign(pp, ID′, skID′ ,m)
Forge : (ID∗,m∗, σ∗) ← F

Let LEx and LSign denote a list of all extraction and signing queries that F
have made. We say that the forgery, (ID∗,m∗, σ∗) is valid if ID∗ /∈ LEx and
(ID∗,m∗) /∈ LSign, and Vrfy(pp, ID∗, σ∗,m∗)=1. The EUF-CMIDA-advantage
of adversary F , denoted by AdvEUF-CMIDA

IBS (F), is defined as the probability that
F outputs a valid forgery in the above experiment. That is, AdvEUF-CMIDA

F,IBS (t)=
Pr[ID∗ /∈ LEx∧Vrfy(pp,m∗, ID∗, σ∗) = 1], where F runs in time t. We also define
that AdvEUF-CMIDA

IBS (t) = maxF [AdvEUF-CMIDA
F,IBS (t)] where the maximum is taken

over all F . We say that IBS is existentially unforgeable if AdvEUF-CMIDA
IBS (t) is

negligible.

Various IBS schemes have been proposed from various mathematical para-
meters such as DL, composite numbers, and bilinear maps [9,45].

3 Security Model

We present a security model for a hybrid AKE protocol based on a password
and an IBS by modifying known security models for AKE such as [10,24,37]
and extending the model of [15,53]. Our model captures security by considering
resilience to server compromise.

Participants. Let Clients and Servers denote sets of clients and servers,
respectively. Let U be a set of all principals and defined by Clients ∪ Servers.
The number of principals is bounded by a polynomial in a security parameter.
We assume that each principal is labeled by a unique identity of a �id-bit string
for a positive integer �id. For example, IDC and IDS are used to denote client
C and server S, respectively.

In the model, we assume that there is a trusted third party, called KGA
(Key Generation Authority) who manages the key extraction algorithm, KeyExt
of an IBS scheme and keeps the master secret key, msk.3 Whenever a principal
requests, KGA issues a long-term secret signing key corresponding to the iden-
tity of the principal. A principal with ID obtains a long-term secret signing key
skID from KGA. We note that a client is enough to use only a human-memorable
password to execute the protocol. The password or its verifier is shared between
a client and a server. However, though the client holds no long-term secret key of
high-entropy, he or she can use the IBS key transmitted from the server during
a run of a protocol.

3 To prevent misuse of the master secret key, the authority of KGA can be distributed
into multiple authorities by using known threshold techniques [4,12].

50 J.Y. Hwang et al.

Initialization. In the initialization phase, Setup, Extract, and Registration
processes are executed. Setup generates global system parameters and keys
including the master secret key, msk of IBS. The global system parameters,
denoted by pp and identities, IDU are publicly known to a client and a server,
and also an adversary. Through Extract, a principal obtains a signing key corre-
sponding to an identity. An IBS generated by the signing key can be verified by
the identity. We assume that a principal is identified in a pre-defined way before
issuing a key.

Whenever a client of IDC wants to join as a valid user (of a service) to a
server of IDS , Registration is executed between them. Let DPW denote a pass-
word space, i.e., a dictionary of passwords. Assume that a password, pwC ∈ DPW

is generated by the client according to a pre-defined password creation policy.
After completing the registration, the server stores a password verifier, pvC which
is derived from pwC . For example, pvC can be computed from a hash function
or some deterministic function with input pwC . Let πS [C] = (IDC , pvC) and
PFS = {πS [C]}C∈Clients, which is called a password file, including all authen-
tication information registered for clients.

Protocol Execution. A principal is allowed to invoke the protocol (multiple
times) with a partner principal to establish a session key. It can be run in a
concurrent way. Multiple executions of a principal is modeled via instance. Let
s be a positive integer. The sth instance of a principal with IDU is represented
by Πs

U where U ∈ U = Clients ∪ Servers. The index, s sequentially increases
according to the number of executions of the principal [11,37].

Partnering. A session id of instance Πs
U is defined as the concatenation of all

transcripts sent and received between an instance of a client and an instance of a
server during the execution of the protocol. For U ∈ U , let sids

U denote a session
id for instance sids

U .
Partner identifier pids

U for instance Πs
U is defined by a set of the identities of

protocol participants who intend to establish a session key. We say that instance
Πs

U accepts when it computes a session key, sks
U . Let accs

U denote an boolean
variable to show whether a given instance has accepted or not. Assume that, if
an instance computes a session key, sks

U , it outputs (sids
U , sks

U). For C ∈ Clients
and S ∈ Servers, we say that Πi

C and Πj
S are partnered if and only if (1)

pidi
C = pidj

S ; (2) sidi
C = sidj

S and (3) they have both accepted.

Adversarial model. An adversary A is a PPT algorithm that has complete
control over all the communications. Attacks that A can make are modeled via
the following queries.

– Extract(IDU): By this query, A is given the long-term secret key of IDU where
U ∈ U = Clients ∪ Servers.

– Execute(IDC , IDS): A is given the complete transcripts of an honest execution
between C and S. It models passive attacks eavesdropping an execution of the
protocol.

Robust Authenticated Key Exchange Using Passwords and IBS 51

– Send(Πs
U ,m): A is given the response generated by Πs

U according to the pro-
tocol, when m is given to Πs

U . It models an active attack where the adversary
controls messages elaborately. By this query, a message m can be sent to
instance Πs

U .
– Reveal(Πs

U): A is given the session key that instance Πs
U has generated. It

models a known key attack.
– Corrupt(IDU): It models exposure of the long-term secret key held by IDU

where U ∈ U . A is given PFS = {πS [C]}C∈ Clients if U ∈ Servers, and
otherwise pwU .

– Test(Πs
U): It is used to define the advantage of A. When A asks this query

to an instance Πs
U , a random bit b is chosen; if b = 1 then the session key is

returned. Otherwise, a random string is drawn from the space of session keys,
and returned. A is allowed to make a Test query once, at any time.

In the model we consider two types of adversaries according to their attack types.
The attack types are simulated by the queries issued by an adversary. A passive
adversary is allowed to issue Execute, Reveal, Corrupt, and Test queries, while an
active adversary is additionally allowed to issue Send and Extract queries. Even
though Execute query can be using Send queries repeatedly, we use Execute query
for more concrete analysis.

Freshness. An instance Πs
U is said fresh (or holds a fresh key ssk) if the

following conditions hold:

1. Reveal(Πs
U) has not been asked for all U ∈ pids

U ,
2. Corrupt(IDU ′) has not been asked for U ′ ∈ pids

U .

An instance Πs
U is said semi-fresh (or holds a semi-fresh key ssk) if the

following conditions hold:

1. Reveal(Πs
U) has not been asked for all U ∈ pids

U ,
2. Corrupt(IDU) has not been asked, and
3. Corrupt(IDS) has not been asked for U ∈ Clients.

AKE Security. Let P be an IBS-PAKE protocol and A an adversary to attack
it. A is allowed to make oracle queries in an adaptive way and receives the
corresponding responses from oracles. At some point during the game a Test
query is asked to a fresh or semi-fresh oracle, and A may continue to make other
queries. Finally A outputs its guess b′ for the bit b used by the Test oracle, and
terminates. Let Succ denote an event that A correctly guesses the bit b. The
advantages of A must be measured in terms of the security parameter λ.

The IBS-PAKE-advantage, AdvIBS-PAKE
P (A) of A is defined as the probability

that A correctly guesses the bit in the above experiment. That is, AdvIBS-PAKE
A,P

(λ) = 2 · Pr[Succ] − 1, where A runs in time t. We also define that AdvIBS-PAKE
P

(λ) = maxA[AdvIBS-PAKE
A,P (λ)] where the maximum is taken over all A.

52 J.Y. Hwang et al.

Let |DPW | be the size of the password space. Let qs be the maximum number
of Send queries. We say a protocol P is a secure IBS-PAKE protocol if the fol-
lowing condition hold: For a negligible function ε(λ), AdvIBS-PAKE

P (λ) is bounded
by qS

|DPW | + ε(λ).

4 Our Identity-Based Signature Scheme

In this section, we present an IBS scheme that works with discrete logarithm
parameters. It will be used for our AKE as a building block in the next section.

– Setup. For a given security λ, it generates a cyclic group, G of prime order
q and a random generator, g of G. It picks θ ∈ Z

∗
q uniformly at random and

computes u = gθ. It also generates independent cryptographic hash functions,
H : {0, 1}∗ → {0, 1}�. It outputs the system public parameters pp = (G, q, g,
u, H) and the corresponding master secret key msk = θ.

– KeyExt(pp, msk, ID). It picks r ∈ Z
∗
q uniformly at random. It computes R =

gr, w = H(ID,R), and v = r + θw (mod q). It then returns skID = (R, v).
– Sign(pp, skID, ID,m). It takes as input pp, a message m ∈ {0, 1}∗, an identity

ID and a key skID = (R, v). It picks e ∈ Z
∗
q and compute E = ge, z =

H(m, ID,E) and d = e − vz (mod q). The signature on m is σ = (d, z,R).
– Vrfy(pp, ID, σ,m). It takes as inputs pp, a message m, ID and a signature

σ = (d, z,R). It computes E′ = gd · (R · uw)z and w = H(ID,R). Finally,
it checks if z = H(m, ID,E′) holds. If the equality holds, it outputs 1, and
otherwise, 0.

The above IBS scheme is correct because we have gd ·(Rz ·uwz) = ge−(r+θw)z ·
(grz · gθwz) = ge and so z = H(m, ID,E) = H(m, ID, gd · Rz · uwz) where
w = H(ID,R) and (R = gr, v = r + θw) is generated from KeyExt for ID.

The idea behind the above construction is to combine two Schnorr signatures
[46] sequentially. Similar constructions are known in the literature [22]. Using
the DL assumption in a group G, we can formally prove the security of the above
IBS scheme, that is, existential unforgeability against adaptive chosen message
and identity attacks in the random oracle model. A proof idea is actually similar
to that of [22] with a slight modification on the so-called Forking Lemma [42].
For more details, refer to the full version of this paper. Our IBS consists of one
group element and two hash outputs, while the IBS of [22] consists of two group
elements and one hash output. Since the size of a hash output is smaller than
that of an group element, our scheme gives a shorter IBS.

5 Our IBS-PAKE Protocols

In this section, we present IBS-PAKE protocols, i.e., AKE protocols using a
password and an IBS as authentication means. First we present two generic
methods to construct IBS-PAKE protocols. We then present two concrete IBS-
PAKE protocols using DL parameters.

Robust Authenticated Key Exchange Using Passwords and IBS 53

5.1 Generic Construction

Our generic methods are presented by using two-party PAKE and an IBS in
a modular way. The first generic method gives resilience to server compromise.
That is, even if a password file is revealed from a server compromised, an adver-
sary can only obtain password verification information, not a real password.
Thus, to impersonate a client, he or she must mount an offline dictionary attack
additionally. In the protocol, an IBS scheme is used for both of a client and a
server. A server uses an IBS to authenticate itself to a client. A client uses an
IBS to prove the possession of his or her own password.

Let PAKE denote a two-party PAKE protocol. For example, we can consider
EKE [7], PAK [8], SRP, SPEKE, and AMP [32].

Assume that an IBS scheme, IBS = (Setup, KeyExt, Sign, Vrfy) and a sym-
metric encryption scheme, SE = (E ,D) are given. A client or a server obtains a
signing key from KGA running KeyExt in the initialization phase. For distinction,
a set of public parameters of IBS is denoted by ppIBS.

The protocol consists of two phases, initialization and key establishment as
follows.

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows. Let pwU ∈ DPW denote a password chosen by a user, U .

– Setup: For a given security parameter λ, it generates ppPAKE for the given
PAKE protocol. It also generates independent cryptographic hash functions,
Hi : {0, 1}∗ → {0, 1}�i for i = 1, 2, 3. It runs Setup of the IBS scheme to
generate (msk, ppIBS). It outputs the system public parameters, pp = (ppPAKE,
ppIBS, Hi=1,2,3, SE). The master secret key, msk is kept secret.

– Extract. For a given identity ID, KeyExt is run (by KGA) to output a private
key, skID. Assume that the private key is transmitted to the user ID via a
secure channel.

– Registration. A client, C generates a password, pwC according to a pre-defined
password creation policy. Let skIDC

be a signing key of C. Assume that
a secure channel is established between the client and a server, S. To reg-
ister a service, C sends (Register-Request, IDC , π1 = H1(pwC), ESK =
EH2(pwC)(skIDC

))) to the server via a secure channel.4

Key Establishment Phase. A client, C and a server, S execute a run of the
protocol to agree on a temporal key to be used for a session as follows. See Fig. 1.

1. PAKE-Client. The client C computes π1 = H1(pwC). Using π1 instead of
pwC , the client performs its part in PAKE with the following modification:
Whenever the client receives a pair of a message and a signature, (mS , σS)
from the server S, the client verifies the signature, σS on mS , that is, checks
if 1 = Vrfy(ppIBS, IDS , σS ,mS). If the signature is valid then C performs its
part of PAKE for mS . Finally, C obtains a common key K.

4 Note that a secure channel is needed because π1 = H1(pwC) or ESK =
EH2(pwC)(skIDC) can be used to mount off-line dictionary attacks by an adversary.

54 J.Y. Hwang et al.

Client C Server S
pp = {ppPAKE, ppIBS, Hi=1,2,3, SE} pp = {ppPAKE, ppIBS, Hi=1,2,3, SE}

[IDC , pwC [] IDS , skIDS
]

πS [C] = (IDC , π1 = H1(pwC),

ESK = EH2(pwC)(skIDC
))

Using π1 = H1(pwC) instead of pwC , Modified perform its part in PAKE

perform its part in PAKE Execution with the following modification:

with the following modification: of PAKE For each mS to be sent to C in PAKE,

Whenever (mS , σS) is received, with H1(pwC)−−−−−−−−−−→ σS ← Sign(ppIBS, IDS , skIDS
, mS),

if 0 = Vrfy(ppIBS, IDS , σS , mS), abort. ←−−−−−−−−−−− and then send (mS , σS).

Otherwise, perform the client’s part

for given mS in PAKE.

Output K Output K

ek = H3(K), ESK||σS = Dek(CTS) IDS ,CTS←−−−−−−−−−−− ek = H3(K), CTS = Eek(ESK||σS)

MS = IDS ||TPAKE||ESK σS ← Sign(ppIBS, IDS , skIDS
, MS),

If 0 = Vrfy(ppIBS, IDS , σS , MS), abort. MS = IDS ||TPAKE||ESK

Otherwise, skIDC
= DH2(pwC)(ESK)

σC ← Sign(ppIBS, IDC , skIDC
, MC)

where MC = IDC ||TPAKE||CTS

CTC = Eek(σC) IDC ,CTC−−−−−−−−−−−→ σC = Dek(CTC)
MC = IDC ||TPAKE||CTS

If 0 = Vrfy(ppIBS, IDC , σC , MC), abort.

Otherwise,

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = TPAKE||IDS ||CTS ||IDC ||CTC sidS = TPAKE||IDS ||CTS ||IDC ||CTC

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K)

Fig. 1. Generic construction of an IBS-PAKE protocol.

2. PAKE-Server. The server S performs its part in PAKE with the following
modification: For each mS to be sent to C in PAKE, S generates σS ←
Sign(ppIBS, IDS , skIDS

,mS), and then sends (mS , σS). Finally, S obtains a
common key K.

3. Server. Let TPAKE denote a concatenation of all transcripts generated from
a run of PAKE. S generates σS ← Sign(ppIBS, IDS , skIDS

,MS) for MS =
IDS ||TPAKE||ESK. It computes ek = H3(K) and CTS = Eek(ESK||σS), and
then sends (IDS , CTS).

4. Client. Upon receiving [IDS , CTS], the client C computes ek = H3(K)
and obtains ESK||σS = Dek(CTS). Then C checks if σS is valid, i.e.,
1 = Vrfy(ppIBS, IDS , σS ,MS) for MS = IDS ||TPAKE||ESK. If the validity does
not hold then the session is aborted. Otherwise, C computes π2 = H2(pwC)
and skIDC

= Dπ2(ESK). Using skIDC
, the client generates a signature,

σC ← Sign(ppIBS, IDC , skIDC
,MC) on MC = IDC ||TPAKE||CTS . Then the

client generates CTC = Eek(σC) and sends [IDC , CTC] to S.

Robust Authenticated Key Exchange Using Passwords and IBS 55

Finally, the client computes a secret session key, ssk = H3(pidC ||sidC ||K)
where pidC = IDC ||IDS and sidC = TPAKE||IDS ||CTS ||IDC ||CTC .

5. Server. Upon receiving [IDC , CTC], the server computes σC = Dek(CTC)
and checks if σC is valid, i.e., 1 = Vrfy(ppIBS, IDC , σC ,MC) for MC = IDC

||TPAKE||CTS . If it is not valid then the session is aborted. Otherwise, C com-
putes a secret session key ssk = H3(pidS ||sidS ||K) where pidS = IDC ||IDS

and sidS = TPAKE||IDS ||CTS ||IDC ||CTC .

In the above construction, different IBS schemes can be used for partici-
pants, to gain advantages. Assume that an IBS scheme has an efficient verifying
algorithm and another IBS scheme has an efficient signing algorithm. A client’s
performance can be significantly improved if a server and a client use the first
and the second IBS schemes, respectively.

The second generic method is a simplified version of the first method to omit
executing a knowledge proof that a client is aware of the original password. In
certain applications, a server can be managed systematically and sufficiently
protected from a well-organized security architecture. For the situation, we can
relax the security requirement on server compromise. An IBS-PAKE protocol
is constructed by eliminating the third flow of the first method. The resulting
protocol reduces the client’s computation significantly. See Fig. 3.

In the above generic methods, a server authenticates himself to a client using
two factors, i.e., a password of low entropy and an IBS of high entropy.

5.2 Instances

As instances resulting from the generic methods, we present two IBS-PAKE pro-
tocols using PAK [8] and the IBS scheme in Sect. 4. The instances are constructed
not exactly following the generic methods but with a modification where a server
use a single authentication factor, i.e., an IBS.5 The first protocol is, for short
called PWIBS-AKE. Each phase of PWIBS-AKE is given as follows.

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows. Let pwC ∈ DPW denote a password chosen by a client, C.

– Setup(λ): For a given security parameter λ, it generates a cyclic group, G of
prime order q and two random generators, g and g1 of G. It generates θ ∈
Z

∗
q uniformly at random and computes u = gθ. It also generates independent

cryptographic hash functions, H : {0, 1}∗ → {0, 1}�, H1 : {0, 1}∗ → Z
∗
q ,

Hi : {0, 1}∗ → {0, 1}�i for i = 2, 3. It outputs public parameters pp = (G, g,
g1, u, H, Hi=1,2,3) and the corresponding master secret key msk = θ.

– Extract(msk=θ, ID). For a given identity ID, it picks r ∈ Z
∗
q uniformly at

random. It computes R = gr, w = H(ID,R), and v = r + θw (mod q). It
then returns skID = (R, v). Assume that the private key is transmitted via a
secure channel.

5 It is not difficult to fix the instances to follow the generic methods.

56 J.Y. Hwang et al.

– Registration(C,S). First, a client, C generates its password, pwC according
to a pre-defined password creation policy. Also, C obtains a signing key,
skIDC

= (vC , RC) from Extract. Assume that a secure channel is established
in advance between C and S. To register a service, C sends (Register-Req,
IDC , g

−H1(pwC)
1 , EH2(pwC)(vC), RC) to the server, S over the secure channel.

The server appends πS [C] = (IDC , g
−H1(pwC)
1 , EH2(pwC)(vC), RC) to PF .

Key Establishment Phase. A client, C and a server, S execute a run
of PWIBS-AKE to agree on a temporal session key. The concrete protocol is
described as follows (See Fig. 2).

1. C picks x ∈ Z
∗
q uniformly at random and computes W = gxg

H1(pwC)
1 ∈ G

using the password, pwC . Then, C sends [IDC ,W] to S.
2. Upon receiving [IDC ,W], S picks y ∈ Z

∗
q uniformly at random and computes

Y = gy ∈ G, and also X ′ = Wg
−H1(pwC)
1 and K ′ = (X ′)y. It finds πS [C]

corresponding to IDC , i.e., [IDC , g
−H1(pwC)
1 , ESK = EH2(pwC)(vC), RC] from

a database. Using its signing key, skIDS
= (RS , vS), the server generates a

signature, σS = (dS , zS , RS) on MS = IDS ||W ||Y ||ESK, where ES = geS ,
zS = H(MS , IDS , ES) and dS = eS − vSzS (mod q) for random rS , eS ∈ Z

∗
q .

Also, using ek = H1(K ′) as an encryption key, S generates a ciphertext,
CTS = Eek(ESK||σS). Then S sends [IDS , Y , CTS] to C.

3. Upon receiving [IDS , Y , CTS], the client C computes K = Y x and ek =
H1(K), and ESK||σS = Dek(CTS). It checks if the signature, σS is valid,
i.e., the equality of zS = H(MS , IDS , gdS · (RzS

S · uwS ·zS)) holds for MS =
IDS ||W ||Y ||ESK and wS = H(IDS , RS). If the validity does not hold then
the session is aborted. Otherwise, the client computes π1 = H2(pwC) and
decrypts ESK to obtain vC = Dπ1(ESK). Using vC , the client generates
a signature share, σC = (dC , zC) where zC = H(MC , IDC , EC) and dC =
eC − vCzC (mod q) for random rC , eC ∈ Z

∗
q , MC = IDC ||W ||Y ||CTS . Let

σ′
C = (zC , dC). The client computes CTC = Eek(σ′

C). Finally, the client sends
[IDC , CTC] to S.
Then the client computes a secret session key, ssk = H3(pid||sidC ||K) where
pidC=IDC ||IDS and sidC = IDC ||W ||Y ||CTS ||CTC .

4. Upon receiving [IDC , CTC], the server decrypts CTC to obtain (zC , dC) =
σ′

C = Dek(CTC) and checks if the signature is valid, i.e., the equality of
zC = H(MC , IDC , gdC (RCuwC)zC) holds. Here RC is the value stored at the
database, and MC = IDC ||W ||Y ||CTS and wC = H(IDC , RC). If the validity
does not hold then the session is aborted. Otherwise, the server computes a
secret session key, ssk = H3(pid||sidS ||K ′) where pidS=IDC ||IDS and sidS =
IDC ||W ||Y ||CTS ||CTC .

At Step 3, σ′
C = (zC , dC) is generated by the client. It does not consist of a

full IBS because RC is not given, and thus nobody can check its validity. Instead
of an encryption of σ′

C , we can send σ′
C to the server. However, since RC is

stored at the server, the server is able to verify it. Note that RC is a global value

Robust Authenticated Key Exchange Using Passwords and IBS 57

included in all signatures generated by a client. This modification will alleviate
the computation and communication cost on the client side.

A simplified IBS-PAKE protocol can be constructed from PWIBS-AKE by
omitting a knowledge proof for an original password. The resulting protocol can
run in two independent passes. For more details, refer to the appendix.

5.3 Security Proofs

In this section we prove the security of the proposed protocols in the model of
Sect. 3. We prove that our first protocol provides AKE security and resilience to
server compromise. That is, an adversary attacking the protocol cannot obtain
useful information about session keys of fresh and semi-fresh instances with
greater advantages than that of an on-line dictionary attack.

Theorem 1. Assume that the IBS scheme, DL-IBS is used for PWIBS-AKE.
Also, assume that the CDH assumption holds in G. The proposed AKE protocol,
PWIBS-AKE is AKE-secure in the random oracle model under the security model
of Sect. 3.

Proof. In the proof we consider a series of protocols, Pi (i = 0, 1, .., 7) which are
modified sequentially from the original protocol, P0 = PWIBS-AKE. For each
modification, we shall show that the advantage of an adversary increases with
a negligible fraction. In the final protocol, P7, the adversary will be able to get
only an advantage from an on-line-guessing attack.

Assume that an adversary A can make at most qex and qs queries to the
Execute and the Send oracles. In the original protocol, P0, we consider the random
oracle model where hash functions are considered random functions. For each
new hash query, a fresh random output is returned. To make consistent responses
to hash queries, lists LH and LHi=1,2,3 are maintained.

– Hash query. On a H(m)-query for H = H,Hi, returns h as follows. Let h = ρ

if (m, ρ) exists in LH, and otherwise, let h = ρ′ R← D where D is the domain
of H. LH is updated with (m, ρ′).

Next we describe Pi for i = 0, 1, ..., 7 concretely.

P0: It is the original protocol, PWIBS-AKE defined in Subsect. 5.2 under the ran-
dom oracle model.

P1: It is modified from P0 as follows. Let Rep denote the event that honest parties
do not generate W = gxg

H1(pwC)
1 or Y = gy twice. In P1, we assume that Rep

does not occur. Let q be the order of the group G. We have Pr[Rep] ≤ (qs+qex)
2

q

by using a similar analysis of [37]. It is negligible because q is assumed to be suf-
ficiently large. P0 and P1 are indistinguishable except the negligible probability.

58 J.Y. Hwang et al.

P2: It is modified from P1 as follows. In P2, we assume that the adversary cannot
generate a valid server’s signature without making a Corrupt query to a server. As
shown in Sect. 4, the given IBS scheme is existentially unforgeable. It is obvious
that by this assumption, P1 and P2 are indistinguishable except a negligible
probability from existential unforgeability, i.e., AdvEUF-CMIDA

A,DL-IBS . An adversary is
able to use only (IDS , Y, CTS) which has been generated by a server, in order
to make a Send query to a client instance.

In the protocol, a password-based authentication and an IBS works indepen-
dently. Even if a password is revealed on a client side, a server’s IBS key cannot
be compromised.

P3: It is modified from P2 as follows. When an H3 query is issued, P3 does not
check consistency against Execute queries, but returns a random output. The
response to an Execute query is a collection of transcripts generated from an hon-
est execution of the protocol. That is, it has the form, [(IDC ,W), (ID, Y,CTS),
(IDC , CTC)], where CTS = Eek(ESK||σS), CTC = Eek(σ′

C) and ek = H3(gab).
The way that an adversary know the inconsistency can be used to solve a

CDH problem as follows. For a given CDH problem (A = ga, B = gb), we plug
in A and B for X and Y , respectively. We have ek = H3(gab). The adversary
would have made a H3 query with gab to distinguish the distribution of ek. We
can get gab for the solution to the CDH problem.

In other words, P2 and P3 are indistinguishable except the negligible proba-
bility to solve the CDH problem. Since a random output is used as an encryption
key, ek, the ciphertext Eek(·) looks random from a viewpoint of an adversary.
Also, in the above case, a session key is defined by a random value because it
is an output of H3. Hence, if Test query is asked to an instance which was ini-
tialized via an Execute query, AdvIBS-PAKE

A,PWIBS-AKE is upper bounded by a negligible
probability.

P4: It is modified from P3 as follows. We assume that P4 halts if a correct guess
for a password is made against a client instance or a server instance before a
Corrupt query. We can determine whether a password is correctly guessed or not,
by an H3 query using a correct input to compute ek and ssk. In this case, P3

and P4 are identical.
In the case of semi-freshness, the following assumption is added. If a cor-

rect password guess is made against a server instance before a Corrupt query to
a client instance, P4 halts. We can determine whether a password is correctly
guessed or not, by an Hi=1,2 query with the correct password and a Corrupt
query to a server. P4 is identical to P3 except that off-line dictionary attacks
occurs.

P5: It is modified from P4 as follows. We assume that the adversary cannot make
a password guess against client and server instances which are partnered. To
argue the impossibility, we show that the capability to make a password guess can
be used to solve a CDH problem. Let (IDC ,W) be the first protocol transcript

Robust Authenticated Key Exchange Using Passwords and IBS 59

which is generated via a Send query to a client instance or directly given by the
adversary. Let W = gα. Then, to a Send query with (IDC ,W = gα) to a server
instance, the response, which is also the second transcript, (ID, Y,CTS) is gen-
erated as follows. Let (g,A = ga, B = gb) be a given CDH problem. We plug in A

for g1 and B for Y and returns a random value for ek. Define ek = H3(gαbg−γb
1)

where γ = H2(pwC). Let CTS = Eek(ESK||σS). We have g−γy
1 = (gab)−γ . To

guess a password, the adversary must know gab which is the CDH solution.
Hence, a correct password guess from client and server instances which are part-
nered, is impossible under the CDH assumption.

P6: It is modified from P5 as follows. We assume that the adversary cannot gen-
erate a client’s valid signature share, (zC , dC) without making H2 query with
the correct password and a Corrupt query to a server. It is easy to see that the
adversary get no useful information about the secret key. Note that RC = grC

for rC ∈ Z
∗
q is used as a signature part but is stored by a server and so the adver-

sary cannot be aware of it. Thus, the probability that the adversary generates
(zC , dC) verified with RC is upper bounded by 1/q.

P7: It is modified from P6 as follows. We assume that a password guess can be
checked by a password oracle, that is, whether it is correct or not. Let cguess
denote an event that the adversary guesses a password correctly. P7 accepts a
Corrupt(U) query and returns PFS = {πS [C]}C∈Clients if U ∈ Servers, and
otherwise pwU . For freshness, there are at most qs queries before a Corrupt
query. Thus, we have Pr[cguess] ≤ qs

|DPW | . For semifreshness, qH1 + qH2 more
queries are considered before a Corrupt query to a client. Here, let qHi

denote the
maximum number of Hi queries. Since these occur if there has been a Corrupt
query to a server, we have Pr[cguess] ≤ qs+qH1+qH2

|DPW | .
Overall, the success probability of the adversary can be evaluated by expand-

ing with the event of cguess. That is, we have Pr[SuccP7] = Pr[cguess] +
Pr[SuccP7 |cguess] where cguess denotes the negation of cguess. As we shown
in a series of the protocol modification above, Pr[SuccP7 |cguess] can be upper
bounded by the negligible probability under the CDH assumption and existential
unforgeability of the given IBS scheme. Therefore we obtain the desired results.

Based on the security of a given PAKE and an IBS scheme, we can prove that
the first modular method (defined in Fig. 1) to yield an IBS-PAKE protocol is
AKE secure and resilient to server compromise. That is, an adversary attacking
the protocol cannot obtain useful information about session keys of fresh and
semi-fresh instances with greater advantages than that of an on-line dictionary
attack. The security proof for the modular method can be completed by following
the security proof of PAKE with consideration for unforgeability of the under-
lying IBS scheme. As in the PWIBS-AKE, a client’s signature, σC is encrypted
and so not revealed to an adversary in the modular method. An adversary gains
no meaningful advantage for a password guess from CTC = Eek(σC).

60 J.Y. Hwang et al.

Also, a similar proof idea can be applied with a slight modification, to prove
the AKE security of the simplified PWIBS-AKE and AKE protocols generated
from our second modular method (defined in Fig. 3), equivalently that an adver-
sary attacking the protocol cannot obtain useful information about session keys
of fresh instances with greater advantages than that of an on-line dictionary
attack. Actually, the proofs can be completed by simplifying the security proof
of Theorem 1, i.e., P4 because the protocols do not consider semi-fresh to capture
‘server compromise’.

6 Performance Analysis

In this section, we compare performance between our protocols and other known
AKE protocols using a combination of a password and an asymmetric techniques
[53]. We also give experimental results for our protocols.

6.1 Performance Comparison

The performance is analyzed in terms of communication and computation over-
head. Our protocols work with discrete logarithm parameters. Let G be a group
of prime order q. Let �q and �G denote the bit-length of the order of G and an
element of G, respectively. Let �H denote the bit-length of a hash output. Let
Expt denote simultaneous multi-exponentiation (or scalar multiplication) using t
group elements. In the communication analysis, we exclude identifiers commonly
required for every protocol.

In PWIBS-AKE, a client transmits IDC ,W in the first round, and IDC ,
CTC = Eek(σ′

C) in the third round where σ′
C = (zC , dC). Since W is an element

of G, and zC and dC are elements of Zq, a client transmits a (�G + 2�q)-bit
string. A client executes two Exp1, one Exp2, and one Exp3 and two decryption,
i.e., D of a symmetric encryption scheme. A server transmits IDS , Y, CTS =
Eek(ESK||σS) where σS = (zS , dS , RS) and ESK is a ciphertext of vC , i.e.,
ESK = EH1(pwC)(vC). Since vC is an elements of Zq, we can assume that the
bit length of CTS is 2�G + 3�q. Note that W and RS are elements of G, and zS

and dS are elements of Zq. Thus a server must transmit a (2�G + 3�q)-bit string.
Also, a server executes three Exp1, one Exp3 and one encryption, i.e., E of a
symmetric encryption scheme. When an elliptic curve group with �p = 192 and
�G = 192 is considered, a client’s transcript length is about 576 bits or 72 bytes.
In the simplified PWIBS-AKE, reduced computation and smaller transcripts are
required for a client and a server.

In Table 1, we summarizes comparison results among PAKE, IBE-PAKE, and
our IBS-PAKE protocols, PWIBS-AKE and the simplified PWIBS-AKE (denoted
by Sim-PWIBS in the table). For PAKE, we consider SPEKE [28,30], J-PAKE
[1,27], SRP6 [51], AMP [34], and SK [49] which are presented in ISO/IEC 11770-
4 [32] or IEEE P1363.2 [31]. For IBE-PAKE, we consider the protocols of [53] con-
structed from two different IBE schemes, i.e., the pairing-based Boneh-Franklin
(BF) IBE [4] and TDL-based IBE [43] with the CCA-security. In the table,

Robust Authenticated Key Exchange Using Passwords and IBS 61

Table 1. Comparison of AKE protocols

Protocol RSI RSC Round

(Pass)

Client Server

Comm. Comp. Comm. Comp.

PAKE

(ISO/IEC)

[32]

SPEKE X X 1(2) �G 2Exp1 �G 2Exp1

J-PAKE X X 2(4) 6�G+3�H 6Exp1+4Exp2 6�G + 3�H 6Exp1+4Exp2

SRP6 X O 2(4) 1�
G′′+1�H 2Exp1 1�

G′′ + 1�H 1Exp1+1Exp2

AMP X O 2(4) 1�G+1�H 2Exp1 1�G + 1�H 2Exp2

SK X O 2(4) 1�G+1�H 2Exp1 1�G + 1�H 1Exp1+1Exp2

IBE-PAKE

[53]

w/BF [4] O X 2(2) 2�G1+2�H 1P + 6Exp 2�G1 1P + 4Exp

w/TDL [43] O X 2(2) 2�
G′+2�H 6Exp 2�

G′ 5Exp

IBS-PAKE PWIBS-AKE O O 3(3) 1�G+2�q 2Exp1 + Exp2
+Exp3+2D + E

2�G + 3�q 3Exp1+Exp3
+D + E

Sim-PWIBS O X 1(2) 1�G Exp1+ Exp2+ Exp3 2�G + 2�q 3Exp1

let ‘RSI’ and ‘RSC’ denote ‘Robustness to Server Impersonation (when a pass-
word is revealed)’ and ‘Resilience to Server Compromise’, respectively. Also, let
‘Comm.’ and ‘Comp.’ denote the communication length and the computation
cost, respectively. Let G

′ and G
′′ be a TDL group defined with RSA parame-

ters and a multiplicative group of a finite field, respectively. Thus �G′ or �G′′

should be larger than at least 1024. ‘P’ denotes a pairing operation and let G1

be a bilinear group. It is known that a pairing operation is more expensive than
(or comparable to) an exponentiation or a scalar multiplication when a similar
security level is assumed [5,6,20]. Our protocols can be efficiently performed
without requiring any pairing operation. Similarly, our generic construction can
be efficiently performed.

6.2 Experimental Results

The test for our experimental results has been performed on an Intel Pentium
model CPU clocked at 2.40GHz. The algorithms were written in Python 2.7 and
based on Charm-Crypto [14] and PyCrypto [41] libraries.6 Each result is the
average of 1,000 tests.

For a mathematical group in the protocol, we use four elliptic curve groups,
‘prime192v1’, ‘sect193r1’, ‘secp224r1’, and ‘sect163k1’. ‘prime192v1’ represents
NIST/X9.62/SECG curve over a 192 bit prime field [48]. ‘sect193r1’ represents
SECG curve over a 193 bit binary field [47]. ‘secp224r1’ represents NIST/SECG
curve over a 224 bit prime field [48]. ‘sect163k1’ represents NIST/SECG/WTLS
curve over a 163 bit binary field [48]. As a symmetric encryption scheme we use
AES with the CBC mode. The bit sizes of a key used for AES are 128 and 256.

Table 2 shows the running time of PWIBS-AKE. According to the distinct
tasks by a communication round, the protocol can be divided into four sub-
modules, Client.s1, Server.s2, Client.s3, and Server.s4. Client.s1 represents the
6 Even though Charm is not optimised, our results are enough to show feasible and

efficient implementation of our protocols.

62 J.Y. Hwang et al.

Table 2. Experimental results of PWIBS-AKE (time:msec)

EC Group AES key(bit) Client.s1 Server.s2 Client.s3 Server.s4 Total

prime192v1 256 1.28 2.21 3.80 2.24 9.53

128 1.30 2.25 3.90 2.27 9.66

sect193r1 256 2.28 4.01 6.58 3.83 16.7

128 2.51 4.21 6.86 4.01 17.59

secp224r1 256 1.64 3.01 5.03 2.92 12.6

128 1.64 3.01 5.01 2.90 12.56

sect163k1 256 1.85 2.87 4.84 2.87 12.43

128 1.74 2.71 4.54 2.71 11.7

generation of W = gxg
H1(pwC)
1 by a client. Server.s2 represents the generation

of (Y = gy, σS = (zS , dS , RS)) and CTS = Eek(ESK||σS) by a server. Client.s3
represents the verification of σS , the computation of K = Y x, the generation
of σC = (zC , dC), and the computation of a session key by a client. Server.s4
represents the verification of σC = (zC , dC) and the computation of a session
key by a server.

Table 3 shows the running time of the simplified PWIBS-AKE. In the experi-
ment, the protocol is divided into four submodules, Client.s1, Server.s2, Client.s3,
and Server.s4. As a client does not generate a signature for the possession proof
of a password, Client.s3 of the simplified PWIBS-AKE is faster than that of
PWIBS-AKE.

In both of the tables, ‘Total’ represents the sum of running time of all sub-
modules. As shown in the tables, the protocols give different experimental results
according to elliptic curve groups used. The most time-consuming task occurs
in Client.s3. However, the total running time is only at most 0.02 s.

7 Conclusion

We have proposed efficient AKE protocols based on a password and an IBS.
A client is able to do an easy authentication using a human-memorable password
and an ID-based signature as authentication means. The use of an IBS gives two
security enhancements against party compromise, i.e., resistance to sever imper-
sonation attacks from client compromise and resilience to client impersonation
attacks from server compromise. The proposed protocols also give good per-
formance compared to known AKE protocols. They can be applied for various
applications.

A Bilinear Maps [21,39]

Let G1 and G2 be additive groups and GT a multiplicative group. Assume that
the groups have the same prime order, q. We say that e: G1 × G2 → GT is an

Robust Authenticated Key Exchange Using Passwords and IBS 63

admissible bilinear map (or a pairing) if the following properties are satisfied:
(1) Bilinearity: e(aP, bQ) = e(P,Q)ab for all P ∈ G1 and Q ∈ G2, and a, b ∈ Z

∗
q .

(2) Non-degeneracy: There exist P ∈ G1 and R ∈ G2 such that e(P,R) �= 1. (3)
Computability: There exists an efficient algorithm to compute e(P ′, Q′) for all
P ′ ∈ G1 and Q′ ∈ G2.

Bilinear maps can be classified in three types, i.e., Type I, II, III accord-
ing to the existence of morphisms between G1 and G2. Type I pairings, called
‘symmetric’, have G1 = G2. Type II pairings have an efficiently computable iso-
morphism from G1 to G2 or from G2 to G1 but none in the reverse direction.
Type III pairings have no efficiently computable isomorphism between G1 and
G2. Type II and III pairings are called ‘asymmetric’. For more details, refer to
[21,39].

B Computational Assumptions

Discrete Logarithm (DL) Assumption. Assume that a group G of order q
and a generator g of G are given. To define Discrete Logarithm (DL) problem,
we consider the following game:

Initialization: x
R← Zq, g1 = gx,

Output : r ← A(G, g, g1 = gx)

We define AdvDL
A,G(t)= Pr[r = x], where A runs in time t. We define that AdvDL

G (t)
= maxA[AdvDL

G (t)] where the maximum is taken over all A. We say that DL
assumption holds for G if AdvDL

G (t) is negligible.

Decisional Diffie-Hellman (DDH) Assumption. Assume that a group G

of order q and a generator g of G are given. To define Decisional Diffie-Hellman
(DDH) problem, we consider the following distinguishability game:

Initialization: x, y, r
R← Zq, e0 = xy, e1 = r,

b
R← {0, 1}, h = geb

Guess: b′ ← A(G, g, gx, gy, h)

We define AdvDDH
A,G (t)= |Pr[b = b′] − 1/2|, where A runs in time t. We define

that AdvDDH
G (t) = maxA[AdvDDH

G (t)] where the maximum is taken over all A.
We say that DDH assumption holds for G if AdvDDH

G (t) is negligible.

Computational Diffie-Hellman (CDH) Assumption. Assume that a
group G of order q and a generator g of G are given. To define Computational
Diffie-Hellman (CDH) problem, we consider the following game:

Initialization: x, y
R← Zq, g1 = gx, g2 = gy,

Output : gz ← A(G, g, gx, gy)

We define AdvCDH
A,G (t)= Pr[z = xy], where A runs in time t. We define that

AdvCDH
G (t) = maxA[AdvCDH

G (t)] where the maximum is taken over all A. We
say that CDH assumption holds for G if AdvCDH

G (t) is negligible.

64 J.Y. Hwang et al.

Table 3. Experimental results of our simplified PWIBS-AKE (time:msec)

EC Group Client.s1 Server.s2 Client.s3 Server.s4 Total

prime192v1 1.33 1.52 3.01 0.84 6.7

sect193r1 2.36 2.58 5.11 1.36 11.41

secp224r1 1.66 2.01 3.82 1.09 8.58

sect163k1 1.75 1.76 3.53 0.92 7.96

C Simplified IBS-PAKE Protocols

Initialization Phase. Three processes Setup, Extract, and Registration are exe-
cuted as follows.

– Setup and Extract are the same to those of PWIBS-AKE.
– Registration(C,S). First, a client, C generates his or her password, pwC accord-

ing to a pre-defined password creation policy. To register a service, C sends
(Register-Req, IDC , g

−H1(pwC)
1) to the server, S over a secure channel. The

server appends πS [C] = (IDC , g
−H1(pwC)
1) to PF .

Key Establishment Phase. A client, C and a server, S execute the protocol
to agree on a temporal key to be used for a session. The concrete protocol is
described as follows (See Fig. 4).

1. C picks x ∈ Z
∗
q uniformly at random and computes W = gxg

H1(pwC)
1 ∈ G

using the password, pwC . Then, C sends [IDC ,W] to S.
2. S picks y ∈ Z

∗
q uniformly at random and computes Y = gy∈ G. Also, using

its signing key, skIDS
= (RS , vS), the server generates a signature, σS =

(dS , zS , RS) on MS = IDS ||Y , where ES = geS , z = H(m, IDS , ES) and
dS = eS − vSzS (mod q) for random rS , eS ∈ Z

∗
q . Then S sends [IDS ,Y ,σS]

to C. From the receipt message [IDC ,W], the server finds authentication
information corresponding to IDC , i.e., [IDC , g

−H1(pwC)
1] from a database.

It then computes X ′ = Wg
−H1(pwC)
1 and K ′ = (X ′)y. Finally, S computes

ssk = H3(pidS ||sidS ||K ′), where sidS = IDC ||W ||Y ||σS .
3. Upon receiving [IDS , Y , σS], the client C checks if the signature, σS is valid,

i.e., the equality of zS = H(MS , IDS , gdS · (RS · uwS)zS) holds. Here MS =
IDS ||Y and wS = H(IDS , RS). If the validity does not hold then the session
is aborted. Otherwise, the client computes K = Y x. Finally, S computes
ssk = H3(pidS ||sidS ||K ′), where sidS = IDC ||W ||Y ||σS .

Robust Authenticated Key Exchange Using Passwords and IBS 65

Client C Server S
pp = {G, g, g1, u, H, H1, H2, H3} pp = {G, g, g1, u, H, H1, H2, H3}

[IDC , pwC [] IDS , skIDS
= (vS , RS)]

πS [C] = (IDC , g
−H1(pwC)
1 ,

ESK = EH2(pwC)(vC), RC))

π1 = H1(pwC)

x
R← Z

∗
q , W = gxg

π1
1

IDC ,W−−−−−−−−−−−→ y
R← Z

∗
q , Y = gy

X′ = Wg
−H1(pwC)
1 , K′ = (X′)y

eS
R← Z

∗
q , ES = geS

zS = H(MS , IDS , ES)

dS = eS − vSzS (mod q)

where MS = IDS ||W ||Y ||ESK

σS = (zS , dS , RS)

K = Y x, ek = H3(K) IDS ,Y,CTS←−−−−−−−−− ek = H3(K
′), CTS = Eek(ESK||σS)

ESK||σS = Dek(CTS)

MS = IDS ||W ||Y ||ESK

hS = gdS (RSuwS)zS

If zS �= H(MS , IDS , hS), abort

Otherwise, proceed as follows

vC = DH2(pwC)(ESK)

eC
R← Z

∗
q , EC = geC

zC = H(MC , IDC , EC)

dC = eC − vCzC (mod q)

where MC = IDC ||W ||Y ||CTS

σ′
C = (zC , dC)

CTC = Eek(σ
′
C) IDC ,CTC−−−−−−−−→ σ′

C = Dek(CTC)

MC = IDC ||W ||Y ||CTS

hC = gdC (RCuwC)zC

If zC �= H(MC , IDC , hC), abort

Otherwise, proceed as follows

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = IDC ||W ||Y ||CTS ||CTC sidS = IDC ||W ||Y ||CTS ||CTC

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K′)

Fig. 2. PWIBS-AKE: AKE from a combination of PAK and a Schnorr-based IBS

66 J.Y. Hwang et al.

Client C Server S
pp = {G, g, ppIBS, Hi=1,2,3, SE} pp = {G, g, ppIBS, Hi=1,2,3, SE}

[IDC , pwC [] IDS , skIDS
]

πS [C] = (IDC , π1 = H1(pwC))

Using π1 = H1(pwC) instead of pwC , Modified perform its part in PAKE

perform its part in PAKE Execution with the following modification:

with the following modification: of PAKE For each mS to be sent to C,

Whenever (mS , σS) is received, withH1(pwC)−−−−−−−−−−→ σS ← Sign(ppIBS, IDS , skIDS
, mS),

if 0 = Vrfy(ppIBS, IDS , σS , mS), abort. ←−−−−−−−−−−− and then send (mS , σS).

Otherwise, perform the client’s part

for given mS in PAKE.

Output K Output K

pidC = IDC ||IDS , sidC = TPAKE pidS = IDC ||IDS , sidS = TPAKE

ssk = H3(pidC ||sidC ||K) ssk = H3(pidS ||sidS ||K)

Fig. 3. Generic construction of a simplified IBS-PAKE protocol

Client C Server S
pp = {G, g, g1, u, H, H1, H2} pp = {G, g, g1, u, H, H1, H2}

[IDC , pwC] [IDS , skIDS
= (dS , zS , RS)]

πS [C] = (IDC , g
−H1(pwC)
1)

x
R← Z

∗
q , W = gxg

H1(pwC)
1

IDC ,W−−−−−−−−−→ y
R← Z

∗
q , Y = gy

If 0 = Vrfy(pp, IDS , σS , IDS ||Y), abort IDS ,Y,σS←−−−−−−−−−− σS ← Sign(pp, IDS , skIDS
, MS)

where MS = IDS ||Y
Otherwise, K = Y x X′ = Wg

−H1(pwC)
1 , K′ = (X′)y

pidC = IDC ||IDS pidS = IDC ||IDS

sidC = IDC ||W ||Y ||σS sidS = IDC ||W ||Y ||σS

ssk = H2(pidC ||sidC ||K) ssk = H2(pidS ||sidS ||K′)

Fig. 4. Simplified PWIBS-AKE

References

1. Abdalla, M., Benhamouda, F., Mackenzie, P.: Security of the J-PAKE password-
authenticated key exchange protocol. In: IEEE Symposium on Security and Privacy
2015, pp. 571–587. IEEE Computer Society (2015)

2. Boyarsky, M.K.: Public-key cryptography and password protocols: the multi-user
case. In: ACMCCS 1999, pp. 63–72. ACM, New York (1999)

3. Benhamouda, F., Blazy, O., Chevalier, C., Pointcheval, D., Vergnaud, D.: New
techniques for SPHFs and efficient one-round PAKE protocols. In: Canetti, R.,
Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 449–475. Springer,
Heidelberg (2013)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

Robust Authenticated Key Exchange Using Passwords and IBS 67

5. Barreto, P.S.L.M., Galbraith, S.D., hÉigeartaigh, C.Ó., Scott, M.: Efficient pairing
computation on supersingular abelian varieties. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)

6. Barreto, P.S.L.M., Lynn, B., Scott, M.: Efficient implementation of pairing based
cryptosystems. J. Cryptol. 17, 321–334 (2004). Springer-Verlag

7. Bellovin, S.M., Merritt, M.: Encrypted key exchange: Password-based protocol
secure against dictionary attack. In: IEEE Symposium on Research in Security
and Privacy, pp. 72–84 (1992)

8. Boyko, V., MacKenzie, P.D., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000)

9. Bellare, M., Namprempre, C., Neven, G.: Security proofs for identity-based identifi-
cation and signature schemes. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT
2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

10. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000)

11. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

12. Chen, L., Harrison, K., Soldera, D., Smart, N.P.: Applications of multiple trust
authorities in pairing based cryptosystems. In: Davida, G.I., Frankel, Y., Rees, O.
(eds.) InfraSec 2002. LNCS, vol. 2437, pp. 260–275. Springer, Heidelberg (2002)

13. Clancy, T.: Eap password authenticated exchange, draft archive (2005). http://
www.cs.umd.edu/clancy/eap-pax/

14. Akinyele, J.A., et al.: Charm: a framework for rapidly prototyping cryptosystems.
J. Crypt. Eng. 3(2), 111–128 (2013)

15. Choi, K.Y., Hwang, J.Y., Cho, J., Kwon, T.: Constructing efficient PAKE proto-
cols from identity-based KEM/DEM, Cryptology ePrint Archive, Report 2015/606
(2015). http://eprint.iacr.org/2015/606. (To appear in WISA 2015)

16. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally composable
password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 404–421. Springer, Heidelberg (2005)

17. Choi, K.Y., Hwang, J.Y., Lee, D.-H.: Efficient ID-based group key agreement with
bilinear maps. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 130–144. Springer, Heidelberg (2004)

18. Dent, A.W., Galbraith, S.D.: Hidden pairings and trapdoor DDH groups. In: Hess,
F., Pauli, S., Pohst, M. (eds.) ANTS 2006. LNCS, vol. 4076, pp. 436–451. Springer,
Heidelberg (2006)

19. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory
22(6), 644–654 (1976)

20. Elashry, I., Mu, Y., Susilo, W.: Jhanwar-Barua’s identity-based encryption revis-
ited. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792,
pp. 271–284. Springer, Heidelberg (2014)

21. Gallbraith, S.: Pairings, Advances in Elliptic Curve Cryptography, vol. 317,
Chapter IX, pp. 183–213. Cambridge University Press (2005)

22. Galindo, D., Garcia, F.D.: A schnorr-like lightweight identity-based signature
scheme. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 135–
148. Springer, Heidelberg (2009)

23. Gong, L.A., Lomas, T.M., Needham, R., Saltzwe, J.: Protecting poorly chosen
secrets from guessing attacks. IEEE J. Sel. Areas Commun. 11(5), 648–656 (1993)

http://www.cs.umd.edu/clancy/eap-pax/
http://www.cs.umd.edu/clancy/eap-pax/
http://eprint.iacr.org/2015/606

68 J.Y. Hwang et al.

24. Gentry, C., MacKenzie, P.D., Ramzan, Z.: A method for making password-based
key exchange resilient to server compromise. In: Dwork, C. (ed.) CRYPTO 2006.
LNCS, vol. 4117, pp. 142–159. Springer, Heidelberg (2006)

25. Halevi, S., Krawczyk, H.: Public-key cryptography and password protocols. ACM
Trans. Inf. Syst. Secur. 2(3), 230–268 (1999)

26. Housley, R., Polk, T.: Planning for PKI: Best Practices Guide for Deploying Public
Key Infrastructure. Wiley, Chichester (2001)

27. Hao, F., Ryan, P.Y.A.: Password authenticated key exchange by juggling. In:
Christianson, B., Malcolm, J.A., Matyas, V., Roe, M. (eds.) Security Protocols
2008. LNCS, vol. 6615, pp. 159–171. Springer, Heidelberg (2011)

28. Hao, F., Shahandashti, S.F.: The SPEKE protocol revisited. In: Chen, L., Mitchell,
C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 26–38. Springer, Heidelberg (2014). Cryp-
tology ePrint Archive, Report 2014/585. http://eprint.iacr.org/2014/585

29. Internet Engineering Task Forces, Eap password authenticated exchange (2005).
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt

30. Jablon, D.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

31. IEEE 1363.2:2008 Specification For Password-based Public-key Cryptographic
Techniques

32. ISO/IEC 11770–4:2006 Information technology - Security techniques - Key man-
agement - Part 4: Mechanisms based on weak secrets

33. ITU-T Recommendation X. 1035: Password-Authenticated Key Exchange (PAK)
Protocol. https://www.itu.int/rec/T-REC-X.1035/en

34. Kwon, T.: Addendum to Summary of AMP, In Submission to the IEEE P1363
study group for future PKC standards (2003)

35. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001)

36. Kolesnikov, V., Rackoff, C.: Key exchange using passwords and long keys. In:
Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 100–119. Springer,
Heidelberg (2006)

37. Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer,
Heidelberg (2003)

38. Lee, H.T., Cheon, J.H., Hong, J.: Accelerating ID-based Encryption Based on
Trapdoor DL Using Pre-computation. Cryptology ePrint Archive, Report 2011/187
(2011). http://eprint.iacr.org/2011/187

39. Paterson, K.: Cryptography from pairings, Advances in Elliptic Curve Cryptog-
raphy, vol. 317, Chap. X, pp. 215–251. Cambridge University Press, Cambridge
(2005)

40. Pointcheval, D.: Password-based authenticated key exchange. In: Fischlin, M.,
Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 390–397.
Springer, Heidelberg (2012)

41. Litzenberger, D.C.: Pycrypto-the python cryptography toolkit (2014). https://
www.dlitz.net/software/pycrypto

42. Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind sig-
natures. J. Cryptol. 13(3), 361–396 (2000)

43. Paterson, K.G., Srinivasan, S.: On the relations between non-interactive key dis-
tribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Crypt. 52(2), 219–241 (2009)

http://eprint.iacr.org/2014/585
http://www.ietf.org/internet-drafts/draft-clancy-eap-pax-03.txt
https://www.itu.int/rec/T-REC-X.1035/en
http://eprint.iacr.org/2011/187
https://www.dlitz.net/software/pycrypto
https://www.dlitz.net/software/pycrypto

Robust Authenticated Key Exchange Using Passwords and IBS 69

44. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1976)

45. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985)

46. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

47. Certicom, S.E.C.: SEC 2: Recommended elliptic curve domain parameters. In:
Proceeding of Standards for Efficient Cryptography, Version 1 (2000)

48. Brown, D.: SEC 2: Recommended Elliptic Curve Domain Parameters, Version 2
(2010). http://www.secg.org/sec2-v2.pdf

49. Shin, S., Kobara, K.: Efficient Augumented Password-only Authentication and Key
Exchange for IKEv2, RFC 6628, ISSN 2070–1721, IETF (2012)

50. Sakai, R., Kasahara, M.: ID Based Cryptosystems with Pairing over Elliptic Curve,
Cryptology ePrint Archive, Report 2003/054. http://eprint.iacr.org/2003/054

51. Wu, T.: SRP-6: Improvements and Refinements to the Secure Remote Password
Protocol, In Submission to the IEEE P1363 Working Group (2002)

52. Yi, X., Tso, R., Okamoto, E.: ID-based group password-authenticated key
exchange. In: Takagi, T., Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp.
192–211. Springer, Heidelberg (2009)

53. Yi, X., Tso, R., Okamoto, E.: Identity-based password-authenticated key exchange
for client/server model. In: SECRYPT 2012, pp. 45–54 (2012)

54. Yi, X., Hao, F., Bertino, E.: ID-based two-server password-authenticated key
exchange. In: Kuty�lowski, M., Vaidya, J. (eds.) ICAIS 2014, Part II. LNCS, vol.
8713, pp. 257–276. Springer, Heidelberg (2014)

http://www.secg.org/sec2-v2.pdf
http://eprint.iacr.org/2003/054

Non-repudiation Services for the MMS Protocol
of IEC 61850

Karl Christoph Ruland and Jochen Sassmannshausen(B)

Chair for Data Communications Systems, Faculty of Science
and Engineering, University of Siegen, 57076 Siegen, Germany

Christoph.Ruland@uni-siegen.de,

Jochen.Sassmannshausen@student.uni-siegen.de

Abstract. In Smart Grids various processes can be automated using
communication between the components of the grid. The standard IEC
61850 defines, among other requirements and parts of the system, differ-
ent communication protocols, that shall be used for different purposes.
Although the scope of IEC 61850 is the automation of substations, there
are also use cases beyond that can be addressed by IEC 61850. The
standard IEC 62351 sets the focus on security in Smart Grids and lists
various security requirements, that should be met, and further a series of
measures to accomplish the required level of security. However, there are
additional security requirements, such as non-repudiation and traceabil-
ity of transactions, which cannot be sufficed using only the mechanisms
provided by IEC 62351. In this paper a security solution will be presented
that meets these additional requirements. Basically, it uses certificates
for the proof of identity of the system participants and provides the two
non-repudiation services Non-repudiation of Origin and Non-repudiation
of Delivery using mechanisms described by the standard ISO 13888-3.
The focus is set on the MMS protocol that is used for end-to-end com-
munication between client and server. However, due to the flexibility of
the mechanisms used, the security solution can also be transferred to
different protocols. Finally, this paper describes a way to implement the
solution using XML signatures and X.509 certificates.

Keywords: Smart grid security · IEC 61850 · MMS protocol · ISO
9506 · IEC 62351 · Non-repudiation · ISO 13888-3

1 Introduction

In a Smart Grid several processes can be automated using communication between
the single components of the system. For this purpose, various communication
protocols are used, each for different applications. With the decentralized and
automated control of networks, there are new requirements for the safety and
security of the system. In this paper the focus will be set on the MMS protocol,
the use of which is intended by the standard IEC 61850 for the communica-
tion between client and server. Initially, this standard specified the automation
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 70–85, 2015.
DOI: 10.1007/978-3-319-27152-1 4

Non-repudiation Services for the MMS Protocol of IEC 61850 71

of substations. However, the protocols are very flexible and there are new use
cases that can also be addressed by the standard IEC 61850. This leads to new
security requirements for the data transfer within the communication network.
Among the Standard IEC 62351, which sets the focus on security aspects for
certain standards including IEC 61850, there are several documents that deal
with security in Smart grid security in general. One of these documents are the
“NISTIR 7628 guidelines for Smart Grid Cyber Security” which define addi-
tional security requirements that have to be met. One of these requirements is
non-repudiation of transactions, which cannot be achieved using the existing
security measures. This paper presents a security solution for the MMS protocol
using non-repudiation mechanisms defined by ISO 13888-3.

2 The State of the Art

This paper sets the focus on two key standards for Smart Grids: The standards
IEC 61850 [7] and IEC 62351 [10]. While IEC 61850 deals with the control of
the substations in electric power networks, the scope of IEC 62351 is security in
Smart Grids, but the main focus is set on security for communication protocols
specified in IEC 61850. In addition to the standard IEC 62351 there are several
other documents that deal with security aspects in Smart Grids, pointing out
additional security requirements like non-repudiation of transactions, that also
have to be met.

2.1 The standard IEC 61850

The standard IEC 61850 focuses on the automation of substations and intro-
duces rules for the modeling of the system, standardized data models, various
communication protocols for different requirements and applications, communi-
cation interfaces and a configuration language for the description of the system
components. The data transfer is performed via Ethernet using different proto-
cols for different purposes. For example, a TCP/IP based protocol is used for
the communication between clients and server.

Although the scope of IEC 61850 is the automation of substations, there
are new use cases that can be addressed by IEC 61850, like the integration
of Distributed Energy Resources (DER) into the electric power system or the
communication of Intelligent Electronic Devices within buildings. Due to its
flexibility, the standard IEC 61850 can also be used for wide area communication
beyond the substation. This flexibility is enabled with standardized data models
and services that can be mapped to various protocols. Currently, the standard
defines a mapping to the MMS protocol, but there are other mappings planned,
like a mapping to webservices [2]. With these new use cases beyond substations
there are new requirements to the communication structure, like scalability or
increased privacy and security. One of the well-known parts of 61850 is GOOSE
for the fast transmission of status information and events. For GOOSE events
already MAC mechanisms are specified by the standard IEC 62351-6 [13], which

72 K.C. Ruland and J. Sassmannshausen

support data integrity and data authentication. However, in this paper we focus
on the MMS protocol.

The standard introduces so called logical nodes, which represent certain func-
tionalities. A logical node can represent, for example, switches in the grid, sen-
sors, communication interfaces or it can simply contain descriptions of devices.
Logical nodes can be summarized to logical devices which represent a real, phys-
ical device and its functionality.

The standard IEC 61850 also introduces the Abstract Communication Ser-
vice Interface (ACSI), which is defined in IEC 61850-7-2, and describes services
and functions, which can be used to interact with devices. For example, there are
functions to read or write values, to obtain information about the data model,
etc. The ACSI does not specify, how the functionality is implemented. There
are various communication protocols to which a mapping of the ACSI can be
implemented. For IEC 61850, a mapping to MMS (Manufacturing Message Spec-
ification) is defined in IEC 61850-8-1. A mapping of the ASCI to web services is
also planned, but not yet published [2].

The MMS protocol was originally developed by General Motors for the pur-
pose of communication in automated systems in the manufacturing scenario.
MMS is defined in ISO 9506. The MMS protocol is based on the OSI protocol
stack with ACSE and the Session Control Protocol ISO 8326 using TCP/IP
[18]. IEC 61850 and IEC 62351 distinguish between two categories of the pro-
tocol stack: The T-Profile is related to the transport system, whose services are
offered by the transport layer, and the A-Profile, which is related to the appli-
cation layer on top of presentation layer and session layer. MMS provides a set
of functions that allow the client to obtain the data model of the server, read or
modify individual values or even delete entries. In addition, MMS also provides
functionality to transfer files.

2.2 The Standard IEC 62351

The standard IEC 62351 is dedicated to the security aspects in smart grids.
There are existing security requirements discussed, which have to be met. These
are particularly data integrity, confidentiality, availability and non-repudiation.
Furthermore, the standard presents a number of measures, by which these objec-
tives are to be achieved. The recommended security measures vary according to
the treated protocol. For example, for time-critical systems there shall be no
time consuming encryption of the messages, instead the focus shall be put on
data integrity and authenticity.

The standard IEC 62351 introduces security measures for both the T-Profile
and the A-Profile: The measures for the T-Profile security cannot meet security
requirements such as end-to-end authentication at the application level, non-
repudiation, timeliness and traceability of transactions. These security mecha-
nisms should be implemented within the A-Profile. Today, the security measures
for the A-Profile support only the use of authenticated ACSE (Association
Control Service Element), a mechanism that can be used to setup or close an
association between two application entities. The following figure illustrates the

Non-repudiation Services for the MMS Protocol of IEC 61850 73

communication between server and client and the messages that are sent during
the communication (Fig. 1).

Fig. 1. The MMS protocol and typical data packets that are sent during a communi-
cation.

The association setup includes an authentication using ACSE and the asso-
ciation will be closed with a conclude request sent by the client. To perform an
action such as changing or receiving a given value, the client sends a request to
the server, which processes the request and sends a response back to the client,
stating whether the request was processed successfully or not [9]. Further, the
server can send data without a corresponding request, like periodic status infor-
mation or reports that are sent when previously defined events occur [18].

2.3 The Weak Point of IEC 62351

Based on the specifications in IEC 62351, an authentication of the communi-
cation partners is only performed at the association establishment. However,
this does not provide authentication of origin of the data exchanged via this
association. During data transfer the security of the A Profile relies on the T
Profile. Consider the following setup: Two Instances, the Control Center and
the Substation Controller are permitted to issue commands on the same device.
Both of them establish a MMS association and communicate with the device
without gateways. In this scenario, the security is only based on TLS. Since
an authentication of the communication partners only takes place at the setup
of the association, services like nonrepudiation cannot be realized, because the

74 K.C. Ruland and J. Sassmannshausen

data packets are not provided by digital signatures by the sender and no timing
information.

In a different scenario shown in Fig. 2, where the communication takes place
across several gateways, each using TLS connections, the mentioned problem
becomes more severe and TLS does not provide a sufficient level of security since
TLS only affects the data transmission between two transport layer entities, and
the data can be manipulated by intermediate stations/gateways.

Fig. 2. The communication takes place across several gateways using different TLS
connections. Note that the data could be manipulated between these connections. Both
authenticity and integrity cannot be ensured in this scenario.

From the viewpoint of the receiving transport layer entity, the origin of incom-
ing data packets cannot be determined (see [3]). With the expansion of the scope
of IEC 61850 to use cases beyond substations, the use of these topologies will
become necessarily. This is precisely the weak point, where the following security
solution treats with.

2.4 Additional Security Requirements

As a summary of the guidelines mentioned in the introduction and IEC 62351, five
important security requirements can be pointed out: Confidentiality, Integrity,
Availability, and Nonrepudiation of actions and Traceability of actions In Smart
Grids it is important that all transactions, that take place, and status messages
which are sent can be traced and assigned at a later time. For example in case of
a damage caused by a switching error or incorrect settings, it can be determined
when and especially by whom certain actions that led to the error or damage were
initialized (see [12,20]). As it was described before, the existing security measures
cannot provide authenticity for every single data packet, which is mandatory to
provide non-repudiation of transactions.

The NISTIR 7628 guidelines for Smart Grid security also classify nonre-
pudiation as an important goal for smart grid security: “Integrity, including
non-repudiation, is critical since energy and pricing data will have financial
impacts”[16]. The main precondition for traceability of actions is also non-
repudiation of actions that took place.

3 A Security Solution for the A-Profile

The security issues lead to the conclusion that the A-Profile has to be extended to
suffice additional security requirements like non-repudiation and also authenticity

Non-repudiation Services for the MMS Protocol of IEC 61850 75

for every data packet as authenticity is a mandatory precondition for nonrepudi-
ation. There are several ways to achieve authenticity for every data packet, resp.
command. For example, a digital signature can be added to every single APDU
(Application Protocol Data Unit). However, the ASN.1 definition of the MMS
APDUs does not intend the use of signatures for all data packets. In this paper
the focus will be on a different approach to achieve authenticity for each APDU.
Instead of modifying the APDUs the proof of origin will be provided by so called
tokens that are associated with a particular message.

The security solution is based on the approach that is described by the stan-
dard IEC 13888-3. Two non-repudiation services are be provided: non-repudiation
of origin and non-repudiation of delivery. These services can be realized with two
different tokens that are introduced by IEC 13888-3: The NROT (Non-repudiation
of Origin Token) and the NRDT (Non-repudiation of Delivery Token). The NROT
is added to every message sent by both server and client as proof of the author-
ship of the message. The NRDT stating that a particular message was received is
added to every response that is sent by the server to the client. Figure 3 illustrates
the exchange of messages between client and server using the tokens described in
IEC 13888-3.

Fig. 3. MMS request and response with Non-repudiation Tokens

The standard ISO 13888-3 also describes various other communication sce-
narios, it is also possible that there is a trustworthy third party involved in the
communication. In this case, the tokens are generated by this instance. In the
communication scenarios MMS is used, this may sometimes be difficult, so this
security solution chooses the first approach in which the tokens are generated
by the participants of the communication. The tokens NRO and NRD are very
similar, the standard defines the following form for the tokens:

Token = text‖z‖S(K, z) with

z =Policy‖flag‖A‖B‖C‖Tg‖T‖Q‖Imp(m)

(‖ means concatenation).
The element “text” is optional, it can contain additional information about

the token. S(K,z) is a signature, the element z is signed with the private key K
of the instance that generates the token. The element z contains several elements
that can also be optional, depending on the type of the token. The whole list of

76 K.C. Ruland and J. Sassmannshausen

elements can be viewed in the standard IEC 13888-3 [14]. In this section only
the required and finally used elements shall be explained.

– Policy: An identifier of a non-repudiation policy under which the token was
generated.

– flag: A flag that indicates the type of the token (so it can be distinguished
between NROT and NRDT.)

– A: For a NRO token this field contains the name of the originator of the cor-
responding message and therefore also the creator of the token. For a NRDT,
this field is optional and contains the name of the originator of the corre-
sponding message for which the token was created.

– B: For a NRO token this field is optional and contains the name of the
addressee of the corresponding message. For a NRDT, this field contains the
name of the originator of the NRD token, and therefore the receiver of the
associated message for which the proof of receipt is delivered.

– C: This field is optional and contains the identifier of an authority, eg. a trust
party, that is involved. This security solution does not intend the participation
of a trust party

– Tg: The date and time the token was generated. This timestamp is provided
by the token generator.

– T: NRO token: The date and time the token was created according to the
originator of the token. NRD token: The date and time the associated message
for which the token is generated, was received.

– Q: This field is optional and can contain any additional information, like the
used hash algorithm or a distinguishing identifier of the related message m.

– Imp(m): The imprint of the message m. This can be the whole message itself
or only a hash value of the Message. This security solution will store only a
hash value of the message in the tokens. The standard IEC 13888-3 does not
specify a certain hash algorithm that should be used.

3.1 Difference Between NROT and NRDT

Whereas the NROT provides proof that A is the originator of the Message m,
the NRDT is generated by B and provides the proof that B received the message
m. The main difference between a NROT and a NRDT are the fields containing
the addressee and the originator. According to the standard IEC 13888-3 the
element containing the name of the tokens addressee is optional. However, for
NROT it is important to indicate the addressee, so an attacker cannot just copy
and forward the message and the associated request to different participants that
also communicate within the same system.

3.2 Generation of NROT and NRDT

Consider the following setup: Client A wants to issue a command on the server
B. Further, A wants to receive a proof that the server actually received the
command. First, A generates a MMS APDU containing the request and the

Non-repudiation Services for the MMS Protocol of IEC 61850 77

Fig. 4. The NROT is generated for and appended to a MMS APDU

corresponding NRO token. After the element z is initialized, it is signed with
the private Key KA (Fig. 4).

Note that the element z that is shown contains more elements than only
the hash value. The list of elements can be viewed in the previous section. The
NROT provides proof that the message m was sent by A. After the server B
receives the message, it creates the NRDT and signs it with the private key KB.
The NRDT will later be transmitted together with the response message. The
following figure shows the procedure on the server side (Fig. 5):

Fig. 5. The server generates and stores the NRDT till sending the Response

The NROT generated by the client is related to the request, the NRDT
generated by the servers is related to the response. After receiving the response,
A is able to verify the NRDT, as the hash value of the message and NRO token
sent previously can be calculated and compared with the value contained by the
NRDT. A stores NROT and NRDT received from B, B stores NROT received
from A.

3.3 The Verification of the APDUs

Received data packets can be verified using the associated NROT. The receiver
first calculates the hash value of the message, using the hash algorithm specified
by the token. After that, the signature of the token will be verified using the
corresponding public key, rsp. certificate. The used certificate is specified by the
element of the token, which contains the distinguishing identifier of the instance
that issued the token. As the number of authorized clients and their identities
will be known in advance and limited, the certificate management should be
easier than in open PKI systems.

78 K.C. Ruland and J. Sassmannshausen

3.4 Checking the NRDT

When receiving a response from the server, the client searches for the NRDT
that was sent by the server together with the response. Since the client may have
calculated and retained the hash value of the information that was sent before,
the verification of the NRDT is straightforward. NRDT will be logged to be able
to prove that the request was received by the application of the server.

3.5 NRD Tokens for the Server

Up to this point, the focus was set only on a single request to the server: The
client sends a request and receives a response together with a NRD token indicat-
ing that the server received the previous request. From this arises the realization
that not only the client, but also the server should get a NRD token signaling
that the last message sent was received by the communication partner. Whereas
this mechanism is easy to realize for a client (the NRD token can be sent along
with the response), it is more difficult to achieve for the server: When the server
has sent the response there is no reply from the client to which a NRD token
indicating the receipt of the servers message can be added. There may be sev-
eral ways to implement this functionality, the implementation of this security
solution stores the NRD token on the client side and sends it to the server along
with the next request to the server. This way, there are no additional messages
required and the protocol sequence of the MMS protocol does not need to be
changed.

3.6 The Application Security Sublayer

The extensions for the MMS protocol are integrated into the system in a way
that the functionalities of the server and the client do not need to be changed.
Both for client and server the security sublayer is transparent. In the MMS stack
this requirement can be met inserting an intermediate layer (Sub layer principle)
to the protocol stack which contains the functionality mentioned above. Figure 6
shows the principle of the sublayer.

3.7 Providing the APDUs with Tokens

The intermediate application security sublayer forwards outgoing packets to the
lower layers after generating a NROT for the message. For this purpose, a sig-
nature algorithm based on elliptic curve cryptography, like ECDSA can be used
for the signature used in the token. On the server side, the response will also
be provided by the NRD token that was generated when the associated request
was received. In general the field Q of the tokens will be used to store a distin-
guishing identifier of the associated message, so it can be determined more easily
for which message the token was generated, after the messages and tokens were
written to a log file.

Non-repudiation Services for the MMS Protocol of IEC 61850 79

Fig. 6. MMS protocol stack with security sublayer and TLS

3.8 Access Control Lists

Since every participant of the communication has an identity provided by the
corresponding certificate every single data packet is provided with a digital signa-
ture, the implementation of access control lists is straightforward. The NISTIR
7628 Guidelines for Smart Grid Cyber Security propose the use of role-based
access control. A role is an accumulation of permissions and every instance can
hold one or more roles [16]. In addition to verifying the NROT for incoming
messages, server-side access control lists can be used to classify clients not only
in trustworthy/non trustworthy, but to realize further authorization levels. For
example, some clients can be granted full access, whereas other clients are only
permitted to read certain values. This measure also increases the security level,
because not all clients will need full access to the server to work properly.

3.9 Logging of Events

The system for logging of the messages is relatively simple: both the incoming
as well as the outgoing APDUs need to be written to a log file. Due to the
associated tokens that are also logged, the authorship of the data packet can
be traced back without ambiguity and, the moment the packet was sent can
be determined precisely since the NROT contains the timestamp (Note: the
difficulties of provision of true timestamps are not addressed by this paper). The
servers response should also be logged with the associated NROT and NRDT.
The implementation of the system has to ensure that the log files are stored in
a protected memory where the files are safe from unauthorized access or being
overwritten.

80 K.C. Ruland and J. Sassmannshausen

4 An Implementation Using XML Signatures

For an exemplary implementation, XML is used to encode the tokens. The soft-
ware for the generation and verification of XML signatures already exists,is easy
to use and available online for free. In addition, tXML supports the integra-
tion of X.509 certificates into the signature block, which allows an exchange of
certificates between client and server, if this should be necessary.

4.1 How the Process Works

For every Message that is sent the sender generates a NRO token, for every mes-
sage that is received the recipient generates a NRD token. To generate a token,
the hash value of the whole MMS APDU as it is stored in the memory is calcu-
lated using an appropriate (cryptographic) hash algorithm. This implementation
uses SHA-256. In addition to the hash value additional information, namely the
names of both sender and addressee, the timestamp, the flag indicating the type
of the token and the name of the used security policy are embedded into a XML
document representing the token. To sign a NRO/NRD token, the respective
XML document is read by a XML parser creating a “Document Object Model”
to which the signature node will be appended. The verification of a token works
similar, the token is read by a XML parser and the signature node will be veri-
fied. Afterwards the hash value of the corresponding message is calculated and
compared with the hash value provided by the token. If both the tests succeed,
the NROT is valid and the authenticity of the message is ensured. Prior to fur-
ther processing the data packet will be logged together with the corresponding
tokens, ensuring that the proof of origin and receiving of the messages sent can
be provided at a later time.

4.2 The Modified Communication

Figure 7 shows the communication between client and server via the MMS pro-
tocol with the additional use of tokens.

The tokens are concatenated with the messages that are sent. (Concatena-
tions are indicated with ‖). As it can be seen, the client the NROT to every mes-
sage that is sent to the server. The server then processes the request and sends
the response together with the generated NRD token indicating the receipt of
the previous request. It also can be seen that the NRD tokens generated by the
client are sent with the next MMS message, resulting in a deferred receipt by
the server. However, the server gets a NRD token for all of its responses (except
the conclude response), since there will be always the conclude request at the
end of the association.

4.3 Example

The following example demonstrates how a data packet is provided with the
corresponding NRO token. Lets assume the client sends a message resp. request

Non-repudiation Services for the MMS Protocol of IEC 61850 81

Fig. 7. The communication between client and server via MMS extended by tokens

APDU to the server. As the content of the message itself is not important for
this example, it is represented as [message]. The hash value of [message] that
is part of the token was generated using SHA-256 and is Base64 encoded so it
can be embedded into the XML document. Note that the token also contains
additional elements like <Authority> or <TimestampO> that were not mentioned
before. These elements are introduced and described in the standard IEC 13888-3
[14] and can be ignored for this implementation.

The listing above shows the final message as it will be logged and sent to the
server. Some parts marked with “ ” are omitted for reasons of clarity. It consists
of the APDU [message] with the appended NROT. Note that this data packet
does not contain a NRD token as it is a request to the server. Now, the server
answers to the request. First, it generates the NRDT indicating the receiving
of both the message and the NROT. The server generates the response message
with the corresponding NROT. The server appends the NROT to the message
and also appends the NRDT. Listing 1.2 only shows the NRD token that is sent
together with the response message.

Note that the element <Recipient> contains the servers distinguishing name
as it is the receiver of the last request message. The distinguished name of the
tokens addressee is stored in the element <Origin>, since the corresponding
message was received from this instance. The signature within the token was
generated using ECDSA with a 256 bit key using SHA256 as hash algorithm.

82 K.C. Ruland and J. Sassmannshausen

[message]

<Token >

<Text>This is an example token </Text>

<Info>

<Policy >policy_1 </Policy >

<Flag>NROT</Flag>

<Origin >IssuerDistinguishedName </Origin >

<Recipient >AddresseeDistinguishedName </Recipient >

<Authority >null</Authority >

<TimestampTG >13073622260389 </TimestampTG >

<TimestampO >null</TimestampO >

<AdditionalInfo >SHA -256</AdditionalInfo >

<HashValue >dAZNDGZKqaHGBJdUuV8in+J86p ...</HashValue >

<Signature >

<SignedInfo >

<CanonicalizationMethod Algorithm="..."/>

<SignatureMethod Algorithm="..."/>

</SignedInfo >

<SignatureValue >lqGtoZoE8KyZ9UQm9huYNg4gGIhVF ...

</SignatureValue >

</Signature >

</Info>

</Token >

Listing 1.1. The NROT for a given message

[response message]

[NRO token for response message]

<Token >

<Text>This is a NRDT for the previous request </Text>

<Info>

<Policy >policy_1 </Policy >

<Flag>NRDT</Flag>

<Origin >SenderClientDistinguishedName </Origin >

<Recipient >ServerdistinguishedName </Recipient >

<Authority >null</Authority >

<TimestampTG >13073622265765 </TimestampTG >

<TimestampO >null</TimestampO >

<AdditionalInfo >SHA -256</AdditionalInfo >

<HashValue >xZ3gI5Uk8BXC4Y5k +qlau4nHib ...</HashValue >

<Signature >

<SignedInfo >

<CanonicalizationMethod Algorithm="..."/>

<SignatureMethod Algorithm="..."/>

</SignedInfo >

<SignatureValue >+8 GkcT0s29KQnSKQXPTgpTqmwkgRv ...

</SignatureValue >

</Signature >

</Info>

</Token >

Listing 1.2. The response with NROT and NRDT

Non-repudiation Services for the MMS Protocol of IEC 61850 83

The NISTIR 7628 guidelines recommend using keys and curves with a secu-
rity level not less than 112 bits for the use until the year 2029 and not less than
128 bits beyond the year 2030 [16]. The guidelines also names certain curves and
hash algorithms that should be used.

4.4 Advantages of XML Signatures and Tokens

The XML data format and XML signatures are very flexible. It is possible to
change signing algorithms or signature lengths without changing the architec-
ture of the system. It is also possible to embed additional information and also
certificates that have to be used to verify the signature.

The use of tokens to realize security services like nonrepudiation of origin and
delivery is also very flexible, the main advantage is the independence of the data
format of the request and response messages since only the hash value of the
messages is needed to generate the tokens. Due to this flexibility the developed
security solution can easily transferred to different protocols using different data
formats. There are various communication protocols published or planned (also
see [2,6,9]).

4.5 Possible Disadvantages of XML Signatures

The main disadvantage of XML signatures is the fact that the XML-encoded
PDUs are significantly longer than PDUs encoded with different encoding rules,
for example the “Distinguished Encoding Rules” that are used in the MMS pro-
tocol. Also, a XML parser is mandatory which may cause problems on systems
with low resources. Since the tokens and the signatures do have a predefined
structure, it may be possible to implement a lightweight (dedicated) XML parser
for the tokens. However, tests of this implementation have shown that the main
problem seems to be the additional message length which causes a heavy net-
work utilization in some scenarios. There are possibilities to reduce the length
of XML encoded messages: ITU-T X.694 describes a way to map XML schema
definitions to ASN.1, which then enables different encoding rules, like the “Dis-
tinguished Encoding Rules” [15]. To evaluate the efficiency of this measure there
are additional tests required.

5 Conclusion

The new security requirements for the MMS can only be met when the existing
systems and protocols are upgraded. The solution in this paper shows a possi-
ble way to achieve end-toend authentication and non-repudiation for the MMS
protocol using mechanisms described by the standard ISO 13888-3 and XML sig-
natures. With the additional use of a logging system, all transaction that took
place can be traced and attributed at a later time. Due to the simple structure
reducing the required changes to a minimum, the security solution is very flexi-
ble and can also be used for different protocols. The exemplary implementation

84 K.C. Ruland and J. Sassmannshausen

presented within this paper works fine in a simulated scenario but has to be
tested in reality to check whether it is practically feasible. For this purpose, we
are looking for a possibility to test the implementation in a realistic scenario.

References

1. Dournaee, B.: XML Security. RSA Press Series. Mcgraw-Hill, Osborne (2002)
2. Englert, H.: Neue Kommunikationskonzepte für den Netzbetrieb - aktuelle

Entwicklungen in der IEC 61850. Smart Grids Forum, Hannover Messe
(2014). https://www.vde.com/de/smart-grid/forum/beitraege/Documents/
2014-04-09-neue-kommunikationskonzepte-englert.pdf. Accessed on 3 July 2015

3. Fries, S., Hof, H.-J., Dufaure, T., Seewald, M.G.: Security for the smart grid -
enhancing IEC 62351 to improve security in energy automation control. Int. J.
Adv. Secur. 3(3 & 4), 169–183 (2010)

4. CEN, CENELEC, ETSI Smart Grid Coordination Group. Smart Grid Information
Security, November 2012

5. CEN, CENELEC, ETSI Smart Grid Coordination Group. Smart Grid Reference
Architecture, November 2012

6. IEC 61400–25: Communications for monitoring and control of wind power plants,
TC 88

7. IEC 61850: Communication networks and systems in substations, TC 57
8. IEC 61850–1: Communication networks and systems in substations - Introduction

and overview
9. IEC 61850-8-1: Communication networks and systems in substations - Part 8–1:

Specific communication service mapping (SCSM) - Mappings to MMS (ISO 9506–1
and ISO 9506–2) and to ISO/IEC 8802–3

10. IEC 62351: Power systems management and associated information exchange -
Data and communications security, TC 57

11. IEC 62351–1: Power systems management and associated information exchange -
Data and communications security Part 1: Communication network and system
security - introduction to security issues

12. IEC 62351–4: Power systems management and associated information exchange -
Data and communications security - Part 4: Profiles including MMS

13. IEC 62351–4: Power systems management and associated information exchange -
Data and communications security - Part 6: Security for IEC 61850 profiles

14. ISO/IEC 13888–3 IT Security techniques Non-repudiation - Part 3: Mechanism-
susing asymmetric techniques

15. ITU-T X.694 Information technology ASN.1 encoding rules: Mapping W3C XML
schema definitions into ASN.1

16. The Smart Grid Interoperability Panel - Cyber Security Working Group. NISTIR
7628 Guidelines for Smart Grid Cyber Security U.S. Department of Commerce,
National Institute of Standards and Technologies, August 2010

17. Smart Grid Mandate M/490 EN: Standardization Mandate to European Stan-
dardisation Organisations (ESOs) to support European Smart Grid deployment
European Commission Directorate-General for Energy, 1 March 2011

18. Systems Integration Specialists Company Inc, Overview and Introduction to the
Manufacturing Message Specification (MMS) (1995). http://www.sisconet.com/
downloads/mmsovrlg.pdf

https://www.vde.com/de/smart-grid/forum/beitraege/Documents/2014-04-09-neue-kommunikationskonzepte-englert.pdf
https://www.vde.com/de/smart-grid/forum/beitraege/Documents/2014-04-09-neue-kommunikationskonzepte-englert.pdf
http://www.sisconet.com/downloads/mmsovrlg.pdf
http://www.sisconet.com/downloads/mmsovrlg.pdf

Non-repudiation Services for the MMS Protocol of IEC 61850 85

19. Systems Integration Specialists Company, Inc. SISCO MMS Syntax (1994). http://
www.sisconet.com/downloads/mms abstract syntax.txt

20. Verband der Elektrotechnik, Elektronik und Informationstechnik. VDE-
Positionspapier Smart Grid Security Energieinformationsnetze und -
systeme (2014). https://www.vde.com/de/InfoCenter/Studien-Reports/Seiten/
Positionspapiere.aspx

http://www.sisconet.com/downloads/mms_abstract_syntax.txt
http://www.sisconet.com/downloads/mms_abstract_syntax.txt
https://www.vde.com/de/InfoCenter/Studien-Reports/Seiten/Positionspapiere.aspx
https://www.vde.com/de/InfoCenter/Studien-Reports/Seiten/Positionspapiere.aspx

Analysis of the PKCS#11 API Using
the Maude-NPA Tool

Antonio González-Burgueño1, Sonia Santiago2, Santiago Escobar3,
Catherine Meadows4(B), and José Meseguer2(B)

1 University of Oslo, Oslo, Norway
antonigo@ifi.uio.no

2 University of Illinois at Urbana-Champaign, Champaign, USA
{soniasp,meseguer}@illinois.edu

3 DSIC-ELP, Universitat Politècnica de València, Valencia, Spain
sescobar@dsic.upv.es

4 Naval Research Laboratory, Washington DC, USA
meadows@itd.nrl.navy.mil

Abstract. Cryptographic Application Programmer Interfaces (Crypto
APIs) are designed to allow a secure interoperation between applica-
tions and cryptographic devices such as smartcards and Hardware Secu-
rity Modules (HSMs). However, several Crypto APIs have been shown
to be subject to attacks in which sensitive information is disclosed to an
attacker, such as the RSA Laboratories Public Key Standards PKCS#11,
an API widely adopted in industry. Recently, there has been a growing
interest on applying automated crypto protocol analysis methods to for-
mally analyze APIs. However, the PKCS#11 has been proven difficult
to analyze using such methods since it involves non-monotonic muta-
ble global state. In this paper we specify and analyze the PKCS#11 in
Maude-NPA, a general purpose crypto protocol analysis tool.

Keywords: PKCS#11 · Cryptographic application programming inter-
faces (cryptographic APIs) · Symbolic cryptographic protocol analysis ·
Maude-NPA

1 Introduction

Standards for cryptographic protocols have long been attractive candidates for
formal verification. Cryptographic protocols are tricky to design and subject
to non-intuitive attacks even when the underlying cryptosystems are secure.
Furthermore, when protocols that are known to be secure are implemented as

The rights of this work are transferred to the extent transferable according to title
17 U.S.C. 105.
This work has been partially supported by NSF grant CNS 13-19109, by the EU
(FEDER) and the Spanish MINECO under grant TIN 2013-45732-C4-1-P, and by
Spanish Generalitat Valenciana under grant PROMETEOII/2015/013.

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 86–106, 2015.
DOI: 10.1007/978-3-319-27152-1 5

Analysis of the PKCS#11 API Using the Maude-NPA Tool 87

standards, the modifications that are made during the standardization process
may introduce new security flaws. Thus a considerable amount of work has
been done in the application of formal methods to cryptographic protocol stan-
dards [1,7,27,29]. In this work the protocols are treated symbolically, with the
cryptosystems treated as black-box function symbols. A formal methods tool
attempts to show that there is no way an attacker, by interacting with the pro-
tocol and applying the cryptographic functions symbols in any order, can break
the security of the protocol. Such tools can be used both to search for attacks
and to prove security with respect to the symbolic model.

Such symbolic formal analyses can be of great benefit to standards develop-
ment in two ways. First of all, they offer means of verifying claims for security
made by the standard, so that people can use it with more confidence. Further-
more, they can be useful in improving the standard, by discovering vulnerabilities
in the protocols and attacks that can be mounted through exploiting the vul-
nerabilities. The explicit attacks discovered by the tools are particularly useful
in that they provide the protocol designers information that can be used to help
assess and repair the vulnerability.

For most analyses it has been the case that the same tool and general app-
roach has been used to both verify the security of a protocol and to find attacks.
Many of the tools employ methods that allow one to conclude that the protocol
is secure if the tool terminates without finding an attack, such as heuristics that
allow one to rule out redundant or useless paths (e.g. OFMC [3], Maude-NPA
[14], Tamarin [30]) or abstractions (e.g. ProVerif [4]). Thus, one can use the tool
first to find vulnerabilities, and then to verify security of the protocol once the
vulnerabilities have been fixed. In a number of cases this has facilitated collabo-
ration between standards developers and formal methods experts, e.g. as in [28].
This approach has worked particularly well for standards for key generation and
secure communication, and these are the types of protocols that are most widely
standardized, and the most well understood from the point of view of symbolic
formal analysis.

However, recently another type of application has begun to attract interest:
Cryptographic Application Programming Interfaces, or cryptographic APIs for
short. A cryptographic API is a set of instructions by which a developer of an
application may allow it to take advantage of the cryptographic functionality of a
secure module. These APIs allow an application to perform such functions as cre-
ating keys, using keys to encrypt and decrypt data, and exporting and importing
keys to and from other devices. Cryptographic APIs should also enforce security
policies. In particular, no application should be able to retrieve a key in the
clear.

Developers of cryptographic APIs have traditionally concentrated on provid-
ing functionality, not on guaranteeing security properties. This has resulted in
a number of attacks on cryptographic APIs in which researchers have shown
how many popular APIs can be led into an unsafe state (e.g. one in which a
key is revealed to an untrusted application) via a series of legal steps. Indeed,
much of the earliest work on formal analysis of cryptographic protocols focused
on cryptographic APIs, e.g. [21,25,26]. However, the analysis of cryptographic

88 A. González-Burgueño et al.

APIs, did not become an area of research on its own until the early 2000’s
in particular after the attack found by Bond [5] in 2001 on IBM’s CCA API.
Many more attacks on CCA and other systems, as well as new techniques for ver-
ifying the security of APIs, have followed; see for example the attacks described
in Chap. 18 of Ross Anderson’s Security Engineering [2].

One API that has attracted particularly wide attention is PKCS#11 [24].
This is a standard that provides both a set of commands that could be used by
a cryptographic API and mechanisms for setting and enforcing security policies.
These security policies are specified in terms of attributes on keys and other data
that declare which operations using these terms are legal or illegal. However,
no guidance is provided on what sort of restrictions should be put on setting
attributes on keys and other data so that undesirable states are avoided. Indeed,
if no restrictions at all are put on the way attributes are set, it is possible to
wind up with an application learning a key in the clear in just a very few steps,
as Clulow points out in [9].

Since PKCS#11 is a widely used standard, much attention has been focused
on correcting these deficiencies, in particular on developing means for formally
verifying that a policy rules out undesirable states. But because PKCS#11 is
intended to be applied to a wide variety of platforms, the problem is harder
than verifying the security of an API such as IBM’s CCA [20], which was only
intended to be used for applications running on certain IBM systems. For one
thing, the set of attributes forms a mutable global state which must be accounted
for. Secondly, any formal verification system must be capable of verifying not
just one or two policies specified by the developers of the API, as was the case
of CCA, but any of a large class of policies that could be specified by a user.

Because of the complexity of the problem, researchers have tended to narrow
their focus when applying cryptographic protocol analysis tools to PKCS#11.
Most use of tools for the analysis of PKCS#11 makes some restriction on the
policies analyzed, usually with an appeal to practicality or common use cases.
They may also develop tools specifically designed for PKCS#11 analysis, or at
the very least prove additional results specific to PKCS#11 that allow them to
limit the size of the search space. Finally, they may concentrate primarily on
either proving security or finding attacks, but not both.

In this paper we investigate the applicability of cryptographic protocol verifi-
cation tools, in particular the Maude-NRL Protocol Analyzer (Maude-NPA) [14],
to the analysis of cryptographic APIs such as PKCS#11, primarily concentrat-
ing on assessing its ability to find attacks. In order to perform the verification of
PKCS#11, we make use of the results in [18] which show that, for a large class of
reasonable policies, it is sufficient to assume that attributes never change; that is,
that policies are static. We then show how, assuming static policies, it is possible
to specify policies that put restrictions on what combination of attributes can be
set to true for a particular key using Maude-NPA never patterns, a feature that
allows the user to specify what events Maude-NPA should avoid in generating
an attack. Since most policies proposed to date for PKCS#11 are expressed in
this form, this leaves us in a good position to express both the API and policies

Analysis of the PKCS#11 API Using the Maude-NPA Tool 89

in Maude-NPA. We then use Maude-NPA to reproduce the attacks found by
Delaune et al. in [12]. Finally, we discuss the performance of Maude-NPA and
compare it with other applications of cryptographic protocol analysis tools to
the analysis of PKCS#11, in particular the use of the AVISPA tool in [32] and
the use of Tamarin in [23].

The contributions of this paper are twofold. First, we advance investigation
of the verification of PKCS#11 by performing the analysis of this API in a
model more general than those in other works in the literature, namely a fully-
unbounded session model with no abstraction nor approximation of fresh values,
and making no other restrictions on policies other than that they are static.
Second, we provide a new example of applicability of Maude-NPA to the analysis
of cryptographic APIs. This paper extends the work presented in [19] on the
analysis of IBM CCA by showing that Maude-NPA does not only support the
specification of these APIs, but also the specification of policies restricting their
behavior.

The rest of the paper is organized as follows. In Sect. 2 we give a high-
level summary of Maude-NPA and its use of never patterns. In Sect. 3 we give
an overview of PKCS#11 along with previous attacks and formal analyses. In
Sect. 4 we describe how we specify the PKCS#11 API and policies in Maude-
NPA. In Sect. 5 we describe the experiments we conducted and explain the results
obtained. In Sect. 6 we discuss related work. Finally, in Sect. 7 we conclude the
paper and discuss future work.

2 Maude-NPA

In this section we give a high-level summary of Maude-NPA. For further infor-
mation, please see [14].

2.1 Preliminaries on Unification and Narrowing

We assume an order-sorted signature Σ = (S,≤, Σ) with a poset of sorts
(S,≤) and an S-sorted family X = {Xs}s∈S of disjoint variable sets with each
Xs countably infinite. TΣ(X)s is the set of terms of sort s, and TΣ,s is the set
of ground terms of sort s. We write TΣ(X) and TΣ for the corresponding order-
sorted term algebras. For a term t, Var(t) denotes the set of variables in t.

Positions are represented by sequences of natural numbers denoting an access
path in the term when viewed as a tree. The top or root position is denoted by
the empty sequence ε. The subterm of t at position p is t|p and t[u]p is the term
t where t|p is replaced by u.

A substitution σ ∈ Subst(Σ,X) is a sorted mapping from a finite subset of X
to TΣ(X). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X). The application of a substitution σ to
a term t is denoted by tσ.

90 A. González-Burgueño et al.

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X)s for some
sort s ∈ S. Σ and a set E of Σ-equations, The E-equivalence class of a term
t is denoted by [t]E and TΣ/E(X) and TΣ/E denote the corresponding order-
sorted term algebras modulo E. An equational theory (Σ,E) is a pair with Σ
an order-sorted signature and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t′σ.
For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW

E (t = t′) is said to be
a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (σ ◦ η)|W =E ρ|W); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩ W = ∅.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X)s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a
set of rewrite rules. The (R,E) rewriting relation →R,E on TΣ(X) is defined as:
t →p,R,E t′ iff there exist p ∈ PosΣ(t), a rule l → r in R, and a substitution σ
such that t|p =E lσ and t′ = t[rσ]p.

Let t be a term and W be a set of variables such that Var(t) ⊆ W , the
R,E-narrowing relation on TΣ(X) is defined as t �p,σ,R,E t′ if there is a non-
variable position p ∈ PosΣ(t), a rule l → r ∈ R properly renamed s.t. (Var(l) ∪
Var(r)) ∩ W = ∅, and a unifier σ ∈ CSUW ′

E (t|p = l) for W ′ = W ∪ Var(l), such
that t′ = (t[r]p)σ.

2.2 Maude-NPA Syntax and Semantics

Given a protocol P, states are modeled as elements of an initial algebra TΣP/EP ,
where ΣP is the signature defining the sorts and function symbols (for the
cryptographic functions and for all the state constructor symbols) and EP is
a set of equations specifying the algebraic properties of the cryptographic func-
tions and the state constructors. Therefore, a state is an EP -equivalence class
[t]E ∈ TΣP/EP with t a ground ΣP -term.

In Maude-NPA a state pattern for a protocol P is a term t of sort State (i.e.,
t ∈ TΣP/EP (X)State) which has the form {S1 & · · · &Sn & {IK}} where &is an
associative-commutative union operator with identity symbol ∅. Each element
in the set is either a strand Si or the intruder knowledge {IK} at that state.

The intruder knowledge {IK} belongs to the state and is represented as a
set of facts using the comma as an associative-commutative union operator with
identity element empty. There are two kinds of intruder facts: positive knowl-
edge facts (the intruder knows m, i.e., m∈I), and negative knowledge facts (the
intruder does not yet know m but will know it in a future state, i.e., m/∈I), where
m is a message expression.

A strand [16] specifies the sequence of messages sent and received by a
principal executing the protocol and is represented as a sequence of messages
[msg−

1 , msg+
2 , msg−

3 , . . . , msg−
k−1, msg+

k] such that msg−
i (also written −msgi)

Analysis of the PKCS#11 API Using the Maude-NPA Tool 91

represents an input message, msg+
i (also written +msgi) represents an output

message, and each msgi is a term of sort Msg (i.e., msgi ∈ TΣP/EP (X)Msg).
Strands are used to represent both the actions of honest principals (with a

strand specified for each protocol role) and the actions of an intruder (with a
strand for each action an intruder is able to perform on messages). In Maude-
NPA strands evolve over time; the symbol | is used to divide past and future.
That is, given a strand [m1

±, . . . , mi
± | mi+1

±, . . . , mk
±], messages m±

1 ,
. . . , m±

i are the past messages, and messages m±
i+1, . . . , m

±
k are the future mes-

sages (m±
i+1 is the immediate future message). A strand [msg±

1 , . . . , msg±
k] is

shorthand for [nil | msg±
1 , . . . , msg±

k , nil]. An initial state is a state where the
bar is at the beginning for all strands in the state, and the intruder knowledge
has no fact of the form m∈I. A final state is a state where the bar is at the end
for all strands in the state and there is no intruder fact of the form m/∈I.

Since Fresh variables must be treated differently from other variables by
Maude-NPA, we make them explicit by writing :: r1, . . . , rk :: [m±

1 , . . . , m±
n],

where each ri first appears in an output message m+
ji

and can later appear in
any input and output message of m±

ji+1, . . . , m
±
n . If there are no Fresh variables,

we write :: nil :: [m±
1 , . . . , m±

n].

Example 1. Let us consider a subset of the PKCS#11 API. A symmetric key
generated by principal A is denoted by skey(A, r), where r is a unique Fresh
variable and A denotes who generated the key. The symmetric encryption of
a message M with a key skey(A, r) is denoted by senc(M, skey(A, r)). The
intruder’s ability to generate its own symmetric keys is specified in Maude-NPA
by the strand:

:: r :: [skey(i, r)+]

where i is a constant denoting the intruder’s name. Note that we have made
explicit that the fresh variable r is generated in this strand. In this protocol the
intruder is allowed to perform the symmetric encryption of a message M with
a key K, assuming that it has received both M and K. This ability is specified
by the following strand:

:: nil :: [M−, K−, (senc(M,K)+)]

where M is a variable of the sort for messages and K is a variable of the sort
for symmetric keys. Note that no fresh variables are generated in this strand.

Since the number of states TΣP/EP is in general infinite, rather than exploring
concrete protocol states [t]EP ∈ TΣP/EP Maude-NPA explores symbolic state
patterns [t(x1, . . . , xn)]EP ∈ TΣP/EP (X) on the free (ΣP , EP)-algebra over a set
of variables X . In this way, a state pattern [t(x1, . . . , xn)]EP represents not a
single concrete state but a possibly infinite set of such states, namely all the
instances of the pattern [t(x1, . . . , xn)]EP where the variables x1, . . . , xn have
been instantiated by concrete ground terms.

The semantics of Maude-NPA is expressed in terms of rewrite rules that
describe how a protocol moves from one state to another via the intruder’s inter-
action with it. One uses Maude-NPA to find an attack by specifying an insecure

92 A. González-Burgueño et al.

state pattern called an attack pattern. Maude-NPA attempts to find a path from
an initial state to the attack pattern via backwards narrowing (narrowing using
the rewrite rules with the orientation reversed).

Example 2. Let us continue Example 1. In order to analyze whether the intruder
can learn an honest key we specify the following attack pattern below:

{SS & {skey(a, r)∈I, IK}}
where SS and IK are variables of the sort for sets of strands and for the intruder’s
knowledge, respectively. This attack pattern represents an insecure situation in
which the intruder has learnt the honest key skey(a, r). Note that a is a constant
of the sort for names, which is different to the intruder’s name i.

The backwards narrowing sequence from an initial state to an attack state
is called a backwards path from the attack state to the initial state. Maude-NPA
attempts to find paths until it can no longer form any backwards narrowing steps,
at which point it terminates. If at that point it has not found an initial state,
the attack pattern is judged unreachable. Note that Maude-NPA puts no bound
on the number of sessions, so reachability is undecidable in general. Note also
that Maude-NPA does not perform any data abstraction such as bound number
of nonces. However, the tool makes use of a number of sound and complete
state space reduction techniques that help to identify unreachable and redundant
states [15], and thus make termination more likely.

2.3 Never Patterns in Maude-NPA

It is often desirable to exclude certain patterns from transition paths leading to
an attack state. For example, one may want to determine whether or not authen-
tication properties have been violated, e.g., whether it is possible for a responder
strand to appear without the corresponding initiator strand. For this there is an
optional additional field in the attack state containing the never patterns. Each
never pattern is itself a state pattern. When we provide an attack pattern A and
some never patterns NP1, . . . , NPk to Maude-NPA, every time the tool pro-
duces a state S via backwards narrowing from A, it checks whether there is a
substitution θ such that NPiθ =EP S. If that is the case, the state is discarded1.
We will write an attack pattern A with the never patterns NP1, . . . , NPk as
A || never(NP1) . . . || never(NPk).

Although never patterns were introduced as a means for specifying authen-
tication properties, they can also be used to reduce the search space in a not
necessarily complete way (an attack could be missed). In this work we only found
it necessary to use such never patterns once in analysis (see Sect. 5).

Example 3. Let us continue Example 2. In order to exclude from the backwards
path from the attack pattern of Example 2 the case in which the intruder uses
1 Maude-NPA also checks whether NPiθ satisfies irreducibility constraints, as

described in [13].

Analysis of the PKCS#11 API Using the Maude-NPA Tool 93

the key skey(a, r) to perform the symmetric encryption of any message M , we
extend the attack pattern above with a never pattern as shown below:

{SS & {skey(a, r)∈I, IK}
|| never({ :: nil :: [(M)−, (skey(a, r))−, (senc(M, skey(a, r)))+] & SS′ & {IK′}})

where SS′ and IK ′ are variables of the sort for sets of strands and for the
intruder’s knowledge, respectively.

3 PKCS#11

RSA Laboratories originally developed the Public Key Standards (PKCS) #11
in order to define a platform-independent API “Cryptoki”for the management of
cryptographic tokens. Recently (in 2012) the responsibility of the maintenance
of the standard was transitioned to the OASIS standards committee [31], but
the standard is still referred to as PKCS#11.

PKCS#11 is intended to protect sensitive cryptographic keys as follows [17].
Once a session is initiated, the application may access the objects stored in the
token, such as keys and certificates. However, access to the objects is controlled
in the API via handles (which can be thought of as pointers to, or names for, the
objects). These objects have attributes, e.g. boolean flags signalling properties of
the object, namely wrap, unwrap, encrypt, decrypt, sensitive and extract.
These flags can be either in positive form (l) or in negative form (¬l), denoting
that an attribute l is set or unset, respectively. Depending on whether these
attributes are set or unset, certain API commands may be enabled or disabled.

New handles can be created by calling a key generation command, or by
“unwrapping” an encrypted key packet. For example, if the encrypt function
is called with the handle for a particular key, that key must have its encrypt
attribute set. Also, a key may be exported outside the device if it is encrypted
by another key, but only if it has the attributes sensitive and extract set. It
is important to know that protection of the keys essentially relies on these two
attributes, sensitive and extract.

Table 1 provides an informal description of a subset of the PKCS#11 key
management commands. There are two kinds of commands. First, there are
commands that correspond to PKCS#11 actions: the ones for wrapping and
unwrapping keys, namely “Wrap” and “Unwrap”, respectively; and for symmet-
ric and asymmetric encryption and decryption, e.g. “SEncrypt” is the command
for symmetric encryption, whereas “ADecrypt” corresponds to the command for
asymmetric decryption. Note that there are several possibilities for the “Wrap”
and “Unwrap” commands, depending on whether they use symmetric or asym-
metric keys. Second, there are commands to modify attribute values, namely the
“Set” and “Unset” commands. For example, “Set-Wrap” sets to true the wrap
attribute of a key, whereas “Unset-Wrap” sets it to false.

The behavior of each command is described in Table 1 by rules of the form
T ;L new ñ→ T ′;L′. T is the set of messages that need to be received, whereas
T ′ denotes the set of messages that are sent as a result of the messages in T

94 A. González-Burgueño et al.

Table 1. Subset of PKCS#11 v2.01 key management commands

Name API Command Description

Wrap (sym-sym) h(n1, k1), h(n2, k2) ; wrap(n1), extract(n2) → senc(k2, k1)

Wrap (sym-asym) h(n1, priv(z)), h(n2, k2) ; wrap(n1), extract(n2) → aenc(k2, pub(z))

Unwrap (sym-sym) h(n1, k2), senc(k1, k2) ; unwrap(n1)
new r→ h(r, k1) ; extract(r), L

Unwrap (sym-asym) h(n1, priv(z)), aenc(k1, pub(z)) ; unwrap(n1)
new r−→ h(r, k1) ; extract(r), L

SEncrypt h(n, k), m ; encrypt(n) → senc(m, k)

SDecrypt h(n, k), senc(m, k) ; decrypt(n) → m

AEncrypt h(n, priv(z)), m ; encrypt(n) → aenc(m, pub(z))

ADecrypt h(n, priv(z)), aenc(m, pub(z)) ; decrypt(n) → m

Set-Wrap h(n, k) ; ¬wrap(n) → wrap(n)

Set-Encrypt h(n, k) ; ¬encrypt(n) → encrypt(n)

Unset-Wrap h(n, k) ; wrap(n) → ¬wrap(n)

Unset-Encrypt h(n, k) ; encrypt(n) → ¬encrypt(n)

L = ¬wrap(r), ¬unwrap(r), ¬encrypt(r), ¬decrypt(r), ¬sensitive(r)

being received. L and L′ are sets of attributes. More specifically, L denotes
the attributes that must be set in order to execute the command, whereas L′

denotes the value of the attributes after the command is executed. L′ can include
attributes in negative form and attributes related to freshly generated handles
not appearing in L. The expression new ñ represents the generation of fresh data
that will appear in T ′ and L′.

The set L′ is assumed to be satisfiable, i.e., it cannot contain two literals l
and ¬l. Any variable appearing in T ′ must appear in T , i.e. Var(T ′) ⊆ Var(T)
and any variable appearing in L′ also appears in L, i.e. Var(L′) ⊆ Var(L). The
only new variables that can appear in T ′ and L′ are those indicated in new ñ.

In Table 1 public and private keys are represented by terms of the form pub(A)
and priv(A), respectively. Handles for keys are specified as terms of the form
h(N,K), where N is a nonce uniquely identifying the handle and K is the key.
Symmetric and asymmetric encryption of a message M with a key K is denoted
by terms senc(M,K) and aenc(M,K) respectively. Finally the attributes are
specified as terms of the form l(N), where l is the attribute’s name, and N is a
nonce that refers to a unique handle h(N,K).

Example 4. Let us consider the rule corresponding to the “Wrap (sym-sym)”
command. This rule allows wrapping a symmetric key using another symmetric
key. If the attacker knows the handles h(n1, k1) and h(n2, k2), i.e., references to
symmetric keys k1 and k2, the handle h(n1, k1) has the attribute wrap set, and
the handle h(n2, k2) has the attribute extract set, then the attacker can learn
the symmetric encryption of k2 with k1, represented by the term senc(k2, k1).

In a cryptographic API threat model we assume that the application is mali-
cious and in league with the adversary. Thus, in particular applications should
not learn keys in the clear. In [9] Clulow presented a number of attacks in which
sensitive keys are compromised. One of the best-known attacks is the so-called
“key separation attack”. The name refers to the fact that the attributes of a key
can be set and unset in such a way as to give a key conflicting roles, allowing the
attacker to learn sensitive keys. Figure 1 shows an example of a key separation
attack presented in [9]. In this attack the attacker learns the value of a sensitive

Analysis of the PKCS#11 API Using the Maude-NPA Tool 95

Initial knowledge: The intruder knows h(n1, k1) and h(n2, k2); n2 has
the attributes wrap and decrypt set, whereas n1 has the attributes
sensitive and extract set.

Trace:
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
SDecrypt: h(n2, k2), senc(k1, k2) → k1

Fig. 1. Decrypt/Wrap attack in PKCS#11 v2.01

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2)
and the key k3; n1 has the attributes sensitive and extract set
whereas n2 has the attributes unwrap and encrypt set.

Trace:
SEncrypt: h(n2, k2), k3 → senc(k3, k2)

Unwrap: h(n2, k2), senc(k3, k2)
new n3→ h(n3, k3)

Set wrap: h(n3, k3) → wrap(n3)
Wrap: h(n3, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Fig. 2. Encrypt/Unwrap attack in PKCS#11 v2.01

key by wrapping it and then decrypting the resulting cyphertext with a key that
has the attributes for decryption (decrypt) and wrapping (wrap) set.

Clulow suggested that this attack could be avoided by restricting key
attribute changing operations so that a stored key could not have both the
decrypt and wrap attributes set. However, as described in [12], this restriction
does not prevent other key separation attacks not discovered by Clulow. For
example, as shown in Fig. 2, if the attacker imports its own key by first encrypt-
ing it under a key k2 whose handle has the attributes unwrap and encrypt set,
and then unwrapping it, then it can export a sensitive key k1 under k3 to discover
its value.

Again, in [12] the authors showed that restricting key attribute changing
operations to avoid the attacks shown in Figs. 1 and 2 is not enough to make the
API secure. The attacker can learn a sensitive key k1 performing the sequence
of commands shown in Fig. 3 if it knows a handle h(n2, k2) which has both the
wrap and unwrap attributes set.

Furthermore, when asymmetric encryption is considered, PKCS#11 is sub-
ject to the “Trojan Wrapped Key” attack, first discovered in [9], and found later
on in [12], too. In this attack the attacker has the ability to smuggle a key of his
own choice onto the token. If there is a key pair pub(s1), priv(s1) on the token
such that pub(s1) can be used for encrypting data and priv(s1) for unwrap-
ping keys then the attacker can first encrypt a known key k3 under pub(s1) and
then plant its trojan key by unwrapping k3 into a new handle. The attacker can
then use this Trojan key to export other keys from the device, which it can then
decrypt and recover. Figure 4 shows the exchange of messages of this attack.

96 A. González-Burgueño et al.

Initial state: The intruder knows the handles h(n1, k1) and h(n2, k2), and the
key k3; n1 has the attributes sensitive and extract set, n2 has the attribute
extract set. The intruder also knows the public key pub(s1) and its associated
handle h(n3, priv(s1)).

Trace:
Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n2, k2) → senc(k2, k2)
Set unwrap: h(n2, k2) → unwrap(n2)

Unwrap: h(n2, k2), senc(k2, k2)
new n4→ h(n4, k2)

Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Set decrypt: h(n4, k2) → decrypt(n4)
SDecrypt: h(n4, k2), senc(k1, k2) → k1

Fig. 3. Wrap/Unwrap attack in PKCS#11 v2.01

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and the
key k3; n1 has the attributes sensitive and extract set, n2 has the attribute
extract set. The intruder also knows the public key pub(s1) and its
associated handle h(n3, priv(s1)).

Trace:
Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1)), h(n3, priv(s1))
new n4→ h(n4, k3)

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n1, k1) → senc(k1, k3)
Intruder: senc(k1, k3), k3 → k1

Fig. 4. Trojan Wrapped Key attack in PKCS#11 v2.01

Another experiment performed in [12] shows that more recent versions of
the API that include new mechanisms to improve security are still subject to
the same type of attacks. For example, version 2.20 of the PKCS#112 stan-
dard uses two more attributes: wrap with trusted and trusted. Whenever the
“Wrap” command is executed, it tests whether if the key to be wrapped has
wrap with trusted set then the wrapping key has trusted set. However, this
does not prevent the attack shown in Fig. 5, where the attacker first attacks the
trusted wrapping key, and then obtains the sensitive key k1.

4 Specification of PKCS#11 in Maude-NPA

In this section we explain how to specify and analyze the core key manage-
ment commands of PKCS#11 in Maude-NPA. First, in Sect. 4.1 we provide a

2 Attacks shown in Figs. 1-4 actually correspond to attacks of PKCS#11 version 2.01,
whereas the attack shown in Fig. 5 is an attack discovered for PKCS#11 version 2.20.

Analysis of the PKCS#11 API Using the Maude-NPA Tool 97

Initial state: The intruder knows the handles h(n1, k1), h(n2, k2) and the key k3;
n1 has the attributes sensitive, extract and wrap with trusted set , whereas n2

has the attributes extract and trusted set. The intruder also knows the public key
pub(s1) and its associated handle h(n3, priv(s1));n3 has the attribute unwrap set.

Trace:
Intruder: k3, pub(s1) → aenc(k3, pub(s1))
Set unwrap: h(n3, priv(s1)) → unwrap(n3)

Unwrap: aenc(k3, pub(s1)), h(n3, priv(s1))
new n4→ h(n4, k3)

Set wrap: h(n4, k3) → wrap(n4)
Wrap: h(n4, k3), h(n2, k2) → senc(k2, k3)
Intruder: senc(k2, k3), k3 → k2
Set wrap: h(n2, k2) → wrap(n2)
Wrap: h(n2, k2), h(n1, k1) → senc(k1, k2)
Intruder: senc(k1, k2), k2 → k1

Fig. 5. Wrap with trusted key attack in PKCS#11 v2.20

high-level description of how we model PKCS#11 API version 2.20 in Maude-
NPA. Then, in Sect. 4.2 we show in detail the specification of the PKCS#11
commands in Maude-NPA’s syntax.

4.1 Formal Model of PKCS#11 in Maude-NPA

It is well-known that specifying and verifying API protocols in protocol analy-
sis tools is challenging. Although this is not the first time an API protocol is
analyzed in Maude-NPA (see [19]), there are specific features of PKCS#11 API
that make its specification and analysis in Maude-NPA a non-trivial task.

First, the number of keys and handles is infinite a priori, e.g., the “Unwrap”
command allows creating new handles for an existing key. The approach taken
in [12] bounds the number of keys and handles for each key that can be created.
For example, to find the attack shown in Fig. 1 the authors allow a maximum of
3 symmetric keys and 2 handles for each symmetric key (see [12] Sect. 5). In [18]
the authors assume a bound on the number of fresh values that are generated
in the course of an attack, and prove that it is sound and complete for the
static policies of the specific systems they consider. However, these bounds may
not apply to other systems. By contrast, in this paper we do not impose these
restrictions and perform the analyses in an unbounded session model, making
no abstractions of fresh data, e.g., an infinite number of keys an nonces can be
generated. There was one exception, the analysis where attack shown in Fig. 5,
where ultimately we had to restrict the number of keys the attacker generates
to prevent state space explosion. However, in this case the attacker could still
generate an unbounded number of fresh handles by executing the “Unwrap”
command. The work presented in [23] also considers an unbounded session model
using no abstraction, but its goal is different from ours (see Sect. 6 for further
details).

98 A. González-Burgueño et al.

Another feature of PKCS#11 is use of a global mutable state consisting of
attributes. We avoid this issue by taking advantage of previous work in this
area by Fröschle and Steel [18] to simplify the types of policies that need to
be analyzed. In [18] Fröschle and Steel define a construct they call an attribute
policy, and show that, for a large class of “reasonable” attribute policies called
complete policies, it is enough to prove security in the case of static policies,
in which the attributes of a key are never changed after it is created. In [18]
the attribute state is a function assigning attribute valuations (specifications
of which attributes are set and which are not) to keys. An attribute policy is
a finite directed graph whose nodes are the set of allowable states, and whose
edges are allowed transitions between states. A complete policy is one in which
the transition policy consists of a collection of disjoint, disconnected cliques,
and for each clique C, and each pair of states c0, c1 ∈ C, we have c0 ∪ c1 ∈ C.
This allows for certain natural behaviors for which Fröschle and Steel point out
that any well-designed policy should take into account. They then show that
each clique has a unique end point in which the attacker has the greatest power.
Thus any attacker behavior allowed by the policy in which each clique is replaced
by the end point is allowed by any node in the clique. Thus analysis of the end
point policy will tell us whether or not the original policy was safe. Moreover,
since the end point policy is static, it is enough to be able to analyze static
policies.

The main difference between the Fröschle-Steel paper and the model used
in the Maude-NPA analysis is in the definition of attribute state. The Maude-
NPA analysis has no such notion of attribute state. However, it does keep a
history that may include the setting and unsetting of attribute values, and these
can be mapped to allowable states. For example, if the attribute wrap was set
for a key, and it was not subsequently unset, we may conclude that that key
currently has its attribute wrap set. It is thus also possible to define policies for
PKCS#11 keys as they are represented in Maude-NPA by mapping the states
both before and after a transition T to attribute states, and then determining
whether the two states and the transition edge connecting them belong to the
policy. This in particular allows us to define both complete and static policies
in terms of Maude-NPA histories and thus apply the results of Fröschle-Steel to
analyze only static policies with the assurance that this analysis applies to the
associated complete policies as well.

The use of static policies means that we do not need to represent attribute val-
ues explicitly. Instead, we can express policies defined in terms of what attributes
can be set for a given key in terms of what combinations of actions enabled by
those attributes are allowed using specific keys, without compromising complete-
ness. Thus, instead of saying that the attributes decrypt(n) and wrap(n) cannot
both we set, we say that the attacker cannot perform both “decrypt” and “wrap”
actions using the same key. This allows us, as in [18], to dispense with global
state entirely.

Another issue is to what extent we can use Maude-NPA to search for attacks
assuming a certain policy is being enforced. Fortunately, this is easy for static
policies that require that certain pairs of conflicting attributes not be both set

Analysis of the PKCS#11 API Using the Maude-NPA Tool 99

for the same key. This policy is enforced if and only if there is no history in
which the functions associated with each of the two conflicting attributes are
executed on the same key. This allows us to specify policies using never patterns
as described in Sect. 2.3. For example, in order to enforce a policy requiring, say,
that no key can have the attributes wrap and decrypt set we specify a never
pattern describing a generic state in which both wrap and decrypt strands have
executed using the same key. Such a policy is shown in Example 6. Note that
the never pattern does not specify which strand completed first, just that each
should have executed at some time in the past.

4.2 Specification of PKCS#11 in Maude-NPA’s Syntax

In this section we describe the specification of the PKCS#11 v2.20 key man-
agement commands in Maude-NPA’s syntax. The API’s signature is specified
as follows. A nonce generated by principal A is denoted by n(A, r), where r is
a unique variable of sort Fresh and A denotes the principal that generated the
nonce. This representation makes it easier to specify and keep track of the origin
of nonces. E.g., one can use the notation to specify a state in which a principal
accepts a nonce as coming from A when it actually comes from some B �= A.
Handles are represented by terms of the form h(n(A, r),K), where K can be
either a symmetric or an asymmetric key. Symmetric keys are represented by
terms of the form skey(A, r′), where A denotes a name and r′ is a fresh variable.
Public and private keys, and symmetric and asymmetric encryption are specified
similarly as explained in Sect. 3.

Each command of the PKCS#11 API is specified in Maude-NPA as a
strand. Table 2 shows the specification of the commands of Table 1 representing
PKCS#11 actions in Maude-NPA’s syntax as an example. More specifically, for
each rule T ;L new ñ→ T ′;L′, messages in T are represented as received messages,
i.e., terms of the form −(M), whereas messages in T ′ are represented as sent
messages, i.e., terms of the form +(M). The generation of fresh data denoted
by new ñ is represented by variables r1, . . . , ri of sort Fresh made explicit at the
beginning of the strand.

Example 5. The “Unwrap (sym-sym)” command of Table 1, which generates a
new fresh data r, is specified in Maude-NPA as the following strand:

:: r :: [−(h(N2, K2)), −(senc(K1, K2)), +(h(n(A, r), K1))]

where N2 is a variable of the sort for nonces, K1 and K2 are variables of the sort
for symmetric keys, and r is a variable of sort Fresh used to create a new handle
for K1.

Additionally, in PKCS#11 the attacker can perform symmetric encryption
and decryption and create any number of symmetric keys. We assume it knows
any public key and can generate only its private key. The attacker can perform
asymmetric encryption with any public or private key it knows. As explained in
Sect. 2, we specify each one of these capabilities as a strand in Maude-NPA.

100 A. González-Burgueño et al.

Table 2. PKCS#11 key management commands in Maude-NPA

Command Specification in Maude-NPA

Wrap (sym/sym) :: nil :: [−(h(N1, K1)), −(h(N2, K2)), +(senc(K2, K1))]

Wrap (sym/asym) :: nil :: [−(h(N1, priv(A))), −(h(N2, K2)), +(aenc(K2, pub(A)))]

Unwrap (sym/sym) :: r :: [−(h(N2, K2)), −(senc(K1, K2)), +(h(n(A, r), K1))]

Unwrap (sym/asym) :: r :: [−(h(N1, priv(B))), −(aenc(K1, pub(B))), +(h(n(A, r), K1))]

SDecrypt :: nil :: [−(h(N, K)), −(senc(M, K)), +(M)]

SEncrypt :: nil :: [−(h(N, K)), −(M), +(senc(M, K))]

ADecrypt :: nil :: [−(h(N, priv(A))), −(aenc(M, pub(A))), +(M)]

AEncrypt :: nil :: [−(h(N, priv(A))), −(M), +(aenc(M, priv(A)))]

We specify constraints on conflicting attributes as follows. Since in our model
we do not explicitly represent attributes, we express these conditions in terms of
the commands enabled when the conflicting attributes are set by adding never
patterns (see Sect. 2.3) to the attack states we use to perform the analysis in
Maude-NPA. More specifically, these never patterns are specified in such a way
that they discard states where these commands are executed using the same
handle. Let us illustrate this idea with the example below.

Example 6. Let us consider the attack shown in Fig. 2 where wrap and decrypt
are considered as conflicting attributes, i.e., a given handle cannot have both the
wrap and decrypt attributes set. In order to search for this attack in Maude-
NPA one can specify the attack pattern shown below, which has a never pattern
that discards any state that has, at least, two strands using the same handle
(h(N,K)): one for wrapping, and the other one for decryption.

{SS & {skey(A, r1′)∈I, IK}
|| never({ :: nil ::[−(h(N, K)), −(h(N1, K1)), +(senc(K1, K))]&

:: nil ::[−(h(N, K)), −(senc(M, K)), +(M)]

SS′ & {IK′}})

Note that SS and SS′ are variables of the sort for sets of strands, IK and IK ′

are variables of the sort for the intruder knowledge, A is a variable of the sort
for names, and K1 and K are variables of the sort for keys, and M is a variable
of the sort for messages. The term skey(a, r1′) represents a sensitive key that
should not be revealed to the attacker.

5 Experiments

We have specified the PKCS#11 API and analyzed several configurations in
Maude-NPA following the methodology explained in Sect. 4. More specifically,
we have rediscovered the attacks shown in Figs. 1, 2, 3, 4, and 5 (see Sect. 3).

Note that, unlike the experiments performed in [12] and in [18], we have not
bounded the number of keys and handles that can be generated. The protocol
specifications to reproduce our experiments are available on-line at http://www.

dsic.upv.es/∼sescobar/Maude-NPA/pkcs.html.

http://www.dsic.upv.es/~sescobar/Maude-NPA/pkcs.html
http://www.dsic.upv.es/~sescobar/Maude-NPA/pkcs.html

Analysis of the PKCS#11 API Using the Maude-NPA Tool 101

Table 3. Experimental Results

Attack Length dec / wrap enc/ unwrap wrap/ unwrap

Fig. 1 4 - - -
Fig. 2 7 � - -
Fig. 3 6 � � -
Fig. 4 7 � � �
Fig. 5 9 � � �

Table 3 gathers the results of our experiments. For each one of the attacks
explained in Sect. 3 we specify in the second column the length of the backwards
reachability analysis performed by Maude-NPA until each attack was found.
In the third, fourth, and fifth columns we show the different constraints on
conflicting attributes that have been considered in each experiment. For example,
the attack of Fig. 1 was found by Maude-NPA after 4 reachability steps, and
no restriction on conflicting attributes was considered. The attack shown in
Fig. 3 was found by Maude-NPA after 6 reachability steps and we considered
two restrictions, namely that decrypt and wrap, and encrypt and unwrap are
conflicting attributes.

In the experiments to find the attacks shown in Figs. 2 to 5 we used never
patterns to specify policies on conflicting attributes. Additionally, in the case of
the attack shown in Fig. 5 in order to control the size of the state search space
we added an attack preserving never pattern (see [19]) that forces Maude-NPA
to only search for states in which the attacker generated the minimal number of
keys.

we added a never pattern to discard states containing more than one instance
of the initial knowledge strand to reduce the state search space. Note that this
never pattern preserves the completeness of the analysis because this PKCS#11
configuration is subject to an attack. That is, if Maude-NPA finds the attack
when only one instance of the initial knowledge strand is allowed, it will still
find the same attack (or an equivalent one) if several instances are allowed.

6 Related Work

There is a vast amount of research on the formal analysis of cryptographic APIs,
so in this related work section we will concentrate on the work that is closest to
ours, namely the formal analysis of PKCS#11 and PKCS#11-like systems and
the use of cryptographic protocol analysis tools to analyze APIs.

Besides the work on formalizing and verifying PKCS#11 that we have already
discussed, there has been further work focused on building tools for analyzing
policies for PKCS#11 and PKCS#11-like systems. In [8] Centenaro et al. design
a typed-base system for reasoning about the security of PKCS#11 policies, and
use it to verify the security of new classes of PKCS#11 security policies they
propose. This work is even able to verify implementations of PKCS#11. In [10]

102 A. González-Burgueño et al.

Cortier and Steel develop a generic model for PKCS#11-like systems, and an
algorithm and tool for verifying policies in this model. Interestingly, they show
that a number of cryptographic protocols can also be modeled using their system,
and they demonstrate their tool on them as well, thus showing that the relation-
ship between cryptographic APIs and cryptographic protocols runs both ways.

The Tookan tool [6] can be used on PKCS#11 implementations. It reverse
engineers security tokens, builds a formal model similar to that of [12], whose
security can be checked by a model checker, and then runs any attack trace found
directly on the token to validate it. The methods used by Tookan were further
developed and commercialized in the commercial tool Cryptosense [11], which
includes a component Cryptosense Analyzer that analyzes PKCS#11 configura-
tions for insecurities and then tests attack traces on the system. Thus, analysis
of PKCS#11 and systems like it, although challenging, has proved achievable
enough to have potential commercial application.

An approach closer to ours is the work of Künnemann presented in [23], in
that it relies on a protocol analysis tool, Tamarin [30] with some features in
common with Maude-NPA (in particular, it performs backwards search over an
unbounded number of sessions using no abstraction). In this paper Künnemann
models PKCS#11 v2.20 in the Sapic calculus presented in [22], a variant of
the applied pi calculus augmented with operators for state manipulation. This
high-level protocol specification is then translated to a multiset rewrite system
that can be verified using Tamarin. Using this tool-chain the author provides a
configuration of the API and proves that it preserves the secrecy of sensitive keys.

However, the goal in [23] is different from ours. Instead of searching for
attacks, Künnemann uses Tamarin to prove security of a particular configu-
ration of PKCS#11 v2.20. This allows him to define a more restrictive model
that includes their secure configuration but rules out others, in particular many
of the configurations we analyzed with Maude-NPA. It also allows him to leave
out certain features, such as asymmetric encryption, which, given the restrictions
of his model does not give the intruder any more capabilities than symmetric
encryption, and so can be omitted as redundant.

For the case of applying cryptographic protocol analysis tools one of the
biggest issues facing the analysis of cryptographic APIs, is the problem of keeping
the search space of a manageable size. Solutions that work for key distribution
protocols, such as bounding the number of sessions, do not apply as well to
cryptographic APIs, where the number and kind of “sessions” executed is under
complete control of the adversary. The earliest work on formal analysis of APIs
[21,25,26] dealt with the problem by relying to an extent on user input. For
example, the analysis in [25] allowed users to tell the tool when they thought a
state was reachable, and the analysis in [26] relied on lemmas that were conceived
of and proved by the user, with machine assistance. More recently, the AVISPA
analysis of PKCS#11 reported by Tsalapati in [32] uses simplifications such as
a monotonic state and allowing only one handle per key.3 According to [12],

3 The thesis in which this work is contained is not publicly available, so we are relying
on the account given in [12].

Analysis of the PKCS#11 API Using the Maude-NPA Tool 103

Steel and Carbone were able to enrich Tsalapati’s AVISPA model to include
non-monotonic state; however the number of sessions still needed to be bounded
for analysis to be tractable, and the bounds needed to be relatively small. The
Maude-NPA analysis of IBM’s CCA API described in [19] relies on the use of
never patterns, which can be used to tell Maude-NPA ignore classes of states
specified by the user.

In [23], termination of the analysis is achieved, not only by restricting the
kinds of configurations considered, but also by specifying model-specific heuris-
tics that allow a more efficient evaluation of the operations that manipulate
the protocol’s state. In order to reduce the state search space and speed up
the analysis the author defined a number of model-specific helping lemmas to
rule out some states describing impossible situations or actions that do not allow
the attacker to learn more knowledge in their model.

Another issue is the type of policies that need to be considered. In IBM CCA
policies are represented in terms of separation of duties, which are straight-
forward to model in a tool such as Maude-NPA. For PKCS#11 the problem is
apparently harder, since policies are expressed in terms of a global mutable state,
Our first attempt to analyze PKCS#11 included a faithful model of PKCS#11
state, and analysis with respect to this model proved to be intractable. Steel and
Carbone seemed to have encountered similar problems in their AVISPA analysis.

However, closer study reveals that there are natural restrictions on policies
one can enforce. Fröschle and Steel [18] in particular show that it is possible to
safely assume that policies are static, if one imposes some very natural restric-
tions on them. This means that one can specify policies in terms of which com-
binations of attributes are allowable. Künnemann also argues for static policies
in [23], on the grounds of practicality and safety: the ability to turn attributes
on and off is not needed, and can lead to security problems. The Tookan tool [6]
restricts itself to a combination of static, sticky-on (once an attribute is turned
on, it can’t be turned off), and sticky-off (once an attribute is turned off, it
can’t be turned back on) attributes, on the grounds that this is what is normally
seen in real implementations. These restrictions do much to make analyses more
tractable and to limit the complexity of state representation. Indeed, in our
Maude-NPA analysis we found we did not need to model state explicitly at all.

7 Conclusions

In this paper we have described the analysis of some PKCS#11 configurations
in Maude-NPA, a cryptographic protocol analyzer tool that operates in the
unbounded session model. This allowed us to perform the analysis of this API
in a fully-unbounded session model making no abstraction nor approximation of
fresh values, and with no assumptions about the policies other than that they
were static. This in particular allowed us to reproduce attacks on PKCS#11
configurations found by Delaune et al. in [12].

We consider our work as complementary to that of [23]. In [23] Künnemann
uses the protocol analysis tool Tamarin to prove security of a configuration in

104 A. González-Burgueño et al.

a restricted model. We use the protocol analysis tool Maude-NPA to reproduce
attacks in a less restrictive model. This provides evidence that these tools can
be of assistance in both proving security and in finding attacks, as they are for
key generation and secure communication protocols.

What remains to be seen is how generally applicable these tools are to
PKCS#11 and similar APIs. In particular, we note that our PKCS#11 analysis,
although it was successful at reproducing attacks, did not achieve termination, so
it is likely that Maude-NPA would not be helpful in proving security within the
rather general model we use without some further improvements. However, we
plan to keep on investigating this to determine to what degree performance can
be improved, for example via the use of state space reduction techniques specific
to these types of models. For example, it would be interesting to investigate the
model-specific lemmas in [23] to see if they could be used in Maude-NPA. We
also plan to investigate whether lemmas appropriate to other classes of models
could be formulated and proved.

References

1. Abadi, M., Blanchet, B., Fournet, C.: Just fast keying in the pi calculus. ACM
Trans. Inf. Syst. Secur. 10(3) (2007). doi:10.1145/1266977.1266978. http://dblp.
uni-trier.de/rec/bib/journals/tissec/AbadiBF07

2. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distrib-
uted Systems, 2nd edn. Wiley Publishing (2008). http://dblp.uni-trier.de/rec/bib/
books/daglib/0020262

3. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for secu-
rity protocols. Int. J. Inf. Secur. 4(3), 181–208 (2005)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Breton,
Nova Scotia, Canada, pp. 82–96. IEEE Computer Society, June 2001

5. Bond, M.: Attacks on cryptoprocessor transaction sets. In: Koç, Ç.K., Naccache,
D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 220–234. Springer, Heidelberg
(2001)

6. Bortolozzo, M., Centenaro, M., Focardi, R., Steel, G.: Attacking and fixing pkcs#
11 security tokens. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, pp. 260–269. ACM (2010)

7. Butler, F., Cervesato, I., Jaggard, A.D., Scedrov, A.: A formal analysis of some
properties of kerberos 5 using msr. In: CSFW, p. 175. IEEE Computer Society
(2002)

8. Centenaro, M., Focardi, R., Luccio, F.L.: Type-based analysis of PKCS#11 key
management. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust.
LNCS, vol. 7215, pp. 349–368. Springer, Heidelberg (2012)

9. Clulow, J.: On the security of PKCS #11. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 411–425. Springer, Heidelberg (2003)

10. Cortier, V., Steel, G.: A generic security API for symmetric key management on
cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol.
5789, pp. 605–620. Springer, Heidelberg (2009)

11. Cryptosense. Cryptosense Web Page. https://cryptosense.com/

http://dx.doi.org/10.1145/1266977.1266978
http://dblp.uni-trier.de/rec/bib/journals/tissec/AbadiBF07
http://dblp.uni-trier.de/rec/bib/journals/tissec/AbadiBF07
http://dblp.uni-trier.de/rec/bib/books/daglib/0020262
http://dblp.uni-trier.de/rec/bib/books/daglib/0020262
https://cryptosense.com/

Analysis of the PKCS#11 API Using the Maude-NPA Tool 105

12. Delaune, S., Kremer, S., Steel, G.: Formal analysis of pkcs#11. In: Proceedings of
the 21st IEEE Computer Security Foundations Symposium, CSF 2008, 23–25 June
2008, Pittsburgh, Pennsylvania, pp. 331–344. IEEE Computer Society (2008)

13. Erbatur, S., Escobar, S., Kapur, D., Liu, Z., Lynch, C., Meadows, C., Meseguer,
J., Narendran, P., Santiago, S., Sasse, R.: Effective symbolic protocol analysis via
equational irreducibility conditions. In: Foresti, S., Yung, M., Martinelli, F. (eds.)
ESORICS 2012. LNCS, vol. 7459, pp. 73–90. Springer, Heidelberg (2012)

14. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: Cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, J., Gorrieri, R. (eds.)
FOSAD 2007/2008/2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009)

15. Escobar, S., Meadows, C., Meseguer, J., Santiago, S.: State space reduction in the
Maude-NRL Protocol Analyzer. Inf. Comput. 238, 157–186 (2014)

16. Thayer Fabrega, F.J., Herzog, J., Guttman, J.: Strand spaces: what makes a secu-
rity protocol correct? J. Comput. Secur. 7, 191–230 (1999)

17. Focardi, R., Luccio, F.L., Steel, G.: An introduction to security API analysis. In:
Aldini, A., Gorrieri, R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 35–65. Springer,
Heidelberg (2011)

18. Fröschle, S., Steel, G.: Analysing PKCS#11 key management APIs with
unbounded fresh data. In: Degano, P., Viganò, L. (eds.) ARSPA-WITS 2009.
LNCS, vol. 5511, pp. 92–106. Springer, Heidelberg (2009)

19. González-Burgueño, A., Santiago, S., Escobar, S., Meadows, C., Meseguer, J.:
Analysis of the IBM CCA security API protocols in Maude-NPA. In: Chen, L.,
Mitchell, C. (eds.) SSR 2014. LNCS, vol. 8893, pp. 111–130. Springer, Heidelberg
(2014)

20. IBM. CCA basic services reference and guide: CCA basic services reference and
guide for the IBM 4758 PCI and IBM 4764 (2008). http://www-03.ibm.com/
security/cryptocards/pdfs/bs327.pdf.

21. Kemmerer, R.A.: Using formal verification techniques to analyze encryption proto-
cols. In: IEEE Symposium on Security and Privacy, pp. 134–139. IEEE Computer
Society (1987)

22. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. In: 2014 IEEE Symposium on Security and Privacy, SP 2014, 18–21 May,
2014, Berkeley, CA, USA, pp. 163–178 (2014)

23. Künnemann, R.: Automated backward analysis of PKCS#11 v2.20. In: Focardi, R.,
Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 219–238. Springer, Heidelberg
(2015)

24. RSA Laboratories. PKCS#11: Cryptographic token interface standard. https://
www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-
token-interface-standard.htm

25. Longley, D., Rigby, S.: An automatic search for security flaws in key management
schemes. Comput. Secur. 11(1), 75–89 (1992)

26. Meadows, C.: Applying formal methods to the analysis of a key management pro-
tocol. J. Comput. Secur. 1(1) (1992)

27. Meadows, C., Cervesato, I., Syverson, P.: Specification and analysis of the group
domain of interpretation protocol using NPATRL and the NRL protocol analyzer.
J. Comput. Secur. 12(6), 893–932 (2004)

28. Meadows, C., Syverson, P.F., Cervesato, I.: Formal specification and analysis of
the group domain of interpretation protocol using NPATRL and the NRL protocol
analyzer. J. Comput. Secur. 12(6), 893–931 (2004)

http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.
http://www-03.ibm.com/security/cryptocards/pdfs/bs327.pdf.
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm
https://www.emc.com/emc-plus/rsa-labs/standards-initiatives/pkcs-11-cryptographic-token-interface-standard.htm

106 A. González-Burgueño et al.

29. Meadows, C.: Analysis of the internet key exchange protocol using the NRL pro-
tocol analyzer. In: IEEE Symposium on Security and Privacy, pp 216–231. IEEE
Computer Society (1999)

30. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

31. OASIS. OASIS PKCS 11 TC. OASIS PKCS 11 TC Home Page. https://www.
oasis-open.org/committees/tc home.php?wg abbrev=pkcs11

32. Tsalapati, E.: Analysis of PKCS#11 using AVISPA tools. Master’s thesis, Univer-
sity of Edinburgh (2007)

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=pkcs11

Analysis on Cryptographic Algorithm

How to Manipulate Curve Standards:
A White Paper for the Black Hat

http://bada55.cr.yp.to

Daniel J. Bernstein1,2(B), Tung Chou1(B), Chitchanok Chuengsatiansup1(B),
Andreas Hülsing1(B), Eran Lambooij1(B), Tanja Lange1(B),
Ruben Niederhagen1(B), and Christine van Vredendaal1(B)

1 Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, P.O. Box 513, 5600 MB Eindhoven, Netherlands

blueprint@crypto.tw, c.chuengsatiansup@tue.nl,

andreas.huelsing@googlemail.com, e.lambooij@student.tue.nl,

tanja@hyperelliptic.org, ruben@polycephaly.org, c.v.vredendaal@tue.nl
2 Department of Computer Science, University of Illinois at Chicago,

Chicago, IL 60607–7045, USA
djb@cr.yp.to

Abstract. This paper analyzes the cost of breaking ECC under the
following assumptions: (1) ECC is using a standardized elliptic curve
that was actually chosen by an attacker; (2) the attacker is aware of a
vulnerability in some curves that are not publicly known to be vulnerable.

This cost includes the cost of exploiting the vulnerability, but also the
initial cost of computing a curve suitable for sabotaging the standard.
This initial cost depends heavily upon the acceptability criteria used by
the public to decide whether to allow a curve as a standard, and (in most
cases) also upon the chance of a curve being vulnerable.

This paper shows the importance of accurately modeling the actual
acceptability criteria: i.e., figuring out what the public can be fooled
into accepting. For example, this paper shows that plausible models of
the “Brainpool acceptability criteria” allow the attacker to target a one-
in-a-million vulnerability and that plausible models of the “Microsoft
NUMS criteria” allow the attacker to target a one-in-a-hundred-thousand
vulnerability.

This work was supported by the European Commission under contracts INFSO-ICT-
284833 (PUFFIN) and H2020-ICT-645421 (ECRYPT-CSA), by the Netherlands
Organisation for Scientific Research (NWO) under grant 639.073.005, and by the U.S.
National Science Foundation under grant 1018836. “Any opinions, findings, and con-
clusions or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.” Calculations
were carried out on two GPU clusters: the Saber cluster at Technische Universiteit
Eindhoven; and the K10 cluster at the University of Haifa, funded by ISF grant
1910/12. Permanent ID of this document: bada55ecd325c5bfeaf442a8fd008c54.
Date: 2015.09.25. See web site: bada55.cr.yp.to.

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 109–139, 2015.
DOI: 10.1007/978-3-319-27152-1 6

http://bada55.cr.yp.to

110 BADA55 Research Team

Keywords: Elliptic-curve cryptography · Verifiably random curves ·
Verifiably pseudorandom curves · Minimal curves · Nothing-up-my-
sleeve numbers · ANSI X9 · NIST · SECG · Brainpool · Microsoft NUMS

1 Introduction

1.1 Elliptic-Curve Cryptography. Elliptic-curve cryptography (ECC) has
a reputation for high security and has become increasingly popular. For def-
initeness we consider the elliptic-curve Diffie–Hellman (ECDH) key-exchange
protocol, specifically “ephemeral ECDH”, which has a reputation of being the
best way to achieve forward secrecy. The literature models ephemeral ECDH as
the following protocol ECDHE,P , Diffie–Hellman key exchange using a point P
on an elliptic curve E:

1. Alice generates a private integer a and sends the ath multiple of P on E.
2. Bob generates a private integer b and sends bP .
3. Alice computes abP as the ath multiple of bP .
4. Bob computes abP as the bth multiple of aP .
5. Alice and Bob encrypt data using a secret key derived from abP .

There are various published attacks showing that this protocol is breakable for
many elliptic curves E, no matter how strong the encryption is. See Section 2 for
details. However, there are also many (E,P) for which the public literature does
not indicate any security problems. Similar comments apply to, e.g., elliptic-
curve signatures.

This model begs the question of where the curve (E,P) comes from. The
standard answer is that a central authority generates a curve for the public
(while advertising the resulting benefits for security and performance). This does
not mean that the public will accept arbitrary curves; our main objective in this
paper is to analyze the security consequences of various possibilities for what
the public will accept. The general picture is that Alice, Bob, and the central
authority Jerry are actually participating in the following three-party protocol
ECDHA, where A is a function determining the public acceptability of a standard
curve:

–1. Jerry generates a curve E, a point P , auxiliary data S with A(E,P, S) = 1.
(The “seeds” for the NIST curves are examples of S; see Section 4.)

0. Alice and Bob verify that A(E,P, S) = 1.
1. Alice generates a private integer a and sends aP .
2. Bob generates a private integer b and sends bP .
3. Alice computes abP as the ath multiple of bP .
4. Bob computes abP as the bth multiple of aP .
5. Alice and Bob encrypt data using a secret key derived from abP .

Our paper analyzes the consequences of Jerry cooperating with an eavesdropper
Eve to break the encryption used by Alice and Bob. The central question is how
Jerry can use his curve-selection flexibility to minimize the attack cost.

How to Manipulate Curve Standards 111

Obviously the cost cA of breaking ECDHA depends on A, the same way that
the cost cE,P of breaking ECDHE,P depends on (E,P). One might think that,
to evaluate cA, one simply has to check what the public literature says about
cE,P , and then minimize cE,P over all (E,P, S) with A(E,P, S) = 1. The reality
is more complicated, for three reasons:

1. There may be vulnerabilities not known to the public: curves E for which cE,P

is smaller than indicated by the best public attacks. Our starting assumption
is that Jerry and Eve are secretly aware of a vulnerability that applies to
a fraction ε of all curves that the public believes to be secure. The obvious
strategy for Jerry is to standardize a vulnerable curve.

2. Some choices of A limit the number of curves E for which there exists suitable
auxiliary data S. If 1/ε is much larger than this limit then Jerry cannot expect
any vulnerable (E,P, S) to have A(E,P, S) = 1. We show that, fortunately
for Jerry, this limit is much larger than the public thinks it is. See Sections 5
and 6.

3. Other choices of A do not limit the number of vulnerable E for which S exists
but nevertheless complicate Jerry’s task of finding a vulnerable (E,P, S) with
A(E,P, S) = 1. See Section 4 for analysis of the cost of this computation.

If Jerry succeeds in finding a vulnerable (E,P, S) with A(E,P, S) = 1, then Eve
simply exploits the vulnerability, obtaining access to the information that Alice
and Bob have encrypted for transmission.

Of course, this could require considerable computation for Eve, depending on
the details of the secret vulnerability. Our goal in this paper is not to evaluate
the cost of Eve’s computation, but rather to evaluate the impact of A and ε
upon the cost of Jerry’s computation.

For this evaluation it is adequate to use simplified models of secret vulner-
abilities. We specify various artificial curve criteria that have no connection to
vulnerabilities but that are satisfied by (E,P, S) with probability ε for various
sizes of ε. We then evaluate how difficult it is for Jerry to find (E,P, S) that
satisfy these criteria and that have A(E,P, S) = 1.

The possibilities that we analyze for A are models built from data regard-
ing what the public will accept. Consider, for example, the following data: the
public has accepted without complaint the constants sin(1), sin(2), . . . , sin(64) in
MD5, the constants

√
2,

√
3,

√
5,

√
10 in SHA-1, the constants 3

√
2, 3

√
3, 3

√
5, 3

√
7

in SHA-2, the constant (1 +
√

5)/2 in RC5, the constant e = exp(1) in Brain-
pool, the constant 1/π in ARIA, etc. All of these constants are listed in [48] as
examples of “nothing up my sleeve numbers”. Extrapolating from this data, we
confidently predict that the public would accept, e.g., the constant cos(1) used
in our example curve BADA55-VPR-224 in Section 5. Enumerating a complete
list of acceptable constants would require more systematic psychological exper-
iments, so we have chosen a conservative acceptability function A in Section 5
that allows just 17 constants and their reciprocals.

The reader might object to our specification of ECDHA as implicitly assum-
ing that the party sabotaging curve choices is the same as the party issuing
curve standards to be used by Alice and Bob. In reality, these two parties are

112 BADA55 Research Team

different, and having the first party exercise sufficient control over the second
party is often a delicate exercise in finesse. See, for example, [29,20].

1.2 Organization. Section 2 reviews the curve attacks known to the public
and analyzes the probability that a curve resists these attacks; this probability
has an obvious impact on the cost of generating curves. Section 3, as a warm-up,
shows how to manipulate curve choices when A merely checks for these public
vulnerabilities.

Section 4 shows how to manipulate “verifiably random” curve choices
obtained by hashing seeds. Section 5 shows how to manipulate “verifiably pseudo-
random” curve choices obtained by hashing “nothing-up-my-sleeves numbers”.
Section 6 shows how to manipulate “minimal” curve choices. Section 7 shows how
to manipulate “the fastest curve”.

1.3 Research Contributions of this Paper. We appear to be the first
to formally introduce the three-party protocol ECDHA. The general idea of
Section 4 is not new, but our cost analysis is new. We are the first to implement
the attack, showing how little computer power is necessary to target highly
unusual curve properties. Our theoretical and experimental analysis of the per-
centage of secure curves (see Section 2) is also new.

The general idea of Sections 5 and 6 is new. We are the first to show that
curves using so-called “nothing-up-my-sleeves numbers” can very well be manip-
ulated to contain a secret vulnerability. We present concrete ways to gain many
bits of freedom and analyze how likely a new vulnerability needs to be in order to
hide in this framework. It is surprising that millions of curves can be generated
by plausible variations of the Brainpool [14] curve-generation procedure, and
that hundreds of thousands of curves can be generated by plausible variations
of the Microsoft [13] curve-generation procedure.

In followup work to Section 5, Aumasson has posted a “Generator of ‘nothing-
up-my-sleeve’ (NUMS) constants” that “generates close to 2 million constants,
and is easily tweaked to generate many more”. See [4].

2 Public Security Analyses

Standards evaluating or claiming the security of various elliptic curves include
[1,28,16,17,37,2,14,39,18,19,40,41,3,38]. These standards vary in many details,
and also demonstrate important variations in public acceptability criteria, an
issue explored in depth later in this paper.

Some public criteria have become so widely known that all of the above
standards agree upon them. Jerry’s curves need to satisfy these criteria. This
means not only that Jerry will be unable to use these public attacks as back
doors, but also that Jerry will have to bear these criteria in mind when searching
for a vulnerable curve. Perhaps the vulnerability known secretly to Jerry does
not occur in curves that satisfy the public criteria; on the other hand, perhaps
this vulnerability occurs more frequently in curves that satisfy the public criteria

How to Manipulate Curve Standards 113

than in general curves. The chance ε of a curve being vulnerable is defined relative
to the curves that the public will accept.

This section has three goals:

– Review these standard criteria for “secure” curves, along with attacks known
to the public.

– Analyze the probability δ that a curve satisfies the standard security criteria.
This has a direct influence on Jerry’s curve-generation cost. Two particular
criteria, “small cofactor” and “small twist cofactor”, are satisfied by only a
small fraction of curves.

– Analyze the probability that a curve is actually feasible to break by various
public attacks. It turns out that there are many probabilities on different
scales, showing that one should also consider a range of probabilities ε for
Jerry’s secret vulnerability. Recall that ε is, by definition, the probability that
curves passing the public criteria are secretly vulnerable to Jerry’s attack.

Each curve that Jerry tries works with probability only δε. The number of curves
that Jerry can afford to try and is allowed to try depends on various optimiza-
tions and constraints analyzed later in this paper; combining this number with δε
immediately reveals Jerry’s overall success chance at creating a vulnerable curve
that passes the public criteria, avoiding alarms from the public researchers.

�
2.1 Warning: Math Begins Here. For simplicity we cover only prime fields
here. If Jerry’s secret vulnerability works only in binary fields then we would
expect Jerry to have a harder time convincing his targets to use vulnerable
curves, although of course he will try.

Let E be an elliptic curve defined over a large prime field Fp. One can always
write E in the form y2 = x3 + ax + b. Most curve standards choose a = −3 for
efficiency reasons. Practically all curves have low-degree isogenies to curves with
a = −3, so this choice does not affect security.

Write |E(Fp)| for the number of points on E defined over Fp, and write
|E(Fp)| as p+1− t. Hasse’s theorem (see, e.g., [45]) states that |E(Fp)| is in the
“Hasse interval” [p + 1 − 2

√
p, p + 1 + 2

√
p]; i.e., t is between −2

√
p and 2

√
p.

Define � as the largest prime factor of |E(Fp)|, and define the “cofactor” h
as |E(Fp)|/�. Let P be a point on E of order �.

2.2 Review of Public ECDLP Security Criteria. Elliptic curve cryptog-
raphy is based on the believed hardness of the elliptic-curve discrete-logarithm
problem (ECDLP), i.e., the belief that it is computationally infeasible to find a
scalar k satisfying Q = kP given a random multiple Q of P on E. The state-of-
the-art public algorithm for solving the ECDLP is Pollard’s rho method (with
negation), which on average requires approximately 0.886

√
� point additions.

Most publications require the value � to be large; for example, the SafeCurves
web page [9] requires that 0.886

√
� > 2100.

Some standards put upper limits on the cofactor h, but the limits vary. FIPS
186-2 [37, page 24] claims that “for efficiency reasons, it is desirable to take the
cofactor to be as small as possible”; the 2000 version of SEC 1 [16, page 17]

114 BADA55 Research Team

required h ≤ 4; but the 2009 version of SEC 1 [18, pages 22 and 78] claims that
there are efficiency benefits to “some special curves with cofactor larger than
four” and thus requires merely h ≤ 2α/8 for security level 2α. We analyze a few
possibilities for h and later give examples with h = 1; many standard curves
have h = 1.

Another security parameter is the complex-multiplication field discriminant
(CM field discriminant) which is defined as D = (t2 − 4p)/s2 if (t2 − 4p)/s2 ≡ 1
(mod 4) or otherwise D = 4(t2−4p)/s2, where t is defined as p+1−|E(Fp)| and
s2 is the largest square dividing t2 − 4p. One standard, Brainpool, requires |D|
to be large (by requiring a related quantity, the “class number”, to be large).
However, other standards do not constrain D, there are various ECC papers
choosing curves where D is small, and the only published attacks related to the
size of D are some improvements to Pollard’s rho method on a few curves. If
Jerry needs a curve with small D then it is likely that Jerry can convince the
public to accept the curve. We do not pursue this possibility further.

All standards prohibit efficient additive and multiplicative transfers. An addi-
tive transfer reduces the ECDLP to an easy DLP in the additive group of Fp;
this transfer is applicable when � equals p. A degree-k multiplicative transfer
reduces the ECDLP to the DLP in the multiplicative group of Fpk where the
problem can be solved efficiently using index calculus if the embedding degree k
is not too large; this transfer is applicable when � divides pk − 1. All standards
prohibit � = p, � dividing p − 1, � dividing p + 1, and � dividing various larger
pk − 1; the exact limit on k varies from one standard to another.

2.3 ECC Security vs. ECDLP Security. The most extensive public list
of requirements is on the SafeCurves web page [9]. SafeCurves covers hardness
of ECDLP, generally imposing more stringent constraints than the standards
listed in Section 2.2; for example, SafeCurves requires the discriminant D of the
CM field to satisfy |D| > 2100 and requires the order of p modulo �, i.e., the
embedding degree, to be at least (� − 1)/100. Potentially more troublesome for
Jerry is that SafeCurves also covers the general security of ECC, i.e., the security
of ECC implementations.

For example, if an implementor of NIST P-224 ECDH uses the side-channel-
protected scalar-multiplication algorithm recommended by Brier and Joye [15],
reuses an ECDH key for more than a few sessions, and fails to perform a mod-
erately expensive input validation that has no impact on normal usage, then
a twist attack finds the user’s secret key using approximately 258 elliptic-curve
additions. See [9] for details. SafeCurves prohibits curves with low twist security,
such as NIST P-224.

Luckily for Jerry, the other standards listed above focus on ECDLP hardness
and impose very few additional ECC security constraints. This gives Jerry the
freedom to choose a non-SafeCurves-compliant curve that encourages insecure
ECC implementations even if ECDLP is difficult.

From Jerry’s perspective, there is some risk that twist-security and other
SafeCurves criteria will be added to future standards. This paper considers the
possibility that Jerry is forced to generate twist-secure curves; it is important for

How to Manipulate Curve Standards 115

Jerry to be able to sabotage curve standards even under the harshest conditions.
Obviously it is also preferable for Jerry to choose a curve for which all imple-
mentations are insecure, rather than merely a curve that encourages insecure
implementations.

Twist-security requires the twist E′ of the original curve E to be secure. If
|E(Fp)| = p+1−t then |E′(Fp)| = p+1+t. Define �′ as the largest prime factor of
p + 1 + t. SafeCurves requires 0.886

√
�′ > 2100 to prevent Pollard’s rho method;

�′ �= p to prevent additive transfers; and p having order at least (�′ − 1)/100
modulo �′ to prevent multiplicative transfers. SafeCurves also requires various
“combined attacks” to be difficult; this is automatic when cofactors are very
small, i.e. when (p + 1 − t)/� and (p + 1 + t)/�′ are very small integers.

2.4 The Probability δ of Passing Public Criteria. This subsection ana-
lyzes the probability of random curves passing the public criteria described
above.

We begin by analyzing how many random curves have small cofactors. As
illustrations we consider cofactors h = 1, h = 2, and h = 4. Note that, for primes
p large enough to pass a laugh test (at least 224 bits), curves with these cofactors
automatically satisfy the requirement 0.886

√
� > 2100; in other words, requiring

a curve to have a small cofactor supersedes requiring a curve to meet minimal
public requirements for security against Pollard’s rho method.

Let π(x) be the number of primes p ≤ x, and let π(S) be the number of
primes p in a set S. The prime-number theorem states that the ratio between
π(x) and x/ log x converges to 1 as x → ∞, where log is the natural logarithm.
Explicit bounds such as [42] are not sufficient to count the number of primes
in a short interval I = [x − y, x], but there is nevertheless ample experimental
evidence that π(I) is very close to y/ log x when y is larger than

√
x.

The number of integers in I of the form �, 2�, or 4�, where � is prime,
is the same as the total number of primes in the intervals I1 = [x − y, x],
I2 = [(x − y)/2, x/2] and I4 = [(x − y)/4, x/4], namely π(I1) + π(I2) + π(I4) ≈
∑

h∈{1,2,4}(y/h)/log(x/h). Take x = p+1+2
√

p and y = 4
√

p to see the number
of such integers in the Hasse interval. The total number of integers in the Hasse
interval is almost exactly 4

√
p, so the chance of an integer in the interval having

the form �, 2�, or 4� is approximately

∑

h∈{1,2,4}

1
h log ((p + 1 + 2

√
p)/h)

. (1)

This does not imply, however, that the same approximation is valid for the
number of points on a random elliptic curve. It is known, for example, that the
number of points on an elliptic curve is odd with probability almost exactly
1/3, not 1/2; this suggests that the number is prime less often than a uniformly
distributed random integer in the Hasse interval would be.

A further difficulty is that we need to know not merely the probability that
the cofactor h is small, but the joint probability that both h and h′ = (p+1+t)/�′

are small. Even if one disregards the subtleties in the distribution of p+1−t, one

116 BADA55 Research Team

should not expect (e.g.) the probability that p+1− t is prime to be independent
of the probability that p+1+ t is prime: for example, if one quantity is odd then
the other is also odd.

Galbraith and McKee in [25, Conjecture B] formulated a precise conjecture
for the probability of any particular h (called “k” there). Perhaps the techniques
of [25] can be extended to formulate a conjecture for the probability of any par-
ticular pair (h, h′). However, no such conjectures appear to have been formulated
yet, let alone tested.

To collect facts we performed the following experiment: take p = 2224−296+1
(the NIST P-224 prime, which is also used in the following sections), and count
the number of points on 1000000 curves. Specifically, we took the curves y2 =
x3 − 3x + 1 through y2 = x3 − 3x + 1000001, skipping the non-elliptic curve
y2 = x3 − 3x + 2. It is conceivable that the small coefficients make these curves
behave nonrandomly, but the same type of nonrandomness appears naturally in
Section 6, so this is a relevant experiment. Furthermore, the simple description
makes the experiment easy to reproduce.

Within this sample we found probability 0.003705 of h = 1, probability
0.002859 of h = 2, and probability 0.002372 of h = 4, with total 0.008936 ≈ 2−7.
We also found, unsurprisingly, practically identical probabilities for the twist
cofactor: probability 0.003748 of h′ = 1, probability 0.002902 of h′ = 2, and
probability 0.002376 of h′ = 4, with total 0.009026.

For comparison, Formula (1) evaluates to approximately 0.011300 (about
25 % too optimistic), built from 0.006441 for h = 1 (about 74 % too optimistic),
0.003235 for h = 2 (about 13 % too optimistic), and 0.001625 for h = 4 (about
32 % too pessimistic).

We found probability 0.000032 ≈ 2−15 of h = h′ = 1. Our best estimate,
with the caveat of considerable error bars, is therefore that Jerry must try about
215 curves before finding one with h = h′ = 1. If Jerry is free to neglect twist
security, searching only for h = 1, then the probability jumps by two orders of
magnitude to about 2−8. If Jerry is allowed to take any h ∈ {1, 2, 4} then the
probability is about 2−7.

These probabilities are not noticeably affected by the SafeCurves require-
ments regarding the CM discriminant, additive transfers, and multiplicative
transfers. Specifically, random curves have a large CM field discriminant, prac-
tically always meeting the SafeCurves CM criterion; none of our experiments
found a CM field discriminant below 2100. We also found, unsurprisingly, no
curves with � = p. As for multiplicative transfers: Luca, Mireles, and Shparlinski
gave a theoretical estimate [34] for the probability that for a sufficiently large
prime number p and a positive integer K with log K = O(log log p) a randomly
chosen elliptic curve E(Fp) has embedding degree k ≤ K; this result shows
that curves with small embedding degree are very rare. The SafeCurves bound
K = (� − 1)/100 is not within the range of applicability of their theorem, but
experimentally we found that about 99 % of all curves had a high embedding
degree ≥ K.

How to Manipulate Curve Standards 117

2.5 The Probabilities for Various Feasible Attacks. We now consider
various feasible public attacks as models of Jerry’s secret vulnerability. Specifi-
cally, for each attack, we evaluate the probability that the attack works against
curves that were not chosen to be secure against this type of attack. Any such
probability is a reasonable guess for an ε of interest to Jerry.

At the low end is, e.g., an additive transfer, applying only to curves having
exactly p points. The probability here is roughly p−1/2: e.g., below 2−100 for the
NIST P-224 prime.

At the high end, most curves fail the “rho” and “twist” security criteria;
see Section 2.4. But this does not mean that the curves are feasible to break,
or that the breaking cost is low enough for Jerry to usefully apply to billions
of targets. These security criteria are extremely cautious, staying far away from
anything potentially breakable by these attacks. For example, � ≈ 2150 fails the
SafeCurves security criteria but still requires about 275 elliptic-curve operations
to break by the rho attack, costing roughly 100 million watt-years of energy with
current hardware, a feasible but highly nontrivial cost. A much smaller � ≈ 2120

would require about 260 elliptic-curve operations, and breaking 230 targets by
standard multiple-target techniques would again require about 275 elliptic-curve
operations. Even smaller values of � are of interest for twist attacks.

The prime-number theorem can be used to estimate the probabilities of var-
ious sizes of � as in Section 2.4, but it loses applicability as � drops below

√
p.

To estimate the probability for a wider range of � we use the following result by
Dickman (see, e.g., [27]). Define Ψ(x, y) as the number of integers ≤ x whose
largest prime factor is at most y; these numbers are called y-smooth integers.
Dickman’s result is Ψ(x, y) ∼ xρ(u) as x → ∞ with x = yu. Here ρ, the “Dick-
man ρ function”, satisfies ρ(u) = 1 for 0 ≤ u ≤ 1 and −uρ′(u) = ρ(u − 1) for
u ≥ 1, where ρ′ means the right derivative. It is not difficult to compute ρ(u) to
high accuracy.

We experimentally verified how well � adheres to this estimate, again for the
NIST P-224 prime. For each k we used the Dickman rho function to compute
an estimate for the number of integers in the Hasse interval whose largest prime
factor has exactly k bits. We divided this by 4

√
p (the size of the Hasse interval)

to obtain an estimated fraction. We also experimentally computed (for a some-
what smaller sample than in Section 2.4) the fraction of curves where � has k
bits, and the fraction of curves where �′ has k bits. For log2 � ≈ 224 these exper-
imental fractions are below the estimated fraction for the reasons explained in
Section 2.4; for smaller values of � the estimate closely matches the experimental
data.

About 20 % of the 224-bit curves have � < 2100, producing a tolerable rho
attack cost, around 250 elliptic-curve operations. However, ρ(u) drops rapidly as
u increases (it is roughly 1/uu), so the chance of achieving this reasonable cost
also drops rapidly as the curve size increases. For 256-bit curves the chance is
ρ(2.56) ≈ 0.12 ≈ 2−3. For 384-bit curves the chance is ρ(3.84) ≈ 0.0073 ≈ 2−7.
For 512-bit curves the chance is ρ(5.12) ≈ 0.00025 ≈ 2−12.

118 BADA55 Research Team

Table 1. Estimated probability that an elliptic curve modulo p has largest twist prime
at most 22k and second largest twist prime at most 2k, i.e., that an elliptic curve
modulo p is vulnerable to a twist attack using approximately 2k operations. Estimates
rely on the method of [5] to compute asymptotic semismoothness probabilities.

p k = 30 k = 40 k = 50 k = 60 k = 70 k = 80

P-224 prime 2−15.74 2−8.382 2−4.752 2−2.743 2−1.560 2−0.8601

P-256 prime 2−20.47 2−11.37 2−6.730 2−4.132 2−2.551 2−1.557

P-384 prime 2−42.10 2−25.51 2−16.65 2−11.37 2−7.977 2−5.708

P-521 prime 2−68.64 2−43.34 2−29.57 2−21.16 2−15.63 2−11.81

We now switch from considering rho attacks against arbitrary curves to con-
sidering twist attacks against curves with cofactor 1. For a twist attack to fit into
250 elliptic-curve operations, the largest prime �′ dividing p+1+t must be below
2100, but also the second-largest prime dividing p + 1 + t must be below 250; see
generally [9]. In other words, p + 1 + t must be (2100, 250)-semismooth. Recall
that an integer is defined to be (y, z)-semismooth if none of its prime factors is
larger than y and at most one of its prime factors is larger than z. The portion
of the twist attack corresponding to the second-largest prime is difficult to batch
across multiple targets, so it is reasonable to consider even smaller limits for that
prime.

We estimated this semismoothness probability using the same approach as
for rho attacks. First, estimate the semismoothness probability for p+1+t as the
semismoothness probability for a uniform random integer in the Hasse interval.
Second, estimate the semismoothness probability for a uniform random integer
using a known two-variable generalization of ρ. Third, compute this generaliza-
tion using a method of Bach and Peralta [5]. The results range from 2−6.730 for
256-bit curves down to 2−29.57 for 521-bit curves. Table 1 shows the results of
similar computations for several sizes of primes and several limits on feasible
attack costs.

To summarize, feasible attacks in the public literature have a broad range of
success probabilities against curves not designed to resist those attacks; proba-
bilities listed above include 2−4, 2−8, 2−11, 2−16, and 2−25. It is thus reasonable
to consider a similarly broad range of possibilities for ε, the probability that a
curve passing public security criteria is vulnerable to Jerry’s secret attack.

3 Manipulating Curves

Here we target users with minimal acceptability criteria: i.e., we assume that
A(E,P, S) checks only the public security criteria for (E,P) described in
Section 2. The auxiliary data S might be used to communicate, e.g., a precom-
puted |E(Fp)| to be verified by the user, but is not used to constrain the choice
of (E,P). Curves that pass the acceptability criteria are safe against known
attacks, but have no protection against Jerry’s secret vulnerability.

How to Manipulate Curve Standards 119

3.1 Curves Without Public Justification. Here are two examples of stan-
dard curves distributed without any justification for how they were chosen. These
examples suggest that there are many ECC users who do in fact have minimal
acceptability criteria.

The ANSSI FRP256V1 standard [3] is a curve of the form y2 = x3 − 3x + b
over Fp with a b that appears random, accompanied by a point P . The curve
meets the ECDLP requirements reviewed in Section 2. Similar comments apply
to the OSCCA standard curve [41,40]. The only further data provided with
these curves is data that could also have been computed efficiently by users
from p, b, P . Nothing in the curve documentation suggests any verification that
would have further limited the choice of curves.

3.2 The Attack. The attack is straightforward. Since the only things that
users check are the public security criteria, Jerry can continue generating curves
for a fixed p (either randomly or not) that satisfy the public criteria until he
gets one that is vulnerable to his secret attack. Alternatively, Jerry can generate
curves vulnerable to his secret attack and check them against the public security
criteria. Every attack (publicly) known so far allows efficient computation of
vulnerable curves, so it seems likely that the same will be true for Jerry’s secret
vulnerability. After finding a vulnerable curve, Jerry simply publishes it.

Of course, Jerry’s vulnerability must not depend on any properties excluded
by the public security criteria, and there must be enough vulnerable curves.
Enumerating 27 vulnerable curves over Fp is likely to be sufficient if Jerry can
ignore twist-security, and enumerating 215 vulnerable curves over Fp is likely to
be sufficient even if twist-security is required. See Section 2.

Even if Jerry’s curves are less frequent, Jerry can increase his chances by
also varying the prime p. To simplify our analysis we do not take advantage of
this flexibility in this section: we assume that Jerry is forced to reuse a particu-
lar standard prime such as a NIST prime or the ANSSI prime. We emphasize,
however, that the standard security requirements do not seriously scrutinize the
choice of prime, and existing standards vary in their choices of primes. Any
allowed variability in p would also improve the attack in Section 5, and we do
vary p in Section 6.

3.3 Implementation. We implemented the attack to demonstrate that it is
really feasible in practice. In our implementation the same setting as above is
adopted and even made more restrictive: the resulting curve should be of the
form y2 = x3 − 3x + b over Fp, where p is the same as for the ANSSI curve. The
public security criteria we consider are all the standard ECDLP security criteria
plus twist security, and we further require that both cofactors are 1.

We use a highly structured parameter b as an artificial model of a secret
vulnerability. We show that we can construct a curve with such a b that passes
all the public criteria. In reality, Jerry would select a curve with a secret vul-
nerability rather than a curve with our artificial model of a vulnerability, and
would use a trustworthy curve name such as TrustedCurve-R-256.

120 BADA55 Research Team

Our attack is implemented using the Sage computer algebra system [46]. We
took 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55EC as
the start value for b and incremented b until we found a curve that meets the
public security criteria. This corresponds to Jerry iteratively checking whether
curves that are vulnerable to the secret attack fulfill the public criteria.

As a result we found a desired curve, which we call BADA55-R-256, with
b = 0x5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA55ECC5AFEBADA5A57

after 1131 increments within 78 min on a single core of an AMD CPU. One
can easily check using a computer-algebra system that the curve does meet all
the public criteria. It is thus clear that users who only verify public security
criteria can be very easily attacked, and Jerry has an easy time if he is working
for or is trusted by ANSSI, OSCCA, or a similar organization.

4 Manipulating Seeds

Section 3 deals with the easiest case for Jerry that the users are satisfied verifying
public security criteria. However some audiences might demand justifications for
the curve choices. In this section, we consider users who are suspicious that
the curve parameters might be maliciously chosen to enable a secret attack.
Empirically many users are satisfied if they get a hash verification routine as
justification; see, e.g., ANSI X9.62 [1], IEEE P1363 [28], SEC 2 [19], or NIST
FIPS 186-2 [37]. Hash verification routines mean that Jerry cannot use a very
small set of vulnerable curves, but we will show below that he has good chances
to get vulnerable curves deployed if they are just somewhat more common.

4.1 Hash Verification Routine. As the name implies, a hash verification
routine involves a cryptographic hash function. The inputs to the routine are
the curve parameters and a seed that is published along with the curve. Usually
the seed is hashed to compute a curve parameter or point coordinate. The ways
of computing the parameters differ but the public justification is that these bind
the curve parameters to the hash value, making them hard to manipulate since
the hash function is preimage resistant. In addition the user verifies a set of
public security criteria. We focus on the obstacle that Jerry faces and call curves
that can be verified with such routines verifiably hashed curves.

Below we recall the curve verification routine for the NIST P-curves. The
routine is specified in NIST FIPS 186-2 [37].

Each NIST P-curve is of the form y2 = x3 − 3x + b over a prime field Fp

and is published with a seed s. The hash function SHA-1 is denoted as SHA1;
recall that SHA-1 produces a 160-bit hash value. The bit length of p is denoted
by m. We use bin(i) to denote the 20-byte big-endian representation of some
integer i and use int(j) to denote the integer with binary expansion j. For given
parameters b, p, and s, the verification routine is:

1. Let z ← int(s). Compute hi ← SHA1(si) for 0 ≤ i ≤ v, where si ← bin((z+ i)
mod 2160) and v = (m − 1)/160�.

2. Let h be the rightmost m − 1 bits of h0||h1|| · · · ||hv. Let c ← int(h).
3. Verify that b2c = −27 in Fp.

How to Manipulate Curve Standards 121

To generate a verifiably hashed curve one starts with a seed and then follows
the same steps 1 and 2 as above. Instead of step 3 one tries to solve for b given
c; this succeeds for about 50 % of all choices for s. The public perception is that
this process is repeated with fresh seeds until the first resulting curve satisfies
all public security criteria.

4.2 Acceptability Criteria. One might think that the public acceptabil-
ity criteria are defined by the NIST verification routine stated above: i.e.,
A(E,P, s) = 1 if and only if (E,P) passes the public security criteria from
Section 2 and (E, s) passes the verification routine stated above with seed s and
E defined as y2 = x3 − 3x + b.

However, the public acceptability criteria are not actually so strict. P1363
allows y2 = x3 + ax + b without the requirement a = −3. P1363 does require
b2c = a3 where c is a hash as above, but neither P1363 nor NIST gives a
justification for the relation b2c = a3, and it is clear that the public will accept
different relations. For example, the Brainpool curves (see Section 5) use the
simpler relations a = g and b = h where g and h are separate hashes. One can
equivalently view the Brainpool curves as following the P1363 procedure but
using a different hash for c, namely computing c as g3/h2 where again g and h
are separate hashes. Furthermore, even though NIST and Brainpool both use
SHA-1, SHA-1 is not the only acceptable hash function; for example, Jerry can
easily argue that SHA-1 is outdated and should be replaced by SHA-2 or SHA-3.

We do not claim that the public would accept any relation, or that the pub-
lic would accept any choice of “hash function”, allowing Jerry just as much
freedom as in Section 3. The exact boundaries of public acceptability are com-
plicated and not immediately obvious. We have determined approximations to
these boundaries by extrapolating from existing data; see, e.g., Section 5.

4.3 The Attack. Jerry begins the attack by defining a public hash verifi-
cation routine. As explained above, Jerry has some flexibility to modify this
routine. This flexibility is not necessary for the rest of the attack in this section
(for example, Jerry can use exactly the NIST verification routine) but a more
favorable routine does improve the efficiency of the attack. Our cost analysis
below makes a particularly efficient choice of routine.

Jerry then tries one seed after another until finding a seed for which the
verifiably hashed curve (1) passes the public security criteria but (2) is subject
to his secret vulnerability. Jerry publishes this seed and the resulting curve,
pretending that the seed was the first random seed that passed the public security
criteria.

4.4 Optimizing the Attack. Assume that the curves vulnerable to Jerry’s
secret attack are randomly distributed over the curves satisfying the public secu-
rity criteria. Then the success probability that a seed leads to a suitable curve
is the probability that a curve is vulnerable to the secret attack times the prob-
ability that a curve satisfies the public security criteria. Depending on which

122 BADA55 Research Team

condition is easier to check Jerry runs many hash computations to compute can-
didate b’s, checks them for the easier criterion and only checks the surviving
choices for the other criterion. The hash computations and security checks for
each seed are independent from other seeds; thus, this procedure can be paral-
lelized with an arbitrary number of parallel computing instances.

We generated a family of curves to show the power of this method and
highlight the computing power of hardware accelerators (such as GPUs or Xeon
Phis). We began by defining our own curve verification routine and implementing
the corresponding secret generation routine. The hash function we use is Keccak
with 256-bit output instead of SHA-1. The hash value is c = int(Keccak(s)),
and the relation is simply b = c in Fp. All choices are easily justified: Keccak
is the winner of the SHA-3 competition and much more secure than SHA-1;
using a hash function with a long output removes the weird order of hashed
components that smells suspicious and similarly b = c is as simple and unsuspi-
cious as it can get. In reality, however, these choices greatly benefit the attack:
the GPUs efficiently search through many seeds in parallel, one single compu-
tation of Keccak has a much easier data flow than in the method above, and
having b computed without any expensive number-theoretic computation (such
as square roots) means that the curve can be tested already on the GPUs and
only the fraction that satisfies the first test is passed on to the next stage. Of
course, for a real vulnerability we would have to add the cost of checking for
that vulnerability, but minimizing overhead is still useful.

Except for the differences stated above, we followed closely the setting of
the NIST P-curves. The target is to generate curves of the form y2 = x3 −
3x + b over Fp, and we consider 3 choices of p: the NIST P-224, P-256, and
P-384 primes. (For P-384 we switched to Keccak with 384-bit output.) As a
placeholder “vulnerability” we define E to be vulnerable if b starts with the hex-
string BADA55EC. This fixes 8 hex digits, i.e., it simulates a 1-out-of-232 attack.
In addition we require that the curves meet the standard ECDLP criteria plus
twist security and have both cofactors equal to 1.

4.5 Implementation. Our implementation uses NVIDIA’s CUDA frame-
work for parallel programming on GPUs. A high-end GPU today allows several
thousand threads to run in parallel, though at a frequency slightly lower than
high-end CPUs. We let each thread start with its own random seed. The threads
then hash the seeds in parallel. After hashing, each thread outputs the hash
value if it starts with the hex-string BADA55EC. To restart, each seed is simply
increased by 1, so no new source of randomness is required. Checking whether
outputs from GPUs also satisfy the public security criteria is done by running a
Sage [46] script on CPUs. Since only 1 out of 232 curves has the desired pattern,
the CPU computation is totally hidden by GPU computation. Longer strings,
corresponding to less likely vulnerabilities, make GPUs even more powerful for
our attack scheme.

In the end we found 3 “vulnerable” verifiably hashed curves: BADA55-
VR-224, BADA55-VR-256, and BADA55-VR-384, each corresponding to one
of the three NIST P-curves. As an example, BADA55-VR-256 was found within

How to Manipulate Curve Standards 123

7 hours, using a cluster of 41 NVIDIA GTX780 GPUs. Each GPU is able to carry
out 170 million 256-bit-output Keccak hashes in a second. Most of the instruc-
tions are bitwise logic instructions. On average each core performs 0.58 bitwise
logic instructions per cycle while the theoretical maximum throughput is 0.83.
We have two explanations for the gap: first, each thread uses many registers,
which makes the number of active warps too small to fully hide the instruction
latency; second, there is not quite enough instruction-level parallelism to fully
utilize the cores in this GPU architecture. We also tested our implementation
on K10 GPUs. Each of them carries out only 61 million hashes per second. This
is likely to be caused by register spilling: the K10 GPUs have only 63 registers
per thread instead of the 255 registers of the GTX780. Using a sufficient amount
of computing power easily allows Jerry to deal with secret vulnerabilities that
have smaller probabilities of occurrence than 2−32.

5 Manipulating Nothing-up-my-sleeve Numbers

In 1999, M. Scott complained about the choice of unexplained seeds for the NIST
curves [44] and concluded “Do they want to be distrusted?” In the same vein the
German ECC Brainpool consortium expressed skepticism [14, Introduction] and
suggested using natural constants in place of random seeds. They coined the term
“verifiably pseudorandom” for this method of generating seeds. Others speak
of “nothing-up-my-sleeves numbers”. We comment that “nothing-up-my-sleeves
numbers” also appear in other areas of cryptography and can be manipulated
in similar ways, but this paper focuses on manipulation of elliptic curves.

5.1 The Brainpool Procedure. Brainpool requires that “curves shall be
generated in a pseudo-random manner using seeds that are generated in a sys-
tematic and comprehensive way”. Brainpool produces each curve coefficient by
hashing a seed extracted from the bits of e = exp(1). This first curve cannot
be expected to meet Brainpool’s security criteria, so Brainpool counts system-
atically upwards from this initial seed until finding a curve that does meet the
security criteria. Brainpool uses a similar procedure to generate primes.

For example, for 224 bits, the procedures specified in the Brainpool stan-
dard [14, Section 5] produce the following “verifiably pseudorandom” integers
p, a, b defining an elliptic curve y2 = x3 + ax + b over Fp:

p = 0xD7C134AA264366862A18302575D1D787B09F075797DA89F57EC8C0FF

a = 0x2B98B906DC245F2916C03A2F953EA9AE565C3253E8AEC4BFE84C659E

b = 0x68AEC4BFE84C659EBB8B81DC39355A2EBFA3870D98976FA2F17D2D8D

We have added underlines to point out an embarrassing collision of substrings,
obviously quite different from what one expects in “pseudorandom” strings.

What happened here is that the Brainpool procedure generates each of a and
b as truncations of concatenations of various hash outputs (since the selected
hash function, SHA-1, produces only 160-bit outputs), and there was a collision

124 BADA55 Research Team

in the hash inputs. Specifically, Brainpool uses the same seed-increment function
for three purposes: searching for a suitable a; moving from a to b; and moving
within the concatenations. The first hash used in the concatenation for a was fed
through this increment function to obtain the second hash, and was fed through
the same increment function to obtain the first hash used in the concatenation
for b, producing the overlap visible above.

A reader who checks the Brainpool standard [14] will find that the 224-
bit curve listed there does not have the same (a, b), and does not have this
overlap. The reason for this is that, astonishingly, the 224-bit standard Brainpool
curve was not actually produced by the standard Brainpool procedure. In fact,
although the reader will find overlaps in the standard 192-bit, 256-bit, 384-bit,
and 512-bit Brainpool curves, none of the standard Brainpool curves below 512
bits were produced by the standard Brainpool procedure. In the case of the
160-bit, 224-bit, 320-bit, and 384-bit Brainpool curves, one can immediately
demonstrate this discrepancy by observing that the gap listed between “seed A”
and “seed B” in [14, Section 11] is larger than 1, while the standard procedure
always produces a gap of exactly 1.

A procedure that actually does generate the Brainpool curves appeared a few
years later in the Brainpool RFC [32]. We reimplemented the two procedures in
a unified framework and now explain how they differ:

– The procedure in [32] assigns seeds to an (a∗ab∗b)∗ pattern. It tries consecutive
seeds for a until finding that −3/a is a 4th power, then tries further seeds for
b until finding that b is not a square, then checks whether the resulting curve
meets Brainpool’s security criteria. If this fails, it goes back to trying further
seeds for a etc.

– The original procedure in [14] assigns seeds to an (a∗ab)∗ pattern. It tries
consecutive seeds for a until finding that −3/a is a 4th power, then uses the
next seed for b, then checks whether b is a non-square and whether the curve
meets Brainpool’s security criteria. If this fails, it goes back to trying further
seeds for a etc.

We were surprised to discover the failure of the Brainpool standard proce-
dure to generate the Brainpool standard curves. We have not found this failure
discussed, or even mentioned, anywhere in the Brainpool RFCs or on the Brain-
pool web pages. We have also not found any updates or errata to the Brainpool
standard after [14]. One would expect that having a “verifiably pseudorandom”
curve not actually produced by the specified procedure would draw more public
attention, unless the public never actually tried verifying the curves, an inter-
esting possibility for Jerry. We do not explore this line of thought further: we
assume that future curves will be verified by the public, using tools that Jerry
is unable to corrupt.

The Brainpool standard also includes the following statement [14, page 2]: “It
is envisioned to provide additional curves on a regular basis for users who wish
to change curve parameters regularly, cf. Annex H2 of [X9.62], paragraph ‘Ellip-
tic curve domain parameter cryptoperiod considerations’.” However, the proce-
dure for generating further “verifiably pseudorandom” curves is not discussed.

How to Manipulate Curve Standards 125

One possibility is to continue the original procedure past the first (a, b) pair, but
this makes new curves more and more expensive to verify. Another possibility is
to replace e by a different natural constant.

5.2 The BADA55-VPR-224 Procedure. We now present a new and
improved verifiably pseudorandom 224-bit curve, BADA55-VPR-224. BADA55-
VPR-224 uses the standard NIST P-224 prime, i.e., p = 2224 − 296 + 1.

To avoid Brainpool’s complications of concatenating hash outputs, we
upgrade from the deprecated SHA-1 hash function to the state-of-the-art
maximum-security SHA3-512 hash function. We also upgrade to requiring max-
imum twist security: i.e., both the cofactor and the twist cofactor are required
to be 1.

Brainpool already generates seeds using exp(1) = e and generates primes
using arctan(1) = π/4, and MD5 already uses sin(1), so we use cos(1). We
eliminate Brainpool’s contrived, complicated search pattern for a: we simply
count upwards, trying every seed for a, until finding the first secure (a, b). The
full 160-bit seed for a is the 32-bit counter followed by cos(1). We complement
this seed to obtain the seed for b, ensuring maximal difference between the two
seeds. This procedure is simpler and more natural than the Brainpool procedure
in [14, Section 5]. Here is the resulting curve:

a = 0x7144BA12CE8A0C3BEFA053ED BADA555A42391AC64F052376E041C7D4AF23195E

BD8D83625321D452E8A0C3BB0A048A26115704E45DCEB346A9F4BD9741D14D49,
b = 0x5C32EC7FC48CE1802D9B70DBC3FA574EAF015FCE4E99B43EBE3468D6EFB2276B

A3669AFF6FFC0F4C6AE4AE2E5D74C3C0AF97DCE17147688DDA89E734B56944A2

5.3 How BADA55-VPR-224 Was Generated: Exploring the Space
of Acceptable Procedures. The surprising collision of Brainpool substrings
had an easy explanation: two hashes in the Brainpool procedure were visibly
given the same input. The surprising appearance of the 24-bit string BADA55
in a above has no such easy explanation. There are 128 hexadecimal digits in
a, so one expects this substring to appear anywhere within a with probability
123/224 ≈ 2−17.

The actual explanation is as follows. We decided in advance that we would
force BADA55 to appear somewhere in a as our artificial model of a “vulnerabil-
ity”. We then identified millions of natural-sounding “verifiably pseudorandom”
procedures, and enumerated (using a few hours on our cluster) approximately
220 of these procedures. The space of “verifiably pseudorandom” procedures has
many dimensions analyzed below, such as the choice of hash function, the length
of the input seed, the update function between seeds, and the initial constant
for deriving the seed: i.e., each procedure is defined by a combination of hash
function, seed length, etc. The exact number of choices available in any partic-
ular dimension is relatively unimportant; what is important is the exponential
effect from combining many dimensions.

Since 220 is far above 217, it is unsurprising that our “vulnerability” appeared
in quite a few of these procedures. We selected one of those procedures and

126 BADA55 Research Team

presented it as Section 5.2 as an example of what could be shown to the public.
We could have easily chosen a more restrictive “vulnerability”.

The structure of this attack means that Jerry can use the same attack to
target a real vulnerability that has probability 2−17, or (with reasonable success
chance) even 2−20, perhaps even reusing our database of curves.

In this section we do not manipulate the choice of prime, the choice of curve
shape, the choice of cofactor criterion, etc. Taking advantage of this flexibility
(see Section 6) would increase the number of natural-sounding Brainpool-like
procedures above 230.

Our experience is that Alice and Bob, when faced with a single procedure
such as Section 5.2 (or Section 5.1), find it extremely difficult to envision the
entire space of possible procedures (they typically see just a few dimensions of
flexibility), and find it inconceivable that the space could have size as large as
220, never mind 230. This is obviously a helpful phenomenon for Jerry.

5.4 Manipulating Bit-Extraction Procedures. Consider the problem of
extracting a fixed-length string of bits from (e.g.) the constant e = exp(1) =
2.71828 . . . = (10.10110111 . . .)2. Plausible options for the starting bit position
include the most significant bit (position 21); immediately after the binary point
(position 2−1); the most significant nibble (position 23); the most significant byte
(position 27); and the byte at position 0 (also position 27). These options can
be viewed as using different maps from real numbers x to real numbers y with
0 ≤ y < 1: the first map takes x to |x|/2�log2 |x|�, the second map takes x to
x − x�, the third map takes x to |x|/16�log16 |x|�, etc. Brainpool used the third
of these options, describing it as using “the hexadecimal representation” of e.
Jerry can use similarly brief descriptions for any of the options without drawing
the public’s attention to the existence of other options. We implemented the
first, second, and fourth options; for an average constant this produced slightly
more than 2 distinct possibilities for real numbers y.

Jerry can easily get away with extracting a k-bit integer from y by truncation
(i.e.,

⌊

2ky
⌋

) or by rounding (i.e.,
⌈

2ky
⌋

). Jerry can defend truncation (which has
fundamentally lower accuracy) as simpler, and can defend rounding as being
quite standard in mathematics and the physical sciences; but we see no reason
to believe that Jerry would be challenged in the first place. We implemented
both options, gaining a further factor of 1.5.

Actually, Brainpool uses the bit position indicated above only for the low-
security 160-bit Brainpool curve (which Jerry can disregard as already being a
non-problem for Eve). Brainpool shifts to subsequent bits of e for the 192-bit
curve, then to further bits for the 224-bit curve, etc. Brainpool uses 160 bits
for each curve (see below), so the seed for the 256-bit curve (which Jerry can
reasonably guess would be the most commonly used curve) is shifted by 480 bits.
This number 480 depends on how many lower security levels are allocated (an
obvious target of manipulation), and on exactly how many bits are allocated to
those seeds. A further option, pointed out in [36] by Merkle (Brainpool RFC
co-author), is to reverse the order of curve sizes; the number 480 then depends
on how many higher security levels are allocated. Yet another option is to put

How to Manipulate Curve Standards 127

curve sizes in claimed order of usage. We did not implement any of the options
described in this paragraph.

5.5 Manipulating Choices of Hash Functions. The latest (July 2013)
revision of the NIST ECDSA standard [38, Section 6.1.1] specifically requires that
“the security strength of a hash function used [for curve generation] shall meet or
exceed the security strength associated with the bit length”. The original NIST
curves are exempted from this rule by [38, footnote 2], but this rule prohibits
SHA-1 for (e.g.) new 224-bit curves. On the other hand, a more recent Brainpool-
related curve-selection document [36] states that “For a PRNG, SHA-1 was (and
still is) sufficiently secure.”

Jerry has at least 10 plausible options for standard hash functions used to gen-
erate (e.g.) 256-bit curves: SHA-1, SHA-256, SHA-384, SHA-512, SHA-512/256,
SHA3-256, SHA3-384, SHA3-512, SHAKE128, and SHAKE256. There are also
several non-NIST hash functions with longer track records than SHA-3. Any
of RIPEMD-128, RIPEMD-160, RIPEMD-256, RIPEMD-320, Tiger, Tiger/128,
Tiger/160, and Whirlpool would have been easily justifiable as a choice of hash
function before 2006. MD5 and all versions of Haval would have been similarly
justifiable before 2004.

Since we targeted a 224-bit curve we had even more standard NIST hash-
function options. For simplicity we implemented just 10 hash-function options,
namely the following variants of Keccak, the SHA-3 competition winner: Keccak-
224, Keccak-256, Keccak-384, Keccak-512, “default” Keccak (“capacity” c =
576, 128 output bytes), Keccak-128 (capacity c = 256, 168 output bytes), SHA3-
224 (which has different input padding from Keccak-224, changing the output),
SHA3-256, SHA3-384, and SHA3-512. All of these Keccak/SHA-3 choices can be
implemented efficiently with a single code base and variable input parameters.

5.6 Manipulating Counter Sizes. The simplest way to obtain a 160-bit
“verifiably pseudorandom” output with SHA-1 is to hash the empty string. Curve
generation needs many more outputs (since most curves do not pass the public
security criteria), but the simplest way to obtain 2b “verifiably pseudorandom”
outputs is to hash all b-bit inputs.

Hash-function implementations are often limited to byte-aligned inputs, so
it is natural to restrict b to a multiple of 8. If each output has chance 2−15 of
producing an acceptable curve (see Section 2) then b = 16 finds an acceptable
curve with chance nearly 90 % (“this is retroactively justified by our successfully
finding a curve, so there was no need for us to consider backup plans”); b = 24
fails with negligible probability (“we chose the smallest b for which the proba-
bility of failure was negligible”); b = 32 is easily justified by reference to 32-bit
machines; b = 64 is easily justified by reference to 64-bit machines.

Obviously Brainpool takes a more complicated approach, using bits of some
natural constant to further “randomize” its outputs. The standard way to ran-
domize a hash is to concatenate the randomness (e.g., bits of e) with the input
being hashed (the counter). Brainpool instead adds the randomness to the input

128 BADA55 Research Team

being hashed. The Brainpool choice is not secure as a general-purpose random-
ized hash, although these security problems are of no relevance to curve gener-
ation. There is no evidence of public objections to Brainpool’s use of addition
here (and to the overall complication introduced by the extra randomization),
so there is also no reason to think that the public would object to the more
standard concatenation approach.

Overall there are 13 plausible possibilities here: the 4 choices of b above,
with the counter on the left of the randomness; the 4 choices of b above, with
the counter on the right of the randomness; the counter being added to the
randomness; and 4 further possibilities in which the randomness is partitioned
into an initial value for a counter (for the top bits) and the remaining seed (for
the bottom bits). We implemented the first 9 of these 13 possibilities.

5.7 Manipulating Hash Input Sizes. ANSI X9.62 requires ≥160 input bits
for its hash input. One way for Jerry to advertise a long input is that it allows
many people to randomly generate curves with a low risk of collision. For exam-
ple, Jerry can advertise a 160-bit or 256-bit or 384-bit input as allowing 264 or 264

or 2128 curves respectively with only a 2−32 or 2−128 or 2−128 chance of collision.
All of these numbers sound perfectly natural. Of course, what Jerry is actually
producing is a single standard for many people to use, so multiple-curve collision
probabilities are of no relevance, but (in the unlikely event of being questioned)
Jerry can simply say that the input length was chosen for “compatibility” with
having users generate their own curves.

Jerry can advertise longer input lengths as providing “curve coverage”. A
512-bit input will cover a large fraction of curves, even for primes as large as
512 bits. A 1024-bit input is practically guaranteed to cover all curves, and to
produce probabilities indistinguishable from uniform. Jerry can also advertise,
as input length, the “natural input block length of the hash function”.

We implemented all 6 possibilities listed above. We gained a further factor
of 2 by storing the seed (and counter) in big-endian format (“standard network
byte order”) or little-endian format (“standard CPU byte order”).

5.8 Manipulating the (a, b) Hash Pattern. It should be obvious from
Section 5.1 that there are many degrees of freedom in the details of how a and
b are generated: how to distribute seeds between a and b; whether to require
−3/a to be a 4th power in Fp; whether to require b to be a non-square in Fp;
whether to concatenate hash outputs from left to right or right to left; exactly
how many bits to truncate hash outputs to (Brainpool uses one bit fewer than
the prime; Jerry can argue for the same length as the prime “for coverage”, or
more bits “for indistinguishability”); whether to truncate to rightmost bits (as
in Brainpool) or leftmost bits (as in various NIST requirements; see [38]); et al.

For simplicity we eliminated the concatenation and truncation, always using
a hash function long enough for the target 224-bit prime. We also eliminated
the options regarding squares etc. We implemented a total of just 8 choices here.
These choices vary in (1) whether to allocate seeds primarily to a or primarily to
b and (2) how to obtain the alternate seed (e.g., the seed for a) from the primary

How to Manipulate Curve Standards 129

seed (e.g., the seed for b): plausible options include complement, rotate 1 byte
left, rotate 1 byte right, and four standard versions of 1-bit rotations.

5.9 Manipulating Natural Constants. As noted in Section 1, the public
has accepted dozens of “natural” constants in various cryptographic functions,
and sometimes reciprocals of those constants, without complaint. Our imple-
mentation started with just 17 natural constants: π, e, Euler gamma,

√
2,

√
3,√

5,
√

7, log(2), (1 +
√

5)/2, ζ(3), ζ(5), sin(1), sin(2), cos(1), cos(2), tan(1), and
tan(2). We gained an extra factor of almost 2 by including reciprocals.

5.10 Implementation. Any combination of the above manipulations defines
a “systematic” curve-generation procedure. This procedure outputs the first
curve parameters (using the specified update function) that result in a “secure”
curve according to the public security tests. However, performing all public secu-
rity tests for each set of parameters considered by each procedure is very costly.
Instead, we split the attack into two steps:

1. For a given procedure fi we iterate over the seeds si,k using the specific
update function of fi. We check each parameter candidate from seed si,k for
our secret BADA55 vulnerability. After a certain number of update steps the
probability that we passed valid, secure parameters is very high; thus, we
discard the procedure and start over with another one. If we find a candi-
date exhibiting the vulnerability, we perform the public security tests on this
particular candidate. If the BADA55 candidate passes, we proceed to step 2.

2. We perform the whole public procedure fi starting with seed si,0 and check
whether there is any valid parameter set passing the public security checks
already before the BADA55 parameters are reached. If there is such an earlier
parameter set, we return to step 1 with the next procedure fi+1.

The largest workload in our attack scenario is step 2, the re-checking for ear-
lier safe curve parameters before BADA55 candidates. The public security tests
are not well suited for GPU parallelization; the first step of the attack proce-
dure is relatively cheap and a GPU parallelization of this step does not have a
remarkable impact on the overall runtime. Therefore, we implemented the whole
attack only for the CPUs of the cluster and left the GPUs idle.

We initially chose 8000 as the limit for the update counter to have a very
good chance that the first secure twist-secure curve starting from the seed is the
curve with our vulnerability. For example, BADA55-VPR-224 was found with
counter just 184, and there was only a tiny risk of a smaller counter producing
a secure twist-secure curve (which we checked later, in the second step). In
total ≈233 curves were covered by this limited computation; more than 218 were
secure and twist-secure. We then pushed the 8000 limit higher, performing more
computation and finding more curves. This gradually increased the risk of the
counter not being minimal, something that we would have had to address by
the techniques of Section 6; but this issue still did not affect, e.g., BADA55-
VPR2-224, which was found with counter 28025.

130 BADA55 Research Team

6 Manipulating Minimality

Instead of supporting “verifiably pseudorandom” curves as in Section 5, some
researchers have advocated choosing “verifiably deterministic” curves.

Both approaches involve specifying a “systematic” procedure that outputs
a curve. The difference is that in a “verifiably pseudorandom” curve the curve
coefficient is the output of a hash function for the first hash input that meets
specified curve criteria, while a “verifiably deterministic” curve uses the first
curve coefficient that meets specified curve criteria. Typically the curve uses a
“verifiably deterministic” prime, which is the first prime that meets specified
prime criteria.

Eliminating the hash function and hash input makes life harder for Jerry:
it eliminates the main techniques that we used in previous sections to manip-
ulate curve choices. However, as we explain in detail in this section, Jerry still
has many degrees of freedom. Jerry can manipulate the concept of “first curve
coefficient”, can manipulate the concept of “first prime”, can manipulate the
curve criteria, and can manipulate the prime criteria, with public justifications
claiming that the selected criteria provide convenience, ease of implementation,
speed of implementation, and security.

In Section 5 we did not manipulate the choice of prime: we obtained a sat-
isfactory level of flexibility in other ways. In this section, the choice of prime is
an important component of Jerry’s flexibility. It should be clear to the reader
that the techniques in this section to manipulate the prime, the curve criteria,
etc. can be backported to the setting of Section 5, adding to the flexibility there.

We briefly review a recent proposal that fits into this category and then
proceed to work out how much flexibility is left for Jerry.

6.1 NUMS Curves. In early 2014, Bos, Costello, Longa, and Naehrig [13]
proposed 13 Weierstrass and 13 Edwards curves, spread over 3 different security
levels. Each curve was generated following a deterministic procedure (similar to
the procedure proposed in [8]). Given that there are up to 10 different procedures
per security level we cannot review all of them here but [13] is a treasure trove
of arguments to justify different prime and curve properties and we will use this
to our benefit below.

The same authors together with Black proposed a set of 6 of these curves
as an Internet-Draft [12] referring to these curves as “Nothing Up My Sleeve
(NUMS) Curves”. Note that this does not match the common use of “nothing
up my sleeves”; see, e.g., the Wikipedia page [48]. These curves are claimed in
[30] to have “independently-verifiable provenance”, as if they were not subject
to any possible manipulation; and are claimed in [11] to be selected “without
any hidden parameters, reliance on randomness or any other processes offering
opportunities for manipulation of the resulting curves”. What we analyze in this
section is the extent to which Jerry can manipulate the resulting curves.

6.2 Choice of Security Level. Jerry may propose curves aiming for multiple
security levels. To quote the Brainpool-curves RFC [32] “The level of security

How to Manipulate Curve Standards 131

provided by symmetric ciphers and hash functions used in conjunction with the
elliptic curve domain parameters specified in this RFC should roughly match or
exceed the level provided by the domain parameters.” Table 1 in that document
justifies security levels of 80, 96, 112, 128, 160, 192, and 256 bits. We consider
the highest five to be easy sells. For the smaller ones Jerry will need to be more
creative and, e.g., evoke the high cost of energy for small devices.

6.3 Choice of Prime. There are several parts to choosing a prime once the
security level is fixed.

Choice of Prime Size. For a fixed security level α it should take about 2α

operations to break the DLP. The definition of “operation” leaves some flexibil-
ity. Plausible options for the bit length r of the prime include not just 2α, 2α−1,
and 2α − 2 used in [13] but also various smaller and larger values, accounting in
various ways for the number of bit operations in an elliptic-curve operation; the
√

π/4 in the Pollard-rho complexity, and the impact of multi-target attacks. We
simplify by counting just 8 options here.

Choice of Prime Shape. The choices for the prime shape are:

– A random prime. This might seem somewhat hard to justify outside the scope
of the previous section because arithmetic in Fp becomes slower, but members
of the ECC Brainpool working group published several helpful arguments [33].
The most useful one is that random primes mean that the blinding factor in
randomizing scalars against differential side-channel attacks can be chosen
smaller.

– A pseudo-Mersenne prime, i.e. a prime of the shape 2r ±c. The most common
choice is to take c to be the smallest integer for a given r which leads to
a prime because this makes reduction modulo the prime faster. (To reduce
modulo 2r ± c, divide by 2r and add ∓c times the dividend to the remainder.)
See, e.g., [13]. Once r is fixed there are two choices for the two signs.

– A Solinas prime, i.e. a prime of the form 2r ± 2v ± 1 as chosen for the Suite B
curves [39]. Also for these primes speed of modular reduction is the common
argument. The difference r − v is commonly chosen to be a multiple of the
word size. Jerry can easily argue for multiples of 32 and 64. We skip this
option in our count because it is partially subsumed in the following one.

– A “Montgomery-friendly” prime, i.e. a prime of the form 2r−v(2v−c)±1. These
curves speed up reductions if elements in Fp are represented in Montgomery
representation, r − v is a multiple of the word size and c is less than the word
size. Common word sizes are 32 and 64, giving two choices here. We ignore the
flexibility of the ± because that determines p modulo 4, which is considered
separately.

There are of course infinitely many random primes; in order to keep the number
of options reasonable we take 4 as an approximation of how many prime shapes
can be easily justified, making this a total of 8 options.

132 BADA55 Research Team

Choice of Prime Congruence. Jerry can get an additional bit of freedom
by choosing whether to require p ≡ 1 (mod 4) or to require p ≡ 3 (mod 4).
A common justification for the latter is that computations of square roots are
particularly fast which could be useful for compression of points, see, e.g., [14,13].
(In fact one can also compute square roots efficiently for p ≡ 1 (mod 4), in
particular for p ≡ 5 (mod 8), but Jerry does not need to admit this.) To instead
justify p ≡ 1 (mod 4), Jerry can point to various benefits of having

√−1 in
the field: for example, twisted Edwards curves are fastest when a = −1, but
completeness for a = −1 requires p ≡ 1 (mod 4).

If Jerry chooses twisted Hessian curves he can justify restricting to p ≡ 1
(mod 3) to obtain complete curve arithmetic.

6.4 Choice of Ordering of Field Elements. The following curve shapes
each have one free parameter. It is easy to justify choosing this parameter as
the smallest parameter under some side conditions. Here smallest can be chosen
to mean smallest in N or as the smallest power of some fixed generator g of
F

∗
p. The second option is used in, e.g., a recent ANSSI curve-selection document

[24, Section 2.6.2]: “we define . . . g as the smallest generator of the multiplicative
group . . . We then iterate over . . . b = gn for n = 1, . . . , until a suitable curve
is found.” Each choice below can be filled with these two options.

6.5 Choice of Curve Shape and Cofactor Requirement. Jerry can jus-
tify the following curve shapes:

1. Weierstrass curves, the most general curve shape. The usual choice is y2 =
x3 − 3x + b, leaving one parameter b free. For simplicity we do not discuss
the possibility of choosing values other than −3.

2. Edwards curves, the speed leader in fixed-base scalar multiplication offering
complete addition laws. The usual choices are ax2 + y2 = 1 + dx2y2, for
a ∈ {±1}, leaving one parameter d free. The group order of an Edwards
curve is divisible by 4.

3. Montgomery curves, the speed leader for variable-base scalar multiplication
and the simplest to implement correctly. The usual choices are y2 = x3 +
Ax2 + x, leaving one parameter A free. The group order of a Montgomery
curve is divisible by 4.

4. Hessian curves, a cubic curve shape with complete addition laws (for twisted
Hessian). The usual choices are ax3 + y3 + 1 = dxy, where a is a small non-
cube, leaving one parameter d free. The group order of a Hessian curve is
divisible by 3, making twisted Hessian curves the curves with the smallest
cofactor while having complete addition.

Weierstrass Curves. Most standards expect the point format to be (x, y)
on Weierstrass curves. Even when computations want to use the faster Edwards
and Hessian formulas, Jerry can easily justify specifying the curve in Weierstrass
form. This also ensures backwards compatibility with existing implementations
that can only use the Weierstrass form.

How to Manipulate Curve Standards 133

The following are examples of justifiable choices for the cofactor h of the
curve: exactly 1, as in Brainpool; exactly 2, minimum for [8]; exactly 3, mini-
mum for Hessian arithmetic; exactly 4, minimum for Edwards arithmetic; exactly
12, minimum for both Hessian and Edwards arithmetic; the first curve having
cofactor below 2α/8, as in [19] and [38]; below 2α/8 and a multiple of 3; below 2α/8

and a multiple of 4; below 2α/8 and a multiple of 12; the SafeCurves requirement
of a largest prime factor above 2200. On average these choices produce slightly
more than 8 options; the last few options sometimes coincide.

The curve is defined as y2 = x3 −3x+ b where b is minimal under the chosen
criterion. Changing from positive b to negative b changes from a curve to its
twist if p ≡ 3 (mod 4), and (as illustrated by additive transfers) this change
does not necessarily preserve security. However, this option makes only a small
difference in our final total, so for simplicity we skip it.

Hessian Curves. A curve given in Hessian form (and chosen minimal there) can
be required to have minimal cofactor, minimal cofactor while being compatible
with Edwards form, cofactor smaller than 2α/8, or largest prime factor larger
than 2u. This leads to 8 options considering positive and negative values of d.
Of course other restrictions on the cofactor are possible.

Edwards Curves. For Edwards curves we need to split up the consideration
further:

Edwards curves with p ≡ 3 (mod 4). Curves with a = −1 are attractive for
speed but are not complete in this case. Nevertheless [13] argues for this option,
so we have additionally the choice between aiming for a complete or an a = −1
curve.

A curve given in (twisted) Edwards form (and chosen minimal there) can be
required to have minimal cofactor, minimal cofactor while being compatible with
Hessian form, cofactor smaller than 2α/8, or largest prime factor larger than 2u

(and the latter in combination with Hessian if desired). This leads to at least 8
choices considering completeness; for minimal cofactors [13] shows that minimal
choices for positive and negative values of d are not independent. To stay on the
safe side we count these as 8 options only.

Edwards curves with p ≡ 1 (mod 4). The curves x2 + y2 = 1 + dx2y2 and
−x2 + y2 = 1 − dx2y2 are isomorphic because −1 is a square, hence taking
the smallest positive value for d finds the same curve as taking the smallest
negative value for the other sign of a. Jerry can however insist or not insist
on completeness. Justifying non-completeness if the smallest option is complete
however seems a hard sell.

134 BADA55 Research Team

Because 2p + 2 ≡ 4 (mod 8) one of the curve and its twist will have order
divisible by 8 while the other one has remainder 4 modulo 8. Jerry can require
cofactor 4, as the minimal cofactor, or cofactor 8 if he chooses the twist with
minimal cofactor as well and is concerned that protocols will only multiply by
the cofactor of the curve rather than by that of the twist. The other options are
the same as above. Again, to stay on the safe side, we count this as 8 options
only.

Montgomery Curves. There is a significant overlap between choosing the
smallest Edwards curve and the smallest Montgomery curve. In order to ease
counting and avoid overcounting we omit further Montgomery options.

Summary of Curve Choice. We have shown that Jerry can argue for 8+8+
8 = 24 options.

6.6 Choice of Twist Security. We assume, as discussed in Section 2, that
future standards will be required to include twist security. However, Jerry can
play twist security to his advantage in changing the details of the twist-security
requirements. Here are three obvious choices:

– Choose the cofactor of the twist as small as possible. Justification: This offers
maximal protection.

– Choose the cofactor of the twist to be secure under the SEC recommendation,
i.e. h′ < 2α/8. Justification: This is considered secure enough for the main
curve, so it is certainly enough for the twist.

– Choose the curve such that the curve passes the SafeCurves requirement of
2100 security against twist attacks. Justification: Attacks on the twist cannot
use Pollard rho but need to do a brute-force search in the subgroups. The
SafeCurves requirement captures the actual hardness of the attack.

Jerry can easily justify changes to the bound of 2100 by pointing to a higher
security level or reducing it because the computations in the brute-force part
are more expensive. We do not use this flexibility in the counting.

6.7 Choice of Global vs. Local Curves. Jerry can take the first prime (sat-
isfying some criteria), and then, for that prime, take the first curve coefficients
(satisfying some criteria). Alternatively, Jerry can take the first possible curve
coefficients, and then, for those curve coefficients, take the first prime. These
two options are practically guaranteed to produce different curves. For example,
in the Weierstrass case, Jerry can take the curve y2 = x3 − 3x + 1, and then
search for the first prime p so that this curve over Fp satisfies the requirements
on cofactor and twist security. If Jerry instead takes y2 = x3 − 3x + g as in
[24, Section 2.6.2], p must also meet the requirement that g be primitive in Fp.

In mathematical terminology, the second option specifies a curve over a
“global field” such as the rationals Q, and then reduces the curve modulo suit-
able primes. This approach is particularly attractive when presented as a family
of curves, all derived from the same global curve.

How to Manipulate Curve Standards 135

6.8 More Choices. Brainpool [14] requires that the number of points on the
curve is less than p but also presents an argument for the opposite choice:

To avoid overruns in implementations we require that #E(GF (p)) < p.
In connection with digital signature schemes some authors propose to
use q > p for security reasons, but the attacks described e.g. in [BRS]
appear infeasible in a thoroughly designed PKI.

So Jerry can choose to insist on p < |E(Fp)| or on p > |E(Fp)|.

6.9 Overall Count. We have shown that Jerry can easily argue for 4 (security
level) ·8 (prime size) ·8 (prime shape) ·2 (congruence) ·2 (definition of first) ·24
(curve choice) ·3 (twist conditions) ·2 (global/local) ·2 (p ≶ |E(Fp)|) = 294912
choices.

7 Manipulating Security Criteria

A recent trend is to introduce top performance as a selection requirement. This
means that Alice and Bob accept only the fastest curve, as demonstrated by
benchmarks across a range of platforms. The most widely known example of
this approach is Bernstein’s Curve25519, the curve y2 = x3 + 486662x2 + x
modulo the particularly efficient prime 2255 − 19, which over the past ten years
has set speed records for conservative ECC on many different platforms, using
implementations from 23 authors. See [6,26,22,7,10,31,35,43,21,23,47].

The annoyance for Jerry in this scenario is that, in order to make a case for
his curve, he needs to present implementions of the curve arithmetic on a variety
of devices, showing that his curve is fastest across platforms. Jerry could try to
falsify his speed reports, but it is increasingly common for the public to demand
verifiable benchmarks using open-source software.

Jerry can hope that some platforms will favor one curve while other plat-
forms will favor another curve; Jerry can then use arguments for a “reason-
able” weighting of platforms as a mechanism to choose one curve or the other.
However, it seems difficult to outperform Curve25519 even on one platform.
The prime 2255 − 19 is particularly efficient, as is the Montgomery curve shape
y2 = x3 + 486662x2 + x. The same curve is also expressible as a complete
Edwards curve, allowing fast additions without the overhead of checking for
exceptional cases. Twist security removes the overhead of checking for invalid
inputs. Replacing 486662 with a larger curve coefficient produces identical per-
formance on many platforms but loses a measurable amount of performance on
some platforms, violating the “top performance” requirement.

In Section 6, Jerry was free to, e.g., claim that p ≡ 3 (mod 4) provides “sim-
ple square-root computations” and thus replace 2255 − 19 with 2255 − 765; claim
that “compatibility” requires curves of the form y2 = x3 − 3x + b; etc. The new
difficulty in this section is that Jerry is facing “top performance” advocates who
reject 2255 − 765 as not providing top performance; who reject y2 = x3 − 3x + b
as not providing top performance; etc.

136 BADA55 Research Team

Jerry still has some flexibility in defining what security requirements to take
into account. Taking “the fastest curve” actually means taking the fastest curve
meeting specified security requirements, and the list of security requirements is
a target of manipulation.

Most importantly, Jerry can argue for any size of �. However, if there is
a faster curve with a larger � satisfying the same criteria, then Jerry’s curve
will be rejected. Furthermore, if Jerry’s curve is only marginally larger than a
significantly faster curve, then Jerry will have to argue that a tiny difference
in security levels (e.g., one curve broken with 0.7× or 0.5× as much effort as
another) is meaningful, or else the top-performance advocates will insist on the
significantly faster curve.

The choice of prime has the biggest impact on speed and closely rules the size
of �. For pseudo-Mersenne primes larger than 2224 the only possibly competitive
ones are: 2226 − 5, 2228 + 3, 2233 − 3, 2235 − 15, 2243 − 9, 2251 − 9, 2255 − 19, 2263 +
9, 2266−3, 2273+5, 2285−9, 2291−19, 2292+13, 2295+9, 2301+27, 2308+27, 2310+
15, 2317 +9, 2319 +9, 2320 +27, 2321−9, 2327 +9, 2328 +15, 2336 −3, 2341 +5, 2342 +
15, 2359 + 23, 2369 − 25, 2379 − 19, 2390 + 3, 2395 + 29, 2401 − 31, 2409 + 29, 2414 −
17, 2438 + 25, 2444 − 17, 2452 − 3, 2456 + 21, 2465 + 29, 2468 − 17, 2488 − 17, 2489 −
21, 2492+21, 2495−31, 2508+15, 2521−1. Preliminary implementation work shows
that the Mersenne prime 2521−1 has such efficient reduction that it outperforms,
e.g., the prime 2512 − 569 from [13]; perhaps it even outperforms primes below
2500. We would expect implementation work to also show, e.g., that 2319 + 9
is significantly faster than 2320 + 27, and Jerry will have a hard time arguing
for 2320 + 27 on security grounds. Considering other classes of primes, such as
Montgomery-friendly primes, might identify as many as 100 possibly competitive
primes, but it is safe to estimate that fewer than 80 of these primes will satisfy the
top-performance devotees, and further implementation work is likely to reduce
the list even more. Note that in this section, unlike other sections, we take a
count that is optimistic for Jerry.

Beyond the choice of prime, Jerry can use different choices of security criteria.
However, most of the flexibility in Section 6 consists of speed claims, compatibil-
ity claims, etc., few of which can be sold as security criteria. Jerry can use the
different twist conditions, the choice whether p < |E(Fp)| or p > |E(Fp)|, and
possibly two choices of cofactor requirements. Jerry can also choose to require
completeness as a security criterion, but this does not affect curve choice in
this section: the complete formulas for twisted Hessian and Edwards curves are
faster than the incomplete formulas for Weierstrass curves. The bottom line is
that multiplying fewer than 80 primes by 12 choices of security criteria produces
fewer than 960 curves. The main difficulty in pinpointing an exact number is car-
rying out detailed implementation work for each prime; we leave this to future
work.

How to Manipulate Curve Standards 137

References

1. Accredited Standards Committee X9: American national standard X9.62-1999,
public key cryptography for the financial services industry: the elliptic curve digital
signature algorithm (ECDSA) (1999)

2. Accredited Standards Committee X9: American national standard X9.63-2001,
public key cryptography for the financial services industry: key agreement and
key transport using elliptic curve cryptography (2001)

3. Agence nationale de la sécurité des systèmes d’information: Publication d’un
paramétrage de courbe elliptique visant des applications de passeport électronique
et de l’administration électronique française (2011)

4. Aumasson, J.P.: Generator of “nothing-up-my-sleeve” (NUMS) constants (2015).
https://github.com/veorq/numsgen/blob/master/numsgen.py

5. Bach, E., Peralta, R.: Asymptotic semismoothness probabilities. Math. Comput.
65(216), 1701–1715 (1996)

6. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

7. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. J. Crypt. Eng. 2, 77–89 (2012)

8. Bernstein, D.J., Hamburg, M., Krasnova, A., Lange, T.: Elligator: elliptic-curve
points indistinguishable from uniform random strings. In: Sadeghi, A., Gligor, V.D.,
Yung, M. (eds.) ACM CCS 2013, pp. 967–980. ACM (2013)

9. Bernstein, D.J., Lange, T.: SafeCurves: choosing safe curves for elliptic-curve cryp-
tography (2015). http://safecurves.cr.yp.to. Accessed 21 May 2015

10. Bernstein, D.J., Schwabe, P.: NEON Crypto. In: Prouff, E., Schaumont, P.
(eds.) CHES 2012. LNCS, vol. 7428, pp. 320–339. Springer, Heidelberg (2012).
http://dx.doi.org/10.1007/9783642330278

11. Black, B., Bos, J.W., Costello, C., Langley, A., Longa, P., Naehrig, M.: Rigid
parameter generation for elliptic curve cryptography (2015). https://tools.ietf.org/
html/draft-black-rpgecc-01

12. Black, B., Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Elliptic curve cryptog-
raphy (ECC) nothing up my sleeve (NUMS) curves and curve generation (2014).
https://tools.ietf.org/html/draft-black-numscurves-00

13. Bos, J.W., Costello, C., Longa, P., Naehrig, M.: Selecting elliptic curves for cryp-
tography: an efficiency and security analysis. J. Cryptographic Eng. 1–28 (2015).
doi:10.1007/s13389-015-0097-y

14. ECC Brainpool: ECC Brainpool standard curves and curve generation (2005).
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

15. Brier, E., Joye, M.: Weierstraß elliptic curves and side-channel attacks. In: Nac-
cache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 335–345. Springer,
Heidelberg (2002)

16. Certicom Research: SEC 1: Elliptic curve cryptography, version 1.0 (2000)
17. Certicom Research: SEC 2: Recommended elliptic curve domain parameters, ver-

sion 1.0 (2000)
18. Certicom Research: SEC 1: Elliptic curve cryptography, version 2.0 (2009)
19. Certicom Research: SEC 2: Recommended elliptic curve domain parameters, ver-

sion 2.0 (2010)

https://github.com/veorq/numsgen/blob/master/numsgen.py
http://safecurves.cr.yp.to
http://dx.doi.org/10.1007/978-3-642-33027-8
https://tools.ietf.org/html/draft-black-rpgecc-01
https://tools.ietf.org/html/draft-black-rpgecc-01
https://tools.ietf.org/html/draft-black-numscurves-00
http://dx.doi.org/10.1007/s13389-015-0097-y
http://www.ecc-brainpool.org/download/Domain-parameters.pdf

138 BADA55 Research Team

20. Checkoway, S., Fredrikson, M., Niederhagen, R., Everspaugh, A., Green, M., Lange,
T., Ristenpart, T., Bernstein, D.J., Maskiewicz, J., Shacham, H.: On the practical
exploitability of Dual EC in TLS implementations. In: 23rd USENIX Security
Symposium (USENIX Security 2014). USENIX Association, San Diego (2014)

21. Chou, T.: Sandy2x: fastest Curve25519 implementation ever (2015). http://csrc.
nist.gov/groups/ST/ecc-workshop-2015/presentations/session6-chou-tung.pdf

22. Costigan, N., Schwabe, P.: Fast elliptic-curve cryptography on the Cell Broadband
engine. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 368–385.
Springer, Heidelberg (2009)

23. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers.
Designs, Codes and Cryptography (to appear, 2015). https://cryptojedi.org/
papers/mu25519-20150417.pdf

24. Flori, J.P., Plût, J., Reinhard, J.R., Eker̊a, M.: Diversity and trans-
parency for ECC (2015). http://csrc.nist.gov/groups/ST/ecc-workshop-2015/
papers/session4-flori-jean-pierre.pdf

25. Galbraith, S.D., McKee, J.: The probability that the number of points on an elliptic
curve over a finite field is prime. J. London Math. Soc. 62, 671–684 (2000)

26. Gaudry, P., Thomé, E.: The mpFq library and implementing curve-based key
exchanges. In: SPEED: Software Performance Enhancement for Encryption and
Decryption, pp. 49–64 (2007). http://www.loria.fr/gaudry/papers.en.html

27. Granville, A.: Smooth Numbers: Computational Number Theory and Beyond,
pp. 267–323. Cambridge University Press (2008). http://en.scientificcommons.org/
43534098, http://www.math.leidenuniv.nl/psh/ANTproc/09andrew.pdf

28. Institute of Electrical and Electronics Engineers: IEEE 1363–2000: Standard spec-
ifications for public key cryptography (2000)

29. Kelsey, J.: Choosing a DRBG algorithm (2003?). https://github.com/
matthewdgreen/nistfoia/blob/master/6.4.2014

30. LaMacchia, B., Costello, C.: Deterministic generation of elliptic curves
(a.k.a. “NUMS” curves) (2014). https://www.ietf.org/proceedings/90/slides/
slides-90-cfrg-5.pdf

31. Langley, A., Moon, A.: Implementations of a fast elliptic-curve digital signature
algorithm (2013). https://github.com/floodyberry/ed25519-donna

32. Lochter, M., Merkle, J.: RFC 5639: Elliptic curve cryptography (ECC) Brainpool
standard curves and curve generation (2010)

33. Lochter, M., Merkle, J., Schmidt, J.M., Schütze, T.: Requirements for stan-
dard elliptic curves (2014), position Paper of the ECC Brainpool. http://www.
ecc-brainpool.org/20141001 ECCBrainpool PositionPaper.pdf

34. Luca, F., Mireles, D.J., Shparlinski, I.E.: MOV attack in various subgroups on
elliptic curves. Illinois J. Math. 48(3), 1041–1052 (2004)

35. Mahé, E.M., Chauvet, J.M.: Fast GPGPU-based elliptic curve scalar multiplication
(2014). https://eprint.iacr.org/2014/198.pdf

36. Merkle, J.: Re: [Cfrg] ECC reboot (Was: When’s the decision?) (2014). https://
www.ietf.org/mail-archive/web/cfrg/current/msg05353.html

37. National Institute for Standards and Technology: FIPS PUB 186–2: Digital signa-
ture standard (2000)

38. National Institute for Standards and Technology: FIPS PUB 186–4: Digital signa-
ture standard (DSS) (2013)

39. National Security Agency: Suite B cryptography / cryptographic interoperability
(2005). https://web.archive.org/web/20150724150910/www.nsa.gov/ia/programs/
suiteb cryptography/

http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/session6-chou-tung.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/presentations/session6-chou-tung.pdf
https://cryptojedi.org/papers/mu25519-20150417.pdf
https://cryptojedi.org/papers/mu25519-20150417.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf
http://csrc.nist.gov/groups/ST/ecc-workshop-2015/papers/session4-flori-jean-pierre.pdf
http://www.loria.fr/gaudry/papers.en.html
http://en.scientificcommons.org/43534098
http://en.scientificcommons.org/43534098
http://www.math.leidenuniv.nl/ psh/ANTproc/09andrew.pdf
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014
https://github.com/matthewdgreen/nistfoia/blob/master/6.4.2014
https://www.ietf.org/proceedings/90/slides/slides-90-cfrg-5.pdf
https://www.ietf.org/proceedings/90/slides/slides-90-cfrg-5.pdf
https://github.com/floodyberry/ed25519-donna
http://www.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.pdf
http://www.ecc-brainpool.org/20141001_ECCBrainpool_PositionPaper.pdf
https://eprint.iacr.org/2014/198.pdf
https://www.ietf.org/mail-archive/web/cfrg/current/msg05353.html
https://www.ietf.org/mail-archive/web/cfrg/current/msg05353.html
https://web.archive.org/web/20150724150910/www.nsa.gov/ia/programs/suiteb_cryptography/
https://web.archive.org/web/20150724150910/www.nsa.gov/ia/programs/suiteb_cryptography/

How to Manipulate Curve Standards 139

40. State Commercial Cryptography Administration (OSCCA), China: Public key
cryptographic algorithm SM2 based on elliptic curves, December 2010. http://
www.oscca.gov.cn/UpFile/2010122214822692.pdf

41. State Commercial Cryptography Administration (OSCCA), China: Recommanded
curve parameters for public key cryptographic algorithm SM2 based on elliptic
curves, December 2010. http://www.oscca.gov.cn/UpFile/2010122214836668.pdf

42. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime
numbers. Illinois J. Math. 6, 64–94 (1962)

43. Sasdrich, P., Güneysu, T.: Efficient elliptic-curve cryptography using Curve25519
on reconfigurable devices. In: Goehringer, D., Santambrogio, M.D., Cardoso,
J.M.P., Bertels, K. (eds.) ARC 2014. LNCS, vol. 8405, pp. 25–36. Springer,
Heidelberg (2014)

44. Scott, M.: Re: NIST announces set of Elliptic Curves (1999). https://groups.google.
com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM MJ

45. Silverman, J.H.: The Arithmetic of Elliptic Curves. Graduate Texts in Mathemat-
ics, vol. 106. Springer, New York (2009)

46. Stein, W., et al.: Sage Mathematics Software (Version 6.1.1). The Sage Develop-
ment Team (2014). http://www.sagemath.org

47. Hutter, M., Schilling, J., Schwabe, P., Wieser, W.: NaCl’s crypto box in hardware.
In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 81–101.
Springer, Heidelberg (2015)

48. Wikipedia: Nothing up my sleeve number (2015). http://www.en.wikipedia.org/
wiki/Nothing up my sleeve number. Accessed 20 May 2015

http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214836668.pdf
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
https://groups.google.com/forum/message/raw?msg=sci.crypt/mFMukSsORmI/FpbHDQ6hM_MJ
http://www.sagemath.org
http://www.en.wikipedia.org/wiki/Nothing_up_my_sleeve_number
http://www.en.wikipedia.org/wiki/Nothing_up_my_sleeve_number

Security of the SM2 Signature Scheme Against
Generalized Key Substitution Attacks

Zhenfeng Zhang1, Kang Yang1(B), Jiang Zhang2, and Cheng Chen1

1 Laboratory of Trusted Computing and Information Assurance,
Institute of Software, Chinese Academy of Sciences, Beijing, China

{zfzhang,yangkang,chencheng}@tca.iscas.ac.cn
2 State Key Laboratory of Cryptology, Beijing, China

jiangzhang09@gmail.com

Abstract. Though existential unforgeability under adaptively chosen-
message attacks is well-accepted for the security of digital signature
schemes, the security against key substitution attacks is also of interest,
and has been considered for several practical digital signature schemes
such as DSA and ECDSA. In this paper, we consider generalized key sub-
stitution attacks where the base element is considered as a part of the
public key and can be substituted. We first show that the general frame-
work of certificate-based signature schemes defined in ISO/IEC 14888-3
is vulnerable to a generalized key substitution attack. We then prove that
the Chinese standard SM2 signature scheme is existentially unforgeable
against adaptively chosen-message attacks in the generic group model
if the underlying hash function h is uniform and collision-resistant and
the underlying conversion function f is almost-invertible, and the SM2
digital signature scheme is secure against the generalized key substitu-
tion attacks if the underlying hash functions H and h are modeled as
non-programmable random oracles (NPROs).

Keywords: Digital signatures · Key substitution attacks · Provable
security

1 Introduction

The well-known security notion for digital signature schemes is existential
unforgeability under adaptively chosen-message attacks (EUF-CMA) introduced
by Goldwasser et al. [8,9], which states that an adversary given any signatures
for messages of its choice is unable to create a valid signature for a new mes-
sage. However, as a de facto standard security notion for signature schemes,
the security notion of EUF-CMA fails to capture the duplicate-signature key
selection attacks introduced by Blake-Wilson and Menezes [3]. Later, this type
of attacks is called key substitution (KS) attacks by Menezes and Smart [12],

The work was supported by National Basic Research Program of China (No.
2013CB338003), and National Natural Science Foundation of China (No. 61170278).

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 140–153, 2015.
DOI: 10.1007/978-3-319-27152-1 7

Security of the SM2 Signature Scheme 141

when they investigated the security of signature schemes in a multi-user setting.
The KS attacks for some EUF-CMA secure signature schemes can be found
in [3,7,12,15]. Informally, a KS-adversary is given a public key pk and a valid
message-signature pair (m,σ) under the public key pk, and attempts to pro-
duce another public key pk′ such that the message-signature pair (m,σ) is still
valid under the different public key pk′ �= pk. In [3], Blake-Wilson and Menezes
showed that if the underlying signature scheme suffers from the KS attacks, the
station-to-station (STS) key agreement protocol [6] using a message authentica-
tion code (MAC) algorithm to provide key confirmation is vulnerable to unknown
key-share (UKS) attacks. This gives a direct evidence that KS attacks might be
harmful in practice. Two types of key substitution attacks are considered by
Menezes and Smart [12]: if the KS-adversary is further required to output the
private key sk′ corresponding to pk′, then this kind of KS attacks are called the
weak-key substitution (WKS) attacks, else this type of attacks are referred to as
the strong-key substitution (SKS) attacks. Obviously, a signature scheme which
is secure against SKS attacks is also secure against WKS attacks. Afterwards,
Bohli, Rohrich and Steinwandt [4] explored the security of some practical sig-
nature schemes against key substitution attacks in the presence of a malicious
signer, where an adversary is given a set of domain parameters params, and
aims at outputting two different public keys pk and pk′ and a message-signature
pair (m,σ) such that (1) both public keys pk and pk′ are valid under the same
set of domain parameters params, and (2) the pair (m,σ) is valid under both
pk and pk′ (also with respect to the same set of domain parameters params).

Besides, a related notion–domain parameter substitution attacks1 are con-
sidered in [16,17]. In this kind of attacks, an adversary is given a set of domain
parameters params, a public key pk and a signing oracle. The goal of the adver-
sary is to output a new set of domain parameters params′ and a signature σ on
an un-queried message m such that (1) params′ passes the test for the domain
parameters verification algorithm, and (2) the pair (m,σ) is valid under the
same public key pk but with respect to the different set of domain parameters
params′.

SM2 Digital Signature Scheme. The SM2 digital signature scheme [2] was
issued by the State Cryptography Administration Office of Security Commer-
cial Code Administration in 2010, and had become the Chinese cryptographic
public key algorithm standard GM/T 0003.2-2012. Later, it was adopted by
Trusted Computing Group (TCG) in the TPM 2.0 specification [10] which will
be published as the international standard ISO/IEC 11889:2015 [11].

1.1 Our Contributions

In this paper, we consider generalized key substitution attacks where the base
element is regarded as a part of the public key and can be substituted. In detail,
1 In [17], Vaudenay referred to this type of attacks presented in [16,17] as domain

parameter shifting attacks. Later, this kind of attacks are called domain parameter
substitution attacks in [4].

142 Z. Zhang et al.

given a public key (g, pk) that g is a basis and pk is the other part of the public
key and a valid message-signature pair (m,σ) under (g, pk), the goal of an adver-
sary is to output another public key (g′, pk′) such that (g, pk) �= (g′, pk′) and
(m,σ) is also valid under (g′, pk′). This is possible when the domain parameters
are generated by a signer, or the domain parameters are not properly validated,
and has been considered by Blake-Wilson and Menezes [3] when examining the
security against key substitution attacks on DSA and ECDSA signature schemes.

We first examine the security of a general framework of certificate-based
signature schemes specified by ISO/IEC CD 14888-3 [1], and show that it is
vulnerable to generalized key substitution attacks in the weak sense that the
adversary knows the private key corresponding to the substituted public key.

Then, we analyze the security of the SM2 signature scheme [2] against chosen-
message attack and generalized KS attacks respectively. Concretely, we not only
show that SM2 signature scheme satisfies the EUF-CMA notion in the generic
group model [14] provided that the underlying hash function h is uniform and
collision-resistant and the underlying conversion function f is almost-invertible,
but also give a formal proof that SM2 is secure against the generalized key substi-
tution attacks in the strong sense (i.e., the adversary is not required to output the
private key corresponding to the substituted public key) if the underlying hash
functions H and h are both modeled as non-programmable random oracles [13].

2 Preliminaries

Notation. Throughout this paper, κ denotes the security parameter. We denote
by s

$← S the fact that s is picked uniformly at random from a finite set S. We
write (y1, y2, . . .) ← A(x1, x2, . . .) as the process that runs a randomized algo-
rithm A on input (x1, x2, . . .) and obtains its output (y1, y2, . . .). The notation
[n] denotes the set {1, . . . , n} for some positive integer n. We use Fq and An to
denote the set {0, 1, . . . , q−1} and a group with the order n respectively. We say
that a function f : N → [0, 1] is negligible if for every positive c and sufficiently
large κ we have f(κ) < 1/κc, and is overwhelming if 1−f is a negligible function.

2.1 Collision-Resistant Hash Functions

A hash function h : {0, 1}∗ �→ R is said to be collision-resistant if for any prob-
abilistic polynomial time (PPT) adversary A, there exists a negligible function
ν(·) such that

Pr[(x, y) ← A(1κ, h) : x �= y ∧ h(x) = h(y)] ≤ ν(κ),

where R denotes the range of h.

2.2 Uniform (Smooth) Hash Functions

Following the definition [5], the uniformity (or smoothness) of a hash function h
is described as below. Let h : {0, 1}∗ �→ R be a hash function. Let D ⊆ {0, 1}∗

such that

Security of the SM2 Signature Scheme 143

1. For x
$← D, y = h(x) can be efficiently generated.

2. For each y ∈ R, the set Sy = h−1(y)∩D is sufficiently large so that the prob-
ability 1/|Sy| is sufficiently small (negligible) to make guessing a randomly
picked secret element of Sy infeasible.

We say that h is uniform for D if for any PPT adversary A, there exists a
negligible function ν(·) such that

∣

∣

∣ Pr[x $← D : A(1κ, h, h(x)) = 1] − Pr[y $← R : A(1κ, h, y) = 1]
∣

∣

∣ ≤ ν(κ)

2.3 Almost-Invertibility of Conversion Functions

SM2 uses a conversion function f : An �→ Fn which could be efficiently computed.
Almost-invertibility of the conversion function is associated with the EUF-CMA
security of SM2, and is defined in [5]. Concretely, a conversion function f is
almost-invertible if an almost-inverse of f is efficiently computed. An almost-
inverse of f is a probabilistic polynomial time (PPT) algorithm f−1 : Fn �→ An

which on input x ∈ Fn produces a Q ∈ An ∪ {Invalid} such that:

– The probability Q �= Invalid is at least 1/10 over random choices of x and
the almost-inverse f−1.

– If Q �= Invalid, f(Q) = x.
– If independently random inputs x

$← Fn are repeatedly input to the algorithm
f−1 until the output Q �= Invalid, the probability distribution of the result-
ing Q is computationally indistinguishable from the distribution of a random
element Q ∈ An.

3 Definitions

Following the definitions in [12], we present the syntax and security notions of a
signature scheme in the multi-user setting. Concretely, the syntax is described in
Definition 1, the security model for existential unforgeability under adaptively
chosen-message attacks (EUF-CMA) [9] is formalized in Definition 2, and the
security notion for (generalized) strong key substitution (SKS) attacks is defined
in Definition 3.

Definition 1 (Syntax). A signature scheme in the multi-user setting consists
of the following algorithms.

– Setup(1κ). On input a security parameter κ, the setup algorithm returns the
domain parameters params.

– Keygen(params). On input the domain parameters params, the key gener-
ation algorithm returns a public-private key pair (pk, sk). Recall that pk
contains the base element.

– Sign(params, sk,m). On input the domain parameters params, the private
key sk and a message m, the signing algorithm returns a signature σ on the
message m.

144 Z. Zhang et al.

Experiment ExpEUF-CMA
SIG,F (κ)

Q := ∅; params ← Setup(1κ); (pk, sk) ← Keygen(params);

(m∗, σ∗) ← FSign(params,sk,·)(params, pk);

If m∗ /∈ Q ∧ Verify(params, pk, σ∗, m∗) = 1, return 1.

Otherwise, return 0.

Signing oracle Sign(params, sk, m)

σ ← Sign(params, sk, m);

Q := Q ∪ {m};

Return σ.

Fig. 1. Experiment for EUF-CMA security

– Verify(params,pk, σ,m). On input the domain parameters params, the pub-
lic key pk and a candidate signature σ on a message m, the deterministic
verification algorithm returns 1 if σ is valid on m under pk and 0 otherwise.

Besides, we define an additional checking algorithm Check to check the valid-
ity of a public key pk. Specifically, given the domain parameters params and a
candidate public key pk, the checking algorithm Check(params,pk) returns 1 if
and only if the public key pk is valid under the domain parameters params.

Definition 2 (EUF-CMA). We say that a signature scheme is existentially
unforgeable under adaptively chosen-message attacks (EUF-CMA) if for any
probabilistic polynomial time (PPT) adversary F , there exists a negligible func-
tion ν(·) such that

AdvEUF-CMA
SIG,F (κ):= Pr[ExpEUF-CMA

SIG,F (κ) = 1] ≤ ν(κ),

where ExpEUF-CMA
SIG,F (κ) is defined in Fig. 1.

Definition 3 (SKS). We say that a signature scheme is secure against (gener-
alized) strong key substitution attacks if for any PPT adversary F , there exists
a negligible function ν(·) such that

AdvSKS
SIG,F (κ) := Pr[ExpSKS

SIG,F (κ) = 1] ≤ ν(κ),

where ExpSKS
SIG,F (κ) is defined in Fig. 2.

Security of the SM2 Signature Scheme 145

Experiment ExpSKS
SIG,F (κ)

Q := ∅; params ← Setup(1κ); (pk, sk) ← Keygen(params);

(m∗, σ∗, pk∗) ← FSign(params,sk,·)(params, pk);

If pk∗ = pk ∧ Check(params, pk∗) = 1 ∧ (m∗, σ∗) ∈ Q

∧ Verify(params, pk∗, σ∗, m∗) = 1, return 1.

Otherwise, return 0.

Signing oracle Sign(params, sk, m)

σ ← Sign(params, sk, m);

Q := Q ∪ {(m, σ)};

Return σ.

Fig. 2. Experiment for (generalized) strong key substitution attacks

We could easily modify the definition for (generalized) strong key substitution
(SKS) attacks to capture the notion for (generalized) weak key substitution
(WKS) attacks. The experiment for (generalized) WKS attacks is the same as
ExpSKS

SIG,F (κ) defined in Fig. 2, except that an adversary against (generalized)
WKS attacks is further required to output the private key sk∗ of the substituted
public key pk∗.

4 Generalized WKS Attacks Against a General
Framework of ISO/IEC CD 14888-3

In this section, we first review the general framework of certificate-based mech-
anisms of ISO/IEC CD 14888-3 [1] in the setting that a signer chooses the base
element as a part of its public key, and then show that the general framework is
vulnerable to the generalized weak key substitution (WKS) attacks.
General Framework. The general framework of certificate-based mechanisms
specified in ISO/IEC CD 14888-3 [1] is presented as follows.

– Setup(1κ). Given a security parameter κ, pick a finite commutative group E
where multiplicative notation is used, and a prime divisor q of the cardinality
of E, and choose an element G ∈ E of order q. Return params := (E, q,G) as
a set of domain parameters.

– Keygen(params). Given the set of domain parameters params = (E, q,G),
choose X

$← Fq\{0}. Then, compute Y := GX . Actually, in the certificate-
based mechanisms of ISO/IEC CD 14888-3, Y is equal to either GX or GX−1

146 Z. Zhang et al.

relying on the specific mechanism. Without loss of generality, we only consider
the case that Y = GX . Finally, output pk = (G,Y) and sk = X as the public
key and the private key respectively.

– Sign(params, sk,M). Given the set of domain parameters params = (E, q,G),
the private key sk = X and a message M , the signing process is executed as
follows:
1. (Producing the randomizer) Choose K

$← Fq\{0}.
2. (Producing the pre-signature) Compute Π := GK .
3. (Preparing the message for signing) Depending on the particular mecha-

nism, one of M1 and M2 is set as M , and the other is set as empty.
4. (Computing the witness (the first part of the signature)) The values of

Π and M1 are taken as inputs to the witness function which is specified
in the concrete mechanism. The output of the witness function is the
witness R.

5. (Computing the assignment) The witness R, M2 and (optionally) Y are
taken as input to the assignment function which is defined in the par-
ticular mechanism. Then, the assignment function outputs assignment
T = (T1, T2) where T1 and T2 are integers such that 0 < |T1| < q and
0 < |T2| < q.

6. (Computing the second part of the signature) Let S be the second part of
the signature and (A,B,C) is a permutation of three elements (S, T1, T2)
depending on the particular mechanism. Solve the following signature
equation for S where S ∈ Fq\{0}:

AK + BX + C ≡ 0 (mod q).

7. Output σ := (R,S) as the signature.
– Verify(params,pk, σ,M). Given the set of domain parameters params, the

public key pk = (G,Y) and a candidate signature σ = (R,S) on a message
M , the verification process is executed as below:
1. (Preparing message for verification) Divide the message M into two parts

M1 and M2.
2. (Retrieving the assignment) Recompute the assignment T = (T1, T2) using

the assignment function with the inputs R, M2 and (optionally) Y .
3. (Recomputing the pre-signature) Set (A,B,C) as (S, T1, T2) according

to the order specified in the signature algorithm. Recompute the pre-
signature Π ′ := Y mGn where m = −A−1B mod q and n = −A−1C
mod q.

4. (Recomputing the witness) Recompute the witness R′ via executing the
witness function with the inputs Π ′ and M1.

5 (Verifying the witness) If R = R′, then return 1, else return 0.

Generalized WKS Attacks. Recall that given a valid message-signature pair
(M, (R,S)) under the public key pk = (G,Y) of some legitimate user, the goal
of a generalized WKS adversary A is to produce a public-private key pair (pk′ =
(G′, Y ′ = (G′)X′

),X ′) such that pk′ �= pk, but the message-signature pair

Security of the SM2 Signature Scheme 147

(M, (R,S)) is still valid under the public key pk′. A generalized WKS adversary
A for the general framework of certificate-based mechanisms of ISO/IEC CD
14888-3 [1] is described as follows.

The adversary A first computes m and n with (M, (R,S)) and (optionally)
Y following the verification process. Then, A computes Π = Y mGn. In the fol-
lowing, the attack manner of A is divided into the following two cases depending
on whether or not Y is used to generate (T1, T2):

– If Y is not used to generate (T1, T2), then the values of m and n, which
are created with (M, (R,S)), remain unchanged according to the verification
process. Choose X ′ $← Fq\{0}, and then compute G′ := Π1/(mX′+n) and Y ′ :=
(G′)X′

. Finally, output the new public-private key pair (pk′ = (G′, Y ′),X ′).
It is easy to see that Π ′ = (Y ′)m(G′)n = (G′)mX′+n = Π.

– If Y is used to generate (T1, T2), choose t
$← Fq\{0} and compute Y ′ := Πt.

Then, compute m′ and n′ with (M, (R,S)) and Y ′ following the verification
process. Finally, compute X ′ = (1 − tm′)/tn′ mod q and G′ = ΠtX′

, and
then output the new public-private key pair (pk′ = (G′, Y ′), 1/X ′). Again,
one can easily verify that Π ′ = (Y ′)m′

(G′)n′
= Πtm′+tn′X′

= Π.

Since in both cases we always have that Π ′ is equal to Π, the message-signature
pair (M, (R,S)) is valid under the new public key pk′ according to the verifi-
cation process. This shows that the above constructed adversary A will break
the security against generalized WKS attacks on the general framework with
probability 1.

5 Security of the SM2 Signature Scheme

In this section, we first recall the description of SM2 digital signature scheme,
and then we present the formal security proofs showing that SM2 satisfies both
EUF-CMA security and the security against generalized strong key substitution
attacks.

5.1 SM2 Digital Signature Scheme

The Chinese digital signature standard SM2 [2] is based on elliptic curve which
has a formal of y2 + xy = x3 + ax2 + b over Fq for some integer q = 2m, and
y2 = x3 + ax + b over Fq for some large prime q. In other words, the curve is
parameterized by q and (a, b). Denote E(Fq) as the additive finite group which
consists of all the integer points (including the infinity point 0) on the elliptic
curve. In the following, we give the formal description of the four algorithms of
the SM2 signature scheme.

– Setup(1κ): Given a security parameter κ, generate the elliptic curve parameters
(q, a, b, n) such that n is a prime divisor of the cardinality of E(Fq) and |n| ≥
2κ, where q, a, b is the curve parameter. Choose a (random) generator G ∈
E(Fq) of order n. Output a set of domain parameters params := (q, a, b, n,G).

148 Z. Zhang et al.

Let h : {0, 1}∗ �→ Fn and H : {0, 1}∗ �→ {0, 1}256 be two cryptographic hash
functions. Let An ⊆ E(Fq) be the cyclic group generated by G. The conversion
function f : An �→ Fn is defined as f(Q) = xQ mod n, where xQ is an integer
representation of the x-coordinate of the elliptic curve point Q ∈ An.

– Keygen(params): Given the domain parameters params = (q, a, b, n,G), pick
d

$← Fn\{0, n − 1} and compute Y = dG. Output the public-private key pair
(

pk = (G,Y), sk = d
)

.
– Sign(params, sk,pk,m) : Given the set of domain parameters params =

(q, a, b, n,G), the private key sk = d, the public key pk = (G,Y), and a
message m, let Z = H(ENTL‖ID‖a‖b‖G‖Y) where ENTL denotes the length
of ID and ID is the identity of the owner of pk and do the following:
1. Let m̄ = Z‖m.
2. Compute e := h(m̄).
3. Choose k

$← Fn\{0}.
4. Compute x1 := f(kG).
5. Compute r := (e + x1) mod n. If r = 0 or r + k = n, go back to step 3.
6. Compute s := (k − rd)/(1 + d) mod n.
7. The signature on m is σ := (r, s).

– Verify(params,pk, σ′,m′) : Given the set of domain parameters params =
(q, a, b, n,G), the public key pk = (G,Y), and a signature σ′ = (r′, s′) on a
message m′, let Z = H(ENTL‖ID‖a‖b‖G‖Y) and do the following:
1. If r′ /∈ [1, n − 1], output 0 and exit.
2. If s′ /∈ [1, n − 1], output 0 and exit.
3. Let m̄′ = Z‖m′.
4. Compute e′ := h(m̄′).
5. Compute t := (r′ + s′) mod n. If t = 0, output 0 and exit.
6. Compute x′

1 := f(s′G + tY).
7. Compute R := (e′ + x′

1) mod n.
8. If R = r′, then output 1, else output 0.

The conversion function f : An �→ Fn of SM2 is exactly the same as that of
ECDSA, and has been shown to be almost-invertible in [5].

5.2 EUF-CMA Security of SM2

Now, we proceed to give a formal security proof showing the EUF-CMA security
of SM2. Formally, we have the following theorem.

Theorem 1. If h is a uniform and collision-resistant hash function, and the
conversion function f is almost-invertible, SM2 is existentially unforgeable under
adaptively chosen-message attacks in the generic group model.

Note that in the generic group model, an adversary is not given direct access
to the group, but rather only receives “handles” representing group elements.
More concretely, the adversary must interact with an oracle to perform the group
operations (including scalar-multiplication and addition) and obtain handles for

Security of the SM2 Signature Scheme 149

new elements. In particular, it is assumed that the adversary can only use handles
previously received from its environment. Back to our case, in addition to directly
to get group element handles from group operation queries, the adversary can
also obtain handles from the public key and the signatures from signing oracle
queries. Actually, the adversary can use the handles in the public key and the
signatures as the “bases” to perform further groups operations. More formally,
let (G,Y) be the group element handles in the public key, and let (V1, . . . , Vqs)
be the group element handles created in the signing queries, where qs is the
number of signing queries made by the adversary. Then, by the assumption
that all the group elements that the adversary want to compute have a form
of z1G + z2Y + z3V1 + . . . + zqs+2Vqs , where z1, . . . , zqs+2 are known integers
chosen by the adversary. Thus, we can unify all the group operation queries by
the coefficient vector (z1, . . . , zqs+2)2. For example, multiplying the base element
G by an integer z can be expressed as a group operation query (z, 0, . . . , 0).

Proof. In the following, for any PPT forger F , we show there exists a challenger
C to simulate the attack environment for F such that the advantage of F is
negligible. In order to answer the group operation queries from F , the challenger
C will keep a table L to record the information generated in the group operation
queries. Formally, C first generates the handle G of the base element by choosing
G

$← An, and adds (1, G,−,−) into the table L, where An is a set supporting
efficient sampling and representing the underlying group. Then, C chooses an
integer d

$← Fn\{0, n − 1}, Y
$← An as the handle of multiplying G by d,

and adds (d, Y,−,−) into the table L. Let qs be the number of signing queries
made by F , qc be the current number of signing queries during the interaction
between C and F , and denote V1, . . . , Vqs as the group element handles that will
be generated in the signing queries. C answers F ’s group operation queries and
signing queries as follows.

– For a group operation query with input (z1, . . . , zqs+2) (i.e., F wants to com-
pute z1G + z2Y + z3V1 + . . . + zqs+2Vqs), C does the following:
1. Let j be the maximum index such that zj �= 0.
2. If j > qc + 2, then return ⊥ and exit.
3. Otherwise, for each i ∈ {1, . . . , j}, retrieve ki from the entry (ki, Vi,−,−)

in table L and compute z′ = z1 + z2d + z3k1 + . . . + zjkj mod n.
4. If there exists an entry (z′, V ′,−,−) in table L, C directly returns V ′ to F .

Otherwise, it distinguishes the following two cases:
• Case 1: If z2 = 0, choose V ′ $← An, add (z′, V ′, (z1, . . . , zqs+2),−) into

table L. Finally, return V ′ to F .
• Case 2: If z2 �= 0, randomly choose Z ′ $← {0, 1}256,m′ $← M3, and

compute

V ′ = f−1(z2 − z1 − z3k1 − . . . − zqs+2kqs − h(Z ′‖m′))
2 In this case, if some zi is equal to 0, it means that the corresponding group element

is not involved in the computation.
3 We use M to denote the efficiently sampling message space of SM2.

150 Z. Zhang et al.

until V ′ ∈ An. Then, add (z′, V ′, (z1, . . . , zqs+2), Z ′‖m′) into table L,
and return V ′ to F .

– For a signing query on some message m, C chooses k
$← Fn\{0}, and makes

a group operation query (k, 0, . . . , 0) by itself to obtain a handle V . Then, it
computes x = f(V), r = h(Z‖m)+x mod n, and s = (k−rd)/(1+d) mod n,
where Z is the other information as determined in the signing algorithm SM2.
Finally, C returns (r, s) as the signature on m to F .

After making polynomial time queries of the above two types, the adversary
F will output a forged signature (r∗, s∗) for m∗ �∈ {mi}i∈[qs]. Below, we prove
the probability that the forged signature is valid to be negligible under the
assumption that h is uniform and collision-resistant.

Analysis. Note that C honestly generates the public key and the signatures, if C
also perfectly answers the group operation queries, then we have that C almost
simulates a perfect attack environment for F . Actually, it is easy to check that
all the group element handles are uniformly chosen at random except in Case
2 of the group operation query. Now, we argue that the handle V ′ generated
in Case 2 is also uniformly distributed. In fact, since Z ′ and m′ are uniformly
chosen at random, and h is a uniform function, we have that the input of f−1

in Case 2 is uniformly distributed. By the fact that f−1 is almost-invertible, we
have V ′ is uniformly distributed. In addition, by the Schwartz-Zippel Lemma,
the probability that there exist two entries (z′, V ′,−,−) and (z′′, V ′′,−,−) in
table L such that z′ �= z′′ but V ′ = V ′′ (i.e., C fails to simulate the generic group
model due to the inconsistency) is bounded by O

((qG+qs)
2

n

)

which is negligible,
where qG denotes the total number of group operation queries made by F . This
finally shows that C almost perfectly simulates the attack environment for F .

In order to finish the proof, we only have to show that the probability that
(r∗, s∗) is a valid signature on m∗ is negligible. Before continuing, we note that
the secret key d is perfectly hidden from the adversary F . This is because in the
generic group model, d is chosen independently from the group element handle
Y in the public key, and d is perfectly hidden from the signature (r, s) in the
signing query (due to the randomly choices of k and V). Let k∗ = s∗ +(s∗ +r∗)d,
then (r∗, s∗) is a valid signature on m∗ if and only if there exists an entry
(k∗, V ∗,−,−) in table L such that r∗ − h(Z‖m∗) = f(V ∗). We first claim that
V ∗ /∈ {G,Y } holds with overwhelming probability. Otherwise, the adversary can
deterministically compute d from (r∗, s∗) by using the fact that s∗ �= 0 and
s∗ + r∗ �= 0, which contradicts to the fact that d is perfectly hidden from the
adversary F . In other words, V ∗ can only be created either in answering the
group operation query or in answering the signature queries. We distinguish the
following two cases:

– If V ∗ ∈ {V1, . . . , Vqs}, then let V ∗ = Vi for some i, and let (ri, si) be the
signature on some message mi and auxiliary information Zi in the i-th signing
query. In other words, we have s∗ + (s∗ + r∗)d = si + (si + ri)d. By the fact
that d is perfectly hidden from the adversary F , this can only happen with

Security of the SM2 Signature Scheme 151

non-negligible probability when both s∗ = si and s∗ + r∗ = si + ri hold.
In this case, (r∗, s∗) is a valid signature on m∗ if and only if the equation
h(Zi‖mi) = ri − f(Vi) = r∗ − f(V ∗) = h(Z‖m∗) holds. Since m∗ �= mi, this
means that F has to find a collision (Zi‖mi, Z‖m∗) of the hash function h.
Under the assumption that h is collision-resistant, this can only happen with
negligible probability.

– Else, V ∗ is created by a group operation query with input (z∗
1 , . . . , z∗

qs+2). In
this case, we have k∗ = s∗ + (s∗ + r∗)d = z∗

1 + z∗
2d + z∗

3k1 + . . . + z∗
qs+2kqs .

Again, by the fact that d is perfectly hidden from the adversary F , this can
only happen with non-negligible probability when both s∗ = z∗

1 + z∗
3k1 +

. . . + z∗
qs+2kqs and s∗ + r∗ = z∗

2 hold. By a simple computation, we have
r∗ = z∗

2 − z∗
1 − z∗

3k1 − . . . − z∗
qs+2kqs . Besides, according to the strategy of

C (in Case 2), there exists a pair (Z ′,m′) chosen by C such that f(V ∗) =
z∗
2 − z∗

1 − z∗
3k1 − . . . − z∗

qs+2kqs − h(Z ′‖m′). In other words, (r∗, s∗) is a valid
signature if and only if h(Z‖m∗) = r∗ − f(V ∗) = h(Z ′‖m′). However, under
the assumption that h is collision-resistant, the probability that F outputs a
pair (Z‖m∗) such that h(Z‖m∗) = h(Z ′‖m′) is negligible.

In all, we have shown that under the assumption that h is uniform and
collision-resistant, the probability that (r∗, s∗) is a valid signature on m∗ is
negligible, which completes the proof. ��

5.3 Security of SM2 Against Generalized SKS Attacks

In this subsection, we show that SM2 is secure against generalized SKS attacks.
Formally, we have the following theorem.

Theorem 2. If both H and h are modeled as non-programmable random oracles
(NPROs), then SM2 is secure against generalized strong key substitution attacks.

Proof. In the following, we will show that the advantage of any PPT adversary
F against the generalized SKS security of SM2 is negligible. Formally, in order
to simulate the attack environment for F , the challenger C only has to generate
the domain parameters params and (pk, sk), and answers the signing queries
honestly. More concretely, C first runs the Setup and Keygen algorithms to obtain
params = (q, a, b, n,G) and (pk, sk) = ((G,Y), d) where Y = dG. Then, let ID
be the identity of the owner of pk, and send (params,pk) to F . Recall that
in our model h and H are modeled as NPROs, both the challenger C and the
adversary F have to access the external random oracles h and H to realize the
functionality of SM2.

After receiving the i-th signing query on a message mi, C honestly computes
(ri, si) ← Sign(params, sk,mi) by making appropriate random oracle queries to
h and H, and returns σi = (ri, si) as the signature on mi to F . Let qs be the
number of the signing queries issued by F .

152 Z. Zhang et al.

Finally, F will return (ID∗,m∗, (r∗, s∗),pk∗ = (G∗, Y ∗)) as its output4,
such that (1) (G∗, Y ∗) �= (G,Y), (2) (G∗, Y ∗) is valid5, and (3) (m∗, r∗, s∗) =
(mj , rj , sj) for some 1 ≤ j ≤ qs.

Analysis. Now, we will show that F can only win the SKS game with negli-
gible probability. Specifically, the probability that the message-signature pair
(mj , rj , sj) is valid under pk∗ is negligible in the security parameter κ. Note
that (mj , rj , sj) is valid under pk∗ = (G∗, Y ∗) if and only if

rj = ej + f (sjG + (rj + sj)Y) = e∗ + f (sjG
∗ + (rj + sj)Y ∗) mod n, (1)

where e∗ = h(H(ENTL∗‖ID∗‖a‖b‖G∗‖Y ∗)‖mj) and ej = h(H(ENTL‖ID
‖a‖b‖G‖Y)‖mj). Since pk �= pk∗, we have that the distribution of ej is inde-
pendent from that of e∗, and that ej �= e∗ holds with overwhelming probability.
This means that the distribution of σj = (rj , sj) is independent from e∗ accord-
ing to the signing algorithm. In other words, the distribution of e∗ is still uniform
conditioned on the equation (1) holds by the assumption that both h and H are
NPROs. Note that F must first fix pk∗ = (G∗, Y ∗) to make the appropriate H
query, and that the outputs of both h and H are uniformly distributed, the prob-
ability that e∗ = h(H(ENTL∗‖ID∗‖a‖b‖G∗‖Y ∗)‖mj) satisfying a prior fixed
equation e∗ = rj − f (sjG

∗ + (rj + sj)Y ∗) mod n is negligible, which shows
that the equation (1) can only hold with negligible probability. This completes
the proof of Theorem 2. ��

Acknowledgements. We would like to thank Hui Guo and the anonymous reviewers
for their helpful comments.

References

1. ISO/IEC 1st CD 14888–3 - Information technology - Security techniques - Digital
signatures with appendix - Part 3: Discrete logarithm based mechanisms

2. GM/T 0003.2-2012, Public Key Cryptographic Algorithm SM2 based on Elliptic
Curves - Part 2: Digital Signature Algorithm (2010). http://www.oscca.gov.cn/
UpFile/2010122214822692.pdf

3. Blake-Wilson, S., Menezes, A.: Unknown key-share attacks on the Station-to-
Station (STS) Protocol. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol.
1560, pp. 154–170. Springer, Heidelberg (1999)

4. Bohli, J.-M., Røhrich, S., Steinwandt, R.: Key substitution attacks revisited: taking
into account malicious signers. Int. J. Inf. Secur. 5(1), 30–36 (2006)

5. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes
Crypt. 35(1), 119–152 (2005)

4 We also allow the adversary to output the identity ID∗ of the owner of pk∗. This is
only because both the signing and verification algorithms of SM2 have an identity
input. We do not have any additional restriction on ID∗.

5 To verify the validity of (G∗, Y ∗), the following conditions need to be satified: (1)
G∗ ∈ E(Fq), (2) the order of G∗ is n, and 3) Y ∗ ∈< G∗ > \ {0}.

http://www.oscca.gov.cn/UpFile/2010122214822692.pdf
http://www.oscca.gov.cn/UpFile/2010122214822692.pdf

Security of the SM2 Signature Scheme 153

6. Diffie, W., Van Oorschot, P.C., Wiener, M.J.: Authentication and authenticated
key exchanges. Des. Codes Crypt. 2(2), 107–125 (1992)

7. Geiselmann, W., Steinwandt, R.: A Key Substitution Attack on SFLASHv3. Cryp-
tology ePrint Archive, Report 2003/245 (2003). http://eprint.iacr.org/

8. Goldwasser, S., Micali, S., Rivest, R.L.: A paradoxical solution to the signature
problem. In: Proceedings of the IEEE 25th Annual Symposium on Foundations of
Computer Science, pp. 441–448. IEEE (1984)

9. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988)

10. Trusted Computing Group. TCG TPM specification 2.0. (2013) http://www.
trustedcomputinggroup.org/resources/tpm library specification

11. ISO/IEC 11889:2015. Information technology - Trusted Platform Module Library
(2015)

12. Menezes, A., Smart, N.: Security of signature schemes in a multi-user setting. Des.
Codes Crypt. 33(3), 261–274 (2004)

13. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111–126. Springer, Heidelberg (2002)

14. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997)

15. Tan, C.H.: Key substitution attacks on some provably secure signature schemes.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E87–A(1), 226–227
(2004)

16. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y.G. (ed.) PKC
2003. LNCS, vol. 2567, pp. 309–323. Springer, Heidelberg (2002)

17. Vaudenay, S.: Digital signature schemes with domain parameters. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 188–199.
Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://www.trustedcomputinggroup.org/resources/tpm_library_specification
http://www.trustedcomputinggroup.org/resources/tpm_library_specification

Side Channel Cryptanalysis of Streebog

Gautham Sekar(B)

Indian Statistical Institute, Chennai Centre,
SETS Campus, MGR Knowledge City,

Taramani, Chennai 600113, India
sgautham@isichennai.res.in

Abstract. Streebog is the cryptographic hash function standard of the
Russian Federation. It comprises two hash functions corresponding to
two digest sizes, 256 bits and 512 bits. This paper presents a side channel
attack that uses processor flag information to speed up message recov-
ery by a factor of 2. Success is nearly guaranteed if the flag is set; the
probability is 0.668 otherwise.

Keywords: Cryptographic hash function · Streebog · Side channel
cryptanalysis · Carry flag · Message recovery · HMAC

1 Introduction

A hash function F takes an arbitrarily long bit string m as input and outputs
a fixed length bit string H (called hash value or digest). A cryptographic hash
function is meant to satisfy certain security properties, the most important of
which are the following.

– (First) preimage resistance: given H, it is computationally infeasible to
find an m′ such that F (m′) = H.

– Second preimage resistance: given an m and F (m), it is computationally
infeasible to find an m′ �= m such that F (m′) = F (m).

– Collision resistance: it is computationally infeasible to find an m and an
m′ �= m such that F (m) = F (m′).

The general model for cryptographic hash functions involves what is called a
compression function. The function transforms a bit string of a fixed length into
a shorter string of a fixed length. The arbitrarily long message is partitioned into
blocks after a process called padding (described later in the context of Streebog).
The blocks are then sequentially processed, with the compression function acting
on every block until all the blocks are processed. The final output is the hash
value. The general model is described in good detail in [9, Sect. 2.4.1].

Streebog is a set of two hash functions and a Russian cryptographic stan-
dard (GOST R 34.10–2012) [5]. It was developed by the Center for Informa-
tion Protection and Special Communications of the Federal Security Service of
the Russian Federation, with participation of the Open Joint-Stock Company
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 154–162, 2015.
DOI: 10.1007/978-3-319-27152-1 8

Side Channel Cryptanalysis of Streebog 155

“Information Technologies and Communication Systems” (JSC “InfoTeCS”) [5],
following a demand for “a hash function to meet modern requirements for cryp-
tographic strength” [5]. In 2012, Streebog replaced GOST R 34.11–94 as the
national standard.

The hash functions comprising Streebog have 256 bits and 512 bits as their
digest lengths. We shall call the hash functions “Streebog-256” and “Streebog-
512”, respectively. The compression function, common to both the versions, oper-
ates on 512-bit blocks in the Miyaguchi-Preneel mode, has 13 rounds, is based
on a substitution-permutation network and uses a linear transformation.

In 2010–2011, open research workshops were organised by the Chinese Acad-
emy of Sciences to discuss cryptographic algorithms proposed for inclusion in
the LTE/4G mobile standards. In a seemingly similar fashion, between 2013 and
2015, the Russian Technical Committee for Standardization “Cryptography and
Security Mechanisms” (TC 26), with the participation of the Academy of Cryp-
tography of the Russian Federation and support from the JSC InfoTeCS, held
an open research competition for the analysis of Streebog. In this period, several
results were reported, notably in [1–3,6,10].

In [1,10], the rebound attack is used to find (semi-free-start) collisions for
reduced versions of the Streebog compression function; [2] presents integral dis-
tinguishers on up to 7 rounds of the compression function; [3] reports preim-
ages for 6-round Streebog; and [6] describes second preimage attacks on the full
Streebog-512. The drawback of the attacks in [6] is that they work well only with
long messages. For instance, if the length of the message is at least 2188 bits,
then 2342 compression function evaluations are required. The time complexity
can be brought down to as low as O(2266) provided that the message is at least
2268 bits in length. For shorter messages, of bit-length γ < 2188 (but greater
than 512 bits), the number of compression function evaluations is estimated at
(log2 γ − 9) · 2522−log2 γ . We present in this paper the first side channel attack on
the full Streebog. We also discuss the implications of our attack on the security
of Streebog-based keyed-hash message authentication code (HMAC).

Processors have registers that store information on operations performed by
their ALUs. For example, in the Intel IA-32 architecture, the status flags of the
EFLAGS register indicate the result of arithmetic instructions such as ADD and
DIV (divide) [7]. One of these flags, known as the carry flag, is a single bit that
indicates an overflow in unsigned integer arithmetic. For instance, when two
unsigned integers are added, the carry flag is set (to 1) if a carry is generated by
the addition at the most significant bit position (we shall call this an end carry)
and the flag is cleared (i.e., 0) otherwise. This may be exploited by an attacker
as in [8] where Kelsey et al. use carry flag information to attack the block cipher
RC5. In our side channel attack too we use the state of the carry flag. Our attack
recovers a message block in about 2511 time with 99.9 % success rate (number of
successful recoveries per 100 messages uniformly distributed at random) if the
carry flag is set and 66.8 % otherwise. The only other attack known on the full
Streebog is due to Guo et al. [6].

156 G. Sekar

Table 1. Notation and conventions

Symbol/notation Meaning

|W | length of W in bits

Γi(W) ith 64-bit word of W ; i = 0 denotes the least
significant word

W(i) ith bit of W ; i = 0 denotes the least significant bit

‖ concatenation

⊕ exclusive OR

fg, where f and g are functions f ◦ g (composition of f and g)

LSB least significant bit

MSB most significant bit

The paper is organised as follows. Section 2 describes Streebog and Sect. 3
details our meesage recovery attack. We propose countermeasures to our attack
in Sect. 4 and conclude in Sect. 5.

2 Description of Streebog

Table 1 lists the notation and conventions followed in the rest of this paper.
Streebog is a simple design that uses only a few elementary arithmetic oper-

ators such as XOR and modular addition, and simple functions such as substi-
tution, permutation and linear transformation. The hash function accepts any
message M of length less than 2512 bits and returns a digest of length 256 bits
or 512 bits. The round function or compression function has 13 iterations, the
first twelve of which involve a substitution-permutation layer. If 512 � |M |, then
padding prefixes M with a bit string pad:={0}511−(|M | ‖1. The padded
message is then partitioned into (k + 1) 512-bit blocks Mk,Mk−1, . . . , M0; i.e.,
pad‖M = Mk‖Mk−1‖ · · · ‖M0. The compression function g that processes the
message block Mi takes as additional inputs the chaining value Hi (of size 512
bits) and a length counter Ni, and outputs Hi+1. Algorithm 1 describes the work-
ing of Streebog. The IV in the algorithm is the initial value H0 (Streebog-256
and Streebog-512 use different 512-bit IV s).

The substitution-permutation layer includes the following components.

– Substitution function S: The input, a 512-bit string, is first partitioned into
bytes. Every byte is then substituted by a byte from a set π′, which is a
permutation of {0, 1, . . . , 255}, and concatenated.

– Permutation function P : Partitions its 512-bit input into bytes, permutes the
bytes (i.e., shuffles their positions) and concatenates them.

– Linear transformation L: This is also a 512-bit-to-512-bit mapping. If the
input is W , then L(W) = �(Γ7(W))‖�(Γ6(W))‖ · · · ‖�(Γ0(W)), where � is a
64-bit-to-64-bit linear transformation that outputs the right multiplication of
its input with a constant matrix A over GF (2).

Side Channel Cryptanalysis of Streebog 157

Algorithm 1. The Streebog algorithm
Require: The message M , |M | < 2512

Ensure: A 256-bit or a 512-bit digest
1: M → pad‖M → Mk‖Mk−1‖ · · · ‖M0;
2: H0 = IV ;
3: N0 = 0;
4: for i = 0 to (k − 1) do
5: Hi+1 = g(Hi, Mi, Ni);
6: Ni+1 = Ni + 512 mod 2512;
7: Σ ← Σ + Mi mod 2512;
8: Hk+1 = g(Hk, Mk, Nk);
9: Nk+1 = Nk + α mod 2512 , where α = 512 − |pad|;

10: Σ ← Σ + Mk mod 2512;
11: Hk+2 = g(Hk+1, Nk+1, 0);
12: H = g(Hk+2, Σ, 0);
13: Output H if Streebog-512, else output H � 256;

– The function X[·]: If K and W are 512-bit strings, then X[K](W) = K ⊕ W .

The compression function g is now given by:

g(Hi,Mi, Ni) = E(L(P (S(Hi ⊕ Ni))),Mi) ⊕ Hi ⊕ Mi , (1)

where

E(L(P (S(Hi ⊕ Ni))),Mi) = X[K13]LPSX[K12]LPSX[K11] . . .
LPSX[K1](Mi) , (2)

(recall from Table 1 that fg = f ◦ g) and

K0 = LPS(Hi ⊕ Ni) , (3)
Kj+1 = LPS(Kj ⊕ Cj) , for j = 0, 1, . . . , 12, and constants Cj . (4)

The subkeys K1,K2, . . . , k13 are the round keys; in deriving them, K0 is used as
an initial value.

3 The Message Recovery Attack

The functions S and P do not involve modular addition or multiplication. The
function X is a simple XOR operation. The linear transformation � works as
follows. Denoting its 64-bit input by β:=β(63)‖β(62)‖ · · · ‖β(0), we have:

�(β) =
63

⊕

i=0

β(63−i) � A[i] ,

158 G. Sekar

where the product � is defined as follows:

β(63−i) � A[i] =

{

{0}64 β(63−i) = 0 ;
A[i] β(63−i) = 1 .

Hence, from (1)–(4), it immediately follows that Streebog compression does not
involve any operation, such as addition modulo 2512, that can alter the state of
the carry flag. This means that only steps 6, 7, 9 and 10 of Algorithm 1 can
potentially affect the carry flag.1

Now, the maximum length of M is 2512 − 1. Given a message of this length,
the number of blocks will be �(2512 − 1)/512� = 2503.2 If k + 1 < 2503 (to
simply calculations, this can be considered a sure event as it happens with a
probability that is very close to 1 if |M | is uniformly distributed at random over
{0, 1, . . . , 2512 − 1}), then Nk = 512k, 512k < Nk+1 ≤ 512(k + 1), and the carry
flag will be unaffected by steps 6 and 9. This leaves us with steps 7 and 10. Now,

Σ =

(

k−1
∑

i=0

Mi

)

mod 2512 + Mk mod 2512 . (5)

= Tk−1 + Mk mod 2512 , say. (6)

Let C:=[C(511)C(510) · · · C(0)] denote the vector of carries generated in (6)
such that C(0) is the carry at the LSB position. When k ≥ 1 (this can also be
considered a sure event), we have the following attack.

Scenario 1: Suppose that the carry flag is set at the end of Algorithm 1. If
|pad| ≥ 2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then Tk−1(511) =
C(511) = 1. If the attacker knows M0,M1, . . . , Mk−2, and all but the MSB
of Mk−1, then she can recover Mk−1(511) from Tk−1(511) = 1 performing
k − 1 < 2503 − 2 additions (recall (5) and (6)).

If |pad| = 0 and Mk(511) = 1, or |pad| = 1 ⇒ Mk(511) = 1, then there are
three possibilities: (i) Tk−1(511) = C(511) = 1, (ii) Tk−1(511) = 0 and C(511) = 1,
(iii) Tk−1(511) = 1 and C(511) = 0. Assuming these cases to be equally likely,3

the attacker can assume with 2/3 probability that Tk−1(511) = 1, and recover
Mk−1(511).

Table 2 lists the above cases and their probabilities assuming that (i) |Mk|
is uniformly distributed at random over {0, 1, . . . , 511}, and (ii) every message
1 The for-loop of Algorithm 1 is implemented differently in [5]. To obtain M0, the least

significant 512-bit word of the padded message is extracted. The leftover message
replaces the padded message and its 512 LSBs are extracted as M1. This process is
repeated until all the message blocks have been extracted. The carry flag is evidently
unaffected by the process.

2 Therefore, even if we go with the for-loop implementation (Algorithm 1), it will
have no bearing on the carry flag.

3 Since the distribution of |Mk| is uniform, given the padding scheme employed, the
distribution of Mk is not uniform. This makes it tedious to compute the distribution
of the carry vector C. Hence the assumption.

Side Channel Cryptanalysis of Streebog 159

block other than Mk is uniformly distributed at random over {0, 1, . . . , 2512−1}.
The attack methodology is as follows. The attacker, knowing M0,M1, . . . , Mk−2

and Mk, makes a guess for the 511 LSBs of Mk−1, obtains a value for the
MSB of Mk−1 (assuming that Tk−1(511) = 1), hashes Mk‖Mk−1‖ · · · ‖M0, and
compares the digest with the given hash value. If the values do not agree, the
guess is incorrect and the attacker makes another guess. The process is repeated
until the hash values agree. The sum σ of M0,M1, . . . , Mk−2 modulo 2512 can
be precomputed (cost is k − 2); σ + Mk−1 mod 2512 can be performed at each
guess and, in doing so, can be avoided while computing the digest (i.e., σ+Mk−1

mod 2512 can be stored and reused). To minimise memory usage, the storage
element can be rewritten at the next guess. The probability of success is the
probability that Tk−1(511) = 1 holds true. From Table 2, this probability is simply
510/512 + 1/768 + 1/1024 + 1/1536 ≈ 0.999. The attack requires 2511 hash
function evaluations plus a precomputation cost of k − 2 < 2503 − 3. Memory
requirements are negligible.

Table 2. Computing Pr(Tk−1(511) = 1) when the carry flag is 1; the probability q is
given the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)

≥ 2 510/512 0 1 1 1 510/512

1 1/512 1 1 1 2/3 1/768

0 1/512 0 1/2 1 1 1/1024

0 1/512 1 1/2 1 2/3 1/1536

Scenario 2: Suppose that the carry flag is 0 at the end of Algorithm 1. If |pad| ≥
2 ⇒ Mk(511) = 0, or |pad| = 0 and Mk(511) = 0, then at least one of Tk−1(511)

and C(511) is 0. Knowing M0,M1, . . . , Mk−2, and all but the MSB of Mk−1, the
attacker can recover Mk−1(511) assuming that Tk−1(511) = 0. The assumption
is valid in two out of the three possible cases: (i) Tk−1(511) = C(511) = 0, (ii)
Tk−1(511) = 0 and C(511) = 1, (iii) Tk−1(511) = 1 and C(511) = 0. Assuming that
these cases are equally likely, Pr(Tk−1(511) = 0) = 2/3.

When |pad| = 0 and Mk(511) = 1 or when |pad| = 1 ⇒ Mk(511) = 1, then
Tk−1(511) = C(511) = 0.

Table 3 lists the above cases and their probabilities under the assumption
that (i) |Mk| is uniformly distributed at random over {0, 1, . . . , 511}, and (ii)
every message block other than Mk is uniformly distributed at random over
{0, 1, . . . , 2512 − 1}. The attack methodology is identical to that described under
Scenario 1, except that the attacker here assumes that Tk−1(511) = 0. The prob-
ability of success is the probability that Tk−1(511) = 0 holds true. From Table 3,
this probability is 170/256 + 1/512 + 1/1536 + 1/1024 ≈ 0.668. The time com-
plexity and memory requirements are the same as that in Scenario 1.

160 G. Sekar

Note: The probability that Tk−1 = 0 given that the carry flag is 0 and
Mk(511) = 0 is at least 1/2 since Pr(case (i) or case (ii)) = Pr(Tk−1) = 1/2
(given the assumption that the message blocks other than Mk are uniformly
distributed). Even if the conditional probability is 1/2, the success probabil-
ity will be 255/512 + 1/512 + 1/2048 + 1/1024 > 1/2 (see Table 3). The suc-
cess probability calculated from Table 2 changes negligibly when 2/3 is replaced
by 1/2. �

Table 3. Computing Pr(Tk−1(511) = 0) when the carry flag is 0; the probability q is
given the condition on |pad| and r is given the conditions on |pad| and Mk(511)

|pad| Pr. (p) Mk(511) Cond. pr. (q) Tk−1(511) Cond. pr. (r) Overall pr. (pqr)

≥ 2 510/512 0 1 0 2/3 170/256
1 1/512 1 1 0 1 1/512
0 1/512 0 1/2 0 2/3 1/1536
0 1/512 1 1/2 0 1 1/1024

In summary, by simply guessing Tk−1(511) to be equal to the carry flag, the
attacker is able to recover Mk−1 with 2511 hash function evaluations and k−2 pre-
computations. The number of precomputations can be negligible in comparison
to 2511 and even the maximum number of precomputations (2503 − 4) is consid-
erably smaller than 2511. Moreover, each precomputation is only an addition of
two 512-bit integers. Consequently, the precomputation cost can be ignored. The
success probability is 0.668 if the carry flag is 0 and 0.999 otherwise. Arriving at
a single value for the probability is involved given the difficulty in determining
the distribution of the carry vector C. It is easy to see that the attack works
for any i ∈ {0, 1, . . . , k − 2} in place of k − 1. In the ideal case, either 2512 hash
function evaluations are required or the success probability is 1/2 for 2511 eval-
uations.4 Since the compression functions of Streebog-256 and Streebog-512 are
identical, our attack applies to both the hash functions.

3.1 Implications of Our Attack

Our attack may be particularly relevant to HMACs. Proposed by Bellare et al.
[4] as a message integrity checking mechanism, a HMAC employs a hash function
h in conjunction with a secret key K and generates a MAC value as follows:

HMAC(K,m) = h((K0 ⊕ opad)‖h((K0 ⊕ ipad)‖m)) ,

where m is the message, opad and ipad are public constants, and K0 is the secret
key or a function of K. The lengths of K0, opad and ipad equal the length of a
4 This does not apply to Mk unless |pad| = 0. Knowing |pad| and M0, M1, . . . , Mk−1,

the attacker can recover Mk in 2512−|pad| time. Our attack is not intended to recover
Mk.

Side Channel Cryptanalysis of Streebog 161

message block. Given the HMAC value and h((K0 ⊕ ipad)‖m), in certain cases,
our attack appears to speed up the recovery of K0 by a factor of 2. This is being
further investigated.

4 Countermeasures

A simple way to preclude our attack is to introduce a low-cost arithmetic opera-
tion, after step 12 of Algorithm 1, that permanently sets or clears the carry flag.
However, the approach fails if the attack model assumes that the attacker can
determine the status of the carry flag after step 12.5

A faster and safer countermeasure is to implement the checksum using XOR;
i.e., replace the addition modulo 2512 in steps 7 and 10 of Algorithm 1 with XOR.

5 Conclusions

In this paper, we have presented the first known side channel attack on Streebog.
The attack speeds up message recovery by a factor of 2 with a probability that
lies in [0.668, 0.999]. The attack is conjectured to be applicable to Streebog-based
HMAC. We have also proposed some countermeasures.

It may be possible to improve the attack by recovering bits other than the
MSB, but calculating the success probabilities is involved and beyond the scope
of this paper. We leave it as a problem for future work. Use of other processor
flags such as the parity flag is also worth investigating.

References

1. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound attacks on Stribog. In: Lee,
H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 175–188. Springer,
Heidelberg (2014)

2. AlTawy, R., Youssef, A.M.: Integral distinguishers for reduced-round Stribog. Inf.
Process. Lett. 114(8), 426–431 (2014)

3. AlTawy, R., Youssef, A.M.: Preimage attacks on reduced-round Stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
109–125. Springer, Heidelberg (2014)

4. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

5. Federal Agency on Technical Regulation and Metrology, “NATIONAL STAN-
DARD OF THE RUSSIAN FEDERATION GOST R 34.11-2012” (English Ver-
sion), 1 January 2013

6. Guo, J., Jean, J., Leurent, G., Peyrin, T., Wang, L.: The usage of counter revisited:
second-preimage attack on new Russian standardized hash function. In: Joux, A.,
Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 195–211. Springer, Heidelberg
(2014)

5 A similar assumption is made in [8].

162 G. Sekar

7. Intel, “IA-32 Intel Architecture Software Developer’s Manual”, vol. 1 (Basic Archi-
tecture), p. 426 (2003). http://flint.cs.yale.edu/cs422/doc/24547012.pdf

8. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. J. Comput. Secur. 8, 141–158 (2000)

9. Preneel, B.: Analysis and Design of Cryptographic Hash Functions, PhD thesis,
Katholieke Universiteit Leuven (1993)

10. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R hash function. Inf. Process.
Lett. 114(12), 655–662 (2014)

http://flint.cs.yale.edu/cs422/doc/24547012.pdf

Privacy

Improving Air Interface User Privacy
in Mobile Telephony

Mohammed Shafiul Alam Khan(B) and Chris J. Mitchell

Information Security Group, Royal Holloway, University of London,
Egham, Surrey TW20 0EX, UK

shafiulalam@gmail.com, me@chrismitchell.net

Abstract. Although the security properties of 3G and 4G mobile net-
works have significantly improved by comparison with 2G (GSM), sig-
nificant shortcomings remain with respect to user privacy. A number of
possible modifications to 2G, 3G and 4G protocols have been proposed
designed to provide greater user privacy; however, they all require sig-
nificant alterations to the existing deployed infrastructures, which are
almost certainly impractical to achieve in practice. In this article we
propose an approach which does not require any changes to the exist-
ing deployed network infrastructures, i.e. to the serving networks or the
mobile devices, but offers improved user identity protection over the air
interface. The proposed scheme makes use of multiple IMSIs for an indi-
vidual USIM to offer a degree of pseudonymity for a user. The only
changes required are to the operation of the authentication centre in
the home network and to the USIM, both owned by a single entity in
the mobile telephony system. The scheme could be deployed immedi-
ately since it is completely transparent to the existing mobile telephony
infrastructure. We present two different approaches to the use and man-
agement of multiple IMSIs, and report on experiments to validate its
deployability.

Keywords: Multiple IMSIs USIM · Pseudonymity · Mobile telephony ·
User privacy

1 Introduction

While the first generation (1G) mobile telephony systems did not provide any
security features, security has been an integral part of such systems since the
second generation (2G). For example, GSM, perhaps the best known 2G system,
provides a range of security features, including authentication of the mobile user
to the network, data confidentiality across the air interface, and a degree of
user pseudonymity through the use of temporary identities. Third and fourth
generation (3G and 4G) systems, such as UMTS/3GPP and Long-Term Evolu-
tion (LTE), have enhanced these security features, notably by providing mutual

M.S.A. Khan—The author is a Commonwealth Scholar, funded by the UK gover-
nment.

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 165–184, 2015.
DOI: 10.1007/978-3-319-27152-1 9

166 M.S.A. Khan and C.J. Mitchell

authentication between network and phone, and integrity protection for sig-
nalling commands sent across the air interface. However, user privacy protection
has remained largely unchanged, relying in all cases on the use of temporary
identities [18,29], and it has long been known that the existing measures do not
provide complete protection for the user identity [11,17]. The discussion below
applies equally to 2G, 3G and 4G systems, although we use 3G terminology
throughout.

The problem of user identity privacy in mobile networks is more than two
decades old. Samfat et al. [25] first addressed the conflicting requirements of
untraceability and disclosure of identity during authentication in a mobile net-
work. The user privacy issue has been discussed extensively in the literature
[6–9,20–23,31,32], and many modifications to existing protocols have been pro-
posed to avoid the problem [6,8,9,20,22,32]. All these proposals involve making
major modifications to the air interface protocol, which would require changes
to the operation of all the serving networks as well as all the deployed phones. It
seems likely that making the necessary major modifications to the operation of
the air interface after deployment is essentially infeasible. Many of the proposed
schemes also involve the use of public key cryptography [6,9,32], which has a
high computational cost, although there do exist schemes which only use sym-
metric cryptography [8,20]. It would therefore be extremely valuable if a scheme
offering greater user privacy could be devised which did not involve making
significant changes to the existing mobile telecommunications infrastructures,
and had minimal computational cost. This motivates the work described in this
paper. In sum, the contributions of the paper are as follows.

– We propose a new approach to the use and management of multiple IMSIs in
a USIM to enhance user pseudonymity in mobile telephony systems.

– We have implemented key parts of the scheme, verifying its feasibility.
– We provide a privacy and functional analysis of the scheme.

The remainder of the paper is structured as follows. In Sect. 2 key terminology
for and features of mobile telephony systems are briefly reviewed. Threats to user
privacy addressed in this paper are then summarised in Sect. 3. In Sect. 4 our
threat model is presented. Section 5 outlines a novel approach to improving air
interface user privacy using multiple IMSIs. Sections 6 and 7 provide descriptions
of two proposed approaches to the use and management of multiple IMSIs in
a USIM. Results from our experimental evaluation are presented in Sect. 8. An
analysis of the proposed approaches is presented in Sect. 9. Section 10 provides
a brief discussion of related work. Finally, conclusions are drawn and possible
directions for future work are considered in Sect. 11.

2 Background

2.1 Mobile Telephony Systems

We start by providing a brief overview of key terminology for mobile systems.
A complete mobile phone is referred to as a user equipment (UE), where the

Improving Air Interface User Privacy in Mobile Telephony 167

term encapsulates not only the mobile equipment (ME), i.e. the phone, but
also the user subscriber identity module (USIM) within it [4], where the USIM
takes the form of a cut-down smart card. The USIM embodies the relationship
between the human user and the issuing home network, including the Interna-
tional Mobile Subscriber Identity (IMSI), the telephone number of the UE, and
other user (subscriber) data, together with a secret key shared with the issuing
network which forms the basis for all the air interface security features. The
USIM data storage capabilities are specified in Sect. 10.1 of 3GPP TS 121 111
[13]. Information held within the USIM is stored in files, which can be divided
into the following categories: application dedicated files (ADFs), dedicated files
(DFs) and elementary files (EFs) [14]. Most of the subscriber information is
stored in EFs, which are the files we focus on in this paper.

To attach to a mobile network, a UE connects via its radio interface to a
radio tower. Several radio towers are controlled by a single radio network con-
troller (RNC) which is connected to one mobile switching center/visitor location
register (MSC/VLR). The MSC/VLR is responsible for controlling call setup
and routing. Each MSC/VLR is also connected to the carrier network’s home
location register (HLR) where corresponding subscriber details can be found.
The HLR is associated with an authentication center (AuC) that stores crypto-
graphic credentials required for communicating with the USIM. The RNC and
the MSC/VLR are part of the visiting/serving network whereas the HLR and
the AuC are the home network component (see Fig. 1(a)).

Fig. 1. Mobile telephony systems

To access mobile network services, a UE needs to complete mutual authenti-
cation as soon as it attaches to a network. Mutual authentication is performed
using the Authentication and Key Agreement (AKA) protocol, described in detail
below. If mutual authentication is successful, the MSC informs the HLR, which
associates the UE’s IMSI with the address of the MSC. The MSC also assigns a

168 M.S.A. Khan and C.J. Mitchell

temporary mobile subscriber identity (TMSI) and sends the TMSI to the UE in
encrypted form. The TMSI is unique to the location area in which the subscriber
is currently located. Accordingly, whenever the subscriber visits a new location
area, the MSC must update the TMSI value.

An IMSI is a 15-digit decimal number (see Fig. 1(b)). Of the 15 digits, the
first three form the mobile country code (MCC). The next two or three dig-
its identify the network operator, and are known as the mobile network code
(MNC). The length of the MNC, i.e. whether it contains two or three digits, is
a national matter. The remaining nine or ten digits, known as the mobile sub-
scriber identification number (MSIN), are administered by the relevant operator
in accordance with the national policy [3,28]. IMSIs therefore have geographi-
cal significance, and their use is typically managed by the network operator in
blocks. The combination of the MCC and the MNC can be used to uniquely
identify the home network of the IMSI. The MSIN is used by the operator to
identify the subscriber for billing and other operational purposes. Each IMSI
uniquely identifies the mobile user, as well as the user’s home network and home
country. The IMSI is stored in the USIM and is normally fixed. The elementary
file EFIMSI contains the value of the IMSI.

2.2 Proactive UICC

Proactive UICC is a service operating across the USIM-ME interface that pro-
vides a mechanism for a USIM to initiate an action to be taken by the ME.
It forms part of the USIM application toolkit [15]. The 2G predecessor of the
USIM, known as the SIM, supports a similar feature, known as proactive SIM,
part of the SIM application toolkit.

ETSI TS 102 221 [14] specifies that the ME must communicate with the USIM
using either the T= 0 or T=1 protocol, specified in ISO/IEC 7816-3 [19]. In both
cases the ME is always the master and thus initiates commands to the USIM; as
a result there is no mechanism for the USIM to initiate communications with the
ME. This limits the possibility of introducing new USIM features requiring the
support of the ME, as the ME needs to know in advance what actions it should
take. The proactive UICC service provides a mechanism that allows the USIM
to indicate to the ME, using a response to an ME-issued command, that it has
some information to send. The USIM achieves this by including a special status
byte in the response application protocol data unit. The ME is then required
to issue the FETCH command to find out what the information is [16]. To
avoid cross-phase compatibility problems, this service is only permitted to be
used between a proactive UICC and an ME that supports the proactive UICC
feature. The fact that an ME supports proactive UICC is revealed when it sends
a TERMINAL PROFILE command during UICC initialization.

The USIM can make a variety of requests using the proactive UICC service.
Examples include: requesting the ME to display USIM-provided text, notifying
the ME of changes to EF(s), and providing local information from the ME to
the USIM [16]. The command of interest here is REFRESH. The REFRESH
command requests the ME to carry out an initialisation procedure, or advises

Improving Air Interface User Privacy in Mobile Telephony 169

the ME that the contents of EF(s) have been changed. The command also makes
it possible to restart the session by performing a reset [16].

2.3 The AKA Protocol

The AKA protocol is at the core of mobile telephony air interface security, and
is regularly performed between the visited network and the UE. The involved
parties are the home network (that issued the USIM), the serving network, and
the UE. The AuC of the home network generates authentication vectors (used
by the serving network in AKA) and sends them to the serving network. In the
schemes proposed in Sects. 6 and 7, we use the RAND value in an authentication
vector in a novel way for management of multiple IMSIs.

The AKA protocol starts with the serving network sending a user authen-
tication request to the UE. The UE checks the validity of this request (thereby
authenticating the network), and then sends a user authentication response. The
serving network checks this response to authenticate the UE. As a result, if suc-
cessful, the UE and the network have authenticated each other, and at the same
time they establish two shared secret keys.

In order to participate in the protocol, the UE, in fact the USIM installed
inside the UE, must possess two values:

– a long term secret key K, known only to the USIM and to the USIM’s home
network, and

– a sequence number SQN, maintained by both the USIM and the home net-
work.

The key K never leaves the USIM, and the values of K and SQN are pro-
tected by the USIM’s physical security features.

The 48-bit sequence number SQN enables the UE to verify the ‘freshness’
of the user authentication request. More specifically, the request message con-
tains two values: RAND and AUTN, where RAND is a 128-bit random number
generated by the home network, and the 128-bit AUTN consists of the concate-
nation of three values: SQN⊕AK (48 bits), AMF (16 bits), and MAC (64 bits).
The MAC is a message authentication code (or tag) computed as a function of
RAND, SQN, AMF, and the long term secret key K, using a MAC algorithm
known as f1. The value AK is computed as a function of K and RAND, using
a cipher mask generating function known as f5. The AK functions as a means
of encrypting SQN ; this is necessary since, if sent in cleartext, the SQN value
would potentially compromise user identity confidentiality, given that the value
of SQN is USIM-specific.

On receipt of these two values, the USIM uses the received RAND, along
with its stored value of K, to regenerate the value of AK, which it can then use
to recover SQN. It next uses its stored key K, together with the received values
of RAND, SQN, and AMF, in function f1 to regenerate MAC (see Fig. 2); if
the newly computed value agrees with the value received in AUTN then the
first stage of authentication has succeeded. The USIM next checks that SQN is

170 M.S.A. Khan and C.J. Mitchell

Fig. 2. Computation of AKA key values at the USIM

a ‘new’ value; if so it updates its stored SQN value and the network has been
authenticated.

If authentication succeeds, the USIM computes another message authentica-
tion code, called RES, from K and RAND using a distinct MAC function f2,
and sends it to the network as part of the user authentication response. If this
RES agrees with the value expected by the network then the UE is deemed
authenticated.

3 User Privacy Threats

In a mobile telephony context, a user identity can be any of the mobile number
or the IMSI of a USIM, or the international mobile station equipment identity
(IMEI) of an ME. Of these various identities, the IMSI is used to identify the
subscriber for authentication and access provision; limiting the degree to which
its use compromises user privacy is the main focus of this paper. When a sub-
scriber is roaming, i.e. accessing service from a network other than its home
network, the IMSI is sent from the UE via the visited network to the home net-
work. Since the IMSI is a permanent user identity, the air interface protocols are
designed to minimise the number of circumstances in which it is sent across the
air interface.

Clearly, providing user privacy requires that the permanent user identity
cannot be intercepted when sent across the radio link. A level of identity con-
fidentiality is provided by use of the TMSI instead of the IMSI. However, on
certain occasions a UE needs to send its IMSI across the air interface in clear-
text. One such case is when a UE is switched on and wishes to connect to a
new network, and hence will not have an assigned TMSI [23]. Another case is
where the serving network is unable to identify the IMSI from the TMSI [17].

Improving Air Interface User Privacy in Mobile Telephony 171

An active adversary can intentionally simulate one of these scenarios to force
a UE to transfer its IMSI in cleartext. Moreover, several further scenarios have
been identified [6,7,11,31] in which user identity privacy is at significant risk. In
this paper, we address this privacy threat.

4 Threat Model

The schemes we propose in this paper are designed to address real-life threats to
user privacy in 3G networks. In particular we have already observed that there
are circumstances in which an adversary can cause a UE to send its IMSI across
the network in plaintext. This is the threat we aim to mitigate by reducing the
impact of IMSI compromise. That is, although the possibility of IMSI compro-
mise remains unchanged, we propose making the IMSI a short term identity and
hence prevent the compromise of a long-term user identity. In doing so we must
also ensure that two different IMSIs for the same UE are not linkable, at least
via the network protocol. This issue is examined further in Sect. 9.1.

In designing our schemes we make the underlying assumption that AKA is
sound, and provides mutually authenticated key establishment. We also implic-
itly assume that the USIM and the network have not been compromised by other
means. Of course, if these assumptions are false, then very serious threats exist
to both user privacy and security. Since we assume that AKA is secure, and no
changes are made to its operation, we do not need to re-examine its security for
the schemes discussed here. The main risk introduced by use of the multiple-IMSI
schemes we propose is the possibility of loss of IMSI synchronisation between
UE and home network, and this issue is addressed in Sect. 9.2.

It is important to note that two of the three schemes we describe rely on
using the RAND sent as part of the AKA protocol as a means of signalling from
the home network to the USIM. From our assumption regarding the security of
AKA, we can assume that this provides an authenticated channel with replay
detection. This is fundamental to the schemes presented in Sects. 6.2 and 7.

5 A Pseudonymity Approach

We consider here the possible use of multiple IMSIs for a single account to pro-
vide a form of pseudonymity on the air interface, even when it is necessary to
send the IMSI in cleartext. The use of multiple IMSIs is described here using
3G terminology, but a precisely analogous approach would apply equally to both
GSM and LTE systems. However, while all the techniques for IMSI distribution
specified in Sects. 6 and 7 would also work for LTE, only the scheme described in
Sect. 6.1 would work for GSM, since the other two schemes rely on UE authen-
tication of the network which is not provided in GSM.

At present, a USIM holds one IMSI along with other subscription and network
parameters. We propose that a USIM and the home network support the use
of varying IMSIs for a single user account, in such a way that no modification
is required to the operation of any intermediate entities, notably the visited

172 M.S.A. Khan and C.J. Mitchell

(serving) network and the ME itself. This allows the provision of a more robust
form of pseudonymity without making any changes to the air interface protocol.
In this section we consider how a change of IMSI can be made.

The following issues need to be addressed to allow use of multiple IMSIs.
– Transferring IMSIs. Clearly, before a USIM switches to a new IMSI, it must

be present in the USIM and in the database of the home network. Also,
new IMSIs must always be chosen by the home network to avoid the same
IMSI being assigned to two different USIMs. This requires a direct means
of communication between the home network and the USIM (which must
be transparent to the serving network and the ME, since our objective is to
enable changing of an IMSI without making any changes to existing deployed
equipments). In Sects. 6 and 7 we describe in detail two different strategies for
transferring IMSIs from the home network to a USIM.

– Initiating an IMSI change. Clearly the IMSI needs to be changed in such a way
that both the home network and the USIM know at all times which IMSI is
being used, and the home network always knows the correspondence between
the IMSI being used by the USIM and the user account. An IMSI change
can be triggered either by the USIM or by the home network, as we describe
below. However, use of a new IMSI is always implemented by the USIM, since
it is the appearance of a mobile device in a network using a particular IMSI
which causes a request to be sent by the serving network for authentication
information for use in the AKA protocol. That is, when the ME sends an IMSI
to the serving network, it is forwarded to the home network. Once the home
network sees the ‘new’ IMSI it knows that an IMSI change has occurred and
can act accordingly.

This requires that the home network knows that both the previously used
IMSI and the ‘new’ IMSI belong to the same account. This will require some
minor changes to the operation of the home network’s account database, i.e.
to allow more than one IMSI to point to a single account. However, this does
not seem likely be a major problem in practice.

– Triggering an IMSI change. Whether the USIM or the home network is respon-
sible for initiating a change of IMSI, logic needs to be implemented to cause
such a change to take place. Regardless of whether the USIM or the home net-
work makes the decision, logic needs to be in place in the USIM either to make
the decision or to receive the instruction to make the change from the home
network; for convenience we refer to this logic as an application, although this
is not intended to constrain how it is implemented. The decision-making logic
could take account of external factors, including, for example, the elapsed time
or the number of AKA interactions since the last change; indeed, if the ME
included an appropriate user-facing application, then it might also be possible
to allow user-initiated changes. Of course, if the home network is responsible for
triggering the change of IMSI, then it needs a means of communicating its deci-
sion to the USIM that is transparent to the existing infrastructure, including
the serving network and the ME. This issue is addressed in Sects. 6 and 7.

– Rate of change of IMSI. The rate of change of IMSI will clearly be decided by
the USIM-issuing network (which equips the USIM with the IMSI-changing

Improving Air Interface User Privacy in Mobile Telephony 173

application). We observe in this context that Sect. 4.2.2 of ETSI TS 131 102
[12] recommends that IMSI updates should not occur frequently. The rate
of change of an IMSI could be determined by the customer contract with
the issuing network; for example, a USIM which changes its IMSI frequently
might cost more than a fixed-IMSI USIM (or one that only changes its IMSI
occasionally), and could be marketed as a special ‘high-privacy’ service.

– Implementing an IMSI change. A mechanism will be required for the USIM to
indicate to the ME that the IMSI has changed. We propose that this should
be achieved by the following steps.
1. As noted in Sect. 2.1, the IMSI is contained in the elementary file EFIMSI .

When the USIM wishes to change the IMSI, it first updates this file accord-
ingly.

2. At the first opportunity, the USIM uses the proactive UICC status byte
to indicate to the ME that it wishes to issue a command.

3. When the ME responds with a FETCH command, the USIM sends a
REFRESH command to the ME.

4. The REFRESH command causes the ME to read the EFIMSI file, allowing
it to discover the new IMSI. The next time that the ME needs to send its
IMSI to the serving network, it will send the new value.

As noted above, using multiple IMSIs requires a direct and transparent means
of communication between the home network and the USIM. The Unstructured
Supplementary Service Data (USSD) protocol appears at first sight to be a
possible channel for such communications. However, the protocol end points
are the home network and the ME, rather than the USIM. As such, it could only
be used for our purposes if the ME was aware of the multiple IMSI scheme, i.e.
the ME would need to be modified — contradicting our design objectives. As a
result we do not consider the use of USSD further here, although we note that it
might be possible to deploy a smart phone application which could provide the
necessary additional phone functionality, a possible avenue for future research.

6 Predefined Multiple IMSIs

Our first means of deploying multiple IMSIs involves a USIM being pre-equipped
with a number of IMSIs. These IMSIs are all associated with a single account
in the home network’s account database. Initially, one of the IMSIs is stored in
EFIMSI . We propose below two ways of initiating an IMSI change in this case.

6.1 USIM-Initiated IMSI Change

This is the simpler of the two approaches. We suppose the USIM has an appli-
cation that decides when to initiate an IMSI change. The new IMSI will clearly
need to be selected from the predefined list. How the list is used is a matter for
the issuing network. For example, the IMSIs could be used in cyclic order or at
random (or, more probably, pseudo-randomly). The USIM changes the IMSI to
the ‘new’ IMSI using the procedure described in Sect. 5.

174 M.S.A. Khan and C.J. Mitchell

6.2 Network-Initiated IMSI Change

In this case, the home network decides when to trigger an IMSI change. The home
network will have a richer set of information to use to decide when to change IMSI
than the USIM. For example, the home network could change the IMSI whenever
the UE changes serving network or after a fixed number of calls.

As discussed in Sect. 5, when the home network decides to trigger an IMSI
change, it must, by some means, send an instruction to the USIM. We propose
to use the AKA protocol as the communications channel for this instruction.
More specifically, we propose using the value RAND of AKA to carry the signal.
The IMSI change procedure operates as follows (see also Fig. 3).

Fig. 3. IMSI change procedure for predefined multiple IMSIs

1. When the logic in the home network decides that an IMSI change is necessary,
a flag is set for the appropriate user account in the AuC database of the home
network.

2. Whenever the AuC generates authentication vectors for use in AKA, it checks
this flag to see if an IMSI change signal is to be embedded in the RAND value.
If so it resets the flag and executes the following steps (as in Fig. 3(a)).
(a) The AuC uses the MAC function f11 to generate a 64-bit MAC on the

subscriber’s current sequence number SQN using the subscriber’s long
term key K. We refer to this as the sequence-MAC or SMAC.

(b) The AuC generates a 64-bit random number R using the same process as
normally used to generate 128-bit RAND values.

(c) The AuC sets RAND to be the concatenation of the R and SMAC.
If an IMSI change signal is not required, the AuC generates RAND in the

normal way.
3. The AuC follows the standard steps to generate the authentication vector

from RAND, and sends the vector (including RAND) to the serving network.

Whenever the USIM receives an authentication request, it follows the usual
AKA steps. If the AKA procedure completes successfully, the USIM checks the
RAND in the following way (as shown in Fig. 3(b)).
1 For cryptographic cleanliness it should be ensured that the data string input for this

additional use of f1 can never be the same as the data string input to f1 for its
other uses; alternatively, a slight variant of f1 could be employed here.

Improving Air Interface User Privacy in Mobile Telephony 175

1. The USIM uses the received SQN and its stored key K to regenerate SMAC.
2. It compares the computed SMAC with the appropriate part of RAND.
3. If they do not agree then the USIM terminates the checking process. However,

if they agree then the USIM performs the next step.
4. The USIM selects a ‘new’ IMSI value from the stored list, and later changes

the IMSI accordingly using the procedure described in Sect. 5.

We next consider how IMSI changes will work in practice. There are two
cases to consider. If the home network is also the serving network then it could
potentially force an instance of AKA to occur at will, i.e. making the IMSI change
happen almost immediately. However, if the serving network is distinct from the
home network, then the home network can only send new authentication vectors
when requested by the serving network. Moreover, the serving network may delay
before using the supplied authentication vector in AKA. That is, there may be
a significant delay between the decision being made to change an IMSI and the
signal being sent to the USIM. In either case the phone may be switched off or
temporarily out of range of a base station, in which case there will inevitably be
some delay. However, regardless of the length of the delay in the signal reaching
the USIM (or even if it never reaches the USIM) there is no danger of loss of
IMSI synchronisation between the USIM and the home network, since the home
network will always keep the complete list of IMSIs allocated to the USIM.

We observe that there is always the chance that a randomly chosen RAND
will contain the ‘correct’ SMAC, leading to an unscheduled IMSI change by the
USIM. However, the probability of this occurring is 2−64, which is vanishingly
small. In any case, the occurrence of such an event would not have an adverse
impact, since the home network would always be aware of the link between the
new IMSI and the particular USIM.

Finally, an active interceptor could introduce its own RAND into the channel
to try to force an IMSI change. However, given that K is not compromised and
f1 has the properties required of a good MAC function, then no strategy better
than generating a random RAND will be available. Replays of old RAND values
will be detected and rejected as a normal part of AKA, at least for 3G and 4G
networks, which enable the USIM to check the freshness of an authentication
request. Finally, assuming the SMAC value is indistinguishable from a random
value, a standard assumption for MAC functions, then an eavesdropper will be
unable to determine when an IMSI change is being requested.

7 Modifiable Multiple IMSIs

The second proposed means of deploying multiple IMSIs involves distributing
new IMSI values from the home network to the USIM after its initial deployment,
where the home network will choose each new IMSI from its pool of unused
values. Such an approach clearly requires a means of communicating from the
home network directly to the USIM, and, analogously to the scheme proposed in
Sect. 6.2, we describe how the AKA protocol, and specifically the RAND value,

176 M.S.A. Khan and C.J. Mitchell

can be used for this purpose. Before describing the details of the IMSI transfer
procedure, we describe some relatively minor changes which are required to the
operation of the home network in order to support the scheme.

– The home network must maintain a pool of unused IMSIs, enabling the AuC
to dynamically assign a new IMSI to an existing subscriber.

– For each subscriber account in its database, the home network must maintain
an IMSI-change flag indicating whether an IMSI change is under way. The
database must also hold up to two IMSIs for each subscriber; it will always
hold the current IMSI (with status allocated) and, if the IMSI-change flag is
set, it will also hold the new IMSI (with status in transit), where the possible
status values for an IMSI are discussed below. If use of the new IMSI is
observed then IMSI status changes are triggered (see below).

– The home network must manage the use of IMSIs so that no IMSI is assigned
to more than one subscriber at any one time. This can be achieved by main-
taining the status of each IMSI as one of allocated, free, or in transit. The set
of IMSIs with status free corresponds to the pool of available IMSIs, as above.
The status of an IMSI can be updated in the following ways.
• When the home network selects an available IMSI from the pool to allocate

to a USIM, the status is changed from free to in transit.
• When the home network receives implicit acknowledgement (in the form

of a request for authentication vectors for that IMSI from a network) of a
successful IMSI change, the home network changes the status of the IMSI
from in transit to allocated, and the status of the previously used IMSI for
that subscriber from allocated to free. In addition, the current IMSI for the
subscriber will be set equal to the new IMSI, the new IMSI will be set to
null, and the IMSI-change flag will be reset.

• A third case also needs to be considered, that is when an IMSI change
instruction never reaches the USIM. If this case is not addressed then
future IMSI changes for that USIM will be blocked. On the other hand,
making a decision to abandon an IMSI change could be disastrous, i.e. if
a USIM makes an IMSI change after the home network has terminated
this change (and changed the status of the ‘new’ IMSI back to free), then
the USIM could be rendered unusable. As a result we propose never to
abandon an IMSI change, and instead to resend the new IMSI as many
times as necessary until the change is accepted by the USIM. How this
works should be clear from the description below.

– If the home network is required to do so by its regulatory environment, e.g.
to support lawful interception, it can maintain a log of all the IMSIs assigned
to a particular subscriber for however long is required. It is in any case likely
to be necessary to retain this information for a period to enable processing of
billing records received from visited networks.

The details of the IMSI transfer procedure are as follows (see also Fig. 4).

1. When the logic in the home network decides that an IMSI transfer is nec-
essary for a particular subscriber, it must set the IMSI-change flag for that

Improving Air Interface User Privacy in Mobile Telephony 177

Fig. 4. IMSI change procedure for modifiable multiple IMSIs

subscriber. Observe that if an IMSI change is already under way then the flag
will already be set; in this case the flag is left as it is.

2. Whenever the AuC needs to generate authentication vectors for use in AKA,
it checks this flag to see if an IMSI transfer signal and a new IMSI are to
be embedded in the RAND value. If so it performs the following steps (as
shown in Fig. 4(a)). Note that this means that, once an IMSI change has been
initiated, the new IMSI will be embedded in all RAND values until evidence
of the successful changeover by the USIM has been observed.
(a) The AuC uses the MAC function f1 to generate a 64-bit MAC on the

subscriber’s current sequence number SQN using the subscriber’s long
term cryptographic key K. The generated MAC is referred to as the
SMAC.

(b) The AuC generates a 48-bit encryption key EK using the key generation
function f5. The function takes SQN as the data input and K as the key
input. Note that observations regarding cryptographic cleanliness and the
use here of functions f1 and f5, analogous to those given in Sect. 6.2 step
2(a), apply here.

(c) If the new IMSI field in the home network database entry for this sub-
scriber is non-null then a new IMSI has already been assigned, and it
is not necessary to choose another new value. Otherwise a new IMSI is
selected from the pool of unused IMSIs; the status of this IMSI is changed
from free to in transit and the new IMSI field in the database is given the
chosen value. We assume that the MCC and MNC of the IMSI are known
to the USIM (since they are fixed for this network operator) and hence
only the 9- or 10-digit MSIN needs to be sent embedded in RAND. The
MSIN is encoded as a 36- or 40-bit value using binary coded decimal, the
‘standard’ way of encoding IMSIs, and the result is padded to 48 bits by
an agreed padding scheme.

(d) The 48-bit MSIN block is XORed with the encryption key EK, and we
refer to the result as the concealed MSIN.

(e) The AuC generates a 16-bit random number R using the same process as
normally used to generate 128-bit RAND values.

178 M.S.A. Khan and C.J. Mitchell

(f) The AuC sets RAND to be the concatenation of the concealed MSIN, R
and SMAC.

If an IMSI transfer is not required, the AuC generatesRAND in the normal way.
3. The AuC follows the standard steps to generate the authentication vector

from the RAND value, and sends it (including RAND) to the serving network.

On receipt of an authentication request, the USIM proceeds using the stan-
dard AKA procedure. After successful completion of the AKA protocol, the
USIM checks whether the challenge value contains an embedded IMSI in the
following way (as shown in Fig. 4(b)).

1. The USIM uses the received SQN and its stored long term key K to regenerate
SMAC.

2. It compares the computed SMAC with the appropriate part of RAND.
3. If they do not agree then the USIM terminates the checking process. However,

if they agree then the USIM performs the following steps.
(a) The USIM retrieves the concealed MSIN from RAND.
(b) The USIM regenerates the encryption key EK using f5 with the value of

SQN retrieved during the AKA processing and its long-term stored key
K as inputs.

(c) The EK is XORed with the concealed MSIN to recover the cleartext
encoded MSIN.

(d) The USIM generates the new IMSI by prefixing the decoded MSIN with
the MCC and MNC.

(e) The USIM checks whether the new IMSI is the same as the value it is
using already; this is essential since it may receive the change instruction
more than once. If they are the same it does nothing. If they are different
it keeps a record of the new IMSI and later updates its IMSI using the
procedure described in Sect. 5.

To reduce signalling costs, it appears to be standard practice for the AuC to
generate a small set of authentication vectors for provision to a serving network.
If the procedure specified above is followed to generate this set of vectors, and
an IMSI change is scheduled for the subscriber, then all the RAND values in the
set will contain an embedded concealed MSIN. Whilst this will cause minimal
additional overhead for the USIM, since RAND values are always checked for an
embedded SMAC value, it will have the benefit of maximising the chance that
the IMSI change will be performed by the USIM.

As discussed in Sect. 6.2, there may be a significant delay in the IMSI change
signal embedded in RAND reaching the USIM. However, this will not affect
IMSI synchronisation between the home network and the USIM since the home
network will not update the current IMSI entry in the subscriber database until
it receives a request for authentication vectors from a visited network using this
new IMSI. As discussed above, once a new IMSI has been assigned to a subscriber
(with the in transit status), every RAND generated for that USIM will contain
the embedded IMSI value until the success of the change has been observed.

Improving Air Interface User Privacy in Mobile Telephony 179

Finally, as in Sect. 6.2, there is the chance that a randomly chosen RAND
could contain a ‘correct’ SMAC, triggering an unauthorised IMSI change. How-
ever, the probability of such an event is vanishingly small, and certainly orders
of magnitude smaller than the probability of a USIM failure. We therefore do
not consider it further here.

8 Experimental Validation

Testing the schemes is challenging due to the unavailability of a test UMTS net-
work. However, the availability of the SIMtrace [1] hardware and the software
implementations of the Osmocom project [30] support testing of the necessary
modifications to the USIM. We used SIMtrace to trace USIM-ME communica-
tions, together with SysmoUSIM-SJS1 [2], a standards-compliant test UMTS
UICC card.

To validate the proposed modification to the USIM, we first ran an exper-
iment to update the IMSI value in the test USIM. Using a standard contact
smart card reader, smart card scripting tool, and a custom script we were able
to modify the IMSI value. The process is similar to updating any file in the USIM
file structure given the appropriate access grant. We subsequently developed a
SIM toolkit applet using the Java card framework and the packages included
with the 3GPP technical specification covering USIM API for Java card [5]. The
SIM toolkit applet was designed to use the REFRESH proactive command to
arrange for the ME to fetch the new IMSI. We chose to use the REFRESH
command, as the command is understood by all MEs which support proactive
commands. We tested the full range of modes of the REFRESH command [15],
i.e. USIM initialization and file change notification, file change notification, and
UICC reset.

We loaded the applet in the USIM to carry out further tests. We connected
the USIM and the ME to the SIMtrace device, which was connected to a laptop
to record the APDU commands exchanged between the USIM and the ME. We
observed that, when a REFRESH is executed in the USIM initialization and
file change notification mode, a series of read commands are issued by the ME.
Although the record of commands exchanged showed that the IMSI file is read,
because of our lack of a test UMTS environment we were unable to confirm that
the read operation actually updated the IMSI value stored in the ME. When the
mode is changed to UICC reset, the ME simply restarted its session, as expected.
These observations confirmed that, if the REFRESH command is used in the
UICC reset mode, the ME is made aware of the new IMSI. As a result, all future
authentication procedures performed by the UE will use the new IMSI, which
will have the effect of notifying the home network of use of the new IMSI.

During the experiments, we tested a range of standard MEs, all of which
support the proactive command. As mentioned earlier, due to the unavailabil-
ity of a test UMTS network we were unable to implement the modified home
network. However the changes required at the home network are purely minor
software changes to the operation of the AuC database, which should not require
significant additional computing resource.

180 M.S.A. Khan and C.J. Mitchell

9 Analysis

The above proposals raise privacy and availability issues, which we now discuss.

9.1 User Privacy

The use of multiple IMSIs does not provide a complete solution to user identity
confidentiality. While in use, the IMSI still functions as a pseudonym, potentially
enabling the interactions of a single phone to be tracked for a period; of course,
this is always true for any mobile network when a subscriber resides in a single
location area, even where only a privacy-preserving TMSI is used. Of course,
the more frequently IMSIs are changed the less the impact of possible tracking,
but frequent IMSI changes have an overhead in terms of database management.
The use of a predefined set of IMSIs further restricts the degree of user identity
confidentiality protection. In this case, over a period of time it might be possible
for an eavesdropper to link at least some of the fixed IMSIs.

The design of the schemes ensures an eavesdropper is unable to infer any
confidential information from the value of RAND. As discussed in Sects. 6.2
and 7, in schemes where the RAND is used to signal to the USIM, the RAND
is constructed so that it is indistinguishable from a truly random value; this
is based on the assumption that a MAC generated using f1 and a data string
encrypted using the output from f5 are indistinguishable from random data.
Moreover, in the scheme described in Sect. 7 where the IMSI is sent embedded
in RAND, the IMSI (actually the MSIN) is encrypted to prevent an eavesdropper
observing it.

Overall the IMSI-changing proposal can be seen as allowing a trade-off
between user privacy and the cost of implementing frequent IMSI changes.

9.2 IMSI Synchronisation

If, in the modifiable multiple IMSIs case, an active adversary is able to persuade
the USIM to change its IMSI to an unauthorised value, then the USIM (and
the UE) will cease to be able to access the network. It is therefore essential that
robust cryptographic (and other) means are used to guarantee the correctness
and timeliness of the new IMSI.

In the predefined IMSIs schemes described in Sect. 6, loss of synchronisation
cannot arise, as even if the USIM is persuaded to make an unauthorised change
the new IMSI will be known to the home network. In any event, as argued in
Sect. 6.2, the probability of such an event is vanishingly small.

Loss of synchronisation appears to be a more significant threat in the case
where new IMSIs are sent embedded in the RAND value, as in the scheme
described in Sect. 7. However, as discussed there, for similar arguments to those
given in Sect. 6.2, the probability of a random RAND giving a correct SMAC is
negligible. Also, malicious changes to a valid RAND, e.g. involving changing the
encrypted MSIN whilst leaving the SMAC unchanged, will be detected by the
AKA network authentication process.

Improving Air Interface User Privacy in Mobile Telephony 181

10 Related Work

To the best of our knowledge, no user privacy enhancing scheme for mobile
telephony has previously been proposed that does not require changes to the
existing network infrastructure, i.e. the serving network and/or the mobile equip-
ment. While other authors observe that significant changes to widely deployed
infrastructure are unlikely to be feasible [8,22], realistic and practical propos-
als have not been made. Choudhury et al. [8] proposed a scheme to improve
user identity confidentiality in the LTE network. Their scheme involves signifi-
cant changes to the air interface protocol. They propose the use of a frequently
changing dynamic mobile subscriber identity (DMSI) instead of the IMSI across
the air interface. The DMSI is constructed by concatenation of the MCC, MNC,
a random number chosen by the mobile operator, and a 128-bit encrypted ver-
sion of the chosen random number. As a result, the structure of the DMSI
differs significantly from the structure of the IMSI. The DMSI is updated on
every run of the authentication. The DMSIs are managed by the home network
and the USIM. However, the use of the DMSI imposes changes in the protocol
messages, mobile equipment, and the serving network. Table 1 summarises the
change impact of this scheme, where a ‘Yes’ indicates that changes are required
to the indicated part of the system.

Køien [22] has recently proposed a privacy enhanced mutual authentication
scheme for LTE. Although the author claims to use existing signalling mech-
anisms, the author introduces identity-based encryption to encrypt the IMSI
when sent across the air interface. The scheme does not introduce any new sys-
tem entities, but does make significant changes in system operation. The scheme
suggests that the ME generates a public key ID computed from the home network
ID, serving network ID, and an agreed expiry value, where the home network
computes the corresponding private key. The serving network broadcasts the key
components of the public ID to its subscribers. Moreover, a mobile device needs
to generate a random number to be used in encryption. All these functional
components require major modification to the mobile device. The home network
shares the private key with the serving network as the key is used by the serving
network to decrypt the encrypted IMSI. A serving network has to maintain indi-
vidual private keys for each home network. In the event of updating the public
key ID for any serving network, all partner home networks need to recompute
the private key and ensure a secure exchange of keys. This will introduce new
signalling messages into the core network. As a result it appears that the scheme
is not easily deployable as it is not transparent to the mobile equipment or the
serving network. Thus the privacy-protecting enhancements to the system come
at the cost of significant modifications to all the major elements of the system;
it is therefore more appropriate to consider it as a proposal for a future network.
Table 1 summarises the change impact of the Køien scheme.

Sung et al. [26] have proposed a scheme to provide location privacy which
uses multiple IMSIs for a single (U)SIM in some ways similar to our proposal.
However, it involves an additional party in its operation, needs support by the
ME, and requires wireless data connectivity for sending and receiving calls. The

182 M.S.A. Khan and C.J. Mitchell

Table 1. Comparison of change impact of the proposed scheme with other proposals

Domain/Proposal Choudhury et al. [8] Køien [22] Our proposal

USIM Yes Yes Yes

Mobile equipment Yes Yes No

Signaling message Yes Yes No

Serving network Yes Yes No

Home network Yes Yes Yes

threat model is also very different, in that the home network is a potential
adversary. The scheme employs phones without a local SIM; instead the phone’s
software retrieves a virtual SIM offered by an Internet-accessible third party,
which is used for a limited period and paid for using an anonymous Internet
payment system where messages are sent via Tor.

Tagg and Campbell [27] describe a scheme to use multiple IMSIs for multi-
ple networks with a single USIM. Their scheme involves the use of an update
server to provide a suitable IMSI as and when it is required. The objective is
to avoid roaming charges by dynamically switching network provider. Marsden
and Marshall [24] propose a similar approach. The focus of their work is thus
very different to the schemes described above; they also do not provide a means
of transferring new IMSIs transparently to a USIM.

Dupré [10] presents a process to control a subscriber identity module (SIM)
for mobile phone systems. Generic guidance regarding the transmission of control
information from the network to the SIM is provided. The schemes described in
this paper extend Dupré’s idea in a more concrete way.

11 Conclusions

In this paper we propose two general approaches to using multiple IMSIs
for a mobile telephony subscriber. The goal of these proposals is to improve
user privacy by reducing the impact of IMSI disclosure on the air interface.
The approaches do not require any changes to the existing deployed network
infrastructures, i.e. to the serving network, air interface protocols or mobile
devices. The overhead introduced is modest and should be feasible to manage in
real-world networks. One major advantage is that the proposed schemes could
be deployed immediately since they are completely transparent to the existing
mobile telephony infrastructure.

The proposed schemes provide a form of pseudonymity on the air interface,
even when it is necessary to send the IMSI in cleartext. The schemes reduce the
impact of user privacy threats arising from IMSI capture.

Future work could include setting reliable rules for triggering an IMSI change.
A formal security analysis of the complete proposal could provide additional
confidence in its robustness.

Improving Air Interface User Privacy in Mobile Telephony 183

References

1. Osmocom SIMtrace. http://bb.http://osmocom.org/trac/wiki/SIMtrace. Accessed
20 May 2015

2. SysmoUSIM-SJS1 SIM + USIM. http://www.sysmocom.de/products/sysmousim-
sjs1-sim-usim. Accessed 20 May 2015

3. 3rd Generation Partnership Project: 3GPP TS 23.003 Version 3.14.0 (2003–12):
3rd Generation Partnership Project; Technical Specification Group Core Network;
(Numbering, addressing and identification), December 2003

4. 3rd Generation Partnership Project: 3GPP TR 21.905 Version 10.3.0; 3rd Gen-
eration Partnership Project; Technical Specification Group Services and System
Aspects; Vocabulary for 3GPP Specifications (2011)

5. 3rd Generation Partnership Project: 3GPP TS 31.130 Version 10.0.0; Technical
Specification Group Core Network and Terminals; (U)SIM Application Program-
ming Interface (API); (U)SIM API for Java Card (Release 10) (2011)

6. Arapinis, M., Mancini, L., Ritter, E., Ryan, M., Golde, N., Redon, K., Borgaonkar,
R.: New privacy issues in mobile telephony: fix and verification. In: Yu, T., Danezis,
G., Gligor, V.D. (eds.) ACM Conference on Computer and Communications Secu-
rity, CCS ’12, Raleigh, NC, USA, 16–18 October 2012, pp. 205–216. ACM (2012)

7. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M.: Privacy through pseudonymity
in mobile telephony systems. In: 21st Annual Network and Distributed System
Security Symposium, NDSS 2014, San Diego, California, USA, 23–26 February
2014 (2014). http://www.internetsociety.org/doc/privacy-through-pseudonymity-
mobile-telephony-systems

8. Choudhury, H., Roychoudhury, B., Saikia, D.K.: Enhancing user identity privacy
in LTE. In: IEEE 11th International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom), 2012, pp. 949–957. IEEE (2012)

9. Deng, Y., Fu, H., Xie, X., Zhou, J., Zhang, Y., Shi, J.: A novel 3GPP/SAE authen-
tication and key agreement protocol. In: IEEE International Conference on Net-
work Infrastructure and Digital Content, 2009 (IC-NIDC 2009), pp. 557–561. IEEE
(2009)

10. Dupré, M.: Process to control a Subscriber Identity Module (SIM) in mobile phone
system, US Patent 6,690,930 (2004)

11. European Telecommunications Standards Institute (ETSI): ETSI TS 121 133 Ver-
sion 4.1.0 (2001–12): Universal Mobile Telecommunications System (UMTS); 3G
Security; Security threats and requirements, December 2001

12. European Telecommunications Standards Institute (ETSI): ETSI TS 131.102 Ver-
sion 4.15.0 Release 4; Universal Mobile Telecommunications System (UMTS);
Characteristics of the USIM application (2005)

13. European Telecommunications Standards Institute (ETSI): ETSI TS 121 111
Version 8.0.1 (2008–01): Universal Mobile Telecommunications System (UMTS),
USIM and IC card requirements, January 2008

14. European Telecommunications Standards Institute (ETSI): ETSI TS 102 221 Ver-
sion 8.2.0; Smart Cards; UICC–Terminal Interface; Physical and logical character-
istics (2009)

15. European Telecommunications Standards Institute (ETSI): ETSI TS 131 111 Ver-
sion 7.15.0: Digital cellular telecommunications system (Phase 2+); Universal
Mobile Telecommunications System (UMTS); LTE; Universal Subscriber Identity
Module (USIM) Application Toolkit (USAT) (2010)

http://bb.http://osmocom.org/trac/wiki/SIMtrace
http://www.sysmocom.de/products/sysmousim-sjs1-sim-usim
http://www.sysmocom.de/products/sysmousim-sjs1-sim-usim
http://www.internetsociety.org/doc/privacy-through-pseudonymity-mobile-telephony-systems
http://www.internetsociety.org/doc/privacy-through-pseudonymity-mobile-telephony-systems

184 M.S.A. Khan and C.J. Mitchell

16. European Telecommunications Standards Institute (ETSI): ETSI TS 102 223 Ver-
sion 11.1.0; Smart Cards; Card Application Toolkit (CAT) (2012)

17. European Telecommunications Standards Institute (ETSI): ETSI TS 133 102 Ver-
sion 11.5.1 (2013–07): Digital cellular telecommunications system (Phase 2+);
Universal Mobile Telecommunications System (UMTS); 3G Security; Security
architecture, July 2013

18. Forsberg, D., Horn, G., Moeller, W.D., Niemi, V.: LTE Security. Wiley, Chichester
(2010)

19. International Organization for Standardization: ISO/IEC 7816–3; Identification
cards – Integrated circuit cards; Part 3: Cards with contacts – Electrical interface
and transmission protocols, November 2006

20. Juang, W.S., Wu, J.L.: Efficient 3GPP authentication and key agreement with
robust user privacy protection. In: Wireless Communications and Networking Con-
ference, WCNC 2007, pp. 2720–2725. IEEE (2007)

21. Khan, M.S.A., Mitchell, C.J.: Another look at privacy threats in 3G mobile tele-
phony. In: Susilo, W., Mu, Y. (eds.) ACISP 2014. LNCS, vol. 8544, pp. 386–396.
Springer, Heidelberg (2014)

22. Køien, G.M.: Privacy enhanced mutual authentication in LTE. In: 2013 IEEE
9th International Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob), pp. 614–621. IEEE (2013)

23. Kóien, G.M., Oleshchuk, V.A.: Aspects of Personal Privacy in Communications:
Problems, Technology and Solutions. River Publishers, Denmark (2013)

24. Marsden, I., Marshall, P.: Multi IMSI system and method, US Patent App.
13/966,350, 20 February 2014. http://www.google.com/patents/US20140051423

25. Samfat, D., Molva, R., Asokan, N.: Untraceability in mobile networks. In: Pro-
ceedings of the 1st Annual International Conference on Mobile Computing and
Networking, MobiCom ’95, pp. 26–36. ACM, New York, NY, USA (1995). http://
doi.acm.org/10.1145/215530.215548

26. Sung, K., Levine, B.N., Liberatore, M.: Location privacy without carrier coopera-
tion. In: IEEE Workshop on Mobile Security Technologies, MOST 2014, San Jose,
CA, USA, 17 May 2014

27. Tagg, J., Campbell, A.: Identity management for mobile devices, US Patent App.
13/151,942, 6 December 2012. http://www.google.com/patents/US20120309374

28. Telecommunication Standardization Sector of ITU: ITU-T E.212: International
operation Maritime mobile service and public land mobile service (The interna-
tional identification plan for public networks and subscriptions), May 2008

29. Valtteri, N., Nyberg, K.: UMTS Security. Willey, Chichester (2003)
30. Various Contributors: Osmocom Project. http://osmocom.org. Accessed 20 May

2015
31. Vintila, C.E., Patriciu, V.V., Bica, I.: Security analysis of LTE access network. In:

The 10th International Conference on Networks ICN 2011, pp. 29–34 (2011)
32. Xiehua, L., Yongjun, W.: Security enhanced authentication and key agreement

protocol for LTE/SAE network. In: 7th International Conference on Wireless Com-
munications, Networking and Mobile Computing (WiCOM), pp. 1–4. IEEE (2011)

http://www.google.com/patents/US20140051423
http://doi.acm.org/10.1145/215530.215548
http://doi.acm.org/10.1145/215530.215548
http://www.google.com/patents/US20120309374
http://osmocom.org

Generating Unlinkable IPv6 Addresses

Mwawi Nyirenda Kayuni, Mohammed Shafiul Alam Khan, Wanpeng Li,
Chris J. Mitchell(B), and Po-Wah Yau

Information Security Group, Royal Holloway, University of London, Egham, UK
{Mwawi.NyirendaKayuni.2011,Wanpeng.Li.2013}@live.rhul.ac.uk,

shafiulalam@gmail.com, {C.Mitchell,P.Yau}@rhul.ac.uk

Abstract. A number of approaches to the automatic generation of IPv6
addresses have been proposed with the goal of preserving the privacy of
IPv6 hosts. However, existing schemes for address autoconfiguration do
not adequately consider the full context in which they might be imple-
mented, in particular the impact of low quality random number gener-
ation. This can have a fundamental impact on the privacy property of
unlinkability, one of the design goals of a number of IPv6 address auto-
configuration schemes. In this paper, the potential shortcomings of pre-
viously proposed approaches to address autoconfiguration are analysed
in detail, focussing on what happens when the assumption of strong ran-
domness does not hold. Practical improvements are introduced, designed
to address the identified issues by making the random generation require-
ments more explicit, and by incorporating measures into the schemes
designed to ensure adequate randomness is used.

1 Introduction

The move from IPv4 to IPv6 brings with it a range of challenging security and
privacy issues. Of course, the vastly larger address space of IPv6 is a huge advan-
tage, allowing the use of globally unique identifiers for all Internet-connected
devices. However, this very advantage brings with it possible user privacy prob-
lems [1].

That is, if each device has a long-term and globally unique identifier, then use
of this identifier enables devices to be tracked. As stated in RFC 4941 [1], if part
of the IPv6 address remains fixed then privacy problems arise for mobile devices,
since the fixed part of the address can be used to track use of a particular device
across networks.

This privacy threat has become increasingly serious with the proliferation of
network-enabled personal devices, including phones and tablets. That is, tracking
of IP addresses on such devices could enable the movements and activities of a
single user to be recorded. This threat will become even more apparent as an
increasing variety of devices become IP-enabled, particularly with the emergence
of the Internet of Things (IoT).

As a result, a method is needed to enable devices to generate new unique IPv6
addresses on a regular basis with the property that pairs of addresses generated

c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 185–199, 2015.
DOI: 10.1007/978-3-319-27152-1 10

186 M.N. Kayuni et al.

by the same device are unlinkable. That is, given two IPv6 addresses generated
by the method, it should not be possible for a third party to learn anything from
the addresses themselves regarding whether or not they belong to the same or
distinct devices.

Of course, there is already a substantial body of work addressing this prob-
lem, including RFC 4941 [1], discussed further in Sect. 2 below. However, as we
discuss in this paper, there are serious practical problems with all the existing
approaches. In essence, the existing solutions all depend on the availability of
either high quality random bit streams or long-term state (or both) within the
device generating its own IPv6 addresses. Meeting these requirements could be
very challenging in certain classes of device, particularly those small portable
platforms for which the privacy threat may well be greatest. As a result, new
solutions are required which can work on a wide variety of platforms while still
providing acceptable levels of address privacy.

In this paper, as well as pointing out the scale and scope of the ‘random-
ness’ problems with the prior art, we make a detailed proposal for the use of
randomness in the existing address generation schemes. The solutions proposed
are designed to be readily implemented on current platforms, and should enable
significant improvements in the level of privacy offered by the various approaches
to dynamic IP address generation.

The remainder of this paper is structured as follows. Section 2 describes pre-
vious work on IPv6 autoconfiguration, focussing on proposals for addressing the
privacy issue. The limitations of previous approaches are considered in Sect. 3,
which leads to Sect. 4 in which new approaches to IPv6 address autoconfigura-
tion are explored. Section 5 summarises the main findings and recommendations,
and notes possible directions for future work.

2 Background

2.1 Stateless Address Autoconfiguration (SLAAC)

An IPv6 address is a 128-bit identifier [2] for a specific network interface within
a device (referred to as a host throughout). That is, a network interface cannot
communicate in an IPv6 network unless it has one or more suitably configured
IPv6 addresses. Hosts may need to automatically generate (autoconfigure) their
own IPv6 addresses. This need is addressed by the IPv6 Stateless Address Auto-
configuration protocol, or SLAAC, specified in RFC 4862 [3]. SLAAC involves
a host first generating a global address via stateless address autoconfiguration,
and then using the Duplicate Address Detection (DAD) procedure to verify the
local uniqueness of the global address. The mechanism ‘allows a host to generate
its own [global] addresses using a combination of locally available information
and information advertised by routers’.

SLAAC operates in the following general way. A router advertises a 64-bit
prefix that identifies the subnet to which the host is attached. The host then gen-
erates a 64-bit interface identifier, uniquely identifying the host on the subnet.
The 128-bit IPv6 address is simply the concatenation of these two values.

Generating Unlinkable IPv6 Addresses 187

The source of the interface identifier, which must be in modified EUI-64
format [2], will depend on the underlying link-layer protocol. In many cases,
an interface’s identifier will be derived directly from that interface’s link-layer
address [2]. For example, it may be derived from an IEEE 802 48-bit MAC layer
address.

This approach is appropriate ‘when a site is not particularly concerned with
the exact addresses hosts use, so long as they are unique and properly routable’.
SLAAC is an alternative to the Dynamic Host Configuration Protocol for IPv6
(DHCPv6) [4], appropriate when a site requires tighter control over exact address
assignments.

2.2 Privacy Extensions to SLAAC

We first observe that, although the first 64 bits of a SLAAC-generated address
will change when a host switches subnets, the last 64 bits will stay constant, since
they are generated from a fixed interface identifier. This issue has motivated the
development of RFC 4941 [1]. As stated in Sect. 2.3 of this RFC, problems arise
if the interface identifier contained within the IPv6 address remains fixed and,
in such a case, ‘the interface identifier can be used to track the movement and
usage of a particular machine’ (this threat is, of course, particularly relevant
to mobile devices). More detailed discussions of the privacy issues arising from
the use of SLAAC are provided in Sect. 1 of Gont [5] and in Cooper, Gont and
Thaler [6].

The goal of RFC 4941 is to describe methods for a host to automatically
generate IPv6 addresses that change over time and which cannot be linked to
each other, thereby giving a level of pseudonymity to a host. The focus of RFC
4941 is on the case where the interface identifier used in SLAAC is generated
from a fixed IEEE MAC layer address. RFC 4941 seeks to propose new methods
for address generation that minimise the changes to SLAAC, and that enable a
sequence of apparently random addresses to be generated. RFC 4941 addresses
are expected to be used for a ‘short period of time (hours to days)’ ([1], Sect. 3).

The main change to SLAAC is to replace the fixed interface identifier with
a randomised value. Two approaches are described for generating such a ran-
domised identifier.

1. Method 1 (When stable storage is present). As the title suggests, this app-
roach assumes that the software responsible for generating the randomised
interface identifiers has access to a means of storing changeable data long-
term. More specifically, the scheme requires the storage of a 64-bit history
value H. The scheme also requires the software to have access to a 64-bit ran-
dom value which is used to initialise the history value. It is further assumed
that the 64-bit fixed interface identifier I is available, e.g. as derived from the
MAC layer address.

Whenever a new randomised interface identifier is required, the following
steps are performed.

188 M.N. Kayuni et al.

(a) Compute V = h(H||I), where h is the MD5 cryptographic hash function
[7], and here, as throughout, || denotes concatenation of bit-strings. Hence
V is a 128-bit value.

(b) Set the new history value H to be the rightmost 64 bits of V, and store
this value.

(c) Let J be the leftmost 64 bits of V, after setting the 7th bit (counting from
the left) to zero to indicate an address of local significance only.

(d) Compare J against a list of reserved interface identifiers and those already
assigned to an address on the host (on a different network interface). If
J matches a forbidden address then restart the process; otherwise use J
as the randomised interface identifier.

The use of MD5 is not mandatory; that is, h could be instantiated as any
other suitable cryptographic hash function with an output length of at least
128 bits (longer output lengths can be truncated).

2. Method 2 (In the absence of stable storage). In this case it is proposed that
the interface identifier can simply be generated ‘at random’. No method is
specified for random generation, although it is suggested that host-specific
configuration information (such as a user identity, security keys, and/or serial
numbers) could be concatenated with random data and input to MD5 to
generate the interface identifier.

2.3 The Gont Approach

Gont [5] notes that temporary addresses, as proposed in RFC 4941, bring dif-
ficulties. From a network management perspective, ‘they tend to increase the
complexity of event logging, trouble-shooting, enforcement of access controls and
quality of service, etc. As a result, some organizations disable the use of tempo-
rary addresses even at the expense of reduced privacy [8]. Temporary addresses
may also result in increased implementation complexity, which might not be
possible or desirable in some implementations (e.g., some embedded devices)’.

As a result, Gont [5] proposes another approach to generating user-privacy-
protecting interface identifiers. This scheme generates interface identifiers that
are stable within a subnet, but which vary between subnets. That is, when
a host migrates from one subnet to another, both the first and second 64-bit
components of the IPv6 address change, preventing tracking of hosts as they
migrate. As with the RFC 4941 scheme, it is intended that a generated interface
identifier cannot be linked to a long-term host identifier (such as the SLAAC
interface identifier).

Use of the scheme requires choice of a pseudorandom function f giving a 64-
bit output that must be difficult to invert. The choice for f is not mandated, but
it is suggested that it could be computed by taking the 64 least significant bits
of the output of SHA-1 or SHA-256 [9]. The scheme also requires the address-
generating software to have access to a host-unique secret key K (of length at
least 128 bits), which is chosen at random at system installation time. It is
further assumed that, as in RFC 4941, a fixed network interface identifier I is
available, e.g. as derived from the MAC layer address. The scheme then operates
as follows.

Generating Unlinkable IPv6 Addresses 189

1. Compute J = f(P ||I||N ||D||K), where f , I and K are as above, P is the
64-bit SLAAC prefix, e.g. as obtained from a router advertisement message,
N is an identifier for the network interface for the generated identifier, and
D is a counter used to resolve DAD conflicts (initialised to zero every time
this process is run). Hence J is a 64-bit value.

2. Compare J against a list of reserved interface identifiers and those already
assigned to an address on the host (on a different network interface). Also
perform DAD. If J matches a forbidden address or DAD fails then increment
D and restart the process; otherwise use J as the subnet-specific interface
identifier.

Including P in the computation ensures that J is subnet-specific; similarly,
including N ensures, with high probability, that different network interfaces on
the same host have different values of J .

2.4 The Rafiee-Meinel Scheme

In a recent paper, Rafiee and Meinel [10] propose yet another approach to
randomised interface identifier generation. They reject the Gont approach (see
Sect. 2.3) on the basis that fixing the interface identifier for a given subnet is
potentially privacy-compromising, since all accesses to this subnet will be track-
able. They also criticise method 1 of RFC 4941 [1] on the basis that stable storage
may not be available.

The Rafiee-Meinel scheme can be regarded as a specific instantiation of
method 2 of RFC 4941, i.e. it is a specific method of generating randomised
interface identifiers that does not make use of stable storage. It assumes that
the system generating the identifier has access to the current system time T
in the form of a 64-bit integer denoting the number of milliseconds since the
beginning of 1970. The scheme operates as follows.

1. Generate a 128-bit random value R.
2. Compute V = h(R||T ||P), where T is a timestamp (as above), P is the 64-bit

subnet prefix, e.g. as obtained from a router advertisement message, and h is
SHA-256 [9]. V is thus a 256-bit value.

3. Let J be the leftmost 64 bits of V .
4. Perform DAD. If DAD fails then increment R and restart the process; other-

wise use J as the subnet-specific interface identifier.

2.5 Other Schemes

Before proceeding we also briefly mention two other papers which describe IPv6
address generation schemes which are apparently relevant. Al’Sadeh, Rafiee and
Meinel [11] and Rafiee and Meinel [12] describe modified versions of Crypto-
graphically Generated Addresses (CGA) [13] designed to address the privacy
problem discussed above. CGA is a method of generating 64-bit IPv6 interface

190 M.N. Kayuni et al.

identifiers designed to enable a host that owns an identifier to prove its owner-
ship. To use CGA, a host must generate an asymmetric signature key pair and
then calculate the interface identifier as a SHA-1 hash of the public key and
certain other parameters. If a third party challenges the host to prove ownership
of the identifier, the host can release both the public key and a signature on a
third-party-provided challenge created using the signature key.

Clearly CGA-generated interface identifiers are, by definition, random in
appearance, and hence appear to address the privacy issue. Thus regular use of
CGA would provide ‘unlinkable’ short-term IPv6 addresses. However, the gen-
eration of a key pair is a non-trivial operation, and it would seem that the only
reason to adopt such an approach is if the security provided by CGA is required.
Of course, improvements in the efficiency of CGA (as claimed in the two papers
referred to above) are welcome, but do not change this conclusion. Thus, since
the resource requirements of implementing CGA limit its applicability as a gen-
eral solution, we do not consider CGA, and variants thereof, further here.

2.6 A Summary

If we ignore the CGA variants, three basic approaches have been proposed to
generate privacy-protecting interface identifiers:

– RFC 4941 [1] method 1, which enables the generation of a sequence of ran-
domised interface identifiers based on an initial random value;

– RFC 4941 method 2, including a specific instance due to Rafiee and Meinel [10],
which enables the generation of a sequence of random identifiers based on ‘one
off’ random values;

– the approach due to Gont [5] which involves the generation of fixed, but
unlinkable, subnet-specific interface identifiers.

3 Practical Limitations to Privacy

In practice the schemes we have described all have potential shortcomings arising
from poor use of randomness. Before analysing the individual schemes we first
consider the use and abuse of random values.

3.1 Use of Randomness

Perhaps the first question that springs to mind when considering the prior art
is ‘Why not just generate interface identifiers at random?’ Indeed, the tech-
niques we have described all, to some extent at least, require the generation
of random numbers. This issue is addressed in 3.2.1 of RFC 4941 [1], where it
is stated that ‘In practice, however, generating truly random numbers can be
tricky. Use of a history value [as in method 1] is intended to avoid the particular
scenario where two nodes generate the same randomized interface identifier, both
detect the situation via DAD, but then proceed to generate identical randomized

Generating Unlinkable IPv6 Addresses 191

interface identifiers via the same (flawed) random number generation algorithm.
The above algorithm avoids this problem by having the interface identifier (which
will often be globally unique) used in the calculation that generates subsequent
randomized interface identifiers’.

That is, the authors of the RFC were very well aware of the difficulties of
generating random values, and the possibility that, in practice, a flawed random
number generator might be used. Examining the various proposals in more detail,
it is clear that in no case are precise instructions provided covering how to
generate the necessary random values.

– The specifications of the two methods in RFC 4941 simply contain pointers to
RFC 4086 [14] for guidance on how to generate random values. RFC 4086 cer-
tainly contains much excellent advice, but does not contain a specific proposal
for a random number generator.

– Exactly the same situation holds for Gont [5], who simply refers to RFC 4086
for advice on generating random values.

– Rafiee and Meinel [10] do not address the issue of randomness generation
at all.

In the absence of very clear and specific instructions on how random num-
bers must be generated, or at least a reference to such instructions, there is
a great danger that implementers will choose simple, but ineffective, methods
for ‘random’ number generation. Certainly, past experience suggests that imple-
menters cannot be relied upon to make good security decisions, particularly when
called upon to generate random values. Examples demonstrating this include the
following.

– After conducting a large scale survey of RSA public keys, Lenstra et al.
[15] showed that a small but significant proportion offered no security what-
ever; specifically, 12720 of 4.7 million sampled RSA moduli had a single large
prime factor in common. Moreover, ‘of 6.4 million distinct RSA moduli, 71052
(1.1 %) occur more than once, some of them thousands of times’. This could
only occur because the RSA key generation software used by significant num-
bers of users makes very poor use of ‘randomness’.

– Bond et al. [16] have shown that many EMV (chip and PIN) terminals have
a very worrying defect. The EMV protocol requires the terminal to send an
‘unpredictable number’ to a payment card, which is then used to compute
a response to the terminal; the terminal uses this response to authenticate
the card, with the unpredictable number being a guarantee of the response’s
freshness. However, in practice, many terminals (including those from highly
reputable manufacturers) generate this unpredictable number in a very pre-
dictable way, i.e. very little genuine randomness is involved, meaning that
security vulnerabilities result.

– In fact, even when security specifications are apparently precise, implementers
cannot be relied upon to implement security correctly. As part of research into
the security of IPsec, Degabriele and Paterson [17] looked at six open source
IPsec implementations, including those for Linux, FreeBSD and OpenSolaris.

192 M.N. Kayuni et al.

Their surprising, and very worrying, finding was that not one of them correctly
implemented a security-critical part of the protocol. Further evidence of poor
use of security specifications has been provided by two separate recent studies
[18,19], which have shown that a wide range of serious vulnerabilities can be
found in SSL implementations.

This experience suggests that specifications of security protocols need to be
absolutely explicit about measures to be taken by implementers. Providing point-
ers to good advice is not enough.

As a result of the lack of clear specifications of randomness generation in all
the schemes we have examined, there is a danger that the unlinkability property
of addresses generated by these schemes will be compromised. We examine each
of the schemes in greater detail below, following the ordering given in Sect. 2.6
above.

3.2 Privacy Goals

Before analysing the effectiveness of the various schemes, it is important to
understand their privacy goals. The two methods proposed in RFC 4941 and
the Rafiee-Meinel scheme all aim to provide a degree of privacy protection both
within a subnet and between subnets. That is, they provide a means of generating
pseudonymous addresses for devices so that no two addresses can be linked either
when they are used on the same subnet or when used on different subnets. Of
course the degree of privacy obtained from these approaches will depend on a
range of other factors, including how long an address is used, but these are
outside the scope of the discussion here — that is we focus here purely on the
linkability of addresses.

The privacy goal of the other scheme we examine, namely the Gont scheme,
is rather different. It proposes use of a fixed address on each subnet, and the
only privacy goal is unlinkability of addresses used on different subnets.

In the remainder of this section we consider for each scheme the degree to
which its privacy goals are met, and in the next section we consider how the
various schemes can be improved to try to more effectively meet their goals.

3.3 RFC 4941 Method 1

The provision of privacy of this scheme clearly relies on the initial assignment
of a random value to H. In RFC 4941 it is simply stated that the the initial
history value should be hard to guess, and a reference to RFC 4086 is given. All
the randomised interface identifiers J are derived as a function of H and I (the
fixed interface identifier, e.g. derived from the MAC address).

If the initial value of H has full 64-bit entropy, i.e. it is a 64-bit truly random
value, and we assume that h is one-way (and, despite its shortcomings with
respect to collisions, MD5 is not known to be not one-way), then the scheme
appears secure, assuming that a search of size 263 is infeasible.

Generating Unlinkable IPv6 Addresses 193

However, if H has much less entropy and the method of generation is known
to an attacker, then the privacy properties of the scheme are at grave risk. To
see why, suppose that the initial value of H has k bits of entropy (k << 64)
and that an attacker knows how to search through the possible initial values of
H in 2k steps. Now suppose also that such an attacker is temporarily on the
same subnet as the target host, and is thus able to observe both the current
temporary interface identifier J and also the host’s MAC address (and hence
can compute I).

If we assume that the host changes addresses once a day, and that the device
was initialised less than a year ago, the attacker can perform a simple search
through all possible values of H, in each case generating all 365 possible tem-
porary addresses and comparing the generated values with J . Such a search has
complexity 365×2k hash operations (and comparisons). If, for example, we sup-
pose that k = 32, this means that an exhaustive search for the initial value of
H can be completed in a little over 240 operations. Once the initial value of H
is known then all future interface identifiers for this host are simple to compute,
i.e. the scheme has been broken.

This analysis makes clear that the address unlinkability property provided by
of the scheme is at significant risk if anything other than a very robust method
for initialising H is used. Unfortunately, as previous experience shows, this seems
to be a very strong and risky assumption.

3.4 RFC 4941 Method 2 and the Rafiee-Meinel Scheme

There is not much one can say about method 2 as described in RFC 4941, except
to reiterate the difficulties of generating random values. We instead turn our
attention to the Rafiee-Meinel scheme as an example of an attempt to provide
a specific implementation of method 2.

This approach requires the host to generate a 128-bit random value R. The
correct operation of the scheme depends to a considerable extent on the quality of
this value, but no guidance is provided. One is tempted to suspect that in practice
this value may be taken from a pseudorandom number function provided by the
development environment, which could mean that R has very little entropy.
That is, if two devices both attempt to generate a temporary address on the
same subnet at the same instant, then they may very well generate the same
value J . If replicated across large numbers of devices this could cause significant
duplicate address problems, which is precisely why RFC 4941 method 1 was
proposed. Whilst this address-collision issue is not privacy-threatening, anything
that threatens network connectivity is a major problem, which raises significant
doubts about this approach.

3.5 The Gont Scheme

This scheme, like method 1 of RFC 4941, requires the generation of an initial
random secret key K, but does not use randomness thereafter. Assuming the
robustness of the function f , the security of the scheme rests completely on the

194 M.N. Kayuni et al.

entropy in K. Gont [5] simply states that K shall not be known by the attacker,
and points to RFC 4086 [14] for advice on generating random values.

If K has close to 128 bits of entropy, then the scheme appears to be secure.
However, if K has much less entropy and the method of generation is known to an
attacker (including knowledge of N , the identifier for the network interface used
in this particular implementation), then the privacy properties of the scheme
are at serious risk. Demonstrating why is rather similar to the attack on RFC
4941 method 1 given above. Suppose the value of K has k bits of entropy (k <<
128) and that an attacker knows how to search through the possible values of
K in 2k steps. Now suppose also that such an attacker is temporarily on the
same subnet as the target host, and is thus able to observe both the current
temporary interface identifier J and also the host’s MAC address (and hence
can compute I).

Then, for each candidate value K∗ for K (from a set of size 2k) the attacker
computes V ∗ = f(P ||I||N ||0||K∗), which is possible since we assume that the
attacker knows P , I and N . The attacker then simply compares V ∗ against J ;
if they agree then there is a high probability that K = K∗, i.e. the attacker has
found K.

Thus the privacy property of this scheme, like RFC 4941 method 1, is at
significant risk if anything other than a very robust method for initialising K is
used. As discussed above, this appears to be a very risky assumption.

4 Practical Measures to Improve Randomness Generation

Our objective here is to consider ways in which the operational privacy of pre-
vious proposals could be improved, even when the host device has very limited
capabilities for generating random values. We start by considering the random-
ness generation problem and the nature of randomness sources that might be
available to an implementer. We then consider ways in which the privacy prop-
erties of RFC 4941 method 1 and the Gont scheme might be improved. We do
not consider the Rafiee-Meinel scheme further here because of the issues with
regard to recurring address collisions.

4.1 Generating Randomness

We start by observing that internationally standardised means of generating
random bits are given in ISO/IEC 18031 [20]. The models introduced there for
random bit generators (RBGs) are particularly relevant. The means used in RFC
4941 method 1 to generate the sequence of history values H falls into the class
of Pure Deterministic RBGs (Pure DRBGs). The scheme is a pure DRBG since
entropy is only used once, to generate the initial ‘seed value’ H, and the method
to generate subsequent values of H is purely deterministic. This contrasts with
what ISO/IEC 18031 calls a Hybrid DRBG, in which a source of entropy is also
used as part of the state update function. ISO/IEC 18031 ([20], 7.3) discusses
the security advantages of such hybrid DRBGs.

Generating Unlinkable IPv6 Addresses 195

Any DRBG, whether pure or hybrid, relies on a source of randomness to
initialise it, and possibly to provide further input during use. We therefore briefly
consider possible sources of randomness that are likely to be available to almost
any platform. It is important to note that combining a number of sources of
randomness, each yielding a modest number of bits of entropy, is just as effective
as using a single source of larger quantities of randomness.

– We start by considering the use of timestamps from a system clock, as incor-
porated into the scheme of Rafiee and Meinel discussed in Sect. 2.4. Such an
approach has the great advantage that almost any device will incorporate a
system clock, and hence this approach is universally applicable. Moreover, if
the clock has a resolution to the millisecond level, then, assuming that the
precise time of sampling is not available to an attacker, use of a clock would
appear to be able to yield between 10 and 20 bits of entropy.
However, there are issues with the use of a clock value as a source of entropy.
RFC 4086 [14] observes that ‘One version of an operating system running on
one set of hardware may actually provide, say, microsecond resolution in a
clock, while a different configuration of the same system may always provide
the same lower bits and only count in the upper bits at much lower resolution.
This means that successive reads of the clock may produce identical values
even if enough time has passed that the value should change based on the
nominal clock resolution’.

Note that this issue raises further doubts about the operation of the Rafiee-
Meinel scheme, i.e. in certain implementations address collisions may be more
likely than one might expect. Nonetheless, and despite the words of caution in
RFC 4086, a millisecond-accurate clock would appear to be a very valuable and
almost ubiquitous source of a modest number of bits of randomness (entropy).

– Memory state information, in particular the number of free (or used) bytes
in long-term storage or in RAM, would appear to be a possible source for a
few bits of randomness. Again, whilst the number of bits available from each
sampling may be modest, this would appear to be a reliable and ubiquitous
source of randomness.

– Timings and values of external events make up another source of randomness
that is discussed in RFC 4086. One example might be the timings of packet
arrivals. In circumstances where an ‘entropy-harvesting’ process is running
continuously in the background, e.g. as part of a hybrid DRBG, such an
approach could again be a valuable contributor of modest numbers of bits of
entropy.

– Modern mobile devices are equipped with a range of sensors, any of which
could be used as a source of randomness. Microphones and cameras will gen-
erate large volumes of data likely to be highly unpredictable. A GPS receiver
will similarly generate hard to predict data. Even a simple motion sensor, e.g.
as used to determine the screen orientation for a portable device, could gener-
ate useful material. Of course, some sensors are highly privacy-compromising
and hence may not be usable by the address generation software; however
others, such as motion sensors, are far less sensitive, and could be readily
available.

196 M.N. Kayuni et al.

– Of course, hardware-based non-deterministic sources of randomness, such as
those built into implementations of the Trusted Platform Module (TPM)
incorporated into large numbers of notebook and desktop PCs (see, for exam-
ple, Gallery [21]), would be ideal, and should clearly be employed where avail-
able. However, not all devices performing address autoconfiguration will have
access to such random sources, and the main purpose of this paper is to make
provision for devices without a good single source of randomness.

4.2 A Simple Improvement to RFC 4941 Method 1

As we have discussed above, problems potentially arise with RFC 4941 method 1
if the 64-bit ‘random value’ used to initialise the history value H contains insuffi-
cient entropy. Because a pure DRBG is used, if any instance of the history value
ever becomes known, then all future outputs can be determined. This is clearly
undesirable.

It should be clear that adoption of a hybrid DRBG, incorporating new ran-
domness whenever a new address is generated, would address this problem. Over
the long term entropy will ‘accumulate’, making future address prediction impos-
sible unless almost every address is tracked.

Such an approach is also simple to achieve. Whatever source of entropy is
available to generate the initial value of H can be re-used to provide new entropy
for each subsequent history value update. We therefore propose the following
very simple change to the generation of the value V in step 1, namely to put:

V = h(H||I||R)

where R is a ‘random’ value containing new entropy. This should not significantly
increase the complexity of using this method, but will ensure a sufficient level
of entropy is used to generate each new address, irrespective of the randomness
properties of H.

We further propose that R should be mandated to be constructed as the
concatenation of:

– a timestamp accurate to the nearest millisecond (guaranteeing 10–15 bits of
entropy)1;

– (optionally, but highly recommended) the number of bytes free in short-term
and/or long-term memory;

– (optionally) any other values which contain unpredictable information, notably
including the outputs of any device sensors available to the DRBG.

Further items could be added to the list if they are deemed to be likely to
be readily available.
1 One possible issue with using this as a source of randomness in this context is that
address updates may occur at fixed times, e.g. at the same time every day. If this is
the case then the number of bits of randomness obtained is likely to be significantly
reduced.

Generating Unlinkable IPv6 Addresses 197

4.3 Making the Gont Scheme More Robust

A second challenge is to find ways of making the Gont scheme more robust
against attacks arising from poor sources of randomness. This is more prob-
lematic, since one goal of the scheme is that the same ‘randomised’ interface
identifier will be generated whenever the device is attached to the same sub-
net. This makes it highly problematic to introduce new randomness during the
lifetime of the system.

The only practical solution would therefore appear to be to require the gath-
ering of entropy over a period before generating the key value K. This would
involve building an ‘entropy-harvesting’ hybrid DRBG, with a state of at least
128 bits. The initial state would be set using whatever sources of randomness
are available. The system would then be required to be cycled through a number
of iterations over a period of hours. On each iteration, additional randomness
should be included as part of the state update function. At the completion of
such a process, the state of the DRBG should contain a large number of bits of
entropy, preventing key-guessing attacks of the type discussed in Sect. 3.5.

A question that naturally arises is in this context is ‘How many iterations
would be required in practice’? Of course this depends on the number of bits
of entropy introduced in each iteration. As a result, one way of deciding on the
number of iterations would be to require the implementer to make an estimate for
the number of bits of entropy, b say, that are harvested during any one iteration.
To try to ensure that the DRBG 128-bit state is ‘fully randomised’, a minimum
of �128/b� entropy-harvesting iterations will be required.

During the initial period while the key K is being generated, the fixed IPv6
address provided by SLAAC could be used by the device. After all, the main
privacy threat arises from use of a single address over a long period of time and
across multiple networks. As a result, use of the fixed address for a day or two
is unlikely to pose a significant threat.

5 Summary and Conclusions

We have examined three proposed methods for ‘randomised’ IPv6 address auto-
configuration. Significant shortcomings have been identified in all three of these
methods. Two of them do not adequately protect user privacy if only weak
sources of randomness are available. The other approach appears likely to give
problems with address collisions, at least in some operational environments.

Modifications to two of the three methods have been proposed which are
designed to mitigate the threats arising from implementations of systems on
devices without hardware RBGs. These modifications have been deliberately
designed to involve only minor changes, and should not significantly increase
implementation complexity. It would therefore appear reasonable to explore ways
of modifying RFC 4941 and the Gont internet draft to incorporate the simple
modifications proposed.

Possible future work would include looking at real-life implementations of the
schemes we have examined in this paper. It would be particularly interesting to

198 M.N. Kayuni et al.

test the degree of entropy actually being deployed in a range of devices imple-
menting RFC 4941. In some cases, e.g. on smart phones or PCs, implementers
may choose to use the random number generation facilities provided by the oper-
ating system, in which case the robustness of the solution will very much depend
on the quality of the provided random numbers. However, the situation may be
very different for small, low-power devices. Finally, it would also appear to be
worth building prototype implementations of the proposed modified schemes, to
test their randomness properties in practice.

References

1. Narten, T., Draves, R., Krishnan, S.: Privacy extensions for stateless address auto-
configuration in IPv6. RFC 4941, Internet Engineering Task Force (2007)

2. Hinden, R., Deering, S.: IP version 6 addressing architecture. RFC 4291, Internet
Engineering Task Force (2006)

3. Thomson, S., Narten, T., Jinmei, T.: IPv6 stateless address autoconfiguration.
RFC 4862, Internet Engineering Task Force (2007)

4. Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M.: Dynamic host
configuration protocol for IPv6 (DHCPv6). RFC 3315, Internet Engineering Task
Force (2003)

5. Gont, F.: A method for generating semantically opaque interface identifiers with
IPv6 Stateless address autoconfiguration (SLAAC). Internet Engineering Task
Force, Internet draft-ietf-6man-stable-privacy-addresses-17 (2014)

6. Cooper, A., Gont, F., Thaler, D.: Privacy considerations for IPv6 address genera-
tion mechanisms. Internet Engineering Task Force, Internet draft-ietf-6man-ipv6-
address-generation-privacy-01 (2014)

7. Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321, Internet Engineering
Task Force (1992)

8. Broersma, R.: IPv6 everywhere: living with a fully IPv6-enabled environment.
Presentation at the Australian IPv6 Summit 2010, Melbourne, Australia (2010)

9. International Organization for Standardization Genève, Switzerland: ISO/IEC
10118–3, Information technology – Security techniques – Hash-functions – Part
3: Dedicated hash-functions. 3rd edn. (2004)

10. Rafiee, H., Meinel, C.: Privacy and security in IPv6 networks: challenges and pos-
sible solutions. In: Elci, A., Gaur, M.S., Orgun, M.A., Makarevich, O.B. (eds.) The
6th International Conference on Security of Information and Networks, SIN 2013,
26–28 November 2013, Aksaray, Turkey, pp. 218–224. ACM (2013)

11. AlSa’deh, A., Rafiee, H., Meinel, C.: IPv6 stateless address autoconfiguration: bal-
ancing between security, privacy and usability. In: Garcia-Alfaro, J., Cuppens, F.,
Cuppens-Boulahia, N., Miri, A., Tawbi, N. (eds.) FPS 2012. LNCS, vol. 7743, pp.
149–161. Springer, Heidelberg (2013)

12. Rafiee, H., Meinel, C.: SSAS: a simple secure addressing scheme for IPv6 autocon-
figuration. In: Castella-Roca, J., Domingo-Ferrer, J., Garcia-Alfaro, J., Ghorbani,
A.A., Jensen, C.D., Manjon, J.A., Onut, I.V., Stakhanova, N., Torra, V., Zhang, J.
(eds.) Eleventh Annual International Conference on Privacy, Security and Trust,
PST 2013, 10–12 July 2013, Tarragona, Catalonia, Spain, pp. 275–282. IEEE (2013)

13. Aura, T.: Cryptographically generated addresses (CGA). RFC 3972, Internet Engi-
neering Task Force (2005)

Generating Unlinkable IPv6 Addresses 199

14. Eastlake, D., Schiller, J., Crocker, S.: Randomness requirements for security. RFC
4086, Internet Engineering Task Force (2005)

15. Lenstra, A.K., Hughes, J.P., Augier, M., Bos, J.W., Kleinjung, T., Wachter, C.:
Ron was wrong, Whit is right. Cryptology ePrint Archive: Report 2012/62 (2012)

16. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip and
Skim: cloning EMV cards with the pre-play attack (2012). arXiv:1209.2531 [cs.CY]

17. Degabriele, J.P., Paterson, K.G.: Attacking the IPsec standards in encryption-
only configurations. In: Proceedings of the 2007 IEEE Symposium on Security and
Privacy (S&P 2007), 20–23 May 2007, Oakland, California, USA, pp. 335–349.
IEEE Computer Society Press, Los Alamitos (2007)

18. Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., Freisleben, B.:
Why Eve and Mallory love Android: an analysis of Android SSL (in)security. In:
Yu, T., Danezis, G., Gligor, V.D., (eds.) ACM Conference on Computer and Com-
munications Security, CCS 2012, 16–18 October 2012, Raleigh, NC, USA, pp. 50–
61. ACM (2012)

19. Georgiev, M., Iyengar, S., Jana, S., Anubhai, R., Boneh, D., Shmatikov, V.: The
most dangerous code in the world: validating SSL certificates in non-browser soft-
ware. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer
and Communications Security, CCS 2012, 16–18 October 2012, Raleigh, NC, USA,
pp. 38–49. ACM (2012)

20. International Organization for Standardization Genève, Switzerland: ISO/IEC
18031:2011, Information technology – Security techniques – Encryption algorithms
– Random bit generation. 2nd edn. (2011)

21. Gallery, E.: An overview of trusted computing technology. In: Mitchell, C.J. (ed.)
Trusted Computing, pp. 29–114. IEE Press, London (2005)

http://arxiv.org/abs/1209.2531

Trust and Formal Analysis

A Practical Trust Framework: Assurance Levels
Repackaged Through Analysis of Business

Scenarios and Related Risks

Masatoshi Hokino1, Yuri Fujiki1, Sakura Onda1, Takeaki Kaneko1,
Natsuhiko Sakimura2, and Hiroyuki Sato3(B)

1 JIPDEC, Tokyo, Japan
{hokino-masatoshi,fujiki-yuri,onda-sakura,kaneko-takeaki}@jipdec.or.jp

2 Nomura Research Institute, Tokyo, Japan
n-sakimura@nri.co.jp

3 The University of Tokyo, Tokyo, Japan
schuko@satolab.itc.u-tokyo.ac.jp

Abstract. In cyberspace, standards for the expression of the trustwor-
thiness of identities have been developed by various parties. This trust-
worthiness is often referred to as entity authentication assurance, and
its degree is often called LoA (levels of assurance, or assurance levels).
There are two prominent LoA standards: NIST SP800-63-2 and ISO/IEC
29115:2013. LoAs are designed to express different levels of assurance.
Multiple viewpoints are set in assessment, and related assessment cri-
teria for each viewpoint are packaged into one LoA. For deployment of
LoAs in enterprise business scenarios, the choice of assessment criteria
in a given LoA must match the specific business requirements. We per-
form a field survey on business scenarios in which trust in identities is a
major problem. In the survey, we focus on two key factors of assessment:
identity proofing and authentication process. In addition, we observe the
overall fit and gap in business scenarios. Results indicate that raising the
assurance of the authentication process is effective for raising the over-
all assurance level. Based on the investigations performed, we repackage
light weight identity proofing and LoA 2 equivalent credential manage-
ment and usage into a new assurance level, LoA 1+, for the “right” cost
benefit balance.

1 Introduction

The importance of trusted identities in cyberspace has become widely recognized
in recent years. Standards for the expression of the trustworthiness of identities
have been developed by various parties. Many government led activities exist,
e.g., FICAM TFPAP [6] and NSTIC [14] of the U.S.A., GOV.UK Verify of U.K.
[7], etc. While some of these activities are for government use, others do tar-
get both efficient e-governments and more efficient commercial sector activities
promoting the formation of new industries.

In the case of FICAM TFPAP [6], major objectives include the establishment
of well-defined identity and credential management at the identity provider (IdP)
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 203–217, 2015.
DOI: 10.1007/978-3-319-27152-1 11

204 M. Hokino et al.

which is proportionate to the risk of compromise of the business that consumes
the resulting identities, referred to as the relying party (RP). The identity that is
conveyed from an IdP to an RP is called “federated identity” and a group of such
IdPs and RPs are called a “federation.” To establish mutual trust among the
participants, technical and operational standard should be followed. The trust
establishment also requires enforcement functions for violators. The combination
of these “tools and rules” is referred to as a “trust framework.”

A trust framework enables its stakeholders to trust claims made from the
other stakeholders under condition of information asymmetries. For example,
when an IdP provides a set of attributes related to an entity to an RP, in general,
it has no means of evaluating the trustworthiness of the information that it
receives. Under such circumstances, the transaction will typically not occur and
the market breaks down, as shown in the Market of Lemons introduced by [1].

Establishing a measurement unit for the quality of identities along with a
kind of operational framework that assures the truthfulness of the providers
would be a solution. The trust framework can be applied for this purpose.

In order for a trust framework to be practical, it must be applicable to a
variety of business scenarios. To express the required assurance level that is
proportionate to the risk of the RP’s business, the concept of LoAs (level of
assurance, or assurance level) have been introduced. An RP requires a level of
assurance as the minimum requirement under which it can accept identities from
an IdP. Furthermore, an IdP will provide such identities if it can. Standardizing
this expression in a small number of variance enables the trust framework to
scale up the participation, which is an important requirement for cyberspace
applications.

There are many standards that define the aspects of LoAs. The combination
of OMB M-04-04 [16] and NIST SP800-63-2 [3] is a prime example. It defines four
levels of risks and corresponding LoAs. However, the adoption of these standards
in the private sector is not widespread, possibly because the requirements are
focused towards the U.S. government entities and its direct adoption is difficult
for private sector entities especially those outside U.S.

ISO/IEC 29115 [9] generalizes the older version of NIST SP800-63-2 that
originally targets the US government usage. It reflects the demand of extending
trust frameworks to business scenarios. Unlike NIST SP800-63-2, it does not
mandate the use of government issued photo IDs nor trusts such IDs. It is more
risk based and process oriented. Only photo IDs produced in a documented
process deemed to produce a sufficient confidence in the document are trusted.
While this certainly expands the scope of applicability, the adoption is still not
widespread in the private sector. One of the reasons appears to be that for most
business, LoA 2 and above are not cost effective.

In this paper, we begin our examination from the fact that both standards
set multiple viewpoints in assessment, and package assessment criteria for each
viewpoint into one LoA. The choice of assessment criteria in a given LoA must
be examined to discover the match of business requirements.

First, we examine business use cases to determine possible reasons for low
adoption of the standards. Next, we undertake a field survey on business scenar-

A Practical Trust Framework: Assurance Levels Repackaged 205

ios in which trust in identities represents a major problem. The survey focuses
on two key factors of assessment, identity proofing and authentication process,
and observe the fit and gap for those business scenarios.

From the investigation, we repackage light weight identity proofing and LoA
2 equivalent credential management and usage into a new assurance level, LoA
1+ for the “right” cost and benefit balance.

As the result, we show that the process of field survey, investigation and
repackaging is a subject of engineering.

The rest of this paper is organized as follows: Sect. 2 surveys related work
and standardization. In Sect. 3, we analyze the assessment criteria of existing
standards. In Sect. 4, we explain our field survey of business scenarios. In Sect. 5,
we discuss LoA 1+, and the repackaging process based on the result of Sect. 4.
Section 6 concludes this paper.

2 Related Work on Trust Framework

The majority of identity trust frameworks have two facets: technical require-
ments that define LoAs and operational rules that ensures the adherence to
the technical requirements. This combination is often referred to as “tools and
rules.”

Technical requirements are further decomposed into a credential issuance
process that includes identity proofing and an authentication process. Identity
proofing and related issues (especially privacy) is discussed in [19]. In [13], the
assurance of authentication is described.

Until now, there have been a number of technical proposals related to trust
frameworks and assurance levels. In [29], assurance of attributes has been pro-
posed in addition to assurance of authentication. [30] gives a discussion of digital
identities in general. Today, assurance levels are considered a topic of engineer-
ing which includes trust elevation [15,18] that aims at collecting evidence of low
assurance in order to give higher assurance. Furthermore, [17] proposes a fine
tuning of assurance levels. However, such proposals need to be applied to enter-
prise business scenarios to obtain feedback for standardization. In this regard,
standards for operations of practical trust frameworks are of high significance.

The U.S. has a long history of defining LoAs. The combination of OMB
M04-04 [16] and NIST SP800-63-2 [3] sets risk and control criteria for building a
trust of governmental agencies. From their inception, multiple levels are incorpo-
rated to cover a wide spectrum of trust ranging from id/password authentication
to PKI.

Japan has also created the guidelines for risk analysis, digital signing and
authentication for on-line applications and processing [4].

ISO/IEC 29115 [9] and its ITU-T version ITU-T X.1254 [10] are a framework
for managing assurance levels of entity authentication. As in NIST SP800-63-
2, four assurance levels and criteria are defined. In all of these, a final level of
assurance is defined as the lowest of the process.

206 M. Hokino et al.

[2] discusses identity assurance in another scheme that includes the audit
process.

Deployment of this kind scheme for the healthcare sector is discussed in [5].

3 Assessment Criteria of Assurance Levels

There are two significant standards for the assessment of assurance levels: NIST
SP800-63-2 and ISO/IEC 29115.

This paper focuses on identity proofing, credential issuance, and the authen-
tication process in the set of assessment criteria.

3.1 Credential Issuance and Identity Proofing Process
Requirements

In both standards [3,9], the identity proofing process is defined as a prerequisites
for the issuance of credentials. Here, concrete threats are analyzed, and controls
corresponding to each threat are considered.

At the credential management phase, there is some difference in the levels of
protection as shown in Table 1.

Table 1. Controls on credential management

Level Control at issuance Secure storage

1 – access control

2 mechanism to protect the credential from
being handed to a wrong person

not to be stored in
clear text

3 stricter mechanism to protect the credential
from being handed to a wrong person

mechanism to protect
the credential

As most modern systems provide a secure mechanism to protect credentials,
there is little difference in the evaluation at this point. In practice, the most
difference is derived from the identity proofing process. NIST SP800-63-2 and
ISO/IEC 29115 define similar criteria. Table 2 shows ISO/IEC 29115 identity
proofing objectives and controls.

Nonetheless, there is only a slight difference between NIST SP800-63-2 and
ISO/IEC 29115. As NIST SP800-63-2 is created to meet the requirements of the
U.S. government, where with most government related uses, there is a require-
ment to map the identity at the front door of the service to the identity stored
in the backend database, using such identifying attributes such as name, date of
birth, gender, and address as the keys. Because mis-matching of the keys would
cause risks, in higher levels, showing “government issued” identity documents
is demanded, They are more likely than others to include those “keys” that
correctly map to the governmental backend database. Furthermore, the U.S.

A Practical Trust Framework: Assurance Levels Repackaged 207

Table 2. Requirements of identity proofing in ISO/IEC 29115 (Summary)

Level Objectives Controls

1 Self-claimed or self-asserted Self-claimed or self-asserted

2 Identity is unique within context and the
entity to which the identity pertains
exists objectively

Proof of identity through use of
identity information from an
authoritative source

3 Identity is unique within context, entity
to which the identity pertains exists
objectively, identity is verified, and
identity is used in other contexts

Proof of identity through use of
identity information from an
authoritative source + identity
information verification

government typically knows the quality of the government issued identity docu-
ments. In Table 2, the “authoritative source” is replaced with “government” in
NIST SP800-63-2.

On the other hand, ISO/IEC 29115 aims at being useful to the private sec-
tor internationally. In private sector use cases, it does not often matter whether
the business exactly knows the customer’s real name and date of birth or other
attributes. Instead, it is more important to know whether that person has actually
completed payment, which is the decisive factor for the entitlement of that specific
service. As a result, ISO/IEC 29115 introduces the concept of “policy compliant
identity document.” The attributes to be proofed and verified depend on the busi-
ness context. The business should document them according to the policy.

Another aspect of ISO/IEC 29115 is its tendency to be more process oriented.
In an international context, there are government issued identity documents that
are sometimes produced by low-quality processes. Such identity documents are
not trustworthy even if they have been issued by an agency of government. This
is another reason why ISO/IEC 29115 is asking for “policy compliant” identity
documents that have adequately addressed the threats.

3.2 Authentication Process Requirements

In the standards [3,9], there are specified requirements for the authentication
process. There are a number of proposed and deployed authentication mecha-
nisms and processes which include passwords, one-time passwords, biometrics,
and public key authentication. Their risks have been analyzed, and as a result,
the strength of each authentication method can be objectively discussed.

NIST SP800-63-2 not only sets the threat that each LoAs should mitigate,
but it maps specific type of credentials to be used for each LoAs.

ISO/IEC 29115 takes a slightly different approach. Instead of assigning spe-
cific types of credentials to each level, it only presents the technical requirements.
ISO/IEC 29115 does not specify the credential type to accommodate the combi-
nation of various techniques. Furthermore, there is a specified control selection
in the credential usage. Reflecting that any number of combinations of those
controls can be used to mitigate the specific risk, it does not specify what has
to be done at each level, but leaves those decisions for implementation.

208 M. Hokino et al.

3.3 Requirements for Certification

To establish a trust framework, only defining the levels of assurance is not suf-
ficient. A trust framework must define a mechanism that provides a sufficient
level of confidence of the members’ adherence to the rules.

The combination of FICAM TFPAP [6] and certified trust frameworks such
as Kantara Initiative Identity Assurance Program [12] are prime examples of
such works. This combination lays out the audit requirements for each level of
assurance. A third party audit is required for any levels including and above
LoA 2.

Similarly, InCommon Federation [8] provides a program for certifying levels,
while federations in Europe and Japan provide a limited program of certification.

4 Analysis of Business Scenarios in Terms of Assurance
Levels

As NIST SP800-63-2 is designed for use by federal agencies, its applicability to
the private sectors is limited in nature. The design of ISO/IEC 29115 is more
generalized. However, its usefulness to the private sector has yet to be thoroughly
investigated. Especially because they have a structure of packaging requirements
of different viewpoints, this structure should be examined to determine whether
the combination of requirements in the standards is appropriate, or covers a
wide range of businesses. To identify the fit and gap, we have conducted a field
survey in Japan to identity applicable business scenarios for trust frameworks.

4.1 Design Objectives of Field Survey

The objectives of this field survey is to identify the structure of assurance levels
in terms of cost and effectiveness. In previous sections, we have presented that
the structure of assurance levels is determined by the identity proofing and
authentication processes together with the objectivity of the assessment.

Therefore, in order to have an appropriate coverage of business sectors. the
survey has collected a wide range of business scenarios that are consumer oriented
and where identity proofing is either legally required or required through industry
self-regulation.

The data collected for each business type is listed below:

Market size this reflects the influence that the business sector has on the
economy. This data is basically from [26].

Business practice (on-line/off-line/both) off-line business practice is also
included because it is a future on-line business candidate, and the importance
is not affected by the business practices.

In terms of assurance levels, we have collected the information below:

A Practical Trust Framework: Assurance Levels Repackaged 209

Authentication method/process criteria defined in [6] are used. In the crite-
ria, the method of identity proofing is classified as non-technical, and shows
the most conspicuous difference between levels. The criteria of identity proof-
ing for levels 1 to 3 listed in Table 2 are used.

Regulations some processes are enforced by law. For example, in Japan, when
opening a bank account, the identity proofing of level 2 is required by law.
However, even if there are no regulations, some industry associations define
self-regulation of identity proofing to achieve safer transactions and to pro-
tect the reputation of the business. in this survey, both processes enforced by
law and processes self-regulated by industry associations have been collected.

As regulations are closely related to the quality (objectivity) control of the
assessment, we also discuss this problem in Sect. 4.3.

4.2 Classification of Business Scenarios

Combining both evaluation criteria in terms of business type and assurance
levels, the classification of services surveyed is presented in Table 3.

In Table 3, the first column expresses the levels of identity proofing. Services
classified as 1-{1, 2, 3, 4} require level 1 identity proofing. Similarly, services
classified as 2, and 3 require level 2, and level 3, respectively.

For services that require level 1 identity proofing, we have found that there
are different regulation stipulations which are given a separate class listing from
1-1 through 1-4.

In examining the table, some significant categories begin to emerge:

1. The first category is the case where identity proofing is entirely self asserted.
In this category, customers are requested to fill their information by them-
selves. There is no stipulation on identity proofing. This category is marked
as 1-1. In the case of a hotel stay, the customer is required by the Inns and
Hotels Act to inform the hotel one’s true identity. Failure to do so may result
in detention of less than 30 days or a fine of less than JPY 10,000.
Note that this category contains scenarios whose business size is very large.

2. In the second category, some kind of identity proofing is required either by law
or self-regulation, it is not strictly enforced in practice. Here, a wide range of
identity proofing processes are adopted. Examples include checking photo ID
in any form. This may include the IDs that are not issued by the government
(e.g. student ID issued by a university), and inspecting the validity of a credit
card. For business processes that only require age verification, an identity
document is requested only in cases where the age is under suspicion. In these
cases, the identity proofing method is often specified by the self-regulatory
bodies, not by law. Penalties for being non compliant seems to be relatively
minor. (marked from 1-2 through 1-4).

Example 1 (horse racing†). In Japan, by law, minors under the age of 20 are
not allowed to bid on horse races. However, the method of identity proofing is
not stipulated. The promoters perform the identity proofing by inspecting the

210 M. Hokino et al.

Table 3. Classification of businesses by types of identity proofing regulation

Class Services on-line/off- Size (M JPY) Regulation (Publication of

line self-regulation on identity

proofing by industrial

association �)

1-1 Hotel booking both 4,045,618 Customers are required to

fill out the name and

address form

(self-assert)

On-line shopping on-line [24] 12,800,000 practice not stipulation �
On-line games on-line [23] 577,100 �

1-2 Gov.controlled gambling† on-line 1,834,110 �
Sport based lottery on-line a110,797 �
Shopping (tobacco, liquor) on-line 1,741,853 minors are not allowed

Late show (cinema, karaoke) offline b319,329 (practice not stipulated)

adult (cinemas, magazines) on-line N/A

1-3 Rental (video, autos, etc.)‡ both 1,867,196

Certification offline N/A identity proofing required

Shopping (tobacco) offline 150,539 (practice by self-regulation)

Marriage matching on-line 18,167 �
1-4 On-line dating on-line N/A identity and age proofing

required

Pawnshop offline N/A (practice stipulated)

2 Cell phones§ both c6,775,517

Bank account [11] 15,881,400

Life insurance [21] 41,981,800

Non-life insurance [20] 9,667,900 identity proofing required

Credit card offline [22] 57,069,076 (enforced by law)

Real estate brokerage 9,824,601 (practice stipulated)

Precious metal trading 444,552

Secondhand articles dealer on-line 303,844

Private office N/A

Hotel booking (for foreigners) d4,045,618

3 Digital certificate issuance on-line 227,993

Unless specified, from [26].
(a) Official publication of the Sports Promotion Lottery “Toto.”
(b) total market size (not restricted to late show)
(c) Calculated by reference to [25]
(d) total market size (not restricted to foreigners)

credit card presented. A significant penalty exists for mis-identification. Promot-
ers knowingly selling the race tickets to a minor will be subject to a fine of less
than JPY 500,000 (Horse Racing Law1, Article 34).

Example 2 (DVD rental‡). In Japan, there is no legal requirement for iden-
tity proofing in the DVD rental business. However, some business sectors volun-
tarily define regulations in which identity proofing should usually be performed
by using photo IDs issued by public sectors.
1 Horse Racing Law (in Japanese) http://law.e-gov.go.jp/htmldata/S23/S23HO158.

html.

http://law.e-gov.go.jp/htmldata/S23/S23HO158.html
http://law.e-gov.go.jp/htmldata/S23/S23HO158.html

A Practical Trust Framework: Assurance Levels Repackaged 211

Table 4. Mapping identity proofing requirements of types of businesses to FICAM
and ISO LoAs

Class Evidences/procedures used by the business FICAM LoA ISO LoA

1-1 Self-Claimed 1 1

1-2 Documented procedure on Authoritative Sourcesa 2

1-3 Inspection of Photo ID (non-government ID allowed)

1-4 Inspection of publicly issued documents

2 Government IssuedbPhoto ID inspection 2

3 Government IssuedaPhoto ID validation 3 3
(a) In case of age confirmation, IDs may not be required where determination is
obvious,
(b) Depending on the business, some government issued photo IDs are not accepted.

3. Additional categories require the identity proofing methods corresponding to
levels 2 and level 3 (marked as 2 and 3, respectively in Table 3). Most of these
identity proofing processes are required by Japanese law.

Example 3 (cell phones§). To purchase mobile phones in Japan, a customer
is required to show a government issued photo ID for identity proofing, or at least
two pieces of evidence from public services for the proofing of one’s name and
address. Furthermore, the customer’s address is verified by sending something
to that address using the postal service. This is a typical process of identity
proofing for assurance level 2.

By analyzing identity proofing processes of typical business scenarios, we can
conclude that the criteria defined for government use [6] or the ISO standard [9]
could also be used in many business scenarios.

Table 4 maps the identity proofing level of each category to the FICAM
TFPAP and ISO/IEC 29115 LoA.

Note that the classification in Table 4 is based on the assurance levels of
FICAM, which is represented by the matching of the major number of class and
the FICAM LoAs.

However, these findings highlight differences to ISO LoAs in level 1 and 2.
Actually, ISO/IEC 29115 expands the types of evidence of identity to accommo-
date private sector reality. On the other hand, however, it does not necessarily
accept government issued identity documents. The difference lies in the impor-
tance of the process adopted during the creation of the document. This explains
the fact that some businesses in Japan do not accept certain kinds of identity
documents issued by some government agencies because they consider the pos-
sibilities of fraudulent issuance of those identity documents unacceptably high.
This would not happen for government agencies, because any document pro-
duced by another governmental body is deemed accurate under Japanese law.

What is important, however, is that the identity proofing methods adopted
by each class are covered by the ones specified by FICAM or ISO/IEC, even if
we find some differences between the two.

In the remainder of this paper, we present our proposal to adopt the identity
proofing methods of ISO/IEC 29115 to design a new class of assurance levels.

212 M. Hokino et al.

4.3 Self-Regulation and Objectivity

Table 3 includes the survey of the self-regulations. The objectivity of a claim
is a common issue of self-regulations. Using independent audit or assessment is
counted as a solution, which has still a problem on cost.

In Table 3, we see that some of them make effort in defining and publishing
their own regulation as a form of their industrial associations (marked with �),
which raises assurance of adherence to the regulation.

4.4 Effectiveness of High Level Authentication Processes

From the survey results of Sect. 4.1, use cases fall under ISO/IEC 29115 LoA2
and above are clustered as an important economic sector. However, we should not
dismiss the cluster of businesses in Class 1-1 which correspond to ISO/IEC 29115
LoA 1. The mere fact that the market size of on-line shopping entities of Class
1-1 far exceeds that of shopping at the LoA 2 and 3 indicates its importance.

On-line games are an example of one such service and their prevalence mer-
its analysis. The second survey is a case study on the effectiveness of raising
assurance of an authentication processes.

On-line games are usually considered privacy sensitive. Our survey has found
that the identity used there are usually self asserted. However, attacks that use
previously collected username and password pairs from elsewhere, referred to as
a list-based attack, saw a sharp increase in 2011. Statistics showed that some
content providers in Japan received over 200,000 attacks per month.

A press release from the National Police Agency (NPA) on March 4, 2010
states:

Notes on the prevention of illegitimate access. Access controllers should
improve their security (e.g. improving user authentication through introduc-
tion of One-Time-Password)

Actions to be taken by the NPA. NPA should influence the businesses (e.g.,
On-line game providers and Internet banks) by requesting them to improve
the user authentication method.

Responding to the request by the NPA, the Japan On-line Games Association
(JOGA) started operating a shared identity platform and helped each on-line
game provider to adopt a two factor authentication process. This platform helped
greatly to reduce the introduction and operation costs for each provider. In
addition, if the provider uses the platform, any economic damage incurred from
account compromise will be covered. Today, this platform is widely used by many
game providers in Japan.

From a game user’s standpoint, using the same authenticator across providers
has reduced the difficulty of provider-wise authentication. Moreover, the fact that
there is a reimbursement for account compromise seems to have made the accep-
tance rate high, which offsets any additional actions required by the platform.

The “On-line Game Security Guideline” published by JOGA on August 15,
2012 [28] contains the following points:

A Practical Trust Framework: Assurance Levels Repackaged 213

Fig. 1. Account compromises in on-line game and community sites

– Information Sharing guidelines when a security incident occurs,
– Guidelines for dealing with list-based account cracking,
– Security Solution Guidelines for One-Time Password etc., and
– Guidelines on coordination with security vendors and related associations.

As shown in Fig. 1, the introduction of the guidelines, in conjunction with
the higher assurance authentication measures drastically led to a decrease in the
number of incidents and countered the increasing trend of account compromise,
this showing marked improvement. The data of Fig. 1 is taken from the series of
annual reports published by the National Police Agency from 2010 to 2015 [27].
The reports published in March each year cover incidents for the previous year.
In 2013, a 56 % decrease compared to 2012 is observed, and in 2014, a 78 %
decrease is observed.

On-line games are classified as Class 1-1. This indicates the significance and
usefulness of combining higher level authentication measures with a lower iden-
tity proofing level. This practice is distinguished from the business scenarios
that use lower security authentication measures with the same level of identity
proofing. Thus, even when low level identity proofing is adopted, high assurance
authentication measures can be used effectively to raise security. In addition
these results prove that there are some authentication measures which support
high assurance levels and are also cost-effective.

However, in neither SP800-63 [3] nor ISO/IEC 29115 [9], the difference
between “self-claimed identity proofing + low security authenticator” and “self-
claimed identity proofing + higher security authenticator,” cannot be distin-
guished despite the latter being useful for risk management.

Thus, we have identified a new class of assurance levels: low assurance in iden-
tity proofing and high assurance in authentication process. We conclude that the
results from these surveys call for a new category of level of assurance: LoA 1+.

214 M. Hokino et al.

Table 5. LoA table

LoA Level of identity proofing
(as of ISO/IEC 29115)

Level of authentication
(as of ISO/IEC 29115)

1 level 1 level 1

1+ level 1 level 2

2 level 2 level 2

3 level 3 level 3

5 Level of Assurance 1+

As discussed in the previous section, the results of our survey suggest the creation
of a new assurance level is useful for important business sectors. However, as a
natural request, the criteria for assessment must be simply organized, and that
a rise in security level should be easily understood. Therefore, we propose the
creation of a new assurance level by re-packaging components of assessment
criteria. To further justify this, we consider identity proofing, authentication
method/process, and objectivity assurance.

In the previous section, we have shown that in level 1 (self-assertion) in iden-
tity proofing, a higher security authentication method can be a factor for raising
security. Here, our proposal departs form the idea of taking the “minimum level”
of the processes as the resulting LoA, and we define LoA 1+ as the one requir-
ing higher authentication process, while keeping the level of identity proofing
the same as LoA 1. The result of this re-packaging is shown in Table 5.

Note that there is no combination of level 2 and above for identity proofing
with a low level authentication process (specifically, level 1). There is no point
of using those combinations because if the level of authentication is low, the
resulting identity may be compromised even if higher level identity proofing is
adopted.

The following examples examine the kind of business scenarios that can be
entitled to LoA 1+ in order to achieve their advanced security.

Statistics from JOGA [28] justify the effectiveness of adopting LoA 1+. Thus,
we can conclude that LoA 1+ meets the requirements of JOGA, and verifies its
effectiveness in preventing fraudulent use in on-line shopping and on-line game
sites. Moreover, these businesses can claim higher security by acquiring a new
LoA certification which is stronger than LoA 1.

Table 3 shows that on-line shopping and games are classified as 1-1 (lowest),
yet have a significantly large market size. By acquiring LoA 1+, these businesses
can claim that their security is higher than 1-1.

Certification Requirement. For operating LoAs in a given trust framework,
it is important that some assurance is given related to the policy compliance.
As seen in Sect. 4.3, service providers pay attention to acquiring trust in their
business. Obtaining public certification and announcements of their policies and
procedures are usually used for this purpose.

A Practical Trust Framework: Assurance Levels Repackaged 215

In trust frameworks obeying FICAM TFPAP, such assurance is given by
attestation through an independent audit performed by designated assessors.
The separation is drawn between LoA 1 and LoA 2, in that, an independent
audit is required by FICAM TFPAP to obtain LoA 2 certification. While an
independent audit gives objectivity to one’s claim, however, it also incurs a
higher operation cost.

However with LoA 1, because the identity proofing is based on self-assertion,
there is not much to audit and an objective external/independent audit is not
required. However, there is inherent limitation in objectivity.

In the case of LoA 1+, the identity proofing situation is the same as in LoA
1, but relying parties may want to have some assurance as to the trustworthiness
of the authentication measure used there.

The control that we propose in this paper is to adopt a reputation model to
build trust. More specifically, we propose to have the operating body publicly
announce the operating policies, procedures and its adherence to them. The
procedures themselves will be the target of public evaluation. If an operating
body does not operate as declared, it will face a reputation risk as well as other
legal consequences. Furthermore, there is made some effort such as endorsement
by related industrial associations that can be considered as a kind of cost effective
social system for assurance raising.

As discussed in the last section of the survey, this reputation model is widely
adopted and has proved effective to some extent. We conclude that this model
is enough for an operating body to keep itself compliant with the policies and
procedures declared in advance. Table 6 summarizes this discussion.

Table 6. Certification requirement for each LoA

LoA Requirement Grounds

1 No requirement –

1+ No requirement reputation risk

≥2 External/independent audit objectivity

6 Concluding Remarks

In this paper, we have first analyzed the assessment criteria of existing stan-
dards of FICAM and ISO/IEC 29115, examining the key factors of identity
proofing and authentication process. Next, conducting a fit and gap survey of
various factors in business scenarios, we have listed typical instances with their
characteristics and market size together with the adopted identity proofing and
authentication process. In the analysis, we have discussed and proposed the cre-
ation of a new class of assurance level, which we refer to as LoA 1+ formed by
re-packaging components of existing standards to serve an important business
type.

216 M. Hokino et al.

Results from our survey have shown that conventional LoAs are useful in
many situations. However, our data indicates that conventional LoAs have over-
looked an important category of use case: the combination of self-claimed iden-
tity and high level authenticator. While the market sizes of the sectors that
rely on self-claimed identity are huge, they face significant risk as shown in the
on-line games case. Data from that example has proved that it is possible to
significantly reduce the risk by just upgrading the authentication process with-
out upgrading the identity proofing process. Observing these results, we have
proposed a repackaging of existing LoA framework and created LoA 1+ that
combines self-claimed identity and high level authentication.

It is also important to address the information asymmetry. While an identity
provider may claim that it has used a high level authenticator to authenticate
the user, it may well not be the case. A third party audit would be certainly
effective to prove the claim, but this is a heavy weight process. Instead, we have
proposed to rely on transparency and reputation risk for compliance of LoA 1+.

This level of assurance seems to fulfill trust and security requirements both
from the service providers and from the users as evident in the on-line games
use cases. Other industries are likely to benefit from following a similar strategy
in adopting the LoA 1+ entity authentication assurance level.

References

1. Akerlof, G.A.: The market for “lemons”: quality uncertainty and the market mech-
anism. Q. J. Econ. 84(3), 488–500 (1970)

2. Baldwin, A., Mont, M.C., Beres, Y., Shiu, S.: On Identity assurance in the presence
of federated identity management systems. In: Proceedings of the International
ACM Workshop on Digital Identity Management 2007, pp. 27–35 (2007)

3. Burr, W.E., Dodson, D.F., Newton, E.M., Perlner, R.A., Polk, W.T., Gupta, S.,
Nabbus, E.A.: Electronic Authentication Guidance. NIST SP 800–63-2 (2013)

4. Cabinet of Japan: Guideline for Risk Analysis, Digital Signing, and Authentication
for On-line Applications and Processing (2010) (in Japanese). http://www.kantei.
go.jp/jp/singi/it2/guide/guide line/guideline100831.pdf

5. Coats, B., Acharya, S.: The forecast for electronic health record access: partly
cloudy. In: Proceedings of the IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pp. 937–942 (2013)

6. Federal Identity, Credential, and Access Management Trust Framework Solu-
tions: Trust Framework Provider Adoption Process (TFPAP) For All Levels of
Assurance (2014). http://www.idmanagement.gov/sites/default/files/documents/
FICAM TFS TFPAP 0.pdf

7. GOV.UK: Introducing GOV.UK Verify (2015). https://www.gov.uk/government/
publications/introducing-govuk-verify/introducing-govuk-verify

8. InCommon: The inCommon Assurance Program. http://www.incommon.org/
assurance/

9. ISO: ISO/IEC 29115:2013, Entity authentication assurance framework (2013)
10. ITU-T: Recommendation X.1254, Entity authentication assurance framework

(2012)
11. Japanese Bankers Association: FY2013 Financial Statements of All Banks (2014)

http://www.kantei.go.jp/jp/singi/it2/guide/guide_line/guideline100831.pdf
http://www.kantei.go.jp/jp/singi/it2/guide/guide_line/guideline100831.pdf
http://www.idmanagement.gov/sites/default/files/documents/FICAM_TFS_TFPAP_0.pdf
http://www.idmanagement.gov/sites/default/files/documents/FICAM_TFS_TFPAP_0.pdf
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
http://www.incommon.org/assurance/
http://www.incommon.org/assurance/

A Practical Trust Framework: Assurance Levels Repackaged 217

12. Kantara: Identity Assurance. https://kantarainitiative.org/idassurance/
13. Noor, A.: Identity protection factor (IPF). In: Proceedings of the IDtrust 2008, pp.

8–18 (2008)
14. NSTIC: National Strategy for Trusted Identities in Cyberspace. http://www.nist.

gov/nstic/
15. OASIS: Electronic Identity Credential Trust Elevation Framework V

1.0 (2014). http://docs.oasis-open.org/trust-el/trust-el-framework/v1.0/
trust-el-framework-v1.0.pdf

16. Office of Management and Budget: M-04-04: E-Authentication Guidance for Fed-
eral Agencies (2003)

17. Sato, H.: N±ε: reflecting local risk assessment in LoA. In: Meersman, R., Dillon,
T., Herrero, P. (eds.) OTM 2009, Part II. LNCS, vol. 5871, pp. 833–847. Springer,
Heidelberg (2009)

18. Sato, H.: A formal model of LoA elevation in online trust. ASE Sci. J. 1(4), 166–178
(2012)

19. Slomovic, A.: Privacy issues in identity verification. IEEE Secur. Priv. 12, 71–73
(2014)

20. The General Insurance Association of Japan: Income Statement (2015) (in
Japanese)

21. The Life Insurance Association of Japan: Life Insurance Fact Book 2014 (2014) (in
Japanese)

22. The Ministry of Economy, Trade and Industry: 2013 Survey of Selected Service
Industries (2014) (in Japanese)

23. The Ministry of Economy, Trade and Industry: Digital Content White Paper 2014
(2014) (in Japanese)

24. The Ministry of Economy, Trade and Industry: Market Research on Electronic
Commerce 2015 (2015) (in Japanese). http://www.meti.go.jp/press/2015/05/
20150529001/20150529001-3.pdf

25. The Ministry of Internal Affairs and Communications: White Paper on Information
and Communications in Japan (2014) (in Japanese)

26. The Ministry of Internal Affairs and Communications and the Ministry of Econ-
omy, Trade and Industry: 2012 Economic Census for Business Activity (2012) (in
Japanese)

27. The National Police Agency (2010–2015) (in Japanese).
https://www.npa.go.jp/cyber/statics/h2{2-6},/pdf041.pdf

28. Third Networks Co.: JOGA Security System for On-line Games and Smartphone
Games (2011) (in Japanese). http://www.jssec.org/dl/111117 4 amemiya.pdf

29. Thomas, I., Meinel, C.: An attribute assurance framework to define and match trust
in identity attributes. In: Proceedings of the 2011 IEEE International Conference
on Web Services, pp. 580–587 (2011)

30. Yong, J., Bertino, E.: Digital identity enrolment and assurance support for
VeryIDX. In: Proceedings of the 14th International Conference on Computer Sup-
ported Cooperative Work in Design, pp. 734–739 (2010)

https://kantarainitiative.org/idassurance/
http://www.nist.gov/nstic/
http://www.nist.gov/nstic/
http://docs.oasis-open.org/trust-el/trust-el-framework/v1.0/trust-el-framework-v1.0.pdf
http://docs.oasis-open.org/trust-el/trust-el-framework/v1.0/trust-el-framework-v1.0.pdf
http://www.meti.go.jp/press/2015/05/20150529001/20150529001-3.pdf
http://www.meti.go.jp/press/2015/05/20150529001/20150529001-3.pdf
http://www.jssec.org/dl/111117_4_amemiya.pdf

First Results of a Formal Analysis
of the Network Time Security Specification

Kristof Teichel1(B), Dieter Sibold1, and Stefan Milius2

1 Physikalisch-Technische Bundesanstalt, Bundesallee 100,
38116 Braunschweig, Germany

{kristof.teichel,dieter.sibold}@ptb.de
2 Chair for Theoretical Computer Science, Friedrich-Alexander Universität

Erlangen-Nürnberg, Martensstr. 3, 91058 Erlangen, Germany
stefan.milius@fau.de

Abstract. This paper presents a first formal analysis of parts of a draft
version of the Network Time Security specification. It presents the proto-
col model on which we based our analysis, discusses the decision for using
the model checker ProVerif and describes how it is applied to analyze
the protocol model. The analysis uncovers two possible attacks on the
protocol. We present those attacks and show measures that can be taken
in order to mitigate them and that have meanwhile been incorporated
in the current draft specification.

Keywords: Time synchronization · Security protocols · Formal verifi-
cation · Model checking · ProVerif

1 Introduction

In networked infrastructures, time synchronization protocols are often used to
synchronize clocks. Many technical infrastructures require reliable time synchro-
nization. Therefore, it is essential to be able to secure time synchronization
from malicious attacks. One approach in this area is the Network Time Security
(NTS) specification [29], which aims to provide sufficiently generic mechanisms
to secure two of the most important time synchronization protocols: the Network
Time Protocol (NTP) [21] and the Precision Time Protocol (PTP) [14]. Since
the NTS specification is still under development, it is beneficial to apply some
form of formal protocol analysis. This might serve to find weaknesses which still
exist, as well as to establish which of its components can already be considered
secure.

It has been asserted that the difficulty of the formal analysis of a security
protocol increases with its dependence on timing [3,4,12]. This is even more
the case for NTS, which not only depends on timing, but it additionally distin-
guishes itself from other timing-dependent security protocols because the under-
lying secured time synchronization protocol actively influences the clocks of its
participants. A thorough analysis has to take into account the impact of timing
on the security properties of the specification.
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 218–245, 2015.
DOI: 10.1007/978-3-319-27152-1 12

First Results of a Formal Analysis of the Network Time Security 219

In this paper, we limit the scope and present the first steps in the analysis
of NTS, namely an evaluation of parts of the specification with timing aspects
abstracted away. For the analysis, we apply the model checker ProVerif [6] to
analyze version 03 of the NTS specification. This unveils two possible attacks.
The corresponding vulnerabilities have been removed in the next version of the
NTS specification.

The paper is organized as follows. Section 2 provides an overview of the role
of timing in the context of secure time synchronization. Furthermore it discusses
criteria for different stages of analysis of secure time synchronization specifica-
tions, explaining our chosen scope, and it illuminates the choice of the model
checker ProVerif as the formal analysis tool for the particular context of this
paper. In Sect. 3, we introduce the notation and modeling assumptions that
are required for the rest of the paper. Section 4 provides some background on
the NTS specification, and presents the protocol steps that are modeled for
our analysis. Section 5 describes the resulting model for ProVerif. The obtained
results (attacks and countermeasures) are discussed in Sect. 6, and Sect. 7 con-
cludes the paper.

2 Security for Packet-Based Time Synchronization

2.1 Time Synchronization Methods

Figure 1 displays a two-way time transfer message exchange that a client (Alice)
and a server (Bob) can use to achieve clock synchronization. At time t1, Alice
initiates a time request message (a) to Bob, where it arrives, after a delay of ξδ,
at time t2. At time t3, Bob sends his time response (b) back to Alice, where it
arrives after a delay of (1− ξ)δ, at time t4. The timestamps T1, . . . , T4 are added
to the exchanged messages by Alice and Bob respectively.1 Upon arrival of the
time response, Alice can calculate her time offset Δ with respect to Bob and the
network round-trip delay δ to

Δ =
(T1 + T4) − (T2 + T3)

2
+

(

ξ − 1
2

)

δ, 0 < ξ < 1 , (1)

δ = (T4 − T1) − (T3 − T2) , (2)

where δ denotes the round-trip travel time and the asymmetry parameter ξ
quantifies the degree of asymmetry in the travel time between the time request
and time response messages [16]. Without specific knowledge about the network
infrastructure components on the path between Alice and Bob the asymmetry
parameter is a priori unknown. Hence, in most cases symmetric message delays
are assumed, i. e. ξ = 0.5. In this case, the second term in the right-hand side
of (1) vanishes and Alice can calculate the time offset Δ. Since the ratio between
the message delays is important for the time offset calculation, the cryptographic
means employed by any security specification must not unduly influence the
asymmetry parameter ξ [22].
1 Timestamp Ti corresponds to the reading of the respective system clock at time ti.

220 K. Teichel et al.

Alice Bob

(a)

t1

t2

t3

(1 − ξ)δ

ξδ

(b)

t4

Fig. 1. This is a schematic depiction of a two-way time transfer message exchange that
is used for unicast time synchronization between two participants. In the depiction, δ
denotes the round-trip time of the complete message exchange and ξ, with 0 < ξ < 1,
quantifies its asymmetry.

There is also a necessity of considering attacks on the timeliness of the
exchanged messages, most importantly delay attacks (also called “pulse delay
attacks”) [11,22]. This kind of attack is characterized by the fact that an adver-
sary can delay the delivery of a message, by first preventing it from being deliv-
ered and later replaying it. Such an attack degrades the performance of the time
synchronization, it is very simple to perform, and it is not preventable by purely
cryptographic means since the content of the exchanged messages does not have
to be modified by the adversary [22].

2.2 Criteria for Different Stages of Analysis

We first discuss the criteria underlying the choice of methods and tools for our
analysis. It is highly desirable that a full evaluation of a secure time synchroniza-
tion protocol such as NTS-secured NTP take into account clocks and time as well
as properties of cryptographic security protocols. Not only does the information
transmitted by the time synchronization protocol concern time data, but the
protocol’s purpose is to achieve time synchronization. Consequently, the amount
of time that it takes for messages to be transmitted is important. Furthermore,
time and clock information is relevant for the TESLA protocol [25], which is
employed in the NTS specification for broadcast/multicast messages to ensure
integrity protection. As a consequence, there is complex interaction between the
synchronization operations that the time synchronization protocol performs and
the security measures that it uses. All this indicates that the methods and tools
used for the analysis of a specification like NTS should ideally be able to con-
sider the notion of time and clocks. Also, the model for time and clocks should
be as detailed as possible, without compromising the automated analysis of the
model.

First Results of a Formal Analysis of the Network Time Security 221

However, for parts of the NTS specification, a clean distinction between
timing and security-related properties is possible. Specifically, the majority of
goals for the unicast mode of NTS, including server authentication, secure key
exchange, and integrity protection of time synchronization messages, can be
evaluated without considering time or clocks as a part of the model. An analysis
using this self-contained scope can already be regarded as a substantial step in
the analysis of the whole protocol.

The analysis in this paper was performed at an early stage of the specification
process of NTS [29, version 03]. At such a stage, an important criterion is that
the methods and tools used for the analysis can find existing weaknesses quickly
and point them out clearly. In this case, the specification efforts can benefit from
the results of a formal analysis, if the analysis unveils security vulnerabilities
in the specification which subsequently can be communicated and considered for
the next redrafting of the specification.

These considerations lead us to present an analysis of the unicast mode of
NTS, with all of its timing and clock aspects abstracted away, matching the
above-mentioned self-contained scope. Since this scope does not require consid-
eration of timing or clocks, the ability to do so can be neglected as a require-
ment in the choice of methods and tools. We are aware that with this scope,
the detection of delay attacks is not possible. The more intricate interactions
between cryptographic security and timing would have to be included for a full
evaluation of NTS. For such a full evaluation, one could also include an analysis
of the broadcast mode of NTS. Further research in that direction is in progress
and will be published at a later time [19].

2.3 Choice of Tool for the Analysis

Several approaches are available to perform a formal analysis of a security pro-
tocol, the most established being theorem proving and model checking [1]. We
first applied Paulson’s Inductive Approach [24] for our analysis of NTS. This
approach is based on theorem proving and works with the theorem proving tool
Isabelle [23]. Using it was motivated, inter alia, by developments which permit
physical properties to be considered, especially timing and clocks [4]. Being based
on theorem proving, the approach has the drawback that failure to construct a
security proof is inconclusive. The reason might either be that the proof is too
difficult to find, although the investigated specification is secure, or it might
be that the specification is simply not secure. Although counterexample finders
exist for Isabelle [7], we were unable to obtain any attack traces for our analy-
sis with the help of such tools. This potential ambiguity is not suitable if the
analysis shall support the ongoing drafting process of the considered security
specification. Moreover, we found that the pace at which this approach delivers
results is slow, at least for non-experts in theorem proving.

The model checking approach offers faster and easier ways to identify vul-
nerabilities in protocol specifications. With regard to the scope discussed in
Subsect. 2.2, we base our formal analysis in this paper on model checking by
applying the designated protocol verifer ProVerif [6], which applies a variant of

222 K. Teichel et al.

the applied π-calculus with support of types [2,27] as its input language. Note
that ProVerif does not support consideration of time and clocks for modeling:
although there are time and clock related extensions of the π-calculus [28], none
of them are applicable within ProVerif. Note also that it is impossible to simply
reproduce the timing-related extension of the Inductive Approach for use with
ProVerif. Its lack of support for time and clock consideration would constitute
a serious disadvantage of using ProVerif for a full evaluation of NTS. However,
for the scope as described in Sect. 2.2 this is negligible, especially since ProVerif
fulfills the other criterion very well: it is tailored to be a verification tool for
security protocols and offers help in the detection of attack scenarios. Since our
results could readily be obtained with ProVerif, we did not investigate the use
of other protocol verifiers such as Scyther [8] and Tamarin [18].

3 Basic Assumptions and Protocol Notation

In this section we establish assumptions to simplify the considered model and
introduce the essential notation.

Assumption 1. There is exactly one trusted entity, called Trent. Every agent
knows Trent’s identity, as well as his public key KT . Every honest agent trusts
Trent completely. Certificates (see the list of cryptographic operators below)
signed by Trent are assumed to authenticate agents beyond any doubt. In short
form, Trent is denoted as T .

Remark 2. For the model, it is a helpful simplification to leave out any inter-
mediate certificates. Therefore, certificate chains that certify an agent X and
have Trent as their root authority are seen as equivalent to a certificate for X
signed directly by Trent.

Assumption 3. There is exactly one attacker, called Mallory.2 She complies
with the Dolev-Yao attacker model [9], which means that she “controls the net-
work.” Explicitly, this means that the attacker has the following capabilities:

– She overhears and intercepts any message sent on the network. In particu-
lar, this also means that she can choose to prevent any message from being
delivered in its original form.

– She can send messages to any agent on the network, claiming to possess any
identity she chooses.

– She can synthesize messages by:
• inventing new values (it is, however, out of her power to guess secret values

like keys or nonces),
• assembling multiple values known to her into a tuple value,

2 The assumption that there is only one attacker is made for simplification. The
assumed situation is equivalent to a situation where several attackers are cooper-
ating, or to a situation where one attacker is being helped by one or more dishonest
agents, see Reference [32].

First Results of a Formal Analysis of the Network Time Security 223

• disassembling any tuple value that she knows into its single component
values,

• applying any operator to any value known to her, possibly using any keys,
as long as they are also in her knowledge.

In short form, Mallory is denoted as M .

Remark 4. Note that the Dolev-Yao model assumes cryptographic operations
to be unbreakable. Thus, although the attacker can claim any chosen identity
on a network level, it is still possible to verify authorship of a message by cryp-
tographic means, through appropriate use of secrets.

Notation 5. For convenience and readability, we often use the following “box
notation”. Concatenation in box notation is displayed by writing the concate-
nated messages below each other in one box, separated by a dashed line; for

example, the concatenation of values x1 and x2 is expressed as
x1

x2
. The box nota-

tion displays use of cryptographic operators as follows. The expression Op
〈

x
evaluates to Op(x), where Op can be any one of the cryptographic operators
presented below, and where x is usually a concatenated term.

Notation 6. We now provide some notation on cryptographic operators as used
in the further presentation of the protocol. Note that a term inside square brack-
ets [] generally denotes a key.

– The expression Enc[K](m) stands for the ciphertext that results from using
asymmetric cryptography to encrypt the message m with the key K.

– Following the notion of asymmetric cryptography, it is assumed that for
every key K, there exists an inverse key K−1, such that both of the equa-
tions Enc[K−1]

(

Enc[K](m)
)

= m and Enc[K]
(

Enc[K−1](m)
)

= m are
satisfied.

– The expression Sign[K](m) evaluates to Sign[K](m) = Enc[K−1](m), which
describes the signature of the message m created in such a way that it can be
validated with the key K.

– The expression CertX evaluates to CertX = Sign[KT]
〈 X

KX
, which represents

the certificate for X’s public key KX , issued by Trent.
– It is assumed that all participants have agreed to use a fixed cryptographic

hash function h.3 For a given key value K and message m, the expres-
sion HMAC[K](m) stands for the keyed-hash message authentication code
computed over m, with K as key and h as the cryptographic hash function,
as defined in RFC 2104 [15].

3 Note that the NTS specification includes negotiation of hash functions as part of the
protocol. However, as stated under Assumption 3, all cryptography is assumed to be
unbreakable. Therefore, algorithm negotiation has been ignored for our analysis. It
might be interesting to include these steps in future analysis, to look for downgrade
attacks.

224 K. Teichel et al.

– The expression SeedX represents an agent X’s seed, a random secret value
that is known only to X.

– The expression CookX(v) evaluates to CookX(v) = HMAC[SeedX](v), which
represents the cookie that agent X generates, using its own secret seed as well
as the given input value v.

4 The Protocol Steps Under Analysis

4.1 The Network Time Security Project

The Network Time Security (NTS) specification aims at secure time synchroniza-
tion over networks like the Internet. It is motivated by the fact that neither of
the predominant time synchronization protocols, in particular the Network Time
Protocol (NTP) [21] and the Precision Time Protocol (PTP) [14] currently pro-
vide adequate security mechanisms (see, e.g., Reference [26] for an analysis of the
NTP’s most current security measure, the Autokey protocol [20]). It has the goal of
being usable to secure at least those two protocols [29]. Currently the specification
is in the standardization process in the Internet Engineering Task Force (IETF).

Time synchronization in NTP unicast mode is secured via a secret value
(called “cookie”) which is unique for each client-server association. The nature
of this cookie is such that the server can always deterministically re-generate it
from an input value given by the client, while the client simply memorizes it. It is
used as a key for generating a keyed-hash message authentication code (MAC) for
each time synchronization response message going from the server to the client.
Under the requirement that the cookie has been exchanged securely (its secrecy
and authenticity need to be guaranteed), this procedure shall give authenticity
and integrity guarantees for the time synchronization response messages. Having
cookie and MAC generation based on keyed-hash mechanisms shall keep these
steps fast enough to not significantly influence the quality of time synchroniza-
tion [29].

4.2 Overview of the Protocol Sequence

We now describe the protocol messages and the protocol sequence. We present
the protocol steps as specified in the NTS draft version 03, which constitutes
the basis for the verification described in this paper. We only present those
messages that are relevant for the scope of our analysis here. Furthermore, as
discussed in Sect. 2.2, we abstract away any timing and clock aspects of the
message exchanges that are presented.

The certification message exchange serves to supply the client Alice with
the server Bob’s certificate. The message exchange proceeds according to the
protocol steps depicted in Table 1.

After the message exchange, Alice performs two checks. First, she verifies
the validity of CertB . Second, she verifies the validity of the included signature.
If all of this is successful, Alice trusts any subsequent message if it contains a
signature that she is able to verify as originating from Bob.

First Results of a Formal Analysis of the Network Time Security 225

Table 1. (Certification) These are the two message formats used for transmitting
the certificate for server Bob (B) to client Alice (A) according to protocol version 0.3.0.

Name Direction Contents

client cert A → B : A

server cert B → A :
Sign[KB](A)

CertB

The cookie establishment message exchange establishes the shared secret
called the cookie, which is calculated by the server (deterministically and based
on data supplied by the client) and then securely transmitted back to the client.
The message exchange is performed according to the steps visible in Table 2.

After the message exchange, Alice decrypts the received response, and then
performs two checks on the encrypted data. First, she validates that the nonce
included in the response is the same one that she included in her request. Second,
she confirms the validity of the signature included in the response. If all of this is
successful, Alice trusts any subsequent message if it contains a MAC calculated
with the cookie she received via this message exchange.

The purpose of the unicast time synchronization message exchange is
to perform the actual time synchronization. Security is based on the secret
cookie, which must be exchanged prior to this message exchange (via a cookie
establishment exchange). The time synchronization message exchange follows the
steps listed in Table 3, where SA and SB denote the time synchronization data
transmitted by the client and the server, respectively. Note that with respect to
the unicast time synchronization procedure described in Sect. 2 (see Fig. 1), SA

includes a timestamp of t1, whereas SB includes timestamps of t1, t2 and t3.
After the message exchange, Alice performs two checks on the response. First,

she validates that the nonce included in the response is the same one that she
included in her request. Second, she confirms the validity of the MAC included
in the response. If all of this is sucessful, Alice uses the received time data SB

for time synchronization.

5 Performing the Analysis

In order to use ProVerif for analysis of the NTS protocol, we model its par-
ticipant roles (client and server) as processes in ProVerif’s input language. The
resulting specification is fed into ProVerif, which is able to analyze the protocol
and prove reachability properties, correspondence assertions, as well as observa-
tional equivalence [6]. Note that having ProVerif check any single goal and, if
applicable, generate an attack trace took merely a few seconds on a standard
laptop computer.4

4 The computer was running a 64 bit version of Windows 7 on an Intel i5 dual core
at 2.6 GHz, with 8GB of RAM.

226 K. Teichel et al.

Table 2. (Cookie Exchange) These are the two message formats used for the
cookie exchange between client Alice (A) and server Bob (B) according to protocol
version 0.3.0.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A : Enc[KA]

N

CookB(h(KA))

Sign[KB]
N

CookB(h(KA))

Table 3. (Unicast Time Synchronization) These are the two message formats used
for synchronizing the clock of client Alice (A) with that of server Bob (B) according
to protocol version 0.3.0.

Name Direction Contents

time request A → B :

SA

N

h(KA)

time response B → A :

SB

N

HMAC[CookB(h(KA))]
SB

N

ProVerif allows the user to specify so-called “queries”, which can be used
to specify the required protocol goals (Reference [6, Sect. 2] provides a short
introduction to how ProVerif interprets queries). When a goal has been specified
in this way, ProVerif can look for a protocol state which violates the condition
corresponding to that goal. It can then return one of three possible results:

– There is no state which violates the goal condition.
– A state could be constructed which violates the given goal condition. In this

case, ProVerif shows a trace of events leading to that state. The violation of
the given condition might represent a viable attack on the protocol but it
might also uncover an error in the model underlying the ProVerif code.

– ProVerif cannot prove that the goal is correct but it cannot construct a state
violating the goal condition either.

First Results of a Formal Analysis of the Network Time Security 227

The last case can occur because ProVerif works on an over-approximation of the
state space of the input specification. Thus, ProVerif may find a state that vio-
lates the goal condition but that is not part of the state space of the input specifi-
cation. Over-approximation is unavoidable since the decision problem underlying
ProVerif is known to be undecidable [10] (however, it is of course semi-decidable).
See Reference [6, Sect. 3.3.1] for some more details on the different possible results
and how to interpret them, in particular for the third of the above cases.

We now provide an overview of how client and server are modeled in ProVerif.
The ProVerif code relevant to the model of the originally analyzed version can
be seen in AppendixA). Alternatively, the full code for use with ProVerif can
be downloaded under https://www8.cs.fau.de/staff/milius/ProVerif-NTS.rar. The
client is modeled via two ProVerif processes:

– The inner client process performs, exactly once, the message exchange of
the time synchronization phase.

– The outer client process runs through the appropriate message exchanges
for certificate exchange and cookie establishment exchange in chronological
order. When this is done, it ultimately starts a bulk of “infinitely many”
iterations5 of the inner client process running in parallel.

Accurately modeling the server is more complex than modeling the client.
This is a consequence of the fact that the server is required to be stateless (except
for the global server seed which is client independent). Nevertheless, the server
must be able to reply at any time to any of the specified protocol messages,
for an arbitrary number of clients. In the model, this is achieved by having one
process type for each possible message exchange and running all of these process
types in parallel, each with “infinitely many” iterations.

Consequently, the server is modeled via the following ProVerif Processes:

– There are three inner server processes, which perform the respective mes-
sage exchanges for certification, cookie exchange, and time synchronization.

– The outer server process just starts “infinitely many” iterations of each of
the inner processes, all running in parallel.

6 Results of the First Analysis

In the course of the analysis, two attacks were discovered by checking the protocol
goals, listed below as Goals 7–9, with ProVerif. The first discovery is an attack
detected by ProVerif mostly due to imprecision in the model underlying the
code version c030ut, which was used at the time. This version does not support
enough types to distinguish between a single hostname, on the one hand, and a
complex structure of arbitrarily many arbitrary data types, on the other hand.
The second (and more practically relevant) discovery is a Man-in-the-Middle
attack. It exploits the fact that in NTS, as specified in reference [29, version 03],
5 Having “infinitely many” iterations is what is modeled for the analysis. In practice,

this will obviously be a finite number.

https://www8.cs.fau.de/staff/milius/ProVerif-NTS.rar

228 K. Teichel et al.

a client Alice is given no indication as to whether a cookie has been generated
based on her own public key or someone else’s.

The goals for this analysis were derived during development of the specifi-
cation of the protocol, an unusual situation which is due to the fact that the
analysis was performed by people who were also authors of the specification. The
analysis with ProVerif also involved checks for protocol sanity goals, e. g. that
it is possible for the protocol to finish successfully, i. e. with the client accepting
some time synchronization data. It additionally involved a weak authenticity
goal for the cookie exchange (a weaker version of Goal 9 listed below), but this
was only helpful to the extent that it pointed toward the improtance of Goal 8.
The ProVerif source code for the queries associated with all of the mentioned
goals can be inspected in AppendixA.8. We do not discuss the sanity goals or the
weak authenticity goal in more detail, as they do not contribute essential results
for the analysis. Instead, we now present the specific security goals directly rel-
evant for this analysis. The first of these goals is the one that represents the full
extent of positive security affirmation that our analysis can provide. Both of the
attacks that were found lead to a violation of this goal.

Goal 7 (Time Synchronization Authenticity). If Alice accepts the data
from a time response message as authentic from Bob, then Bob has indeed sent
a time response message with the same time data and the same nonce, secured
with the correct cookie for the association between Alice and Bob.

We now present two intermediary security goals which aid with getting more
specific information about the nature of the attacks. Both of these goals are
necessary preconditions for Goal 7, since the integrity of time synchronization
messages depends on the cookie being shared securely between Alice and Bob.

Goal 8 (Cookie Secrecy). If Alice accepts a cookie C from a server cook
message as being legitimate, then C is unknown to Mallory.

Goal 9 (Cookie Authenticity). If Alice accepts a cookie C from a server cook
message as being legitimate for her association with Bob, then Bob has indeed
sent a server cook message in which he has transmitted C and which he has
intended for Alice.

We now describe the first of the two attacks that were discovered. This attack
violates even the very specific Goal 9, which gives a hint about the underlying
weakness: this is not an attack where a legitimate cookie is spied upon, but where
a completely new cookie is invented and Alice is deceived into accepting it.

Attack 10. ProVerif discovered an event trace which violated Goal 9 as well as
Goal 8. From that trace, the following attack scenario could be derived:

– Mallory intercepts a client cook message CC1 containing a nonce N .
– She memorizes both values and prevents the message from being delivered in

its original form.
– She invents some cookie value X and concatenates it with N .

First Results of a Formal Analysis of the Network Time Security 229

– She sends a client cert message to the server Bob, which instead of her
name M (see the appropriate message diagram for client cert in Sect. 4) con-

tains the concatenated value
N
X

.

– The server sends the appropriate server cert message back to Mallory. It con-
tains two values: Bob’s certificate, which is irrelevant, and additionally a sig-

nature Sign[KB]
〈

N

X
, which Mallory memorizes.

– Mallory then employs concatenation of values known to her as well as encryp-
tion under Alice’s public key to create a server cook message SC3 which reads

Enc[KA]

〈

N

X

Sign[KB]
〈

N

X

.

– She sends SC3 back to Alice, who decrypts it, validates the nonce and sig-
nature, and finally accepts the cookie X as the legitimate cookie sent to her
from Bob.

As mentioned before, this attack works only if Bob does not recognize when
a client cert message contains the concatenation of a nonce and a cookie-length
value instead of a hostname. Under this assumption, anyone can get a signature
from an arbitrary server for an arbitrary message by abusing the certification
message exchange. However, this is unlikely in any practical implementation.

Countermeasure 11. The introduction of proper identifiers for the different
message components completely defeats this attack. Successful ProVerif verifi-
cation, performed on a more strongly typed model, supports this, as at least
Goal 9 has been shown to hold there.6

In the following we describe the second of the two revealed attacks.

Attack 12. ProVerif discovered an event trace in which Goal 8 (Cookie Secrecy)
was violated. From this trace, the following attack scenario could be deduced:

– Mallory intercepts a client cook message CC1 containing a nonce N and
Alice’s public key KA.

– She memorizes both values and prevents the message from being delivered in
its original form.

– She creates a new client cook message CC2 by concatenating the received
nonce N with her own public key KM .

– She sends this newly created client cook message CC2 to the server Bob.
6 The reason why Goals 7 and 8 do not hold for this model is that Countermeasure 11

only defends against Attack 10, not against Attack 12.

230 K. Teichel et al.

– Bob sends back the server cook message SC1, which has the format

Enc[KM]

〈

N

CookB(h(KM))

Sign[KB]
〈

N

CookB(h(KM))

,

which can hence be decrypted by Mallory and which contains a cookie and
a valid signature confirming that Bob has created and sent this cookie as an
answer to the request with nonce N .

– Mallory intercepts SC1 and may prevent it from being delivered in its original
form. She decrypts it and then instantly re-encrypts it with Alice’s public
key KA, resulting in a new server cook message SC2.

– She sends SC2 to Alice, who decrypts it, validates the nonce and signature,
and finally accepts the cookie CookB(KM) as the legitimate cookie sent to
her from Bob.

As mentioned above, the given attack is only viable due to the following two
reasons:

1. On receipt of a server cook message, it is impossible for anyone to know
which public key was used as input value for the generation of the given
cookie (because of the one-way property of HMAC and the secrecy of the
server seed).

2. On receipt of such a message, it is also impossible for anyone to know for
whom the message was originally encrypted (since decrypting and then re-
encrypting a message leaves no trace).

The reasons above are interdependent, because an honest server like Bob
will always encrypt a server cook message with exactly the same public key
upon which the generation of the cookie included in that message is based.
We provide two possible countermeasures against Attack 12, both supported by
ProVerif validations.

Countermeasure 13. The simple addition of the input value used for the
cookie generation into the set of values covered by the signature prevents the
described attack. This measure was taken for model version 0.3.1 of the proto-
col. The resulting message format for server cook can be seen in Table 4. With
the ProVerif model updated accordingly, Goal 8 and even Goal 7 can be verified
to hold.

Countermeasure 14. An alternate countermeasure is to switch the order of
encrypting and signing for the server cook message to encrypting first, then
signing. This measure was taken for model version 0.3.2 of the protocol. The
resulting message format for server cook can be seen in Table 5. Goal 8 and also
Goal 7 can then be verified to hold for an accordingly updated model of the
protocol.

First Results of a Formal Analysis of the Network Time Security 231

Table 4. These are the two updated message formats used for the cookie exchange
between client Alice (A) and server Bob (B) according to protocol version 0.3.1.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A : Enc[KA]

N

CookB(h(KA))

Sign[KB]

N

CookB(h(KA))

KA

Table 5. These are the two message formats used for the cookie exchange between
client Alice (A) and server Bob (B) according to protocol version 0.3.2.

Name Direction Contents

client cook A → B :
N

KA

server cook B → A :

Enc[KA]
N

CookB(h(KA))

Sign[KB] Enc[KA]
N

CookB(h(KA))

Countermeasure 14 has some small advantages over Countermeasure 13: it is
simpler to include in a specification, and it also has the benefit that an invalid
signature can be detected at a slightly lower computational cost, because no
decryption operation is necessary in order to obtain the signature value.

7 Conclusion

We have used ProVerif for the analysis of an early version of the NTS specifica-
tion. We were able to discover considerable weaknesses in draft version 03 of the
specification. Those discoveries were considered in the further development NTS
and by version 04, the specification was updated [29, Version 04, Sect. 6.3.2]
with a measure conforming to Countermeasure 13, which mitigates Attack 12.

232 K. Teichel et al.

In version 05, the usage of the Cryptographic Message Syntax (CMS) [13] was
introduced [29, Version 05, Sect. 6] and a new separate document was created
for details on how to use this [30, Version 00]. The usage of the CMS conforms
to Countermeasure 11 and provides sufficient data type information to help pre-
vent Attack 10. Moreover, the specification has adapted changes in the cookie
exchange that match what is described under Countermeasure 14 [29, Version 05,
Sect. 6.2.2], [30, Version 00, Sects. 2 and 4.2.2.2]. Overall, these changes pre-
vent both of the attacks presented in Sect. 6, and therefore represent important
improvements.

The discoveries are quite common (and, for experts, perhaps obvious) attacks.
An important lesson learned in the course of this analysis is: when designing a
new security protocol, it is sensible to check its basic structure with a formal
tool, even if this tool may not be sophisticated enough to analyze the finer
details. A rough formal analysis may already yield valuable results, as even
very basic weaknesses may be overlooked when just considering a protocol on
paper. Therefore, it can be useful for the analysis to use abstraction in order
to dismiss a complex aspect (like timing in our case), as long as the remaining
aspects enable a self-contained examination. Furthermore, a question that one
might deduce from the analysis is: to what extent could attacks like Attack 10,
which are preventable through the use of well defined data types, be relevant
in practice? Do protocol developers need to sufficiently consider the question of
data types, or is this a matter that should be left to the implementers? It is also
noteworthy that we skipped over a deeper evaluation of different model checkers
in the course of this analysis, which leaves room for further research comparing
the relative merits of different protocol verifiers for the analysis of protocols and
draft standards.

For a complete analysis of the full NTS specification, timing and clocks need
to be considered (see Sect. 2). Therefore, further work is necessary to properly
consider the timing aspect in interaction with security. To this end, ProVerif is
not the suitable tool, because it is unable to consider timing and clocks. Model-
checkers other than ProVerif (specifically UPPAAL [5] and TAuth [17]) are being
considered, but it is yet unclear if they indeed support the considerations of all
necessary aspects for a thorough analysis of secure time synchronization tech-
niques. In particular, finding the right approach and tool is important to analyze
the security aspects of broadcast time synchronization with NTS, where TESLA
is used for authenticity and integrity protection. Using TESLA to secure time
synchronization is especially tricky, since TESLA requires rough time synchro-
nization not only initially, but continuously. Hence, successfully disturbing time
synchronization just by a small amount might endanger the security of the whole
protocol.

We have started a detailed analysis [19] focusing on an intricate attack using
delay techniques to compromise time synchronization when it is secured with
TESLA-like mechanisms. A draft version of this work is available under https://

www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf.
An automated (or semi-automated) formal analysis of the full NTS spec-

ification would be beneficial because it could be re-used for other time

https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf

First Results of a Formal Analysis of the Network Time Security 233

synchronization protocols which employ TESLA-like mechanisms, for example
the TinySeRSync protocol [31] for wireless sensor networks.

A ProVerif Source Code

In this appendix, we present some of the relevant ProVerif source code used for
the preparation of this paper. There have been different code versions involved
in the analysis:

– Code version c030ut: It models protocol version 0.3.0 but has no dedicated
type for hostnames.

– Code version c030: It models protocol version 0.3.0 and does have a dedi-
cated hostname type.

– Code version c031: It models protocol version 0.3.1.
– Code version c032: It models protocol version 0.3.2.

All of the code below is taken from code version c030, which formed the basis
of the analysis. Presenting the other versions in full would take up a lot of space,
whereas presenting only the differences is difficult. This is because although
the changes between the different code versions are minor, they still include
numerous lines that are spread far apart. Some comment lines and structuring
have been left out for the presentation.

For any reader who is interested in access to the complete code (all code
versions, ready for use with ProVerif), it is available under https://www8.cs.fau.

de/staff/milius/ProVerif-NTS.rar.

A.1 Cryptographic Primitives

The first lines of the ProVerif source code form the cryptographic primitives that
are needed.

(* Basics: Keys and Hostnames *)

type key.

type hostname.

(* Symmetric Encryption *)

fun senc(bitstring, key): bitstring.

reduc forall m: bitstring, k: key;

sdec(senc(m,k),k) = m.

(* Asymmetric Encryption *)

type skey.

type pkey.

fun sk_of(hostname): skey [private].

fun pk(skey): pkey.

letfun pk_of(X: hostname) = pk(sk_of(X)).

https://www8.cs.fau.de/staff/milius/ProVerif-NTS.rar
https://www8.cs.fau.de/staff/milius/ProVerif-NTS.rar

234 K. Teichel et al.

fun aenc(bitstring, pkey): bitstring.

reduc forall m: bitstring, k: skey;

adec(aenc(m, pk(k)), k) = m.

(* Asymmetric Signatures *)

type sskey.

type spkey.

fun ssk_of(hostname): sskey [private].

fun spk(sskey): spkey.

letfun spk_of(X: hostname) = spk(ssk_of(X)).

fun sign(bitstring, sskey): bitstring.

reduc forall m: bitstring, k: sskey;

getmess(sign(m,k)) = m.

reduc forall m: bitstring, k: sskey;

checksign(sign(m,k), spk(k)) = m.

letfun signed_message(m: bitstring, k: sskey)

= (m, sign(m, k)).

(* Hash and HMAC Functions *)

fun hash(bitstring): bitstring.

fun keyhash(pkey): bitstring.

fun seed_of(hostname): bitstring [private].

fun cookie_gen(bitstring, bitstring): key.

fun hmac(key, bitstring): bitstring.

A.2 Global Variables and Constants

Next we have the declarations of channels and other global variables and con-
stants.

(* The Channel for All"Network" Protocol Communications *)

free c: channel.

(* The Channel and Hostname for Communication with the TA *)

free ta: channel.

free TA: hostname.

(* Two Possible Version Identifiers *)

free version_1: bitstring.

free version_2: bitstring.

A.3 Events

The declarations of ProVerif “events” follow that are used for better traceability
of what is happening in what order.

First Results of a Formal Analysis of the Network Time Security 235

(* Server Side Events *)

event serverError().

event serverHasOwnCert(hostname, pkey, spkey).

event serverRespondsTime(bitstring, bitstring,

bitstring).

event serverSaysCookie(key, pkey, hostname).

event serverGeneratesCookie(key, hostname).

event serverAcceptsCert(hostname).

event serverRejectsCert().

(* Client Side Events *)

event clientError().

event clientHasOwnCert(hostname, pkey, spkey).

event clientAcceptsCookie(key, hostname, hostname).

event clientAcceptsSomeCookie().

event clientRejectsCookie(key, hostname, hostname).

event clientRejectsSomeCookie().

event cookieCompromised(key).

event clientAcceptsCert(hostname, spkey).

event clientRejectsCert().

event client_timereq(bitstring).

event clientAcceptsTime(bitstring, bitstring,

bitstring).

event clientDiscards(bitstring).

(* Authority Side Event(s) *)

event authorityGivesCert(hostname, pkey, spkey).

A.4 The Trusted Authority Process

The code then moves on to the processes by which the participants are modeled.
We first present the process that models the trusted authority. Its only purpose
is to generate and distribute certificates for server and client type participants.

(* [Process] ::: TRUSTED AUTHORITY ::: [NTS v0.3.0]

|: Issues certificates on request. *)

let authority() =

let skTA = ssk_of(TA) in

(* The authority receives a certificate request. *)

in(ta, H: hostname);

236 K. Teichel et al.

(* The authority determines the correct public keys

for the requester. *)

let pkH = pk(sk_of(H)) in

let spkH = spk(ssk_of(H)) in

(* From that information, the authority assembles

and signs the appropriate certificate. *)

let certificate = (H, pkH, spkH) in

let signature = sign(certificate, skTA) in

let certificate_sig = (certificate, signature) in

(* The authority sends the response back to the

requesting participant. *)

event authorityGivesCert(H, pkH, spkH);

out(ta, certificate_sig).

A.5 The Server Side Processes

Inner Server Processes. Next are those processes that make up the model of
the server. The first process represents the server module which deals with the
certification message exchange.

(* [Process] ::: SERVER CERTIFIER MODULE ::: [NTS v0.3.0]

|: Replies to a client_cert message with a server_cert

|: message as specified. *)

let server_certifier(B: hostname, pkB: spkey,

skB: sskey) =

(* The server acquires the TA’s public key. *)

let pkTA = spk(ssk_of(TA)) in

(* The server receives a client’s certification request. *)

in(c, X_client_cert: bitstring);

(* The server extracts the necessary information. *)

let (version_x: bitstring, A_x: hostname)

= X_client_cert in

(* The server requests its certificate chain from the

trusted authority and performs a validity check on

the response that it receives. *)

out(ta, B);

in(ta, Z_certificate: bitstring);

let (=B, some_key: pkey, =pkB,

Z_cert_signature: bitstring)

= Z_certificate in

if (B, some_key, pkB)

<> checksign(Z_cert_signature, pkTA)

then event serverError()

First Results of a Formal Analysis of the Network Time Security 237

else event serverHasOwnCert(B, some_key, pkB);

(* The server creates a server_cert response

as specified. *)

let msg_server_cert = (A_x, Z_certificate) in

let msg_server_cert_sign

= (msg_server_cert,

sign(msg_server_cert, skB))

in

(* The server sends the composed response to the

requesting client. *)

out(c, msg_server_cert_sign).

The next process involves the server module whose purpose it is to execute the
cookie message exchange as well as the required calculations.

(* [Process] ::: SERVER COOKIE MODULE ::: [NTS v0.3.0]

|: Takes a client_cook request, generates the appropriate cookie

|: and replies with a server_cook message as specified. *)

let server_cookie(B: hostname, pkB: spkey, skB: sskey,

seed: bitstring) =

(* The server acquires the TA’s public key. *)

let pkTA = spk(ssk_of(TA)) in

(* The server receives a client’s cookie request. *)

in(c, X_cook: bitstring);

(* The server matches it to the specified message

pattern and extracts the necessary information. *)

let (n_x: bitstring, pkA_x: pkey) = X_cook in

(* The server builds the cookie for the received client

(identified via its public [encryption] key pkA. *)

let cookie = cookie_gen(keyhash(pkA_x), seed) in

(* It builds the appropriate response *)

let response = (cookie, n_x) in

(* It constructs its signature and attaches it to the response. *)

let signature = sign(response, skB) in

let response_sig = (response, signature) in

(* It encrypts it. *)

let response_sig_enc = aenc(response_sig, pkA_x) in

(* It sends it back to the client. *)

event serverGeneratesCookie(cookie, B);

event serverSaysCookie(cookie, pkA_x, B);

238 K. Teichel et al.

out(c, response_sig_enc).

Then the server module follows that takes care of the time synchronization mes-
sage exchange.

(* [Process] ::: SERVER TIMESYNC MODULE ::: [NTS v0.3]

|: Replies to a time_request message with a time_response message as

|: specified. *)

let server_time_response(B: hostname, pkB: spkey,

skB: sskey, seed: bitstring) =

(* The server receives a time_request message from a client. *)

in(c, Y: bitstring);

(* It extracts the necessary data. *)

let (t1_y: bitstring, n_y: bitstring,

pkA_hash_y: bitstring) = Y in

(* It creates the appropriate time sync data for its response. *)

new t2: bitstring;

(* It re-computes the cookie. *)

let cookie = cookie_gen(pkA_hash_y, seed) in

(* It composes its response. *)

let response = (n_y, t1_y, t2,

hmac(cookie, (n_y, t1_y, t2)))

in

(* It sends its response back to the requesting client. *)

event serverRespondsTime(n_y, t1_y, t2);

out(c, response).

Outer Server Process. We then see the “outer” server process whose purpose
is simply to execute iterations of all the “inner” processes (the modules listed
above in AppendixA.5).

(* [Process] ::: SERVER GLOBAL PROCESS ::: [NTS v0.3.0]

|: Executes all server modules at once, running arbitrarily many

|: instantiations of each of them in parallel. *)

let server(B: hostname) =

(* Before running any modules, the server generates an

unpredictable seed value and remembers its own key pair. *)

let seed = seed_of(B) in

let skB = ssk_of(B) in

let pkB = spk(skB) in

(* The server then runs all modules. *)

First Results of a Formal Analysis of the Network Time Security 239

!server_certifier(B, pkB, skB)

| !server_cookie(B, pkB, skB, seed)

| !server_time_response(B, pkB, skB, seed).

A.6 The Client Side Processes

Inner Client Process. Moving on to the client side processes, there is first the
“inner” process which takes care of the time synchronization message exchange,
including the necessary checks on the MAC.

(* [Process] ::: CLIENT TIMESYNC MODULE ::: [NTS v0.3.0]

|: Generates time_request messages as specified and sends them to a

|: time server. It then awaits a time_response message on which it

|: performs the necessary checks as specified. *)

let client_time_request(A: hostname, pkA: pkey,

B: hostname, cookie: key) =

(* The client generates time data and a nonce. *)

new t1: bitstring;

new n1: bitstring;

event client_timereq(t1);

(* The client constructs its time_request message and sends it. *)

let request = (t1, n1, keyhash(pkA)) in

out(c, request);

(* It receives a time_response message and extracts the necessary

information. *)

in(c, X: bitstring);

let (=n1, =t1, t2x: bitstring, hmacx: bitstring)

= X in

(* Depending on the result of validity checks, it either accepts

the response as authentic or discards it. *)

if hmacx = hmac(cookie, (n1, t1, t2x))

then event clientAcceptsTime(n1, t1, t2x)

else event clientDiscards(X).

Outer Client Process. The “outer” client side process follows, which performs
the initial message exchanges (server certification and cookie exchange) and then
executes instantiations of the inner process.

(* [Process] ::: CLIENT GLOBAL PROCESS ::: [NTS v0.3.0]

|: Executes the steps for association, certification and cookie

|: exchange, one of each, sequentially. Then it runs arbitrarily

|: many instances of the client timesync module in parallel. *)

let client(A: hostname, B: hostname) =

240 K. Teichel et al.

let skA = sk_of(A) in

let pkA = pk(skA) in

let pkTA = spk(ssk_of(TA)) in

(* CERTIFICATE PHASE -----------------------------*)

(* The client sends a client_cert message as specified *)

let msg_client_cert = (version_1, A) in

out(c, msg_client_cert);

(* The client receives a response of type server_cert. *)

in(c, X_server_cert: bitstring);

(* The client extracts data from the response. *)

let (=A, certificate_x: bitstring,

signature_x: bitstring)

= X_server_cert in

(* The client reads the certificate. *)

let (=B, other_key: pkey, spkB_x: spkey,

cert_signature: bitstring)

= certificate_x in

(* The client performs the necessary test. On failure, it

exits with an error. On success, the client accepts the

key given in the certificate as B’s public key. *)

event check();

if ((B, other_key, spkB_x)

<> checksign(cert_signature, pkTA))

|| ((A, certificate_x)

<> checksign(signature_x, spkB_x))

then event clientRejectsCert()

else event clientAcceptsCert(B, spkB_x);

(* COOKIE PHASE ------------------------*)

let pkB = spkB_x in

(* The client sends a client_cook message as specified. *)

new n_cook: bitstring;

let msg_client_cook = (n_cook, pkA)

in

out(c, msg_client_cook);

(* The client receives a response of type server_cook. *)

in(c, X_server_cook: bitstring);

(* It decodes the response and extracts the data from it. *)

First Results of a Formal Analysis of the Network Time Security 241

let X_dec = adec(X_server_cook, skA)

in

let ((cookie_x: key, =n_cook),

signature_x: bitstring) = X_dec

in

(* It performs the necessary checks as specified. On success,

it starts sending time_request messages as specified.*)

if (cookie_x, n_cook)

= checksign(signature_x, pkB)

then event

clientAcceptsCookie(cookie_x, A, B)

(* TIMESYNC PHASE ------------------*)

| !client_time_request(A, pkA,

B, cookie_x)

| (in(c, =cookie_x);

event cookieCompromised(cookie_x)

else event

clientRejectsCookie(cookie_x, A, B)).

Note that the first else-branch includes all the code below it. Note also the
dedicated listener process given by

| (in(c, =cookie_x);

event cookieCompromised(cookie_x)

which is started when the client accepts a cookie and does not really repre-
sent client behavior according to the protocol, but only listens for the cookie
on an open channel. This enables us to check for the loss of a cookie by
querying whether the event cookieCompromised() is ever executed at all (see
AppendixA.8).

A.7 The Environment Process

Here, we present the global ProVerif process which takes care of instantiating
all participants.

(* [Process] MAIN OVERALL PROCESS ::: [NTS v0.3.0]

|: Runs everything that needs to be run. *)

process

(* More strongly typed version with hostnames,

would otherwise be"bitstring" type variables *)

new B: hostname;

new A: hostname;

(* There are arbitrarily many clients running, but only one server,

for simplification in the earlier phase of this analysis. *)

!server(B) | !client(A, B) | !authority()

| out(c, A) | out(c, B))

242 K. Teichel et al.

A.8 ProVerif Queries

Now we present the ProVerif queries. We first consider those queries that concern
the cookie exchange.

Sanity – Cookie Exchange. This query makes sure that there is some cookie x
which is accepted by the honest client A as coming from the honest server B,
i. e. the cookie exchange can be completed successfully.

query x: key;

event(clientAcceptsCookie(x, new A, new B)).

This query holds for all four code versions.

Weak Authenticity – Cookie. This query ensures that if the honest client A
accepts a cookie x for communication with the honest server B, then B has
in fact generated x and released it into the network (note that this gives no
guarantee that B intended x for communication with A in particular).

query x: key;

event(clientAcceptsCookie(x, new A, new B))

==> event(serverGeneratesCookie(x, new B)).

Applying this query to the different ProVerif code versions yields the following
results:

– It does not hold for code version c030ut. The attack that ProVerif discovers
is the first one described in Sect. 6.

– It holds for the code versions c030, c031, and c032.

Authenticity – Cookie. This query strengthens the guarantee acquired with
the previous query: it ensures that if the honest client A accepts a cookie x
for communication with the honest server B, then B has in fact issued x based
on A’s public key, and has also encrypted the appropriate message with said
public key. This is the query that corresponds to Goal 9.

query x: key;

event(clientAcceptsCookie(x, new A, new B))

==> event(serverSaysCookie(x, pk(sk_of(new A)), new B)).

The results for this query are as follows:

– It does not hold for code version c030ut. Authenticity for the cookie would
require weak authenticity for it, which is not given (see above). Also, the
Man-in-the-Middle attack described in Sect. 6 works on this version.

– It does not hold for code version c030. Again, the corresponding attack is the
Man-in-the-Middle attack described in Sect. 6.

– It holds for the code versions c031, and c032

First Results of a Formal Analysis of the Network Time Security 243

Secrecy – Cookie. This query asserts that if the honest client A accepts
a cookie x, then the attacker does not know x. This is realized via the
event cookieCompromised() from the dedicated listener process as described
in AppendixA.6. This query corresponds to Goal 8.

query x: key;

event(cookieCompromised(x)).

– This query does not hold for code version c030ut and neither does it hold
for c030: Both of the possible attacks enable Mallory to make Alice accept
a cookie that Mallory knows. In the case of the Blind-signature attack she
manufactures said cookie herself; in the case of the Man-in-the-Middle attack
she maliciously re-distributes a valid key, signed by Bob.

– This query holds for the code versions c031 and c032.

Next, we take a look at some queries that concern the time synchronization
message exchange.

Sanity – Time Synchronization. This query checks whether it is possible
for the protocol to be run such that the honest client A successfully accepts a
timesync response as valid and authentic from the honest server B.

query nonce: bitstring, x: bitstring, y: bitstring;

event(clientAcceptsTime(new A, new B, nonce, x, y)).

This query holds for all four code versions.

Authenticity – Time Synchronization. This query ensures that if a time-
sync message t is accepted by the honest client A as authentic from an honest
server B, then B has really issued a message with the exact time data as in t
and secured it with the cookie which is generated based on A’s public key. This
query corresponds to Goal 7.

query nonce: bitstring, x: bitstring, y: bitstring;

event(clientAcceptsTime(new A, new B, nonce, x, y))

==> event(serverRespondsTime(keyhash(pk(sk_of(new A))),

new B, nonce, x, y)).

– As might be expected due to the lack of cookie secrecy, this query also does
not hold for code version c030ut and neither does it hold for c030. Since for
these code versions Mallory can gain access to cookies that Alice accepts as
valid, she can use those cookies to generate time synchronization packets with
maliciously manufactured synchronization information that Alice will accept.

– This query holds for the code versions c031 and c032.

244 K. Teichel et al.

References

1. Abadi, M.: Security protocols: principles and calculi. In: Aldini, A., Gorrieri, R.
(eds.) FOSAD 2007. LNCS, vol. 4677, pp. 1–23. Springer, Heidelberg (2007)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2001, pp. 104–115. ACM, New York (2001).
http://doi.acm.org/10.1145/360204.360213

3. Archer, M.: Proving correctness of the basic TESLA multicast stream authentica-
tion protocol with TAME. In: Workshop on Issues in the Theory of Security, pp.
14–15 (2002)

4. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal Reasoning About Physical
Properties of Security Protocols. ACM Trans. Inf. Syst. Secur. 14(2), 16:1–16:28
(2011)

5. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer,
Heidelberg (2004). http://dx.doi.org/10.1007/978-3-540-30080-9 7

6. Blanchet, B., Smyth, B., Cheval, V.: ProVerif 1.88: automatic cryptographic proto-
col verifier, user manual and tutorial. Technical report, INRIA Paris-Rocquencourt,
08 2013

7. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-
order logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C.
(eds.) ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010).
http://dblp.uni-trier.de/db/conf/itp/itp2010.html#BlanchetteN10

8. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). http://dx.doi.org/10.1007/978-3-540-70545-1 38

9. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Trans. Inf. Theory
29(2), 198–208 (1983)

10. Durgin, N.A., Lincoln, P., Mitchell, J.C.: Multiset rewriting and the complex-
ity of bounded security protocols. J. Comput. Secur. 12(2), 247–311 (2004).
http://content.iospress.com/articles/journal-of-computer-security/jcs215

11. Ganeriwal, S., Pöpper, C., Capkun, S., Srivastava, M.B.: Secure time synchro-
nization in sensor networks (E-SPS). In: Proceedings of 2005 ACM Workshop on
Wireless Security (WiSe 2005), pp. 97–106. ACM, Sept 2005

12. Hopcroft, P., Lowe, G.: Analysing a stream authentication protocol using model
checking. Int. J. Inf. Secur. 3(1), 2–13 (2004)

13. Housley, R.: Cryptographic Message Syntax (CMS). RFC 5652, RFC Editor, Sep-
tember 2009. http://www.rfc-editor.org/rfc/rfc5652.txt

14. IEEE: IEEE Standard for a Precision Clock Synchronization Protocol for Net-
worked Measurement and Control Systems (2008). http://ieeexplore.ieee.org/
servlet/opac?punumber=4579757

15. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message
Authentication. RFC 2104, RFC Editor, 02 1997. http://www.rfc-editor.org/rfc/
rfc2104.txt

16. Levine, J.: A Review of Time and Frequency Transfer Methods. Metrologia 45(6),
162–174 (2008)

17. Li, L., Sun, J., Liu, Y., Dong, J.S.: TAuth: verifying timed security protocols. In:
Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 300–315. Springer,
Heidelberg (2014). http://dx.doi.org/10.1007/978-3-319-11737-9 20

http://doi.acm.org/10.1145/360204.360213
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dblp.uni-trier.de/db/conf/itp/itp2010.html#BlanchetteN10
http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://content.iospress.com/articles/journal-of-computer-security/jcs215
http://www.rfc-editor.org/rfc/rfc5652.txt
http://ieeexplore.ieee.org/servlet/opac?punumber=4579757
http://ieeexplore.ieee.org/servlet/opac?punumber=4579757
http://www.rfc-editor.org/rfc/rfc2104.txt
http://www.rfc-editor.org/rfc/rfc2104.txt
http://dx.doi.org/10.1007/978-3-319-11737-9_20

First Results of a Formal Analysis of the Network Time Security 245

18. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

19. Milius, S., Sibold, D., Teichel, K.: An Attack Possibility on Time Synchronization
Protocols Secured with TESLA-Like Mechanisms, Draft version: https://www8.cs.
fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf

20. Mills, D., Haberman, B.: Network Time Protocol Version 4: Autokey Specification.
RFC 5906, RFC Editor, 06 2010. http://www.rfc-editor.org/rfc/rfc5906.txt

21. Mills, D., Martin, J., Burbank, J., Kasch, W.: Network Time Protocol Version 4:
Protocol and Algorithms Specification. RFC 5905, RFC Editor, 06 2010. http://
www.rfc-editor.org/rfc/rfc5905.txt

22. Mizrahi, T.: Security Requirements of Time Protocols in Packet Switched Networks.
RFC 7384, RFC Editor, 10 2014. http://www.rfc-editor.org/rfc/rfc7384.txt

23. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, Heidelberg (2002)

24. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. J.
Comput. Secur. 6(1–2), 85–128 (1998)

25. Perrig, A., Song, D., Canetti, R., Tygar, J.D., Briscoe, B.: Timed Efficient Stream
Loss-Tolerant Authentication (TESLA): Multicast Source Authentication Trans-
form Introduction. RFC 4082, RFC Editor, 06 2005. http://www.rfc-editor.org/
rfc/rfc4082.txt

26. Röttger, S.: Analysis of the NTP Autokey Procedures, 2 2012. http://zero-entropy.
de/autokey analysis.pdf

27. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.)
Formal Models and Techniques for Analyzing Security Protocols, Chap. 6. IOS
Press (2011). http://www.bensmyth.com/files/Smyth10-applied-pi-calculus.pdf

28. Saeedloei, N., Gupta, G.: Timed π-calculus. In: Abadi, M., Lluch Lafuente, A.
(eds.) TGC 2013. LNCS, vol. 8358, pp. 119–135. Springer, Heidelberg (2014)

29. Sibold, D., Teichel, K., Röttger, S.: Network time security. Technical report, IETF
Secretariat, 07 2013. https://datatracker.ietf.org/doc/draft-ietf-ntp-network-
time-security/history/

30. Sibold, D., Teichel, K., Röttger, S., Housley, R.: Protecting network time security
messages with the cryptographic message syntax (CMS). Technical report, IETF
Secretariat, 10 2014. https://datatracker.ietf.org/doc/draft-ietf-ntp-cms-for-nts-
message/history/

31. Sun, K., Ning, P., Wang, C.: TinySeRSync: secure and resilient time synchroniza-
tion in wireless sensor networks. In: Proceedings of the 13th ACM Conference on
Computer and Communications Security, CCS 2006, pp. 264–277. ACM, New York
(2006)

32. Syverson, P., Meadows, C., Cervesato, I.: Dolev-yao is no better than machiavelli.
In: Degano, P. (ed.) First Workshop on Issues in the Theory of Security – WITS
2000, pp. 87–92, Jul 2000. http://theory.stanford.edu/∼iliano/papers/wits00.ps.gz

https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
https://www8.cs.fau.de/staff/milius/AttackPossibilityTimeSyncTESLA.pdf
http://www.rfc-editor.org/rfc/rfc5906.txt
http://www.rfc-editor.org/rfc/rfc5905.txt
http://www.rfc-editor.org/rfc/rfc5905.txt
http://www.rfc-editor.org/rfc/rfc7384.txt
http://www.rfc-editor.org/rfc/rfc4082.txt
http://www.rfc-editor.org/rfc/rfc4082.txt
http://zero-entropy.de/autokey_analysis.pdf
http://zero-entropy.de/autokey_analysis.pdf
http://www.bensmyth.com/files/Smyth10-applied-pi-calculus.pdf
https://datatracker.ietf.org/doc/draft-ietf-ntp-network-time-security/history/
https://datatracker.ietf.org/doc/draft-ietf-ntp-network-time-security/history/
https://datatracker.ietf.org/doc/draft-ietf-ntp-cms-for-nts-message/history/
https://datatracker.ietf.org/doc/draft-ietf-ntp-cms-for-nts-message/history/
http://theory.stanford.edu/~iliano/papers/wits00.ps.gz

Formal Support for Standardizing Protocols
with State

Joshua D. Guttman, Moses D. Liskov(B), John D. Ramsdell,
and Paul D. Rowe

The MITRE Corporation, Bedford, MA, USA
mliskov@mitre.org

Abstract. Many cryptographic protocols are designed to achieve their
goals using only messages passed over an open network. Numerous tools,
based on well-understood foundations, exist for the design and analysis
of protocols that rely purely on message passing. However, these tools
encounter difficulties when faced with protocols that rely on non-local,
mutable state to coordinate several local sessions.

We adapt one of these tools, cpsa, to provide automated support for
reasoning about state. We use Ryan’s Envelope Protocol as an example
to demonstrate how the message-passing reasoning can be integrated
with state reasoning to yield interesting and powerful results.

Keywords: Protocol analysis tools · Stateful protocols · TPM ·
PKCS #11

1 Introduction

Many protocols involve only message transmission and reception, controlled by
rules that are purely local to a session of the protocol. Typical protocols for
authentication and key establishment are of this kind; each participant maintains
only the state required to remember what messages must still be transmitted,
and what values are expected in messages to be received from the peer.

Other protocols interact with long-term state, meaning state that persists
across different sessions and may control behavior in other sessions. A bank
account is a kind of long-term state, and it helps to control the outcome of
protocol sessions in the ATM network. Specifically, the session fails when we try
to withdraw money from an empty account. Of course, one session has an effect
on others through the state: When we withdraw money today, there will be less
remaining to withdraw tomorrow.

Hardware devices frequently participate in protocols, and maintain state that
helps control those protocols. For example, PKCS#11 devices store and use
keys, and are constrained by key attributes that control e.g. which keys may
be used to wrap and export other keys. Trusted Platform Modules (TPMs)
maintain Platform Configuration Registers (PCRs) some of which are modified
only by certain special instructions. Thus, digitally signing the values in these
c© Springer International Publishing Switzerland 2015
L. Chen and S. Matsuo (Eds.): SSR 2015, LNCS 9497, pp. 246–265, 2015.
DOI: 10.1007/978-3-319-27152-1 13

Formal Support for Standardizing Protocols with State 247

registers attests to the history of the platform. Some protocols involve multiple
state histories; for instance, an online bank transfer manipulates the state of the
destination account as well as the state of the source account.

State-based protocols are more challenging to analyze than protocols in which
all state is session-local. Among the executions that are possible given the mes-
sage flow patterns, one must identify those for which a compatible sequence
of states exists. Thus, to justify standardizing protocols involving PKCS#11
devices or TPMs, one must do a deeper analysis than for stateless protocols.
Indeed, since these devices are themselves standardized, it is natural to want to
define and justify protocols that depend only on their required properties, rather
than any implementation specific peculiarities.

The goal of this paper is to explain formal ideas that can automate this
analysis, and to describe a support tool that assists with it.

Contributions of this paper. We make four main contributions:

– We identify two central axioms of state that formalize the semantics of state-
respecting behaviors (Defnition 3). Each time a state is produced,
1. it can be consumed by at most one subsequent transition.
2. it cannot be observed after a subsequent transition consumes it.

The first axiom is the essence of how the state-respecting analysis differs
from standard message-based analysis. By contrast, once a message has been
transmitted, it can be delivered (or otherwise consumed) repeatedly in the
future.
The second axiom, like the reader/writer principle in concurrency, allows
observations to occur without any intrinsic order among them, so long as
they all occur while that state is still available. It preserves the advantages of
a partial order model, as enriched with state.

– We provide an alternative model of execution that maintains state in a family
of traditional state machines, whose transitions are triggered by synchroniza-
tion events in a state-respecting manner (see the extended version [17] for def-
initions and proofs). The justification for our two axioms is that they match
this alternative, explicit-state-machine model exactly.

– We incorporated these two axioms into the tool cpsa [24], obtaining a tool
that can perform state-respecting enrich-by-need protocol analysis.

– We applied the resulting version of cpsa to an interesting TPM-based pro-
tocol, the Envelope Protocol [2], verifying that it meets its security goal. We
have also analyzed some incorrect variants, obtaining attacks.

Roadmap. After giving some background, we describe the Envelope Protocol
and the TPM behaviors it relies on (Sect. 2). We introduce our protocol model
(Sect. 3) in both its plain form, and the form enriched by the axioms in Con-
tribution 1. Section 4 describes the cpsa analysis in the original model where
state propagation is not distinguished from message-passing, and in the enriched
model. We turn to related work in Sect. 5. Section 6 addresses a logical interpre-
tation of enrich-by-need analysis and observes that this framework may be used,

248 J.D. Guttman et al.

unmodified, for stateful protocols as we model them. We end with a brief com-
ment on conclusions and future work.

Background: Strand spaces. We work within the strand space framework.
A strand is a (usually short) finite sequence of events, where the events are

message transmission nodes;
message reception nodes; and
state synchronization nodes.

Each message transmission and reception node is associated with a message
that is sent or received. State synchronization nodes were introduced into strand
spaces recently [15]. Including them des not alter key definition such as bundles
(Definition 1), and they allow us to flag events that, though the protocol princi-
pals perform them, are not message events. State synchronization nodes will be
related to states via two different models in Sect. 3.

The behavior of a principal in a single, local run of one role of a protocol
forms a strand. We call these regular strands. We also represent basic actions
of an adversary as strands, which we call adversary strands. Adversary strands
never need state synchronization nodes, since our model of the adversary allows
it to use the network as a form of storage that never forgets old messages.

A protocol Π is represented by a finite set of strands, called the roles of
the protocol, together with some auxiliary information about freshness and non-
compromise assumptions about the roles. We write ρ ∈ Π to mean that ρ is one
of the roles of the protocol Π. The regular strands of Π are then all strands
that result from any roles ρ ∈ Π by applying a substitution that plugs in values
in place of the parameters occurring in ρ.

For more information on strand spaces, see e.g. [14,27]. For the version con-
taining state synchronization events as well as transmissions and receptions,
see [15,23].

Background: Enrich-by-need analysis. In our form of protocol analysis, the
input is a fragment of protocol behavior.

The output gives zero or more executions that contain this fragment. We call
this approach “enrich-by-need” analysis (borrowed from our [16]), because it is
a search process that gradually adds information as needed to explain the events
that are already under consideration.

An analysis begins with an execution fragment A, which may, for instance,
reflect the assumption that one participant has engaged in a completed local
session (a strand); that certain nonces were freshly chosen; and that certain keys
were uncompromised. The result of the analysis is a set S of executions enriching
the starting fragment A. An algorithm implementing this approach is sound if,
for every possible execution C that enriches A, there is a member B ∈ S such
that C enriches B.

We do not require S to contain all possible executions because there are
infinitely many of them if any. For instance, executions may always be extended
by including additional sessions by other protocol participants. Thus, we want

Formal Support for Standardizing Protocols with State 249

the set S to contain representatives that cover all of the essentially different
possibilities. We call these representatives S the shapes for A.

In practice, the set S of shapes for A is frequently finite and small.
When we start with a fragment A and find that it has the empty set S = ∅ of

shapes, that means that no execution contains all of the structure in A. To use
this technique to show confidentiality assertions, we include a disclosure event
in A. If A extends to no possible executions at all, we can conclude that this
secret cannot be revealed. If S is non-empty, the shapes are attacks that show
how the confidentiality claim could fail.

The set S of shapes, when finite, also allows us to ascertain whether authen-
tication properties are satisfied. If each shape B ∈ S satisfies an authentication
property, then every possible execution C enriching A must satisfy the prop-
erty too: They all contain at least the behavior exhibited in some shape, which
already contained the events that the authentication property required.

This style of analysis is particularly useful in a partially ordered execution
model, such as the one provided by strand spaces. In partially ordered models,
when events e1, e2 are causally unrelated, neither precedes the other. In linearly
ordered execution models, both interleavings e1 ≺ e2 and e2 ≺ e1 are possible,
and must be considered. When there are many such pairs, this leads to exponen-
tially many interleavings. None of the differences between them are significant.

2 The Envelope Protocol

We use Mark Ryan’s Envelope Protocol [3] as a concrete example throughout the
paper. The protocol leverages cryptographic mechanisms supported by a TPM
to allow one party to package a secret such that another party can either reveal
the secret or prove the secret never was and never will be revealed, but not both.

It is a particularly useful example to consider because it is carefully designed
to use state in an essential way. In particular, it creates the opportunity to
take either of two branches in a state sequence, but not both. In taking one
branch, one loses the option to take the other. In this sense, it utilizes the non-
monotonic nature of state that distinguishes it from the monotonic nature of
messages. Additionally, although the Envelope Protocol is not standardized, it
demonstrates advanced and useful ways to use the TPM. Standardization of
such protocols is under the purview of the Trusted Computing Group (TCG). It
will be very useful to understand the fundamental nature of state and to provide
methods and tools to support the future standardization of protocols involving
devices such as the TPM.

Protocol motivation. The plight of a teenager motivates the protocol. The
teenager is going out for the night, and her parents want to know her destination
in case of emergency. Chafing at the loss of privacy, she agrees to the following
protocol. Before leaving for the night, she writes her destination on a piece of
paper and seals the note in an envelope. Upon her return, the parents can prove
the secret was never revealed by returning the envelope unopened. Alternatively,
they can open the envelope to learn her destination.

250 J.D. Guttman et al.

The parents would like to learn their daughter’s destination while still pre-
tending that they have respected her privacy. The parents are thus the adversary.
The goal of the protocol is to prevent this deception.

Necessity of long-term state. The long-term state is the envelope. Once the
envelope is torn, the adversary no longer has access to a state in which the enve-
lope is intact. A protocol based only on message passing is insufficient, because
the ability of the adversary monotonically increases. Initially, the adversary has
the ability to either return the envelope or tear it. In a purely message-based
protocol the adversary will never lose these abilities.

Cryptographic version. The cryptographic version of this protocol uses a
TPM to achieve the security goal. Here we restrict our attention to a subset
of the TPM’s functionality. In particular we model the TPM as having a state
consisting of a single PCR and only responding to five commands.

A boot command (re)sets the PCR to a known value. The extend command
takes a piece of data, d, and replaces the current value s of the PCR state with
the hash of d and s, denoted #(d, s). In fact, the form of extend that we model,
which is an extend within an encrypted session, also protects against replay.
These are the only commands that alter the value in a PCR.

The TPM provides other services that do not alter the PCR. The quote
command reports the value contained in the PCR and is signed in a way as to
ensure its authenticity. The create key command causes the TPM to create an
asymmetric key pair where the private part remains shielded within the TPM.
However, it can only be used for decryption when the PCR has a specific value.
The decrypt command causes the TPM to decrypt a message using this shielded
private key, but only if the value in the PCR matches the constraint of the
decryption key.

In what follows, Alice plays the role of the teenaged daughter packaging the
secret. Alice calls the extend command with a fresh nonce n in an encrypted
session. She uses the create key command constraining a new key k′ to be used
only when a specific value is present in the PCR. In particular, the constraining
value cv she chooses is the following:

cv = #(obt,#(n, s))

where obt is a string constant and s represents an arbitrary PCR value prior the
extend command. She then encrypts her secret v with k′, denoted {|v|}k′ .

Using typical message passing notation, Alice’s part of the protocol might
be represented as follows (where we temporarily ignore the replay protection for
the extend command):

A → TPM : {|ext, n|}k
A → TPM : create,#(obt,#(n, s))

TPM → A : k′

A → Parent : {|v|}k′

The parent acts as the adversary in this protocol. We assume he can perform all
the normal Dolev-Yao operations such as encrypting and decrypting messages

Formal Support for Standardizing Protocols with State 251

when he has the relevant key, and interacting with honest protocol participants.
Most importantly, the parent can use the TPM commands available in any order
with any inputs he likes. Thus he can extend the PCR with the string obtain
and use the key to decrypt the secret. Alternatively, he can refuse to learn the
secret and extend the PCR with the string ref and then generate a TPM quote
as evidence the secret will never be exposed. The goal of the Envelope Protocol
is to ensure that once Alice has prepared the TPM and encrypted her secret, the
parent should not be able to both decrypt the secret and also generate a refusal
quote, {|quote,#(ref,#(n, s)), {|v|}k′ |}aik .

A crucial fact about the PCR state in this protocol is the collision-free nature
of hashing, ensuring that for every x

#(obt,#(n, s)) �= #(ref, x) (1)

Formal protocol model. We formalize the TPM-based version of the Enve-
lope Protocol using strand spaces [14]. Messages and states are represented as
elements of a crypto term algebra, which is an order-sorted quotient term alge-
bra. Sort � is the top sort of messages. Messages of sort A (asymmetric keys),
sort S (symmetric keys), and sort D (data) are called atoms. Messages are atoms,
tag constants, or constructed using encryption {| · |}(·), hashing #(·), and pair-
ing (·, ·), where the comma operation is right associative and parentheses are
omitted when the context permits.

We represent each TPM command with a separate role that receives a
request, consults and/or changes the state and optionally provides a response.
As shown in Fig. 1, we use m→• and •→m to represent the reception and trans-
mission of message m respectively. Similarly, we use s�◦ and ◦�s to represent

[re-]boot

boot •

[
s

]◦ s0

create key

create,s •

• {| created,k ,s|}aik

quote

quote,n •
s ◦

• {| quote,s,n|}aik

extend

sess,tpmk,{| esk |}tpmk •

• sess,sid

{| ext,n,sid |}esk •
s ◦ #(n,s)

decrypt

dec,{|m|}k •
{| created,k ,s|}aik •

s ◦

• m

Fig. 1. TPM roles

252 J.D. Guttman et al.

Alice

• sess,tpmk,{| esk |}tpmk

sess,sid •

• {| ext,n,sid|}esk

• create,#(obt,#(n,s))

{| created,k ,#(obt,#(n,s))|}aik •

• {|v|}k

Fig. 2. Alice’s role

the actions of reading and writing the value s to the state. We write m ⇒ n to
indicate that m precedes n immediately on the same strand.

As noted above, the boot role and the extend role are the only two roles
that alter the state. This is depicted with the single event �◦� that atomically
reads and then alters the state. The boot role receives the command and resets
any current state s to the known value s0. An alternate version of boot is needed
to ensure that our sequences of state are well-founded. This version has a single
state write event ◦� s0.

The extend role first creates an encrypted channel by receiving an encrypted
session key esk which is itself encrypted by some other secured TPM asymmetric
key tpmk. The TPM replies with a random session id sid to protect against
replay. It then receives the encrypted command to extend the value n into the
PCR and updates the arbitrary state s to become #(n, s).

The create key role does not interact directly with the state. It receives the
command with the argument s specifying a state. It then replies with a signed
certificate for a freshly created public key k′ that binds it to the state value s.
The certificate asserts that the corresponding private key k′−1 will only be used
in the TPM and only when the current value of the state is s. This constraint is
leveraged in the decrypt role which receives a message m encrypted by k′ and
a certificate for k′ that binds it to a state s. The TPM then consults the state
(without changing it) to ensure it is in the correct state before performing the
decryption and returning the message m.

Finally, the quote role receives the command together with a nonce n. It
consults the state and reports the result s in a signed structure that binds the
state to the nonce to protect against replay.

Since the quote role puts the state s into a message, and the extend role
puts a message into the state, in our formalization states are the same kind of
entity as messages.

We similarly formalize Alice’s actions. Her access to the TPM state is entirely
mediated via the message-based interface to the TPM, so her role has no state
events. It is displayed in Fig. 2.

Formal Support for Standardizing Protocols with State 253

Alice begins by establishing an encrypted session with the TPM in order to
extend a fresh value n into the PCR. She then has the TPM create a fresh key
that can only be used when the PCR contains the value #(obt,#(n, s)), where
s is whatever value was in the PCR immediately before Alice performed her
extend command. Upon receiving the certificate for the freshly chosen key, she
uses it to encrypt her secret v that gives her destination for the night.

The parents may then either choose to further extend the PCR with the
value obt in order to enable the decryption of Alice’s secret, or they can choose
to extend the PCR with the value ref and get a quote of that new value to prove
to Alice that they did not take the other option. The adversary roles displayed
in Fig. 3 constrain what the parents can do.

create

• a

pair

x •
y •

• (x,y)

sep

(x,y) •

• x

• y

enc

x •
k •

• {|x|}k

dec

{|x|}k •
k−1 •

• x

Fig. 3. Adversary roles, where a in the create role must be an atomic message.

It is important to note that, like Alice’s role, the adversary roles do not
contain any state events. Thus the adversary can only interact with the state
via the interface provided by the TPM commands.

We aim to validate a particular security goal of the Envelope Protocol using
the enrich-by-need method. The parent should not be able to both learn the
secret value v and generate a refusal token.

Security Goal 1. Consider the following events:

– An instance of the Alice role runs to completion, with secret v and nonce n
both freshly chosen;

– v is observed unencrypted;
– the refusal certificate {|quote,#(ref,#(n, s)), {|v|}k′ |}aik is observed unen-

crypted.

These events, which we call jointly A0, are not all present in any execution.

3 State-Respecting Bundles

In this section, we introduce a model of protocol behavior in the presence of
global state; it is new in this paper. It enriches the notion of a bundle, which is
the longstanding strand space formalization of global behaviors [14,27].

We organize this section as a sequence of refinements, starting from the
traditional strand space bundle notion (Definition 1). We then give a direct

254 J.D. Guttman et al.

generalization, enriched bundles (Definition 2) to associate states with synchro-
nization events, and to track their propagation. We then introduce informally
describe the notion of an execution, which explicitly includes both a bundle (as a
global record of events and their causal ordering) and a family of state histories,
and note that enriched bundles are not restrictive enough to match this notion
of execution. This motivates the two axioms of state, leading to our final model
of stateful protocol executions, state-respecting bundles (Definition 3), which
matches the notion of executions. See the extended version of this paper [17] for
formal definitions of executions and a proof of our claim that state-respecting
bundles and executions match.

Definition 1 (Bundle). Suppose that Σ is a finite set of strands. Let ⇒ be
the strand succession relation on nodes(Σ). Let →⊆ nodes(Σ)× nodes(Σ) be any
relation on nodes of Σ such that n1 → n2 implies that n1 is a transmission event,
n2 is a reception event, and msg(n1) = msg(n2).

B = (N ,→) is a bundle over Σ iff N ⊆ nodes(Σ), and

1. If n2 ∈ N and n1 precedes it on the same strand in Σ, then n1 ∈ N ;
2. If n2 is a reception node, there is exactly one n1 ∈ N such that n1 → n2; and
3. The transitive closure (⇒ ∪ →)+ of the two arrow relations is acyclic.

B is a bundle of protocol Π iff every strand with nodes in B is either an instance
of a role of Π, or else an instance of one of the adversary roles in Fig. 3.

Any finite behavior should have these properties, since otherwise some partic-
ipant starts a role of the protocol in the middle, or receives a message no one
sent, or else the (looping) pattern of events is causally impossible. By acyclicity,
every bundle determines a partial ordering �B on its nodes, where n1 �B n2

means that some path of one or more arrows →,⇒ leads from n1 to n2 in B.
We incorporate state transition histories directly into the bundles. To do this,

we enrich the bundles with a new relation � that propagates the current state
from one event to another. We do this so that our analysis method can work
with a single object that has both message dependencies and state dependencies
within it. We also distinguish between state transitions and state observations.
Transitions need to be linearly ordered if they pertain to a single device, but
many state observations may occur between a single pair of state transitions.
They are like read events in parallel computation: There is no need for con-
currency control to sequentialize their access to the state, as long as they are
properly nested between the right transition events.

This is an advantage of the strand space approach, which focuses on partially
ordered execution models. It is important for enrich-by-need analysis, where the
exponential number of interleavings must be avoided.

Later in this section, we will introduce a model containing a number of tradi-
tional state machines, where we correlate the synchronization nodes with transi-
tions in their state histories. We make this model more rigorous in the extended
version of this paper [17], where we prove an exact match between the state
respecting behaviors we use here and the more traditional model of state machine
histories.

Formal Support for Standardizing Protocols with State 255

3.1 Enriching Bundles with State

We now enrich the bundles to incorporate states, and to propagate them from
node to node, just as transmissions and receptions propagate messages.

The diagrams in Sect. 2 suggest a way to incorporate state into bundles: We
enrich them so that each state synchronization event is associated with messages
representing states. A transition event is associated with a pair, representing the
pre-state before the transition together with the post-state after it. The pre-
state must be obtained from an earlier synchronization event. The post-state
is produced by the transition, and may thus be passed to later events. We also
now distinguish state observation events; these are associated with a single state,
which is like a pre-state since it is received from an earlier event that produced
it. We also identify initiation events, which initialize a devices state and serve
as the beginning of a state computation history.

Initiation nodes ◦�s record the event of creating a new state. We use init s to
indicate an initiation of state to s.

Observation nodes s�◦ record the current state without changing it. We use
obsv s to indicate an observation of state s.

Transition nodes s0�◦�s1 represent the moment at which the state changes
from a specific pre-state to a specific post-state. We use tran (s0, s1) to indi-
cate a state transition with pre-state s0 and post-state s1.

In specifying protocols and their state manipulations, we can use the style illus-
trated in Fig. 1. There, an observation such as the synchronization node in the
quote role, acquires a message on the incoming � arrow. In this case, it is a
variable s, which is itself a parameter to the role which contributes to the sub-
sequent transmitted message. The decrypt role also has an incoming � arrow
labeled with s; in this case, the role can proceed to engage in this event only
if the value s equals a previously available parameter acquired in the previous
reception node. The extend role has a transition node, in which any pre-state s
will be updated to a new post-state by hashing in the parameter n.

These pre- and post-state annotations, using parameters that appear else-
where in the roles, determine subrelations of the transition relation associated
with each instance of a role. An instance of the extend role with a particular
value n0 for the parameter n will engage only in state transformations that hash
in that value n0.

Observation events are not strictly necessary; we could model the checking of
a state value as a transition s�◦�s. However, this would require observation
events be ordered in a specific sequence. This violates the principled choice that
our execution model not include unnecessary ordering.

In the Introduction, we defined a protocol to be a finite set of strands called
the roles of the protocol. An enriched protocol Π+ will be a protocol Π enriched
with a classification of its state synchronization events into init, tran, and obsv
nodes, with each of those annotated with messages defining their pre- and post-
states. The regular strands of Π+ are all of the substitution instances of the roles

256 J.D. Guttman et al.

of Π+, including the instances of the pre- and post-states on the synchronization
nodes.

An enriched bundle uses � arrows to track the propagation of the state of
each device involved in the behavior. This is not a sufficient model for reasoning
about state, which requires also the two axioms of Definition 3, but it provides
the objects from which we will winnow the state-respecting bundles.

Definition 2 (Enriched bundles). B+ = (N ,→,�) is an enriched bundle
iff (N ,→) is a bundle, and moreover:

1. n1 � n2 implies that n1 is an init or tran event and n2 is an obsv or tran
event, and the post-state of n1 equals the pre-state of n2;

2. For each obsv or tran event n2, there exists a unique n1 such that n1 � n2;
3. The transitive closure (⇒ ∪ → ∪ �)+ of the three arrow relations is acyclic.

We refer to the partial order it determines as ≺B+ or ≺ when B+ is clear.

Enriched bundles are not a sufficient execution model, however, because they
do not capture what is essentially different about state as compared to messages:
the way that the next transition event consumes a state value, such that it cannot
be available again unless a new transition creates it again. We can see this by
connecting our current set-up to a state-machine model.

Each enriched protocol Π+ determines a type of state machine. Its states
(included in the set of messages) are all pre-states and post-states of the syn-
chronization nodes of all instances of the roles of Π+. A state machine has a set
of initial states. In the state machine determined by Π+, the initial states are
the states σ(s) such that some role ρ ∈ Π+ has an initiation event init s, and σ
is a substitution determining an instance of ρ.

The state machine determined by Π+ has the state transition relation �
consisting of all pairs of states (s1, s2) where

[s1 � s2] iff there exists a state transition node of Π+ with pre-state t1 and
post-state t2 and a substitution σ, such that s1 = σ(t1) and s2 = σ(t2).

A state history or computation is a finite or infinite sequence of states s0, s1, . . .
that starts with an initial state s0, and, for every i, if si+1 is defined then si�si+1.

There may be a collection of devices {Di}i∈I that instantiate this type of
state machine. A execution consists of a bundle B (Definition 1) together with a
state history for each device {Di}i∈I , where each transition is caused by a state
synchronization node of B.

The enriched bundles are not a sufficient model for reasoning about state,
because there are enriched bundles that do not correspond to any execution in
this sense. We will illustrate this in Sect. 4.

3.2 Our Axioms of State

The initiation and transition events are meant to describe the sequence of states
that a device passes through. The notion of bundle says nothing about the “out-
degree” of an event. A message transmission event can satisfy more than one

Formal Support for Standardizing Protocols with State 257

(1) ◦

tran = tran

(2) ◦

obsv ≺ tran

Fig. 4. State-respecting semantics. (1) State produced (either from a tran or init event)
cannot be consumed by two distinct transitions. (2) Observation occurs after the state
observed is produced but before that state is consumed by a subsequent transition.

message reception. However, a state event (initiation or transition) can satisfy
at most one state transition event.

Observations must occur in a constrained place in the sequence of states.
They acquire an incoming � arrow from a transition or an initiation. Any such
observation occurs before a subsequent change in the state.

These two principles—that transitions do not fork, and observations must
precede a transition that consumes their state—motivate our execution model.
They are illustrated in Fig. 4.

Definition 3 (State-respecting bundle). Let B+ = (N ,→,�) be an
enriched bundle with precedence order ≺. B+ is state-respecting if and only if:

1. if n � n0 and n � n1, where n0 and n1 are tran events, then n1 = n0;
2. Let the relation ≺+ be the smallest transitive relation including ≺ such that

whenever n0 is an obsv and n1 is a tran, then

n � n0 and n � n1 implies n0 ≺+ n1. (2)

Then ≺+ is acyclic.

We call Clause 1 the No State Split Principle. Clause 2 is the Observation
Ordering Principle.

These two axioms are adequate to provide a model of state. In particular,
in the extended version of this paper [17], we prove that the executions in the
sense we formalize there correspond exactly to the state-respecting bundles of
Definition 3. Given a state-respecting B+, we show how to follow its � arrows,
thereby generating one state machine computation starting from each initiation
node. This process would fail if the state axioms did not hold. Conversely, given
a family of computations, we can use its steps to determine what states to assign
to each synchronization node, and how to draw� arrows between them.

3.3 Enrich-by-need for Stateful Protocols

In order to analyze stateful protocols with respect to state-respecting bundles
(Definition 3), we adapted the Cryptographic Protocol Shapes Analyzer (cpsa)
which performs automated protocol analysis with respect to (traditional) bundles
(Definition 1). cpsa uses the enrich-by-need method as described in the Intro-
duction. That is, it progressively extends an execution fragment A into a set of

258 J.D. Guttman et al.

execution fragments {Bi}. The extending occurs only as needed, namely, when
the execution fragment does not contain enough information to fully describe a
bundle. For message-only protocols, extending is necessary exactly when a mes-
sage received at node n cannot be derived by the adversary using previously sent
messages as inputs to a web of adversary strands.

We adapted cpsa in several ways to account for the properties of state syn-
chronization nodes in state-respecting bundles. First, we added state synchro-
nization nodes to the internal data structures of the tool. We then augmented
the tool to recognize that extending is necessary when a state synchronization
node n has pre-state s, but there is no node n0 with post-state s such that
n0 � n. Finally, we implemented the corresponding rules for extending execu-
tion fragments by adding state synchronization nodes that supply the necessary
state. In doing so, we experimented with two versions, one works for enriched
bundles that need not satisfy the two axioms from Definition 3, and one which
enforces these axioms. This former version allow us to perform analyses that lead
to bundles satisfying Definition 2 which do not correspond to any executions of
the state-machine model. The latter eliminates these ersatz results.

One advantage to the use of state-respecting bundles is that it allowed us to
integrate an analysis of the stateful part of the protocol in a modular fashion.
Our current release of cpsa [24] simply adds techniques for state-based reasoning
without altering the message passing analysis algorithms. The analysis of pro-
tocols that do not contain state synchronization nodes remains unchanged. We
thus provide a clean separation of the two distinct aspects of stateful protocols
in an integrated whole.

The next section explores several examples that demonstrate the results of
these two versions and hopefully provide some intuition about why the two
axioms of state are necessary.

4 Analysis of the Envelope Protocol

The two conditions of Definition 3 identify the crucial aspects of state that dis-
tinguish state events from message events. They axiomatize necessary properties
of state that are not otherwise captured by the properties of enriched bundles.
In order to give the reader some intuition for these properties, we present several
analyses of the Envelope Protocol in this section. We begin by contrasting two
analyses; one is based on enriched bundles that only satisfy Definition 2, while
the other is based on state-respecting bundles that also satisfy Definition 3.

Enriched vs. state-respecting bundles. Recall that the Envelope Protocol
was designed to satisfy Security Goal 1. That is, there should be no executions
in which (1) Alice completes a run with fresh, randomly chosen values for v
and n, (2) v is available unencrypted on the network, and (3) the refusal cer-
tificate Q is also available on the network. Whether we use enriched bundles or
state-respecting bundles as our model of execution, the analysis begins the same
way. The relevant fragment of the point at which the two analyses diverges is
depicted in Fig. 5. The reader may wish to refer to the figure during the following

Formal Support for Standardizing Protocols with State 259

alice extend extend decrypt

• ···n··· •

◦

∗

◦ ◦

quote extend • v

• •

◦ ◦

•Q

Fig. 5. A crucial moment in the cpsa analysis of the Envelope Protocol, demonstrating
the importance of our first axiom of state.

description of the enrich-by-need process. The first three steps describe how we
infer the existence of the top row of strands from right to left. The last two steps
explain how we infer the strands in the bottom row from left to right.

1. The presence of v in unencrypted form implies the existence of a decrypt
strand to reveal it.

2. The decrypt strand requires the current state to be #(obt,#(n, s)), so our
new principle of state explanation implies the existence of an extend strand
with input value obt.

3. This newly inferred extend strand, in turn must have its current state #(n, s)
explained which is done by another extend strand that receives the value n
from Alice.

4. The presence of the quoted refusal token Q implies the existence of a quote
strand to produce it.

5. The quote strand requires the state to be #(ref,#(n, s)), which allows us to
infer the third extend strand.

At this point in the analysis, the underlying semantics of bundles begins to
matter. Our analysis still must explain how the state became #(n, s) for this
last extend strand. If we use enriched bundles that do not satisfy Definition 3,
then we may re-use the extend strand inferred in Step 3 as an explanation. This
would cause us to add a � arrow between these two state events (along the
dotted arrow ∗ of Fig. 5) forcing us to “split” the state coming out of the earlist
extend strand. Further steps allow us to discover an enriched bundle compatible
with our starting point, contrary to Security Goal 1. Importantly, however, all
enriched bundles that extend the fragment with the split state are non-state-
respecting.

If, on the other hand, we only allow state-respecting bundles, Condition 1 of
Definition 3 does not allow us to re-use the extend strand inferred in Step 3 to
explain the state found on the strand of Step 5. Instead, we are forced to infer yet

260 J.D. Guttman et al.

another extend strand that receives Alice’s nonce n. However, since Alice uses
an encrypted session that provides replay protection, the adversary has no way
to return the TPM state to #(n, s). Thus, although there are enriched bundles
that violate Security Goal 1, there are no state-respecting bundles that do so.

A flawed version. We also performed an analysis of the Envelope Protocol,
removing the assumption that Alice’s nonce n is fresh, to demonstrate our state-
respecting variant’s ability to automatically detect attacks. The analysis pro-
ceeds similarly; as in the previous analysis we decline to add a � arrow along
∗ thanks to our stateful semantics. However, the alternative possibility that a
fresh extend strand provides the necessary state proves to work out. Because n
is not freshly chosen, the parent can engage in a distinct extend session with
the same n.

Note that our analysis does not specify that s = s0, where s is the state of
the PCR when first extended. For the case where s = s0, the attack is to reboot
the TPM after obtaining one value (either the refuse token or Alice’s secret),
re-extend the boot state with n, and then obtain the other. More generally, as
long as s is a state that the parent can induce, a similar attack is possible.

4.1 The Importance of Observer Ordering

The Envelope Protocol example demonstrates the crucial importance of captur-
ing our first axiom of state correctly. The second axiom, involving the relative
order of observations and state transition, is no less crucial to correct under-
standing of stateful protocols.

Another example protocol, motivated by a well-known issue with PKCS #11
(see, e.g. [9]), illustrates the principle more clearly. Suppose a hardware device
is capable of producing keys that are meant to be managed by the device and
not learnable externally. If the device has limited memory, it may be necessary
to export such a key in an encrypted form so the device can utilize external
storage.

Thus, device keys can be used for two distinct purposes: for encryp-
tion/decryption of values on request, or for encrypting internal keys for external
storage. It is important that the purpose of a given key be carefully tracked, so
that the device is not induced to decrypt one of its own encrypted keys.

Suppose that for each key, the device maintains a piece of state, namely, one
of three settings:

– A wrap key is used only to encrypt internal keys.
– A decrypt key may be used to encrypt or decrypt.
– An initial key has not yet been assigned to either use.

If a key in the wrap state can later be put in the decrypt state, a relatively
obvious attack becomes possible: while in the wrap state, the device encrypts
some internal key, and later, when the key is in the decrypt state, the device
decrypts the encrypted internal key.

Formal Support for Standardizing Protocols with State 261

However, if keys can never exit the wrap state once they enter it, this attack
should not be possible. If we were to represent this protocol within cpsa, we
would include the following roles:

– A create key role that generates a fresh key and initializes its state to initial
– A set wrap role that transitions a key from initial or decrypt to wrap.
– A set decrypt role that transitions a key from initial to decrypt.
– A wrap role in which a user specifies two keys (by reference), and the device

checks (with an observer) that the first is in the wrap state and if so, then
encrypts the second key with the first and transmits the result.

– A decrypt role in which a user specifies a key (by reference) and a ciphertext
encrypted under that key, and the device checks (with an observer) that the
key is in the decrypt state and if so, then decrypts the ciphertext and transmits
the resulting plaintext.

init set decrypt set wrap wrap

◦ ◦ ◦ ◦

decrypt •
{|k2|}k1•

◦

• k2

Fig. 6. Observer ordering example

Note that the attack should not be possible. However, the bundle described in
Fig. 6 is a valid bundle, and fails to be state-respecting only because of our axiom
about observers. Our second axiom induces an ordering so that the observer in
the decrypt strand occurs before the following transition event in the set wrap
strand. The induced ordering is shown in the figure with a single dotted arrow;
note the cycle among state events present with that ordering that is not present
without it.

5 Related Work

The problem of reasoning about protocols and state has been an increasing focus
over the past several years. Protocols using TPMs and other hardware security
modules (HSMs) have provided one of the main motivations for this line of work.

A line of work was motivated by HSMs used in the banking industry [18,28].
This work identified the effects of persistent storage as complicating the security
analysis of the devices. There was also a strong focus on the case of PKCS #11

262 J.D. Guttman et al.

style devices for key management [5,6,12]. These papers, while very informa-
tive, exploited specific characteristics of the HSM problem; in particular, the
most important mutable state concerns the attributes that determine the usage
permitted for keys. These attributes should usually be handled in a monotonic
way, so that once an attribute has been set, it will not be removed. This justifies
using abstractions that are more typical of standard protocol analysis.

In the TPM-oriented line of work, an early example using an automata-based
model was by Gürgens et al. [13]. It identified some protocol failures due to the
weak binding between a TPM-resident key and an individual person. Datta
et al.’s “A Logic of Secure Systems” [8] presents a dynamic logic in the style
of PCL [7] that can be used to reason about programs that both manipulate
memory and also transmit and receive cryptographically constructed messages.
Because it has a very detailed model of execution, it appears to require a level of
effort similar to (multithreaded) program verification, unlike the less demanding
forms of protocol analysis.

Mödersheim’s set-membership abstraction [21] works by identifying all data
values (e.g. keys) that have the same properties; a change in properties for a given
key K is represented by translating all facts true for K’s old abstraction into
new facts true of K’s new abstraction. The reasoning is still based on monotonic
methods (namely Horn clauses). Thus, it seems not to be a strategy for reasoning
about TPM usage, for instance in the Envelope Protocol.

Guttman [15] developed a theory for protocols (within strand spaces) as
constrained by state transitions, and applied that theory to a fair exchange pro-
tocol. It introduced the key notion of compatibility between a protocol execution
(“bundle”) and a state history. This led to work by Ramsdell et al. [23] that
used cpsa to draw conclusions in the states-as-messages model. Additional con-
sequences could then be proved using the theorem prover PVS [22], working
within a theory of both messages and state organized around compatibility.

A group of papers by Ryan with Delaune, Kremer, and Steel [10,11], and with
Arapinis and Ritter [2] aim broadly to adapt ProVerif for protocols that interact
with long-term state. ProVerif [1,4] is a Horn-clause based protocol analyzer with
a monotonic method: in its normal mode of usage, it tracks the messages that
the adversary can obtain, and assumes that these will always remain available.
Ryan et al. address the inherent non-monotonicity of adversary’s capabilities by
using a two-place predicate att(u,m) meaning that the adversary may possess m
at some time when the long-term state is u. In [2], the authors provide a compiler
from a process algebra with state-manipulating operators to sets of Horn clauses
using this primitive. In [11], the authors analyze protocols with specific syntactic
properties that help ensure termination of the analysis. In particular, they bound
the state values that may be stored in the TPMs. In this way, the authors verify
two protocols using the TPM, including the Envelope Protocol.

Meier, Schmidt, Cremers, and Basin’s tamarin prover [20] uses multiset
rewriting (MSR) as a semantics in which to prove properties of protocols. Since
MSR suffices to represent state, it provides a way to prove results about pro-
tocols with state. Künnemann studied state-based protocol analysis [19] in a
process algebra akin to StatVerif, which he translated into the input language of

Formal Support for Standardizing Protocols with State 263

tamarin to use it as a proof method. Curiously, the main constructs for mutable
state and concurrency control (locking) are axiomatized as properties of traces
rather than encoded within MSR (see [19, Fig. 10]).

Our work. One distinguishing feature of this work is our extremely simple
modification to the plain message passing semantics to obtain a state-respecting
model. These are the two Axioms 1–2 in Definition 3. We think it is an attractive
characteristic of the strand space framework that state reflects such a clean
foundational idea. Moreover, this foundational idea motivated a simple set of
alterations to the enrich-by-need tool cpsa.

6 Protocol Security Goals

The enrich-by-need analysis performed in our enhanced version of cpsa is fully
compatible with the language of goals found in previous work such as [26]. The
goal language is based on two classes of predicates: role-related predicates that
relate an event or parameter value to its use within a specific protocol role, and
predicates that are protocol-independent and describe important properties of
bundles. The latter includes the ordering of events as well as assumptions about
freshly chosen values and uncompromised keys. Both classes of predicates apply
within state-respecting bundles in a natural way. The role-related predicates are
sensitive only to the position of an event in the sequence of events of a role, and
to the choice of parameter values in that instance of the role. Indeed, nodes that
represent state transitions or observations are handled in exactly the same way,
since they have positions in the role and parameter values in just the same way
as the message transmission and reception events.

Thus, the state-respecting version of cpsa can verify formulas expressing
security goals in exactly the same way as the previous version, and with the
same semantic definitions.

7 Conclusion

In this paper, we have argued that cpsa—and possibly other formalized protocol
analysis methods—can provide reliable analysis when protocols are standard-
ized, even when those protocols are manipulating devices with long-term state.
A core idea of the formalization are the two axioms of Definition 3, which encap-
sulate the difference between a message-based semantics and the state-respecting
semantics.

References

1. Abadi, M., Blanchet, B.: Analyzing security protocols with secrecy types and logic
programs. J. ACM 52(1), 102–146 (2005)

2. Arapinis, M., Ritter, E., Ryan, M.D.: Statverif: verification of stateful processes.
In: Computer Security Foundations Symposium (CSF), pp. 33–47. IEEE (2011)

264 J.D. Guttman et al.

3. Arapinis, M., Ryan, M., Ritter, E.: StatVerif: verification of stateful processes. In:
IEEE Symposium on Computer Security Foundations. IEEE CS Press, June 2011

4. Blanchet, B.: An efficient protocol verifier based on Prolog rules. In: 14th Computer
Security Foundations Workshop, pp. 82–96. IEEE CS Press, June 2001

5. Cortier, V., Keighren, G., Steel, G.: Automatic analysis of the security of XOR-
based key management schemes. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 538–552. Springer, Heidelberg (2007)

6. Cortier, V., Steel, G.: A generic security API for symmetric key management on
cryptographic devices. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol.
5789, pp. 605–620. Springer, Heidelberg (2009)

7. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positional logic for security protocols. J. Comput. Secur. 13(3), 423–482 (2005)

8. Datta, A., Franklin, J., Garg, D., Kaynar, D.: A logic of secure systems and its
application to trusted computing. In: 2009 30th IEEE Symposium on Security and
Privacy, pp. 221–236. IEEE (2009)

9. Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-based protocols.
In: Proceedings of the 21st IEEE Computer Security Foundations Symposium
(CSF’08), pp. 239–251. IEEE Computer Society Press, June 2008

10. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: A formal analysis of authentication
in the TPM. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol.
6561, pp. 111–125. Springer, Heidelberg (2011)

11. Delaune, S., Kremer, S., Ryan, M.D., Steel, G.: Formal analysis of protocols based
on TPM state registers. In: IEEE Symposium on Computer Security Foundations.
IEEE CS Press, June 2011

12. Fröschle, S., Sommer, N.: Reasoning with past to prove PKCS#11 keys secure.
In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
96–110. Springer, Heidelberg (2011)

13. Gürgens, S., Rudolph, C., Scheuermann, D., Atts, M., Plaga, R.: Security evalua-
tion of scenarios based on the TCG’s TPM specification. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 438–453. Springer, Heidelberg (2007)

14. Guttman, J.D.: Shapes: surveying crypto protocol runs. In: Cortier, V., Kremer, S.
(eds.) Formal Models and Techniques for Analyzing Security Protocols, Cryptology
and Information Security Series. IOS Press (2011)

15. Guttman, J.D.: State and progress in strand spaces: proving fair exchange. J.
Autom. reasoning 48(2), 159–195 (2012)

16. Guttman, J.D.: Establishing and preserving protocol security goals. J. Comput.
Secur. 22(2), 201–267 (2014)

17. Guttman, J.D., Liskov, M.D., Ramsdell, J.D., Rowe, P.D.: Formal support for
standardizing protocols with state (extended version). Arxiv, September 2015.
http://arxiv.org/abs/1509.07552

18. Herzog, J.: Applying protocol analysis to security device interfaces. IEEE Secur.
Priv. 4(4), 84–87 (2006)

19. Kremer, S., Künnemann, R.: Automated analysis of security protocols with global
state. In: IEEE Symposium on Security and Privacy, pp. 163–178 (2014)

20. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the
symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013)

21. Mödersheim, S.: Abstraction by set-membership: verifying security protocols and
web services with databases. In: ACM Conference on Computer and Communica-
tions Security, pp. 351–360 (2010)

http://arxiv.org/abs/1509.07552

Formal Support for Standardizing Protocols with State 265

22. Owre, S., Rushby, J.M., Shankar, N.: PVS: a prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). http://pvs.csl.sri.com

23. Ramsdell, J.D., Dougherty, D.J., Guttman, J.D., Rowe, P.D.: A hybrid analysis
for security protocols with state. In: Albert, E., Sekerinski, E. (eds.) IFM 2014.
LNCS, vol. 8739, pp. 272–287. Springer, Heidelberg (2014)

24. Ramsdell, J.D., Guttman, J.D.: CPSA: A cryptographic protocol shapes analyzer
(2009). http://hackage.haskell.org/package/cpsa

25. Ramsdell, J.D., Guttman, J.D., Millen, J.K., O’Hanlon, B.: An analysis of the
CAVES attestation protocol using CPSA. MITRE Technical report MTR090213,
The MITRE Corporation, December 2009. http://arxiv.org/abs/1207.0418

26. Rowe, P.D., Guttman, J.D., Liskov, M.D.: Measuring protocol strength with secu-
rity goals. Submitted to IJIS in the SSR 2014 special issue, April 2015. http://
web.cs.wpi.edu/∼guttman/pubs/ijis measuring-security.pdf

27. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: proving security proto-
cols correct. J. Comput. Secur. 7(2/3), 191–230 (1999)

28. Youn, P., Adida, B., Bond, M., Clulow, J., Herzog, J., Lin, A., Rivest, R., Anderson,
R.: Robbing the bank with a theorem prover. In: Security Protocols Workshop
(2007). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf

http://pvs.csl.sri.com
http://hackage.haskell.org/package/cpsa
http://arxiv.org/abs/1207.0418
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://web.cs.wpi.edu/~guttman/pubs/ijis_measuring-security.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf

Author Index

Bernstein, Daniel J. 109

Chen, Cheng 140
Choi, Daeseon 43
Chou, Tung 109
Chuengsatiansup, Chitchanok 109
Clarke, Dylan 3

Escobar, Santiago 86

Fujiki, Yuri 203

González-Burgueño, Antonio 86
Guttman, Joshua D. 246

Hao, Feng 3, 21
Hokino, Masatoshi 203
Hülsing, Andreas 109
Hwang, Jung Yeon 43

Jin, Seung-Hun 43

Kaneko, Takeaki 203
Kayuni, Mwawi Nyirenda 185
Khan, Mohammed Shafiul Alam 165, 185
Kim, Seung-Hyun 43

Lambooij, Eran 109
Lange, Tanja 109
Li, Wanpeng 185
Liskov, Moses D. 246

McCorry, Patrick 3
Meadows, Catherine 86
Mehrnezhad, Maryam 21
Meseguer, José 86
Milius, Stefan 218
Mitchell, Chris J. 165, 185

Niederhagen, Ruben 109

Onda, Sakura 203

Ramsdell, John D. 246
Rowe, Paul D. 246
Ruland, Karl Christoph 70

Sakimura, Natsuhiko 203
Santiago, Sonia 86
Sassmannshausen, Jochen 70
Sato, Hiroyuki 203
Sekar, Gautham 154
Shahandashti, Siamak F. 3, 21
Sibold, Dieter 218
Song, Boyeon 43

Teichel, Kristof 218

van Vredendaal, Christine 109

Yang, Kang 140
Yau, Po-Wah 185

Zhang, Jiang 140
Zhang, Zhenfeng 140

	Preface
	Security Standardisation Research 2015
	Contents
	Bitcoin and Payment
	Authenticated Key Exchange over Bitcoin
	1 Introduction
	2 Background
	2.1 Bitcoin
	2.2 Transaction Signature

	3 Key Exchange Protocols
	3.1 Setting the Stage
	3.2 Authentication
	3.3 Diffie-Hellman-over-Bitcoin Protocol
	3.4 YAK-over-Bitcoin Protocol

	4 Security Analysis
	4.1 Security of Diffie-Hellman-over-Bitcoin
	4.2 Security of YAK-over-Bitcoin
	4.3 Security of ECDSA Signatures

	5 Implementation
	5.1 Time Analysis
	5.2 Note About Domain Parameters

	6 Conclusion
	References

	Tap-Tap and Pay (TTP): Preventing the Mafia Attack in NFC Payment
	1 Introduction
	2 Our Solution: Tap-Tap and Pay (TTP)
	2.1 Threat Model
	2.2 Overview of the Solution
	2.3 Sensor Data Preprocessing
	2.4 Similarity Comparison

	3 System Evaluation
	3.1 Experiment Setup and Data Collection
	3.2 Results
	3.3 Online and Offline Modes

	4 Usability Study
	4.1 Experiment Setup and Data Collection
	4.2 Findings

	5 Comparison with Previous Works
	6 Further Related Works
	7 Conclusion
	References

	Protocol and API
	Robust Authenticated Key Exchange Using Passwords and Identity-Based Signatures
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Organization

	2 Preliminaries
	3 Security Model
	4 Our Identity-Based Signature Scheme
	5 Our IBS-PAKE Protocols
	5.1 Generic Construction
	5.2 Instances
	5.3 Security Proofs

	6 Performance Analysis
	6.1 Performance Comparison
	6.2 Experimental Results

	7 Conclusion
	A Bilinear Maps
	B Computational Assumptions
	C Simplified IBS-PAKE Protocols
	References

	Non-repudiation Services for the MMS Protocol of IEC 61850
	1 Introduction
	2 The State of the Art
	2.1 The standard IEC 61850
	2.2 The Standard IEC 62351
	2.3 The Weak Point of IEC 62351
	2.4 Additional Security Requirements

	3 A Security Solution for the A-Profile
	3.1 Difference Between NROT and NRDT
	3.2 Generation of NROT and NRDT
	3.3 The Verification of the APDUs
	3.4 Checking the NRDT
	3.5 NRD Tokens for the Server
	3.6 The Application Security Sublayer
	3.7 Providing the APDUs with Tokens
	3.8 Access Control Lists
	3.9 Logging of Events

	4 An Implementation Using XML Signatures
	4.1 How the Process Works
	4.2 The Modified Communication
	4.3 Example
	4.4 Advantages of XML Signatures and Tokens
	4.5 Possible Disadvantages of XML Signatures

	5 Conclusion
	References

	Analysis of the PKCS#11 API Using the Maude-NPA Tool
	1 Introduction
	2 Maude-NPA
	2.1 Preliminaries on Unification and Narrowing
	2.2 Maude-NPA Syntax and Semantics
	2.3 Never Patterns in Maude-NPA

	3 PKCS#11
	4 Specification of PKCS#11 in Maude-NPA
	4.1 Formal Model of PKCS#11 in Maude-NPA
	4.2 Specification of PKCS#11 in Maude-NPA's Syntax

	5 Experiments
	6 Related Work
	7 Conclusions
	References

	Analysis on Cryptographic Algorithm
	How to Manipulate Curve Standards: A White Paper for the Black Hat http://bada55.cr.yp.to
	1 Introduction
	1.1 Elliptic-Curve Cryptography.
	1.2 Organization.
	1.3 Research Contributions of this Paper.

	2 Public Security Analyses
	2.1 Warning: Math Begins Here.
	2.2 Review of Public ECDLP Security Criteria.
	2.3 ECC Security vs. ECDLP Security.
	2.4 The Probability of Passing Public Criteria.
	2.5 The Probabilities for Various Feasible Attacks.

	3 Manipulating Curves
	3.1 Curves Without Public Justification.
	3.2 The Attack.
	3.3 Implementation.

	4 Manipulating Seeds
	4.1 Hash Verification Routine.
	4.2 Acceptability Criteria.
	4.3 The Attack.
	4.4 Optimizing the Attack.
	4.5 Implementation.

	5 Manipulating Nothing-up-my-sleeve Numbers
	5.1 The Brainpool Procedure.
	5.2 The BADA55-VPR-224 Procedure.
	5.3 How BADA55-VPR-224 Was Generated: Exploring the Space of Acceptable Procedures.
	5.4 Manipulating Bit-Extraction Procedures.
	5.5 Manipulating Choices of Hash Functions.
	5.6 Manipulating Counter Sizes.
	5.7 Manipulating Hash Input Sizes.
	5.8 Manipulating the (a,b) Hash Pattern.
	5.9 Manipulating Natural Constants.
	5.10 Implementation.

	6 Manipulating Minimality
	6.1 NUMS Curves.
	6.2 Choice of Security Level.
	6.3 Choice of Prime.
	6.4 Choice of Ordering of Field Elements.
	6.5 Choice of Curve Shape and Cofactor Requirement.
	6.6 Choice of Twist Security.
	6.7 Choice of Global vs. Local Curves.
	6.8 More Choices.
	6.9 Overall Count.

	7 Manipulating Security Criteria

	Security of the SM2 Signature Scheme Against Generalized Key Substitution Attacks
	1 Introduction
	1.1 Our Contributions

	2 Preliminaries
	2.1 Collision-Resistant Hash Functions
	2.2 Uniform (Smooth) Hash Functions
	2.3 Almost-Invertibility of Conversion Functions

	3 Definitions
	4 Generalized WKS Attacks Against a General Framework of ISO/IEC CD 14888-3
	5 Security of the SM2 Signature Scheme
	5.1 SM2 Digital Signature Scheme
	5.2 EUF-CMA Security of SM2
	5.3 Security of SM2 Against Generalized SKS Attacks

	References

	Side Channel Cryptanalysis of Streebog
	1 Introduction
	2 Description of Streebog
	3 The Message Recovery Attack
	3.1 Implications of Our Attack

	4 Countermeasures
	5 Conclusions
	References

	Privacy
	Improving Air Interface User Privacy in Mobile Telephony
	1 Introduction
	2 Background
	2.1 Mobile Telephony Systems
	2.2 Proactive UICC
	2.3 The AKA Protocol

	3 User Privacy Threats
	4 Threat Model
	5 A Pseudonymity Approach
	6 Predefined Multiple IMSIs
	6.1 USIM-Initiated IMSI Change
	6.2 Network-Initiated IMSI Change

	7 Modifiable Multiple IMSIs
	8 Experimental Validation
	9 Analysis
	9.1 User Privacy
	9.2 IMSI Synchronisation

	10 Related Work
	11 Conclusions
	References

	Generating Unlinkable IPv6 Addresses
	1 Introduction
	2 Background
	2.1 Stateless Address Autoconfiguration (SLAAC)
	2.2 Privacy Extensions to SLAAC
	2.3 The Gont Approach
	2.4 The Rafiee-Meinel Scheme
	2.5 Other Schemes
	2.6 A Summary

	3 Practical Limitations to Privacy
	3.1 Use of Randomness
	3.2 Privacy Goals
	3.3 RFC 4941 Method 1
	3.4 RFC 4941 Method 2 and the Rafiee-Meinel Scheme
	3.5 The Gont Scheme

	4 Practical Measures to Improve Randomness Generation
	4.1 Generating Randomness
	4.2 A Simple Improvement to RFC 4941 Method 1
	4.3 Making the Gont Scheme More Robust

	5 Summary and Conclusions
	References

	Trust and Formal Analysis
	A Practical Trust Framework: Assurance Levels Repackaged Through Analysis of Business Scenarios and Related Risks
	1 Introduction
	2 Related Work on Trust Framework
	3 Assessment Criteria of Assurance Levels
	3.1 Credential Issuance and Identity Proofing Process Requirements
	3.2 Authentication Process Requirements
	3.3 Requirements for Certification

	4 Analysis of Business Scenarios in Terms of Assurance Levels
	4.1 Design Objectives of Field Survey
	4.2 Classification of Business Scenarios
	4.3 Self-Regulation and Objectivity
	4.4 Effectiveness of High Level Authentication Processes

	5 Level of Assurance 1+
	6 Concluding Remarks
	References

	First Results of a Formal Analysis of the Network Time Security Specification
	1 Introduction
	2 Security for Packet-Based Time Synchronization
	2.1 Time Synchronization Methods
	2.2 Criteria for Different Stages of Analysis
	2.3 Choice of Tool for the Analysis

	3 Basic Assumptions and Protocol Notation
	4 The Protocol Steps Under Analysis
	4.1 The Network Time Security Project
	4.2 Overview of the Protocol Sequence

	5 Performing the Analysis
	6 Results of the First Analysis
	7 Conclusion
	A ProVerif Source Code
	A.1 Cryptographic Primitives
	A.2 Global Variables and Constants
	A.3 Events
	A.4 The Trusted Authority Process
	A.5 The Server Side Processes
	A.6 The Client Side Processes
	A.7 The Environment Process
	A.8 ProVerif Queries

	References

	Formal Support for Standardizing Protocols with State
	1 Introduction
	2 The Envelope Protocol
	3 State-Respecting Bundles
	3.1 Enriching Bundles with State
	3.2 Our Axioms of State
	3.3 Enrich-by-need for Stateful Protocols

	4 Analysis of the Envelope Protocol
	4.1 The Importance of Observer Ordering

	5 Related Work
	6 Protocol Security Goals
	7 Conclusion
	References

	Author Index

