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Abstract In the robotics field, behavior-based architectures are software systems
that define how complex robot behaviors are decomposed into single units, how they
access sensors and motors, and the mechanisms for communication, monitoring, and
setup. This paper describes themain ideas of a simple, efficient, and scalable software
architecture for robotic applications. Using a convenient design of the basic building
blocks and their interaction, developers can face complex applications without any
limitations. This architecture has proven to be convenient for different applications
like robot soccer and therapy for Alzheimer patients.

Keywords Behavior architectures · Autonomous humanoid robots · Real-time
processing

1 Introduction

In recent years, many developments have been made in mobile robotics. Robots are
equipped with more complex actuators (even for diving or flying), richer sensors
(as cameras RGB-D), batteries that increment robot autonomy, and more powerful
processors that let the robot process huge data onboard. Moreover, many commercial
robotic platforms are available now at a low cost. This enables us to focus on the
development of software without addressing the development of a complete robot
from scratch. Despite this advantage, the development of software for robots is a
complex task.
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Software for robots defines robot operation. Roodney Brooks [1] presented the
basis of behavior-based robotics. This paradigmdescribes how the complexbehaviors
are built up to decompose into simpler behavior modules, which can be organized as
modules. How these simple modules work, how they organize, and how they interact
among them are open questions that continue to receive attention from the robotics
community. The active ROS [11] community and its impact on the industry denotes
this importance during the last few years.

We have developed a behavior-based architecture, which includes simple and
novel ideas for effective development of robotic applications. We have defined a ba-
sic building block and an effective and simplemechanism formaking themcooperate.
Each behavior is implemented as a basic building block that decomposes its com-
plexity, explicitly executing another building block. We will describe mechanisms
to warranty that the information produced by perceptual building blocks does not
expire before being used, avoiding race conditions using a single thread scheme, and
recovering from high-load situation using a graceful degradation approach. These
concepts are related to the scheduling of real-time systems, which is a very con-
venient approach when developing software for a robot that interacts with the real
world.

An important part of this paper is the focus on a complete, deep technical de-
scription. We think that this approach is valid for making this work really useful,
letting robotic software developers include some of these ideas in their software
architectures.

We develop complex mechanisms using the following building blocks: visual at-
tention, perception, or debugging mechanisms. These capabilities can be considered
basic to the software for robots, but they are crucial during the development of high-
level behaviors. An effective, clean, and scalable design lets developers face com-
plex behaviors without any limitations. Monitoring and debugging tools are essential
when developing robotic software, in which the usual techniques from computers
(messages to stdout or debuggers) are not effective on robots.

An important aspect of this work is that all these ideas have been implemented
in a real robot, and used to implement real applications. Because of the experience
and feedback along these years, some ideas have been incorporated, redefined, or
discarded. Nowadays, we can affirm that this architecture is mature and effective.
Using this architecture, we have developed a complete software system for a team of
robots that participates in the Standard Platform League of the RoboCup. This com-
petition presents a dynamic scenario, a soccer match, where we have implemented
fast response behaviors [2], self-localization [3], navigation, coordination, attention,
and perception [4] algorithms using this architecture. We also used this architecture
to develop a complete therapy system [5] for Alzheimer patients by using robots as
a cognitive activator actor.

In section 2 we will present the existing works on software architectures. Section
3 describes the core ideas of the architecture presented in this work. In section 4
we extend these general principles with some optional communication or debugging
mechanism. Section 5 presents mechanisms, such as perception and visual attention,



A Simple, Efficient, and Scalable Behavior-Based Arch. for Rob. Apps. 613

particular to robotic humanoids equipped with cameras. A brief description of two
successful uses of this architecture is presented in section 6.

2 Related Work

Robotic frameworks can be grouped into two main paradigms: those tightly coupled
with a cognitivemodel in their designs and those designed just from pure engineering
criteria. The former forces the user to follow a set of rules to program certain robotic
behaviors, while the latter are just a collection of tools that can flexibly be put together
in several ways to accomplish the task.

Cognitive robotic frameworks were popular in the 1990s and strongly influenced
by the AI, where planning was one of the main keys. Indeed, one of the strengths
of such frameworks was their planning modules built around a sensed reality. A
good example of cognitive frameworks was Saphira [6], based on a behavior-based
cognitive model. Some of its low-level functionality was rewritten as a C++ library
called ARIA [7] that it is still supplied with the popular robotic platforms from
MobileRobots/ActivMedia. Even though the underlying cognitive model is usually
a good practice guide for programming robots, this hardwired coupling often leads
the user to problems that are difficult to solve while trying to do something the
framework is not designed to do.

Current robotic frameworks focus their design on the requirements that robotics
applications need and let the user (the programmer) choose the organization that
better fits with the specific application. The main requirements driving the designs
are:multitasking, distribution, ease of use, and code reusability.Another requirement,
that we believe is the main key, is the open source code, which creates a synergy
between the user and the developer.

The key achievements ofmodern frameworks are the hardware abstraction, hiding
the complexity of accessing heterogeneous hardware (sensors and actuators) under
standard interfaces, the distributed capabilities that allow running complex systems
spread over a network of computers, themultiplatformandmultilanguage capabilities
that enable the user to run the software in multiple architectures, and the existence
of big communities of software that share codes and ideas.

As mentioned before, we believe that open source plays a major role in the devel-
opment of modern robotic frameworks. Proof of this is the two most popular robotic
frameworks: Player/Stage [8, 9, 10], which has been the standard de facto in the
last decade and ROS [11], which is taking its place currently. As seen in other major
software projects as GNU/Linux kernel or the Apache web server, to name but a
few, the creation of communities that interact and share codes and ideas could be
greatly beneficial to the robotic community. The main examples of open source mod-
ern frameworks are the aforementioned Player/Stage and ROS. Another important
example is ORCA [12, 13]. In this work, we describe them briefly.

There are other open source frameworks that have had some impact on the
current state of the art, such as RoboComp [14] by Universidad de Extremadura,
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Fig. 1 BICA component.

CARMEN [15] by Carnegie Mellon, and Miro [16] by University of Ulm. All these
use some component-based approach to organize robotic software using ICE, IPC,
and CORBA, respectively, to communicate their modules.

We can find non-open-source solutions as well, such asMicrosoft Robotics Studio
or ERSP by Evolution Robotics.

3 Basic Principles

The basic building block in BICA is the component (Figure 1), which is the basic
unit of functionality. The main idea is to build a component that does only one thing,
but efficiently. A component is composed of three main parts:

– Modulations: The modulation methods set operation modes or set up the next
component iterations.

– Execution: All the components inherit from the virtual class component, which
defines the mandatory methods to be implemented. The most important method is
step(). This method performs an iteration of this component. This is the entry
point for a component-explicit execution.

– Output: The results method is used to get the information produced in the last
iteration.

It is noteworthy to highlight that modulations and results methods only write or
read internal variables; so the execution time of these methods is in the range of a
few microseconds. The computation time of a component can be assumed to be the
step() method execution time.

Class component also determines that each component is a Singleton. This
makes it easy to have only one instance of each component, and obtain a reference to
it from any other component. The next code describes the initialization and step()
method of the component A, that uses the component B to get some information.
This information is used to modulate the execution of component C. Note the order
of the calls. If the component needs information, it executes the step() method
first. If the component modulates another component, it calls the modulation method
before calling the step() method.
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//Two components used by A
B A::b;
C A::c;

A::A()
{

b = B::GetInstance();
c = C::GetInstance();

}

A::step()
{

b->step();

int info = b->getInfo();

//Do component A work

c->setInfo(info);

c->step();
}

The scheduler implemented in this architecture calls the step()method of a list
of components. Usually, this list only contains a reference to the top-level component,
which defines a behavior that can be specified in a setup file. Additionally, we can
add more references to components from the monitoring tools in order to execute
more components. The implementation is simple:

while(true)
for(i=CompList.begin();i!=CompList.end();++i)

i->step();

Each component is set up to a different frequency, depending on the particu-
lar function it does. As a simple orientation, the frequency set to any perceptive
component depends on the time for which this information can be considered valid
for the current actuation. As an example, image processing is usually made at the
camera frame rate (30 Hz) and the locomotion controller sends to the walking en-
gine speed commands at 2 Hz. To carry out this property, the class component
implements methods setFreq() (called during component initialization) and
isTime2Run(), that returns true if the elapsed time since the last time it returned
true is longer than the one specified by the frequency (500 ms if 2 Hz, for example).
Using this method, a usual step() implementation is

A::step()
{

b->step();

if(isTime2Run())
{

int info = b->getInfo();
c->setInfo(info);

}

c->step();
}

The ideas presented above add two important characteristics to this architecture:

– The behavior architecture is thread safe. The scheduler does not create multiple
threads to execute components. Only one thread calls sequentially to the scheduler
list of components. This thread executes in cascade the components, in the order
defined depending on the relation of the components (modulation or results).
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– If any of the components sporadically spends more time than that desired, the
systems suffers from what in real-time literature is called graceful degradation.
The execution of the other components is delayed, but no executions are cancelled
or overlapped. In the development phase of the components, offender components
are detected because istime2Run() methods of each component periodically
test if the frequency is achieved, generating a warning if not.

– The set of of components that a component can activate varies dynamically. As
there is no explicit deactivation method, its step function is simply not called
anymore; we have to design the component having in mind that a component does
not know when it is going to be called again. This is called quiet shutdown.

Components can be very simple or very complex. Simple components communi-
cate with the underlaying system methods to communicate with sensors or motors,
or use a fixed number of components. Complex components can be implemented
as finite state machine, changing the set of components it activates dynamically de-
pending on the state. We have developed a useful tool for designing these complex
components. This tool generates the code of the graphically represented behavior.

4 Extensions

The previous section described the basic principles of our software architecture.
These principles are the core of the implementation of an architecture that follows
the principles described in this paper. This section describes optional extension to
this architecture that we have developed to have more functionality when developing
any of the possible applications.

4.1 Communications

By the communication mechanism, components can be acceded from remote appli-
cations or even components running in other robots. This mechanism is implemented
using the ZroC ICE communications framework. This framework hides all the com-
plexity of programming over sockets and provides a convenient RPC paradigm for
our communications. Each robot runs an ICE broker with a predefined set of inter-
faces that connects directly to the component’s methods. This is allowed only to the
modulation or retrieving information method of components. This is a convenient
way to implement teleoperation applications or cooperating behaviors in groups of
robots.

Communication mechanism uses a separate thread for managing the remote calls.
The components that can be remotely called must implement a mutual exclusion
mechanism to have one thread active executing in a component (in the step()
method or in any modulation/retrieving information method).
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The next section presents a debugging mechanism using the communication ap-
proach described in this section. The data exchanged, a list of structures that defines
graphical elements (circles, boxes, etc.), are defined as an ICE data type. When
running, each part of the communication (computer GUI and BICA) runs a bro-
ker, and the call to the ICE interfacegetDebugData() is directly mapped to the
Debug::getDebugData() method.

4.2 Debug

Debug mechanisms are critical while developing new components. The low-level
mechanisms (stout, stderr, and gdb) are assumed to be available all the time. Actually,
class component already contains two functions (startDebugInfofo() and
endDebugInfo()) used to periodically (each 10 s) print to stdout info about the
real frequency and CPU time.

This mechanism is a convenient way of detecting if a component is consuming
too much time, or if the set frequency is not reached because the system has a
high load, probably produced by a high consumption component. Despite this, the
development of robotic software also needs higher level of debugging mechanisms.
We need to know if the sensor information (image, ultrasound, etc.) is correct, or if
a self-localization algorithm is working correctly, for example.

We have developed a mechanism, which lets us graphically debug the internal
information of the components. An external application can connect to this archi-
tecture to retrieve a list of graphical primitives (points, lines, ellipses, boxes, text,
and images) produced by the components. A component can be debugged in the
image space, in robot relative coordinates and global coordinates. To illustrate the
importance of this concept, we can think of a self-localization component based on
Extended Kaman Filter that could be implemented to return a list of ellipses in global
coordinates, representing the state and uncertainty representing the robot position,
while a self-localization component based on Particle Filters could return a list of
point with an arrow, representing the position and orientation of each particle. Only
the component developer knows which information is crucial for debugging, and this
model affords us this functionality.

We have implemented an external graphic application that communicates with the
scheduler to add components to the execution list and with a Debug component, also
in the execution list, for which the set of components are marked for debugging. Any
component able to be debugged, has to inherit from the abstract classdebuggeable
and implement a getDebugInfo() method:

This debugging mechanism works as follows:

– The GUI activates a set of components and marks them for debugging.
– Once selected, the debugging space (image, relatives, or absolutes), it periodically
asks to the debug component for a list of primitives in that space.
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– Thedebug component calls thegetDebugInfo() of every componentmarked
for debugging and returns to the GUI a list with the information retrieved.

– The GUI draws the graphical primitives retrieved.

5 Basic Capabilities Applied to Humanoid Robot

The BICA Architecture, in which we have shown the key ideas in the last section,
has been implemented in the humanoid robot Nao using NaoiQi, a programming
framework provided by the manufacturer. It is important to note that these ideas
do not depend on the robot, and they are suitable to be implemented in any other
platform. Actually, it would be very easy to be implemented inside a ROS node for
using all the services it provides, and to be available for a great variety of robots.
The design of the contributions described in the next sections are focused on robots
with legs, whose main sensor is a camera with a limited field of view, that can be
oriented to cover all the surroundings.

Nao is a fully programmable humanoid robot. It is equipped with a x86 AMD
Geode 500 Mhz CPU, 1 GB flash memory, 256 MB SDRAM, two speakers, two
cameras (nonstereo), wi-fi connectivity and ethernet port. It has 25 degrees of free-
dom. The operating system is Linux 2.6 with some real-time patches. The robot is
equipped with a microcontroller ARM 7 allocated in its chest to control the robot
motors and sensors, called DCM. NaoQi is a distributed object framework which
allows several distributed binaries (called brokers), each containing several software
modules to communicate together. Robot functionality is encapsulated in software
modules, so we can communicate to specific modules in order to access sensors and
actuators.

BICA is implemented inside one of these modules. Only a limited set of BICA
components, those that provide access to motors and sensors, are NaoQi-dependent,
making nonblocking calls to the services that the robot provides. The rest of the
components are independent of this platform.

5.1 Perception and Visual Memory

The main source of information about the robot environment is mainly provided by
cameras. There are components that provide information from ultrasound sensors or
buttons to the behaviors, but the camera provides the richest information, and is also
a more complex sensor to manage.

The processing of the image has a set of visual stimuli relevant to the robot behav-
iors as output: obstacles, human faces, other robots, landmarks, balls, for example.
This detection is based on the color, shape, size, and position. This processing starts
labeling the color of each pixel in the image. This step is common to the detection
of every visual stimuli. Next steps are particular for each stimuli.
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We have taken advantage of the component-based architecture that BICAprovides
to avoid unnecessary processing, when some of these visual stimuli are not needed
by the active behaviors during the robot operation. First of all, we have developed a
component called Camerawhich labels each pixel with its color using a fast lookup
table, and makes this information available for other components. Particular stimuli
detection is made by particular components, using the labeled image as input, and
performing the rest of the processing.

Detectors are also responsible for updating a local estimation of the local stimuli
with the detection made in every cycle. Detectors use a list of extended kalman filters
to maintain the detected stimuli. Behaviors retrieve this filtered information to make
decisions.

5.2 Attention

The robot’s camera has a limited field of view. Because of this, the robot has to move
the neck to cover all the surroundings and perceive with the camera, fitted in its head,
all the relevant visual stimuli. This is carried out by a visual attention system. This
system is in charge of searching, tracking, and revisiting the visual stimuli.

The visual attention system developed inside the BICA architecture has the
Attention component as the central element. This component has three func-
tions:

1. It sends to the Head component the 3D points where the cameras have to be
orientated.

2. It receives the perceptive requirements from the behavior components with per-
ceptive needs. Using this information, it decides which visual stimulus governs
attention in every moment.

3. It asks to the detector in charge of the visual stimulus that governs attention for
a 3D point. This point is sent to the Head component.

The most relevant benefit of this system is that the searching and tracking is
specialized for each visual stimulus. Some stimulus can be searched on the floor
whereas others in the skyline; it can only have one instance of each stimulus, or more.
This is decided by each detectors developer. In [4], we have presented three different
implementations of attention mechanism using the flexibility and modularity that
this design allows.

6 Robotic Applications

In the previous sections we have described the key ideas of the BICA architecture.
In this section, we will present two different scenarios where we have applied this
architecture.
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6.1 Robot Soccer

Using the BICA architecture we have developed a complete set of behaviors for a
team of robotic players [2] of the Standard Platform League of the RoboCup. This
competition presents a challenging and dynamic scenario where teams of robots have
to play in a soccer match. In this league, in particular, all the robots are similar so all
the efforts are focused on developing software capable of dealing with this problem.

This application needs reactive behaviors, where collisions, error in perception,
and kidnappings are common. We have successfully developed a set of behaviors
to deal with this problem, including cooperation among robots, navigation and self-
localization algorithms, perception, and reactive visual attention. The details of this
implementation can be found in[5].

6.2 Therapy for Alzheimer Patients

This architecture has also shown to be adequate for a completely different application,
such as using this robot for therapies in patients having Alzheimer’s disease. For
this scenario, we have developed a component that plays therapy scripts using new
components capable of playing music and speech and managing the robots leads.
In addition, the reproduction of the script is controlled by applications running in a
tablet, or receiving commands from a wiimote.

7 Conclusion

This paper has presented novel ideas in the designing of behavior-based architecture.
This architecture decomposes complex behaviors into building blocks that cooperate
among them, called components. These concepts provide an effective, clean, and
scalable way of designing complex behaviors in limited resources robots, with real-
time requirements.Our architecture has no separation into layers, but the organization
ismade explicit by the relation between component activation. This contrastswith the
classical approaches, such asXavier [19] or the oneproposedbyArkin [20]. InXavier,
the work is made out of four layers: obstacle avoidance, navigation, path planning,
and task planning. The behavior arises from the combination of these separate layers,
each with a specific task and priority. Arkin designed a hybrid architecture, in which
the behavior is divided into three components: deliberative planning, reactive control,
and motivation drives. Deliberative planning made the navigation tasks. Reactive
control provided with the necessary sensorimotor control integration for response
reactively to the events in its surroundings. Motivation drives were responsible for
monitoring the robot behavior.

ROS [11] is nowadays the reference in software architectures. It decomposed
applications into nodes that can communicate among them using direct messages
or notifications to published data. It is thread safe and provides many graphical and
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test-based tools for debugging, monitoring, and developing. ROS community is very
active, developing many software libraries and drivers that can be easily reused. Our
approach is a more compact design. Instead of making each component a separate
process, all the BICA components share the same memory space and the calls are
local, making our approach more efficient for embedded applications, but limited
in distributed applications. The design of each component as a singleton makes it
another very easy to use component without any risk.

We have described the details of the execution of these components. These de-
tails give this architecture some important characteristics when developing real-time
robotic applications: thread safe approach, graceful degradation to high-load events,
and efficient perceptive pipeline. We have also described how we have used these
concepts to develop visual attention or debugging mechanisms. One of the most im-
portant characteristic of this paper is that these concepts are described froma technical
point of view, being useful to incorporate these ideas to any robotic software.

This architecture has been successfully used to deal with two complex applica-
tions such as the robot soccer or the therapy for Alzheimer patients. The robot soccer
presents a challenging environment where the robot perceives the relevant visual
stimulus, processes this information, and generates a fast response in terms of actu-
ation and active perception commands. We have demonstrated how our approach is
efficient enough to deal with perception, navigation, self-localization, team coordi-
nation, action generation, and active vision when all the processing is performed on-
board. The perception requirements and component activations dynamically change
during the robot operation, and our approach adapts to these changes, saving com-
puting resources. The other application, focused on using new interfaces to commu-
nicate with the robot during therapies, shows how the approach is also valid in such
a different environment.

We have also shown that this architecture is convenient for developing robotic
applications. Our approach is scalable and provides a simple way to decompose the
functionality in components that can be run isolated during development phase and
being debugged with the efficient debugging mechanism described in this paper.
At this time, this architecture is mature enough to be used in any application. It
has been developed for the humanoid robot Nao, but we are currently working on an
implementation inside anROSnode, obtaining the benefits ofROS, and the properties
of our approach.
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