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Abstract To cope with the growing complexity of manipulation tasks, the way to
combine and access information from high- and low-planning levels has recently
emerged as an interesting challenge in robotics. To tackle this, the present paper
first represents the manipulation problem, involving knowledge about the world and
the planning phase, in the form of an ontology. It also addresses a high-level and a
low-level reasoning processes, this latter related with physics-based issues, aiming to
appraise manipulation actions and prune the task planning phase from dispensable
actions. In addition, a procedure is contributed to run these two-level reasoning
processes simultaneously in order to make task planning more efficient. Eventually,
the proposed planning approach is implemented and simulated through an example.
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1 Introduction

Increasing complexity of daily manipulation tasks requires a robot to become more
capable, robust, as well as autonomous in order to carry out various manipula-
tion actions, e.g., pushing different sort of objects holding unique characteristics
in human-like environments. In solving a given complex manipulation problem,
high-level beside low-level planning are required, and their combination plays a cru-
cial role in realizing a solution plan in terms of finding a sequence of actions and a
way of execution them. In this scope, many studies apply recent and efficient task
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planning approaches such as hierarchical-based task planning or GraphPlan in order
to combine them with motion planning by different techniques (e.g., [1][2][3]).

Manipulation actions comprise contacts between a robot and manipulatable ob-
jects, so motion planning has to be aware of the possible interaction among rigid
bodies. To deal with this issue, a physics-based reasoning engine is employed that
enables the access to such information aiming to evaluate feasibility or effect of
actions. In this line, the work in [4] presented an approach, called smart motion
planning, that is able to incorporate ontology-based knowledge within a physics-
based motion planner with the purpose of allowing contact between the robot and
the objects only from where these objects can be manipulated. Also in a similar way,
a lightweight reasoning process has been proposed by [5] that evaluates stability,
reachability, and also visibility with respect to manipulation actions that conditions
the motion planning.

Solving mobile manipulation problems by evaluating several possible alternative
plans has been recently deliberated as an interesting research line. For instance, the
Task Motion Multigraph (TMM [6]) has been introduced to simultaneously plan the
motions of alternative task plans, although without considering physics-based issues.
On the contrary, the recent work [7] suggested the integration of task planning with
a physics-based reasoning module. The approach first collects all possible plans
and then compares them based on their feasibility, in order to realize the best one
according to the minimum total action cost (the pruning of unnecessary actions while
planning is not considered). Following this latter work, the present study introduces
a framework based on a version of GraphPlan that uses a reasoning process (based on
an ontological knowledge modelling) and a physics-based motion planner to identify
unnecessary actions (inessential, ineffective, or infeasible) and exclude them from the
planning graph. This pruning of the task planning search space makes task planning
more efficient.

2 Problem Statement and Solution Overview

A mobile manipulator is considered that is able to deal with two actions, to push
removable objects and to freely move around. The problem to be solved is to effi-
ciently find a sequence of actions to perform a given task. Then, the first point to
consider is to discriminate between feasible actions and those which do not provide
useful results. To illustrate this issue, the example represented in Figure 1 is assumed
in which there are two rooms separated by a corridor and a mobile manipulator that
must traverse to move from the initial to the goal region. To achieve this, the robot
needs to push away some objects in order to free its path towards the goal. The
following constraints hold for the manipulatable objects: they can only be pushed
from their manipulatable regions and, according to them, along the x or y directions.
Regarding the possible pushing actions, it can be seen that, for instance, pushing
obstacle A from my4; becomes an ineffective action because it does not clear the
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Fig. 1 A manipulation problem where a robot must find a feasible path to reach the goal region
avoiding the fixed wall.

access to either manipulatable region m g or m¢;. Thus, such type of actions should
be identified and omitted in the task planning search space.

To cope with this type of problem, the use of manipulation knowledge in the
form of an ontology is proposed in order to represent all the manipulation problem
components (e.g. manipulatable regions or constraints) and to facilitate the reasoning
process. Also, the use of a physics-based engine is envisioned to reason about the fea-
sibility of actions and its interleaving with the task planning based on GraphPlan can
reduce the planning graph by pruning those actions that are inessential, ineffective, or
infeasible, and the corresponding branches. In this way, the high-level planning mod-
ule will maintain only valid actions and the search of the plan will be easier.

3 Manipulation Modeling Using Ontologies

An ontological knowledge-based management system can be integrated within task
planning in order to improve its efficiency. The current proposal envisions the use of
ontology-based knowledge in order to hand over to the task planning algorithm suf-
ficient knowledge concerning the manipulation of objects, i.e., knowledge concern-
ing the way an object can be manipulated. This may be determined by the object type
and be given by its properties, e.g., free manipulatable objects can be pushed in any
direction and from any of its sides, while constraint-oriented manipulatable objects
can only be pushed in some directions and from some given sides (such as object D
in Figure 1 that can only be pushed horizontally from the manipulatable region mp).
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3.1 Ontology Concept

Ontology deals with the concern regarding things existence. It has been recognized
as an approach to expose explicit knowledge about the world in Artificial Intelligence
with respect to characterizing concepts as well as relations. Ontologies are able to
be stored in the Web Ontology Language (OWL) [8] being a family of knowledge
representation on the basis of description logics. The intention of OWL is to access
and share ontological knowledge among several systems through the world wide
web. This knowledge is modeled over classes and individuals. Classes (declared by
owl:Class) are dedicated to comprise those objects sharing analogous knowledge,
while individuals (declared by owl:NamedIndividual) describe particular elements of
classes. Correspondence between classes, between classes and individuals, as well as
between individuals are performed with properties (declared by owl: ObjectProperty)
in the OWL. OWL can be designed by one of the most popular ontology editors called
Protégé [9] enabling knoweledge development. On the advantages of this editor is
to visualize ontology as a form of graph to represent relations between knowledge
in the database.

The management of an ontology-based knowledge described in the OWL and
its later use for reasoning purposes can be done using the Knowrob tool [10]. This
software tool is developed based on SWI Prolog and the Semantic Web library and en-
ables fundamental predicates to access such knowledge using Prolog language, e.g.,
the query owl_subclass_of{ ?SubClass, ?Class) explores all available subclasses of
a class, owl_individual_of( ?Indv, ?Class) seeks to list all individuals of a class, and
class_properties(?Class, ?Properties, ?Value) determines the value of a class under
particular properties.

3.2 Components of the Manipulation Ontology

A manipulation ontology using OWL has been designed as shown in Figure 2.
The classes ManipulationWorld and ManipulationPlanning with their subclasses
represent the knowledge about the world and about high-level planning compo-
nents, respectively. The OWL files are accessible at the following web adress:
https://sir.upc.edu/projects/ontologies/.

The subclasses of the ManipulationWorld class are:

— “Regions”: Class that represents various types of regions. For instance, Manip-
ulatableRegion belongs to an object and is the region where the robot should be
located in order to apply forces to push it. CriticalRegion corresponds with regions
which should be free from obstacles, e.g., the corridor depicted in Figure 1.

— “ObjectsType”: Class that collects information about the objects type.

— “Path”: Class that involves a number of abstract paths connecting two different
regions (the actual path can be acquired by querying a motion planner). A property
is considered for the individuals of the class that defines whether the regions which
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Fig. 2 Taxonomy of knowledge-based manipulation

the path connects are critical or not. This property is updated after each push action.
Related to Figure 1, the following individuals of this class are used in the solution.

e PI, P2, and P3: Paths that connect the initial region to the regions mp, myj,
and m 45, respectively.

e P4 and P5: Paths that connect the region mp to the regions m; and m o,
respectively.

e P6 and P7: Paths that connect the region m 4 to the regions mp; and mcy,
respectively.

e P8 and P9: Paths that connect the region m 4, to the regions mpg; and mcy,
respectively.

e PJ0: Path that connect the region mpg; to the goal region when the robot is in
the room 2.

e PI11I: Path that connect the region m¢; to the goal region when the robot is in
the room 2.
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Likewise, the subclasses of the ManipulationPlanning class are:

— “Predicates”: Class that expresses a number of parameters with associated names
devoted to describe preconditions and side effects of actions beside conditions of
initial and goal states. The following predicates have been defined:

e HasAccess(Robot, Path): Returns true if the Robot is located at the initial region
of the Path.

e At(Robot, Region, Path): Says whether the Robot has reached the Region through
the Path.

e In(Object, Region): Returns true if the Object is at the Region.

— “States”: Class that contains the conditions about the initial and goal states of the
problem.

— “ActionProperties”: Class used to bind actions with their needs and side effects.
Two actions have been defined to solve manipulation problems as that of Figure 1:
the Move action used to convey the robot to different regions and the Push action
whose purpose is to clear critical regions.

e Move(Robot, Region, ThroughPath):
Precondition: HasAccess(Robot, ThroughPath)
Add: At(Robot, Region, ThroughPath)

Delete: _

e Push(Robot, Obj, ManipRegion, CriticalRegions, ToAccessPath, ThroughPath):
Precondition: At(Robot, ManipRegion, ThroughPath)
Add: HasAccess(Robot, ToAccessPath)
Delete: In(Obj, CriticalRegions)

4 Reasoning Process about Manipulation Actions

Two types of reasoning processes are proposed to evaluate manipulation actions.
First, a high-level inference process determines whether an action is relevant or
not. It is called essential reasoning and is performed based on the pre- and post-
conditions of actions available through the Planning Graph generated by the task
planning algorithm used (GraphPlan [11]). Second, a low-level reasoning based on a
physics-based engine determines if an essential action can be executed or not, called
feasibility reasoning, and if feasible whether the expected results are accomplished
or not, called geometric reasoning. The integration of both layers is discussed in the
next Section.
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4.1 High-Level Reasoning

Essential reasoning process is performed in the Planning Graph generated by the
GraphPlan algorithm. The Planning Graph is a layered graph with two types of
levels: state-levels with sets of literals representing conditions, and action-levels with
sets of possible actions. Edges connecting a state-level with the following action-
level represent the pre-conditions of an action; edges connecting an action-level
with the following state-level represent the post-conditions (or effects) of an action.
Maintenance action is always included to retain literals for the subsequent level.

There are different constraints between actions and between literals. Two actions
are constrained when:

— An effect of one action negates an effect of the other action called “inconsistent
effect” constraint.

— An effect of one action deletes a precondition of the other action called the “in-
terference” constraint.

— They have mutually exclusive preconditions called “competing needs” constraint.

Two literals, furthermore, are constrained if:

— One of them is the negation of the other one. It is called the “inconsistent support™
constraint.

The construction phase of the GraphPlan procedure begins from the initial state and
expands consecutively by interleaving state and action levels forming the Planning
Graph, until the goal state conditions are met. Then, the search phase of GraphPlan
uses a backward search to find the solution sequence. If this search fails because not
all the planning constraints are satisfied, then the construction phase resumes.

The high-level reasoner can be applied during the construction phase to prune
those actions that are not relevant for the task to be solved, i.e., those that are inessen-
tial. This is done by evaluating, in a given action-layer, whether the post-conditions of
a non-maintenance action can only lead to actions already found in the action-layer.
If this is the case, the corresponding action is marked as inessential and pruned from
the Planning Graph. Also, the pre-conditions of the pruned action are deleted, as well
as all the maintenance branches leading to them and they do not appear again. In this
way, only fruitful actions are kept and any dispensable action branch is removed.

4.2 Low-Level Reasoning

The physics-based engine is embedded inside the low-level planning layer with the
purpose of providing robust inference capability over actions. Physics-based motion
planning is the more realistic approach for robot motion planning because it is able
to evaluate interactions between rigid bodies and, therefore, can both be used for
move actions to plan collision-free paths as well as for push actions where collisions
with manipulatable objects occur.
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Then, in order to determine whether an action is feasible or not, it is planned using
a physics-based motion planner and the feasibility of the resulting path can then be
evaluated as follows. Based on the control forces, applied duration, and distance
covered, the dynamic costs of push and move actions, ¢, and c,, respectively, are
computed in terms of power consumed and action [7]:

nfd .
=" =) IfilAue (1)

where, f is the applied force, At is the time duration, d represents the displacement
covered in the result of f, and # is the number of times the force shall be applied to
complete the push action. In case of ¢, o represent the distance. If the planner is
not able to find a path or the required power is above the robot specifications, then
the action is considered infeasible.

For those actions that are feasible, their effects are analyzed by geometrically
evaluating the position of the objects and regions, e.g., it is verified if after a push
action a critical region is free from obstacles. Then, an action is called ineffective if
its effects are not met. In case of finding infeasible or ineffective action, the same
pruning process is performed to remove corresponding actions.

5 Efficient Task and Motion Planning

Task planning is devoted to determining the sequence of actions to perform a given
task, while motion planning is devoted to determine the motions to execute a given
action. The interleaving of both planning levels may result in a robust and compu-
tationally efficient solution. The proposal is sketched in Algorithm 1 that takes the
initial and goal states, Sini; and $g0q1 T€spectively, and the whole set of possible actions
A as input and returns the solution plan 7.

The core of the computation is to appraise each selected action along the corre-
sponding effects by the proposed reasoning process in order to prune dispensable
actions. This results in a smaller Planning Graph, making both the construction phase
and the search phase more efficient. When the reasoning process determines that an
action is inessential, infeasible, or ineffective, then it is pruned. Figure 3 illustrates
the constructed Planning Graph for the example represented in Figure 1. For the sake
of saving space, only the relevant information has been exposed (e.g. maintenance
actions are neglected).

The Planning Graph is established with the initial state (siyi;) [line 1] and the
construction phase procedure is launched until a layer is found that satisfies the goal
constraints [line 27]. At every iteration i, the set A; of actions whose pre-conditions
appear in the previous state-level Sj | is selected [Line 4] and then evaluated [Lines
5-23]. First, the effects e are obtained [line 6] to be forwarded to the sequence of
reasoning process:
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Algorithm 1. Efficient task and motion planning

Input: The initial and goal states Sinit, Sgoal- Set of possible actions A. The maximum allowed
iteration m

Output: The solution plan 7

1: So < Sinit

2: Avaia =9

3: fori < 1 tom do

4: Aj < {a€ A| precond(a) C Si.1}
5: foreacha € A ANDa ¢ Ay,jig do
6: e < effects(a)

7 essentialReasoner(a,e)

8: if a is inessential then

9: pruneActions(a)

10: continue

11: end if

12: feasibilityReasoner(a,e)

13: if a is infeasible then

14: pruneActions(a)

15: continue

16: end if

17: geometryReasoner(a,e)

18: if e is ineffective then

19: pruneActions(a)

20: continue

21: end if

22: Avalid < @

23:  end for

24:  A; < maintenanceActions(Sj.1)
25:  8j < (I |1 € effects(Aj))

26: checkMutexes(Aj, Si, Si-1)

27:  if goalFound(sg, S;) then

28: S, =8;

29: backtrack(sg)

30: if constraintSatisfaction(Sg, So) then
31: 7 < extractPlan(Sg, So)

32: return w

33: end if

34:  end if

35: i<« i+1

36: end for

37: return NULL

— essentialReasoner(a,e) checks whether an action is essential or not [lines 7-11],
e.g., the action PushD from mp becomes inessential regarding the existing ac-
tions PushA from m 4; or from m 4, since they can always be done irrespective of
performing the PushD action.

— feasibilityReasoner(a,e) evaluates the feasibility of an action by determining
whether the robot is capable or not to perform it [lines 12-16], e.g., the action
PushC is infeasible with respect to the robot’s capability since it is a very big and
heavy object.
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Fig. 3 The constructed Planning Graph. Pruned actions are specified in blue.

— geometryReasoner(a,e) checks whether the effects of an action are reached or not
[lines 17-21], i.e., the action PushA from m 4, is ineffective because after pushing
the object downward, regions m g; and m; are not freed because the object collides
with the wall and gets stuck over these regions.

The action that is not valid is pruned using function pruneActions(a), that deletes the
action from the Planning Graph as well as the pre-conditions and all the maintenance
branches leading to them. The actions that are valid are stored in the set Aygjiq
[line 22], in order not to evaluate them again if the action further appears, and
maintenance actions are later added [line 24]. Then the next state-level is created
from the set A; and the constraints between actions and literals is computes by
function checkMutexes(A;, S;, Si.;) as done in the standard GraphPlan algorithm.

In the case of goal conditions are met, backtracking is performed. If the initial
state-level Sy is reached in this backtracking process and all the constraints are met
the plan is extracted [lines 29-33].

6 Implementation and Simulation Results

The implementation of the proposed algorithm entails four phases: high-level plan-
ning, low-level planning, middleware, and executive. In the high-level planning, on-
tological knowledge concerning the manipulation world is represented using OWL
and developed with Protégé. Knowrob software is applied to manage such knowledge
and use it for the task planning algorithm. In the low-level planning, The Kautham
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Fig. 4 Simulation results of the final plan

Project [12], an open-source tool for motion planing environment, is employed that
uses the Open Motion Planning Library (OMPL) [13] as the core set of planning
algorithms. OMPL allows planning under geometric constraints as well as under dif-
ferential constraints, including those that required dynamic simulations (OMPL uses
the Open Dynamic Engine for the dynamic simulation). Transferring information
between both planning levels is performed by the middleware phase using ROS-
based communications [14]. The high-level module is encapsulated as a ROS client
and the low-level module works as a ROS service in order to evaluate manipulation
actions. Finally, the plan is forwarded to an executive module that is the responsible
of executing the whole task.

Simulation results corresponding to the scenario represented in Figure 1 are shown
in Figure 4 as a sequence of snapshots. The SyCLoP-RRT [15] is used as kinodynamic
motion planner for physics-based planning because recent benchmarking study of the
kinodynamic motion planners for physics based planning [16] shows that SyCLoP-
RRT computes the power optimal and smooth solution. The average planning time
is about 35 seconds for the executive plan.

7 Conclusion and Future Work

The current paper presents a simultaneous task and motion planner. Task planning
is done with the GraphPlan algorithm, that has been modified to make it computa-
tionally more efficient. This is achieved by reasoning over the action and pruning
those that are dispensable. This reasoning process is performed at two levels. A high
level that allows to find those actions that are not relevant and a low-level using a
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physics-based motion planner that allows to find those that are either infeasible or
ineffective. The proposed algorithm has been implemented and illustrated through a
manipulation problem. As a future work, to tackle several feasible plans, heuristics-
based task planning is going to be considered that takes into account the costs of
actions to find the most feasible actions while planning the whole task.
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