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Abstract This paper presents an algorithm to perform pedestrian pose estimation
using a stereo vision system in the Advanced Driver Assistance Systems (ADAS)
context. The proposed approach isolates the pedestrian point cloud and extracts the
pedestrian pose using a visibility based pedestrian 3D model. The model accurately
predicts possible self occlusions and uses them as an integrated part of the detection.
The algorithm creates multiple pose hypotheses that are scored and sorted using
a scheme reminiscent of the Monte Carlo techniques. The technique performs a
hierarchical search of the body pose from the head position to the lower limbs. In
the context of road safety, it is important that the algorithm is able to perceive the
pedestrian pose as quickly as possible to potentially avoid dangerous situations, the
pedestrian pose will allow to better predict the pedestrian intentions. To this end,
a single pedestrian model is used to detect all pertinent poses and the algorithm is
able to extract the pedestrian pose based on a single stereo depth point cloud and
minimal orientation information. The algorithm was tested against data captured
with an industry standard motion capture system. Accurate results were obtained, the
algorithm is able to correctly estimate the pedestrian pose with acceptable accuracy.
The use of stereo setup allows the algorithm to be used in many varied contexts
ranging from the proposed ADAS context to surveillance or even human-computer
interaction.

1 Introduction

Pedestrians are one of the most vulnerable and unpredictable road users. The pedes-
trians ability to suddenly start motion or change direction can create a dangerous
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situation in hundreds of milliseconds. In the Advanced Driver Assistance Sys-
tems (ADAS) context, the prediction of the pedestrians’ intentions could potentially
prevent accidents and possible injuries. For instance, the detection of the pedestrian
intent to either cross a road at a crosswalk or to stop. Systems that are able to perceive
pedestrian motion as soon as possible will improve safety for road users. In [1], the
authors studied how humans detect the intentions of pedestrians to cross the road.
The authors presented the participants videos of pedestrians crossing in natural traffic
situations. The authors conclude that parameters of body language, such as legs or
head movements, are indispensable for a consistent behavior prediction. Pedestrian
trajectories alone are not sufficient to a correct and robust prediction. In this context,
estimation of the pedestrian pose is of crucial importance to achieve a fast response
system.

In thiswork, a technique to estimate the body pose of pedestrians is presented;with
this estimation a subsequent system could potentially interpreter the poses to perform
motion recognition. To achieve the proposed goal, the systemmust not depend on any
previous manual initialization step or on a multi-frame tracking system. As such, the
proposed system is able to estimate the pose from a single frame and minimal prior
orientation information. The system performs a hierarchical top down geometrical
search on a segmented pedestrian point cloud using an anthropomorphic constrained
sampling scheme to detect body parts and limbs.

The human body pose estimation is a complex task with a large number of possi-
ble applications; robust interactive human body tracking has applications including
gaming, humancomputer interaction, security, telepresence, and health care [2]. The
problem is made complex due to the high dimensional search-space, frequent am-
biguities between poses and high number of local minima. A great deal of research
has been dedicated to detect human poses based only on monocular vision systems
(survey in [3]); this is an especially ill-posed problem due to fact that many different
poses present the same image projection. In this work, the use of a stereo system
is proposed. This system provides dense 3D point clouds by using a state of the art
stereo matching algorithm. The extra information provided by the point cloud, depth
information, relieves many of the ambiguities in pose compared to the monocular
system. Existing high performance depth-based systems are mostly dependent on
structured light sensors [2]; theses sensors provide high precision, frame rate and
definition, but are not suited to work on outdoors environments due to saturation of
the sensor and range limits, therefore are not applicable in the ADAS context. The
stereo setup is still the most attractive approach in the ADAS context given its low
cost and low complexity, especially compared to active laser systems [4].

In section 2 the related work in markerless pose detection is presented. The pro-
posed system is described in 3 with body parts detections in 3.4. The experimental
results are presented in section 4 and final conclusions are presented in section 5.
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2 Related Work

Previous work on markerless detection and tracking of a human body pose has been
primarily focused in the use of intensity images, as stated above. In [3] the authors
provide a survey of the different techniques used. The authors mark the distinction
between model-based (generative) and model-free (discriminative) approaches, with
the model-based methods using a priori information of the human body.

In [5], the authors propose a generic model for human detection and articulated
pose estimation. The authors train detectors for anatomically defined body parts,
which are then used as the likelihood in a generative model. The authors employ a
flexible kinematic tree prior using pictorial structures on the configuration of body
parts. In [6], the authors expand the previouswork to include evidences frommultiple
frames. They model the temporal prior as a hierarchical Gaussian Process Latent
VariableModel (hGPLVM) combinedwith HiddenMarkovModel (HMM) to extend
pedestrian tracklets. Their approach generates bottom-up evidence from 2D body
models and so it constitutes a hybrid generative/discriminative approach.

The work proposed in [7] treats pose estimation as a nonlinear regression problem
and proposes to estimate body poses directly from silhouette images. They employ
a discriminative learning approach of body parts and embedded the algorithm in
a tracking framework to facilitate disambiguation between poses. The absence of a
previousmodelmakes their technique easily adapted to different people, appearances
or representations of 3D body poses.

Current monocular systems suffer from pose ambiguity problems due to the lim-
itations of data used. These systems employ tracking architectures to solve pose
ambiguity but the tracking implies the need to use multiple frames increasing the
response time of these systems.

Workhas also beenperformedusingmultiplemonocular cameras to helpwith pose
ambiguity. In [8], the authors propose to perform 3D human upper body pose estima-
tion using multiple camera views. Their system creates multiple 3D pose hypotheses
on a single view using a probabilistic hierarchical shape matching algorithm. These
hypotheses are re-projected into other camera views and are then ranked according to
their likelihood. Their system also applies a trackingmechanism integrating amotion
model and observations in a maximum-likelihood approach. The need of multiple
points of view severely limits the applicability of these systems.

Recently, the introduction of real-time depth cameras simplified greatly the pose
estimation problem, when compared to monocular systems. The work presented in
[9] makes use of a time-of-flight camera to estimate human body pose at video frame
rates. The authors take a bottom-up approach to detect the body pose, starting with
an interest point detector with a subsequent classification system.

Stereo has been previously applied to estimate human body pose, [10, 11]. In [12]
the authors treat the pose tracking problem as a registration of two 3D point sets. The
authors integrate IterativeClosest Point (ICP)with anunscentedKalmanfilter to yield
a registration algorithm capable of tracking articulated bodies. In [13], the authors
propose a system that uses stereo vision and a skin color filter. The skin color filter
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is used as a segmentation method to extract the point cloud belonging to the human
body. The approach uses multiple models in different poses and computes an error
metric to identify the correct pose. The work was performed in indoor environments
and focused on upper body poses. The algorithm proposed in [14] alsomakes use of a
variant of the ICP algorithm to match a simplified human model. The authors apply a
Kalman filter based tracking architecture with a subsequent pose classification based
on HMMs. All the proposed systems are either based on tracking algorithms or are
not applicable in the ADAS context.

In the topic of predicting pedestrians’ intentions in theADAS context, the work by
[15] presents a system that is able to predict if a pedestrian, walking towards the road
curbside, will cross the road or stop. Asides from classification, the system uses dense
optical flow from a stereo camera, with egomotion compensation, to obtain motion
clues for the pedestrian upper torso and legs. A dimensional reduction using Principal
Component Analysis (PCA) is applied to create Histogram of Orientation Motion
(HOM) features. The current motion is matched to the database using Quaternion-
based Rotationally Invariant Longest Common Subsequence (QRLCS) similarity
metric.

On the same topic, thework by [16] presents a system that allows to detect early the
intention of a pedestrian to cross a road lane. This system uses the body language as
an early indicator of a crossing intent. Their system uses an infrastructure monocular
vision system to extractMotionContourHistogramofOrientedGradients (MCHOG)
feature descriptor. They apply a linear Support Vector Machine (SVM) system to
identify the point when the pedestrian starts to enter the lane.

Both of these works would benefit from a more accurate and complete perception
of the pedestrian motion. With additional detail the pedestrians’ intentions could be
inferred more accurately and also sooner. The use of stereo vision makes possible
pose estimation in outdoors environments. The system is less susceptible to pose
ambiguity, a serious problem in monocular systems, and performs well in outdoors
environments with the desirable range. The proposed systems focus attention in
the pertinent poses in ADAS context, especial attention is given to the legs pose.
Previous works do not focus on this problem neither present a solution with the
required characteristics; a solution that works in outdoors environments capable of,
quickly and without initialization, estimate the pose of the human lower limbs during
a normal walking cycle.

3 Stereo Pose Estimation

Human body poses are obtained using 3D point clouds from a stereo camera, as
shown in 1. The pose estimation is performed using a method that compares the
visibility of the point cloud from the stereo camera with the expected visibility from
a pose hypothesis.

The visibility at each point is defined as one of three possible values: free space,
occupied or occluded. A free space classification indicates that a point is visible from
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the camera point of view but is not occupied. A occupied point is visible from the
camera and occupied by a 3D point. Finally an occluded point is a point that is not
visible by the camera because there is an occupied point in front.

A dense voxel cloud is created overlapping the extracted pedestrian point cloud.
A set of 3D rays interests this dense cloud, the intercepted voxels for each ray are
classified according to their visibility using the pedestrian point cloud as the blocking
element. After classification, this dense voxel cloud will be the base element for
calculating the score of different hypotheses.

For each body part hypothesis, a set of 3D rays is used to calculate the visibility.
The hypothesis score is calculated by comparing the classification of the points
intercepted by the rays and the corresponding classification of the original dense
voxel cloud.

When calculating the visibility of body parts hypotheses, previous detected body
parts are used as blocking elements, for instance: the first detected leg will occlude
the hypotheses for the second leg. This method allows to estimate the position of the
occluded leg.

(a) Side view (b) Front view

Fig. 1 Example of an estimated pose. On the left the segmented pedestrian point cloud, on the
right the estimated pose. The arms are not detected.

This work uses data from an industry standard motion capture system as ground
truth. The motion capture system provides millimeter accurate position of a set of
infrared reflective markers, visible on figure 1. To establish a direct comparison, a
set of virtual markers, matching the motion capture markers, is used by the pose
estimation algorithm.

3.1 Preprocessing

To extract the pedestrian point cloud three steps are applied: ground plane estimation,
background subtraction and Euclidean clustering. The ground place estimation uses
the RANSAC algorithm and helps to remove points near the feet. The background
subtraction algorithm removes most of the points not belonging to the pedestrian.
Finally, the resulting points from the two previous steps are clustered according to
Euclidean distance between them and a specified threshold, the largest cluster is
assumed to be the pedestrian.
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This pedestrian extraction scheme works well in the dataset used, but in a more
complex scenario some other state-of-the-art pedestrian detection algorithm could
be used to segment the pedestrian point cloud. The developed algorithm does not
require a perfect segmentation of the pedestrian from the background.

3.2 Visibility Calculation

The pose estimation algorithm here proposed assumes that a point cloud, comprised
mostly of points belonging to a single pedestrian, was previously obtained. It is
also assumed that the pedestrian is in an upright pose, a common assumption in the
pedestrian detection context.

As stated before, ray tracing is used to calculate which voxels are either free,
occupied or occluded, figure 2. The algorithm defines a set of rays using the original
pedestrian cloud and the sensor position. For each ray, the intercepted voxels are
classified. The end result is a dense voxel cloud in which each voxel contains the
above classification, Vpedestrian. This process is repeated for the pose hypotheses.
Each body part pose hypothesis consists of a 3D model of the part, section 3.3, in a
hypothesis pose. For each hypothesis the visibility is calculated. A score is obtained
comparing the visibility of the hypothesis with the visibility of the original cloud.

In figure 2 two torso samples are presented. Each sample represents the same 3D
model but in a different pose. The left hypothesis has a much larger area visible to
the sensor and, as such, a much larger occluded volume. The left sample is aligned
with the pedestrian, therefore the visibility will be very similar. The right sample
will score a much higher value that the left sample.

(a) Original. (b) Visibility. (c) Torso 1 (d) Torso 2

Fig. 2 Visibility dense voxel cloud representation. On the left, the original point cloud and the
visibility calculated with the cloud. On the right, two different samples used to detect the torso
orientation. Occupied voxels are represented as yellow squares, occluded voxels are colored blue.
Empty voxels are not represented but used to score the sample.

Let V = {v1, ... , vN } represent all the voxels in the hypothesis, the score of
each hypothesis�i is calculated as the sum, equation (2), of the score of every voxel,
equation (1).
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∀v ∈ V, s(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

P1 ⇐ (v = vpedestrian) ∧ (v = free)

P2 ⇐ (v = vpedestrian) ∧ (v = occluded)

P3 ⇐ (v = vpedestrian) ∧ (v = occupied)

P4 ⇐ (v = occluded) ∧ (vpedestrian = occupied)

P4 ⇐ (v = occupied) ∧ (vpedestrian = occluded)

0 ⇐ otherwise

(1)

�i =

N∑

n=1
s(vn)

N
(2)

The different weights (P1, ..., P4) in equation (1) allow the algorithm to com-
pensate for the different percentage of voxels with each classification.

Several performance optimizations were applied. The ray tracing can be very
computationally expensive, as such, it is only performed once, for theVpedestrian cloud.
The rays and the intercepted voxels positions are reused for each pose hypotheses.
The samples, after transformation, are geometrically aligned to the Vpedestrian cloud
to allow the reuse of the rays. The geometric alignment of the samples also allows
for a very fast indexing of the two clouds, avoiding the need for expensive nearest
neighbor searches.

Ray tracing is not performed for each point in the pedestrian cloud. The rays
are created starting in the sensor position and defining a square angular grid with a
specific vertical and horizontal resolution, RV and RH respectively. The grid limits
are defined from the point cloud, as to avoid unnecessary rays. The vertical and
horizontal resolutions are key parameters of the algorithm. A more refined grid will
account for greater detail, with the limit of the sensor own angular resolution, while a
more coarse grid will correspond to lower number of rays improving computational
performance.

3.3 3D Model

The proposed algorithm compares the visibility of a pose hypothesis with the vis-
ibility of the current pedestrian point cloud. To this end, a realistic geometric 3D
model of a pedestrian is used. The 3D model defines the shape that will be used to
calculate the visibility of each different pose hypothesis. The method is hierarchical
and sequential, the first body part to be detected is the torso, followed by the head
and upper legs, and finally the lower legs. As such, the 3D model was segmented
into different body parts for individual use.

Let P = {p1, ... , pN } represent the pedestrian point cloud with N points. The
overall bounding box of P provides a rough approximation to the pedestrian height.
The height approximation allows to estimate the size of the different body parts. The
original 3D model is scaled to fit this measurement.
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3.4 Detecting Body Parts

The first body part to be detected is the torso. The torso pose is extracted in three
steps.

The pivot position is directly defined from the centroid position and a penetration
factor. The penetration factor is used to correct the centroid in the sensor direction,
placing the torso pivot inside the body and not at the surface.

The second step estimates the torso orientation θtorso in the vertical direction ẑ. To
this end, a set of samples is created with different orientation angles. Each sample
is scored and a graphic, such as figure 3, is obtained. From this graphic, it is clearly
visible that, there are two main peaks with 180◦ offset. The two peaks appear due to
the fact that the torso shape is similar on the front and back, leading to pose ambiguity.
To solve this ambiguity more information is required. In the proposed method, the
θtorso maximum closest to the previous estimated orientation is used.
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Torso orientation samples score

Fig. 3 Torso orientation samples score. The two peaks are created by the ambiguity between the
front and back of the torso. The algorithm is able to correctly estimate the correct orientation using
the peak closest to the previous orientation.

The third step estimates the torso forward inclination φtorso, the rotation on the
axis perpendicular to the vertical direction and the direction derived from the torso
orientation φ̂ = ẑ × θ̂ . This rotation is especially important when the pedestrian is
moving quickly or running.

The head pose is estimated after the torso pose. The head pivot is directly derived
from the torso pose and a set of samples is created to detect the head rotation θhead
in the vertical axis ẑ.

After estimation of the head pose, the legs positions are estimated. The algorithm
starts by identifying which leg is more exposed to the sensor as a function of its
predicted distance. This distance is based on the hip distance using the torso pose.
The pose of the leg more exposed is the first to be estimated. Each leg is segmented
in two parts, the upper leg and the lower leg. The upper leg comprises the distance
from the hip to the knee, and the lower leg the distance from the knee to the foot.
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The upper leg samples are created using two degrees of freedom, rotation on the
φ̂ axis and rotation on the θ̂ axis. The upper leg pivots on the hip joint, defined by
the torso pose. A set of samples is created by composed rotation of the two degrees
of freedom. The samples are scored using the method described above. The lower
leg samples pivots on the knee joint and rotates on the two same axes. All rotations
are limited by anthropomorphic constrains.

The second leg pose is only estimated after the first. The first leg pose will influ-
ence the visibility of the second leg. The first leg will be used as an obstacle when
calculating the visibility for the second leg. This method allows to estimate the posi-
tion of the leg even when it is occluded. The created samples will reflect the fact that
there is an obstacle in front and samples that are occluded will be correctly classified.

4 Results

The proposed algorithm was compared to a high precision industry standard motion
capture system. The test trial consisted of a simulated pedestrian road crossing,
figure 4. In the trial, several pedestrian trajectories were obtained. The test was
composed of pedestrian trajectories parallel to the sensor, perpendicular and at an
angle. The test contained trajectories where the pedestrian stopped at the simulated
road entrance, and also trajectories where the pedestrian runs. The trial consisted of a
total of 1588 frames, of witch 1053 were used. Frames where the pedestrian was not
fully visible in the stereo camera were discarded. Also, the motion capture system
was not always able to acquire all markers, in a frame, if a specific maker was not
found the pose estimation marker was discarded.

(a) Walking
perpendicular.

(b) Walking
parallel.

(c) Running. (d) Walk and
stop.

Fig. 4 Sample images from the trial. The images present some of the several different trajectories
used. The running trajectories were affected by the weak lighting conditions of the laboratory that
led to some blurry images.

Quantitative results were obtained. A direct comparison was made possible by
defining virtual markers analogous to the motion capture markers, on the 3D body
parts. Figure 5 presents the histogram of the Euclidean distance from the motion
capture markers to the pose estimation markers for the whole trial. The markers
placement on the 3D body parts affects the results. Incorrect placement will appear
as error on figure 5, an attempt to minimize this error was made. Table 1 presents the
parameters values used in the trial.
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Table 1 Parameters used in the test trial.

Parameter Value
P1 10
P2 50
P3 100
P4 1
RV 1.5◦
RH 0.5◦

As can be observed, a large percentage, 72%, of the results are under 0.1m, and
94% of results are under 0.2m. The person’s self occlusion presents some serious
challenges, typically only one shoulder is visible and legs frequently occlude each
other. The proposed method allows to estimate the person’s orientation even with
high occlusions. Given the hierarchical nature of the method, lower body parts suffer
from errors in the upper parts. To account for this fact, lower body parts’ samples
are created with broader limits that would otherwise be necessary. Figure 6 presents
the results for pose orientation. This orientation is calculated using the shoulders
markers projected on the X − Y plane. The figure presents a histogram of the body
orientation error of the algorithm.
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Fig. 5 Histogram of the euclidean distance between each marker of the pose estimation and the
motion capture system.

The pose orientation is estimated with good accuracy. The largest errors occur
when the pedestrian runs. The stereo setup used, performed poorly on low light
conditions, such as the motion capture laboratory. Fast movements cause the image
to become blurred due to the large exposure time. This in turn, decreased the quality
of the stereo algorithm.

The stereo data used is of good quality but, nevertheless, presents some pro-
nounced noise; the stereo noise presents the main limitation to the accuracy of the
proposed approach.

The lack of a strong prior in our algorithm presents some advantages, but also
disadvantages. With a good prior, the search space for each body part could be dra-
matically reduced, thus improving estimation accuracy. The current proposal could
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Fig. 6 Histogram of the body orientation error for the trial.

be expanded to use such a tracker. The presented algorithm, as is, could be used to
initialize the tracker and also to recover from failure.

5 Conclusions

An algorithm capable of detecting human poses using stereo point clouds was pre-
sented. The algorithm is able to estimate poses using single point clouds andminimal
motion orientation, used to relieve ambiguity between left and right poses. The pro-
posed approach uses a hierarchical visibility based pose estimation algorithm. The
algorithm focuses attention on the legs position, the legs motion will provide cues
on the early intention of pedestrians trying to enter or cross a road.

The algorithm was tested with millimeter accurate industry motion capture data
of a pedestrian simulating a possible pedestrian road crossing. Results presented
show the potential of the algorithm to correctly recover poses even with noisy stereo
data. The stereo setup presents some serious advantages over traditional monocular
systemsor even structured light systems.Thepoint clouddata presentsmuch less pose
ambiguity than a monocular system and has the advantage of working in outdoors
environments at long ranges.

Our proposed algorithm does not require any pose initialization or an elaborate
pose tracking algorithm. This presents an obvious advantage by allowing the esti-
mation of the pose of a pedestrian entering the scene without the need of a long
multi-frame tracking system that would delay any conclusion. Nevertheless, the pos-
terior application of a tracking algorithmwould improve computational performance
as well as performance under occlusion. The proposed algorithm could be used in
the initialization step of the tracker or to recover from failure.

Future work will be focused on the implementation of a probabilistic pose tracker
and finally on a system integrating the pose detection with the estimation of the
pedestrians intentions in an advanced pedestrian safety system.
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