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Abstract In hilly terrains, the exploitation of (semi-)autonomous systems able to
travel nimbly and safely on different terrains and perform agricultural operations is
still far from reality.

In this perspective, the articulated 4-wheeled system, that shows an optimal
steering capacity and the possibility to adapt to uneven terrains thanks to a passive
degree of freedom on the central joint, is one of the most promising mobile wheeled-
robot architectures. In this work, the instability of this robotic platform is evaluated in
the two different conditions, i.e. phase I and phase II [1], and the effect of blocking the
passive DoF of the central joint investigated in order to highlight possible stabilizing
conditions and best manoeuvring practices for overturning avoidance. In order to do
so, a quasi-static model of the robotic platform has been developed and implemented
in a Matlab™ simulator thanks to which the different conditions have been studied.
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1 Introduction

Agricultural robotics and autonomous systems for planting, weeding, fruit picking
and monitoring have been studied since many years ([2]) and now, smart, cheap and
miniaturized sensors and controllers could allow the development of new efficient
mechatronic applications that can speed up the race towards the agricultural automa-
tion both in the management of field processes ([3]) and in the safety of machines
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operating on slopes ([4]; [5]) areas. The latter is strongly related to the configura-
tion of the mobile robot platform, the choice of which is directly dependent on the
working environment ([2, 6, 7]).

The vehicle stability is highly affected by the terrain condition and slope ([8];
[9]; [10]) and effective, safe and self-stabilizing systems are still not on-board. Then,
mobile terrain platforms for agri-, hilly-,mountain- applications, either human-driven
or (semi-)autonomous, are rare.

In [11], it has been highlighted how a versatile robotic platform that could be the
solution for easily moving and turning on different slopes and between rows, e.g.
vineyards, is the articulated-frame one. Its central joint is made of two (yaw and
roll) degrees of freedom (DoFs), one actuated (yaw) to steer and the other passive
(roll), to allow the system to adapt to the terrain. It has a smaller external turning
radii with respect to vehicles with a conventional configuration [11]. This platform
shows two different possible overturning manners ([12]; [1]): the classical stability
condition (type II instability) related to the quadrilateral polygon made of the four
wheel contacts, and a second critical stability condition created by the passive roll
DoF (type I instability). In literature, the Thype I instability has been firstly defined by
[12]. In order to study an anti-overturning mechatronic system able to both forecast
and prevent critical configurations in a mobile robot, it is very important to model
and simulate the system instabilities together with to inverstigate the effect of the
passive DoF and its blocking by means of, for example, a mechanical brake.

In this work, the Guzzomi’s kinematic and (quasi-)static model has been firstly
revised (Sections 2). Then, in Section 3 the instability phases are discussed and, in
Sections 4, a Matlab™ emulator and the stability maps for the two different phases
computed. Then, in Section 5, the stabilizing effect of the passive DoF blocking has
been investigated and evaluated.

2 Model of the Articulated Robot

2.1 Model Assumptions

Under the following basic hypothesis ([1]):

− the roll DoF of the articulated joint is considered frictionless;
− since the robot speed is going to be slow in practical activities, the dynamic effects
can be ignored;

− the robot does not slide down the slope, due to a non-limiting coefficient of friction
between surface and tyres;

− tyres are considered stiff, so the contact surfaces result in discrete points (not
areas);

− the joint mass is negligible, so it does not affect the dynamic behaviour.

the kinematic and quasi-static model can be described.
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Fig. 1 Kinematic model.

Table 1 Main parameters of the kinematic model.

Gr CoG of the rear part er x Rear CoG x distance from rear midplane
G f CoG of the front part er y Rear CoG y height above roll axis
R1 Contact point between rear wheel 1 and surface s2 Front CoG distance from front axle
R2 Contact point between rear wheel 2 and surface e f x Front CoG x distance from front midplane
F3 Contact point between front wheel 3 and surface e f y Front CoG y height above roll axis
F4 Contact point between front wheel 4 and surface wr Rear track width
α Roll angle between rear and front part w f Front track width
β Yaw angle between rear and front part h1 Roll axis height from ground
s3 Distance from rear axle to central joint mr Rear mass
s4 Distance from front axle to central joint m f Front mass
s1 Rear CoG distance from rear axle

Given the model in Fig. 1, the articulated robot can be explained: a front “f” and
a rear “r” parts are connected by a 2 DoF joint which is made of a first revolute DoF,
i.e. the yaw β angle, and of a second passive revolute DoF, i.e. the roll α angle. In
such a manner the articulated chassis can maintain the four wheels in contact with
the substrate even in case of uneven terrains.

In table 1 the geometric parameters of the model shown in Fig. 1 are explained.
In order to study the system configurations, the robot is supposed to travel a circle
on a sloped surface, which slope ϑ . The robot position related to the maximum slope
direction is named ϕ, β sets the trajectory followed by the robot and α describes the
surface conformation (α = 0 implies a plane surface), see Fig. 2.

A global coordinate system (x0 y0 z0) and two local ones (x1 y1 z1) and (x2 y2 z2),
rigidly attached on the rear and front robot parts respectively, are defined. Then, the
matrix R0

1R0
1R0
1 that describes the rotation from the global system to the rear local one

is R0
1R0
1R0
1 = RRR(ϑ)RRR(ϕ), i.e. the product of the elementary rotations around the current

z and y axis. The rotation matrix R0
2R0
2R0
2 becomes R0

2R0
2R0
2 = R0

1R0
1R0
1RRR(β)RRR(α) with RRR(β) and

RRR(α) elementary rotation matrices around the current y and z axis, respectively.
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Fig. 2 Robot orientation angles and reference systems.

Fig. 3 Dynamic model: (a) rear part, (b) front part.

In order to define and develop a dynamic (quasi-static)model, forces andmoments
that act on the model have to be evaluated. By referring to Fig. 3, two weight forces
PrPrPr and PfPfPf , respectively on the rear and front CoG are present. These are counteracted
by the four reaction forces Fr1Fr1Fr1, Fr2Fr2Fr2, Ff 3Ff 3Ff 3 and Ff 4Ff 4Ff 4, sum of the force normal to the
plane and the friction force parallel to the plane. Through the central joint, the forces
(FjrFjrFjr and Fj fFj fFj f ) and moments (MrMrMr e M fM fM f ) are exchanged. The two weight forces PrPrPr

and PfPfPf , and, due to the absence of friction, the moment M f,z are known.
Since the four normal forces Fr1,y , Fr2,y , Ff 3,y and Ff 4,y acting on the wheels

are needed to study the stability, it is desirable to reduce the system dimension to
improve the computational speed with respect to solve the whole system made of 23
equations. By considering the relations of forces and torques in the joint and the fact
that all the forces Fr1Fr1Fr1, Fr2Fr2Fr2, Ff 3Ff 3Ff 3 and Ff 4Ff 4Ff 4 have a vertical direction with respect to the
global reference system, with some reformulations the system can be simplified and,
from the initial 23 unknowns, reduced to only 6: Fr1, Fr2, Ff 3, Ff 4, M f,x and M f,y .
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In such a manner, six equilibrium equations can be written:

Fr1 + Fr2 + F f 3 + F f 4 = Pr + Pf (1)

M f,x = F f 3
(
k f ys4 + k f zh1

) + F f 4
(
k f ys4 + k f zh1

) + Pf
[
k f y (s4 − s2) − k f ze f y

]
(2)

M f,y = F f 3

(
−k f x s4 + k f z

w f

2

)
+ F f 4

(
−k f x s4 − k f z

w f

2

)
+ Pf

[−k f x (s4 − s2) + k f ze f x
]

(3)
M f,z = F f 3

(
−k f x h1 − k f y

w f

2

)
+F f 4

(
−k f x h1 + k f y

w f

2

)
+Pf

(
k f x e f y − k f ye f x

) = 0 (4)

Mr,x = − cosα cosβ M f,x + sin α cosβ M f,y

= Fr1
(−kr ys3 + krzh1

) + Fr2
(−kr ys3 + krzh1

) + Pr
[−kr y (s3 − s1) − krzer y

]
(5)

Mr,z = cosα sin β M f,x − sin α sin β M f,y

= Fr1

(
−kr x h1 + kr y

wr

2

)
+ Fr2

(
−kr x h1 − kr y

wr

2

)
+ Pr

(
kr x er y − kr yer x

)
(6)

in the 6 unknowns Fr1, Fr2, Ff 3, Ff 4, M f,x and M f,y .

3 Instability Phases

The instability of an articulated robot can be subdivided in phase I and II ([12] and
[1]). By increasing the slope (in a quasi-static condition), the force distribution on
the four wheels changes according to the configuration and system properties. The
articulated system is stable until one of the four reaction forces falls to zero. After
that, the roll moment equilibrium is not satisfied, one wheel loses the contact and one
part of the robot starts to roll, i.e. the phase I instability occurs. To detect the phase
I instability limit condition, the system of six equations has to be solved for every
configuration in terms of slope (ϑ angle), robot placement (ϕ angle), robot trajectory
(β angle) and terrain conformation (α angle).

The phase I instability creates a roll motion in a part of the robot. This motion
stops when the joint reaches its mechanical limit (also a brake can stop the motion in
an intermediate position) and the robot chassis becomes a unique rigid body. In this
condition the instability occurs only when the CoG projection point falls out from the
equilibrium polygon made of the wheel contact points, i.e. the phase II instability.

4 Numerical Implementation

The overall stability model has been implemented in a Matlab™ environment. Its
outputs are a matrix with the stability limits and an instability map where, for a given
robot configuration, i.e. α and β angles, the following information are shown:

− plane slope limits for phase I instability (ϑlim,I );
− tyre that looses the contact with the terrain in phase I instability;
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Table 2 Robot emulator geometric and physical parameters.

s1s1s1 s2s2s2 s3s3s3 s4s4s4 wrwrwr w fw fw f h1h1h1 er xer xer x e f xe f xe f x er yer yer y e f ye f ye f y mrmrmr m fm fm f
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [kg] [kg]
26 55 200 200 240 180 94 0 0 20 14 1,34 1,84

− plane slope limits for phase II instability (ϑlim,I I );
− angular margin �ϑ = ϑlim,I I − ϑlim,I , that will be gained if the joint is blocked.

The simulator finds the solution by an iterative algorithm based on the bisection
method, one for the phase I and one for the phase II instability. In that manner, by the
superimposition of the two instabilities limits, it is possible to evaluate the possible
stability enhancement of the joint’s passiveDoFblocking. Thus, the idea is to evaluate
the stabilizing effect of a blocking action when approaching the phase I instability
and find out some directives and "best driving practices" for the articulated robotic
platform. In table 2, the simulated robot parameters referred to a real emulator, see
figure 4, are listed.

Fig. 4 Emulator of the articulated robotic platform.

5 Simulations and Results

The stability map is the main output of the Matlab simulator and the first considered
case is the one of a robot travelling along a straight line (β = 0◦) and a terrain with
a regular surface (α = 0◦), figure 5.

The phase I instability curve is always below the phase II curve, except for some
ϕ values in which they are overlapped. So, unless of these points, the strategy of
blocking the passive roll DoF would guarantee an extra margin to the robot insta-
bility. More in details, this �ϑ safety angular margin changes with ϕ and presents
local maxima when ϕ is about 60, 120, 244 and 295◦ (i.e. when the robot goes uphill
or descends with an oblique trajectory). It has to be underlined how these maxima
correspond to ϑlim,I values that are high; this means that, in this case, the configu-
rations where the blocking action could give the greatest stabilizing effect are when
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the slope condition is very critical. However, if the phase I minima are evaluated, i.e.
ϕ equal to 0 and 180◦, is it possible to achieve an extra slope margin of about 4◦. In
particular, practical conditions where ϕ goes from 0◦ to 75◦, the extra slope margin
is always over 4◦. There is no extra slope margin for ϕ equal to 95◦, 228◦, 270◦, and
310◦, due to overlapping of phase I and phase II instability curves.

Fig. 5 Stability map related to β = 0◦ and α = 0◦.

The considered case, in which the robot travels sideways the slope (ϕ = 0◦ and
ϕ = 180◦), is one of the most critical and common practical cases. However, it is
extremely important to consider the possible stabilizing effect if also the β and α

angles change, e.g. when the robotic system goes out to a row of wines in a hill and
starts turning up in order to go in to the next one or with an uneven sloped terrain.

In figures 6 and 7, the stability map for a regular surface terrain (α = 0◦) and two
robot steering cases, i.e. upstream turning with β = 20◦ and β = 45◦ are presented
while in figure 8 the phase I limits for the three different cases are shown.

It can be seen how, the variation of the turning angle β influences both the min-
imum value of the instability slope angle and its map position along the ϕ axis: if
β increases (upstream turning), the minimum moves from ϕ = 0◦ to a lower value,
and decreases its magnitude; in the downstream turning condition, i.e. ϕ > 180◦, the
contrary occurs.

By considering uneven terrains, i.e. α �= 0◦, other important considerations can
be made. Figure 9 shows the phase I stability angle for β = 0◦ and considering three
different α values. In this case, α influences only the magnitude of the local minima,
and not its position along ϕ axis.

Now, looking at the case in which ϕ = 0◦ (similar to ϕ = 180◦ due to the fact that
the two COGs locations are almost on the midplane), the correlation between the
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Fig. 6 Stability map related to β = 20◦ and α = 0◦.

Fig. 7 Stability map related to β = 45◦ and α = 0◦.
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Fig. 8 Stability map for different robot turn levels (β angle), and α = 0◦.

Fig. 9 Stability map for different surface conformation (α angle), and β = 0◦.

angle β and the stability is shown in figure 10. If the robot is in a stable condition with
β = 0◦ and starts turning downstream (negative values of β), the phase I stability
angle increases; so it should not be necessary to activate the joint brake, since the
robotwould already be in a stable condition.On the contrary, if the robot starts turning
upstream, the phase I stability value increases until a maximum point and, after that,
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Fig. 10 Stability vs β angle, at ϕ = 0◦ and α = 0◦.

it fast decreases. In the first turning phase, blocking the joint would not be necessary
due to the positive curve slope; indeed, by increasing the turning angle, increases
also the stability. After the point of maximum, it would be necessary (negative curve
slope) to block the passive DoF in order to increase the stability.

There is another motivation to block the joint between the interval β = [0, 24]◦,
i.e. upstream motion up to the stability curve slope changing: if the robot is near to
an unstable condition and β is inner this interval and the operator wants to move in
a safer condition, he instinctively reduces the steering angle by a counter-steering
manoeuvre. In this way, the robot tends to roll-over, since in this range the phase I
instability angle limit decreases with β. Otherwise, with the passive DoF blocked, it
does not occur, i.e. the curve slope is negative.

In figure 11 the case of ϕ = 0◦ and β = 0◦ is considered. When α has positive
values, i.e. the robot front part is in a more sloped condition than the rear one, both
the phase I and II stability limit angles decrease. However, the phase II angle shows a
lower slope, thus blocking the passive DoFwould give the possibility to gain an extra
angular margin. On the contrary, when α is negative both the phase I and II stability
limit angles increase up to the value of −8◦. After that, the phase I stability limit
angle remains constant due to the fact that the phase I instability critical condition
goes to the robot rear part, while the phase II instability limit angle still increases
thus allowing a more stable condition if the passive DoF is blocked.
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Fig. 11 Stability vs α angle, at ϕ = 0◦ and β = 0◦.

6 Conclusions

In thiswork, an articulated 4-wheeled robotic platform suitable for side-slope agricul-
tural activities has been evaluated in its stability conditions. First of all the kinematic
and (quasi-)static model has been revised and the two different instability conditions,
i.e. phase I and phase II, evaluated. These results have been implemented in aMatlab
simulator which gives as output the stability maps and roll-over limits. Then, by
considering the fact that this platform shows an optimal steering capacity and the
possibility to adapt to uneven terrains thanks to a passive degree of freedom on its
central joint, the most critical conditions have been investigated. By focusing on the
possibility to block the passive DoF of the central joint, its possible stabilizing effect
and best manoeuvring practices for overturning avoidance have been studied and
highlighted. Future work will cover experimental tests on a real robotic prototype
and/or articulated tractor.
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