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Abstract Manual design of self-organized behavioral control for swarms of robots
is a complex task. Neuroevolution has proved a viable alternative given its capac-
ity to automatically synthesize controllers. In this paper, we introduce the concept
of Genome Variations (GV) in the neuroevolution of behavioral control for robotic
swarms. In an evolutionary setup with GV, a slight mutation is applied to the evolv-
ing neural network parameters before they are copied to the robots in a swarm. The
genome variation is individual to each robot, thereby generating a slightly heteroge-
neous swarm. GV represents a novel approach to the evolution of robust behaviors,
expected to generatemore stable and robust individual controllers, and benefit swarm
behaviors that can deal with small heterogeneities in the behavior of other members
in the swarm. We conduct experiments using an aggregation task, and compare the
evolved solutions to solutions evolved under ideal, noise-free conditions, and to
solutions evolved with traditional sensor noise.

Keywords Neuroevolution · Robot controllers · Genome Variations · Swarm
robotics · Robustness · Heterogeneity
1 Introduction

Synthesizing control for swarms of robots is a challenging process since the indi-
vidual rules that govern the behavior of each robot are non-trivial to discover and
implement [10]. In the research field of evolutionary robotics (ER), neuroevolution
(NE) has been successfully applied to the synthesis of self-organized behavioral con-
trol for swarms of robots [4]. Given the set of sensor inputs, the controller, an artificial
neural network (ANN), determines the value of the outputs that will be sent to the
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actuators. The weights, and sometimes the topology, of the ANN are evolved by an
evolutionary algorithm (EA) to optimize a given fitness function. The evolution of
controllers is usually conducted in simulation due to its time-intensive nature, and,
after evolution ends, the highest-performing controllers are transferred to real robotic
hardware. Transferring controllers from simulation to real robots often leads to a de-
crease in performance due to differences between the simulated and real world, an
issue known as “the reality gap” [17].

In the evolution of homogeneous swarms, the same controller is cloned for every
robot [27], which means that each genome must encode the behavior for all situa-
tions and all teammembers will react similarly in similar conditions. This is different
from biological swarms, where each individual has a different genome and slightly
different characteristics (physical, behavioral, etc.). The question raised is “do these
slight differences in swarm members play a part in the swarms’ capabilities to solve
problems?”. Potter et al. [22] show that behavior homogeneity is a disadvantagewhen
more complex swarm behaviors are needed and specialization becomes a necessity.
Even though certain types of ANN-based controllers, such as continuous-time re-
current neural networks (CTRNN) [3], have been shown to enable the emergence of
dynamic task-allocation under specific conditions [11], and even in some cases the
appearance of different roles [2, 23], such controllers tend to display homogeneous
behaviors.

This paper introduces the concept of Genome Variations (GV), a novel technique
that is based on mutating the individual controllers of each robot prior to evaluation.
Variations are obtained by adding noise to theweights of the artificial neural networks
controlling the robots. The use of GV during training may provide more stable and
robust solutions for swarm controllers in coordinated tasks and help bridge the reality
gap. There are several potential benefits of varying swarm controllers’ genomes dur-
ing evolution, namely: (i) increased tolerance to minor, but unavoidable, hardware
differences between different robots, (ii) increased robustness to environmental noise
and to (iii) slight heterogeneities in swarm behavior. Increased tolerance to hardware
differences [24], noisy sensors [19] and varying environmental conditions, is ex-
pected since a small bias in the input has very similar effects in terms of the internal
computations from a change in an input weight or a slight bias in the readings from
a sensor. If the GV solution is impervious to small variations in the weights, then
it should also be able to tolerate small changes in the input, whether these may be
caused by the environment or by the robot’s hardware.

GV should also increase robustness to small differences in behaviors of other
swarm members, since candidate solutions are exposed to slightly heterogeneous
swarms during training. It may be advantageous to have slight behavioral differ-
ences in different individuals to break ties that can block the solution to a problem
(e.g. two robots both insisting on manipulating the same object). Another way in
which GV may be advantageous is by forcing the robots to adapt to different be-
haviors from teammates, whether these are simply small performance differences or
robots experiencing faults.

In this paper, we evaluate the effects of GV in swarms of robots in an aggregation
task [25, 26]. We chose an aggregation task, since it is a fundamental behavior in
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many collective systems found in nature [6]. The ability for a group of individuals to
aggregate is a precursor tomany collective behaviors since beingwithin sensory range
of each other is a paramount condition to coordinate collective swarm behaviors.
Also, successful aggregation requires the combined use of different skills that are
common with other problems (e.g. distributed search, coordinated movement or
cooperation).

We assess the performance of controllers evolved in three different scenarios, an
ideal evolutionary scenario with no noise (NF), which is used as a baseline, one
with sensor noise (SN), and a Genome Variations scenario. The highest performing
solution evolved in each scenario is tested in all three setups (NF, SN and GV).

2 Related Work

Variation is a fundamental part of the evolutionary process, since new solutions are
based on previously successful solutions by applying evolutionary operators such as
mutation and recombination [1]. However, the use of variation for other purposes in
the evolution of controllers for swarms of robots remains unexplored. In this section,
we present a discussion of work related to variation, robustness and generation of
heterogeneity in swarm robotics.

The need to create robust solutions in simulationwas identified early on in the field
of evolutionary robotics (ER). Cliff et al. [8] use the lowest fitness score obtained,
as opposed to the mean, obtained in multiple evaluation samples of the evolved
individuals in a simulated visually-guided robot navigation problem. The authors
adopt the selection method “to encourage robustness, remembering that there is
noise at all levels in the system”. Miglino et al. [19] and later Jakobi [17] build on
the ideas in [8] and apply noise to simulated sensors, actuators, and environmental
elements to create controllers that are more capable of crossing the reality gap.

As other authors attempted alternatives to improve solution robustness that did not
involve noise, to compensate for the overhead that noisy conditions impose on train-
ing in simulation [21], Gomez andMiikkulainen [16] report that “the appropriate use
of noise during evolution can improve transfer [of behaviors to real world scenarios]
significantly by compensating for inaccuracy in the simulator”. The “appropriate
use” refers to adding sensor noise and trajectory noise. Authors report significant
improvements in transferred behavior performance.

Lehman et al. [18] introduced the concept of reactivity and showed that it is as
effective in addressing the robustness problem as training with noise, while being
computationally more efficient. Reactivity promotes the learning agent to use behav-
iors where there are dependencies in the magnitude of changes in a robot’s sensors
and actuators, i.e. if there is a large change in the sensors, there should be some
large change in the actuators. Reactivity should not be confused with the concept of
a reactive agent usually associated with the subsumption architecture [5].

In the evolution of heterogeneous multirobot teams and swarms, either co-
evolution [14, 22], or approaches in which whole teams are encoded in a single
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genome [22] are typically used. Potter et al. [22] show that as tasks become more
difficult, heterogeneity and specialization become more important, although there is
a trade-off in learning speed. Nitschke et al. [20] study the evolution of collective
behaviors, with a focus on facilitating specialization and team heterogeneity. The
authors use genotypic and behavioral difference metrics to group genomes in dif-
ferent sub-populations in order to regulate inter-population recombination. Gomes
et al. [14] propose Hyb-CCEA to facilitate the evolution of heterogeneous, coopera-
tive multi-agent systems using co-evolution and a method for merging and splitting
sub-teams.

Silva et al. [25] apply online evolution [13] to swarms of robots by continuously
generating controllers that can adapt to periodic changes during task execution. Shang
et al. [24] report a variant of EA for creating heterogeneity by adapting to each robot’s
specific hardware: robots compensate for hardware differences by individually re-
training to adapt to the specificities of their hardware before re-insertion in the team.
D’Ambrosio et al. [9] see each element of the team as a combination of policies,
creating a continuum between homogeneity and heterogeneity. As in our approach,
all agents have the same base-genome, but these agents also possess a “policy ge-
ometry” that makes the behavior of the agent depend on its position and provides for
the necessary diversity, as well as keeping the homogeneity of the basic genome.

In the work discussed above, no attempt was made to generate heterogeneity in
team or swarm behavior simply by introducing genome variations before evaluation.
The most common approach to achieve robustness is by introducing noise during
training at different levels of the simulation (sensors, actuators, etc.). Also, the focus
of heterogeneity is on task specialization,which generally requires separate evolution
of individuals or sub-teams, not on the effects of small genome heterogeneities, as
seen in biological swarms and in our approach.

3 Methodology

Artificial evolution is typically an iterative process composed of different stages. The
stages can be divided into: population generation, genome evaluation and genome
selection. Iterations are usually referred to as generations. The first generation is
commonly composed of a number of randomly-generated genomes. During evalu-
ation, the fitness of each genome is typically sampled several times under different
initial conditions to get a proper estimate of the genome’s quality. In each sample,
the genome is decoded into a controller that is copied to each robot, and the perfor-
mance of the swarmwith respect to the target task is assessed. In the final stage of the
iterative process, a set of genomes is selected for reproduction based on the fitness
scores obtained. The selected genomes are used as the seed for the next generation.
The process typically continues for a fixed number of generations, until stagnation
is detected, or until a solution of sufficient quality has been evolved.

In this study, the robotic controllers that are decoded from genomes are
CTRNNs [3]. Genomes are composed of the values of the weights, bias and re-
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current connections of a fixed-size CTRNN (in this case: 8 x 5 x 2, with delayed
self-connections at each node). In the evaluation phase, the fitness of each genome is
sampled 30 times in order to assess its fitness. The final fitness score corresponds to
the mean fitness score obtained in the 30 samples. After all genomes of a generation
have been evaluated, we use a simple elitist selection strategy that retains the five
highest-performing controllers from a generation and also uses these elite genomes
to create the new genomes for the next generation (a total of 100 genomes). A new
genome is created by mutating one of the elite genomes. The evolutionary process
continues until the desired number of generations is reached (400).

In the case of conventional evolution with ANN-based controllers for swarms of
robots, an individual’s genome is decoded into anANN,which is copied to each robot
in the swarm. With the GV approach studied in this paper, the genome assigned to
each robot in the swarm prior to evaluation is not an exact clone of the genome under
evolution. Instead, a slight variation of the base-genome is copied to each robot.
GV is applied to the base-genome in each evaluation sample by adding a uniformly
distributed random value (noise) in a defined range, to a certain portion of the ANN
weights, creating an heterogeneous swarm. Different ranges for both the variation
magnitude and portion of weights varied are tested on the experiments conducted
in this study (see Section 4). GV is only used when assessing the performance of a
genome. A different random variation is applied to the ANN copied to each robot,
thereby generating a different heterogeneous swarm in every sample from the same
base genome.

For our experiments, we use JBotEvolver [12], an open-source simulation plat-
form and neuroevolution framework.

4 Experiments

In this section, we compare our GV approach, neuroevolution with (SN) and without
sensor noise (NF). Adding noise to simulated sensors during evolution has been
shown to promote robust behaviors that are more capable of crossing “the reality
gap” [19], so we will replicate evolution with sensor noise to compare with the
robustness of the GV evolution in different scenarios. In the following experiments,
we study GV with different settings for both the magnitude of variations and the
proportion of ANN parameters varied.

The task used in these experiments is standard swarm robotics aggregation [26].
Our aggregation task is performed in a bounded arena, where 15 robots should find
each other and aggregate, i.e. form a connected cluster with the greatest number of
robots possible. A robot is considered in a cluster if it is within 0.25 m of at least one
other robot from that cluster.

Robots can sense each other with four sensors dispersed evenly on their body,
and can also sense walls, using four sensors that are also dispersed evenly on their
body. All sensors have an opening angle of 90º, providing each robot with omni-
directional sensing, and they have a range of 1 m. All sensory readings are linearized
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to the interval [0, 1] before being fed to the controller. The value of the actual reading
of the sensor is linearly proportional to the distance at which the object is sensed.
In this task, the size of the arena is 4 m in odd samples and 8 m in even samples.
The size of the arena is varied to prevent overfitting of solutions to a particular size.
Controllers are scored based on the largest cluster of robots in the environment,
according to the following equation inspired by [15]:

Fitness =
∑T

t=0

(

max
(∑R

r=0 (Crt )
)2

)

T
(1)

where T is the number of control cycles in the sample (3000), R the number of
robots (15), and Crt is the number of robots clustered with robot r at control cycle t .

Throughout the following experiments we have three scenarios: Noise-Free (NF),
SensorNoise (SN), andGenomeVariations (GV), thatwill be detailed in Sections 4.1,
4.2 and 4.3, respectively. We assess the performance of genomes evolved in each
scenario in all test setups (NF, SN and GV).

The noise-free NF scenario will be the baseline. In the SN scenario (Section 4.2),
each sensor in each robot is assigned with an offset uniformly distributed within the
range [−0.1, 0.1], and a random noise on each of its sensor readings, also in the same
range. Sensor offset noise is kept constant through the sample’s lifetime while sensor
reading noise is random for each reading. Total noise in the SN environment has an
amplitude lower than the 0.4 suggested by [17]. In the SN scenario, all genomes
are evolved in a noisy environment. In the GV scenario (Section 4.3), GV is used
during evolution. We study three different variants of the GV scenario, each with
different parameters: (i) [−0.125, 0.125] variation on 12.5% of the ANN weights,
(ii) [−0.25, 0.25] variation on 25% of the ANNweights, iii) [−0.5, 0.5] variation on
50% of the ANN weights. Post-evolution we assess the performance of the highest
scoring controllers from each of the scenarios in all three test setups: NF, SN, andGV.

We are interested in assessing how the different solutions perform, and in com-
paring the robustness and self-organization capabilities of controllers evolved in the
different scenarios. Five evolutionary runs are conducted in each scenario (NF, SN,
and three GV variants) with a total of 400 generations per run. Each generation
is composed of 100 genomes, which are evaluated in 30 samples each. After the
evolutionary process ends, the highest-performing genome of the last generation is
post-evaluated in 100 samples in the different test scenarios considered for each
experiment.

4.1 Noise-Free Neuroevolution

The first set of experiments serves as a baseline: we conducted a total of five evolu-
tionary runs in the noise-free (NF) scenario.We then assessed the performance of the
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Fig. 1 Results for NF evolved controller in the three different scenarios: NF, SN and GV with
[−0.125, 0.125] variation on 12.5% of the ANN weights (GV-12.5), GV with [−0.25, 0.25] vari-
ation on 25% of the ANN weights (GV-25) and GV with [−0.5, 0.5] variation on 50% of the
ANNweights (GV-50). Mean fitness obtained in 100 post-evaluation trials with the highest-scoring
controller for each run (five runs), resulting in a total of 500 observations per box.

highest-scoring genome evolved in each run in all test setups, see results in Figure 1.
Notice that swarms are not being evolved with SN or GV, only in the post-evolution
assessment is SN or GV introduced.

Controllers evolved in the NF scenario suffer from a significant fitness drop when
exposed to SN. Recall that in the GV test setups, we use a different variation for
each robot in the swarm, creating an heterogeneous swarm. Still, since controllers
were not evolved with GV, performance degrades as the GV interval increases (GV-
12.5, GV-25 and GV-50). This provides an indication of the amount of variation the
solutions can cope with, before performance degrades, namely between 0.25 and 0.5,
in GV-25 and GV-50.

4.2 Sensor Noise Environment

In the second set of experiments, we conducted five evolutionary runs in the SN
scenario, and assessed the performance of the highest-scoring genome evolved in
each run in all test setups, see results in Figure 2. Details on how SN is applied can
be found in the beginning Section 4.

Controllers evolved in a SN environment have a good behavior in both NF and SN
test setup. The GV used in this test (heterogeneous swarms) maintains a performance
on par with NF and SN trained up to GV-25. Performance in tests with high GV
intervals (GV-50) degrades but performance is still higher than the noise-free-evolved
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Fig. 2 Results for SN evolved controller in the three different scenarios: NF, SN and GV. In this
setup noise was added to random sensors in each robot. The GV scenarios have [−0.125, 0.125]
variation on 12.5% of the ANN weights (GV-12.5), GV with [−0.25, 0.25] variation on 25% of the
ANN weights (GV-25) and GV with [−0.5, 0.5] variation on 50% of the ANN weights (GV-50).
Mean fitness obtained in 100 post-evaluation trials with the highest-scoring controller for each run
(five runs), resulting in a total of 500 observations per box.

solutions in the SN test (SN in Figure 1). It can be expected since SN evolution should
enable the genome to cope with noise in the input up to [−0.1, 0.1] ± [−0.1, 0.1].

In an additional set of experiments (not shown), GV evolved controllers were
tested in a setup that had both SN and GV simultaneously. These experiments tested
homogeneous versus heterogeneous swarms in SN scenarios, but we chose not to
include them since they were not significantly different from the results presented in
Figure 2.

4.3 Genome Variations

In the third set of experiments, we conducted five evolutionary runs in each of the
three GV scenarios, and assessed the performance of the highest-scoring genome
evolved in each run in all test setups, see results in Figure 3.

When using a small variation interval (GV-12.5), GV evolved solutions are similar
to the solutions evolved in the NF scenario. In this set of experiments, both NF and
GV-12.5, evolved behaviors in which the robots aggregate with search-like patterns
moving freely inside the environment. GV assessments with larger variation inter-
vals, GV-25 and GV-50, sometimes evolved a behavior in which the robots group
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Fig. 3 Results for GV-12.5, GV-25 and GV-50 evolved controller in the three different scenarios:
NF, SN and GV (heterogeneous swarms). In GV tests, the variation interval is the same as the one
used on the evolution of that specific controller. Mean fitness obtained in 100 post-evaluation trials
with the highest-scoring controller for each run (five runs), resulting in a total of 500 observations
per box.

by following the walls, turning corners, and eventually finding each other. All the
behaviors evolved in theGV scenario solved the aggregation task in theNF test setup.

While a [−0.125, 0.125] variation on 12.5% of the weights has almost no impact
in the fitness, larger variations in more weights lead to solutions with an increasingly
worse fitness. GV-evolved solutions generally required more time to form a group
(around 1700 control cycles on NF evolved controllers and 2040 on GV-25 — tests
done in the NF test scenario, small arena). Apart from the quantitative evaluation
shownabove, a qualitative evaluation of the solutions shows that the solutions evolved
with GV with a low degree of variation, appear, to the naked eye, to be equal to the
ones evolved in the noise-free NF setup. Also, robots in GV-evolved solutions with
larger variation intervals lack the smoothness of movements that NF and narrow-
variation GV’s have.

As seen in Section 4.1, when tested in SN setup, controllers evolved in the NF
scenario have a significant drop in fitness when exposed to SN. Surprisingly, the
fitness drop of GV-evolved controllers in presence of SN is comparable to that of
noise-free-evolved controllers in this case. As mentioned above, larger GV intervals
tend to evolve different behaviors. The behavior where the robots aggregate by fol-
lowing the walls and finding each other near them is probably a more robust strategy
in a SN environment.
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5 Conclusions and Future Work

In this paper,we introducedGenomeVariations, a technique inwhich smallmutations
are applied to the evolving neural networks before they are copied to each robot in
a swarm. The variation is introduced only in the evaluation of the swarm, and it is
individual to each robot, leading to slight behavioral heterogeneity in the swarm. GV
was expected to provide a certain degree of robustness whether by resembling the
effects of sensor noise, and/or by promoting behaviors robust enough to cope with
slightly different peer behaviors during evolution.

Experiments in the aggregation task only partially confirm the hypothesis. GV
does indeed appear to producemore robust behaviors than those evolved in noise-free
scenarios, but robustness is not comparable to solutions evolved with sensor noise,
nor does the resulting mild degree of heterogeneity seem to have any significant
impact on the robots’ behavior in this task.

Future work will focus on increasing the number of evolutionary runs and include
additional tasks to provide a sufficient basis to determine the significance of any
performance differences. We intend to determine whether GV can provide some
form of generic robustness that is less expensive to train than tolerance to each
specific type of noise applied to sensors, actuators, or to the environment. We will
also try to use NEAT (more reactive and flexible than CTRNNs). NEAT will also
allow an interesting analysis of the different types of networks evolved with each
setup (number of nodes, connections, recurrent connections). Also, we plan to assess
the impact of GV on swarm fault-tolerance and its potential advantages on behavior
transfer from simulation to real-robot scenarios.
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