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Welcome Message from the ICA3PP 2015 General Chairs

Welcome to the proceedings of the 15th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2015), which was organized by Central
South University, Hunan University, National University of Defense Technology, and
Jishou University.

It was our great pleasure to organize the ICA3PP 2015 conference in Zhangjiajie,
China, during November 18–20, 2015. On behalf of the Organizing Committee of the
conference, we would like to express our cordial gratitude to all participants who
attended the conference.

ICA3PP 2015 was the 15th event in the series of conferences started in 1995 that is
devoted to algorithms and architectures for parallel processing. ICA3PP is now rec-
ognized as the main regular event in the world that covers many dimensions of parallel
algorithms and architectures, encompassing fundamental theoretical approaches,
practical experimental projects, and commercial components and systems. The con-
ference provides a forum for academics and practitioners from around the world to
exchange ideas for improving the efficiency, performance, reliability, security, and
interoperability of computing systems and applications.

ICA3PP 2015 attracted high-quality research papers highlighting the foundational
work that strives to push beyond the limits of existing technologies, including exper-
imental efforts, innovative systems, and investigations that identify weaknesses in
existing parallel processing technology.

ICA3PP 2015 consisted of the main conference and six international symposia and
workshops. Many individuals contributed to the success of the conference. We would like
to express our special appreciation to Prof. Yang Xiang, Prof. Andrzej Goscinski, and Prof.
Yi Pan, the Steering Committee chairs, for giving us the opportunity to host this prestigious
conference and for their guidance with the conference organization. Special thanks to the
program chairs, Prof. Albert Zomaya, Prof. GregorioMartinez Perez, and Prof. Kenli Li, for
their outstanding work on the technical program. Thanks also to the workshop chairs, Dr.
Mianxiong Dong, Dr. Ryan K.L. Ko, and Dr. Md. Zakirul Alam Bhuiya, for their excellent
work in organizing attractive symposia and workshops. Thanks also to the publicity chairs,
Prof. Carlos Becker Westphall, Dr. Yulei Wu, Prof. Christian Callegari, Prof. Kuan-Ching
Li, and Prof. James J. (Jong Hyuk) Park, for the great job in publicizing this event. We
would like to give our thanks to all the members of the Organizing Committee and Program
Committee as well as the external reviewers for their efforts and support. We would also
like to give our thanks to the keynote speakers, Prof. John C.S. Lui, Prof. Jiannong Cao,
Prof. Wanlei Zhou, and Prof. Hai Jin, for offering insightful and enlightening talks. Last but
not least, we would like to thank all the authors who submitted their papers to the
conference.

November 2015 Guojun Wang
Peter Mueller

Qingping Zhou



Welcome Message from the ICA3PP 2015 Program Chairs

On behalf of the Program Committee of the 15th International Conference on Algo-
rithms and Architectures for Parallel Processing (ICA3PP 2015), we would like to
welcome you to join the conference held in Zhangjiajie, China, during November
18–20, 2015.

The ICA3PP conference aims at bringing together researchers and practitioners from
both academia and industry who are working on algorithms and architectures for parallel
processing. The conference features keynote speeches, panel discussions, technical pre-
sentations, symposiums, and workshops, where the technical presentations from both the
research community and industry cover various aspects including fundamental theoretical
approaches, practical experimental projects, and commercial components and systems.
ICA3PP 2015 was the next event in a series of highly successful international conferences
on algorithms and architectures for parallel processing, previously held as ICA3PP 2014
(Dalian, China, August 2014), ICA3PP 2013 (Vietri sul Mare, Italy, December 2013),
ICA3PP 2012 (Fukuoka, Japan, September 2012), ICA3PP 2011 (Melbourne, Australia,
October 2011), ICA3PP 2010 (Busan, Korea, May 2010), ICA3PP 2009 (Taipei, Taiwan,
June 2009), ICA3PP 2008 (Cyprus, June 2008), ICA3PP 2007 (Hangzhou, China, June
2007), ICA3PP 2005 (Melbourne, Australia, October 2005), ICA3PP 2002 (Beijing,
China, October 2002), ICA3PP2000 (Hong Kong, China, December 2000), ICA3PP 1997
(Melbourne, Australia, December 1997), ICA3PP 1996 (Singapore, June 1996), and
ICA3PP 1995 (Brisbane, Australia, April 1995).

The ICA3PP 2015 conference collected research papers on related research issues
from all around the world. This year we received 602 submissions for the main con-
ference. All submissions received at least three reviews during a high-quality review
process. According to the review results, 219 papers were selected for oral presentation
at the conference, giving an acceptance rate of 36.4 %.

We would like to offer our gratitude to Prof. Yang Xiang and Prof. Andrzej Goscinski
from Deakin University, Australia, and Prof. Yi Pan from Georgia State University,
USA, the Steering Committee chairs. Our thanks also go to the general chairs, Prof.
Guojun Wang from Central South University, China, Dr. Peter Mueller from IBM Zurich
Research, Switzerland, and Prof. Qingping Zhou from Jishou University, China, for their
great support and good suggestions for a successful the final program. Special thanks to
the workshop chairs, Dr. Mianxiong Dong from Muroran Institute of Technology, Japan,
and Dr. Ryan K.L. Ko from the University of Waikato, New Zealand, and Dr. Md.
Zakirul Alam Bhuiyan from Temple University, USA. In particular, we would like to
give our thanks to all researchers and practitioners who submitted their manuscripts, and
to the Program Committee and the external reviewers who contributed their valuable time
and expertise to provide professional reviews working under a very tight schedule.
Moreover, we are very grateful to our keynote speakers who kindly accepted our invi-
tation to give insightful and prospective talks.



Finally, we believe that the conference provided a very good opportunity for par-
ticipants to learn from each other. We hope you enjoy the conference proceedings.

Albert Zomaya
Gregorio Martinez Perez

Kenli Li
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Welcome Message from the ICA3PP 2015
Workshop Chairs

Welcome to the proceedings of the 15th International Conference on Algorithms and
Architectures for Parallel Processing (ICA3PP 2015) held in Zhangjiajie, China, during
November 18–20, 2015. The program this year consisted of six symposiums/
workshops covering a wide range of research topics on parallel processing technology:

(1) The 6th International Workshop on Trust, Security and Privacy for Big Data
(TrustData 2015)

(2) The 5th International Symposium on Trust, Security and Privacy for Emerging
Applications (TSP 2015)

(3) The Third International Workshop on Network Optimization and Performance
Evaluation (NOPE 2015)

(4) The Second International Symposium on Sensor-Cloud Systems (SCS 2015)
(5) The Second International Workshop on Security and Privacy Protection in

Computer and Network Systems (SPPCN 2015)
(6) The First International Symposium on Dependability in Sensor, Cloud, and Big

Data Systems and Applications (DependSys 2015)

The aim of these symposiums/workshops is to provide a forum to bring together
practitioners and researchers from academia and industry for discussion and presen-
tations on the current research and future directions related to parallel processing
technology. The themes and topics of these symposiums/workshops are a valuable
complement to the overall scope of ICA3PP 2015 providing additional values and
interests. We hope that all of the selected papers will have a good impact on future
research in the respective field.

The ICA3PP 2015 workshops collected research papers on the related research
issues from all around the world. This year we received 205 submissions for all
workshops. All submissions received at least three reviews during a high-quality
review process. According to the review results, 77 papers were selected for oral
presentation at the conference, giving an acceptance rate of 37.6 %.

We offer our sincere gratitude to the workshop organizers for their hard work in
designing the call for papers, assembling the Program Committee, managing the
peer-review process for the selection of papers, and planning the workshop program. We
are grateful to the workshop Program Committees, external reviewers, session chairs,
contributing authors, and attendees. Our special thanks to the Organizing Committees of
ICA3PP 2015 for their strong support, and especially to the program chairs, Prof. Albert
Zomaya, Prof. Gregorio Martinez Perez, and Prof. Kenli Li, for their guidance.

Finally, we hope that you will find the proceedings interesting and stimulating.

Mianxiong Dong
Ryan K.L. Ko

Md. Zakirul Alam Bhuiyan



Welcome Message from the TrustData 2015
Program Chairs

The 6th International Workshop on Trust, Security and Privacy for Big Data (TrustData
2015) was held in Zhangjiajie, China.

TrustData aims at bringing together people from both academia and industry to
present their most recent work related to trust, security, and privacy issues in big data,
and to exchange ideas and thoughts in order to identify emerging research topics and
define the future of big data.

TrustData 2015 was the next event in a series of highly successful international
workshops, previously held as TrustData 2014 (Dalian, China, March 2012) and
TrustData 2013 (Zhangjiajie, China, November, 2013).

This international workshop collected research papers on the aforementioned
research issues from all around the world. Each paper was reviewed by at least three
experts in the field. We feel very proud of the high participation, and although it was
difficult to collect the best papers from all the submissions received, we feel we
managed to have an amazing conference that was enjoyed by all participants.

We would like to offer our gratitude to the general chairs, Dr. Qin Liu and Dr.
Muhammad Bashir Abdullahi, for their excellent support and invaluable suggestions
for a successful final program. In particular, we would like to thank all researchers and
practitioners who submitted their manuscripts, and the Program Committee members
and additional reviewers for their tremendous efforts and timely reviews.

We hope you enjoy the proceedings of TrustData 2015.

Keqin Li
Avinash Srinivasan



Welcome Message from the TSP 2015 Program Chairs

On behalf of the Program Committee of the 5th International Symposium on Trust,
Security and Privacy for Emerging Applications (TSP 2015), we would like to wel-
come you to the proceedings of the event, which was held in Zhangjiajie, China.

The symposium focuses on trust, security, and privacy issues in social networks,
cloud computing, Internet of Things (IoT), wireless sensor networks, and other net-
working environments or system applications; it also provides a forum for presenting
and discussing emerging ideas and trends in this highly challenging research area. The
aim of this symposium is to provide a leading edge forum to foster interaction between
researchers and developers with the trust, security, and privacy issues, and to give
attendees an opportunity to network with experts in this area.

Following the success of TSP 2008 in Shanghai, China, during December 17–20,
2008, TSP 2009 in Macau SAR, China, during October 12–14, 2009, TSP 2010 in
Bradford, UK, during June 29–July 1, 2010, and TSP 2013 in Zhangjiajie, China,
during November 13–15, 2013, the 5th International Symposium on Trust, Security
and Privacy for Emerging Applications (TSP 2015) was held in Zhangjiajie, China,
during November 18–20, 2015, in conjunction with the 15th International Conference
on Algorithms and Architectures for Parallel Processing (ICA3PP 2015).

The symposium collected research papers on the aforementioned research issues
from all around the world. Each paper was reviewed by at least two experts in the field.
We realized an amazing symposium that we hope was enjoyed by all the participants.

We would like to thank all researchers and practitioners who submitted their
manuscripts, and the Program Committee members and additional reviewers for their
tremendous efforts and timely reviews.

We hope you enjoy the proceedings of TSP 2015.

Imad Jawhar
Deqing Zou



Welcome Message from the NOPE 2015 Program Chair

Welcome to the proceedings of the 2015 International Workshop on Network Opti-
mization and Performance Evaluation (NOPE 2015) held in Zhangjiajie, China, during
November 18–20, 2015.

Network optimization and performance evaluation is a topic that attracts much
attention in network/Internet and distributed systems. Due to the recent advances in
Internet-based applications as well as WLANs, wireless home networks, wireless
sensor networks, wireless mesh networks, and cloud computing, we are witnessing a
variety of new technologies. However, these systems and networks are becoming very
large and complex, and consuming a great amount of energy at the same time. System
optimization and performance evaluation remain to be resolved before these systems
become a commodity.

On behalf of the Organizing Committee, we would like to take this opportunity to
express our gratitude to all reviewers who worked hard to finish reviews on time.
Thanks to the publicity chairs for their efforts and support. Thanks also to all authors
for their great support and contribution to the event. We would like to give our special
thanks to the Organizing Committee, colleagues, and friends who worked hard behind
the scenes. Without their unfailing cooperation, hard work, and dedication, this event
would not have been successfully organized.

We are grateful to everyone for participating in NOPE 2015.

Gaocai Wang



Welcome Message from SCS 2015 Program Chairs

As the Program Chairs and on behalf of the Organizing Committee of the Second
International Symposium on Sensor-Cloud Systems (SCS 2015), we would like to
express our gratitude to all the participants who attended the symposium in Zhangjiajie,
China, during November 18–20, 2015. This famous city is the location of China’s first
forest park (The Zhangjiajie National Forest Park) and a World Natural Heritage site
(Wulingyuan Scenic Area).

The aim of SCS is to bring together researchers and practitioners working on
sensor-cloud systems to present and discuss emerging ideas and trends in this highly
challenging research field. It has attracted some high-quality research papers, which
highlight the foundational work that strives to push beyond limits of existing tech-
nologies, including experimental efforts, innovative systems, and investigations that
identify weaknesses in the existing technology services.

SCS 2015 was sponsored by the National Natural Science Foundation of China,
Springer, the School of Information Science and Engineering at Central South
University, and the School of Software at Central South University, and it was orga-
nized by Central South University, Hunan University, National University of Defense
Technology, and Jishou University. SCS 2015 was held in conjunction with the 15th
International Conference on Algorithms and Architectures for Parallel Processing
(ICA3PP 2015), which highlights the latest research trends in various aspects of
computer science and technology.

Many individuals contributed to the success of this international symposium. We
would like to express our special appreciation to the general chairs of main conference,
Prof. Guojun Wang, Prof. Peter Mueller, and Prof. Qingping Zhou, for giving us this
opportunity to hold this symposium and for their guidance in the organization. Thanks
also to the general chairs of this symposium, Prof. Jie Li and Prof. Dongqing Xie, for
their excellent work in organizing the symposium. We would like to give our thanks to
all the members of the Organizing Committee and Program Committee for their efforts
and support.

Finally, we are grateful to the authors for submitting their fine work to SCS 2015
and all the participants for their attendance.

Xiaofei Xing
Md. Zakirul Alam Bhuiyan



Welcome Message from the SPPCN 2015 Program Chairs

On behalf of the Program Committee of the Second International Workshop on
Security and Privacy Protection in Computer and Network Systems (SPPCN 2015), we
would like to welcome you to join the proceedings of the workshop, which was held in
Zhangjiajie, China.

The workshop focuses on security and privacy protection in computer and network
systems, such as authentication, access control, availability, integrity, privacy, confi-
dentiality, dependability, and sustainability issues of computer and network systems.
The aim of the workshop is to provide a leading-edge forum to foster interaction
between researchers and developers working on security and privacy protection in
computer and network systems, and to give attendees an opportunity to network with
experts in this area.

SPPCN 2015 was the next event in a series of highly successful international
conferences on security and privacy protection in computer and network systems,
previously held as SPPCN 2014 (Dalian, China, December 2014). The workshop
collected research papers on the above research issues from all around the world. Each
paper was reviewed by at least two experts in the field.

We would like to offer our gratitude to the general chair, Prof. Jian Weng, for his
excellent support and contribution to the success of the final program. In particular, we
would like to thank all researchers and practitioners who submitted their manuscripts,
and the Program Committee members and additional reviewers for their tremendous
efforts and timely reviews.

We hope all of you enjoy the proceedings of SPPCN 2015.

Mianxiong Dong
Hua Guo

Tieming Cheng
Kaimin Wei



Welcome Message from the DependSys 2015
Program Chairs

As the program chairs and on behalf of the Organizing Committee of the First Inter-
national Symposium on Dependability in Sensor, Cloud, and Big Data Systems and
Applications (DependSys2015), we would like to express our gratitude to all the
participants attending the international symposium in Zhangjiajie, China, during
November 18–20, 2015. This famous city is the location of China’s first forest park
(The Zhangjiajie National Forest Park) and a World Natural Heritage site (Wulingyuan
Scenic Area).

DependSys is a timely event that brings together new ideas, techniques, and solu-
tions for dependability and its issues in sensor, cloud, and big data systems and
applications. As we are deep into the Information Age, we are witnessing the explosive
growth of data available on the Internet. Human beings are producing quintillion bytes
of data every day, which come from sensors, individual archives, social networks,
Internet of Things, enterprises, and the Internet in all scales and formats. One of the
most challenging issues we face is to achieve the designed system performance to an
expected level, i.e., how to effectively provide dependability in sensor, cloud, and big
data systems. These systems need to typically run continuously, which often tend to
become inert, brittle, and vulnerable after a while.

This international symposium collected research papers on the aforementioned
research issues from all around the world. Although it was the first event of
DependSys, we received a large number of submissions in response to the call for
papers. Each paper was reviewed by at least three experts in the field. After detailed
discussions among the program chairs and general chairs, a set of quality papers was
finally accepted. We are very proud of the high number of participations, and it was
difficult to collect the best papers from all the submissions.

Many individuals contributed to the success of this high-caliber international
symposium. We would like to express our special appreciation to the steering chairs,
Prof. Jie Wu and Prof. Guojun Wang, for giving us the opportunity to hold this
symposium and for their guidance in the symposium organization. In particular, we
would like to give our thanks to the symposium chairs, Prof. Mohammed Atiquzzaman,
Prof. Sheikh Iqbal Ahamed, and Dr. Md Zakirul Alam Bhuiyan, for their excellent
support and invaluable suggestions for a successful final program. Thanks to all the
Program Committee members and the additional reviewers for their tremendous efforts
and timely reviews.

We hope you enjoy the proceedings of DependSys 2015.

Latifur Khan
Joarder Kamruzzaman
Al-Sakib Khan Pathan
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Abstract. Massively heterogeneous architectures are popular for mod-
ern petascale and future exascale systems. Fault-tolerance is key to the
increased number of components and the complexity of these heteroge-
neous systems. However, standard offload programming models have tra-
ditionally been developed for supporting high performance rather than
reliability. Naive fault-tolerance protocols are incapable of serving dis-
tributed MPI applications that tuned for CPU-MIC heterogeneous clus-
ters. To address these problems, we design and implement a framework
of fault tolerance programming model (FT-Offload). This enhances the
reliability of heterogeneous supercomputers and retains the convenient
of popular Intel Offload programming model. The effectiveness of the
framework is demonstrated via numerical analysis and by porting both
benchmarks and real-world applications to large-scale CPU-MIC nodes
on the Tianhe-2 supercomputer. Our experimental results show that the
current solution, which involves checkpoints, can efficiently strength the
long running and reduce checkpointing overhead.

Keywords: MIC · Fault-tolerance · FT-Offload · Tianhe-2

1 Introduction

With the advent of many-core coprocessor architectures, which are different from
CPUs in functionality, instruction set (ISA), performance, power, and energy effi-
ciency (e.g. GPUs [1] and Intel MIC [2]), massively heterogeneous parallel systems
become a hot topic in high performance computing (HPC) [3–5]. In the latest
Top500 list [6], five of top the ten supercomputers are equipped with coproces-
sors. Packed more than 1 Tflops of double precision performance on a single chip,
the first line of products based on the MIC architecture, Xeon Phi [7] has already
power supercomputers on the list: Tianhe-2 [8,9] and Stampede [10].

Supercomputers may equip with a large number of coprocessors which power
a relative high perk performance. Coprocessors, which lead to a significant
increase in the number of system components in supercomputers installations,
involve some transient and permanent failures, like any others. Because of this
more complicated architecture and because of the coprocessor’s unique features,

c© Springer International Publishing Switzerland 2015
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DOI: 10.1007/978-3-319-27140-8 1



4 C. Chen et al.

large number of cores and weak fault-tolerance of coprocessor the mean time
between failures (MTBF) in heterogeneous parallel systems is shorter, the mean
time to repair (MTTR) is longer [11]. How to scale the heterogenous applications
for these systems while keeping results reliable has become urgent. However, the
standard offload programming models, such as Intel Offload [12], OpenMP4 [13]
and OpenACC [14], always focus on keeping time with the coprocessor. These
stress performance but not reliability for over long runtime of HPC application
which typically run for several days, even several weeks or several months.

Summarizing these systems’ characteristics and developing long-running high
performance applications that can complete jobs pose a considerable challenge.
To creators of these informatic workloads will require assistance to take advan-
tage of state-of-the-art heterogeneous many core computers. The vast majority
of current-generation HPC systems and application codes work around failures
using checkpoint rollback-recovery (CR) schemes [15]: parts of the execution are
lost when processes are subject to failures (either because the corresponding data
is lost when the failure is a crash, or because it is corrupted due to a silent error),
and the fault-tolerant protocol, when catching such errors, uses past checkpoints
to restore the application in a consistent state, and re-computes the missing
parts of the execution.

However, as far as we know existing application-level CR frameworks are
not capable of serving distributed MPI applications that can leverage CPU-
MIC heterogeneous architectures. There is no known CR implementation that
supports checkpointing the massive MICs’ status, even though such a CR tool
may significantly enhance the dependability of MIC computing applications.
In this paper, a general heterogeneous computing system checkpointing model
(FT-Offload) was designed and developed. The system is as convenient as regular
Offload programming but can tolerate the failures both in forward Offload and
reverse-Offload applications by saving the checkpoint data under the double-
in-memory principle. Then the numerical stability and real performance of this
model was analyzed on Tianhe-2 supercomputer.

The rest of this paper is organized as follows. A brief introduction of the
related work is drawn in Sect. 2. Section 3 illustrates the Tianhe-2 CPU-MIC
heterogenous system. Section 4 describes the current checkpointing implementa-
tion on CPU-MIC system. Numerical stability is discussed in Sect. 5. Section 6
provides the details and analysis of the results of the evaluations on Tianhe-2.
Conclusions and future work are presented in Sect. 7.

2 Related Work

When run for long periods, HPC applications need to be able to apply fault toler-
ance to avoid failures, which would require restarting the computation from the
far beginning. There are three main methods to checkpoint HPC application:
uncoordinated checkpointing, coordinated checkpointing and communication-
based checkpointing. Considerable work has been done on failures tolerance
of HPC applications [16,17]. Coordinated checkpointing simplifies recovering
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from failures because it does not suffer from rollback propagations. Check-
point/restart has been one of the major approaches studied over the past several
years. It is desirable to build systems that are able to survive partial failures
with reduced overhead of systems tolerance. Kale et al. explored an in-memory
checkpoint/restart scheme in a fault tolerant CHARM++ [18]. Later, they [19]
presented several optimization techniques to a scalable double-in-memory check-
point/restart scheme to improve its scalability towards exascale. CoCheck [20],
Starfish [21], and AMPI [22] use coordinated checkpointing to produce fault-
tolerant versions of MPI.

Heterogeneous platforms are constantly increasing their share in high perfor-
mance computing. Research on fault tolerance programming is on going [23,24].
CUDA [3] and OpenCL [25]are the most widely used programming models for
CPU-GPU heterogeneous systems. CheCUDA [26] is a user-level checkpointing
approach to CUDA applications running on systems with GPUs. This approach
relies on the Berkeley Lab Checkpoint/Restart (BLCR) [27] tool to checkpoint
the application which implements kernel level checkpointing and is widely used in
applications with production quality. This tool requires that no CUDA objects
exist when the check-point is taken. CheCL [25] is a user-level checkpointing
tool for OpenCL applications. This tool saves only OpenCL objects and hence it
works with a conventional system-level checkpointing tool, such as BLCR. One
previous study [11] outlines and analyzes the intrinsic and extrinsic issues that
limit the I/O performance when check-pointing parallel applications on Xeon
Phi clusters.

When developing a general-purpose fault-tolerant protocol, two adversaries
must be taken into account: the occurrence of failures, that hit the system at
unpredictable moments, and the behavior of the application, that is designed
without taking into account the risk of failure, or the fault-tolerant protocol.
The advent of MIC coprocessor necessitates the development of fault tolerance
programming model for CPU-MIC heterogeneous systems described herein. Such
framework will run on large-scale supercomputers like Tianhe-2, and allows the
developer to deal with desirable performance and reliable stabilization on the
far design.

3 Large-Scale MICs on the Tianhe-2 Compute Nodes

Developed by the National University of Defense Technology (NUDT), Tianhe-
2 supercomputer retained its position as the world’s No.1 system in the latest
Top500 list with a performance of 33.86 petaflop/s [6]. Tianhe-2 is a hybrid
MPP(Massively Parallel Processing) system with CPUs and MICs. This section
introduce the hardware configure and programming model.

3.1 Hardware Configure

Combining 2 Intel Xeon host processors with 3 MIC accelerators, the computing
nodes in the Tianhe-2 system were installed into 500 cabinets with 32 nodes
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Fig. 1. Rough architecture of Tianhe-2 compute nodes

per cabinet, which contribute to the peak performance. The rough architecture
of the heterogeneous supercomputers is shown in Fig. 1. Each node has an Intel
Xeon processor with 64 GB shared memory, and three Intel MIC cards plugged in
the PCIe 3.0 slot. These MIC cards consist of 57 cores, with 8 GB GDDR5 local
memory each. The CPUs share the same memory space, but each MIC has its
own separate memory. The three MICs can be used together or separately. Two
CPUs and three MICs within a node constitute a basic heterogeneous compute
unit, here called compute element. This architecture has several advantages in
many aspects, such as obtaining very high performance on relatively small system
scales and a much higher energy efficiency than its homogeneous counterpart.

The interconnect network topology is an opto-electronic hybrid, hierarchical
fat tree. The link bandwidth is 40 Gbps with a speed of 10 Gbps per line. The
network latency is 1.2 s. The network supports the communication of computa-
tion tasks, I/O access, system management, and has the characteristics of high
bandwidth, low latency, and high scalability. The network supports collective
communication operations.

3.2 MPI+X Programming on Tianhe-2

In order to use CPU and MIC cooperatively and the successful of MPI+OpenMP
and MPI+CUDA in which MPI applies to inter-node and OpenMP or CUDA
to intra-node programming, the MPI+X reveals potential in massively hetero-
geneous systems. Here X is accelerator-specific for MIC.

The MIC coprocessors from Intel support a modified x86 instruction set,
thereby providing the programmability of a full-fledged multicore CPU [2]. For
large MICs on Tianhe-2, Intel Offload Model is the specific X. Running a µOS,
the reverse-Offload is also an alternative. Figure 2 gives a skeleton comparison of
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Fig. 2. Forward-Offload and reverse-Offload

(forward) Offload and reverse-Offload. The offload model treats the CPU cores
as main processors and the MIC cores as accelerators whose role is to speed up
pieces of the application. Before porting application, the programmer starts by
writing code for the MIC cores. Then identifies performance-critical routines that
are likely to see an improvement in performance by running on the MIC cores
and correspondingly recodes those routines for the accelerators. Turning the
forward Offload model upside-down, the reverse Offload treats a hybrid system
as a cluster of MIC cores, each with an attached CPU core for offloading control,
memory, or I/O (input/output) intensive work. Then the reverse-Offload model
treats CPU as device and MIC as host and makes the program start on MIC,
abundantly express the massive threads computing superiority of MIC. More
details of programming and optimization on MIC system can be found in [28].

4 Adaptive Checkpointing on CPU-MIC Systems

In Tianhe-2 massively heterogeneous supercomputers, the memory on the MIC is
completely separate from the CPU memory. Coprocessor memory is not mapped
into the host’s virtual memory space, so the host may not be able to read or
write directly. The code and data were uploaded to coprocessor, and then the
computing results is collected by Offload or reverse-Offload, which is a serials
of directive provided by Intel [28]. In this section, the current FT-Offload to
double in-memory checkpoint/rollback is introduced to the CPU-MIC system
when the MIC is used as coprocessor or host specially for those separate memory
systems. Although inspired by efficient checkpointing CPU-MIC system, it was
designed as an independent software layer and can be used in any context where
heterogeneous active messages might be useful.

4.1 Double In-Memory Checkpointing

The checkpoint is a snapshot of an application’s running state that can be used to
restart execution upon a failure [29], then the application do not need to restart
from the far beginning. However, when checkpointing large-scale systems, tens of
thousands of compute nodes write checkpoints to the parallel file system (PFS)
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concurrently. Then the low I/O throughput becomes a bottleneck [15]. Machines
such as K computer and Tianhe-2 have a large amount of DRAM storage volume.
In order to relieve the I/O bottleneck, we propose to keep the checkpoint in local
storage memory. At the same time, while checkpoint/restart is a very general
technique and can be applied in a wide range of application, it is still difficult
to use on heterogeneous systems [23].

Double in-memory checkpointing is a suitable approach to these problems
[18]. The protocol uses local memory for checkpoints, which leverages the high-
speed communication network and I/O operation to alleviate bottlenecks. The
basic idea is to create two checkpoints for each compute node. One checkpoint is
stored in local memory, and the other is stored on a buddy node. If one fail-stop
node fails, the surviving nodes restores their object data from the chosen spare
node. The replacement of the failed one is done automatically from the redun-
dancy pool. This method is capable of tolerating all single fail-stop failures and
most multiple failures (if failed nodes are not buddy to each other). As single
failures are the most common failure in today’s HPC system, this scheme is suf-
ficient for very large machines. In this section, the open question of applying this
checkpoint principle to CPU-MIC system and retaining the compatible Offload
programming is studied.

4.2 MIC Work as Coprocessor

The workflow of MIC-as-coprocessor is shown in Fig. 3. This model provides a
flexible programming choice. First, when using the offload model, the code region
is executed as a solo task, called kernels, on the accelerator. This is simple and
the application can be quickly accelerated by the power of coprocessor. However,
because the ever-increasing processing power of multi-core CPUs is neglected,
splitting the workload between the CPU and the MIC and orchestrating the
execution of multiple tasks efficiently across these devices has become fashionable
for higher performance. In both case, a third component, e.g. OpenMP, MPI, is
needed to handle parallelism inner-nodes and inter-nodes. In these programming
models, the manner in which the program can be transferred to tolerate fault
involves use the information provided by the application state which is in a state
of data dependence and using the number of arrays that compose the application.

For an Offload application composed of N kernels, the data dependence is the
CPUtask input added by a snapshot taken in between two contiguous kernels
Ki and Kj executed sequentially defined by the set of in (I) required by the
kernel Kj or the CPUtask output added by the set of out (O) generated by the
kernel Ki. In this way, data dependence between kernels is described in terms
of its output and of the future inputs of CPU and MIC. The joint of output
and future input in the data flow diagram will be the checkpoint location. The
flowing equation presents the application state:
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The checkpointing interval must obey the rule that the computing time
between two checkpoint location added by the one time checkpointing overhead
is less than MTBF. While running at the checkpoint location, the system save
the checkpoint data to the memory system in case of failure. When hard error
occurs, the task management system, say slurm, will stop the program and the
resubmit the task. The fault tolerance view of the workflow is given in Fig. 3, on
the right.

Fig. 3. Checkpointing protocol while MIC worke as coprocessor

4.3 MIC Work as Host

Running a fully user-accessible Linux OS with other operational software and ser-
vices which from the Intel Many-core Platform Software Stack (MPSS), enables
the MIC to work as an autonomous compute node. Specifically, it can execute
programs natively, like a host. While MIC work as a host, shown in Fig. 4 on the
left, the main program is initiated on MIC. The CPU only handles some of the
computing task, like MPI communication and I/O operation. Similarly, dealing
with the separate MIC and CPU memory becomes the main obstacle for this
heterogeneous programming and checkpointing. In this section, the checkpoint-
ing protocol and implementation is described in detail. By establishing a library
calls running on CPU, all the operation of MPI communication and the module
of fault-tolerance is packaged as a function familiar to a computing task. This
makes it easy to port existing code, and allows for accommodating the basic
primitives Intel Offload pragma directives.

Overview. To harness the programming gap, the current FT-Offload comple-
ments the functionality of Offload with MPI communication and checkpoint-
ing API as a front-end. The API encapsulates the basic primitives #pragma
offload directives and MPI calls. This makes it easy to port existing code. Table 1
provides an overview of the main APIs. We encapsulate the fault tolerance code
with FT-Offload in a function. This function together with its arguments can
then be passed to the MPI and checkpointing sub-level function. More details
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about the data transfer and communication will be talked in following section.
The halo init and the halo finalize performs the remote memory allocation
or free for both boundary exchange with other nodes and checking data save,
returning a special remote ptr object which ensures local and remote addresses
cannot be mixed up without the compiler complaining about it. Checkpointing
save and load are carried out by checkping save and checkpoint load functor.

Table 1. Overview of the main parts of the FT-Offload API

node t id -address the information of coprocessor.

void exchange wrapper() -a packaging function of communication and fault tolerance

void halo init(id) -setup the halo boundary buffers for MPI communication

void mpi communication(id, buf) -receive/send the data updated on MIC

void halo finalize(id) -free the boundary buffers on CPU and MIC

void checkpoint save(id, buf) -save the checkpoint data on CPU and its buddy memory

void checkpoint load(id, buf) -load the checkpoint data from the buddy memory

volatile int s -asynchronous transferring signal

int offload signal -asynchronous wrapper state transition signal

int offload id -asynchronous MPI communication buffer signal

double * send/receive buf -MPI communication buffer

double * offload checkpoint buf -checkpoint data buffer

Checkpointing Protocol. To deal with the relationship of CPU, MIC, data
transfer, communication and checkpoint, the right part of Fig. 4 provides a
simplified diagram of FT-Offload checkpointing protocol. The CPU allocates
memory space, and then uploads the binary and initial data to MIC through
Coprocessor Offload Infrastructure (COI). As shown in the figure. the appli-
cation is initiated and does the most part of computation on MIC. Then the
boundary buffer is transferred to CPU for halo exchange. This is performed by
offload transfer directives. When the program reaches the checkpointing loca-
tion, the checkpointing buffer is transferred to CPU memory just the same to
boundary buffer, and then we perform the double in memory backup. When a
hard error occurs, the task will restart by the slurm system. After restarting,
the program will reach the checkpoint load location, then the workflow is the
reverse of checkpoint save.

An exchange wrapper was designed to run on CPU to control these separate
actions detailed in previous section. As shown in Fig. 5, there are seven tasks in
the wrapper, but three tasks are active at most, and they are Receive Task (RT),
Send Task (ST) and Update Task (UT). The ST is to send data to other nodes
while RT is to receive. The UT is main computing task running on MIC. After
MIC updating, the boundary or other data need to communicate with other
node is transferred to CPU; after CPU receive the newest data to update, it
transferred to MIC. The state transitions of RT, NT and UT objects is triggered
by the offload signal frequently altering on MIC. The signal and data transfer
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Fig. 4. Checkpointing protocol while MIC work as host

via an offload transfer API provided by Intel. The halo exchange setup task is to
define the boundary data and all reduce data and allocate memory space both
in MIC and CPU, the free work is to be done by halo exchange finalize task.
As there may produce some errors while communicating, we setup a MPI error
handle task to deal with.For checkpointing and recovery, a save/load memory
task is used. This task deals with the checkpoint saving work, and also loads the
checkpointing data once a failure occurs. The data transfer latency is hidden by
asynchronous offload transfer API, provided by Intel.

Fig. 5. State diagrams of exchange wrapper

Implementation. Algorithm 1 illustrates how the CPU listen to the signal from
MIC, then organizes the execution of multiple tasks as shown in the state dia-
grams. The signal and wait clause is to perform the asynchronous data transfer
for overlapping communication and computation. For better performance, the
overlap work is done by asynchronous transfer.
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5 Theoretical Analysis on FT-Offload’s Stability

The double in memory checkpoint/restart fault tolerance presented in Sect. 4
involves restart the program with the buddy node instead from the far beginning
whenever a node fails. In the practice of the double in memory fault tolerance,
the numerical stability involving in data recovering have to be addressed.

Consider a parallel system with nodes and each node has four computing com-
ponents, one CPU and three MICs. For a simple model similar to [18], we assume
that each component failure will trigger the node failure. Each component has a
failure rate of r1,r2,r3,r4. Then the mean time between failure (MTBF) is here
set as Si, the relationship between Si and r is Si = 1/max(ri) . Without any
faults, the total execution time is T. In this way, the probability to completing
the long-running application without fault tolerance is (1−max(ri)∗T )n, where
n is total number of nodes.

With fault tolerance, the probability may change. The total runtime set to T ′.
The checkpointing interval set in the application is I. Let m buddy processor for
a group which will give the total of n/m groups of buddies. If any component of a
node in a buddy group fails, then the probability of unrecoverable error running
between I and other value is max(ri) ∗ I. So the probability that m nodes in a
buddy group crash during I is max(ri)T ′ ∗ max(ri)T . The probability of finish
the long running application with our fault tolerance model can be written as
(1 − max(ri)T ′ ∗ max(ri)I)(n/m).

Algorithm 1. Algorithm of exchange wrapper
1. while offload sig �= STOP do
2. #pragma offload transfer target(mic:id)out(offload sig)signal(&s1){
3. #pragma offload target(mic:id)wait(&s1){
4. switch(offload sig)
5. case INIT : //setup halo buffers
6. errorCode=halo init(id)
7. case EXCHANGE : // MPI communication
8. errorCode=halo exchange(id)
9. case SAVE CKPT : // save checkpoint data

10. errorCode=ckt save((id))
11. case LOAD CKPT : // load checkpoint data
12. errorCode=ckt load(id))
13. case FINALIZE : // free halo buffers
14. errorCode=halo finalize(id))
15. default:
16. return -1
17. end switch
18. if (errorCode �= 0) then
19. handleMPIError(errorCode) // error handle
20. end if
21. if offload sig �= STOP then
22. offload signal=RUN
23. #pragma offload transfer target(mic:id) out(offload signal) signal(&s1){}
24. #pragma offload target(mic:id)wait(&s1){}
25. end if
26. end while

The numerical analysis of the probability is shown the following illustration
of the equations with system parameters. At first, we set the MTBF(S) for any
component of any 8192 nodes be 10 years. It may differ across different compo-
nents. It was here used to simplify the system. The ri = 1/S = 4.8e − 5 per hour.
The application running time R is 400 h. So the failure rate is about 99.999%.
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However, if the current tolerance model increase the runtime of its application
to 800 h, the checkpoint interval set to 15 min, I = 0.25. Therefore, the proba-
bility of the unrecoverable failure is about 0.0009 %, regardless of whether the
dm is set to 2 or other number. That increases the likelihood that the long run
application will be completed from unlikely to nearly certain. Noted that, for
checkpointing is low overhead, in this analysis we do not consider the expenses
of the checkpointing. The issue is addressed in experimental section.

6 Experimental Results

This section evaluates our FT-Offload framework. For demonstration purpose,
the overhead of periodic checkpointing process and of the restarting applica-
tions after a failure was measured on Tianhe-2 supercomputer. The version of
MPI library used are mpich3. The compiler used is Intel icc version 13.0.0 with
optimization options ”-O3”. To quantify the overheads of FT-Offload, we run
microbenchmarks experiments that can reveal the checkpoint overhead under
different checkpoint size which is user input. Then, three real applications are
used in our experiments. They are Preconditioned Conjugate Gradient (PCG)
[30] algorithm, MD [31] and Euler [32].

6.1 Checkpointing Overhead: Benchmark Test

In this section, we use the test benchmark for the preliminary evaluation of the
checkpoint design. The inputs were the checkpoint size, checkpoint save time
and interval. We set the size of each node from 1 M to 1000 M. Figure 6 shows
the average overhead of checkpoint-save processes. The average checkpoint time
is relatively short compared to [18]. This may be attributable to the use of
asynchronous transfer of MIC to CPU and taking advantage of low latency
DRAM read or write, when writing the checkpoint buffer the executing pipeline
needn’t stop to wait for data to be saved.
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6.2 Checkpointing Overhead: Real Application

The current PCG solves the sparse linear system arising from discrediting a
3D Poisson’s equation using finite-difference-method. The running time of PCG
and fault-tolerance PCG (FT-PCG) is depicted on Fig. 7. The gray bar shows
the running time of PCG and the black bar is for FT-PCG when no failure
occurs. This demonstrates that, when no failure occurs during the computation,
the overhead of our checkpointing protocol of heterogeneous system is about
6 % on 1k nodes and 8 % on 8k nodes, it’s much less than 25 % labeled in [33].
Noted that, as our weak scalability scheme, the problem scale of each process
is the same while running on multiple nodes. The checkpointing interval is con-
trolled under the MTBF, so before the system corrupt the checkpoint data can
be saved. And in this experiment, we can carry out the checkpoint for better
analysis. To reveal the recovery of fail-stop failures, when the FT-PCG running
we let down one of the working nodes through the management system manually.
The main overhead for this checkpointing recovery is the time it takes to remove
the failed nodes then redo the computation due to rollback, which is about
3 min. Optimistically, the recovering is automatically done by our task-submit
auto script.
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Fig. 7. PCG timing overheads for fault-tolerance while no failure occurs during the
computation

For comparison, the current FT-Offload was used on another two applica-
tion. One was frequently used in the study of nanoscale physical phenomena
molecular dynamics (MD) simulation program which was poor on load balance
while running on supercomputers. In this way, the size of checkpoint on one node
may differ from the size of checkpoint on the others. The other is Euler, a multi
uniform Goundov grid, when checkpointing the checkpoint buffer size was found
to change during different running phases, but it did not show checkpoint of
different sizes. Tables 2 and 3 reports the checkpoint size and overhead with dif-
ferent running process. Because of poor load balance, the checkpoint size of each
process was different. During the parallel checkpoint buffer writing, maintaining
balance took up a large amount time, it is high lined in Table 3.

To assess the recovery of fail-stop failures, when the FT-PCG running we
let down one of the working nodes through the management system manually.
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Table 2. Checkpoint overhead:Euler

Process Size (total) Running time (s) Average overhead (s)

1000 7.04–32.69 G 3858 1.92

4000 10.23–45.51 G 2683 1.78

8000 25.12–95.34 G 2517 1.96

Table 3. Checkpoint overhead:MD

Process Size (total) Running time (s) Average overhead (s)

1000 1.24 G 3848 5.32

4000 5.93 G 3048 7.32

8000 10.88 G 3125 10.56

The main overhead for our checkpointing recovery is the time it takes to remove
the failed nodes then redo the computation due to rollback, which is about 3 min.
Optimistically, the recovering is automatically done.

7 Conclusions

In this paper, we present FT-Offload,a fault tolerance framework for massive
MIC based heterogeneous programming. It take advantage of Intel Offload and
double in-memory checkpoint/recovery techniques. This FT-Offload system has
several advantages over the exiting solutions, such as reliability for the long run-
ning application on massively heterogeneous systems. Existing code is rendered
easily portable by providing the halo exchange wrapper and other APIs. The use
of MPI and Intel Offload as communication back-end ensures its compatibility
with most HPC environments.

Numerical analysis was conducted and a test benchmark and the real-word
applications were ported from Offload to FT-Offload. Under the framework of
halo exchange wrapper, the Offload’s directives are replaced by FT-Offload.
When run on large number of nodes, the checkpoint overhead can was kept
is relatively low. This work demonstrates that this system can tolerate massive
CPU-MIC systems and produce dependable results. This work may also serve
as general guidance for heterogeneous systems.

Some observations opened up new questions that worth merit further inves-
tigation. For instance, at what point contention for the latency of transferring
large checkpoint data from MIC to CPU, a new kind of checkpoint partition and
latency overlap study needs further investigations. The integration of different
coprocessors within a single fault tolerance programming model is also planned.
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Abstract. Big Data Analytics is a big challenge for the performance
of the computing and storage systems. With the rapid development of
multi-core and GPU processors, the performance of HDD-based storage
system becomes much more serious. The flash-based Solid State Disks
(SSDs) have become an emerging alternative to HDDs and received
great attentions from both academia and industry. However, a single
SSD cannot satisfy the capacity, performance and reliability require-
ments of a modern storage system supporting increasingly demanding
data-intensive computing and applications. Redundant Array of Inde-
pendent SSDs (RAIS) is an effective way to build high-performance,
high-reliability, and high-capacity SSD-based storage systems. In RAIS,
the chunk size is an important parameter that affects the system perfor-
mance. However, the existing studies are mainly focused on the efficiency
of chunk size of RAID. Because of the different performance character-
istics between HDDs and SSDs, the results of these studies could not be
applied to the RAIS. In this paper, we first conducted extensive exper-
iments on the efficiency of chunk size on the RAIS performance. Based
on the experimental results, we proposed a Multi-Chunk RAIS (short
for MC-RAIS) to improve the performance of the SSD-based storage
systems. Evaluation results show that MC-RAIS outperforms the exist-
ing fix-chunk-size SSD-based disk arrays in the I/O performance measure
by more than 50 %.

Keywords: Solid state drive · Redundant array of independent SSDs ·
Chunk size · Garbage collection · Performance evaluation

1 Introduction

Hard Disk Drives (HDDs) have become the performance wall of storage sys-
tems. Recently, the flash-based Solid State Disks (SSDs) have become an emerg-
ing alternative to HDDs and received great attentions from both academia and
industry [1,6,8,19]. Different from HDDs, SSDs are based on semiconductor
chips and have no mechanical parts. SSDs can provide many benefits, such as
low power consumption, high robustness to vibrations and temperature, and
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 18–32, 2015.
DOI: 10.1007/978-3-319-27140-8 2
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most importantly, high small-random-read performance. Unfortunately, SSDs
also have some disadvantages, such as high cost, erase-before-write problem, low
small-random-write performance and limited lifetime [1].

Besides the deployment of SSDs on desktop computers, some studies also use
SSDs in the high-performance computing and enterprise environments [5]. In these
environments, a single SSD cannot satisfy the performance, capacity and relia-
bility requirements. Thus, applying the RAID (Redundant Array of Independent
Disks) technique [13,17] to SSDs is necessary and likely promising to build large-
scale high performance and highly reliable SSD-based storage systems [2,14,20,
21]. In this paper, Redundant Array of Independent SSDs is short for RAIS. The
different levels of RAIS are also short for RAIS0, RAIS5 and so on.

By distributing user data across multiple disks in an array, RAID offers high
performance, high reliability and high capacity. The chunk size is an impor-
tant parameter that defines the granularity of data distribution in an array and
has been traditionally determined based on characteristics of HDDs to balance
throughput and response time [7]. Due to the characteristics of HDDs, the sug-
gested chunk size by the enterprise data storage systems vendors such as IBM,
HP, and EMC varies between 16 KB and 1 MB. The suggested chunk sizes can
be possibly far from the optimal configuration for SSD-based disk arrays with
respect to the I/O throughput and response time. Additionally, the conven-
tional chunk size used for RAID should be revised due to the limited endurance
of SSDs. To the best of our knowledge, the analysis and performance studies on
the optimization of the chunk size of RAIS are missing in the previous work.

In this paper, we first conducted extensive experiments on the efficiency of
the chunk size on the RAIS performance. The evaluation results show that the
optimal chunk size is different for read-intensive workloads and write-intensive
workloads. Based on the observations, we proposed a Multi-Chunk RAIS (short
for MC-RAIS) to improve the performance of the SSD-based storage systems by
exploiting the workload characteristics. To evaluate the efficiency of our proposed
MC-RAIS scheme, we have implemented a prototype of MC-RAIS by integrating
it into an open-source SSD simulator developed by Microsoft Research [1] and
conducted extensive experiments to evaluate the performance of the MC-RAIS
scheme by a wide variety of enterprise realistic workloads. The experimental
results show that the MC-RAIS scheme outperforms the fix-chunk-size RAIS
schemes by more than 50 %. Moreover, the MC-RAIS scheme also significantly
reduces the performance variability simultaneously.

More specifically, this paper makes the following contributions:

(1) To the best of our knowledge, MC-RAIS is the first study to evaluate the
impact of the chunk size on the performance of RAIS system.

(2) MC-RAIS fully exploits the parallelism characteristics of SSDs in RAIS to
improve the RAIS performance and alleviate the GC impact on the perfor-
mance variability.

(3) We evaluate the performance of MC-RAIS in a RAIS simulator developed
by Microsoft Research [1] and Carnegie Mellon University (CMU) [4] driven
by a wide spectrum of workloads. The experimental results show that the
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MC-RAIS scheme outperforms the fix-chunk schemes in terms of average
user response times.

The rest of this paper is organized as follows. Background and motivation
are presented in Sect. 2. We describe the design detail of the MC-RAIS scheme
in Sect. 3. The performance evaluation is presented in Sect. 4. The related work
is presented in Sect. 5. We conclude this paper and point out the directions for
the future research in Sect. 6.

2 Background and Motivation

In this section, we first describe the key characteristics of flash-based SSDs com-
pared with magnetic HDDs. Then we elaborate how the configuration of the
chunk size affects the RAIS performance. Based on these observations, we pro-
vide the motivation for our new multi-chunk size optimization scheme for RAIS.

2.1 Characteristics of Flash-based SSD

Similar to HDDs, data in SSDs is persistent when the power supply is turned off.
However, unlike mechanical HDDs, flash-based SSDs are made of silicon memory
chips and do not have moving parts (i.e., mechanical positioning parts). SSDs
can provide many benefits, such as low power consumption, high robustness to
vibrations and temperature. Figure 1 illustrates a logical overview of a typical
SSD with n independent channels. Each channel is shared by multiple flash chips.
SSDs are inherently highly parallelized architectures, comprising different units,
including page, block, plane, channel and package. The different constituent
operational units can operate in parallel, thus providing the potential to achieve
better performance.

Besides the advantages of high parallelism and high energy efficiency, flash-
based SSDs have two main characteristics compared with HDDs, as follows.

First, the current generation of SSDs suffers from the poor performance of
small random writes. The reason is that in the flash-based SSDs, each block of
size 64–128 KB must be erased before any page in it can be re-written, which is
known as the characteristic feature of “erase-before-write”. Seriously, an erase
operation typically takes several milliseconds that is one or two order of magni-
tude higher than the completion time of a read operation.

Fig. 1. Internal overview of a typical SSD.
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Second, the flash wear-out problem caused by a large number of repeated
write-erase operations affects the reliability of SSDs. Generally, the expected
number of erasures per block is 100,000 for the single level cell (short for SLC)
NAND flash memory while the expected number is reduced to 10,000 for the
multi level cell (short for MLC) NAND flash memory.

These two above limitations of SSDs must be taken into consideration when
designing SSD-based storage systems, especially SSD-based disk arrays.

2.2 Chunk Size

The chunk size of RAIS is an important parameter that affects the RAIS per-
formance. To investigate the effect of different chunk sizes on the performance
of SSD-based disk arrays, we conduct experiments on a RAIS5 consisting of 4
Intel DC S3700 200GB SSDs, driven by the fio benchmark.

Figure 2 shows the performance of random accesses on the RAIS5 with dif-
ferent chunk sizes. From Fig. 2(a), we can see that the performance is increased
with the increasing chunk size of RAIS. The experimental results also shown
that when the request size is 3 times of the chunk size, the read performance is
the best. The reason is that the access is the full stripe read and all SSDs in the
RAIS5 are involved in one request. Therefore, the access parallelism among the
SSDs is fully exploited so that the RAIS performance is improved accordingly.
In contrast, as shown in Fig. 2(b), when the chunk size is the smallest, the write
performance is the best. The reason is that with a smaller chunk size, more write
requests could be performed in all or most SSDs in the RAIS5 by exploiting the
access parallelism and avoid the small-write penalty problem.

Fig. 2. The performance of random accesses on a RAIS5 with different chunk sizes.

Based on the evaluation results, we can see that the optimal chunk sizes of
SSD-based disk array in different workload conditions are diverse. To provide the
best performance of RAIS, the workload characteristics must be fully exploited to
guide the data layout, i.e., distributing the data in different zones with different
chunk sizes. These important observations motivate us to propose a multi-chunk
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RAIS scheme to improve the performance of SSD-based disk arrays by exploiting
the workload characteristics.

3 MC-RAIS

In this section, we first present the system overview of MC-RAIS, followed by
a description of the request processing workflow and the data consistency in
MC-RAIS.

3.1 System Overview of MC-RAIS

Figure 3 shows the system overview of our proposed MC-RAIS. As shown in
Fig. 3, MC-RAIS interacts with the RAIS Functional module and can be incor-
porated into any existing RAIS5 schemes, including hardware and software RAIS
systems. In general, MC-RAIS consists of two important functional modules
added into the RAIS controller in the existing storage system: Workload Monitor
and Request Redirector. The Workload Monitor module is responsible for identi-
fying the user I/O requests based on the access history. The Request Redirector
module is responsible for issuing the user I/O requests to the corresponding
zones based on results of the Workload Monitor module.

In Fig. 3, the SSD-based disk array is divided into three data zones with
different chunk sizes, 4 KB, 8 KB and 32 KB. The 4 KB zone is designed to store

Fig. 3. System overview of MC-RAIS consisting of three data zones with different
chunk sizes.
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write-intensive data blocks (write-intensive zone), the 32 KB is designed to store
the read-intensive data blocks (read-intensive zone) and the 8KB is designed for
mixed data blocks. Moreover, the data blocks are classified into read-intensive,
write-intensive and mixed types based on the access history. When a data block
is accessed, its access frequency will be increased to track the popularity of
the data block, which is a simple way to track the data popularity. However,
other classic policies are also applicable in MC-RAIS to further track the data
popularity to improve the efficiency of MC-RAIS.

In addition to the above two functional modules, MC-RAIS uses an impor-
tant data structure, i.e., Map table, to record the mapping information of the
redirected write data. As shown in Fig. 4, the Map table is used to log all the
write data that is stored on the different data zones. MC-RAIS uses the non-
volatile memory to store the content of the Map table to prevent data loss in case
of power failure. The Map table is similar to the mapping information within
the FTL in a single SSD. Thus, the protection schemes of mapping information
within FTL are also applicable to the Map table. Since each incoming request
should be checked in the Map Table, MC-RAIS use the bloom filter scheme to
improve the query efficiency which further reduces the space overhead.

Fig. 4. Mapping table of MC-RAIS.

3.2 Request Processing Workflow

When processing the incoming requests, an important issue must be addressed
for the new data blocks because no access history has been kept for the new
data block. To be simple and effective, the new data blocks are first stored on
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the read-intensive zone. If the data blocks are read-intensive, no migration is
needed. Otherwise, the data blocks will be migrated to other zones when they
are updated again, thus involving on extra write operations. By doing this, the
frequency of the data migration is reduced.

Upon receiving the write request, MC-RAIS first checks the Map table to
determine which data zone to service the request. If the write request hit the
Map Table, the index will be retrieved to locate the data zones to service the
write request. Moreover, the corresponding w count value in the Map table will
be increased to record the write access frequency. Otherwise, the write data will
be written on the read-intensive zone and be recorded in the Map table. For
read requests, MC-RAIS also checks the Map Table firstly to determine which
data zone to service the request. If the requested data are stored on multiple
data zones, the read request will be replaced by multiple read requests to the
different data zones in the same RAIS. After all the these read requests have
completed, the requested read data is reconstructed and returned to the upper
layer. Otherwise, the read request will be serviced as usual and the corresponding
r value in the Map table will be increased to record the read access frequency.

Once the data blocks on the read-intensive zone are identified to be write-
intensive, these data blocks will be migrated to write-intensive zones in the MC-
RAIS. In order to reduce the migration overhead, the migration is processed
when updating the same data blocks. In other words, when the data is updated,
these data blocks will be stored on the write-intensive zone rather than the
original read-intensive zone. To ensure the data consistency, the log entry of the
write data is deleted from the original zone in the Map Table after the migrate
process completes. Moreover, to improve the efficiency of the migration process,
the data blocks are stored sequentially on the targeted data zones in MC-RAIS.

3.3 Data Consistency

Data consistency in our MC-RAIS design includes the following two aspects: (1)
The key data structure must be safely stored, (2) The user read requests must
fetch the right data.

First, to prevent the loss of the Map table in the event of a power supply
failure or a system crash, MC-RAIS stores the contents of the Map table in the
non-volatile RAM (NVRAM). Since the size of the Map table is general small, it
will not incur distinct extra hardware cost to the RAIS system. A small battery
or capacitor may delay shutdown until the contents in the RAM are safely saved
to an area of flash memory reserved for the purpose. On the other hand, in order
to improve the write performance by using the write-back strategy, NVRAM is
commonly deployed in the RAIS controller or the RAIS system. Therefore, it is
easy and reasonable to use the NVRAM to store the contents of the Map table.

Second, since the up-to-date data for a read request can be stored on different
data zones, each incoming read request is first checked in the Map table to
determine whether it should be serviced by the multiple data zones. If so, the
read request will be split into multiple read requests to keep the fetched data be
always up-to-date. Otherwise the read request will serviced as it is.
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4 Performance Evaluations

In this section, we first describe the experimental setup and methodology of this
paper. Then we evaluate the performance of our proposed MC-RAIS scheme and
the comparisons of the fix-chunk-size scheme through trace-driven simulations
with realistic enterprise workloads.

4.1 Experimental Setup and Methodology

To evaluate the efficiency of our proposed MC-RAIS scheme, we have imple-
mented a prototype of the MC-RAIS scheme by integrating it into an open-
source SSD simulator developed by Microsoft Research (MSR) [1]. The MSR
SSD simulator, an extension of DiskSim from the Parallel Data Lab of CMU [4],
has been released to the public and widely used to evaluate the performance
of the SSD-based storage systems in many studies [12,16,18]. In this paper, we
extended the original DiskSim and the MSR SSD simulator to implement our
proposed MC-RAIS scheme. The specifications of each SSD in the SSD simulator
are shown in Table 1.

Table 1. SSD model parameters.

SSD model

Total Capacity Configuable

Reserved Free Blocks 15 %

Minimum Free Blocks 5 %

Cleaning Policy Greedy

Flash Chip Elements 64

Planes Per Package 4

Blocks Per Plane 512

Pages Per Block 64

Page Size 4 KB

Page Read Latency 25 us

Page Write Latency 200 us

Block Erase Latency 1.5 ms

In the evaluations, we compare the performance of the MC-RAIS scheme
with that of the fix-chunk-size schemes, in terms of user response time. In the
fix-chunk-size configuration, we also set different chunk sizes in different exper-
iments: 4 KB, 8 KB and 32 KB (short for 4 KB-RAIS, 8 KB-RAIS and 32 KB-
RAIS). For the MC-RAIS scheme, each zone size is configured to be 60GB by
default. We use three realistic enterprise-scale workloads to study the impact of
our proposed MC-RAIS scheme. The three realistic enterprise-scale workloads
were collected from the Microsoft Cambridge Research [3]. The main workload
parameters of these traces are summarized in Table 2. Each experiment is run
three times and the average results are collected.
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Table 2. The trace characteristics.

Traces Read ratio IOPS Ave. Read Req. Size (KB) Ave. Write Req. Size (KB)

proj 0 85.5 % 479 6.4 9.2

stg 0 20.6 % 354 9.3 8.6

hm 0 68.5 % 134 9.7 6.5

4.2 Performance Results

We first conduct experiments on an 4-disk RAIS5 system for the different schemes
driven by the three workloads. Figure 5 shows the comparisons of the normalized
average response times for the fix-chunk-size schemes with different chunk sizes
and our MC-RAIS scheme driven by the three workloads. From Fig. 5, we can
see that compared with the fix-chunk-size RAIS schemes, MC-RAIS outperforms
4 KB-RAIS, 8 KB-RAIS and 32 KB-RAIS by 40.2 %, 43.4 % and 49.8 % in terms
of the average response time, respectively. The reasons are twofold. First, for
the write requests, MC-RAIS reduces the overhead of the parity update, which
significantly alleviates the write amplification penalty. Second, the read requests
could be serviced by fully exploiting the access parallelism to improve the perfor-
mance. Therefore, MC-RAIS reduces the overall response time, compared with
the fix-chunk-size schemes.

Fig. 5. Comparisons of the normalized average response times for the MC-RAIS scheme
and three fix-chunk-size RAIS schemes driven by the three workloads.

To better understand the variance of response times for the three workloads in
the experiments, Fig. 6 shows the comparisons of the standard deviation results
for the MC-RAIS scheme and three fix-chunk-size RAIS schemes. From Fig. 6,
we can first see that the 4 KB-RAIS scheme is capable of working with the most
minimal variances. The reason is that the 4KB chunk size is the same as the page
size, which makes the performance stable in the situation. Second, we can see
that the MC-RAIS scheme is capable of working with more minimal variances
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than 8 KB-RAIS and 32 KB-RAIS. In particular, the results show that the MC-
RAIS scheme reduces the performance variance by 59.0 % and 45.8 % compared
with the 8 KB-RAIS and 32 KB-RAIS schemes driven by the three workloads,
respectively. In contrast, we can also see that the performance variability is a
serious problem for the fix-chunk-size RAIS schemes.

Fig. 6. Comparisons of the standard deviation results for the MC-RAIS scheme and
three fix-chunk-size RAIS schemes driven by the three workloads.

4.3 Sensitivity Study

The performance of our MC-RAIS scheme is likely influenced by several impor-
tant factors, including the number of SSDs in the RAIS and the zone size of the
RAIS system.

Number of SSDs. To examine the sensitivity of MC-RAIS to the number of
SSDs of the RAIS system, we conduct experiments on the RAIS5 systems con-
sisting of different numbers of SSDs (3, 4 and 5) driven by the proj 0 workload.
Figure 7 shows the comparisons of the normalized average response times for
the MC-RAIS scheme and three fix-chunk-size RAIS schemes. From Fig. 7, we
can see that the average response time decreases with the increasing number of
SSDs in the RAIS system. The reason is that the I/O intensity on the individual
SSD will decrease when increasing the number of SSDs in the RAIS system, thus
reducing the service time for the user I/O requests. Moreover, a RAIS system
consisting of more SSDs provides higher parallelism when processing the user
I/O requests. Certainly, Fig. 7 also shows that the MC-RAIS scheme consistently
outperforms the three fix-chunk-size schemes with different numbers of SSDs. We
can also see that the MC-RAIS scheme is not sensitive to the number of SSDs
in the RAIS system.

Zone Size. To examine the impact of the zone size of the RAIS system in the
MC-RAIS scheme, we conduct experiments on an 4-disk RAIS5 system with
zone sizes of 120 GB, 90 GB and 60 GB, respectively. Thus, the overall capacities
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Fig. 7. Comparisons of the normalized average response times for the MC-RAIS scheme
and three fix-chunk-size RAIS schemes with different numbers of SSDs (3, 4 and 5).

for MC-RAIS will be 360 GB, 270 GB and 180 GB. The capacity of the fix-
chunk-size RAIS scheme is set to be 360 GB. Figure 8 shows the comparisons of
the normalized average response times for the MC-RAIS scheme with different
zone sizes and three fix-chunk-size RAIS schemes driven by the three workloads.
From Fig. 8, we can see that the average response times of the user I/O requests
decrease with the increasing zone size of the MC-RAIS system. The reason is
that with a larger zone size, the GC operations will be fewer than that with
a smaller zone size. Accordingly, the average response time is lower. Moreover,
compared with the fix-chunk-size RAIS schemes, MC-RAIS reduces the average
response times since it can adaptively store the data blocks with different access
characteristics on the three data zones with different chunk sizes. In general, our
proposed MC-RAIS scheme fully exploits the characteristics of the SSDs and the
data blocks to improve the system performance.

Fig. 8. Comparisons of the normalized average response times for the MC-RAIS scheme
with different zone sizes and three fix-chunk-size RAIS schemes driven by the three
workloads.
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There are also some other important parameters that will affect the system
performance, such as the numbers of the zone in the RAIS system and the fre-
quency threshold. We will conduct much more experiments to evaluate their
effectiveness in the future. Moreover, we will implement the MC-RAIS scheme
in the real RAIS system, such as Linux MD, and evaluate it by using real appli-
cations.

5 Related Work

Studies conducted on SSD-based disk arrays fall into two categories, namely,
pure SSD-based disk arrays that all the disks in the disk arrays are SSDs [2,9,
10,23,25] and SSD/HDD hybrid disk arrays that utilize the HDDs to assist the
SSD-based disk arrays [11,14,22,24]. Our work belongs to the former.

Balakrishnan et al. [2] observed that in the pure SSD-based RAID5 disk
array, the load balancing of write requests can cause correlated failures. Diff-
RAID creates an age differential in an array of SSDs, distributes the parity
blocks unevenly across the disk array and pre-replaces the faster degraded SSD.
However, Diff-RAID does not reduce the number of parity updates on the SSDs.
It only concentrates the parity updates on few SSDs to make the SSD failures
be uneven in the disk array, thus increasing the reliability of the SSD-based
RAID5 disk array. On the other hand, the performance of the Diff-RAID system
is degraded due to the concentrated parity updates in their storage system. It
essentially trades the performance for reliability for the SSD-based disk arrays.

Flash-aware RAID [10] reduces the number of internal write operations caused
by the parity updates by using the delayed parity update strategy and the par-
tial parity technique. It utilizes the cache in the upper layer to achieve this goal
and then improve the performance of the RAIS system, which is orthogonal to
our proposed MC-RAIS scheme. WeLe-RAID [9] introduces the Wear-leveling
mechanism among the flash-based SSDs to enhance the endurance of the entire
SSD-based disk arrays. It uses the age-driven parity distribution scheme to guar-
antee the efficiency of the wear-leveling mechanism among the flash-based SSDs
and bring the performance benefit with better load balance.

On the other hand, since SSDs and HDDs have both advantages and disad-
vantages, none of them is the perfect choice for all applications. Some studies
tried to construct hybrid disk arrays consisting of both SSDs and HDDs. Xie
and Sun [22] proposed a hybrid disk array architecture, named HIT, for data-
intensive applications. HIT periodically redistributes the data between SSDs and
HDDs to adapt to the changing of the data access patterns. In addition, HIT bal-
ances the performance, reliability and energy efficiency to determine the appro-
priate data placement and migration strategy. However, HIT only considers the
data placement scheme between the HDD-based disk array and the SSD-based
disk array, but not in a real hybrid disk array. HPDA [14,15] is an enhanced
hybrid RAID4 disk array composed of both HDDs and SSDs. It uses an HDD
to service as the dedicated parity device, thus avoiding the parity updates on
the SSDs. Moreover, it uses two HDDs to construct a mirroring write buffer to
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absorb the incoming small write requests, thus improving both the performance
and reliability of the hybrid disk arrays.

However, all the above schemes have not considered the efficiency of the
garbage collection operations on the RAIS performance. Kim et al. [12] found
that the uncoordinated GC processes on individual SSDs amplified the per-
formance degradation of the RAIS system and proposed a RAID-level Global
Garbage Collection (GGC) mechanism to alleviate the performance variability
for the RAIS system. However, GGC forces all SSDs in the RAIS system to
process the GC operation at the same time, which makes the RAIS unavailable
to service the applications during the GC period. Moreover, GGC requires the
SSDs to be RAIS-aware and only considers RAIS0 that has lower reliability than
RAIS5. Differently, our proposed MC-RAIS scheme exploits the workload char-
acteristics to place the data blocks on multiple data zones with different chunk
sizes.

6 Conclusion

With the rapid development and wide applications of the SSD device, the SSD-
based disk arrays become one of the most effective ways to solve the perfor-
mance and energy bottlenecks of HDD-based storage systems. Due to the dif-
ferent characteristics between HDDs and SSDs, straightforwardly applying the
RAID technique to SSDs is challenging. In this paper, we first conducted exten-
sive experiments on the efficiency of the chunk size on the RAIS performance.
Based on the experimental results, we proposed a Multi-Chunk RAIS (short for
MC-RAIS) to improve the performance of the SSD-based storage systems. The
evaluation results show that the performance of MC-RAIS outperforms the that
of existing fix-chunk-size SSD-based disk arrays by more than 50 %.

Our proposed MC-RAIS scheme is an ongoing research project and we are
currently exploring several directions for the future work. First, we will imple-
ment the MC-RAIS scheme in a real RAIS system, such as Linux MD, and
evaluate it by using real applications. Second, we will investigate how the sys-
tem reliability is affected by the MC-RAIS scheme and evaluate its efficiency.
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Abstract. In recent years, the research community has initiated differ-
ent efforts to save energy consumption of the storage system in practical
application scenarios. However, restricted by Antarctic environmental
conditions, general-purpose energy-saving technologies of storage system
are not applicable for Antarctic astronomical observations. In this paper,
a new energy efficient storage system (called MCS-SSD) for astronomical
observation data on Dome A is designed, which uses multi-level caching
strategy with SSD. To boost the data disks’ performance, MCS-SSD clus-
ters correlated files and places them on the data disk via a temporal and
spatial manner. MCS-SSD further designs the prefetching and caching
techniques to create larger disk idle time intervals, then the disks that
are not in use within a certain time will be powered down. MCS-SSD
is evaluated on a trace driven simulator in TB data level and PB data
level storage systems, and the results show that compared with exist-
ing energy efficient architectures the energy consumption of MCS-SSD
is reduced about 39.34 % to 58.43 %.

Keywords: Energy efficient · Controllable disk array · Storage system ·
Astronomical observation

1 Introduction

Astronomical observations generate a large amount of data, and every telescope
has its own data format and data processing method. China is establishing a
series of telescopes for Antarctic astronomical observations. Antarctic Schmidt
Telescopes (AST3) is a trio of 50-cm optical telescope, which is being installed
on Dome A. With a surface elevation of 4093 m, Dome A is the highest place
in Antarctica with its lowest temperature reaching below −80◦C in the night.
Annually, there are only around 20 days suitable for the researchers to work
there. Restricted by environmental conditions, while the power supply is strictly
limited, the data center should be energy-efficient.

The three independently and remotely controlled telescopes will be used to
study variable objects, such as supernova explosions and the afterglow of gamma-
ray bursts, and to search for extra solar planets [1,2]. Each telescope of AST3
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 33–46, 2015.
DOI: 10.1007/978-3-319-27140-8 3
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is equipped with a CCD camera of 10 K x 10K. When in operation, each of the
AST3 telescopes theoretically provides 200 MB images per 2.4 min. KDUST [3]
astronomical telescope project of China whose telescope is equipped with a CCD
camera of 70 K x 70 K is being planned. The observation data size will be much
larger and can reach petabyte level. So it is inevitable to establish a data center
on Dome A to provide services for the storage of the observation data produced
by the telescope and data processing services for the astronomers.

In this paper, a new energy efficient storage system (MCS-SSD) for astro-
nomical observation data on Dome A is designed, which uses multi-level caching
strategy with SSD. The disk arrays are divided into cache disks and data disks.
To improve the performance of the cache disks, MCS-SSD uses the SSD as the
first level cache disk which possesses high read-write speed, low power consump-
tion and other advantages to cache the most popular data. Astronomical data
are usually used according to the temporal and spatial requirements [4]. To boost
the data disks’ performance, MCS-SSD clusters correlated files and places them
on the data disk via a temporal and spatial manner. MCS-SSD further designs
the prefetching and caching techniques to create larger disk idle time intervals,
then the disks that are not in use within a certain time will be powered down.

In order to meet the challenges of the PB level data, the disk arrays are
divided into units, and each unit uses MCS-SSD which is composed of first-level
cache disks, second-level cache disks and data disks. So the PB-level storage
system is similar to a distributed architecture. This storage system based on
MCS-SSD is also expected to play a significant role in the planning KDUST
astronomical telescope project.

MCS-SSD is evaluated on a trace driven simulator in TB data level and PB
data level storage systems, and the results show that the energy consumption
of MCS-SSD is reduced about 39.34 % to 58.43 %, so MCS-SSD is more energy
efficient compared with existing energy efficient architectures.

The rest of this paper is organized as follows. Section 2 presents the
related works and the existing disk energy-saving strategies mainly about
MAID(Massive Arrays of Idle Disks) [5] and PDC (Popular Data Concentra-
tion) [6], and the improved strategies based on them. Section 3 presents the basic
architecture of MCS-SSD, and its data distribution strategy and energy consum-
ing analysis. Section 4 presents the data access model and their corresponding
energy-saving strategies. Section 5 evaluates the performance of MCS-SSD by
comparing with existing approaches in TB-level and PB-level storage systems.
The conclusions of the paper and the future work are presented in Sect. 6.

2 Related Work

The motivation of addressing the energy saving issues in the data center storage
system is that a significant fraction of the operation cost of data centers is
due to energy consumption of storage systems. For example, the average power
consumption of top 10 super computing systems is 1.32 Mwatt, in which a large
portion is contributed by storage systems [7].
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The storage system is based on the disk array. For the single disk, hard disk
manufacturers propose a lot of energy-saving technologies such as reducing disk
rotational speed, converting disk working mode into standby mode at a cer-
tain time and so on. In addition to emerging high-performance disk drives with
high power needs, several novel techniques are proposed to conserve energy in
storage systems, including dynamic power management schemes [8,9], power-
aware cache management strategies [10], power-aware prefetching schemes [11],
software-directed power management techniques [12], redundancy techniques [13]
and multi-speed settings [14–16]. The disks are not shut down in all of the tech-
nologies. But in the Antarctic, even slight energy consumption is very serious,
especially in the situation of PB data level in the future. So the disk array in
the Antarctic is customized through the way of powering down parts of disks
for energy saving. Astronomical data are usually used or stored according to the
temporal or spatial requirements, which makes heavily customizing prefer more
energy saving not consideration of the generality.

Fig. 1. Basic architecture of MAID Fig. 2. Basic architecture of PDC and
PDC-NH

Dennis Colarelli and Dirk Grunwald from University of Colorado proposed
MAID [5] to save energy. Their model’s architecture is shown in Fig. 1. The sys-
tem is divided into zero or more “cache drives” that remain constantly spinning;
the remaining “data drives” are allowed to spin-down after a varying period of
inactivity. With caching, requests are checked in the cache directory at first.
Requests that hit in the cache are sent to the cache drives. Reads that miss in
the cache are passed on to the data drives.

Eduardo Pinheiro and Ricardo Bianchini from Rutgers University proposed
PDC [6] strategies that migrates frequently accessed data to a subset of the
disks. Their model’s architecture is shown in Fig. 2(a). The idea behind PDC is
to dynamically migrate the popular disk data (i.e., the most frequently accessed
data on disk) to a subset of the disks in the array, so that the load becomes
skewed towards a few of the disks and others can be sent to low-power modes.

DongKyu Lee and Kern Koh from School of Computer Science and Engineer-
ing of Seoul National University extended PDC by adding NAND flash based
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Solid State Drive(SSD) [17]. They proposed PDC-NH(Popular Data Concentra-
tion on NAND Flash and Hard Disk Drive) and achieved better performance and
energy savings. Their model’s architecture is shown in Fig. 2(b). They developed
a novel file placement policy which places popular files on either one of the flash
disk or hard disk based on their size, popularity and access characteristics. Their
placement policy places large and sequential read files on HDD and small and
random read files on SSD. This placement takes advantage of the benefits of
each medium and hides their shortcomings.

Above mentioned three researches have a similar goal of increasing the idle
period of disks. MCS-SSD also aims to increase the idle period of disks. However,
astronomical data are usually used or stored according to the temporal or spatial
requirements, which requires the cache disks should have an efficient caching
strategy for user’s demands. MAID only caches the data that is hit, so it cannot
afford the demand of astronomical observations. Since the meta data on data
disks can’t be moved, PDC and PDC-NH don’t fit this situation.

MAID and PDC respectively present disk storage system energy-saving tech-
niques’ two main approaches: disk group technology and data distribution tech-
nology. MCS-SSD model takes full advantages of these two energy-saving tech-
niques, which is shown in the next section.

3 System Architecture of MSC-SSD

Restricted by environmental conditions on Dome A, none of the existing stor-
age systems can be power-aware, high availability as well as energy efficient.
Motivated by strictly limited energy of the Antarctic, customized disk array of
the telescopes and special usage and storage mode of astronomical observations
data, a storage system designed for astronomical observations is presented in this
paper. The controllable disk array of the storage system consists of two parts:
industrial control computer and the disk array. The disk array consists of 40 2.5-
inch mechanical hard disks which can be controlled by PDU(Power Distribution
Unit) to power down or power up. The PDU can be ordered by instructions.
Based on this, MCS-SSD can power down most of idle disks to reduce power
consumption. The system should decide when to power down and power up the
disks, what to do when the data are crashed, and how to rebuild the system. All
the work should be done automatically and intelligently. The reliability strategy
of AST3 is detailedly introduced in our another paper [18].

MCS-SSD model’s basic architecture is shown in Fig. 3. It divides disks into
data disks and cache disks. The cache disks are divided into two levels. The first-
level cache disk uses solid state disk(SSD), while the second-level cache disk uses
hard disk drive(HDD). Compared with HDD, SSD has a lot of advantages, such
as high read-write speed, low power consumption, shockproof and anti-wrestling,
wide range of operating temperature, light weight and small volume and so on.
Taking into account the extremely bad weather conditions and energy conditions
in Antarctica, SSD is more suitable to act as the data storage medium. However,
smaller capacity and higher price of SSD make it not suitable for a wide range
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of applications. So after full consideration, MCS-SSD uses SSD as the first-level
cache disk to store the most popular data, which will not only give full play to its
advantages, but also be good to avoid its disadvantages. The second-level cache
disk and data disk need to store a large amount of data, so they are composed
by HDD. Data distribution strategy and energy consuming analysis of the model
will be specifically described in the rest of this section.

Fig. 3. Basic architecture of MCS-SSD Fig. 4. Data distribution strategy

3.1 Data Distribution Strategy

As shown in Fig. 3, the data observed by telescopes directly is written into write
cache disk group. When the destination disk of the observation data is active,
it will write data to the corresponding data disk from the write cache disk. So
writing operations of disks have a small effect on the energy saving of disks,
MCS-SSD pays more attention to the reading operations.

According to the experience of long-term observations, astronomical data
access is often associated with time and space. Astronomical data are usually
used according to the temporal or spatial requirements, by comparing with the
data observed in the same sky zone at different time, sources with changed
stars or light curves will be picked out, which may help to study new extra
solar planets or supernovas. So in order to achieve the greatest degree of energy
saving, MCS-SSD tries to keep the data observed at different time in the same
area on the same disk, the data observed in adjacent areas at the same time
on the same disk. As shown in Fig. 4, in order to open less data disks when
prefetching associated files, MCS-SSD puts some data copies at the edge of the
adjacent disks. So when user requests the data on the edge, it only need open
one disk to cache associated files.

3.2 Energy Consuming Analysis

The storage system saves energy by making idle disks into the standby state.
But there are several challenges, one is not every idle interval of disks can be
used, since the next access may arrive when the disk is shut down to standby
state, which will cost more energy to spin up the disk to the idle state.

The following analysis is the energy consumption of the disk with perfect
disk scheduling [8] that is when the interval time of a disk exceed a limit time
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TBE (the limit time is a minimum interval that the disk enters standby state
and will not bring additional energy consumption and it can be calculated), the
disk immediately enter the standby state.

The energy consumption E of the disk in time T mainly consists of the active
energy consumption Eactive, the idle energy consumption Eidle and the energy
consumption of spinning up the disk Espinup.

E = Eactive + Eidle + Espinup (1)

Equation 1 is the energy consumption of a disk in time T . In perfect disk
scheduling model [8], when the interval is longer than TBE , the disks enter
the standby state. When the interval is shorter than TBE , the disks keep the
idle state. But the next interval is hard to be predicated, so the perfect disk
scheduling model is difficult to achieve. In the disk scheduling mode of the storage
system based on MCS-SSD, it tries to predicate the next interval, and then
decides the next state of disks. The system also uses a cache strategy to increase
the interval, so the disk may have a higher probability to enter the standby state.
In the storage system, it combines popular data queue and related data queue to
prefetch data and it balances the load between overload disks and non-overload
disks.

4 Operating Principles of MCS-SSD

The overall work flow of the storage system is shown as follows. When user’s
requests arrive, system searches data in the first level cache disk at first, requests
that hit in the cache are sent to the user and the files priority is modified; requests
that miss in the first level cache disk are passed on to the second level cache disk,
if hit, system sends the data to users, modifies the data’s priority and moves the
hit data and its associated data to the cache disk; otherwise requests are passed
on to the data disk. If requests are hit in data disk, system sends the data to
users; if not, system sends “not found” error message to users.

All of the observed data are stored in data disks. The most popular data are
stored in the first-level cache disk, and they are the copies of the observed data
in data disks. The popular data are stored in the second level cache disk, and
they are the copies of the observed data in data disks too.

4.1 Data Exchange Strategy

The data exchange strategy between layers is shown in Fig. 5. The data exchange
strategy between the second-level cache disk and data disk is based on users
requests. MCS-SSD will move the data which is hit(AD) and its associated
data(RD) into the second-level cache disk. The data exchange strategy between
the first-level cache disk and the second-level cache disk is based on a priority
queue. MCS-SSD will move the data that in the most popular queue to the
first-level cache disk.
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Fig. 5. The data exchange strategy of the storage system.

Then the placement policy of MCS-SSD is shown as follows. The most
popular files should be located on either one of the first-level cache or the
second-level cache, and the placement is done based on priority. MCS-SSD
uses Least Recently Used (LRU) algorithm to replace files in the cache disks.
To describe the priority, MCS-SSD have modeled the set of popular files as
FC = {fC1...fCn}. And a file fCi (fCi ∈ FC) is modeled as a set of parame-
ters, e.g., fCi = (Si, Ri, Rtotal, Pi), where Si is the file’s size in Mbyte, Ri is the
request number of the file i in a fixed period of time, Rtotal is the total request
number of all the files in a fixed period of time, and Pi is the priority to be
placed in cache disk which is defined in Eq. 2. TimeNO. is the request’s time
number of the file i in a fixed period of time. Equation 2 implies that the prior-
ity increases as request number (i.e., popularity) and the request’s time number
(i.e., time).The files’ priority will be computed after every user’s request. Based
on this priority, popular files are placed on either one of the first-level cache disk
or the second-level cache disk. Files will be queued based on priority from high
to low. If Pi < Pthreshold file i will be discarded.

Pi =
Ri + TimeNO.

Rtotal
(2)

Pi =

⎧
⎪⎪⎪⎪⎨
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The files on data disks are modeled as FD = {fD1 · · · fDn}. And a file fDi

(fDi ∈ FD) is modeled as a set of parameters, e.g., fDi = (Si, Ti, SZi,Hi, Pi),
where Si is the file’s size, Ti is the observation time of file i,SZi is the sky zone
of the file, Hi represents whether the file is hit or not, it values 0 or 1, and Pi is
the priority which is defined in Eq. 3. The priority increases as file association.
fc = (Sc, Tc, SZc,Hc, Pc) is a file which is hit and in cache disk. k0,k1,k2 and k3
are configurable parameters based on the associated degree of files.
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In order to reduce the computational overhead, file i’s priority is calculated
when the data disk is active, and only compares with the files on the same disk.
If Pi > Pthreshold, fi will be placed into cache disks.

4.2 The Access Model for the Storage System

If there are a few requests from users, it doesn’t need so much cache disks, so
MCS-SSD only uses the first-level cache disk and keeps the second-level cache
disks closed. When requests come, system searches data in the first-level cache
disk at first, requests that hit in the cache are sent to the user and the data’s
priority are modified; requests that miss in the first-level cache disk are passed on
to the data disk, if hit, system sends data to users, modifies the data’s priority
and moves the hit data and its associated data to the cache disk. The Light
Workload Situation is shown in Fig. 6.

Fig. 6. The light workload situation.

Fig. 7. The normal workload situation. Fig. 8. The over workload situation.

If the first-level cache disk can not meet the users’ requests, MCS-SSD will
start part of the second-level cache disks. MCS-SSD uses Popular Data Concen-
tration (PDC) strategies on the second-level cache disks. MCS-SSD divides the
second-level cache disks into hot disks and cold disks, and puts the popular data
into hot disks. So cold disks will have more opportunities to enter closed state.
The Normal Workload Situation is shown in Fig. 7.

Figure 8 shows the Over Workload Situation. If the first-level cache disk and
the second-level cache disks can not meet the users’ requests, MCS-SSD will
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use all disks to support service. In the second-level cache disks, MCS-SSD also
exchanges popular data to hot disks. The goal is still to make more disks enter
the closed state.

5 Simulation Results Analysis

In this section, the performances of MCS-SSD and MAID are compared under
the system with data distribution strategy, data prefetching and caching tech-
nique through simulation. Before applying to the real storage system, a lot of
simulation experiments are done on the simulator. Combined with practical expe-
rience, the data access model mostly occurs to two situations such as the light
workload situation and the normal situation. So a lot of simulations are running
under these two situations. Furthermore, the PB-level storage system is still in
the design stage.

5.1 Simulator Architecture

DiskSim is an efficient, accurate, highly-configurable disk system simulator [19],
which is commonly used in the literature. However, the disk array in the Antarc-
tic is customized and the number of events needed to handle a file request is
highly correlated, which makes DiskSim too slow for a realistic data center sim-
ulation that involves disks. Furthermore, the disks’ architecture of PB-level is
complex, DiskSim can’t meet the requirements.

For performance evaluation, we design and implement a special simulator to
simulate the storage system based on the real one. The simulator consists of 4
parts: requests generator, trace and statistics module, resource scheduling con-
troller and environment builder. Requests generator impersonates user requests
and generates the requests’ queue. Trace and statistics module will trace the
process of the simulation and record the statistical data. Resource scheduling
controller processes the user’s requests, and controls the storage system by the
given energy saving strategies. The environment builder builds the basic condi-
tions of the simulation, and consists of data builder and disk builder.All modules
of the simulator can be configured via changing parameters. The code of the sim-
ulator can be fetched at: https://github.com/yuanzichao/MCS-SSD-DiskSim.

5.2 The Light Workload Situation Simulation

If there are a few requests from users, it doesn’t need so much cache disks,
so it only uses the first-level cache disk and keeps the second-level cache disks
closed. The simulator’s parameters is shown in Table 1. The simulation results
of MCS-SSD and MAID are shown in Figs. 9 and 10.

Comparing the results, it shows that after about 500 requests MCS-SSD’s
data disks open numbers begin to decline and after about 1800 requests the data
disks open numbers even can reach 0. On the other hand, MAID’s open disk
numbers mostly range from 5 to 8. That is because MCS-SSD model prefetch

https://github.com/yuanzichao/MCS-SSD-DiskSim
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Table 1. The parameters of the simulator

Parameters name Light workload Normal workload

SSD’s total size 1 TB 1 TB

Second-level disks’ number 4 4

Second-level disks’ total size 8 TB 8 TB

Data disks’ number 15 15

Data disks’ total size 30 TB 30 TB

Files’ number 90,000 90,000

Files’ total size 18 TB 18 TB

Requests’ number 5,000 10,000

Data coverage 5.56 % 11.1 %

Fig. 9. Simulation results of MCS-SSD
On light workload situation.

Fig. 10. Simulation results of MAID
On light workload situation.

files that associated with the hit file to the cache disk, however MAID only
prefetch the hit file to the cache disk. So after some requests, the cache disks
have stored a lot of files with high priority, most data disks can change to the
closed state. This will achieve a good energy saving effect.

5.3 The Normal Workload Situation Simulation

If the first-level cache disk can not meet the users’ requests, it will start part
of the second-level cache disks. The simulation results of MCS-SSD on normal
workload situation are shown in Fig. 11.

Fig. 11. Simulation results of MCS-
SSD on normal workload.

Fig. 12. Simulation results of MAID
on normal workload.

At the beginning of the sequence of requests, MCS-SSD only opens the first
level cache disk to prefetch files, but with the advent of more and more requests,
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the first level cache disk can’t afford the users’ requests, then the second level
cache disks are opened. With the opening of the second level cache disks, more
and more requests are responded from the second level cache disks, and the data
disks have more chances to change to the closed state.

The simulation results of MAID on normal workload are shown in Fig. 12.
The total open disks number of MCS-SSD is also less than MAID, furthermore
the second cache disks are all in active state, so the MCS-SSD’s open and close
operations of data disks are far less than MAID, which need more energy than
the disks in active state [20].

5.4 Simulation of PB-level Storage System

In the future, a larger telescope array will be installed in the Antarctic, and its
data can reach PB level. So the storage system must be extended to adapt to
the situation of PB-level data. In the architecture of PB-level storage system, a
scheduler is responsible for handling the data produced by the telescope and the
users’ requests. The disk array is divided into units, and each unit uses MCS-
SSD which is composed of first-level cache disk, second-level cache disks and data
disks. So the PB-level storage system is similar to a distributed architecture.

Table 2. The parameters of the PB-level simulator

Parameters name Half PB-level PB-level

Equipment unit’s size 30 TB 30TB

Data disks’ total size 540 TB 1,200TB

Files’ number 2,106,000 4,680,000

Files’ total size 421.2TB 936TB

Requests’ number 180,000 400,000

Data coverage 8.55 % 8.55 %

The simulations of PB-level storage system are also running on the simulator.
The basic simulation environment is composed of many Equipment Units. The
Equipment Unit in this paper consists of 15 HDD data disks, 4 second-level
cache HDD disks and 1 first-level cache SSD disks, whose parameters are shown
in Table 1, and the PB-level storage system’s parameters are shown in Table 2.

Figure 13 shows numbers of opened data disks of all Equipment Units, as well
as numbers of opened second-level cache disks of half PB-level (540 TB) storage
system in normal workload situation. And the simulation results of PB-level
(1200 TB) are shown in Fig. 14.

5.5 Conclusion of Simulation

Table 3 shows the characteristics of the hard disk used in the simulation. The
disk’s power consumption is mainly composed of two parts: the operating power
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Fig. 13. Simulation results of half PB-
level (540 TB).

Fig. 14. Simulation results of PB-level
(1200 TB).

Fig. 15. Energy consumption in light and normal workload situation.

and the spin up power. The energy consumption of MCS-SSD and MAID in light
workload situation and normal workload situation is shown in Fig. 15. According
to the energy consumption, disks in MCS-SSD have more chances to change to
the closed state than MAID. And the energy consumption of MCS-SSD’s opened
disks is about 58.43 % less than MAID in light workload situation and about
39.34 % in normal workload situations.

The PB-level storage system’s architecture is similar to a distributed archi-
tecture. In PB-level storage system, every Equipment Unit with MCS-SSD per-
forms similarly as the MCS-SSD in TB-level. So it can also achieve better energy
efficiency.

Table 3. The characteristics of the hard disk

Disk model Seagate ST2000DM001 Disk size 2000 GB

Operating power 8.0 Watts Spin up power 30 Watts

Spin up time 10 s Avg. seek time 8.5 ms

6 Conclusion and Future Work

In this paper, a storage system based on multi-level caching disk with SSD(MCS-
SSD) strategy is designed for astronomical observation. Restricted by environ-
mental conditions, while the power supply is strictly limited, the data center



An Energy Efficient Storage System for Astronomical Observation 45

should be energy efficient. Since the disk array of the storage is customized, each
disk can be powered down and powered up by instructions. The storage system
saves energy by making idle disks into the closed state. Astronomical data are
usually used according to the temporal and spatial requirements. To boost the
data disks performance, MCS-SSD further clusters correlated files and places
them on the data disk in a temporal and spatial manner. And several strategies
including file prefetching strategy, data migration strategy and cache strategy
are also applied to the system. MCS-SSD is evaluated on a trace driven simulator
in TB data level and PB data level storage systems, and the results show that
compared with existing energy efficient architectures the energy consumption of
MCS-SSD reduces about 39.34 % to 58.43 %.

Through observations of a large amount of astronomy and astronomical
research activities, what astronomers’ need in astronomical research activities
is a part of the file rather than the entire file. But in the existing system, it
tends to directly transfer the entire file to them, and then they split the file, get
the file fragment they need, and discard the remaining part of the file. This leads
to a tremendous waste of resources such as the space of cache disks and the net-
work traffic, so a more efficient way is proposed to access the astronomical data:
the system only transfer the file fragment that the astronomers’ need. When
the user’s request comes, it analyzes the detailed information of the request,
get the file fragment information which the user is needed, then transfer the file
fragment to users and store it and its associated data fragment to cache disks.
What the cache disks stored are the files’ fragment (i.e., small file) not the entire
file (i.e., big file), so the cache disks can be fully used and hold more files. This
model is able to meet more users requests, and at the same time it can turn
more disks into closed state, so as to achieve better energy efficiency. The new
model is tested in experiments in order to apply it in practical systems in the
future.
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Abstract. Compared with tradition disk, NAND Flash has advantages of
higher performance and shock resistance. But before write, NAND Flash must
erase the old messages. That why NAND Flash based Solid State Disks (SSDs)
always use the log-based schemes to improve the performance. Compared with
NAND Flash, Phase Change Memory (PCM) has higher write performance,
longer lifetime, and can update in-place, but its cost is high and capacity is low.
So, in PCM and NAND Flash hybrid SSD, PCM is always used as log region,
such as In-Page Logging-based (hybrid-IPL) SSD. The log-based SSD incurs a
large number of merge operations. The cost of merge operation is very high
because it involves many read, write operations, as well as an erase operation.
So, how to reduce the cost of merge operations is the critical challenge to
log-based hybrid (PCM and flash) SSD. In this paper, we propose a new merge
scheme in PCM and NAND Flash hybrid SSD, called Parallel aware hybrid
In-Page Logging-based (P-aware-IPL) SSD. This scheme can exploit the
die-level and plane-level parallelism of flash. Leveraging these two levels of
parallelism, the cost of full merge is significantly reduced compared with that of
hybrid-IPL SSD scheme and there is no other additional overhead in our
algorithm. Experiment results have shown that the proposed P-aware-IPL
reduces the flash write and erase operations by up to 10 % and average response
time by up to 22 % against the hybrid-IPL scheme.

Keywords: NAND flash � PCM � Parallelism � FTL � Hybrid SSD

1 Introduction

Today, NAND flash-based Solid State Disks have been widely used because of their
non-volatility, fast access speed, low-power consumption, and shock resistance. How-
ever, NAND Flash has the drawback of limited write endurance [1] and
“erase-before-write” requirement. That means when a block of NAND Flash is updated,
it should first erase the old block before writing the new data. The procedures of erase
will seriously influence the performance of the NAND Flash because erase operation
needs two steps. The first step is to copy the valid pages of old block to a free block.
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Then system can erase the old block. In order to address this problem, NAND Flash
always uses some blocks as the log area. When pages are update, the updated data is
written to the log area and the old pages are signed as invalid pages. With the logs,
NAND Flash can delay the merge operations. Therefore, the system performance can be
improved with log area. However When the log area is full, SSD have to merge the log
area with corresponding data blocks. The merge operations will serious influence the
performance of SSD. During the period of merge operation, the valid pages of log block
and corresponding valid pages of data block will be copied to a free block, and then the
old log block and old data block will be erased. Those actions badly decrease the
performance of SSD. In merge operation, copy the valid pages to a free block includes
two steps. System first reads valid data from data block and log area to DRAM, then
writes the data to a free NAND Flash block. Both these two steps can only be done
sequentially because these data are in the same physical block (data block, log block or
free block). After that, system erases the invalid NAND Flash block.

To address this problem, Guangyu Sun et al. proposed In-Page Logging with PCM
hybrid Solid-State Storage (hybrid-IPL) [2]. Hybrid-IPL is a hybrid SSD, using the
PCM as the log area, and NAND Flash as the data area. Compared with the NAND
Flash, PCM can update in-place, and the access (read and write time) of PCM is shorter
than NAND Flash. At the same time, the write endurance of PCM is also higher than
the NAND Flash. With the PCM, hybrid SSDs can significantly decrease the counts of
the merge operations since the PCM can update in-place.

Although hybrid-IPL can improve the performance of NAND based SSD, it still
has these two shortcomings: (1) the merge operation in hybrid-IPL can only release few
log areas, especially when few pages of a block (this block will be merged) are in log
areas. (2) Merge operation of hybrid-IPL cannot use the parallelisms of NAND Flash,
since it is only merge one block in a merge operation. So the cost of merge operation of
hybrid-IPL is still high.

Therefore, in order to further improve the performance of hybrid-IPL, we believe
that it is necessary to significantly reduce the cost of merge in hybrid-IPL, release more
log areas in a merge operation and increase the write hit ratios of PCM.

When log area (we can see it as cache) merged (flush out from the log) with its
corresponding block, the blocks which are adjacent the merge block will be merged
soon, because of the spatial locality [3, 4]. Therefore flushing the merge block and its
adjacent blocks simultaneously can get three advantages: (1) it can improve the hit ratio
of log area because of spatial locality. (2) It can free more log area with a merge
operation. (3) It can reduce the cost of merge operation because the adjacent flash
blocks can operate in parallel.

Based on the above analysis, we propose a new log based hybrid solid state storage
scheme, called P-hybrid-IPL. P-hybrid-IPL is designed to exploit die-level, and
plane-level parallelism of NAND Flash so as to significantly reduce the cost of full
merge, release more log areas in a merge operation, improve the hit ratio of PCM and it
doesn’t bring any other overhead. Experiment results show that Parallel awarded
hybrid-IPL significantly improves the performance of hybrid-IPL, reduce the erase
number and write number of flash which will improve the lifetime of hybrid SSDs.
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The rest of the article is organized as follows. Background for the P-hybrid-IPL
research is presented in Sect. 2. Section 3 details the design and implementation of
P-hybrid-IPL, while Sect. 4 evaluates its performance. The article is concluded in Sect. 5.

2 Background

In this section we provide the necessary background on NAND flash, PCM, PCM
based hybrid SSD, and SSD internal parallelism.

2.1 NAND Flash and PCM

NANDFlash architecture is shown as Fig. 1 [1]. A Flash package is composed ofmultiple
dies, a die composed of multiple planes, a plane has a number of blocks, and a block
usually consists of 64-128 pages. In NAND Flash, page is the unit for write or read
operation and a block is the basic unit for the erase operation. The endurance of a block of
NAND Flash memory is only 10,000 erase counts [1]. NAND Flash must obey
“erase-before-write” requirement. Before writing a page, NAND-Flash memory must
erase old data of the page. In a block, flash can randomly read any page, but randomwrite
is strictly prohibited. It must sequentially write a page from page 0 to page n. That means
if a blockwrites page i, then it cannot write any pages from page 0 to page i-1, even though
these pages are free.

FTL is a critical component in SSDs. It has three functions: (1) hiding the char-
acteristics of flash– emulating the functionality of a normal block device (such as disk)
with flash memory, hiding the erase-before-write characteristics. (2) address transla-
tion– translating virtual addresses from upper layers to physical addresses on the flash.
(3) garbage collection– recycling invalidated physical pages and cleaning the old erase
block.

FTL can be divided into three categories [5, 6]: block-level FTL [7], page-level
FTL [8–10], and hybrid FTL [11, 12]. In block-level FTL, a logical block can be
mapped to any physical block. In page-mapping FTL, a logical page can be mapped to
any physical page. In hybrid-mapping FTL, the flash memory space is divided into the
data area and log area. All the flash update are written in log area. When log area is full,
SSD should merge the log with the corresponding data block. There are three types of
merge operations: full merge, partial merge, and switch. Figure 2 shows the three types
of merge operation. Switch only needs change the log block to data block, then erase
old data block. Partial merge should copy the remaining valid pages to log block, then
change log block to data block. The different between switch and partial merge is that
switch updates all the pages of a block and partial merge updates partial pages of a
block. In full merge, SSDs first copy the valid pages from log block and corresponding
data block to a free block, and then erase the old log block and old data block.

Parallelism in NAND Flash. SSDs have four level parallelisms: (1) channel-level
parallelism, (2) chip-level parallelism (3) die-level parallelism (4) plane-level paral-
lelism. The priority order of the four levels parallelism in SSDs is that channel-level
parallelism priority precedes die-level parallelism priority, die-level parallelism priority
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precedes plane-level parallelism, and plane-level parallelism priority precedes
chip-level parallelism [13]. When data objects are in different channels, SSDs can use
channel-level parallelism. Other levels of parallelism can be exploited by using flash
advanced commands: interleave command, multiple-plane command, interleave
multiple-plane command, and copy-back program command.

Advance command has its limitations. To use Multiple-plane command, data objects
must be in different planes of the same die. For example, in Fig. 1, a two-plane read/
write/erase operation into Plane 0 and Plane 2 is prohibited; whereas, a two-plane
read/write/erase operation into Plane 0 and Plane 1 or into Plane 2 and Plane 3 is allowed.
To use Interleave command, data objects must be in different dies of the same chip.

Multiple-plane command can exploit plane level parallelism. It is an extension of the
common command. For example, the multiple-plane page write (program) command
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can simultaneously write (program) multiple pages. It improves the system throughput
multiple compared to the common page program command. Interleave command can
exploit the die level parallelism. At the same time, the interleave command can combine
with the multiple-plane command to form the interleave multiple plane command,
therefore, exploit the die level and plane level parallelism simultaneously.

Through precise organizing the locations of data in SSD, we can achieve maximum
parallelism. Recently, many schemes have been proposed to exploit parallelism of SSD
[14, 15]. But none of these algorithms can be used in merge operation. To address this
problem, Dan He et al. [16] proposed Virtual Block-based Parallel FAST (VBP-FAST)
to full exploit parallelism in SSD. VBP-FAST reorganizes the flash block to virtual
block (Block) and physical block (PBlock). VBlock can fully exploit the channel-level,
die-level, and plane-level parallelism which can significantly reduce the cost of merge.
The PBlock area helps increase the number of partial merge and switch operations.
Although VBP-FAST can fully exploit parallelism and reduce the cost of merge, it
cannot be used in PCM based hybrid SSD. Since the PCM based hybrid SSD used
PCM as the log areas. Unlike the flash, PCM can update in place.

IPL (In-Page Logging) Method. S. Lee et al. proposed the IPL method [17] to
improve the write performance of the file system. In IPL method, a block of NAND
Flash reserves some pages as the log pages. If pages of this block are updated, its
update is written to the reserved pages. When the reserved pages in the block is run out,
the block should merge the valid pages and log pages to a free block.

PCM (Phase Change Random Access Memory). Like the flash, PCM is also
non-volatile memory (NVM).The origins of PCM can be traced back to the late 1960 s
by S.Ovshinsky [18]. The access latency of PCM is between flash and DRAM, which
means its read and write operation are faster than flash and slower than DRAM. Table 1
compares the characteristics of PCM and NAND flash memory [19].

PCM cells can sustain 1000x more writes than flash cells, currently the write times of
PCM is between 106—108. Like the flash, the write latency of PCM is higher than read
latency. The difference between PCM and NAND flash is that PCM can update in-place.
NAND flash update obeys “erase-before-write” requirement. Compared with the NAND
flash, PCM has the advantage of longer lifetime, lower power consumption,
random-access and in-place update. Therefore, PCM are commonly used as the log area
or store the SSD’s metadata [20], (such as FTL data) in PCM and NAND flash hybrid
SSDs.

Table 1. The comparison between PCM and NAND flash

Parameter NAND Flash PCM

Read Latency 25 us 200*300 ns
Write Speed 2.4 MB/s *100 MB/s
Endurance 104 106*108
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Hybrid-IPL (In-Page Logging with PCM Hybrid Solid-State Storage). In NAND
Flash based the IPL, if system frequently updates the same block, it may cause sig-
nificant performance degradation, because this procedure may quickly run out of
reserved pages, and cause the merge operations. In order to address this problem,
hybrid-IPL is proposed [2]. In hybrid-IPL, PCM is used as logging region and NAND
Flash is used as data region. Since PCM is separated from the flash-based data region,
log sectors are dynamically assigned to each erase unit to store its own updates. In
order to prevent the whole system stalled for a long time waiting for merge operations
to be completed, hybrid-IPL sets up a threshold of free log sectors, and the merge
operations are triggered when the capacity of free log sectors is lower than it. In merge
operations, updated log sectors and its corresponding valid pages in this NAND Flash
erase unit are written to another free NAND Flash erase unit. After that process, log
sectors are released as clean ones for future use and old NAND Flash erase unit are
invalid. With the PCM, hybrid-IPL can improve system write performance; increase the
NAND Flash lifetime and decrease energy consumption of the system. The hybrid-IPL
has two shortcomings. Firstly, a merge operation takes place in a NAND Flash block,
and all these operations (read updated log sectors, read corresponding valid pages in
NAND Flash, write all the data to another free NAND Flash and erase the old NAND
flash block) of merge cannot do parallelly. Secondly, a merge operation can only
release few log sectors. For example, in Fig. 1, if update page 0 to page 59 of block 0,
block 1,block 406,and block 4097 are all in log area (PCM). In hybrid-IPL, when log
area is full and system select block 0 to merge. It need 60 times of read PCM, 4 times of
read flash, 64 times of write flash and a time of erase flash block. Then system frees 60
pages of PCM. If we select block 0, block 1, block 4096, and block 4097 to merge at
the same time, system can read all the valid page 60 from block 0, block 1, block 406,
and block 4097 with an interleave-two-plane read command, and so on the page 61 to
page 63. Then system can write all these four blocks with 64 times of interleave-
two-plane write command to write the data to new adjacent blocks. At last, SSD uses
an interleave-two-plane erase command to erase these four blocks. This scheme needs
240 times of PCM read, 4 times of flash read, 64 times of flash write, and one time of
flash erase. Log area can free 240 pages of PCM area. The more important things is
flushing these four blocks will improve the log area hit ratio, because of spatial locality.
Locality of reference includes the temporal locality and spatial locality [4].Thus, in log
area (like a cache), if pages of a block are flushed out, the pages adjacent to the flushed
block may be flushed soon (these pages may not be references for a long time).

3 Parallel Aware Hybrid-IPL (P-Aware-IPL) Description

In P-aware-IPL, The PCM is used as the log areas and NAND Flash is used as data
areas. Log area is dynamical assigned to all flash blocks to store the update data. The
operations of parallel aware hybrid-IPL are as follows:

Read Operation. System reads the flash and PCM at the same time from different
controller (data region controller and log region controller). If data is in PCM, system
reads data from PCM and loads it into the buffer. Otherwise system read the data from
flash into the buffer.
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Write (Update) Operation. The updated page are written to PCM. If the page have
already written to PCM, then we should only overwrite the sectors of PCM. If there are
no existing log records for the updated page and PCM has free sectors, System allo-
cated some sectors to store the updated page. If there are no free sectors in PCM,
system will start merge operation to free some PCM sectors for the updated page.

PCM (log area) Management. In P-aware-IPL, all the updated pages of a block are
linked as a list, called block list, and all the lists are linked as a LRU queue. Figure 3
shows the LRU queue of PCM.

Merge operation. Merge operation of P-hybrid-IPL is different from that of
hybrid-IPL, which uses FIFO policy. When merge operations are triggered, hybrid-IPL
selects the head of the queue sectors to merge with its corresponding data block.
A merge operation only deals with one flash block in hybrid-IPL. P-hybrid-IPL, uses
LRU policy, and merge operation can merge one or all the adjacent blocks at the same
time. The adjacent blocks is defines as follow: The adjacent blocks are the blocks which
in the same package and they are in the same row. Such as in Fig. 4, the block 0, block 1,
block 2 and block 3 are the adjacent blocks. In flash, adjacent blocks can use advance
commands to parallel operate (read, write, and erase). For example, page 0 in block 0
and page 0 in block 1 can use two plane read/write command operate. The same
operation can also be used in page 0 of block 2 and page 0 of block 3. Page 0 in block 0
and page 0 in block 2, page 0 in block 0 and page 0 in block 3,page 0 in block 1 and page
0 in block 2, and page 0 in block 1 and page 0 in block 3 can use interleave read/write to
parallel operate. All page 0 in adjacent blocks can use interleave two plane read/write to
parallel operate. At last, all the adjacent blocks can use interleave two plane erase to
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parallel erase. In addition, simultaneously flush a block and its adjacent block from PCM
can increase the hit ratio of PCM because of the spatial locality.

Threshold value setting. The merge operation should copy all the valid pages (in
PCM and valid in NAND Flash) to a clean NAND Flash block. Therefore, it is not
worth merging the adjacent blocks that have only few pages in log area. In order to
solve this problem, we can set up a threshold. If adjacent block have more pages than
threshold in log area, we merge the adjacent blocks at the same time. Otherwise system
only merge a block. The value of threshold should not set too small or too large. If
threshold value is small, then merge block i and its adjacent blocks will do not release
many free PCM sectors, and merge adjacent blocks will bring many flash operations
(read, write, and erase). So, it is no worth merging the adjacent blocks simultaneously.
In contrast, if threshold value is too large, there will be less possibility can merge block
i and its adjacent blocks simultaneously. In our schemes, the value of threshold is
settled two-thirds of a block’s pages number.

The detailed algorithm of p-aware-IPL is described as Fig. 5. Suppose a flash
package has two dies and a die has two planes:
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4 Evaluation

To evaluate the effectiveness of the proposed P-hybrid-IPL, we conduct a series of
experiments and present the analysis results in this section. We compare P-hybrid-IPL
with state-of-art scheme, hybrid-IPL by implementing them on an open-source SSD
simulator called SSDSim [21]. We present the average response time, total numbers of
flash write, flash erase, and PCM write comparison of P-hybrid-IPL and the baseline
scheme. We do not present number of flash read and number of PCM read because
flash read time and PCM read time are very shorter than their write time. At the same
time, flash read, PCM read do not influence their lifetime.

Workload Traces. Four real world I/O workload traces are used in the experiments.
The Financial 1 and Financial 2 trace [21] are from the Online Transaction Processing
application from a large financial institution. Radius [22] was obtained from a RADIUS
authentication server that is responsible for worldwide corporate remote access and
wireless authentication. Display Ads Payloud [23] trace is collected over a period of
24 h for Display Ads Platform payload Server. The characteristics of the workloads are
listed in Table 2.

The capacity of the flash is 2 GB, PCM capacity is 16 MB. For each given trace, the
simulator counts the number of flash writes, flash erases, PCM writes, and average
response time. The simulator in our experiment is configured with the key parameters
listed in Table 3.

Fig. 5. Algorithm of P-aware-IP
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Figure 6 compares the average response times of P-hybrid-IPL and hybrid-IPL
under the four workloads. Among these four workloads, the average response time of
P-hybrid-IPL is lower than the baseline scheme. The average response time in
P-aware-IPL is about 6.6 %∼22 % less than that in hybrid-IPL. The reason is that:
(1) P-hybrid-IPL has less flash erase number and flash write number than that of
hybrid-IPL. In flash, cost of write operation and erase operation is very high. (2) be-
cause of the locality, flushing the block and its adjacent blocks can release much more
free log area and do not reduce the hit ratio of log area. This will cause more write in
log area (PCM), but cost of write in PCM is less than that of in flash. Therefore, the
overall response time of P-hybrid-IPL is lower than that of hybrid-IPL.

Table 2. Characteristics of real world I/O workloads.

Trace Read Request
Count

Write Request
Count

Read Request
Average
Size(512B)

Write Request Average
Size(512B)

Fin1 1235596 4099351 4.5 7.5
Fin2 3045784 653079 4.6 5.8
Radius 12760 109208 13.1 15.4
Display 46348 16060 57 21

Table 3. Configuration parameters of simulator.

Channel 2

Die Die 2/package
Plane Plane 2/die
Block Block 2048/plane
Page Page 64/block
Page size 2 KB

Fig. 6. Average response time in different workloads
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Figure 7 compares the total number of PCM writes in P-hybrid-IPL and hybrid-IPL
under the four workloads. The total number of PCM writes in P-aware-IPL is more than
those of hybrid-IPL. The reason is in P-aware-IPL, a merge operation may merge a
block and its adjacent blocks simultaneously. Flushing the block and its adjacent
blocks can release much more free log area in a merge operation. At the same time,
flushing adjacent blocks from log area (PCM) does not reduce the hit ratio of log area
because of spatial locality. In other words, this procedure will increase the hit ratio of
log area because pages of adjacent blocks which are in log area will not be accessed in
future. Therefore, flush these pages will increase the hit ratio of log area which will
increase the number of PCM writes.

In Fig. 8, the number of flash erase in P-aware-IPL are about 3 %∼8 % less than that
in hybrid-IPL. This is because the write number of PCM in P-aware-IPL is more than

Fig. 7. Numbers of PCM writes in different workloads

Fig. 8. Numbers of flash erase in different workloads
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that of hybrid-IPL, which will trigger less merge operation in P-aware-IPL. Therefore,
the number of flash erase in P-aware-IPL will be less than that of hybrid-IPL.

Figure 9 compares the total number of flash writes in P-hybrid-IPL and hybrid-IPL
under the four workloads. The total number of flash writes in P-aware-IPL is less than
hybrid-IPL. The reason is that number of PCM write in P-aware-IPL is more than that
of hybrid-IPL. Therefore the merge number of P-aware-IPL will less than that of
hybrid-IPL. So the total number of flash write in P-hybrid-IPL is smaller than that of in
hybrid-IPL, since a block merge operation will bring 64 times of flash write (a block
usually consists of 64 pages [1]). In NAND Flash.

In summary, P-hybrid-IPL transforms the write operation from flash to the PCM
and reduces the cost of merge operation. PCM has much better endurance than the
NAND flash memory. Therefore, the endurance bottleneck of hybrid SSDs is the life
time of flash. The lifetime of P-hybrid-IPL is longer than that of hybrid-IPL, since
P-hybrid-IPL have less write count and less erase count than that of hybrid-IPL. The
most important thing is that P-hybrid-IPL does not bring any additional overhead to
SSD.

5 Conclusion

In this article, we propose a parallel aware PCM and NAND Flash hybrid SSD, called
P-hybrid-IPL, which flush pages of a updated block, and pages of its adjacent blocks
from log area (PCM) at the same time. Adjacent blocks in flash can use the parallel
operation. Therefore it reduces the cost of merge operation and does not bring any
additional overhead. In addition, flushing adjacent blocks at the same time will bring
two advantages: (1) it will improve the hit ratio because of spatial locality. (2) It will
release much more free log area in a merge operation. These two points will increase

Fig. 9. Numbers of flash write in different workloads
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the PCM write count and reduce the flash write count. Therefore, P-hybrid-IPL has
higher performance, longer lifetime than hybrid-IPL.
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Abstract. Software Transactional Memory (STM) is a promising paradigm that
facilitates programming for shared memory multiprocessors. In STM, syn-
chronization of accesses to the shared memory locations is fully handled by
STM library and does not require any intervention by programmers. While STM
eases parallel programming, it results in run-time overhead which increases
execution time of certain applications. In this paper, we focus on overhead of
STM and propose optimization techniques to enhance speed of STM applica-
tions. In particular, we focus on size of transaction, read-set, and write-set and
show that execution time of applications significantly changes by varying these
parameters. Optimizing these parameters manually is a time consuming process
and requires significant labor work. We exploit Linear Regression (LR) and
propose an optimization technique that decides on these parameters automati-
cally. We further enhance this technique by using decision tree. The decision
tree improves accuracy of predictions by selecting appropriate LR model for a
given transaction. We evaluate our optimization techniques using a set of
benchmarks from NAS and DiscoPoP benchmark suites. Our experimental
results reveal that LR and decision tree together are able to improve performance
of STM programs up to 54.8 %.

Keywords: Software Transactional Memory � Linear Regression � Decision
tree � Performance

1 Introduction

Software Transactional Memory (STM) is becoming increasingly popular as a con-
venient way for writing parallel programs. STM provides an atomic construct, called
transaction, which is used to protect shared memory locations from concurrent accesses
by threads. Reads and writes to transactional data occur at a single instance of time.
Intermediate transactional values are not visible to other transactions. STM executes
transactions speculatively in parallel and monitor memory locations accessed by active
transactions. If executing transactions do not conflict over shared memory locations,
then they safely commit. However, in the event of conflict, only one transaction can
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proceed and the rest should abort and restart. Transactions log operations during the
execution so that they can restore state of the running program if roll-back is needed.

STM eliminates many of the problems associated with locks and enables pro-
grammers to compose scalable applications safely. In an STM program, a programmer
does not need to worry about priority inversion, deadlock, or live lock. This is in
contrast to lock-based programming in which a programmer needs to deal with lock
placement and synchronization bugs. In an STM program, the programmer only needs
to reason locally about shared memory locations and mark sections of the program that
should be executed concurrently. The underlying system guarantees correctness. In
addition to ease of programming, STMs are speculative in nature. The benefit of
speculative approach is that transactions do not need to wait for shared memory
locations; instead, they can execute concurrently and modify disjoint memory locations
safely, leading to performance gains.

In the last decade, there have been several implementations of STMs [2–4]. The
emergence of new STM algorithms has not been slowed down in the recent years, and
the support for transactional memory in new processors [6] is likely to increase the
number of TM implementations. The performance of STMs depends on several factors
such as lock acquisition time, granularity of conflict detection, the mapping of memory
addresses to the lock table, etc. Some researchers have explored design space of STMs
and proposed changing STM parameters during the run-time. For example, Marathe
et al. [5] studies lock acquisition in STMs and showed that the time at which locks are
acquired has drastic impact on scalability. While eager policy (encounter-time locking)
reduces overhead, lazy policy (commit-time locking) provides better throughput for
some multithreaded applications. Marathe et al. [5] proposed an adaptive technique
which dynamically changes lock acquisition policy in run-time. The other example is
granularity of conflict detection [4]. Felber et al. [4] showed that performance of STMs
varies with granularity of conflict detection and non-optimum parameterization can
slow down some programs by a factor of three. While the above techniques improve
performance of STMs, all of them focus on execution of STM programs during the
run-time. They do not provide any guidelines for programmers to write an efficient TM
program in the first place.

The first step in writing an STM program is marking regions of a sequential code as
transactions. In the next step, APIs such as TM_BEGIN() and TM_END() [2] which
are provided by an STM library are inserted into the program to guarantee atomicity
and correctness of transactions. The size of a transaction has significant impact on
performance. If the transaction is too short, then the overhead of STM APIs exceeds
performance gain of parallel execution and may lead to an STM program which is
slower than sequential version of the program. On the other side, if the transaction is
too large, then the cost of roll-back in applications with high abort rate may reduce
speed-up in STM applications.

One way to find optimal transaction size is using try and error approach. A pro-
grammer can vary transaction size and finds out the optimal transaction size by running
the program multiple times. This procedure is very time consuming and requires sig-
nificant programming effort. To address this challenge, we propose two optimization
techniques that automatically determine near optimal transaction size: the first tech-
nique exploits Linear Regression (LR) [8] to predict transaction size. LR receives
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parameters of a non-optimized transaction such as transaction size, read-set size, and
write-set size and predicts the optimum transaction size. While LR is simple to
implement, its accuracy is low. Our second optimization technique exploits decision
tree and enhances accuracy of predictions. The decision tree divides transactions into
multiple groups and then uses a different LR model for each group. Using a set of
benchmarks from NAS [9] and DiscoPoP [10], we show that decision tree and LR
together increase accuracy of predictions significantly.

The rest of the paper is organized as follows. In Sect. 2, we explain the necessary
background for our optimization techniques and discuss how LR and decision tree
work. Section 3 explains the intuition behind our optimization techniques and evaluates
sensitivity of STM programs to a few transactional parameters. Section 4 discusses our
optimization techniques in details and reports experimental results. We review related
work in Sect. 5. Finally, in Sect. 6, we offer concluding remarks.

2 Background

2.1 Linear Regression

Linear Regression (LR) is a mathematical equation which relates a response variable to
a set of input parameters for a given design space [8]. LR is widely used to predict the
response variable at an arbitrary point in the design space. Equation 1 shows a simple
model for LR:

y ¼ B0 þ
Xq

k¼1
Bk � xið Þþ e ð1Þ

where y is response variable, xi is input parameter, B0 is the intercept of the fit with the
y-axis, and e is the error of LR model. Bi (0<i) is coefficient and represents the expected
change in y per unit change in xi. LR uses least square method to find the best-fitting
curve to a set of test points. In this method, coefficients are calculated so that the sum of
square of the errors for the test points (error of a test point is the distance of the point
from the fitting curve) is minimized. While LR exploits a simple model for prediction,
it shows excellent results in many applications and is able to predict the response
variable with high accuracy. Examples of LR applications are prediction of stock
market, oil price, and GDP [8]. Also, recently, Google used LR to predict revenue of a
movie four weeks ahead of its release date [13].

Our goal in this paper is to accurately estimate transaction size so that execution
time of STM applications is reduced. To do so, we explore static parameters that
interact with performance. We achieve this by performing simulation-based experi-
ments in which input parameters are varied before code compilation and the resulting
transaction size is fitted as per Eq. 1. It is important to note that while parameters in
Eq. 1 depend on STM library, the methodology that we use is general and can be
applied to any STM implementation.

Automatic Optimization of Software Transactional Memory 63



2.2 Decision Tree

Classification is the task of assigning objects to a set of predefined categories. Decision
tree [17] is a popular approach for classification. Originally, decision tree was used in
the field of statistics. However, soon it found to be effective in many other disciplines
such as machine learning, image processing, etc. A decision tree classifies an input
object through a set of functions organized in a hieratical manner and represented by a
tree. A tree has three types of nodes: root, internal, and leaf [17]. An internal node splits
the objects into two categories according to a test function. The inputs to the function
are attributes of the object and the output of the function is a binary value: 0 or 1. A leaf
represents a category. Objects are classified by navigating them from root down to the
leaves, based on the output of the test functions along the path.

In this work, we use decision tree to classify transactions based on error of pre-
dicted transaction size. Objects in decision tree are transactions and attributes of the
objects are read-set size, number of instructions between two consecutive transactions,
etc. The decision tree predicts the error of transaction size to be predicted by LR.
Section 4 discusses details of decision tree used in this study.

2.3 Benchmark Selection

To evaluate an STM system, researchers rely on a set of benchmarks. If the set of the
benchmarks are selected from a specific field, then the outcome of the research is not
reliable. To be able to extend the outcome of a research project to the real world
applications, we need a set of comprehensive benchmarks that truly represent real
world applications.

Asanovic et al. [18] proposed 13 Dwarfs as a guideline to develop benchmark
suites for parallel applications. A dwarf is a high level abstraction which categorizes
applications based on patterns of computation and communication. Asanovic et al. [18]
showed that NAS benchmark suite [9] includes all those dwarfs and so in this work, we
use NAS benchmark suite to evaluate our optimization techniques.

3 Motivation

In an STM program, transactions are implemented through APIs provided by an STM
library. While STM does not require any changes in the architectural level, it may not
result in significant speedup. This is mainly due to the overhead of STM APIs.

In this work, we use two Intel Xeon E5660 processors running at 2.8 GHz. Each
processor has six cores and is capable of running up to 12 threads simultaneously. Each
processor has a 12 MB shared L3 cache with 64B cache lines. Each core has a 32 KB
instruction cache and a 32 KB data cache.

Figure 1a shows execution time of STM relative to sequential code for NAS
benchmark suite. NAS benchmarks are originally developed using OpenMP library.
We replaced critical sections in NAS with transactions. For each benchmark, the
number of threads varies from two to 16. Bars more than one show speedup. On
average, STM reduces performance by 43.8 %, 57.5 %, 59.1 %, and 81.7 %, when the
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number of threads is 2, 4, 8, and 16, respectively. From Fig. 1a, we conclude that
blindly using transactions in a parallel program may result in a program that is slower
than its sequential version. To boost performance of STM programs, we need to reduce
the overhead of APIs. There are two main approaches to optimize STMs: static and
dynamic. In static approach, the STM program is changed during the code development
or compilation whereas in dynamic approach, the system is optimized during the
run-time and by hacking into STM library. While many research ideas have been
proposed on the latter approach, the former one did not receive enough attention from
researchers. In this section, we discuss three static parameters which impact perfor-
mance of STM programs: size of transaction, write-set size, and read-set size.

Figure 1b shows the impact of size of transaction on performance of NAS
benchmarks. We optimized each benchmark by varying the number of instructions in
transactions manually and selecting the one which minimizes execution time. It is
important to note that by changing the size of a transaction, we do not violate its
atomicity. Figure 2 shows an example of a large transaction. The transaction is com-
posed of three loops. We can decompose the outer loop into several smaller loops and
assign each loop to a transaction. Similarly, when we combine smaller transactions to
build a large transaction, we take into account the atomicity of transactions to make
sure that we do not compromise correctness of transactions.

Speedup in a short transaction is limited since overhead of STM is high relative to
the size of the transaction. A long transaction may increase abort rate as a large number
of instructions in a transaction may increase the window during which transactions are
identified as competitors. So, to boost performance of STM programs, we should merge
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Fig. 1. (A) Speedup in baseline scheme. (B) Speedup when transaction size is optimized.
(C) Speedup when write-set size is optimized. (D) Speedup when read-set size is optimized.
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small transactions to reduce overhead of APIs. On the other side, in a large transaction,
we should split the transaction into a number of small transactions to reduce abort rate
and improve performance. Figure 1b shows that transaction size, indeed, has dramatic
impact on performance. In BT, performance increases up to 9.3X when we change
transaction size. On average, changing transaction size improves performance by
77.7 %, 88.4 %, 89.1 %, and 89.3 % when the number of threads is 2, 4, 8, and 16,
respectively.

Figure 1c shows the impact of write-set on performance. STM uses a linked-list to
record transactional write operations. When a transaction writes into a shared memory
location, it inserts a new node to the linked-list. In commit, the transaction traverses the
linked-list to acquire locks and update memory with new transactional data. If the
transaction fails to acquire a lock, then it aborts and restarts. So, a transaction with a
large write-set is more likely to abort. However, if we restrict transactions to have only
small write-sets, then we need to split transactions into too many short transactions.
This increases overhead of STM APIs relative to the performance gains of concurrent
transactions and limits speedup. The optimum write-set size depends on pattern of
memory accesses by transactions and varies from one benchmark to the other. We
manually optimized performance of NAS benchmarks by changing write-set size.
Figure 1c shows that by changing write-set size, performance of NAS benchmarks
increases up to 7.3X.

Similar to write-set, a transaction uses a read-set to record memory locations that it
reads. The read-set is implemented as a linked-list. In commit, the transaction traverses
the read-set to verify that the read memory locations have not been written by other
transactions. The optimum read-set size varies across the benchmarks. While a large
read-set increases validation time, a small read-set increases the number of transactions
and hurts performance. Figure 1d shows speedup in NAS benchmarks when read-set
size is optimized. In Fig. 1d, we just changed read-only transactions in NAS bench-
marks. Since there are a few number of read-only transactions in NAS benchmarks, the
speedup is limited in Fig. 1d.

It is important to note that these three parameters are correlated. For example, when
we split a transaction with 100 transactional writes into two transactions, each with 50
transactional writes, the size of the transaction is affected in addition to the write-set
size.

4 The Prediction Model

4.1 Linear Regression

Size of transaction, write-set, and read-set are three factors that affect performance of
STM applications. To optimize performance of STM programs, we build a linear
regression model that predicts transaction size based on these three factors. The main
reason that we decided to use transaction size as the predicted value by LR is that
changing STM programs based on transaction size is straightforward. Quite often, it
does not require any changes in the data structure of programs. For example, Fig. 2
shows a code snippet from BT benchmark. The loop iterations are independent and so
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we can change transaction size by splitting the outer loop into a number of smaller
loops and assigning each small loop to a transaction. On the other side, changing
write-set and/or read-set of a transaction needs significant programming effort which
complicates parallel programming. Hence, in all our experiments, we target transaction
size for optimization. It is important to note that in some programs, it is not feasible to
break down a large transaction because of dependency. For example, if the loop
iterations in Fig. 2 are dependent, then we cannot break the outer loop.

While our optimization technique directly affects transaction size, it implicitly
changes write-set and read-set sizes. For example in Fig. 2, if we split the k-loop into
two equally sized loops, then write-set and read-set of each transaction is halved. So, by
changing transaction size, we take into account the impact of all the three parameters
on performance.

To train LR model, we use a set of benchmarks from NAS benchmark suite [9].
Table 1 shows the list of the benchmarks. The second column of the table shows the
number of transaction per benchmark. We use 34 transactions for training of LR model.
The rest are used for test. Also, we use DiscoPoP benchmark suite [10] to evaluate the
impact of our optimization techniques on performance (Table 1).

We use SPSS [16] to find coefficients in our LR model. While our first LR model is
simple and uses only three inputs, its accuracy is not acceptable. R_square which
indicates how the data fit the regression model is only 45 %. According to this result,
55 % of data cannot be described by this model. We need to improve our LR model to
reduce error rate of predicted transaction sizes.

To revise the LR model, we extend the inputs of the LR and include five more
parameters: size of next transaction (SNT), number of assembly instructions between
two consecutive transactions (NCT), write-set of the next transaction (WN), read-set of
the next transaction (RN), and number of assembly instructions in a loop (TL). These
five parameters are in addition to the original three parameters: size of transaction (ST),
size of write-set (WS), and size of read-set (RS).

Fig. 2. A code snippet from BT.
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The first factor is called SNT. We explain why we use SNT as an input to LR model
through an example. Assume that transaction A is followed by transaction B and
transaction C is followed by transaction D. Transactions A, B, C, and D have 3000,
5000, 6000, and 11000 instructions, respectively, Assume that the optimum transaction
size is 8000 instructions. We can combine transactions A and B and create a larger
transaction with 8000 instructions. However, transactions C and D cannot be combined
since the combined transaction has much more than 8000 instructions.

The second factor is called NCT. The number of instructions between two con-
secutive transactions affects the way we merge multiple small transactions into a large
transaction. Assume that there are two transactions each with 3000 instructions. Similar
to the previous example, assume that the optimum transaction size is 8000 instructions.
If NCT is 2000 instructions, then the combined transaction results in optimum per-
formance. However, if NCT is 10000, then we cannot combine the two transactions as
the combined transaction is too large and hurts performance.

The third and fourth parameters are called WN and RN. Similar to SNT, write-set
and read-set of the next transaction affect how we merge small transactions to build
optimum transactions. So, to optimize transaction size, we need to consider WN and
RN as well.

The fifth parameter is called TL. This parameter affects those transactions that are
inside the body of a loop. If the total number of instructions in a loop is less than
optimum transaction size, then we can move the whole loop in to a transaction. For
transactions that are not inside a loop, we set this parameter to zero.

Equation 2 shows LR model using the 8 input parameters. We use SPSS [16] to
calculate coefficients in Eq. 2. TS stands for transactions size.

TS ¼ 5451þ 0:867� STþ 0:015� RS� 0:027�WS� 0:832� TLþ 0:229�
NCTþ 0:032� SNTþ 0:015� RN� 0:026�WN

ð2Þ

Table 1. NAS and DiscoPop benchmar suites.

Benchmark Number of TXs

LU 6
BT 12
CG 4
EP 3
IS 6
MG 6
FT 9
Histo_serial 1
Ann_trainig 2
Mc_light 2
mandelbort 1
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Table 2 shows accuracy of predictions by LR. The test cases in Table 2 are
transactions from NAS benchmarks. While accuracy is high in some of the bench-
marks, i.e. test6, in most of the benchmarks, LR predictions result in significant error.
The main reason for high error is that LR tries to draw a line to cover as many points as
possible. If the points are scattered, then LR is unable to fit a line that covers all the
points. This reduces accuracy of predictions.

We need to revise the LR model to increase accuracy of predictions. Further
investigation of LR model reveals that the error rate for transactions with large positive
error is in the range of 6.5 %-16.3 %. On the other side, error rate of transactions with
large negative error is in the range of 56 %-180.7 %. This motivates us to classify
transactions into three categories: transactions with large negative error (class1),
transactions with large positive error (class2), and transactions with small error (clas3).
We use separate LR model for each class. This improves accuracy of predictions since
the set of points within a class are well-organized and fitting a curve to the points
results in less residual error. We use the same 8 input parameters for the three LR
models: SNT, NCT, WN, RN, TL, ST, WS and RS. Equations 3-5 show the new LR
models. TS1, TS2, and TS3 correspond to class1, class2, and class3, respectively.

TS1 ¼ 416þ 0:013� RS� 0:02�WS� 0:043� TLþ 97:09� NCTþ
0:041SNTþ 0:012� RN� 0:019�WN

ð3Þ

TS2 ¼ 7196þ 0:824� ST þ 0:018� RS� 0:033�WS� 0:791� TL� 0:015�
NCT þ 0:03� SNT þ 0:018� RN � 0:031�WN

ð4Þ

TS2 ¼ 8142þ 0:799� ST þ 0:024� RS� 0:039�WS� 0:765� TL� 0:026�
NCT þ 0:03� SNT þ 0:023� RN � 0:035�WN

ð5Þ

Table 2. Predcition accuracy in LR

Test Cases Original TX Size Predicted TX Size Optimum TX Size Error (%)

test1 148258 10576.54 6739 -56.9%
test2 54736 6985 2488 -180.7%
test3 112816 9159 5128 -78.6%
test4 636460 27062 28930 6.5%
test5 204192 5343 6381 16.3%
test6 35122 34385 35122 2.1%
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4.2 Decision Tree

To exploit the three LR models, we need to classify transactions into three categories:
class1, class2, and class3. We use decision tree [17] for classification. C4.5 [15] is a
popular decision tree algorithm and is able to classify objects with continuous attri-
butes. We train the decision tree with already classified sample transactions. Each
sample Si consists of an 8-dimensional input vector (SNT, NCT, WN, RN, TL, ST,
WS, and RS) as well as the class which the Si belongs to. Through the training phase,
the decision tree learns how to classify transactions. For test, we feed the decision tree
an 8- dimensional vector and the decision tree predicts the class of the transaction
corresponding to the vector.

4.3 Mixed Decision Tree and Linear Regressions Model

Our last optimization technique is a mixture of decision tree and linear regression. First,
decision tree determine the class of a transaction. Then, we use one of the three LR
models (Eqs. 3-5) to predict optimal transaction size.

We used the same method to test the mixed model: 34 transactions from NAS are
used for training and the rest are used for test.

Table 3 shows error of predictions made by our mixed model. On average, error
rate drops from 59 % to 2.8 %. The error rates in most of the test cases are very low.
The largest error rate is 16 % in test5. This transaction has small read- and write-sets
and the decision tree categorizes it in class 3. However, this transaction has a large
positive error and should be categorized in class 2. We used a small set of transactions
for training. However, if we include more transactions in training phase, then this
abnormality may disappear.

To evaluate the impact of mixed model on execution time, we use benchmarks from
DiscoPoP benchmark suite [10]. The last column in Table 4 shows speedup in opti-
mized benchmarks. LR and decision tree together improve performance up to 54.8 %.
On average, the performance is improved by 30.3 %.

Table 3. Prediction accuracy using mixed model

Name Original TX Size Predicted TX Size Optimized TX Size Error rate

test1 148258 6739 6739 0%
test2 54736 2488.45 2488 −0.02%
test3 112816 5129.87 5128 −0.04%
test4 636460 28930 28930 0%
test5 204192 5359.92 6381 16%
test6 35122 34859.46 35122 0.75%
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5 Related Work

Transactional memory was originally proposed by Herlihy and Moss [1]. Shavit and
Touitou [7] were the first to introduce software implementation of transactional
memory. Since then, many researchers offered new implementations for transactional
memory or improved already existing implementations through optimizing different
aspects of transactional memory.

Felber et al. [4] introduced TinySTM which is a time-based STM. The authors
evaluated the impact of three parameters on performance: the number of locks, the hash
function for lock table, and the size of hierarchical array in lock. The authors found that
there is no one-size-fit-all value that works well across all applications. Even within an
application, the optimum value of a parameter may change during the run-time. The
authors proposed using hill-climbing strategy to adjust STM parameters. The dynamic
optimization technique introduced in TinySTM can be combined with our static
approach to improve performance of STMs further.

Wang et al. [14] proposed new techniques to optimize transactional memory in
unmanaged programming languages such as C. Supporting transactions in an
unmanaged language is much more challenging than managed code. For example, the
lack of type safety in C forces programmers to implement validation in granularity of
cache line rather than object. This makes optimization of STM overhead a challenging
task. Wang et al. [14] proposed new constructs in C which allows a programmer to
declare blocks that can be executed atomically. Furthermore, they exploited some
compiler based optimization techniques such as inlining for fast paths, elimination of
redundant barriers, and register check-pointing optimization to reduce overhead of
STM. We use a different approach and focus on transaction, write-set, and read-set
sizes to optimize STM applications.

DiscoPoP [10] is a tool that automatically finds parallelizable regions of a
sequential code. DiscoPoP is able to identify parallelism between code regions with
arbitrary granularity and does not require any predefined notion of language constructs.
DiscoPoP identifies sections of the code in which data dependency does not exist.
These sections are called Computational Units (CUs). Then, the tool builds a depen-
dency graph using CUs. Nodes of the graph represent CUs and edges represent
dependency between CUs. From the dependency graph, DiscoPoP determines potential
parallelism available on varying levels of the code. The output of the DiscoPoP is a file
that indicates which lines of the sequential code can be grouped as a task and run

Table 4. Speedup in DiscoPop [10] using mixed model

Name Original TX Size Predicted TX Size Speedup

Histo_serial 320625 14186 47.0%
Mc_light 2125000 77310 28.4%
Mc_light 116250 11148 54.8%
Ann_trainig 72000 10614.15 18.6%
Ann_trainig 480000000 16328112 18.5%
mandelbort 78208 9776 14.9%
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concurrently with other tasks. We used the set of benchmarks introduced in DiscoPoP
for evaluation of our mixed model. Our mixed model can be combined with DiscoPoP
to convert sequential codes into highly optimized STM codes automatically.

Castro et al. [12] used machine learning for thread mapping in STMs. In thread
mapping, executing threads are assigned to processing cores dynamically so that the
latency associated to the memory hierarchy is reduced. To decide on thread mapping,
status of transactions and also STM platform are monitored at specific intervals. At the
end of each interval, thread mapping is adjusted based on a decision tree learning
method (ID3) [15]. Our work is different as we use C4.5 for classification of trans-
actions. C4.5 is an enhanced version of ID3 which supports continuous attributes. Also,
we focus on transaction, write-set, and read-set sizes for optimization. On the other
side, Castro et al. [12] focus on thread mapping.

Didona et al. [11] proposed self-tuning methodologies to dynamically adjust con-
currency level in STMs. One of the key factors in STM programs is concurrency level.
Too many threads in a program increase contentions over shred memory locations and
hurt performance. On the other side, if concurrency level is too low, then exploited
parallelism by STM programs will be limited. The optimum number of executing threads
depends on many parameters including but not limited to pattern of addresses generated
by transactions, OS scheduler, structure of memory hierarchy, etc. So, identifying the
right level of concurrency in STMs is not a trivial task. Diego et al. [11] used a
hill-climbing algorithm to explore concurrency level space in shared memory STMs.
This optimization technique is a dynamic approach and can be combined with our static
code optimization technique to improve performance of STM applications further.

6 Conclusion

In this paper, we presented an optimization technique that helps programmers to write
efficient STM programs. We studied the impact of three parameters on STM perfor-
mance and showed that STM applications are highly sensitive to the three parameters.
Then, we exploited LR to predict transaction size based on the three parameters. Our
first LR model was not accurate enough and it resulted in high error rate. We revised the
LR model by extending its inputs from 3 to 8 parameters. Also, to improve accuracy of
LR, we classified transactions into three groups: transactions with large positive errors,
transactions with large negative errors, and transaction with low errors. We used
decision tree to classify transactions automatically. Our mixed model reduces error rate
from 59 % to 2.8 % on average. We also evaluated the mixed model using DiscoPoP
benchmark suite. The mixed model improves performance of DiscoPoP up to 54.8 %.
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Abstract. Non-uniform memory access (NUMA) is one of the main
architectures of today’s high-performance server. The key feature of
NUMA is the non-uniformity of access latency. Access from a proces-
sor to attached memory is faster, and it also reduces the possibility of
causing contention on interconnect links and memory controller. Multi-
threaded programs may experience high memory latency without careful
placement of data and thread. Thus, it is necessary to develop a tool to
identify and help ameliorate NUMA problems. In this paper, we present a
data-centric tool to analyze the performance of multithreaded programs
on NUMA architectures and provide advices on how to improve the per-
formance. This paper describes the design and implementation of the
tool. The tool is evaluated on Linux using three benchmark applications,
and the evaluation shows how this tool helps to identify costly vari-
ables and choose optimization methods. The result shows performance
improvement of up to 51.92%.

Keywords: NUMA · Profiling · Thread access model · Multithread ·
Performance improvement

1 Introduction

Commercial server architecture can be divided into three categories: symmetric
multi-processing (SMP), massive parallel processing (MPP) and NUMA. SMP
is a system architecture where two or more identical processors connect to a
single shared main memory [3], it treats processors equally and offers uniform
access to memory, all processors can directly access any part of memory [21].
However, adding more microprocessors to the architecture makes the shared bus
a bottleneck. All processors compete using the only bus to deliver data. MPP
provides an efficient approach to expand the system [5]. It is a system combined
by numerous loosely coupled processors that use their own resource. Setting up
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MPP is complicated because the processor is individual in the system, it requires
us to determine how to partition data and assign work among the processors
[2]. To improve system performance and scalability, people come up with a new
architecture: NUMA. A NUMA system divides memory into parts. Each of them
obtains a certain number of attached microprocessors, which access them locally.
The package of memory and attached microprocessors can be called a domain.
An access from a CPU to memory of other domain is called remote access. By
contrast, an access from a CPU to memory of the same domain is called local
access. Remote access always takes more time than local access. Domains are
connected to others through interconnect links (Fig. 1).

cpu cpu

cpu cpu

memory

Domain 0

cpu cpu

cpu cpu

memory

Domain 1

Interconnect

Fig. 1. An example of NUMA architecture

NUMA performance improvement has been a topic of fierce debate through
recent years. A fundamental characteristic of NUMA hardware, non-uniform
memory access, emphasizes the importance of coding properly to achieve better
performance. If a thread and its relative memory are placed on the same NUMA
domain, the thread will run quicker; otherwise, the thread will experience signif-
icant NUMA penalty. Significant effort has been exerted to solve this problem.
Operating systems, such as Linux, Solaris and Microsoft Windows, have devel-
oped some NUMA-related features [14]. For example, Linux provides almost a
whole package of tricks to help with NUMA allocation. With these tricks, users
can specify how memory is allocated for a process. There are also some basic
NUMA command line tools (such as numactl [12]) that can obtain information
about NUMA characteristics of the system or bind thread on a certain domain.

Besides the support of operating systems, there are other tools that focus
on NUMA problems. These tools try to make improvement mainly based on
data collected during the execution of target application. Commercial tools, such
as IBM Visual Performance Analyzer [4], Intel Vtune Amplifier [1] and AMD
CodeAnalyst [8], have been widely used. These tools use performance moni-
toring unit (PMU) to collect NUMA-related information and identify NUMA
bottleneck in the code. They point out code lines associated with NUMA prob-
lems, and this method is called code-centric method. This method is efficient in
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identifying which code line can be rewritten to achieve improvement. However,
why it becomes a bottleneck and how the code lines can be rearranged to achieve
improvement is unclear. Another method that associates NUMA problems with
data used in the program is called data-centric method. The existing data-centric
tools include Memphis [18] and MemProf [13], they aggregate samplings collected
during the execution and analyze variables and instructions suffered from NUMA
architecture.

The problem with the existing data-centric tools is that they cannot pro-
vide a clear insight into NUMA bottleneck. They cannot estimate whether an
application can achieve improvement from NUMA-related adjustments, neither
can they directly identify which variable accounts most of the NUMA problem.
Existing tools also do not provide enough information on how to optimize codes
that suffered from NUMA problem. A data-centric tool is presented in this study
to provide these information and to analyze the performance of multithreaded
programs. This tool has three advantages compared with existing tools. First,
some metrics are computed based on data collected using hardware counters.
These metrics can determine whether a NUMA problem exists. Second, the tool
efficiently lists variables that suffered from NUMA problem. Third, the tool
provides information to guide NUMA optimizations, including details of thread
accessing variables.

The rest of the paper is organized as follows: Sect. 2 describes NUMA prob-
lems and how to identify these problems. Section 3 explains the implementation
details of the tool. Section 4 presents evaluation of the tool on three bench-
marks, which verify its correctness and effectiveness. Finally, Sect. 5 discusses
related works, and Sect. 6 concludes the paper.

2 Finding and Fixing NUMA Problems

2.1 NUMA Problems

There are two types of problem under NUMA architecture: interconnect con-
gestion caused by memory hot-spotting and remote access latency caused
by computation-partition/data-partition mismatch [18]. Memory hot-spotting
refers to a phenomenon that a variable is located on a specific domain and fre-
quently accessed by threads on all domains, which makes a significant imbalance
of accesses to domains. Memory hot-spotting causes massive accesses to one
domain. Therefore accesses jam the interconnect links to the specific domain.
The traffic congestion results in long latency, which slows down the program
process. Memory hot-spotting is often caused by the inappropriate initializa-
tion of data. This is common under today’s Linux system because it employs
the default “first-touch” policy to find pages of newly allocated variables. First-
touch means the operating system will always locate variables on the NUMA
domain where the thread that first accesses the variable resides. In the program
described by Fig. 5, thread 0 touches the whole array before any other thread is
created, which means the whole array will be located on the domain where thread
0 belongs to, then every access from threads on other domains becomes remote
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Fig. 2. Memory layout of a two-dimensional matrix

access. This problem can be solved by adjusting the code that first touches vari-
able, explicitly initializing the data in the way which it is accessed throughout
the rest of the application, and ensuring every thread touches its own data before
other threads.

Inappropriate initialization is not only the cause of memory hot-spotting, but
also the cause of massive remote accesses. Remote accesses should be avoided
under the NUMA architecture because the penalty of remote accesses will harm
the performance of application. Another likely cause of remote access is thread
migration. Once the thread is moved to another domain for load balance by
the scheduler and the data it used remains in the old domain, remote access
happens. Remote access may also occur when data are accessed by loops with
different data access patterns [15], we take the two-dimensional matrix in Fig. 2
as an example, when a multithreaded application attempts to access all elements
in a nested loop, the data access pattern can be divided into categories based
on the direction of parallel loop, in this case: x -wise pattern if loop is paralleled
in the x direction and y-wise pattern if the loop is paralleled in the y direction.
Different access patterns always result in different data distributions. Thus loops
with different access pattern always come with remote accesses. This problem
can be solved by matching all the access patterns of loops without violating the
correctness of the application.

2.2 Finding and Fixing

As previously discussed, both interconnect congestion and remote accesses lead
to long access latency. These problems can be detected by sampling each access
activity, aggregating and analyzing the average time to obtain each variable.
Thus, average access latency can be an efficient metric to detect whether an
application suffers from NUMA problems.

Co-locating data and thread that frequently accesses it is the most useful
optimization because it reduces the demand for interconnection delivery and
decreases remote accesses at the same time. Each access of threads to a variable
should be collected to get knowledge of the access model of the thread, and
this information should be used to determine how multiple threads access data
throughout the execution.



78 D. Zeng et al.

To help program get better performance under NUMA architecture, we need
a tool to find and fix NUMA problems. This tool should pinpoint variables that
suffered most from NUMA problems and then determine the access models of
all threads to guide NUMA optimization.

3 Implementation

NumaProf is a tool that uses precise event based sampling (PEBS) [10] to col-
lect access samples, analyze data, and present information helpful for NUMA
optimizations. NumaProf mainly requires three steps to function properly: use
PEBS to collect access samples, map virtual address from samples to correspond-
ing variables, and process samples to obtain efficient information.

3.1 Sampling

Collecting useful information is an important step. During the execution of target
program, NumaProf detects event and creates three event flows: malloc event
flow, mmap event flow and access event flow, as we can see in Fig. 3. We get
malloc event flow to mark the allocation of dynamic-allocated variable and mmap
event flow to record global static variables.

Collecting

malloc
event
flow

map
event
flow

access
event
flow

Variable
Event
Flow

(ordered
By

time)

Variable
Event
Flow

(ordered
By

time)

Fig. 3. Data flow of NumaProf

NumaProf uses PEBS on an Intel processor to track the memory accesses of
each variable. PEBS is only available on Intel processors, it can be easily trans-
formed into a similar hardware mechanism-instruction based sampling (IBS) on
AMD processors [9]. Information provided by PEBS can be customized. Thread
ID is selected in this study to identify which thread processed this access, virtual
address is selected to obtain the target data, and some other useful information.
With these information, we can keep track of the whole life of a variable. A vari-
able event flow in Fig. 4 can then be created chronologically. The thread access
model for each variable can be detected by searching the created flow.

The latency of each memory access should be recorded to determine vari-
ables that suffered most from NUMA, it can be provided by the load-latency
facility of PEBS. It provides software a method to characterize the average load
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Fig. 4. Thread access stream of Streamcluster

latency to different levels of cache/memory hierarchy [10]. Latency and data
source information are captured and written as part of the PEBS record.

Some load-latency information written into a PEBS record should be
emphasized:

Data Linear Address. This information is the linear address of the target
of load operation. It offers the essential information for a data-centric tool:
the related data address. The linear addresses will then be translated into
variable names for the convenience of users.

Latency Value. This information is the elapsed cycle to complete the load
operation, measured in processor core clock domain. This information helps
in identifying NUMA problems, as discussed in Sect. 2. Long access latency
always indicates that a NUMA problem exists.

Data Source. This information is an encoded value that determines where the
system obtained the target data. It is an additional information than can be
used to identify a remote access.

Thus, samples provided by PEBS not only include the latency of every access,
but also provide insight into the memory access model of a thread.

3.2 Mapping

So far, the data linear address of every memory access is obtained from the PEBS
record. However, difficulties still exist when mapping data addresses to vari-
ables in the program. Debugging information provided by the compiler can help
mapping static data addresses known at compile time, but dynamic addresses
variables created on the stack or global variables created on the heap are more
challenging.

Static and global data addresses can be mapped by looking into the Exe-
cutable and Linking Format (ELF) file of mapped shared libraries and executable
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file of the program. When we analyze the ELF file, the symbol table is the main
focus. The symbol table of an object file holds information necessary to locate
and relocate the symbolic definitions and references of a program [17]. The struc-
ture symbol table entry contains two important members:

st name. If it is not zero, the value represents an index in the symbol string
table, which point to a string in the table, and the string table holds all the
strings that represent symbol names.

st value. st value holds a virtual address in executable and shared object files.

st name and st value can help determining how to map virtual address to a
symbol string. However, dynamically allocated data cannot be read from the ELF
file. Thus, the code line that allocated the corresponding data can be tracked
down by overloading all types of memory allocation functions. Specifically,
malloc() is overloaded to record the allocated address range and the instruc-
tion ip that allocated it. This process is used to obtain the instruction ip for an
allocated object, and the next step is to map the instruction ip to a function. It
is represented as function name + instruction offset by NumaProf, which can
be used by the user to find the correct variable in the source code.

3.3 Analysis

Once all the necessary information is obtained, it should be processed correctly
so that useful advice can be provided to the user. The analysis is an offline
work. As discussed in Sect. 2, we will present which variable is most costly and
what we can do to get improvement, we mainly calculate two metrics and detect
thread access model of target variable, we use aggregate latency measurements
and access percentage of variable as a guide to identify whether it is necessary
to consider for NUMA locality optimization, and which variable we should focus
on, then we can use thread access model as a guide to understand what changes
to data and/or thread mappings will be needed to improve NUMA performance.

Average Latency. We calculate the average latency per access for every address
sampled and present to the user. Users can figure out whether a NUMA
problem exists by this metric. If NUMA problems do exist, users can obtain
the most costly variable based on it, and this variable is potentially the one
that should be improved.

Access Percentage. To get performance improvement, we should improve the
variable that is not only most costly but also matters the most. The variable
that matters the most can be determined by calculating the access percentage
of every variable. This process will prevent useless work and make the most
benefit out of least work.

Access Model. Once the variable that requires improvement is determined,
we need more detailed information about how to change the code line to
make improvement. Thus, users are also provided the access model of each
variable. By detecting the access model of a variable, we can get knowledge
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of whether the variable is accessed by multiple threads or a single thread,
the accesses are all read-only accesses or both read and write accesses, we
will show why this information is important to get improvement through
experiment in Sect. 4. The most important meaning of these metrics is that
it helps us detect which type of NUMA problem is processed, we can figure
out inappropriate initial and mismatch loop access pattern as we discussed
in Sect. 2.

4 Evaluation

This section demonstrates the effectiveness of NumaProf using three different
applications: Blackscholes, Streamcluster and LU. We first analyze Blackscholes
to demonstrate the metrics we offer through NumaProf is effective, and it can
be used to estimate whether a NUMA problem exists and if an application can
achieve improvement through some slightly adjustments of source code. As for
the reserved applications, we show that the two kinds of NUMA problems we
discussed in Sect. 2 can be solved and they can be improved through NumaProf.
We get 23.08 % to 51.92 % performance improvement over the default Linux
execution.

For all the experiments, we use a system with two 8-core Intel Xeon proces-
sors. Overall, the system has 16 cores and is divided into two NUMA domains.
As for the operating system, we use Linux with kernel version 3.10. We configure
all the application to run in 8 threads.

4.1 Blackscholes

Blackscholes is a benchmark from PARSEC benchmark suite [6]. The Blacksc-
holes application is a benchmark, it analytically calculates the prices for
European options, using the BlackScholes partial differential equation. We use
the OpenMP implementation of Blackscholes and the programming language of
Blackscholes is C.

The analysis result of Blackscholes is shown in Table 1, we list all variables
whose average latency is over 20, and we leave out accesses to public library
functions, because we cannot improve performance of accesses to these functions
within dozens of source code line. We do the same thing as we represent the
analysis result of the next two applications. As we can see in the table, all
variables whose average weight is over 20 count less than 1 % of whole accesses,
which means that we cannot get enough improvement by adjusting codes that
access them and decreasing the average access latency. It is not exactly the same
data for every execution, but we can draw the same conclusion from the result.

The conclusion can be verified by testing whether we can improve the perfor-
mance. Ideas about proper adjustment can be obtained by searching the access
model of the main concerned variables. Table 1 shows that variables allocated
under the sub-range of variable buffer (such as strike, rate and otime) suffered
a lot from NUMA problems, strike 136.73 cycles, rate 47.03 cycles and otime
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Table 1. Data-centric analysis of Blackscholes

Variable Average latency Access percentage

strike 136.73 0.16%

rate 47.03 0.12%

otime 34.39 0.15%

sptprice 22.10 0.16%

prices 21.25 0.10%

34.39 cycles. Thus, the variable buffer is chosen. We look into its access details.
Figure 5 shows the memory layout and regular access pattern of buffer. It is first
initialized by the main thread (thread 0) on domain 0 (thread 0 runs on domain 0)
because of the “first-touch” policy of Linux system, and then all threads access
different parts of buffer. If the kernel scheduler considers load balance and dis-
tributes four threads on each domain, which is the actual situation during the
execution, approximately half of these accesses become remote accesses, it will
also make domain 0 become a hot spot. To eliminate these remote accesses, we
parallelized the initialization using OpenMP to make sure that each thread first
touches its own data. The OpenMP scheduling policy is default static policy to
match with latter access loop. With this optimization, latency related to buffer
caused by remote accesses no longer exits. The performance, however, improves
less than 1 %. It verifies our tool’s estimation about Blackscholes.

Fig. 5. Thread access pattern of Blackscholes

4.2 Streamcluster

Streamcluster is another benchmark from PARSEC benchmark suit [6], it is a
common stream clustering process that deals with numerous and continuously
produced data. Programming language of Streamcluster program we used in the
experiment is C++.

Streamcluster performs a significant number of remote memory accesses,
as is shown in Table 2. NumaProf identifies that heap-allocated variable block
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Table 2. Data-centric analysis of Streamcluster

Variable Average latency Access percentage

is center 152.04 0.11%

block 146.35 92.43%

center table 34.00 0.01%

stack 31.00 2.00%

accounts for 92.43 % of total access while the average latency of it is 146.35,
which means we can surely get a big promotion on performance if we can adjust
the thread accesses properly.

When we look into the thread access pattern of block, we can find out that
block becomes a hot-spot, threads access the same variable remotely, numerous
remote accesses make congestion of interconnect link, which slows the access to
block. We find out that it is also initialized on a single domain by the main thread
and then accessed by several threads. Given that it is simultaneously read and
written by several threads, simply copying the variable to each domain is inap-
propriate. It is parallelized by pthreads, so we cannot parallelize the initial part
of variable either. This problem is solved by interleaving the memory allocated
for block to multiple domains, this process can be implemented by replacing
normal alloc() function with numa alloc interleaved(). It cannot decrease the
number of remote accesses, but it removes the memory hot spot on domain 0.
Based on the result of the experiment, the average latency of the block decreases
to 88.87 cycles. The performance is improved by 24 %. The experiment proves
that NumaProf can be helpful in providing advice on how to adjust the source
code and improving the performance of multithreaded applications.

4.3 LU

LU is a benchmark from the NAS parallel benchmarks [11], it is a simulated
computational fluid dynamics (CFD) application, and it solves the equation by
factorizing it into lower and upper triangular systems, which can be solved using
symmetric successive over-relaxation (SSOR) algorithm. We use the OpenMP
implementation of the benchmark and set the problem size to class C, the pro-
gramming language is Fortran. Based on the output of NumaProf in Table 3, we
can figure out a variable cvar counts for 26.80 % of total access, it is a named
common block contains 6 matrices: u, rsd, frct, flux, qs, rho i. The average latency
for cvar is 40.81 cycles, we can focus on the access pattern of this variable to
see if we can achieve improvement.

Based on the thread access model of cvar, a mismatch of the access model
between the initial and the later parts is detected. Taking one of the four dimen-
sional matrix rsd as an example, the initial loop code of rsd is regular, as shown
in the code, the loop is parallelized with a standard OpenMP parallel for con-
struct, and the parallelized loop iterates along the k dimension of the matrix,
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Table 3. Data-centric analysis of LU

Variable Average latency Access percentage

stack 62.58 6.27%

cvar 40.81 26.80%

buts 27.50 0.01%

cjacu 20.71 15.51%

which means each thread gets nz/8 (we use 8 threads in the execution) of the
whole computation. Then we get to one of the access loop of rsd, the access pat-
tern of this loop does not match the initial loop at all, because this parallelized
loop iterates along the j dimension. The mismatch of loop access pattern leads
to different data access pattern and therefore massive remote accesses. There are
numerous access loops of rsd and they are different from each other, we cannot
rewrite them considering of the application’s correctness. The access model mis-
match also happens to other matrices inside of cvar. Rewriting these loops and
setting the access model match will require considerable effort. So we choose the
simplest way to improve the performance, we simply try to use numactl com-
mand to make all the threads run on the same domain. This step can solve all
the problems, and an improvement of 50 % is achieved.

Initial pattern of variable rsd

!$omp do schedule(static)
do k = 1, nz

do j = 1, ny
do i = 1, nx

do m = 1, 5
rsd(m,i,j,k) = ce(m,1) + (ce(m,2) + ...)*zeta

end do
end do

end do
end do

!$omp end do

Access pattern of variable rsd

!$omp do schedule(static)
do j = jst, jend

do i = ist, iend
do k = 1, nz

flux(1,k) = rsd(4,i,j,k)
u41 = rsd(4,i,j,k)/rsd(1,i,j,k)
...
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flux(2,k) = rsd(2,i,j,k) * u41
flux(3,k) = rsd(3,i,j,k) * u41
flux(4,k) = rsd(4,i,j,k)*u41+c2*(rsd(5,i,j,k)-q)
flux(5,k) = ( c1 * rsd(5,i,j,k) - c2 * q ) * u41

end do
end do

end do
!$omp end do

4.4 Overhead

We talk about the overhead of NumaProf in this section. Actions during the
execution of program may cause overhead. First, the precise event based sam-
pling may drag down the program. Due to the limitation of implementation, the
whole number of samples we collect using NumaProf is no more than 4000. It is a
relatively small number compare to the whole instructions of a program. Second,
the recording of allocation and mmap may slower down the program. For mmap
event, we just need to copy a file to get a list of mapped library, it is negligible.
But for allocation, we overload memory allocation functions and record infor-
mation during the allocation, it can be a time-consuming action. What’s more,
the time to store all these information can not be ignored. However, NumaProf
is an offline profiling tool, so the latter processing and analysis of information
will do no harm to the program performance.

5 Related Work

Several tools have been provided to help applications get better performance
on NUMA architecture. Similar to NumaProf, some profilers collect information
during the execution and provide advices on how to change source code. Most of
them are based on AMD processors. Memphis [18] uses IBS to aid in identifying
problematic memory accesses. NumaProf outperforms it by providing detailed
thread access patterns, which further clarifies how to ameliorate NUMA prob-
lems. VTune [1] also uses PEBS to collect remote accesses and point out the
virtual address, but it fails on tracking the dynamic allocated variables.

Aside from the abovementioned tools, some tools implement NUMA opti-
mization via automatic scheduling. David Tam et al. [20] come up with a scheme
to schedule threads based on sharing patterns of threads, which are detected
online by PMU. Jia Rao et al. [19] proposed a NUMA-aware scheduling for vir-
tual machine, it uses the access penalty of the uncore subsystem as a metric
to predict program performance. Some tools consider other factors that cause
NUMA problems. Sergey Blagodurov et al. [7] developed a contention-aware
algorithm for NUMA systems, they found out that numerous remote accesses
cause contention of memory controllers and interconnects, so they presented
an algorithm to address this problem, and migrated threads together with its
memory to solve this problem.
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Other tools aim to help with NUMA improvement, Zoltan Majo et al. [16]
present TBB-NUMA, a library based on Intel Threading Building Blocks (TBB)
to provide portable and composable optimizations for NUMA systems, it allows
programmer to control the computation and data placement. This kind of tools
always requires programmer to use specific libraries and compilers.

6 Conclusion

In NUMA system, multithreaded applications suffer from two NUMA problems:
interconnection congestion and memory hot-spotting. So we need a tool to find
and fix NUMA problem and obtain performance improvement of multithreaded
applications. In this paper, we present a tool that addresses NUMA problems and
assists programmers in achieving improvement on NUMA systems. NumaProf
uses PEBS to collect samples during the execution of application, these sam-
ples provides pairs of virtual address and instruction to associate variable with
instructions that access it. NumaProf presents costly variables and their thread
access pattern to help with NUMA improvement. We estimate the effectiveness
of NumaProf by running three benchmarks, the result demonstrates the utility
of NumaProf and the metrics it provides.
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Abstract. Real-world workloads generally exhibit high skewness in access
patterns, and it is a consensus that separating hot and cold data may
greatly improve storage system performance such as Solid State Drive
(SSD) garbage collection(GC) performance. To achieve this, the key issue
is how to accurately identify hot data, which is really challenging due to
the large diversity and dynamics of workloads. In this paper, we propose a
light-weight and high-accuracy identification scheme, which is developed
via a group of Least Recently Used (LRU) lists and requires only a small
amount of memory and CPU cycles. We further deploy our scheme on
SSDs with DiskSim simulator, and results show that comparing to two
state-of-the-art identification schemes, our scheme further reduces SSD
GC cost by up to 59.1 % (62.1 %), and saves 44.3 % (77.5 %) of computa-
tional cost. Due to the light-weight and parameter-insensitive feature, our
scheme can be easily deployed at various system levels and adaptable to
different workloads.

Keywords: Hot data identification · LRU · Algorithm · SSD · Garbage
collection

1 Introduction

Real-world storage workloads usually exhibit high locality and skewness, partic-
ularly, some data may be frequently updated (i.e., hot), while others are only
rarely or even never updated (i.e., cold) [1–3]. Incorporating hotness awareness
into storage systems design by differentiating hot data from cold ones and stor-
ing them in separate regions is considered to be an efficient way to improve the
performance of storage systems [4,5]. One particular example is solid-state drives
(SSDs) (see Sect. 3.1 for a detailed description on the background), without con-
sidering hotness awareness in SSD design, cold data pages may be scattered over
the whole SSD due to the mixture of hot and cold data pages, thus, a large
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amount of cold data pages need to be moved around during the garbage col-
lection (GC) process, and this significantly degrades both the performance and
endurance of SSDs. Based on this fact, it is a consensus that separating the
storage of hot and cold data should improve the SSD performance a lot [6,7].

To achieve efficient hotness-aware design of storage systems, one key issue is
how to develop an adaptive algorithm to identify hot/cold data accurately and
efficiently, while introduces only small system overhead. However, this is not
an easy task due to the large diversity and significant dynamics of workloads.
First, different workloads usually possess very different access patterns, so it is
extremely hard to work out a general identification scheme to accurately cap-
ture the characteristics of various kinds of workloads. Second, even for a specific
workload, the access patterns may also vary significantly due to the dynamics
of workloads, and the effectiveness of an identification scheme is usually very
sensitive to the algorithm parameters, so it is necessary to require the identifica-
tion scheme to be less parameter-sensitive and also self-adaptive. Last but not
least, hot data identification usually requires to record some history information,
which introduces both memory and computational cost, so how to reduce the
overhead while preserving the identification accuracy is also challenging.

Previous work on hot data identification can be classified into three cate-
gories: time-based algorithm [8,9], cache replacement-based algorithm [10], and
frequency-based algorithm [4,11]. In particular, time-based algorithm usually main-
tains the most recent access time of all logical block addresses (LBA). Although
this scheme may achieve a good hot data identification performance, it requires a
significant memory consumption, which dramatically limits its application sce-
narios. Cache replacement-based algorithm was proposed in [10], and it intro-
duces an LRU-emulated approach with a two-level LRU list (a hot list and a
candidate list) to identify hot data. This scheme requires relatively fewer mem-
ory space than time-based algorithm, but it introduces considerable computa-
tional cost to maintain the LRU property. In contrast, frequency-based algorithm
requires a smaller memory consumption and computational cost. Hsieh et al. [4]
proposed a framework by using multiple hash functions to identify hot data, in
particular, it adopts K independent hash functions to hash a given request and
map the results to multiple entries in a bloom filter (BF) [12] to track the write
frequency. Park et al. [11] extended Hsieh’s work by using multiple bloom filters
to further capture the recency information of workloads. Unfortunately, these
approaches may introduce false identification in the sense that a rarely updated
data may be mistakenly identified as hot. Furthermore, the false identification
rate heavily depends on the workload characteristics, so these approaches may
not be efficient to some workloads.

Considering the above observations, we argue that an efficient hot data iden-
tification algorithm should meet the following requirements: (1) Being general
in the sense that it should be applicable to various workloads, (2) Low compu-
tational cost, and (3) Small memory consumption. To meet these requirements,
in this paper we develop a new hot data identification scheme based on LRU list
with a grouping-based idea. Different from previous schemes, our scheme can not
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only achieve higher efficiency for general workloads, but also requires relatively
low computational cost and small memory consumption. We make the following
main contributions in this paper.

– We develop a new grouping-based hot data identification algorithm based
on LRU list, which we call GLRU. In particular, we maintain a group of
LRU lists to record the access frequency of logical data pages for hot data
identification. By grouping data pages into multiple LRU lists, the runtime
computational cost is reduced. Besides, we also keep the logical page number
(lpn) of incoming requests in each LRU list, so false identification is avoided.

– We further exploit spatial locality to reduce runtime computational cost of
GLRU by differentiating random and sequential requests. Simulation results
show that for various workloads, our scheme can reduce the runtime compu-
tational cost up to 55.6 % compared to the state-of-the-art scheme.

– We take SSDs as a case study example, and implement our scheme in the Flash
Translation Layer (FTL) of SSDs. To validate the efficiency of our proposed
scheme in improving SSD performance, we conduct extensive trace-driven
simulations by using the SSD simulator [13]. Evaluation results show that with
our hot data identification scheme, the GC cost of SSDs which is quantified
by the number of additional page writes caused by GC is reduced by up to
73.1 % under different workloads compared to the case of no identification.
Even comparing to the two state-of-the-art schemes, our scheme helps further
reduce the GC cost by up to 59.1 % and 62.1 %, respectively.

The remaining of this paper is organized as follows. Section 2 describes the
overall architecture and design details of our proposed hot data classification
scheme. Section 3 introduces the background of SSDs and illustrates on the
implementation of our scheme on SSDs. Section 4 shows the DiskSim [14] simu-
lation results and validates the efficiency of our hot data identification scheme.
Finally Sect. 5 concludes the paper and discusses future work.

2 Design

In this section, we describe our proposed hot data identification scheme in detail.
Our scheme is developed by leveraging a hash-based grouping technique with
LRU list, and we call it GLRU. In the following, we first present the working
flow of GLRU, then we illustrate on the grouping-based design in detail.

2.1 GLRU Working Flow

Figure 1 depicts the working flow of GLRU. Specifically, when an incoming write
request arrives, we first check its accessing addresses to determine whether it is
a random request or a sequential request. If it is a sequential request, i.e., the
addresses being accessed are successive to the ones accessed by the last request,
then we simply return the identification result of the last request instead of
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performing a real query. That is, if the data in the last request is identified as
hot, then we also take the data in the currently processing request as hot, and
vice versa. The rationale is that data pages accessed by sequential requests may
have similar hotness values due to the high spatial locality of real-world work-
load, so we only issue a single query request to identify the hotness of multiple
sequentially-accessed data pages. By doing this, we can reduce the computational
cost by exploiting the spatial locality of workload.

Fig. 1. Working flow of GLRU. Fig. 2. Structure of the grouping-based
LRU lists. Here, K = 4 and N = 4.

On the other hand, for a random request, we simply direct it to the hot
data identification module to determine whether the accessed data is hot or not.
That is, the hot data identification module accepts a data page as an input, and
returns the identification result of whether the page is hot or not. To implement
this functionality, we maintain a group of LRU lists, each of which keeps a
fixed number of data pages with their logical page number and access frequency
being both recorded. Roughly speaking, we maintain a group of LRU lists to
keep potential hot data, and we then identify a requested data page as hot
data if and only if it is found in a LRU list and with a large write count. After
identifying whether a data page is hot or not, we update the LRU list accordingly.
In particular, a data item originally residing in the LRU list may be evicted if
the new data needs to be inserted into the list. We will illustrate on the detailed
implementation of the grouping-based LRU lists in Sect. 2.2.

We point out that in GLRU, we only care about write requests as we imple-
ment this scheme in SSDs to evaluate its performance in this paper, while reads
have no impact on SSD GC performance. However, we can easily extend the
scheme by also taking read requests into account.

2.2 Grouping-based LRU Lists

Data Structure of the LRU Lists. As stated in last subsection, in GLRU,
we maintain a group of LRU lists to keep tracking data pages, and each LRU
list contains a fixed number of data items, each of which records the logical page
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number (lpn) and a write counter of a particular data page. Figure 2 depicts the
structure of the LRU lists. In particular, the information of a data page may be
recorded by a data item which contains a 32-bit lpn and a 4-bit write counter.
The association between data pages and LRU lists are determined with a hash
function, which is the division method (f(x) = x mod K, x is the lpn of the
requested data page, K is the number of LRU lists). That is, for a data page,
we compute the hash value of its lpn and take the hashing result as its group ID
which is the identity of LRU list in which the lpn is stored. In particular, a data
page belongs to at most one LRU list. In the whole system, we keep K LRU
lists with N items in each. For ease of presentation, we collectively call them as
a hot data table. We emphasize that not all data pages are recorded in the hot
data table, and the rationale is that only potential hot data pages are kept, and
they can be identified by looking up the hot data table.

Process of Identifying a Single Data Page. To identify whether a data
page is hot or not, we first hash its lpn to determine its group, and then look
up the lpn in the corresponding LRU list. If the lpn is found and its counter is
greater than or equal to a predefined threshold, then we take this data as hot;
Otherwise, as cold. Before returning the identification result, we need to update
the LRU list. In particular, if the lpn already exists in the LRU, then we increase
its counter by one and move this item to the head of the list so as to maintain
the LRU property. We note that the write count will not be incremented if it
reaches the maximum value of 15 as we use 4 bits to represent the counter.
Otherwise, i.e., the lpn does not exist in the list before, then we first search the
list from its tail to head to find an item with counter being equal to zero. If such
an item is found, then we move all items in the list that are in front of the found
item backward one position, and finally insert the new lpn in the head of the list
and set its counter as one. If no item with counter being equal to zero is found,
e.g., if all counters in the list are greater than or equal to one, then we evict the
item in the tail with probability 0.5 and insert the new lpn into the list if the
tail item is evicted. The rationale of this probabilistic evicting policy is that the
data page in the list tail may not be updated for a long time and we regard it
as cold.

Aging Mechanism of Write Counters. Considering that data becomes cold
if it does not get updated for a long time, we periodically trigger a decay opera-
tion by halving the write counters like the multi-hash function scheme in [4]. In
particular, if a counter is one, then we simply set it as zero. This aging mecha-
nism is to simulate the decay behavior of data hotness. We call the time duration
between two consecutive decay operations the decay period, and define it as a
given number of incoming requests. That is, after handling a fixed number of
incoming requests, we issue a decay operation to reduce all counters by half. We
study the influence of decay period on the hot data identification performance in
Sect. 4.3, and the simulation results show that our hot data identification scheme
is not sensitive to the decay period.
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Algorithm and Discussions. Algorithm 1 provides a pseudo-code of the above
described hot data identification scheme for a single data page. We see that the
time complexity of GLRU is O(N) and the space complexity is O(N ∗K), where
K denotes the number of LRU list and N denotes the group size or number of
data items in each LRU list. Since N is usually set as a constant in GLRU, the
time and space complexity can be regarded as O(1) and O(K), respectively.

We note that by explicitly recording the lpn in LRU lists, our scheme can
avoid false identification. Meanwhile, by keeping the write counters for data
pages, we can achieve more accurate hot data identification and make it be
easily extended to realize a multi-tier classification by simply setting more than
one thresholds. In particular, we implemented a multi-tier classification scheme
by classifying data into three types: hot, warm and cold. We also deployed this
multi-tier scheme in the FTL of SSDs, and evaluated its effectiveness of reducing
the GC cost of SSDs, please refer to Sect. 4.2 for detailed results. Furthermore,
we would like to emphasize that in our scheme only a proportion of data pages
are recorded in the hot data table, and the total amount depends on the number
of LRU list and the group size, i.e., N ∗K. Thus, our scheme usually requires a
very small memory consumption, so it can be deployed at different system levels
and can also be included in a large-scale storage systems.

Algorithm 1. GLRU
Input: lpn of a data page;
Ensure: the hotness of the data;
1: Determine the group G associated to the data by hashing lpn;
2: if lpn exists in G then
3: increase the Counter by one;
4: adjust the position of the items in G to maintain the LRU property;
5: if Counter ≥ Threshold then
6: return HOT;
7: else
8: return COLD;
9: end if

10: else
11: search the items in G from tail to head;
12: if an item whose Counter is zero exists then
13: insert an item with the lpn in the head;
14: set the Counter to one;
15: else if the probability test passed then
16: evict the last item in G;
17: insert an item with the lpn in the head;
18: set the Counter to one;
19: end if
20: return COLD;
21: end if
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3 Implementation on SSDs

In this section, we take SSDs as an application example of GLRU. In particular,
we deploy GLRU in the software layer inside SSDs, i.e., the flash translation
layer, and then study the effectiveness of GLRU in reducing the GC cost of
SSDs. In the following, we first provide the background on SSDs, then present
the implementation details of GLRU on SSDs and justify the parameter settings.

3.1 Background on SSDs

Compared to traditional hard-disk drives (HDDs), flash-based solid-state drives
(SSDs) have many technical advantages, such as higher I/O performance, better
power efficiency, less noise and stronger shock resistance, etc. Although SSDs
expose the same block I/O interface as HDDs, the internal architecture of SSDs
is significantly different. Specifically, data on SSDs is organized into blocks, each
of which contains a fixed number of pages. There are three basic operations for
SSDs: read, write and erase. Reads and writes are performed on a page unit,
while erase operates are on a block unit. At any time, a page is either in the
clean, valid or invalid state. A page can be read whenever it is in the valid
state, while it can only be written when it is in the clean state. Hence, when
update data, SSDs use out-of-place updating approach which first writes data
to a new clean page and then marks the previous page as invalid. Clearly, this
approach necessitates a cleaning mechanism, named garbage collection (GC), to
reclaim the space of invalid pages. Precisely, GC process first selects a victim
block according to a certain GC algorithm, then migrates the valid pages in
the block to a different clean block, and finally erases the victim block. To
support the out-of-place overwrite and GC, SSDs implement a software layer in
the controller, which is called flash translation layer (FTL). FTL also provides
other functionalities like wear-leveling and bad block management, etc.

We note that GC introduces additional writes to SSDs, which are called
GC cost, as it must move valid pages to other places before erasing a block.
Evenworse, due to the data skewness of real-world workloads, i.e., some data
is frequently updated (i.e., hot), while others are rarely or never updated (i.e.,
cold), the problem of GC cost is further aggregated. To view this problem, sup-
pose that hot data and cold data are not differentiated and stored together, then
we can imagine that cold data may be scattered in all flash blocks and must be
moved around frequently during GC, and this finally introduces a large GC cost.
It is a consensus that seperating hot and cold data should greatly improve the
cleaning performance of SSDs [7,15,16]. To achieve this, an efficient online hot
identification algorithm is necessary. Therefore, in this paper, we take SSDs as
an application example of our hot data identification scheme by implementing it
in the FTL of SSDs so as to study its effectiveness and efficiency. In the following
subsection, we present the implementation details, and we show the evaluation
results in Sect. 4.2.
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3.2 Implementation Details of GLRU on SSDs

We implement GLRU in the FTL of SSDs. In our implementation, we first add a
tier value into the block metadata. The tier value is denoted by an integer (e.g.,
0, 1, · · · ) and it represents the hotness of a block. In particular, 0 means that
this block is a cold block, and 1 means that it is hot (or warm in a multi-tier
implementation of GLRU). We initialize the tier value of all blocks in an SSD as
0, and it implies that all blocks are considered to be cold at the beginning. Then
we always maintain several active blocks with different tier values. When a page
write is issued to the FTL, it will be written into an active block according to
the identification results of GLRU. If the active block is full, then a clean block
will be allocated from the free block pool and the tier information of the clean
block will be set as the tier value of the last active block. At last, when a victim
block is selected for GC, its tier value will be reset as 0 and all valid pages will
be moved to an active block whose tier value is 0.

Note that as the RAM size and CPU resources is limited for SSDs, the number
of LRU list and group size in GLRU can not be set as too large. We implement
our GLRU with K = 128 and N = 8 in the FTL, so the memory consumption is
just 5 KB. To gain better performance, we can increase the value of K, but the
consumed memory space should be limited according to the RAM size of SSDs.
Fortunately, if GLRU is implemented at the file system layer, we can set a larger
K and N , as more RAM and CPU cost are allowed.

4 Performance Evaluation

In this section, we conduct extensive simulations to show the effectiveness and
efficiency of our proposed hot data identification scheme GLRU. We first present
the evaluation setups we used in this paper, including the description of work-
loads, the configuration of SSDs, and the identification schemes we considered
for performance comparison. We then show the identification accuracy, compu-
tational cost, and the effectiveness in reducing SSD GC cost of our scheme. At
last, we study the impact of various parameter settings, including the group size,
decay period and eviction probability.

4.1 Evaluation Setup

Workloads. In the evaluation, we consider the following four real-world work-
load traces which are all write dominant as read has no impact on SSD GC
performance.

– Financial [17]: It is a block I/O trace collected from an On-Line Transaction
Processing(OLTP) application that runs at a financial institution.

– Webmail, Online, Webmail+Online [18]: The first two traces depict work-
loads of a mail server and a course management system in a university. Web-
mail+Online is just the combination of Webmail and Online.
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Table 1. Statistics of different I/O workloads.

Trace Total # of
requests

Write
ratio

# of page
writes

# of unique
page writes

Working
set

Proportion
of accessed
pages

Financial 4376243 77.8 % 5266099 118745 4 GB 11.3 %

Online 5700499 73.9 % 4211806 69142 8 GB 3.3 %

Webmail 7795815 81.9 % 6381985 218969 18 GB 4.6 %

Webmail+Online 13496314 78.5 % 10593791 249026 18GB 5.3 %

In the evaluation, we set the page size of SSDs as 4 KB, and align all the
requests to be a multiple of the page size. Table 1 shows the statistics of the four
traces. The size of the working set denotes the capacity of the logical address
space of each trace, and it is computed by multiplying the largest logical page
number with the page size. The numbers in the table are rounded to multiple
gigabytes. The proportion of accessed pages is computed by dividing the work-
ing set size by the number of unique page writes, and it actually denotes the
proportion of logical pages that are accessed at least once. We see that most
write requests only access a very small portion of the logical space for all traces.
In other words, all the traces present high data locality. We point out that in the
Financial trace, the requests with the application-specific unit numbers ASU1,
ASU3 and ASU5 are ignored as they cause a very large working set size and so
require a very long time to run simulations.

SSD Configuration. To configure SSDs, we set the page size as 4 KB, and
set the number of pages in each block as 128. We preserve 5 % of flash pages
for GC. That is, the number of logical pages is only 95 % of the physical pages.
We set the GC threshold as 1 %, so GC will be triggered whenever the number
of clean pages drops below 1 % of total pages. For other timing parameters, we
use the default setting in the simulator. We point out that although an SSD
contains several flash chips, they typically operate independently with their own
I/O channels and perform GC independently of other flash chips. Thus, when
we evaluate the GC performance under a given workload, we set the number of
chips in an SSD as one so as to preserve the workload statistics. We configure
the SSD capacity according to the working set size of each trace, that is, we try
to use a small-scale SSD for simulation as long as it is able to handle all write
requests so as to save the simulation time.

Identification Schemes. In the evaluation, we consider four different hot data
identification schemes and compare their performance.

– DAMS: It is an ideal identification scheme which assumes an infinite memory
space and uses a direct address counting method. In particular, it can maintain
a counter for each lpn to record the total number of writes to the lpn. A page is
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Table 2. Parameters of GLRU &
DAMS

Parameter GLRU DAMS

# of groups 128 N/A
Group size 8 N/A
Threshold 4 4
Decay period 4096 4096
Memory space 5 KB N/A

Table 3. Parameters of MBF &
MHF

Parameter MBF MHF

Bloom filter size 211 212

# of bloom filters 4 1
Decay period 29 212

# of hash function 2 2
Threshold 4 4
Memory space 1 KB 2 KB

then identified as hot if and only if its counter is greater than or equal to a pre-
defined threshold, and the counters also decay periodically by halving their
values so as to simulate the workload dynamics. The parameters of threshold
and decay period are shown in Table 2. Note that DAMS is an extension of
the direct address method (hereafter, refer to DAM) [4] by taking a series
of sequential writes as a single one, and DAM is also taken as a baseline
algorithm for performance comparison in [4].

– GLRU: This is the scheme we proposed in this paper, and its parameter
settings are stated in Table 2.

– MHF and MBF: These are two state-of-the-art hot data classification
schemes which are developed based on hash functions and bloom filters,
respectively. In particular, MHF refers to the multiple hash function scheme
developed in [4], and MBF refers to the multiple bloom filter-based scheme
developed in [11]. The parameters of the two schemes are shown in Table 3.

4.2 Evaluation Results

Identification Accuracy. In this paper, we take the ideal scheme DAMS as
a baseline to show the identification accuracy of our scheme. In particular, we
compare our scheme with the DAMS hot ratio which is defined as the ratio
of identified hot pages over all page writes. Since DAMS assumes to know all
information in advance, the hot ratio derived with this scheme can be viewed
as the optimal solution. However, our scheme may drop data when the LRU list
is full, so miss detection of hot data may happen. Therefore, we compare our
scheme with the DAMS hot ratio to show its identification accuracy. Intuitively,
the more similar results our scheme produces with DAMS, the more accurate
our scheme is. Figure 3 shows the hot ratio of DAMS and GLRU under different
workloads. In this evaluation, the hot ratio is measured by counting the number
of pages identified as hot during a specified time duration, and precisely, the
period of handling 300 K write requests. We set the X-axis as the number of
write requests to display the hot ratio during different time duration. To show
the impact of memory space on our scheme, we conduct the evaluations of GLRU
by setting the number of groups as 128 and 256, respectively. Evaluation results
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Fig. 3. Comparison of hot ratio between GLRU and DAMS. Note that DAMS denotes
the case of ideal identification, GLRU (128) and GLRU (256) denote the GLRU scheme
with 128 and 256 groups, respectively.

show that the hot ratio of GLRU (128) is very close to that of DAMS, and the
difference is at most 4.4 % in all cases. That is, our scheme achieves almost the
same identification performance as the ideal scheme which assumes an infinite
memory space. Besides, GLRU(256) slightly outperforms GLRU (128), especially
under the Financial1 trace as shown in Fig. 3(a), mainly because it uses more
LRU lists, while it also consumes more memory space.

Computational Cost. Note that identifying whether a data page is hot or
not requires to check its metadata and examine its write count, and this lookup
process inevitably introduces computational cost, and it may finally reduce the
system throughput. Thus, we compare the computational cost of our scheme
with two existing schemes, i.e., MHF and MBF, by using the metric called the
average CPU cycles per operation. Precisely, we feed 100 K write requests from
the Online trace to the simulator, and measure the average CPU cycles costed
per identification operation. Note that each operation determines whether a page
is hot or not. For comparison, we consider two variants of our scheme, GLRU NS
and GLRU without/with exploiting spatial locality. Precisely, in GLRU, we sim-
ply return the identification result of the last request when handling sequential
requests (see Sect. 2.1) so that the computational cost can be reduced. We con-
duct this evaluation on a commodity computer attached with Intel core i3 CPU
550 (4*3.20 GHZ) and 2 GB RAM with Ubuntu 12.04 being installed. We mea-
sure the number of CPU cycles required for each identification operation by using
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the RDTSC instruction with limiting the process in a particular core. As shown
in Fig. 4, the GLRU NS scheme requires much fewer CPU cycles than MBF,
but slightly more than MHF. However, if spatial locality is further taken into
consideration, i.e., our GLRU scheme, the required CPU cycles get significantly
reduced, and the reduction is up to 55.6 % even compared to MHF.

Fig. 4. Average computational cost per
identification operation.

Fig. 5. GC cost.

GC Cost. In this simulation, we evaluate the efficiency of our scheme in reduc-
ing the GC cost of SSDs, which is measured as the number of pages moved in
GC process. For comparison, we also deploy the other two hot data identification
schemes MHF and MBF in FTL, and compare the GC cost of SSDs with/without
hot data identification. In particular, we take case without hot data identifica-
tion as the baseline, and normalize the GC cost in this case as one. Clearly, the
smaller the GC cost is, the higher performance the SSD can achieve. To further
verify the scalability of GLRU, we also deploy a multi-tier classification scheme,
named GLRU M, by setting two thresholds, i.e., 2 and 4, respectively. From
Fig. 5, we can see that incorporating hot data identification into FTL indeed
improves the GC performance of SSDs, as the normalized cost is always smaller
than that in the case where hot data identification schemes are not deployed.
Moreover, our proposed scheme GLRU outperforms MBF and MHF under all
workloads. In particular, the reduction of GC cost is up to 73.1 % under Web-
mail workload. Specially, GLRU M performs slightly better than GLRU, which
suggests that we may further improve the GC performance by classifying data
in a finer grain. We note that the reduction of GC cost under the Financial1
trace is very small for all schemes, including GLRU. The main reason is that
Financial1 trace is random write dominated, i.e., different data pages have a
similar hotness, so the benefit of separating hot/cold data is limited.

4.3 Impact of System Parameters

In this subsection, we study the impact of various parameter settings on the
performance of GLRU, including the impact of group size, decay period, and
the rate of evicting items from a LRU list.
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Fig. 6. Impact of group size.

Impact of Group Size. Note that the memory cost of GLRU is determined by
the size of the hot data table, which can be computed by multiplying the number
of groups with the number of items in each group (i.e., the group size). Thus,
for a given memory space, the size of the hot data table is also fixed. However,
different settings of the number of groups and group size may influence both
the identification accuracy and computational cost. To study their impact, we
first fix the size of hot data table as 1024, and then vary the group size from
1 to 512. We characterize the identification accuracy with the difference of hot
ratios between GLRU and DAMS, which is called miss identification rate, and
quantify the computational cost with the average CPU cycles per identification
operation. The evaluation results are shown in Fig. 6(a) and (b), respectively. In
the figures, we use a number pair like x y to denote a specific setting where x
denotes the number of groups and y denotes the group size. From the figures, we
can see that when the group size is small (e.g., one), GLRU may miss identifying
some hot data, and the rate can be up to 16 %. As the group size increases, the
miss identification rate decreases, and it can finally achieve a similar performance
as the ideal identification scheme DAMS. However, the computational cost also
increases as the group size increases, mainly because the lookup time increases
as the LRU list contains more items. Clearly, there exists a trade-off between
the identification accuracy and the computational cost. Considering that the
computational cost of GLRU with the group size being equal to four or eight
is very close to that of the MBF scheme, and the identification accuracy is also
quite good under this setting, e.g., it is only less than 4.4 %, so we suggest to set
the group size of GLRU as four or eight by default.

Impact of Decay Period. How to find an appropriate decay period can be
regarded as a significant issue in the hot data identification scheme. For MHF
and MBF, they set the decay period D based on a formula, D ≤ M/(1 − R),
where M and R correspond to the bloom filter size and the average ratio of
hot data in a workload, respectively. However, since R cannot be known in
priori, it is hard to predict a good decay period for a real-world workload. In
particular, if the decay period is not suitable for a workload, then the schemes
of MHF and MBF will produce a high false identification rate, and in this case,
incorporating these schemes in SSD cannot improve the GC performance, but
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may make the GC performance even worse. To study the impact of decay period
on the performance of our scheme, we show the GC cost of SSDs under our
scheme with the decay period varying from 2048 to 16384. Figure 7 shows the
results. Note that the GC cost under the setting of 4096 is normalized as one
for ease of comparison. We can see that our scheme is not sensitive to the decay
period as it does not introduce flash identification. Based on this property, we
can easily set a fixed decay period for different workloads, e.g., the decay period
is set as 4096 in our evaluations by default.

Fig. 7. Impact of decay period. Fig. 8. Impact of eviction probability.

Impact of Eviction Probability. As stated in Sect. 2.2, in GLRU, when the
LRU list is full and a new data item comes, we only evict an old data item with
a certain probability if the write count of all items in the LRU list are greater
than one. We call this probability eviction probability, and study its impact on
the identification accuracy in this simulation. The rationale of this probabilistic
eviction is that the newly arrived data may be cold as it has only received one
update. Clearly, this probabilistic policy saves the computational cost, but it
may miss identifying some hot data and reduce the identification accuracy. To
study the impact of the eviction probability, we vary it from 0.05 to 1, and Fig. 8
shows the identification accuracy quantified by the miss identification rate. We
can see that the difference is at most 0.08 under all settings, that is, GLRU
only miss identifying less than 8 % of hot data. Furthermore, it is acceptable to
set the eviction probability as 0.5 by default as it offers a good identification
accuracy for all workloads(e.g., the miss identification rate is at most 0.025) and
also saves computational cost at the same time.

5 Conclusion and Future Work

In this paper, we proposed a new hot data identification scheme with a group of
LRU lists. Based on these LRU lists, we identify a data as hot if it exists in a LRU
list with write count being greater than or equal to some pre-defined threshold.
Benefit from the grouping-based data management, the size of each LRU list can
be small, so our scheme enjoys a small memory space and low computational cost.
To validate the effectiveness of our scheme, we further deploy it in the FTL of
SSDs, and simulation results show that our scheme can help reduce the GC cost
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of SSDs efficiently. Comparing to two existing hot data identification schemes,
MHF and MBF, our scheme can further help reduce the GC cost, and only incurs
lower computational cost. Furthermore, our scheme is also insensitive to various
system parameters, and can be easily deployed at different system levels.

In the future, we plan to extend our scheme to identify hot data at a finer-
grained level by dividing time into multiple time slices and applying our scheme
in each time slice with a self-adaptive parameter adjustment so as to address the
large dynamics of workloads.
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Abstract. R is a widely-used statistical programming language in the
data science community. However, in the big data era, R faces the chal-
lenges from large scale data analysis tasks. It lacks the ability of dis-
tributed linear algebra computation in its local interactive shell. In this
paper, we propose iPLAR, a system that runs in the interactive R envi-
ronment, wraps the high performance parallel linear algebra library, and
provides a group of easy-to-use interfaces. iPLAR adopts the client-server
model to uncouple the interactive shell from the ScaLAPACK/MPI dis-
tributed computing backend. In addition, it provides R users with a group
of parallel-detail-transparent interfaces that are similar to the native R
linear algebra interfaces. We evaluate the efficiency of iPLAR with repre-
sentative basic matrix operations and two widely-used machine learning
algorithms. Experimental results show that iPLAR achieves the near-
linear data scalability and enhances the interactive processing capability
of R to large problem scales.

Keywords: Parallel linear algebra · R · MPI · Interactive program-
ming · Big data analysis

1 Introduction

In the big data era, more and more data are generated and need to be ana-
lyzed every day. This leads to the increasing need for easy-to-use analysis tools
[16]. Data analysts use matrix-based linear algebra operations [12] for rapid pro-
totyping of analytic algorithms, including many widely-used machine learning
algorithms. In addition, as the process of big data analysis is usually a trial-
and-error activity, interactive programming platforms become important for the
rapid prototyping. The interactive shells usually come as core components in
recent big data analysis systems, such as Apache Spark [13]. We also observe
that algorithms that work well on small datasets may fail on big data. There-
fore, it is necessary to have the ability to carry out experiments on big data
interactively.
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In the current data science software ecosystem, R [15] is a widely-used statis-
tical computing language [8] with a user-friendly interactive shell UI and easy-to-
use high-level linear algebra APIs. However, R is initially designed for performing
the analysis on a single-node machine. It holds all data in the machine’s main
memory, which limits the scale of the dataset that R can handle. Moreover, native
R is implemented as a single-thread program that cannot utilize the parallelism
provided by multi-core CPUs. There exist some solutions to use the existing
parallel processing systems in R. Those solutions enable R users to process large
scale data via Hadoop (through Ricardo [4]) or Spark (through SparkR [14]).
Nevertheless, these solutions lack high-level APIs to support linear algebra oper-
ations. Users have to program with complicated Jaql query language (in Ricardo)
or RDD APIs (in SparkR) and rewrite existing analytical algorithms with these
specific APIs in R. There is a lack of systems that enable big data processing
with both interactive computing support and high-level linear algebra APIs in
R language.

In this paper, we propose iPLAR (interactive Parallel Linear Algebra in
R), a system that runs in the R environment and combines the easy-to-use
interactive user interface with the high performance parallel linear algebra library
ScaLAPACK. iPLAR adopts the client-server model to uncouple the interactive
R shell from the underlying MPI distributed runtime environment. For users,
iPLAR provides a group of encapsulated linear algebra APIs that are similar
to the native R matrix APIs. With such a platform, users can write parallel
analytic algorithms in the same API style as in the native R. This allows users
to transport their single-node applications to the distributed platform without
needing to know any underlying details on MPI and ScaLAPACK.

We also conducted a series of experiments on basic matrix operations and
two real-world algorithms, logistic regression and back propagation neural net-
work, to evaluate the performance of iPLAR. Experimental results show that
iPLAR is efficient and achieves near-linear data scalability. Moreover, iPLAR is
more scalable than the native R and the out-of-core solution when processing
large scale datasets. Based on the empirical performance results, we analyze the
advantages and disadvantages of the vectorization programming model which is
adopted by R and Matlab, in the big data analysis scenarios.

2 Background

2.1 R and Vectorization Programming

R is a powerful widely-used scripting language and environment for statistical
computing and graphics. In the survey conducted by O’Reilly [8], R language
is among the most popular languages in data science community. R supports
object oriented programming. iPLAR makes full use of it to override native
linear algebra functions and operators of R, so that our system keeps similar
APIs to the native matrix class of R.



106 Z. Wang et al.

Similar to Matlab, R suggests its users to use vectorization programming
style rather than for-loop based iteration style [10]. The reason is that vector-
ization operators/functions predefined in R are implemented by FORTRAN or
C code. They have much better performance than user-written R code. Vector
and matrix are the fundamental data types in R, while scalars in R are actu-
ally considered as one-element vectors. A vectorization operator/function on
two vectors/matrices is applied in an element-wise manner. For example, the R
expression x+1 means adding 1 to each element of the vector/matrix x. Most of
vectors/matrices’ operators/functions are vectorized in R. In iPLAR, we override
those operators/functions to make them work with distributed matrices.

2.2 Parallel Linear Algebra Library

The linear algebra computing has been studied for a long time in the high per-
formance computing area. In the single-node environment, there are two main
linear algebra libraries, namely BLAS and LAPACK. The former is for basic
computing, and the latter is for advanced operations. In the distributed environ-
ment, there are corresponding extended libraries. The widely-adopted library is
ScaLAPACK (Scalable LAPACK) that extends LAPACK to distributed memory
machines.

The pbdR project [11] aims at wrapping those libraries in the R environment.
The project consists of a group of R packages. Each package wraps a specific
library in the R language. Figure 1 shows the software stack of parallel linear alge-
bra libraries and the corresponding pbdR packages. pbdR makes ScaLAPACK
much easier to use in the R environment. The server side of iPLAR is built on
top of pbdR packages. In practice, the parallel linear algebra libraries and pbdR
packages can only work in batch mode. iPLAR tries to address the interactive
usage problem and make the parallel linear algebra computation accessible from
the interactive R shell.

Fig. 1. Parallel linear algebra library
software stack and corresponding pbdR
packages

Fig. 2. Workflow of iPLAR
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3 Related Work

There are mainly two approaches responding to the challenges of big data,
namely the out-of-core strategy and the distributed computing method. In the
out-of-core solution, most of data are stored on disk and the data are loaded
into memory only when it is necessary. By this way, it can break the limit of
the main memory size. In R there are two groups of out-of-core solutions. The
‘ff’ package group [1] enables R to process large scale vectors and data frames.
However, this solution lacks APIs for the linear algebra computation. The other
package group ‘bigmemory’ [7] provides basic linear algebra APIs for out-of-
core matrices (big.matrix) and vectors but it does not support element-wise
operators for vectors. In the distributed computing method, packages focus on
providing R language with bindings for distributed processing systems. Rmpi
[17] and pbdMPI in the pbdR project [11] wrap MPI for the R environment.
Ricardo [4] enables R users to perform large scale analysis tasks via Hadoop
MapReduce in the R environment. SparkR [14] provides a light-weight frontend
to use Spark from R. To take advantage of those packages, users have to rewrite
their existing programs in corresponding parallel programming models (SPMD
for MPI, Jaql query language for Ricardo and Spark RDD for SparkR), which is
a burden that cannot be ignored. Among those packages, the pbdDMAT from
pbdR has friendly APIs similar to iPLAR. However, pbdDMAT package must
be run in batch mode and users have to know SPMD programming model to
write correct programs with pbdDMAT. In summary, the current R ecosystem
still lacks packages that support the parallel linear algebra computation from
the interactive R shell. iPLAR tries to fill up this vacancy.

Out of the R ecosystem, there are some efforts that try to make parallel
linear algebra and interactive shells work together. Netsolve system [2] proposes
the idea of making the parallel linear algebra computation as a service on the
network, so that interactive clients may access the parallel linear algebra compu-
tation services via the network. PPServer [6] goes further into combining Matlab
interactive analysis environment with the ScaLAPACK based parallel linear alge-
bra computation engine. It provides near-native-style matrix APIs in Matlab for
the distributed linear algebra computation. Matlab *P [3] further improves the
work of PPServer. Finally, a commercial and closed source product Star-P [5]
borrows ideas from Matlab *P by making the client side independent of a spe-
cific programming language and makes it accessible from Matlab, Python and R.
iPLAR holds the similar goal and provides the same vectorization programming
model as those work in Matlab. It also refers to the proven-to-work client-server
architecture from Matlab *P to bridge the gap between the interactive R shell
and the MPI runtime. However, the work in Matlab mainly focused on scientific
computing. The underlying challenges in the big data analysis scenarios were
not analyzed in the previous work. Considering the popularity of R in the data
analysis community and the lack of support in the interactive distributed parallel
matrix computation, our work is meaningful for the data science community.
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4 System Design and Implementation

4.1 Overview

iPLAR adopts a client-server architecture. The server works on ScaLAPACK
and serves as a computational engine. It uses the R socket to communicate with
the client and is responsible for storing and operating on distributed matrices.
The client on the other side is responsible for interacting with users in the R
shell. There also exists a daemon module who is in charge of interacting with
the cluster resource management system and launching the server MPI job.

The workflow of iPLAR is shown in Fig. 2. First, a daemon must be in the
running state waiting for incoming requests. Next, an R shell user starts iPLAR
computing by initializing an iPLAR client and sending a ‘start server’ request to
the daemon. The daemon requests computing resources from the cluster resource
manager and then launches an MPI job to start the server. After the server is
launched, the process with MPI rank 0 will act as the master. The master on
the server side will connect back to the client through the R socket. After the
connection is established, the client directly communicates with the master to
interactively perform calculations on distributed matrices managed on the server.

4.2 Modules and Features

Server. The server of iPLAR is actually a linear algebra computational engine
for large scale matrices. It stores and conducts operations on distributed dense
matrices. In addition, it supports by row, by column, and by block distrib-
ution schemes of these matrices. The server implements necessary functions,
including creating/removing distributed dense matrices, performing linear alge-
bra operations (relying on ScaLAPACK via pbdDMAT package), transforming
between local R matrices on the client side and distributed matrices on the
server side, and loading/saving distributed matrices from/to parallel file sys-
tem/HDFS/Tachyon. Distributed matrices are managed by ddmatrix objects
from pbdDMAT package [11] who provides parallel linear algebra functions.
Matrix data are generated and stored on the server side in a distributed way.
The client only holds a ‘handle’ to the data and does not store actual data. It
makes the computation feasible for datasets that are too large to store for the
client.

Client. The client module serves as a communication interface for R users to
interact with the server. Adopting object oriented programming features of R,
we override the matrix operators for the distributed matrices and provide near-
native-matrix-style APIs to end users. The interaction with the server is transpar-
ent from users. Moreover, users are also kept transparent from ScaLAPACK/MPI
programming details on the server side. They can operate on distributed matrix
objects just like on ordinary R native matrix objects. All the operations on dis-
tributed matrix objects in the client will trigger corresponding operations on the
server. Operations are run in a blocked and synchronous way, which means that
the client will wait until the computations on the server side complete.
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Table 1. Operation list of iddmatrix class

Operation type APIs

Creation & transformation iddmatrix, as.iddmatrix, as.matrix, etc

Access functions nrow, ncol, length, dim, print, show, etc

Logical comparisons ==, !=, etc

Arithmetic reductions sum, max, min, mean

Arithmetic operators +, -(binary & unary), %*%, *, /, %/%, etc

Linear algebra functions t, solve, inv, svd, lu, exp, etc

Data parallel data parallel(x,y,f,reduce op,args)

Computation control StartServer, CloseConnection

Other cbind2, rep, split, apply, etc

iddmatrix. The main APIs on the client side are based on a new R S4 class,
namely iddmatrix that stands for interactive distributed dense matrix. This
class encapsulates the ddmatrix class provided by pbdDMAT [11] package on
the server side and the iddmatrix object serves as a handle to the remote corre-
sponding distributed matrix. An iddmatrix object contains the size and the name
information of the remote ddmatrix object. No data but only those information
will be passed between the server and the client during communication, unless
the user requires to pull/fetch matrices to/from the server side. In this way,
iPLAR directly stores large scale matrices in the distributed environment and
avoids the main memory limitation on the client side. The operations supported
by iddmatrix class are listed in Table 1.

Expressing algorithms totally in distributed matrix operations may bring
communication overhead and limit the overall performance of applications (see
discussion in Sect. 5.4). Therefore we introduce another API (data parallel)
to support data parallel paradigm in iPLAR. Data parallel paradigm works
in the MapReduce way. Algorithms adopting the data parallel API will be
executed in two stages: 1. Each process on the server side trains a local model
on the local data of a distributed matrix that contains the training dataset
(Map), 2. A global reduce operation is conducted over the local models to get a
global model (Reduce). The global model will be returned to the client. Network
communication only occurs in the global-reduce stage. Data parallel paradigm
is suitable for some machine learning algorithms [9], such as SVM and neural
networks, and provides better performance. We recommend users adopt this API
if they have performance requirements.

The features of iPLAR are summarized below.

1. Interactive R session support. iPLAR supports standard interactive R session,
where users can carry out calculations interactively.

2. Easy-to-use APIs and small migration costs. iPLAR provides users with a
set of R APIs that are similar to standard R matrix APIs. A user with
basic R knowledge can start to use iPLAR easily and implement a variety
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of analytical algorithms for big data without mastering ScaLAPACK and
MPI programming details. An example of iPLAR programs is illustrated in
Fig. 3. In our implementation, only one line of code is different from the total
27 lines of native R code. Furthermore, in the BP neural network program,
three lines of code are different from the total 60 lines of native R code. The
code migration costs from native R to iPLAR is small.

3. Good performance for big data. By encapsulating parallel linear algebra
library ScaLAPACK, iPLAR takes advantage of the high performance
brought by parallel computing. To further improve the performance, iPLAR
also provides users with the MapReduce-style data parallel API to explore
the parallel potential of some optimization algorithms.

Fig. 3. Logistic Regression training algorithm implemented in iPLAR and native R

5 Evaluation

5.1 Experiment Setup

All the experiments are conducted in a cluster with 10 nodes connected by
1Gbps Ethernet. Each node has two Xeon Quad 2.4 GHz processors (altogether
8 cores) and 64 GB memory. All the nodes run on RHEL6 operating system
with Ext3 file system and R environment version 3.1.1. The versions of the
underlying MPI and pbdSLAP (a pbdR package, Netlib ScaLAPACK is carried
with pbdSLAP) are OpenMPI 1.8.3 and 0.2-0 respectively. We adopt ATLAS
3.10.2 as the native linear algebra library for both multi-thread and single-thread
versions. Moreover, in single-node native R tests we use multi-thread ATLAS
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to take full use of 8 cores of the node. In iPLAR tests, single-thread version
ATLAS is used. In all these cases, except data parallel experiments, block cyclic
distribution scheme was taken for all distributed matrices on the server side. In
data parallel experiments, row cyclic distribution scheme was taken.

In this section, we mainly compare the performance of iPLAR with the native
R in-memory matrix and the out-of-core matrix ‘big.matrix’ from ‘bigmemory’
[7] package. We choose them because they provide a similar linear algebra based
programming model as iPLAR. Also, they both support the interactive mode of
R shell. Other solutions either need re-implementation of original programs (e.g.,
Ricardo, SparkR, etc.), or only support the batch mode of R (e.g., pbdDMAT).

5.2 Performance of Basic Matrix Operations

According to the proportion of pure calculation costs to communication costs
during the operations, this section takes three typical operations for scalability
tests:

1. Computation intensive operation: element-wise exponential function (exp);
2. Communication intensive operation: matrix transposition (t);
3. Both intensive operation: matrix multiplication (%*%).

Communication Overhead. We measured the execution time of a null oper-
ation as the pure network communication overhead. The overhead is only 0.07s -
0.11s as we scale the number of MPI ranks from 16 to 80. iPLAR maintains the
performance of ScaLAPACK provided by pbdR with negligible overhead.

Data Scalability. Data scalability experiments are carried out by scaling the
size of the input matrix A (rows × columns) while fixing the number of machines
to 10 and the number of MPI ranks to 80. Experimental results are shown in
Fig. 4 and we observe that the execution time of all three typical operations from
iPLAR grows near-linearly with the increase of input matrix sizes. It indicates
that iPLAR achieves good data scalability. Moreover, iPLAR outperforms the
native R and big.matrix in the element-wise exponential function exp and the
matrix multiplication operation when the scale of the input matrix is enlarged.

Machine Scalability. Machine scalability experiments are carried out by scal-
ing the number of computing nodes while fixing the size of input matrix. Exper-
imental results are shown in Fig. 5. It shows that for the computation intensive
operation, iPLAR scales well with the increase of computing nodes. While for
the computation and communication both intensive operation, the speed-up is
common. The result of communication intensive operation is not ideal. Overall,
iPLAR achieves the common machine scalability. If an algorithm consists of a
lot of matrix transposition and multiplication operations, its machine scalability
might be limited by those communication-intensive operations. For this kind of
algorithm, if the data parallel paradigm applies to it, we recommend adopting
the data parallel API provided by iPLAR.
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Fig. 4. Data scalability of three basic matrix operations in iPLAR. (a) computation-
intensive case, (b) communication-intensive case, (c) both intensive case. ‘big.matrix’
does not support exp(A) operation. The vertical and horizontal axis are in log scale.

Fig. 5. Machine scalability of three basic matrix operations in iPLAR. (a) computation
intensive case, (b) communication intensive case, (c) both intensive case. Eight MPI
ranks are launched on each node.

5.3 Application Performance Analysis

In this section, the performance of two applications, Logistic Regression and
Back Propagation Neural Network, will be evaluated. They are representatives
for the linear and non-linear model machine learning algorithms respectively. In
all machine scalability experiments, 8 MPI ranks are launched on each node.

Application 1: Logistic Regression. We present the experimental results
on the gradient descent based Logistic Regression (LR) training algorithm in
this subsection. The training data were randomly generated from [0, 1]. Time
consumed in one iteration is measured.

From Fig. 6(a) and (b) it can be observed that iPLAR scales near-linearly
as the number of training samples increases. When the sample number rises to
5×108, native R and big.matrix fail to return any results while iPLAR scales well.
Furthermore, in Fig. 6(b) when the sample number rises to 107, iPLAR achieves
better performance (2.4 times faster than big.matrix and 5 times faster than
native R), and the implementation with the iPLAR data parallel API per-
forms even better (3 times faster than iPLAR). More analyses will be presented
in Sect. 5.4. As to machine scalability in Fig. 6(c) and (d), when the number
of computing nodes increases, the time consumption of one iteration decreases.
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Fig. 6. Scalability of Logistic Regression. For data scalability, iPLAR (80 MPI ranks)
is compared with the native R and big.matrix. The vertical and horizontal axis are
both in log scale in (a)(b). The feature vector length is 100 in (c)(d).

But there is no significant performance gains on the whole. Through analysis,
we find that the peaks in the iPLAR curves in Fig. 6(c) and (d) come from the
improper automatic processor grid setting adopted by pbdR. Moreover, in the
LR algorithm we need to conduct two large-scale matrix-vector multiplication
operations who limit the machine scalability of the program. In a word, iPLAR
achieves the near-linear data scalability and the common machine scalability.
iPLAR can process larger dataset than native R and big.matrix. At the same
time, iPLAR data parallel API achieves both good data and machine scala-
bility.

Application 2: Back Propagation Neural Network. This subsection
adopts the gradient descent based Back Propagation Neural Network (BPNN)
algorithm (without bias) as the benchmark and evaluates the performance of
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Fig. 7. BPNN data scalability. 80 MPI ranks were used. The vertical and horizontal
axis are in log scale.

the native R and iPLAR on it. ‘Big.matrix’ fails in BPNN because it lacks the
element-wise multiplication operator (*) for its big.matrix class. The input layer
of the BPNN has the same number of neurons as the feature vector length,
and the three hidden layers have 80, 100, 30 neurons respectively, while the
output layer has one neuron to produce output signals. In the experiment, the
time consumption of one iteration is measured. Figure 7 shows that iPLAR and
iPLAR data parallel API both achieve the near-linear data scalability. While
in the Fig. 8, the performance of iPLAR has no continuous significant improve-
ment as the number of computing nodes increases. For the BPNN application
iPLAR achieves the common machine scalability while iPLAR data parallel
API scales well.

5.4 Analysis on Distributed Vectorization Programming

Vectorization programming is the programming model recommended by R [10]
and Matlab because of its high performance. iPLAR provides the same program-
ming model, but in an implicit parallel way. The vectorization model has its own
advantages over other parallel programming models. The main attraction is its
small code migration cost from serial one to parallel one, which makes it suitable
for rapid prototyping.

Meanwhile, vectorization model has its inherent deficiencies, which become
more severe in machine learning algorithms that take the gradient descent as
their optimization methods. It has the following drawbacks:

1. More memory footprints than for-loop based methods. Some algorithms can
be implemented in both vectorization and for-loop based methods. In the
for-loop based method (such as stochastic gradient descent), the algorithm
only deals with one sample at a time. The intermediate results during com-
putation are relatively small. However, in implementations that are written
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Table 2. Five implementations of gradient descent based logistic regression algorithm

Implementation Description Characteristic

iPLAR Use iPLAR matrix operation
APIs

Global vectorization

iPLAR - Data Parallel Use data parallel API in
iPLAR

Global data parallel, Local
vectorization

MPI-CR Translate iPLAR-Data
Parallel into C language

Global data parallel, Local
vectorization

Spark-MLlib Spark-MLlib’s
implementation in Scala
language

Global data parallel, Local
for-loop based

MPI-CS Translate Spark-MLlib into C
language

Global data parallel, Local
for-loop based

in global vectorization paradigm, all samples are computed simultaneously.
The system needs to hold all intermediate results for all samples. When the
number of samples increases in big data analysis tasks, they have large mem-
ory footprints. In Fig. 8, when the number of nodes equals 2, iPLAR failed
due to the out of memory error caused by the large intermediate results. In
the same scenario, iPLAR data parallel API ran smoothly.

2. Nontrivial communication overhead. Many machine learning algorithms can
be parallelized in data parallel paradigm (such as logistic regression and
BPNN). In data parallel paradigm, the communication cost in each iteration
is limited by the global model size. However, in vectorization model, there will
be global matrix transposition and multiplication operations as illustrated in
Fig. 3. These operations involve global communications which can be avoided
in data parallel paradigm. The communication overhead limits the machine
scalability of iPLAR. As shown in Fig. 6(c) and (d) and Fig. 8, the machine
scalability of the iPLAR data parallel implementations is much better than
global vectorization implementations.

To further verify this, we have implemented the gradient descent based LR
training algorithm in 5 different ways that are described in Table 2. Those imple-
mentations can be divided into three groups: 1. Global vectorization comput-
ing (iPLAR); 2. Global data parallel, local vectorization computing (iPLAR-
Data Parallel, MPI-CR); 3. Global data parallel, local for-loop based computing
(Spark-MLlib, MPI-CS). iPLAR and iPLAR-Data Parallel were run in R inter-
preter. Spark-MLlib was run in JVM. MPI-CR and MPI-CS were compiled to
native programs. They were all run in an 11-node cluster with 88 MPI ranks or
Spark partitions. Two random-generated datasets were used and training sample
numbers were 107 and 108. The feature vector length was 100 in both datasets.

All five implementations have the same amount of computation costs, but
they have different communication costs and memory footprints. In Fig. 9,
iPLAR gets the worst performance due to its largest memory footprints
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Fig. 8. BPNN machine scalability. The
number of training samples is 107. The
feature vector length is 50. When the
node number is 2, iPLAR is out of
memory.

Fig. 9. Performance comparison on
logistic regression model training algo-
rithm. The vertical axis is in log scale.

and communication costs. All data parallel methods perform better than iPLAR.
For iPLAR-Data Parallel and Spark-MLlib that were run in R interpreter or
JVM, their performance is competitive. The implementations that have the best
performance, i.e. MPI-CR and MPI-CS, are both C implementations. Between
the two C implementations, for-loop based solution MPI-CS has better perfor-
mance. It is about 2x faster than MPI-CR. The for-loop based implementations
require less memory and are cache friendlier, therefore they have better perfor-
mance. In summary, the overhead of global vectorization model is nontrivial,
and for-loop based implementation is more suitable for the gradient descent
algorithm. Considering the advantage of small code migration cost, iPLAR is
more suitable for prototyping tests rather than for the production environment.
Re-implementation of algorithms in iPLAR data parallel API or in other
parallel programming frameworks may be a better choice for production code.

6 Conclusion and Future Work

We designed and implemented a system named iPLAR, which combines the
interactive R environment and parallel high performance linear algebra library
together. iPLAR achieves the transparent parallel programming usability and
provides end users with near-native-matrix-style APIs. iPLAR can enhance the
processing capability of R to a larger problem scale. In a 10-node cluster, with
the help of iPLAR, R can process 10 times more data than native R. Moreover,
iPLAR achieves near-linear data scalability. iPLAR data parallel API that
further explores the parallel potential of many data analysis algorithms achieves
near-linear data scalability and good machine scalability. In the future work, we
intend to add more algorithm level APIs to iPLAR. By all, we wish to make
iPLAR more usable in the production environment.
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Abstract. This paper presents an SSD-based Block I/O Scheduler, short
for SBIOS. SBIOS fully exploits the internal parallelism to improve the
system performance. It dispatches the read requests to different blocks
to make full use of SSD internal parallelism. For write requests, it tries
to dispatch write requests to the same block to alleviate the block cross
penalty and garbage collection overhead. Moreover, SBIOS introduces
the conception of batch processing and separates read and write requests
to avoid read write interference. The evaluation results show that com-
pared with other I/O schedulers in the Linux kernel, SBIOS reduces the
average response time significantly. Consequently, the performance of the
SSD-based storage systems is improved.

Keywords: Solid state disk · I/O Scheduler · Internal parallelism ·
Response time

1 Introduction

In the last few years, with the development of Non-volatile technologies, the
flash-based solid state disk becomes an essential part of the storage system. As
the solid state drive becomes more and more ubiquitous, it is necessary to make
full use of the potential of solid state drive to improve the performance of oper-
ating system. For instance, Flash-based solid state drives have the potential to
alleviate the ever-existing I/O bottleneck problem in data-intensive computing
environments, due to their advantages over conventional HDDs in aspects of
performance, energy, reliability, etc. [10,14]. However, when comparing to tradi-
tional magnetic-based storage devices, the flash-based solid state drives have its
own working mechanism. In order to fully dig the potential of flash-based drive
in I/O performance, there are many challenges which need to be solved.

Unlike traditional magnetic-based storage devices, the flash-based solid state
disk consists of semiconductor chips, which avoid considering the rotational
latency in random I/O performance. So, in theory, the speed of flash-based solid
state disk is one or two orders magnitude faster than mechanical disks. But,
c© Springer International Publishing Switzerland 2015
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in fact, the advancements of flash-based solid state disk are not fully exploited
in practice. There are two reasons. First, flash-based solid state disk has poor
write performance. Such poor write performance is caused by the erase before
write mechanism. In order to overwrite a previous location on SSD, the block
which contains this location should be erased first, and then the new data can
be written in this location. Second, mechanical disks are still the main stor-
age devices in primary storage system. In the existing operating systems, the
software I/O stack is designed for the characteristics of mechanical disks. As a
consequence, the potential of flash-based solid state disk are not fully exploited.
Some research studies have shown that the existing I/O software layer can cause
additional overheads for flash-based solid state disks [3,4].

Due to the limitation of the erase before write mechanism, the read speed
of the flash-based solid state disk is not consistent with the write speed of the
flash-based solid state disk. Further aggravating the problem is that erasure
granularity is much larger (64–256 KB) than the basic I/O granularity (2–8 KB)
[12]. It leads to the response time of the read request is faster than the response
time of the write request. Meanwhile in the upper layer application, the read
operation is synchronous, so the upper layer application needs the response data
of read operation to initiate the next step. While the write operation is asyn-
chronous, it will not block the upper layer application. So if we want to fully
use the characteristics of flash-based solid state disk in block layer I/O scheduler
design, we need to take the read/write speed discrepancy into account.

This paper presents an SSD-based Block I/O scheduler (short for SBIOS)
which combines internal device level parallelism with block characteristic of solid
state disk to improve the response time. The SBIOS distinguishes the request
type and rearranges the request order based on request type. In order to fully
use read internal parallelism, we employ the read-preference policy and dispatch
the read requests to different block in concurrent workload. For write requests,
in order to avoid the block cross penalty which Marcus Dunn et al. mentioned in
[6], SBIOS will try to dispatch write requests into the same block. The results of
the experiment show that SBIOS improves the system performance, compared
with the other I/O schedulers for SSD-based storage systems.

The rest of the paper is organized as follows. Section 2 presents the work
related to SBIOS. The design and implementation is detailed in Sect. 3. The
evaluation and experiment result are given in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2 Background

2.1 Read Write Interference

In order to design a flash-oriented IO scheduler, the first step is to analyze the
characters of Flash. As we all know, the Flash write speed is significantly slower
than the Flash read speed. Especially, when a reader continuously performs read
requests at the presence of current writer, the reader may suffer an excessive
slowdown in read performance. In order to prove this, we use fio tool to measure
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Fig. 1. The response time of random reads in different size with writes in concurrent
execution on Intel X25-E

the read/write characteristics of flash device. The flash-based storage devices
used in these experiments are Intel X25-E 64 GB and Intel 320 200 GB. To access
the native characteristics of flash, we omit the memory buffer,write cache and
I/O scheduler in our experiment.

Our experiment simulates two processes. One process continually sends read
requests to random storage location. The other process continually sends random
write requests to flash location. These two processes are concurrent. Meanwhile,
Our experiment also covers the request size between 4 kB to 1 MB. Figure 1
illustrates the response time in two case- read and read mix with concurrent
write. Comparing with the response time of Read mix with concurrent write, we
find that the random read response time can suffer a terrible slowdown when
interrupted by the concurrent write request. Especially, when the request sizes
become bigger and bigger, and the slowdown effect become more and more seri-
ous. For reducing the slowdown effect brought by concurrent write, our paper
introduces the conception of batch and uses the design of separating read and
write requests. In this way, the problem of read write interference can be ele-
gantly avoided.

2.2 Internal Parallelism

The flash-based solid state disk has a lot of internal parallelism characteristics
[7,11]. Such internal parallelism characteristics can make single device to achieve
close to ten thousand IO per second for Random access, as opposed to nearly
two hundreds on traditional hard disk. In order to validate the importance of
exploiting the internal parallelism in flash-based solid state disk, we introduce
the IOPS metrics to measure the difference between hard disk and solid state
disk. In our experiment, we use fio tool to show the IOPS of traditional hard disk
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Fig. 2. IOPS for 4K-1M random read for Intel X25-E, the base IOPS of HD and SSD
are 137 and 4492

and solid state disk. we continually issued different size requests (4 K–1 M) in
random read pattern to the devices. In Fig. 2, HD represents WDC WD1600JS
500 GB, SSD represents Intel X25-E. We can see in Fig. 2. The IOPS of HD is
only 137, while the IOPS of solid state disk is over than 4000. The IOPS has
an over 30 folds gap between traditional hard disk and flash-based solid state
disk. Why do such gaps exist? That is because of the different structures of
hard ware disk and solid state disk. The traditional hard disks only have one
moving head. That means one requests can be served per time. In random access
pattern, the traditional hard disk wastes lots of time to rotate the platters and
seek the data. That is why it only has 137 IOPS in random read pattern. But
in solid state disk, the case is totally different. The solid state disk is composed
of multiple channels, multiple dies, multiple packages and multiple planes. Each
level internal parallelism can serve multiple requests in the same time. Especially,
the random read access pattern is the most efficient pattern which can trigger the
inter parallelism in flash-based solid state disk. In such a rationale, the over 30
folds gap appeared. Exploiting internal parallelism to enhance the I/O scheduler
performance is very important.In our research, we dispatch the read requests to
different block to trigger the internal parallelism of solid state disk.

3 Related Work

Since the I/O scheduler is designed for HDDs in the operating systems, the
popularization of the flash-based SSDs makes the I/O scheduler for SSDs receive
much more attention. There is a large body of studies on the I/O scheduler for
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magnetic hard disks, but only a few studies had been focus on SSDs. They can
be classified into two categories. The first category was mainly focused on the
fairness of resource usage of SSDs. For example, Stan park et al. proposed FIOS
[12] and FlashFQ [13] algorithms that take the fairness of SSD resource usage
into account. FIOS [12] designed an I/O time slice management mechanism
which combines read preference with fair-oriented I/O anticipation. FlashFQ
[13] discussed the drawbacks of the existing time slice I/O scheduler and a new
mechanism which fully uses the flash I/O parallelism without losing fairness.

The other category tried to exploit and maximize the advance characteristics
of SSDs in the upper layer, such as the parallelism characteristics among flash
chips. For example, Hua Wang et al. proposed ParDispather [14] that partitions
the logical space to issue the user I/O requests to SSDs in parallel. Marcus Dunn
et al. [6] proposed a new I/O scheduler that tries to avoid the created penalty
during the new block writing to SSDs. Jaeho Kim et al. [9] proposed IRBW-
FIFO and IRBW-FIFO-RP which arrange write-requests into a logical block
size bundle to improve the write performance. Our scheduler not only considers
making full use of read internal parallelism [7], but also tries to avoid the block
cross penalty [6].

Besides the I/O scheduler studies, there are also some researches which have
revealed the advance of the flash internal organization and parallel data distri-
bution. For example, Agrawal N et al. [1] described the internal organization of
flash and some parallel data design distribution policy inside SSDs. Feng Chen
et al. [5] conducted some experiments to reveal the hidden details of flash mem-
ory implementation such as unexpected performance degradation caused by the
data fragmentation. Yang Hu et al. [7] divided the parallelism of the flash mem-
ory into four levels and discussed the priority and advance of these four level
internal parallelisms. Based on the above observations, the SBIOS scheduler tries
to exploit the internal parallelism from the aspect of I/O scheduler to boost the
throughput of user applications for SSD-based storage system.

4 System Design and Implementation

In this section, we discuss the system design and implementation of our SBIOS
scheduler.

4.1 System Architecture

I/O scheduling module is located between block layer and block device layer. It
decides the order of the served requests by a certain sorting policy. Figure 3 shows
the system overview of SBIOS and its location in the whole I/O subsystem. For
the upper level, it treats the requested data entering into I/O scheduling module
as inserting the request into a queue, and then the I/O scheduling module will
resort the request in the queue by a certain resorting policy. For the lower layer,
the request leaving from I/O scheduling module is like the operation of leaving a
queue. The I/O scheduling policy in the scheduling module will decide the next
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Fig. 3. The overview of IO scheduler

request to be served. Figure 3 details the resorting policy which we employ in
SBIOS. SBIOS uses type-based queuing. We divide the requests into two types:
read and write. We dispatch read requests to different blocks to make full use
of the read internal parallelism [7]. For write requests, we try to dispatch them
to the same block to avoid the block cross penalty. In this way, SBIOS improves
the performance of solid state disk significantly.

4.2 Dispatching Method

Our goal of designing SBIOS is to fully use the characteristic of solid state disk,
so the rich internal parallelism of solid state disk will be taken into consideration.
As we all know, the read performance of solid state disk is amazing. For this
reason, we sort the incoming requests based on type, and the read preference
policy is employed in our scheduler. According to Yang Hu et al’s paper [7],
there are four levels of internal parallelism which are mentioned. In our design,
we try to fully use the block level read internal parallelism, so the scheduler
dispatches the read requests to different logical blocks to trigger the internal
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read parallelism. To exploit the full characteristic of SSD, not only we take its
advantage, but also we need to avoid its drawback. Random write performance
is always the bottleneck of SSD, especially for random write operations which
cross the blocks [6]. To avoid this drawback, we try to dispatch the write requests
to the same block. In this way, we can avoid the large response latency which is
brought by crossing the blocks.

During initialization, the SBIOS uses a function to calculate the total capac-
ity of the targeted solid state disk, and then it will find the starting sector of
the solid state disk. In Linux kernel system, the basic storage unit is sector. Our
design rationale is to make the logical block size which can match the physical
block size of solid state disk and we use a function Calculate Block() to achieve
this. With the starting sector of the solid state disk, the Calculate Block() can
maintain the block number of incoming request. Suppose the starting sector
of solid state disk is K. The beginning sector of incoming request is G. the
logical block number maintained in the Calculate Block() equals to (G-K)/
SECTOR PER BLOCK. Here SECTOR PER BLOCK variable shows the
number of sectors contained in a block. It is calculated at the initialization
phase.

One important factor which will influence the performance of SBIOS is deter-
mining the physical block size of the solid state disk. In the real world, the block
size varied from vendors to vendors. Sometimes the vendor didn’t provide us
the exact physical block size. However, for a given SSD, we can design some
micro-tests on it to determine the physical block size [5].

4.3 Request Management with Interfernce Avoidence

There are two data structures which we use to track the state of the incoming
requests. One is FIFO-list. We use two FIFO-lists to track the incoming requests.
The other structure is red-black tree. The red-black tree is sorting by the logi-
cal address of incoming request. Because we use read-preference and small-size
preference in our scheduler, this will lead to a starvation problem which some
requests may be delayed for a long time. To solve this problem, SBIOS sets a
time stamp which defines a time period before which the request should be dis-
patched into the driver. The SBIOS periodically checks the requests linked in
the FIFO-lists to guarantee no request exceeds the time period assigned by time
stamp.

According to Stan park et al. [12], there is a read-write interference problem
when dispatching read requests and write requests concurrently. To avoid this
great performance gap, the SBIOS introduces the batch processing concept into
the design. Instead of dispatching one request, the SBIOS dispatches a batch of
requests on each turn. Suppose we dispatch a batch of read requests in this turn,
for the next turn, the SBIOS will set write as the current direction and dispatch
a batch of write requests. If the last direction was set as write, the situation is
just the opposite. The direction is changed when there is no pending request in
this direction or the number of dispatching request in this direction is beyond
the batch value.
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In the experiment section, we validate that the response time of SSD is linear
with the requests size. To improve the response time of SSD, the SBIOS employs
the small size preference policy. When the current direction is set, the SBIOS will
find two condition-satisfied requests from the red-black tree. When comparing
with their size, the SBIOS will dispatch the smaller request into driver.

4.4 Algorithm Process

As mentioned above, in SBIOS, the entire incoming requests are placed in a red-
black tree according to their logical block address. They wait in the red-black
tree until the SBIOS chooses them to dispatch into the lower layer. Figure 4
shows the algorithm process of choosing a request to dispatch. As it is shown in
the picture, in each next request choosing phase, the scheduler checks the request
type first. If the request type is read, the scheduler goes ahead to check whether
the write request is starved. We do this step because we use the read-preference
policy in SBIOS. If we don’t set a starved threshold to the write requests, there
will be a write starvation problem in our scheduler. After checking the write
starvation, the scheduler will determine the request type of the next request.
Also we ensure that each request has been assigned a time stamp when it enters
the I/O scheduler. If the time stamp is out of date, this request will be chosen as
the next request to be served. If not, the scheduler will employ different choosing
method according to the request type. If the next served request is set to read,

Fig. 4. The request processing workflow
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the scheduler will find two different block requests from the read-black tree and
compare their size, and then dispatch the smaller one to the lower layer. But if
the next served requests are set to write, the scheduler will find the two same
blocks write requests from the red-black tree and dispatches the smaller one.
Finally, it continually dispatches the request pending in the red-black tree until
no request pending in the tree.

5 Experiment Evaluation and Analysis

In this section, we set up experimental platform to analyze the performance of
the SBIOS. These experiments are divided into two parts. One part is to use fio
[8] tool to generate different size requests to validate that the solid state disk is
linear with the request size. The other part is to run different kinds of traces to
the chosen I/O scheduler to demonstrate that the SBIOS improves the response
time significantly and makes full use of characteristics of SSD.

5.1 Experiment Setup

In this paper, the SBIOS is implemented as a kernel module in Ubuntu 14.04 with
kernel 3.13.0. In our experiment, we use Intel core i3 3.00 GHZ processor and
4 GB memory in our machine. For solid state disk, we use Intel X25-E Extreme
SATA Solid-State Drive 64 GB (short for Intel X25-E) and its erase block size
is 256 KB. To validate the relationship between request size and SSD, we use
fio [8] tool to generate different size requests to collect the basic information.
We compare the response time of hard disk and solid state disk under different
request size. The hard disk we use is WDC WD1600JS 500 GB. In order to test
the efficiency of the SBIOS scheduler, we choose five different benchmarks to
test it, including two online transaction processing workloads (Fin1, Fin2) and
three search engine workloads (Web1,Web2,Web3).

5.2 The Relationship Between Response Time and Request Size

In our experiment, we use fio [8] tool to test the average response time of tra-
ditional hard disk (WDC WD1600JS 500 GB) and solid state disk (Intel X25-E
64 GB) in different request sizes. To avoid the influence of system, we disable
the write cache, memory buffer and I/O scheduler in our experiments. In Fig. 5,
SSD represents the Intel X25-E 64 GB, and HD represents WDC WD 1600JS
500 GB. Figure 5 shows the response time comparison. According to the experi-
mental result, we can conclude that the request size didn’t influence the response
time of traditional hard disk a lot. In Fig. 5, we can find that the HD response
time nearly no any change for the request size between 4 KB to 64 KB. Analyzing
the characteristics of rotating drive, we will get the answer. The rotating drive
moves head and rotates the platter to locating and accessing data. The response
time of rotating drive consists of three parts. That is the seek time, rotational
latency and data transfer time. When the request size is so small, the seek time
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Fig. 5. The standard response time comparison between SSD and HD in different
request size (4 KB–1 MB), the base response time of HD and SSD are 7.4 ms and
0.3412 ms.

and rotational latency occupied the main parts of the response time. When the
request size becomes more and more large, the data transfer time becomes the
most important part of the response time. We can see the trend in Fig. 5. When
the request size is larger than 64 KB, the request size will become the main part
which relates to response time of rotating drive. In Fig. 5, the standard response
time of SSD and HD correspond to its base response time. We use the response
time of 4 KB request as the base line for reflecting the relationship between
request size and response time.

Meanwhile, we can see in Fig. 5. There is a linear relation between the request
size and response time of solid state disk. When the request size becomes larger,
the response time becomes slower. The reason for above observation is the dif-
ferent internal structure of solid state disk. Unlike rotating hard drive, the solid
state disk finishes the fundamental operation (read and write) by circuit signal
transmission. So we don’t need to take the seek time and rotation latency into
consideration. The data transfer time is the main part of the response time of
solid state disk. Data transfer time is directly related to the request size. For
this reason, there is a linear relationship between request size and the response
time of solid state disk.

5.3 Performance Results and Analysis

In this section, we run different traces with different I/O schedulers (including
CFQ, Deadline, Noop and SBIOS). In our experiments, we didn’t compare our
SBIOS to AS, because the AS scheduler has been removed from kernel 3.13.0.
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Table 1. The workload characteristics

Workload Request size (byte) Read (%) Write (%)

Fin1 512–17116160 21.6 78.4

Fin2 512–262656 82.4 17.6

Web1 512–1137664 99.9 0.01

Web2 8192–32768 99.9 0.01

Web3 512–23674880 99.9 0.01

To validate the efficiency of SBIOS, we choose five traces with different charac-
teristics and compare their system performance.

Table 1 illustrates in detail these five traces. Fin1 and Fin2 are read mix with
write workloads. In this kind of trace, read write inference problem may appear,
especially for Fin1. In Fin1, read requests only account for 21.6 %. That means
read requests have a big probability to be blocked by write requests. Web1, Web2
and Web3 are read-intensive workload. In this case, we need to consider write
request starvation problem.

Figure 6 shows the performance results. In order to illustrate the performance
clearly, we use standard response time in Y axis. In the experiment, we set the
response time of Noop scheduler as the baseline (initialed to 1 in Fig. 6) to com-
pare the efficiency of other I/O schedulers. The response time of Noop scheduler
in Fin1, Fin2, Web1, Web2, Web3 are 1.20 ms, 1.45 ms, 0.59 ms, 0.92 ms and
1.07 ms. In Fig. 6, we can get two conclusions. First, except for our SBIOS,

Fig. 6. Trace performance comparison under different IO scheduler
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Noop scheduler outperforms better than the other scheduler under these five
workloads. It validates that the Noop scheduler is the most suitable scheduler
for SSD. Second, the SBIOS performs best among these schedulers under the
five workloads. For Fin1, Fin2, Web1, Web2, Web3 trace, the SBIOS sched-
uler reduces the response time of best and worst of other three schedulers by
15 %–18 %, 14 %–18 %, 11 %–23 %, 14 %–18 % and 10 %–17 %. In conclusion,
the SBIOS reduces the response time significantly by taking SSD characteristics
into consideration.

6 Conclusion

In this paper, we proposed a new I/O scheduler SBIOS which makes full use of
the characteristics of solid state disk. The SBIOS tries to use rich read internal
parallelism provided by SSD and dispatches the read requests to different blocks
to trigger the read internal parallelism. For write requests, the SBIOS dispatches
them to the same block to avoid block cross penalty. Furthermore, we validate
that SSD is sensitive with the request size. In SBIOS, we use the small-size pref-
erence design. The experimental results show that SBIOS reduces the response
time significantly. In this way, performance of the SSD-based storage systems
is improved. According to Bjrling et al. [2], IOPS of SSD will be a bottleneck
for current system design. In the future work, we will introduce the IOPS as an
important metric for measuring the efficiency of the I/O scheduler.
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Abstract. This paper analyzes the performance and scalability characteristics
of both the computational and I/O components of the Parallel Ice Sheet Model
(PISM) executing in a multicore supercomputing environment. It examines the
impact of multicore technologies on two state-of-the-art parallel I/O systems,
both of which are based on the same underlying implementation of the MPI-IO
standard, but which exhibit very different performance and scalability charac-
teristics. It also examines these same characteristics for the MPI-based com-
putational engine of the simulation model. One important benefit of studying
these three software systems both independently and together is that it exposes a
fundamental tradeoff in the ability to provide scalable I/O and scalable com-
putational performance in a multicore environment. This paper also provides
what, at least at first glance, appears to be very counter-intuitive performance
results. We examine the underlying reasons for such results, and discuss the
important insights gained through this examination.

Keywords: Parallel ice sheet model � MPI � MPI-IO � Multicore architecture �
Parallel I/O � NetCDF

1 Introduction

The issue of global climate change is of great interest to scientists and a critical concern
of society at large. One important piece of the climate puzzle is how the dynamics of
large-scale ice sheets, such as those covering Greenland and Antarctica, will react in
response to a changing climate. The Parallel Ice Sheet Model (PISM, [30]), is a widely
used parallel simulation model designed to provide researchers with insight into the
past, present, and future dynamics of such large-scale ice sheets. As with modeling in
other scientific domains, the depth of knowledge that can be gained from such models
is largely dependent upon the resolution at which they can be efficiently executed. The
problem, however, is that even relatively small increases in the resolution of the ice
sheet being modeled results in massive increases in the size of the input and output data
sets and in the number of grid points that must be considered by the simulation.
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The tremendous challenges of scaling to higher-resolution models can be seen in
Table 1, which shows the computational and I/O demands for three data sets at different
resolutions. All of the data sets are for the Greenland ice sheet, and the resolution of the
data sets represents the distance between grid points in the simulated ice sheet. Thus,
for example, what is termed the G5 km model is a data set with 5 km between each data
(or grid) point. As can be seen, moving from the 5 km resolution to the 1 km resolution
increases the number of grid points by a factor of 50 (from approximately 34 million to
over 1.6 billion), and the size of the output file is increased by a factor of 25 (from
1.1 GB to 28 GB). Thus for PISM to remain an important tool for scientific discovery,
it must be able to scale to the data sets that are currently available, and the even
higher-resolution data sets that are beginning to come online.

PISM derives its computational scalability from its use of the Portable Extensible
Toolkit for Scientific Computation (PETSc, [1, 2, 29]), which is a widely used library
of data structures and routines for scientific models that require partial differential
equations for their solutions. PETSc, in turn, derives its scalability by spreading its
computation across multiple processing cores and using MPI [24] for inter-process
communication. The parallel I/O libraries utilized by PISM are also based on MPI (e.g.,
PNetCDF [17], parallel HDF5 [28], parallel NetCDF-4 [39]), and are designed to
provide scalable I/O performance in much the same way that PETSc provides scalable
computational performance: The file data is spread across multiple processes, and, in
the best case, each process can write its data to independent regions of a shared file
concurrently.

In this paper, we are concerned with the performance and scalability of the
MPI-based computational and I/O components of the PISM model. We are
approaching the problem from the point of view of high-performance computing: how
such technologies are used in real applications, how they perform, how they interact
with one another, and whether and/or how such performance can be improved. PISM is
an excellent test-bed for this research for three reasons: First, it is a large-scale scientific
model that requires high-performance computing technologies for its execution. Sec-
ond, it is an important ice sheet model that is utilized in a large number of scientific
studies (e.g., [4, 5, 13]). Third, it supports multiple I/O libraries via command line
arguments making it reasonably simple to compare their relative performance and
scalability characteristics within the same underlying MPI environment.

Table 1. This table shows the number of grid points in the X, Y, and Z directions for three
models, and demonstrates the impact of higher resolution on the computational and I/O
requirements of the PISM simulation.

Model X Y Z Total grid
points

Approximate
file size

G5 km 301 561 201 33,941,061 1.1 GB
G2 km 750 1400 401 421,040,000 7.4 GB
G1 km 1501 2801 401 1,685,924,701 28 GB
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We examine PISM’s performance using a relatively low-resolution model of the
Antarctic ice sheet at the 10-kilometer resolution, and a high-resolution model of the
Greenland ice sheet at the 1-kilometer resolution. This allows us to document and gain
insight into those aspects of the simulation that perform well at lower resolutions but do
not scale well to the higher resolution models, and to document fundamental tradeoffs
between computational and I/O scalability when executing PISM in a multicore
supercomputing environment.

We believe this paper makes two important contributions to the high-performance
computing community. First, it documents and analyzes the performance and scala-
bility characteristics of three state-of-the-art software systems in a very important
real-world scientific model. This allows us to capture not only how such technologies
behave in isolation, but also brings to light important tradeoffs between achieving
scalable computational performance and scalable I/O performance that could easily be
missed in isolated or benchmarking studies. Second, examining the I/O performance
holistically, particularly when all are executing on top of the same MPI-IO imple-
mentation, produces some very counter-intuitive results. The diagnoses of the under-
lying causes of these results suggests that there may be a tradeoff between performing
collective and independent I/O in multicore systems, which is contrary to the widely
held belief that it is always advantageous to perform collective I/O in large-scale
scientific applications.

The remainder of the paper is organized as follows. In Sect. 2, we provide back-
ground information on the study of large-scale ice sheets in general, and, in Sect. 3, we
discuss the computational and parallel I/O libraries utilized by PISM in particular. In
Sect. 4, we describe the experimental design and provide our results in Sect. 5. We
analyze the experimental results in Sect. 6, and provide our conclusions in Sect. 7.

2 Ice Sheet Modeling

Ice sheet modeling is concerned with the laws that govern the ebb and flow of large
glaciers on our planet, as well as on alien planets. Glaciers have been shown to have a
dramatic influence on the climate of our world, and they contribute to sea-level rise
when they melt [5]. The excessively slow speed at which ice sheets move presents a
challenge to researchers trying to develop better insight into their behavior. Direct
experimentation with ice sheets is, in general, not possible, because it is on the order of
years or millennia before changes in the ice may become noticeable. For this reason,
researchers are developing computer models that can efficiently simulate the evolution
of ice sheets over large time scales.

The extents of a glacier can be measured with remote sensing techniques, so that we
may approximate its geometry in a discrete structure. Through geological records and
core samples taken from the ice itself, we are able to estimate how the physical extent
of the ice has changed over time, thus providing a basis for computational models.
These core samples can also provide hints about the climate conditions that accom-
panied changes in the ice sheet extents, thus providing one basis for explaining the
complex relationship between climate and glaciers.
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Ice sheet models combine physical flow laws, such as the Shallow Ice Approxi-
mation (SIA, [19]), the Shallow Shelf Approximation (SSA, [41]), and the Navier-
Stokes equations [14] with observations about the current and historical state of the ice
sheet. These observations include measurements of the bedrock topography, ice surface
geometry, and ice thickness, all of which may be gathered with remote sensing tech-
niques. Further information can be gathered from core samples taken from the ice itself
and from geological records. The SeaRISE project (Sea-level Response to Ice Sheet
Evolution), has aggregated many of these observations into standardized datasets for
the Greenland and Antarctic ice sheets [32], two of which are used in this research.

3 PISM

PISM provides a highly flexible and customizable framework for the study of
large-scale ice sheets. It provides a hierarchy of shallow shelf balances including the
SIA and SSA models, as well as the preferred hybrid ‘SSA + SIA’ model [31]. It makes
available a wide range of models for marine ice physics, ocean calving, and conser-
vation of energy, and the ability to couple PISM with external ocean and atmospheric
models [12].

Within PISM, the model takes place in a rectangular computational box that
consists of a collection of data points in three dimensions representing the space that
encloses the glacier being studied. In each of the x and y dimensions, the grid points are
equally spaced, and have a relatively coarse resolution. The z dimension is given a
relatively finer resolution than x or y, and the spacing of grid points along this
dimension may vary within a given model allowing for more detail near the base of the
ice where driving forces are greatest. Each x, y pair represents a single column of ice
that is parallel with the force of gravity.

PISM takes the entire computational box and divides it into n rectangular sub-grids,
where n is the number of processes being used for the simulation. It attempts to make
the sub-grids as square as possible in the x and y dimensions because the calculation of
a new value for a given grid point often only depends on the current values of variables
at adjacent grid points. Therefore, the degree to which the computation of one sub-grid
depends on results from another sub-grid is proportional to the perimeter of local grid,
and the square has the minimum perimeter for any rectangle. However, for many
computational box sizes and values of n, there is no way to evenly distribute the grid
points to n non-intersecting squares. In such cases, PISM arranges the sub-grids into
r rows and c columns with n = rc, with no row being more than one grid point wider
than any other row, and no column being more than one grid point taller than any other
column.

3.1 PISM I/O

Before discussing the I/O libraries utilized in PISM, it is important to first discuss key
concepts within parallel I/O in general, and the ROMIO implementation of the MPI-IO
standard in particular.
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Parallel I/O. The I/O requirements of highly data-intensive applications such as PISM
can overwhelm the capabilities of even the most sophisticated parallel I/O infrastruc-
ture, and generally present the biggest obstacle to obtaining scalable performance. In
addition to the sheer magnitude of the data being processed, the I/O access patterns
exhibited by PISM and other scientific applications make it exceedingly difficult to
handle such datasets efficiently (e.g., [3, 9, 11, 27]). This is because individual pro-
cesses in scientific applications tend to make a large number of small I/O requests,
making very inefficient use of the parallel I/O subsystem. One reason for this access
pattern is that parallel, scientific codes frequently operate on large, multi-dimensional
arrays that are distributed across the local memories of the application processes. After
a process performs some computation, it will often need to read/write its local piece of
the array from/to a common file. If the process’s local portion of the array is not stored
on disk the same way it is stored in memory, then it will have to make a series of
disjointed I/O requests to complete the operation, incurring the high costs of per-
forming I/O across a network on each such request.

However, it has long been recognized that it is often the case that in the aggregate
the entire array is being written to or read from the shared file. MPI-IO [26], the I/O
component of the MPI standard [24], was developed (in part) to gather and take
advantage of such global information. The collective I/O operations defined in MPI-IO
represent one of the most important techniques through which such global information
can be obtained and leveraged. In this approach, all of the processes sharing a file
submit their individual requests to the underlying MPI-IO implementation, from which
the aggregate I/O request is determined. Based on this global knowledge, the requests
can be combined and presented to the file system in a way that makes the most efficient
use of the underlying hardware and software parallel I/O infrastructure.

The MPI-IO specification defines a rich and flexible parallel I/O API, but does not
specify how the API is to be implemented. It is generally agreed that ROMIO [34–36],
developed and maintained at Argonne National Laboratory, is the most widely used
implementation of the MPI-IO standard. ROMIO implements collective I/O operations
using a technique termed two-phase I/O [11, 34]. In the first phase, the processes
provide information about their individual I/O requests to ROMIO, which uses this
information to create a picture of the aggregate I/O request. In the case of a collective
write, ROMIO collects and redistributes the data from individual processes to a set of
aggregator processes, which perform the I/O operation on behalf of all participating
application processes. ROMIO uses the information about the global I/O request to
redistribute the data in a way that maximizes the use of the parallel I/O subsystem. In
the second phase of the algorithm, the aggregators perform the write to disk
collectively.

It is important to note that the implicit assumption underlying optimizations such as
two-phase I/O is that it is orders of magnitude cheaper to collect and redistribute data
using inter-process communication than it is to perform a large number of disjointed
requests to the file system. As will be discussed below, however, this assumption
begins to break down in multi-core systems where the additional cost of intra-node
communication must also be considered.
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3.2 PISM I/O Libraries

PISM utilizes the software libraries, tools, and data file formats provided by the Net-
work Common Data Form (NetCDF) [39] to handle its I/O requirements. NetCDF is
actively developed and maintained by the Unidata Program, whose mission is to
support high-performance scientific computing within the atmospheric and related
geo-sciences [38]. It defines a set of standardized, machine-independent data file for-
mats, an Application Programming Interface (API) for creating and accessing such
files, and I/O libraries to provide an implementation of the API. The Unidata Program
Center supports and maintains NetCDF interfaces for multiple programming languages
including C, C ++, Java, and Fortran [40].

The Common Data Format (CDF) is the traditional file structure associated with
NetCDF files. The first version of the Common Data Format, CDF1, also termed the
classic format, uses 32 bits for both file and variable offsets, limiting the size of both to
4 GB. The CDF2 revision partially corrected this shortfall by using 64-bit file offsets
(referred to as large file support), which does allow significantly larger files, but still
limits the size of a single record variable, for a single record, to 4 GB.

This storage model is not well suited for high-performance computing on large,
scientific data sets. The 4 GB limitation on the size of record variables is problematic
for PISM, which requires 64-bit offsets for both files and record variables (systems
providing 64-bit variable offsets are termed as providing large variable support).
Another problem is the lack of support for parallel I/O (i.e., concurrent read/write
access to shared files), which severely limits the size of data sets that can be processed
efficiently. Until fairly recently (2012), PISM only supported the CDF {1,2} data
formats, and, as a consequence of these limitations, was unable to simulate the entire
Greenland ice sheet at the 1KM resolution

PISM has now added the NetCDF4 I/O library [39], which provides both
large-variable and large-file support. It was developed collaboratively by Unidata and
the HDF5 Group [37], with the goal of providing an enhanced NetCDF API as a
front-end to the HDF5 storage technologies [28]. HDF5, in turn, is actively developed
and supported by the HDF Group, and provides a data model, file format, and a set of
tools to support large and complex scientific data sets. HDF5 utilizes MPI-IO as the
underlying file access mechanism, from which it inherits the ability to provide scalable,
parallel I/O. Such support is critical for PISM, enabling it to process much larger data
sets, in a far more efficient manner, than in the serial I/O approach dictated by the CDF
{1,2} formats. HDF5 also provides a number of options (e.g., data chunking and chunk
caching [28]), through which the efficiency of parallel I/O operations can be further
enhanced. It also enables data sets to be hierarchically organized, and allows multiple,
unlimited dimensions. Both NetCDF and HDF5 files are self-describing, which means
that they maintain enough meta-data to fully describe the structure and meaning of the
underlying data.

PISM also supports the Parallel-NetCDF [17] I/O library (termed PNetCDF), which
is actively developed and maintained at Argonne National Laboratory and North-
western University. PNetCDF can provide excellent parallel I/O performance, but does
present two challenges for PISM developers. First, it provides parallel support for CDF
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files only, making it incompatible with the HDF5 storage technologies. Second, it can
only scale to very high-resolution data sets when utilizing the CDF5 file format [7],
which extends the 64-bit file offsets available in the earlier formats with support for
64-bit variables. Unfortunately, PISM does not support the CDF5 file format because
Unidata does not currently support it. This means that PNetCDF can only be used with
files that can fit into the CDF{1,2} file formats. While this does provide parallel I/O
support, it does not scale to the higher resolution datasets that require large variable
support. As with HDF5, PNetCDF inherits its ability to perform parallel I/O though
MPI-IO. It is worth noting that the data model provided by the CDF5 format is much
simpler, albeit much less powerful, than that provided by HDF5. However, the I/O
requirements of PISM are well served by the CDF file structure, and it does not require
or make use of the additional features available through HDF5.

In the current version of PISM, the HDF5 library can be accessed directly rather
than through the NetCDF4 interface, and this is the approach taken in this research.
This is because for reasons that are currently unclear and under investigation, going
through the NetCDF4 interface provided extremely poor performance at scale. Also,
and based on our preliminary work with PNetCDF (discussed in [10]), we implemented
support for the CDF5 file format in PISM so that it could be utilized with the
high-resolution data sets that are too big to fit into the CDF{1,2} storage format.

4 Experimental Design

All of our experimental work was conducted on Stampede: a supercomputer housed at
the Texas Advanced Computing Center at the University of Texas at Austin, which
came on-line in February of 2013 [33]. Stampede is a Dell Linux Cluster with 6,400
Dell PowerEdge server nodes, where each node is configured with two 8-core, 64-bit
Intel Xeon E5 2680 (Sandy Bridge) processors for a total of 16 cores per node. The
processors operate at a rate of 2.7 GHz. Each node provides 32 GBs of memory (2 GBs
per core) for a total of 32 GBs. There is also one 61-core Intel Xeon Phi Coprocessor
per node, which was not utilized in this research. The operating system on a node is
CentOS 6.3 with the 2.6.32 x86_64 Linux kernel. The nodes and file systems are
interconnected through a FDR 56 GB Infiniban network of Mellanox switches [23].

Stampede is configured with a 14 Petabyte Lustre parallel file system, which is
sub-divided into three global file systems ($WORK, $HOME, and $SCRATCH), all of
which are accessible from any node. In this research, we used the $SCRATCH file
system, with approximately 8.5 PB of storage and 348 OSTs. We utilized 128 OSTs
and a stripe size of 1 MB in all experiments.

This research was based on PISM version 0.6, which utilizes PETSc version 3.4 as
its computational engine. The parallel I/O libraries used were HDF5 version 1.8.13 and
PNetCDF version 1.3.1. All of these software systems are built on top of the MVA-
PICH2.1.9 implementation of the MPI standard. The collective I/O operations defined
in MPI-IO were implemented via ROMIO.
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4.1 Performance Metrics and Timing

PISM execution can be broken down into three phases: initialization, computation, and
I/O. In the initialization phase, PISM reads in a configuration file and a file containing
model state information. It initializes its internal data structures and distributes the
model data across all of the processes participating in the simulation. In the compute
phase, PISM models the evolution of the ice sheet over time. It carries out the com-
putation in a series of time steps, where the length of a time step (i.e., the number of
years or days simulated within one time step) is variable depending on current model
state. In the output stage, PISM writes the final model state to disk. In this paper, we
consider only the compute and output phases since these represent the primary costs of
running the simulation.

As noted, we are approaching this research from the point of view of high per-
formance computing rather than as a domain scientist. Given that we had a set allo-
cation of time on the supercomputer, we wanted to execute only enough time steps to
ensure that we captured the steady-state behavior of PISM. We determined experi-
mentally that executing 100 time steps did provide steady-state behavior and did not
burn excessive computational resources. In all experiments, we measured compute
performance as the length of time required to complete 100 time steps.

All of the experimental data related to I/O performance is presented graphically,
and provides the mean value, taken from a minimum of 10 experimental trials, with
error bars representing the standard error.

4.2 Data Sets

We use two datasets based on the input data provided by the SeaRISE project. One
dataset is for the Antarctic ice-sheet, at the 10-kilometer resolution, which we refer to
as the A10 km model. We (loosely) categorize the A10 km model as low-resolution
because it requires only 32 bits for both variable and file offsets. The second dataset
describes the Greenland ice sheet at the one-kilometer resolution, which we refer to as
the G1 km model. The state information computed by this model is on the order of
28 GB, and thus requires 64-bit offsets for both record variables and file offsets. We
categorize this as a high-resolution model. The modeling parameters used in our test
runs were derived from the first experimental control run provided in PISM’s example
scripts [26]. The parameters associated with each of the models are shown in Table 1.

5 Experimental Results

In this section, we analyze the performance and scalability of the computational and I/O
components of the PISM model.

5.1 Computational Scalability

We first examined the scalability of the computational phase for the low- and
high-resolution data sets. Our approach was to keep the number of nodes fixed, and to
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measure performance as the number of cores utilized per node was increased from 1 to
16 by powers of two. (Note that the number of cores used per node is referred to as the
Wayness of the node.) We fixed the number of nodes at 64 for the A10 km, for a total
count of between 64 and 1024 cores (one MPI process per core). In the case of the
G1 km model, we fixed the number of nodes at 256, for a total count of 256 to 4096
MPI processes. The metric of interest was the strong scaling efficiency, which measures
the percentage of linear speedup that is achieved as the problem size remains fixed and
the number of processing elements is increased. This metric is defined in Eq. 1, where
t1 is the compute time required with one core per node, N is the number of cores
utilized per node, and tN is the time required to complete the computation given
N cores.

SSE ¼ t1= N � tNð Þ � 100% ð1Þ

The results are shown in Table 2 below. First, consider the efficiency metric for the
A10 km model. As can be seen, the computation scales reasonably well, at least up to
8 cores per node, but drops off by almost 25 % when the number of processes is
increased from 8 to 16 cores per node. This suggests that the computational workload at
this resolution is not sufficient to compensate for the increased communication costs at
16 processes per node.

The computational efficiency of the much larger G1 km model, however, scales
extremely well with increasing process counts. In fact, when the number of processes is
increased from 8 to 16 per node, the scaling efficiency only decreases by 9 % compared
to the 25 % decrease observed for the lower-resolution model. Such excellent scaling
results are not surprising given that each process only writes to its region of the grid,
allowing the process to perform their computation independently and concurrently.
And while each process must obtain data from its adjacent neighbors before each new
time step, there is enough computational work to roughly offset the increased com-
munication costs.

5.2 I/O Scalability of the Low Resolution Model

In this section, we measure the performance and scalability of the HDF5 and PNetCDF
I/O libraries using the A10 km model. In these experiments, we measure the time
required to write the model state to disk (approximately 1.8 GB), as a function of the
I/O technique and the total number of MPI processes. In particular, we varied the
number of nodes from 8 to 64, utilizing all 16 cores per node, for a total of between

Table 2. Strong scaling efficiency based on the number of processes per node and model.

Number of processes per node SSE A10 km model SSE G1 km model

1 100 % 100 %
2 95 % 96 %
4 88 % 88 %
8 78 % 87 %
16 60 % 79 %
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128 and 1024 MPI processes. The results are provided in Fig. 1, which shows the mean
value of 10 experimental trials with error bars representing the standard error.

There are two very striking results that are immediately apparent. First, PNetCDF
provides significantly better I/O performance, completing the write to disk on the order
of 8 times faster than HDF5 at 1024 processes. Second, neither of the approaches
scales well with increasing node/process counts. In fact, the time required to write the
model state to disk increased in both cases when the process count increased from 128
to 1024. And while PNetCDF provided the best overall I/O performance, it exhibits the
worst scaling behavior. In fact, when the node count was increased from 8 to 64, which
increased the total number of processes from 128 to 1024, the time required to com-
plete the write increased by a factor of almost four in the case of PnetCDF, compared to
a factor of only 1.3 for HDF5.

The very different performance and scalability characteristics of the two approaches
are interesting and somewhat counter-intuitive given that they both utilize the same
underlying implementation of the MPI-IO standard. The poor scaling characteristics
exhibited by both parallel I/O libraries is also disappointing. In the sections that follow,
we attempt to identify the factors contributing to these results. We begin with a dis-
cussion of the potential impact on performance attributable to performing collective I/O
operations in a multicore system such as Stampede.

Factors Limiting I/O Scalability. Multicore systems have been shown to present
unique challenges that make the efficient implementation of MPI collective operations
quite difficult. To help understand the reasons for such difficulties, reconsider the
discussion of the two-phase I/O optimization implemented in ROMIO. As noted, the
key assumption underlying this optimization is that the cost of data redistribution is
orders of magnitude less expensive than the cost of performing multiple, disjointed I/O
operations across a network. This assumption was clearly true when HPC systems
typically had only one processor per node, but is becoming somewhat less true as
multicore technologies begin to dominate the high-performance computing market. The
following example is designed to provide an intuitive understanding of the potential
scope of the problem.

Fig. 1. This graph shows I/O performance as a function of the total number of processes
(16 processes per node).
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When the two-phase I/O algorithm was developed, it was largely the case that each
node hosted only one MPI process, and thus the cost of data redistribution involved
inter-node process communication only. Stampede, however, supports up to 16 MPI
processes per node, and the data redistribution phase requires that each process send its
data to one of the aggregator processes. However, this aggregator process can now
reside on the same node or on a remote node, incurring the costs of both intra- and
inter-node data transfers. Further, the aggregator processes, which must now handle
messages from both local and remote processes, can become communication
“hot-spots”, adding additional delays to the data redistribution phase. In fact, it is often
the case that each process must communicate with multiple aggregator processes, in
multiple iterations, in order to accomplish the desired data alignment between the
aggregators. Thus data redistribution in multi-core systems can generate significant
levels of simultaneous data transfer activity, placing considerable pressure on a node’s
underlying communication and memory subsystems. We believe it is this contention
for on-node resources that is, at least in part, responsible for the relatively poor I/O
performance observed above.

If this reasoning is correct, then we should observe increasing I/O costs with
increasing process counts per node. To test this hypothesis, we fixed the number of
nodes at 64, and measured I/O performance at 1, 8, and 16 processes per node. The idea
is that at one process per node, there should be no additional delays resulting from
intra-node messaging activity, and that such delays should be maximized at 16 pro-
cesses per node.

The results are shown in Fig. 2, and, as can be seen, I/O performance is, in fact,
maximized at one process per node, and increased process counts per node very clearly
lead to increased I/O costs. While these results certainly lend support to our hypothesis,
it is also clear that the impact on performance resulting from intra-node contention is
significantly greater for PNetCDF than for HDF5. In fact, when the number of pro-
cesses per node was increased from 8 to 16, the I/O costs incurred by PNetCDF
increased by roughly 240 %, while HDF5 incurred a performance penalty on the order
of 20 %. We delay a more thorough analysis of these results until we compare relative
performance within the context of the much higher-resolution G1 km model.

Fig. 2. This graph shows the increasing I/O costs with increasing process counts per node, for
both I/O libraries

A Performance and Scalability Analysis of the MPI Based Tools 141



5.3 I/O Scalability of the High Resolution Model

We now turn to the investigation of I/O performance at scale. The G1 km model
increases the number of grid points from 108 million to 1.6 billion, and the size of the
model state from 1.8 GB to over 28 GB. In these experiments, we measured the time
required to write the model state to disk as a function of the I/O technique and the total
number of MPI processes. We varied the number of nodes between 64 and 256,
utilizing all 16 cores per node, for a total of between 256 and 4096 MPI processes. The
results of these runs are provided in Fig. 3.

The differences in the performance and scalability characteristics of the two parallel
I/O libraries are even more pronounced when executing at scale. Again we observe that
PNetCDF provides significantly better overall I/O performance, across all process
counts, compared to HDF5. However, HDF5 scales much better than PNetCDF with
increasing process counts. At 256 processes, PNetCDF completes the write to disk
approximately 11 times faster than HDF5. At 4096 processes, however, this margin of
improvement decreases from a factor of 11 to a factor of 3.1. Viewed another way, the
I/O costs incurred by PNetCDF increased by a factor of 2.8 when the process count was
increased from 1024 to 4096. In the case of HDF5, however, there was only a very
minimal increase in such costs (on the order of 10 %). We investigate the reasons for
these very different behaviors in the following sections.

The differences in the performance and scalability characteristics of the two parallel
I/O libraries are even more pronounced when executing at scale. Again we observe that
PNetCDF provides significantly better overall I/O performance, across all process
counts, compared to HDF5. However, HDF5 scales much better than PNetCDF with
increasing process counts. At 256 processes, PNetCDF completes the write to disk
approximately 11 times faster than HDF5. At 4096 processes, however, this margin of
improvement decreases from a factor of 11 to a factor of 3.1. Viewed another way, the
I/O costs incurred by PNetCDF increased by a factor of 2.8 when the process count was

Fig. 3. This graph shows the time required to write the 28 GB of model state to disk as a
function of total process count (16 processes per node).
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increased from 1024 to 4096. In the case of HDF5, however, there was only a very
minimal increase in such costs (on the order of 10 %). We investigate the reasons for
these very different behaviors in the following sections.

6 Analysis

One significant difference between the two parallel I/O libraries is that HDF5 will,
under certain circumstances, override the I/O mode requested by the application and
use another I/O mode of its own choosing. In fact, it provides query functions through
which the application can determine the actual I/O mode used to carry out an I/O
request, and, if collective I/O was requested but not provided, the reason(s) that it was
not provided. Through these mechanisms, we discovered that HDF5 was using inde-
pendent I/O mode for what PISM refers to as diagnostic variables, and collective I/O
for the other variables. It turned out that HDF5 was not utilizing collective I/O as
requested because diagnostic variables are stored in memory as doubles but are stored
in the file as floats. This requires a runtime conversion from doubles to floats, and
HDF5 does not perform collective I/O when such a conversion is required. Thus the
diagnostic variables were actually being written using independent rather than col-
lective I/O, while the remaining variables, which do not require such a transformation,
were written out in the requested collective I/O mode. After further investigation, it was
determined that the diagnostic variables accounted for approximately 50 % of the total
28 GB file. Thus it appears that the observed differences in performance and scalability
characteristics can be attributed to the fact that PNetCDF was effectively invoking the
two-phase I/O algorithm twice as often as HDF5.

This is an important result because it suggests that there may be a tradeoff between
performing collective and independent I/O in multicore systems, which is contrary to
the current thinking that it is always advantageous to perform collective I/O in
large-scale scientific applications. And while the results presented here still support that
notion, it suggests that there may be some threshold value for the number of cores per
node past which it is no longer advantageous to do so. This makes it attractive to think
in terms of developing simple analytic models that can help guide the choice of using
collective I/O, independent I/O, or some combination of the two.

Another important result from this investigation is that there appears to be a fun-
damental tradeoff between the performance and scalability of the computational and
I/O components of the PISM model in multicore systems. To see this tradeoff, consider
Fig. 4a and b below.

Figure 4a shows the I/O and computational costs incurred by PNetCDF as a
function of the number of cores per node. As can be seen, the costs of writing the
28 GB file to disk is seven times faster when utilizing one process per node compared
to 16 processes per node. The time required to complete the 100 time steps, however, is
over 12 times faster with 16 processes per node compared to one process per node. This
tradeoff is certainly not (as) obvious in the case of HDF5 (shown in Fig. 4b), largely
because it does not incur the costs of performing intra-node communication as often as
does PNetCDF.
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7 Related Work

Research related to improving the poor performance of MPI intra-node collective
operations in multicore architectures is certainly of concern to PISM. For example, the
MVAPICH2 installation on Stampede provides a set of lightweight communication
primitives for improved intra-node communication through the LiMIC2 module [15].
KNEM provides kernel-level support to reduce the copy costs associated with
intra-node data transfers, as well as awareness of the node’s communication topology
to reduce intra-node communication costs [6, 22, 25]. HeirKNEM [20, 21] has further
enhanced this work by coordinating the activity of multiple layers of collective algo-
rithms enabling the complete overlap of intra- and inter-node communications.

While the contention for node-level resources discussed above is related primarily
to multicore systems, the overall issue of poor I/O performance in scientific applica-
tions is a well-known and widely studied problem. Many approaches have been
developed to address such poor IO performance including, for example, the two-phase
collective I/O optimization implemented in ROMIO [34, 35], I/O caching systems [8],
data sieving [36], and adaptive file domain partitioning for collective I/O [16].

The Adaptable Input/Output System (ADIOS) [18], is a related platform that
introduces a new hierarchical file format to reduce the costs of I/O is parallel appli-
cations. And while ADIOS is not currently supported in PISM, it does provide tools to
translate between its format and those defined by NetCDF and HDF5. Studies com-
paring the performance of PNetCDF with earlier versions of the NetCDF file format are
also related [17]. Finally, our preliminary work with PISM [10], where we improved
the performance of PNetCDF by a factor of eight through simple modifications to the
way it was being utilized in PISM, is also related.

8 Conclusions

In this paper, we have investigated the performance and scalability characteristics of
the MPI-based tools utilized by PISM. We showed that the computational component
of the PISM model scales very well with increasing process/node counts, but that the

Fig. 4. These graphs show the tradeoff between the computational and I/O components of the
PISM model for both I/O libraries.
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I/O component of the model does not. We examined the very different behaviors of two
state-of-the-art parallel I/O libraries, and discussed the reasons for such differences
even though they are both based on the same implementation of the MPI-IO standard.
Finally, we showed that there exists a fundamental tradeoff between the computational
and I/O components of the PISM model in the case of PNetCDF, where I/O perfor-
mance is maximized at one process per node and, as expected, computational perfor-
mance is maximized at 16 processes per node.
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Abstract. In this paper, we present a simple polynomial time algorithm
for a generalized longest common subsequence problem with multiple
substring exclusion constraints. The problem was declared to be NP-
hard, but we finally found that this is not true. A new polynomial time
solution for this problem is presented in this paper. The correctness of
the new algorithm is proved. The time complexity of our algorithm is
analysed.
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1 Introduction

In this paper, we consider a generalized longest common subsequence problem
with multiple substring exclusive constraints. The longest common subsequence
(LCS) problem is a well-known measurement for computing the similarity of
two strings, and it is crucial in various applications. In this problem, we are
interested in a longest sequence which is a subsequence of both sequences. The
problem is well studied and is used in many applications, like DNA and protein
analysis, text information retrieval, file comparing, music information retrieval,
or spelling correction.

The most referred algorithm, proposed by Wagner and Fischer [16], solves
the LCS problem by using a dynamic programming algorithm in quadratic time.
Other advanced algorithms were proposed in the past decades [2,9–11].

If the number of input sequences is not fixed, the problem to find the LCS of
multiple sequences has been proved to be NP-hard [12]. Some approximate and
heuristic algorithms were proposed for these problems [13].

There are also a lot of generalizations of this similarity measure. One of the
recent variants of the LCS problem, the constrained longest common subsequence
(CLCS) which was first addressed by Tsai [14], has received much attention. It
generalizes the LCS measure by introduction of a third sequence, which allows
to extort that the obtained CLCS has some special properties. For two given
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 151–160, 2015.
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input sequences X and Y of lengths m and n, respectively, and a constrained
sequence P of length r, the CLCS problem is to find the common subsequences
Z of X and Y such that P is a subsequence of Z and the length of Z is the
maximum.

The most referred algorithms were proposed independently [3,5], which solve
the CLCS problem in O(mnr) time and space by using dynamic programming
algorithms. Some improved algorithms have also been proposed [6].

Recently, a new variant of the CLCS problem, the restricted LCS problem,
was proposed [8], which excludes the given constraint as a subsequence of the
answer. The restricted LCS problem becomes NP-hard when the number of
constraints is not fixed.

Some more generalized forms of the CLCS problem, the generalized con-
strained longest common subsequence (GC-LCS) problems, were addressed inde-
pendently by Chen and Chao [4]. For the two input sequences X and Y of lengths
n and m, respectively, and a constraint string P of length r, the GC-LCS prob-
lem is a set of four problems which are to find the LCS of X and Y includ-
ing/excluding P as a subsequence/substring, respectively. The four generalized
constrained LCS [4] can be summarized in Table 1.

Table 1. The GC-LCS problems

Problem Input Output

SEQ-IC-LCS X, Y , and P The longest common subsequence of X and Y
including P as a subsequence

STR-IC-LCS X, Y , and P The longest common subsequence of X and Y
including P as a substring

SEQ-EC-LCS X, Y , and P The longest common subsequence of X and Y
excluding P as a subsequence

STR-EC-LCS X, Y , and P The longest common subsequence of X and Y
excluding P as a substring

For the four problems in Table 1, O(mnr) time algorithms were proposed
[4]. However, their algorithm for STR-EC-LCS is not correct. In a recent paper,
a correct O(mnr) time dynamic programming algorithm was proposed [17].

The four GC-LCS problems can be generalized further to the cases of multiple
constraints. In these generalized cases, the single constrained pattern P will be
generalized to a set of d constraints P = {P1, · · · , Pd} of total length r.

The problem M-SEQ-IC-LCS has been proved to be NP-hard in [7]. The
problem M-SEQ-EC-LCS has also been proved to be NP-hard in [8,15]. In addi-
tion, the problems M-STR-IC-LCS and M-STR-EC-LCS were also declared to
be NP-hard in [4], but without a proof. The exponential-time algorithms for
solving these two problems were also presented in [4].

We will discuss the problem M-STR-EC-LCS in this paper. The failure
functions in the Knuth-Morris-Pratt algorithm for solving the string matching
problem have been proved very helpful for solving the STR-EC-LCS problem.
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It has been found by Aho and Corasick [1] that the failure functions can be
generalized to the case of keyword tree to speedup the exact string matching of
multiple patterns. This idea can be very helpful in our dynamic programming
algorithm. This is the main idea of our new algorithm. A polynomial time algo-
rithm is presented for the M-STR-EC-LCS problem based on this observation
and disproves that M-STR-EC-LCS problem is NP-hard.

2 Preliminaries

A sequence is a string of characters over an alphabet
∑

. A subsequence of a
sequence X is obtained by deleting zero or more characters from X (not neces-
sarily contiguous). A substring of a sequence X is a subsequence of successive
characters within X.

For a given sequence X = x1x2 · · · xn of length n, the ith character of X
is denoted as xi ∈ ∑

for any i = 1, · · · , n. A substring of X from position i
to j can be denoted as X[i : j] = xixi+1 · · · xj . If i �= 1 or j �= n, then the
substring X[i : j] = xixi+1 · · · xj is called a proper substring of X. A substring
X[i : j] = xixi+1 · · · xj is called a prefix or a suffix of X if i = 1 or j = n,
respectively.

For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym of lengths
n and m, respectively, and a set of d constraints P = {P1, · · · , Pd} of total length
r, the multiple STR-EC-LCS problem M-STR-EC-LCS is to find an LCS of X
and Y excluding each of constraint Pi ∈ P as a substring.

The most important difference between the problems STR-EC-LCS and M-
STR-EC-LCS is the number of constraints. For ease of discussion, we will make
the following two assumptions on the constraint set P .

Assumption 1. There are no duplicated strings in the constraint set P .

Assumption 2. No string in the constraint set P is a proper substring of any
other string in P .

Keyword tree [?], [4] is a main data structure in our dynamic programming
algorithm to process the constraint set P of the M-STR-EC-LCS problem.

Definition 1. The Keyword tree for set P is a rooted directed tree T satisfying
3 conditions: 1. each edge is labeled with exactly one character; 2. any two edges
out of the same node have distinct labels; and 3. every string Pi in P maps to
some node v of T such that the characters on the path from the root of T to v
exactly spell out Pi, and every leaf of T is mapped to some string in P .

For example, Fig. 1(a) shows the keyword tree T for the constraint set P =
{aab, aba, ba}, where d = 3, r = 8. Clearly, every node in the keyword tree
corresponds to a prefix of one of the strings in set P , and every prefix of a
string Pi in P maps to a distinct node in the keyword tree T . The keyword tree
for set P of total length r of all strings can be easily constructed in O(r) time
for a constant alphabet size. Because no two edges out of any node of T are
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Fig. 1. Keyword Trees

labeled with the same character, the keyword tree T can be used to search for
all occurrences in a text X of strings from P .

The failure functions in the Knuth-Morris-Pratt algorithm for solving the
string matching problem can be generalized to the case of keyword tree to
speedup the exact string matching of multiple patterns as follows.

In order to identify the nodes of T , we assign numbers 0, 1, · · · , t − 1 to all
t nodes of T in their preorder numbering. Then, each node will be assigned an
integer i, 0 ≤ i < t, as shown in Fig. 1. For each node numbered i of a keyword
tree T , the concatenation of characters on the path from the root to the node i
spells out a string denoted as L(i). The string L(i) is also called the label of the
node i in the keyword tree T . For any node i of T , define lp(i) to be the length
of the longest proper suffix of string L(i) that is a prefix of some string in T .

It can be verified readily that for each node i of T , if A is an lp(i)-length
suffix of string L(i), then there must be a unique node pre(i) in T such that
L(pre(i)) = A. If lp(i) = 0 then pre(i) = 0 is the root of T .

Definition 2. The ordered pair (i, pre(i)) is called a failure link.

The failure link is a direct generalization of the failure functions in the KMP
algorithm. For example, in Fig. 1(a), failure links are shown as pointers from
every node i to node pre(i) where lp(i) > 0. The other failure links point to the
root and are not shown.

The failure links of T define actually a failure function pre for the constraint
set P .

For example, for the nodes i = 1, 2, 3, 4, 5, 6, 7 in Fig. 1, the corresponding
values of failure function are pre(i) = 0, 1, 4, 6, 7, 0, 1, as shown in Fig. 1(a).

The failure function pre is used to speedup the search for all occurrences
in a text X of strings from P . As stated in [4], the failure function pre can be
computed in O(r) time.

In the keyword tree application in our dynamic programming algorithm,
a function σ will be mentioned frequently. For a string S and a given keyword
tree T , if the label L(i) of a node numbered i is also a suffix of S, then the node
i is called a suffix node of S in T .
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Definition 3. For any string S and a given keyword tree T , the unique suffix
node of S in T with maximum depth is denoted as σ(S). That is:

|L(σ(S))| = max
0≤i<t

{|L(i)||L(i)is a suffix of S} (1)

where t is the number of nodes in T .
For example, if S = aabaaabb, then in the keyword tree T of Fig. 1, the node

6 is the only suffix node of S in T , therefore σ(S) = 6.
In our keyword tree application, we are only interested in the nonleaf nodes

of the tree. So, we can renumber the nodes of the tree only for nonleaf nodes,
omitting the leaf nodes of the tree, as shown in Fig. 1(b). After renumbering, the
failure function of the tree will also be changed accordingly.

If a string Pi in the constraint set P is a proper substring of another string
Pj in P , then an LCS of X and Y excluding Pi must also exclude Pj . For this
reason, the constraint string Pj can be removed from constraint set P without
changing the solution of the problem. For example, the string ba is a proper sub-
string of the string aba in the keyword tree of Fig. 1(b). Therefore, the string aba
can be removed from the keyword tree, as shown in Fig. 1(c). We will show shortly
how to remove these redundant strings from constraint set P in O(r) time. In the
following sections, discussions are based on the Assumptions 1 and 2 on the con-
straint set P . The number of nonleaf nodes of the keyword tree for the constraint
set P is denoted as s. In the worst case s = r − d. The root of the keyword tree
is numbered 0, and the other nonleaf nodes are numbered 1, 2, · · · , s − 1 in their
preorder numbering. For example, in Fig. 1(c), there are s = 4 nonleaf nodes in
T . The labels for the four nonleaf nodes are L(0) = ∅, L(1) = a, L(2) = aa and
L(3) = b respectively.

The symbol ⊕ is also used to denote the string concatenation. For example,
if S1 = aaa and S2 = bbb, then it is readily seen that S1 ⊕ S2 = aaabbb.

3 A Simple Dynamic Programming Algorithm

In the following discussions, we will call ’a sequence excluding each of constraint
string in P as a substring’ a sequence excluding P for short.

Definition 4. Let Z(i, j, k) denote the set of all LCSs of X[i : n] and Y [j : m]
such that for each z ∈ Z(i, j, k), L(k)⊕z excludes P , where 1 ≤ i ≤ n, 1 ≤ j ≤ m,
and 0 ≤ k < s. The length of an LCS in Z(i, j, k) is denoted as f(i, j, k).

If we can compute f(i, j, k) for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k < s
efficiently, then the length of an LCS of X and Y excluding P must be f(1, 1, 0).

By using the keyword tree data structure described in the last section, we
can give a recursive formula for computing f(i, j, k) by the following Theorem.

Theorem 1. For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym
of lengths n and m, respectively, and a set of d constraints P = {P1, · · · , Pd} of
total length r, let Z(i, j, k) and f(i, j, k) be defined as in Definition 4. Suppose a
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keyword tree T for the constraint set P has been built, and the s nonleaf nodes
of T are numbered in their preorder numbering. The label of the node numbered
k(0 ≤ k < s) is denoted as L(k). Then, for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and
0 ≤ k < s, f(i, j, k) can be computed by the following recursive formula (2).

f(i, j, k) =
{

max {f(i + 1, j + 1, k), 1 + f(i + 1, j + 1, q)} if xi = yj and q < s
max {f(i + 1, j, k), f(i, j + 1, k)} otherwise

(2)
where q = σ(L(k) ⊕ xi), and the boundary conditions are f(i,m + 1, k) =
f(n + 1, j, k) = 0 for any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k ≤ s.

Proof. For any 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k < s, suppose f(i, j, k) = t and
z = z1 · · · zt ∈ Z(i, j, k).

First of all, we notice that for each pair (i′, j′), 1 ≤ i′ ≤ n, 1 ≤ j′ ≤ m, such that
i′ ≥ i and j′ ≥ j, we have f(i′, j′, k) ≤ f(i, j, k), since a common subsequence
z of X[i′ : n] and Y [j′ : m] satisfying L(k) ⊕ z excluding P is also a common
subsequence of X[i : n] and Y [j : m] satisfying L(k) ⊕ z excluding P .

(1) In the case of xi �= yj , we have xi �= z1 or yj �= z1.
(1.1) If xi �= z1, then z = z1 · · · zt is a common subsequence of X[i + 1 : n]

and Y [j : m] satisfying L(k) ⊕ z excluding P , and so f(i + 1, j, k) ≥ t.
On the other hand, f(i + 1, j, k) ≤ f(i, j, k) = t. Therefore, in this case
we have f(i, j, k) = f(i + 1, j, k).

(1.2) If yj �= z1, then we can prove similarly that in this case, f(i, j, k) =
f(i, j + 1, k).
Combining the two subcases we conclude that in the case of xi �= yj , we
have

f(i, j, k) = max {f(i + 1, j, k), f(i, j + 1, k)} .

(2) In the case of xi = yj and q < s, there are also two subcases to be
distinguished.

(2.1) If xi = yj �= z1, then z = z1 · · · zt is also a common subsequence of
X[i + 1 : n] and Y [j + 1 : m] satisfying L(k) ⊕ z excluding P , and so
f(i+1, j +1, k) ≥ t. On the other hand, f(i+1, j +1, k) ≤ f(i, j, k) = t.
Therefore, in this case we have f(i, j, k) = f(i + 1, j + 1, k).

(2.2) If xi = yj = z1, then f(i, j, k) = t > 0 and z = z1 · · · zt is an LCS
of X[i : n] and Y [j : m] satisfying L(k) ⊕ z excluding P , and thus
z′ = z2, · · · , zt is a common subsequence of X[i + 1 : n] and Y [j + 1 : m]
satisfying L(k)⊕xi⊕z′ excluding P . If q = σ(L(k)⊕xi), then L(q) is the
longest suffix of L(k) ⊕ xi that is also a label of a node of the keyword
tree T , and therefore z′ = z2, · · · , zt is also a common subsequence of
X[i + 1 : n] and Y [j + 1 : m] satisfying L(q) ⊕ z′ excluding P . In other
words,

f(i + 1, j + 1, q) ≥ t − 1 = f(i, j, k) − 1. (3)

On the other hand, ifL(q) is the longest suffixofL(k)⊕xi, f(i+1, j+1, q) =
s and v = v1 · · · vs ∈ Z(i + 1, j + 1, q), then v is an LCS of X[i + 1 : n]
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and Y [j + 1 : m] satisfying L(q) ⊕ v excluding P . In this case v′ = xi ⊕ v
is a common subsequence of X[i : n] and Y [j : m] satisfying L(k) ⊕ xi ⊕
v′ excluding P , since L(q) is the longest suffix of L(k) ⊕ xi and q < r.
Therefore,

f(i, j, k) ≥ s + 1 = f(i + 1, j+, q) + 1. (4)

Combining (3) and (4) we have, in this case,

f(i, j, k) = 1 + f(i + 1, j+, q). (5)

Combining the two subcases in the case of xi = yj and q < r, we conclude
that the recursive formula (2) is correct for this case.

(3) In the case of xi = yj and q = s, we must have xi = yj �= z1, otherwise
L(k) ⊕ z will including the string L(k) ⊕ xi corresponding to a leaf node of
the keyword tree T . Similar to the subcase (2.1), we can conclude that in
this case,

f(i, j, k) = f(i + 1, j + 1, k)

= max{f(i + 1, j, k), f(i, j + 1, k)}.

The proof is complete. �

4 The Implementation of the Algorithm

According to Theorem 1, our algorithm for computing f(i, j, k) is a standard
2-dimensional dynamic programming algorithm. By the recursive formula (2),
the dynamic programming algorithm for computing f(i, j, k) can be implemented
as the following Algorithm 1.

In Algorithm 1, s is the number of nonleaf nodes of the keyword tree T for
set P . The root of the keyword tree is numbered 0, and the other nonleaf nodes
are numbered 1, 2, · · · , s − 1 in their preorder numbering. L(t) is the label of
node numbered t in the keyword tree T .

To implement our algorithm efficiently, the most important thing is to compte
σ(L(k) ⊕ xi) for each 0 ≤ k < s and xi, 1 ≤ i ≤ n, in line 9 efficiently.

It is obvious that σ(L(k)⊕xi) = g if there is an edge (k, g) out of the node k
labeled xi. It will be more complex to compute σ(L(k)⊕xi) if there is no edge out
of the node k labeled xi. In this case the matched node label has to be changed
to the longest proper suffix of L(k) that is a prefix of some string in T and the
corresponding node h has an out edge (h, g) labeled xi. Therefore, in this case,
σ(L(k)⊕xi) = g. To speedup, we can pre-compute a table λ(k, ch) of the function
σ(L(k) ⊕ ch) for each character ch ∈ ∑

and 1 ≤ k ≤ s. When we precompute
the prefix function pre, for every edge (k, g) labeled with character ch, the value
of λ(k, ch) can be assigned directly to g. The other values of the table λ can
be computed by using the prefix function pre. With this pre-computed table
λ, the loop body of above Algorithm 1 requires only O(1) time. Therefore, our
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Algorithm 1. M-STR-EC-LCS
Input: Strings X = x1 · · · xn, Y = y1 · · · ym of lengths n and m, respectively, and a
set of d constraints P = {P1, · · · , Pd} of total length r
Output: The length of an LCS of X and Y excluding P

1: Build a keyword tree T for P
2: for all i, j, k , 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 0 ≤ k ≤ s do
3: f(i, m + 1, k) ← 0, f(n + 1, j, k) ← 0 {boundary condition}
4: end for
5: for i = n down to 1 do
6: for j = m down to 1 do
7: for k = 0 to s do
8: f(i, j, k) ← max{f(i + 1, j, k), f(i, j + 1, k)}
9: q ← σ(L(k) ⊕ xi)

10: if xi = yj and q < s then
11: f(i, j, k) ← max{f(i + 1, j + 1, k), 1 + f(i + 1, j + 1, q)}
12: end if
13: end for
14: end for
15: end for
16: return f(1, 1, 0)

dynamic programming algorithm for computing the length of an LCS of X and
Y excluding P requires O(nmr) time and O(r|Σ|) preprocessing time.

Until now we have assumed that our algorithm is implemented under
Assumptions 1 and 2 on the constraint set P . We now describe how to relax
the two assumptions.

If Assumption 1 is violated, then there must be some duplicated strings in the
constraint set P . In this case, we can first sort the strings in the constraint set P ,
then duplicated strings can be removed from P easily and then Assumption 1 on
the constraint set P is satisfied. It is clear that removed strings will not change
the solution of the problem.

For Assumption 2, we first notice that a string A in the constraint set P is a
proper substring of string B in P , if and only if in the keyword tree T of P , there
is a directed path of failure links from a node v on the path from the root to the
leaf node corresponding to string B to the leaf node corresponding to string A
[4]. For example, in Fig. 1(a), there is a directed path of failure links from node
5 to node 7 and thus we know the string ba corresponding to node 7 is a proper
substring of string aba corresponding to node 5.

With this fact, if Assumption 2 is violated, we can remove all super-strings
from the constraint set P as follows. We first build a keyword tree T for the
constraint set P , then mark all nodes passed by a directed path of failure links to
a leaf node in T by using a depth first traversal of T . All the strings corresponding
to the marked leaf node can then be removed from P . Assumption 2 is now
satisfied on the new constraint set and the keyword tree T for the new constraint
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set is then rebuilt. It is not difficult to do this preprocessing in O(r) time. It is
clear that the removed super-strings will not change the solution of the problem.

If we want to get the answer LCS of X and Y excluding P , but not just its
length, we can also present a simple recursive back tracing algorithm for this
purpose as the following Algorithm 2.

Algorithm 2. back(i, j, k)
Comments: A recursive back tracing algorithm to construct the answer
LCS

1: if i > n or j > m then
2: return
3: end if
4: if xi = yj and f(i, j, k) = 1 + f(i + 1, j + 1, λ(k, xi)) then
5: print xi

6: back(i + 1, j + 1, λ(k, xi))
7: else if f(i + 1, j, k) > f(i, j + 1, k) then
8: back(i + 1, j, k)
9: else

10: back(i, j + 1, k)
11: end if

In the end of our new algorithm, a function call back(1, 1, 0) will produce the
answer LCS accordingly.

Since the cost of the computation λ(k, xi) is O(1), the algorithm back(i, j, k)
will cost O(max(n,m)) in the worst case.

Finally we summarize our results in the following Theorem.

Theorem 2. The Algorithm 1 solves M-STR-EC-LCS problem correctly in
O(nmr) time and O(nmr) space, with preprocessing time O(r|Σ|).

5 Concluding Remarks

We have suggested a new dynamic programming solution for the M-STR-EC-
LCS problem. The M-STR-IC-LCS problem is another interesting generalized
constrained longest common subsequence (GC-LCS) which is very similar to the
M-STR-EC-LCS problem. The M-STR-IC-LCS problem is to find an LCS of
two main sequences, in which a set of constraint strings must be included as its
substrings. It is not clear that whether the same technique of this paper can be
applied to this problem to achieve an efficient algorithm. We will investigate the
problem further.
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Abstract. Because of concise and efficient evolution rules, the BML model
(BML) has a great potential for the two-dimension urban traffic scheduling.
However, the theoretical lattice space of BML makes it difficult for the existing
models based on BML to simulate the actual traffic flow. In this paper, an
extended BML model (EBML) is proposed to effectively simulate the urban
traffic where the quantum particle swarm optimization (QPSO) is creatively
introduced to optimize traffic lights management. The main contributions
include that: (1) EBML is constructed to be more consistent with the actual
urban road network with different two-way multi-lane roads. Its lattice sites act
as obstacles, overpasses, underground tunnels, and roads. The actual urban road
network can be mapped into the lattice space of EBML. And the corresponding
updating rules of each lattice site are presented; (2) A deep insight into the traffic
characters is provided in EBML. And the effect of the interference among
different road capacities on forming traffic congestions is elaborated. Overpasses
are applied to alleviate the interferences; (3) By the scheduling simulation of
EBML, QPSO optimizes the timing scheduling of traffic lights. Extensive
experiments reveal that QPSO achieves excellent optimization performances in
real cases.

Keywords: Traffic congestion � Overpasses � Roadblocks � BML �
Congestion-Avoidance routing

1 Introduction

The dynamics of the urban traffic has attracted great attention in recent years [1, 2],
which is practically important to alleviate traffic congestions and schedule the traffic
flow. Many traffic models have been proposed to capture the fundamental aspects of the
phase transition and congestion in cities, such as the continuous model [3], the gas
kinetic model [4], the car-following model [5], the Biham, Middleton and Levine
(BML) model [6]. Benefited from concise and efficient evolution rules based on the
cellular automaton (CA) [7], the BML model has great advantage to model the
two-dimensional urban traffic [6]. The BML model (BML) [6] describes the dynamic
movement of northbound and eastbound vehicles moving on a two-dimensional square
lattice with the periodic boundary conditions. At even time steps, if the next lattice site
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is empty, the northbound vehicle advances one lattice site. If the next lattice site is
occupied, the northbound vehicle remains stationary. At odd time steps, the eastbound
vehicle tries to advance one lattice site in the same way [7]. Although this model is very
simple, it can describe many extremely complex behaviors very well, including jam-
ming transition and self-organization [8].

Though the above variants based on BML have made the abundant achievements,
two main weaknesses can be listed as follows: (1) In the real city, different roads have
different lanes, and some roads have overpasses and underground tunnels. The existing
variants based on BML only devote to integrating independent realistic feature into
BML. There are still no enough traffic elements in the theoretical lattice space of BML.
So the actual traffic network cannot be mapped into their lattice space; (2) The existing
variants based on BML have no function to optimize urban traffic light scheduling. And
the existing researches just can draw some theoretical conclusions. There are still no
ways to apply the existing researches into the practical applications. In order to
overcome the weaknesses above, an extended BML model (EBML) is proposed in this
paper. EBML can simulate the urban traffic flow in the real urban road network, and
optimize the timing scheduling of traffic lights by the quantum-behaved particle swarm
optimization (QPSO). The main contributions of this paper are summarized as follows.
(1) The block capacity, different unidirectional capacities and intersecting capacities are
assigned to the lattice sites in EBML, which make the lattice sites act as obstacles,
overpass, underground tunnels, and roads. The actual road network can be mapped into
EBML. And the corresponding updating rules of vehicles are presented. (2) Compared
with BML, a deep insight into the phase transition and traffic congestions is provided in
EBML. And the effect of the interference among different road capacities on forming
traffic congestion is elaborated. Overpasses are applied to alleviate the interference,
which achieve prominent effects. (3) Based on the urban traffic simulation in EBML,
the quantum-behaved particle swarm optimization (QPSO) is firstly applied to optimize
the timing scheduling of traffic lights in the real city. Compared with the PSO algorithm
and the random algorithm, extensive experiments show the excellent improvements of
the proposed QPSO algorithm in EBML.

2 The IOCA-PSO Method

The framework of EBML is shown in Fig. 1. EBML includes two components:
Simulation (detailed in Sect. 2.1) and Optimization (detailed in Sect. 2.2). They are
introduced as follows.

(1) Simulation: The road network of the actual urban area is mapped into the lattice
space of EBML. The dynamic movement of the vehicles at each discrete time step is
controlled by updating rules. The adjustment of traffic lights at each intersection can be
controlled flexibly. (2) Optimization: Firstly, the QPSO algorithm carries out its opti-
mized timing scheduling in the Simulation. Secondly, making use of the simulative
information in Simulation, the QPSO algorithm adjusts its timing scheduling by the
QPSO algorithm. The two optimization steps will be repeated until to obtain the
optimal timing scheduling of traffic lights. And the optimal timing scheduling can be
implemented in the corresponding actual urban area.
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2.1 Simulation

It is unrealistic to test the timing scheduling by the tentative and repetitive applications
in the real urban road network. But the timing scheduling can be tested in the simu-
lation of EBML. EBML can model the dynamic urban traffic.

Simulation Environment. The finite N � N square lattice with open boundary con-
ditions is considered in EBML, which models the actual urban road layout with dif-
ferent two-way multi-lane roads. The vehicles only run on the road network (including
overpasses and underground tunnels) in cities, so the remaining areas can be seen as
obstacles absolutely. Some lattice sites are assigned with different unidirectional
capacities, which act as the roads. Some lattice sites are assigned with different
intersecting capacities, which act as overpasses or underground tunnels. Except for the
lattice sites with unidirectional and intersecting capacities, the remaining lattice sites
are assigned with the block capacity. The lattice sites with the block capacity act as
obstacles. Some lattice sites act as intersections.

Different unidirectional capacities and intersecting capacities can have different
vehicle units. For example, according to the real conditions of Chinese urban roads, the
number of vehicle units can be 1, 2, 3 or 4. For the northbound and eastbound vehicles,
the lattice sites with unidirectional capacities can have four different structures with
different vehicle units (Fig. 2). And the lattice sites with intersecting capacities can four
different structures with different vehicle units (Fig. 3). The block capacity has no
vehicle units. Because the roads are two-way, the southbound and westbound vehicles
deal with similar structures. In the simulation of EBML, the southbound and west-
bound vehicles have no conflict with the northbound and eastbound vehicles. The
description of capacities can be listed as follows. (1) Based on the actual urban layout,
initially each lattice site should be assigned with a fixed capacity from the unidirec-
tional capacity, the intersecting capacity and the block capacity. For a lattice site, the
vehicle units of its capacity are decided by the lane number of its corresponding road or
overpasses (underground tunnels). (2) A vehicle unit just can contain one vehicle in the
same direction. And the number of vehicles at a lattice site should not be more than the
vehicle capacity unit limitation.

Fig. 1. The framework of EBML.
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Most cities can be classified as grid-like cities and self-organized cities roughly, and
the grid-like cities become more and more. The scheduling simulation of EBML only
applies to grid-like cities. Grid-like cities are realized over a short period of time as the
result of urban plans, and usually exhibiting grid structures [13]. Based on maintaining
the connecting state of urban road network, the grid-like cities are easy to map in the
lattice space in EBML. For example in Fig. 4, the grid-like area centering Xudong in
Wuhan from Google maps is mapped to lattice space in EBML. And the configuration
of traffic lights at each intersection is saved.

Updating Rules. In EBML, vehicles in EBML can move northward, southward,
westward and eastward. The vehicles leaving EBML through the boundary lattice sites
will not come back. And new vehicles are controlled to enter into the EBML through
the boundary lattice sites. The number of entering vehicles is consistent with the actual
traffic data.

An intersection is a junction of different roads. The movements of vehicles trying to
enter an intersection are decided by traffic lights of the intersection. Under the control
of traffic lights, the dynamic movement of the vehicles at each discrete time step is

Fig. 2. The structures of the unidirectional capacities with different vehicle units. Right
(up) arrows denote eastbound (northbound) vehicles.

Fig. 3. The structures of the intersecting capacities with different vehicle units. Right (up) arrows
denote eastbound (northbound) vehicles.

(a) (b)

Fig. 4. The area centering Xudong in Wuhan (a) from Google maps is mapped to lattice space
(b) in EBML. The white lattices denote the roads. The black lattices denote the blocks. The gray
lattices denote intersections.
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decided by the updating rules. Some useful parameters are introduced at first. n is the
number of a site in the consecutive up lattices sites, starting form 1 at the bottom. max
(n) denotes the maximum capacity units of a site.Mn(n, t) is the amount of vehicle units
occupied by northbound vehicles in the site n at the time step t. And ME(n, t), MW(n, t),
MS(n, t) are defined in the same way.

At even time steps, when the next lattice is not an intersection, the vehicle at the
northbound or southbound vehicle unit tries to advance one lattice site when the next
lattice has the corresponding empty vehicle unit. Otherwise, the vehicle remains sta-
tionary. At even time steps, when the next lattice is an intersection, if the movement of
the vehicle is decided by the traffic lights. The updating rules of northbound vehicles at
each even time step are defined as follows.

Definition Rule1: When the next lattice is an intersection, if the northbound traffic light
of the intersection is green, the northbound vehicle can advance. If the southbound
traffic light of the intersection is green, the southbound vehicle can advance. Otherwise,
the vehicle remains stationary. When the next lattice is not an intersection, Rule2, Rule3,
Rule4, and Rule5 are carried out.

Definition Rule2: If the site nþ 1 owns a unidirectional capacity, and the site n owns a
unidirectional or intersection capacity, the Rule1 can be described as follows. If
MEðnþ 1; tÞ[ 0, then MNðn; tþ 1Þ ¼ MNðn; tÞ, MNðnþ 1; tþ 1Þ ¼ MNðnþ 1; tÞ ¼ 0.
If Mgðnþ 1; tÞ ¼ 0, then MNðnþ 1; tþ 1Þ ¼ MNðnþ 1; tÞþ temp; MNðn; tþ 1Þ ¼ MN

ðn; tÞ � temp, where temp ¼ minfr;MNðn; tÞg; r ¼ maxðnþ 1Þ �MNðnþ 1; tÞ.
Definition Rule3: If the site nþ 1 owns an intersection capacity, and the site n owns a
unidirectional or intersection capacity, the Rule2 can be described as follows.
MN ðnþ 1; tþ 1Þ ¼ MNðnþ 1; tÞþ temp; MNðn; tþ 1Þ ¼ MNðn; tÞ � temp, where
temp ¼ minfr;MNðn; tÞg; r ¼ maxðnþ 1Þ �MNðnþ 1; tÞ.
Definition Rule4: If the site nþ 1 owns a block capacity, no vehicles at the site n can
advance.

Definition Rule5: When a northbound vehicle is at the site n with the intersection
capacity, if there are more than one sites for the northbound vehicle to advance into, the
northbound vehicle will randomly select a site as the site nþ 1, then carry out the
Rule2, Rule3 and Rule4.

The updating rules of southbound vehicles at each even time step are similar to
Rule1, Rule2, Rule3, Rule4 and Rule5. At odd time steps, each vehicle at the eastbound
and westbound vehicle units tries to advance one lattice site when the next lattice has
the corresponding empty vehicle unit. Otherwise, the vehicle remains stationary. The
updating rules of the eastbound and westbound vehicles at each odd time step are in the
same way with the northbound and southbound vehicle at each even time step.

2.2 Optimization

Phase Encoding of Traffic Lights. All traffic lights at a same intersection have to be
necessarily synchronized for the security, and they carry out a series of common
phases. A phase of an intersection includes a combination of all traffic light color states
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at the intersection, and the corresponding time span. The phase sequence of an inter-
section and the corresponding combination of traffic light color states for each phase
are determined in advance. The optimization in EBML is just for the corresponding
time span of each phase, which is the timing scheduling [11].

In Fig. 5, the intersection iþ 1 has five phases, and the phases of all intersections
are encoded into a one-dimensional time-span vector. A one-dimensional time-span
vector provides a possible timing scheduling of the involved traffic lights. For an
intersection, when a phase is terminated, they will enter into the next phase. And the
first phase will follow the last phase. Based on the 1 one-dimensional time-span vector,
each intersection carries out their corresponding phase circulation in a given period.

The QPSO Algorithm. The particle swarm optimization (PSO) is a new methodology

in the evolutionary computation, which is extremely effective in solving a wide range
of engineering problems. However, the premature convergence of its most variants is
very serious, which hinders its global searching ability [9]. Based on PSO by adding
the quantum wave mechanics, QPSO weakens the premature convergence, and
achieves a better global searching ability [10].

In EBML, the QPSO algorithm is applied to optimize the time-span values in a
one-dimensional time-span vector, which determines the timing scheduling of all traffic
lights. The timing scheduling by QPSO will be implemented in the simulation. The
scheduling simulation provides the necessary simulative results to evaluate the opti-
mization effect, which conducts the scheduling optimization by QPSO. Along with the
optimization adjustment of time spans in the vectors, the timing scheduling of traffic
lights is adjusted to be better. Based on the optimal timing scheduling of the final
time-span vector, each intersection carries out their corresponding phase scheduling
circularly in the given time period.

Some parameters are introduced firstly. Pi is the state encode of the particle i in the
optimization of QPSO. Pic and Pis are two locations occupied by a particle Pi, which
denotes the probability amplitudes of quantum states 0j i and 1j i. And ~Pic and ~Pis

denote the updating locations. The ith quantum bit of particle Pi is denoted as a j
i ; b

j
i

� �T
,

Fig. 5. The timing scheduling process of traffic lights by QPSO.

166 W. Hu et al.



which can be transformed to the actual time spans X j
is;X

j
is

� �T
. Pij is the optimal solution

that the particle i has found after the current iteration. Pg is the optimal solution that the
whole particle swarm has found after the current iteration. Pm is the mutation proba-
bility in QPSO.

As recommended in the work of Mikki and Kishk [10], the particle Pi in QPSO is
denoted by Eq. (2). For a particle, the probability amplitudes of quantum states 0j i and
1j i can be calculated by Eqs. (3) and (4), which are denoted as Pic and Pis. Pic and Pis

correspond to two one-dimensional vectors with given time-span values (Fig. 5). So a
particle Pi provides two one-dimensional vectors. The two locations occupied by a
particle are in the unit space I ¼ �1; 1½ �n, which need map to the solution space of the
actual time spans. The time pan of traffic lights is among ai; bi½ �. Through the solution
space transformation of all quantum bits by Eqs. (5) and (6), Pic and Pis can obtain their
corresponding one-dimensional time-span vectors.

Assuming P denotes the probability amplitude, fitness(P) denotes the fitness value
of a one-dimensional time-span vector corresponding to P. The fitness value is used to
evaluate the optimization result of a given time-span vector. Based on the simulative
information in EBML, it is calculated by Eq. (1).

fitnessðPÞ ¼ k0V þ k1H ð1Þ

Equation (1) is a common objective function in the traffic optimization. V is
the total delay of all vehicles. H is the total parking number of all vehicles. k0 and k1 are
the weighting coefficient of V and H. V and H are variables that should be decreased.
When the fitness value is smaller, the timing scheduling is better. QPSO is detailed in
Table 1. More detail about the theoretical algorithm of QPSO can be obtained in the
work of Yang et al. [9].

The final timing scheduling theoretically has the smallest fitness value. However, in
the limited time of real applications, QPSO cannot always find the optimal timing
scheduling in EBML. QPSO will select its existing optimal timing scheduling as its
final timing scheduling. And the final scheduling is better than other state-of-the-art
algorithms, which is verified in Sect. 3.4.

Pi ¼ cosðhi1Þ
sinðhi1Þ

����
���� cosðhi2Þsinðhi2Þ

. . .

. . .

����
���� cosðhinÞsinðhinÞ

����
� �

ð2Þ

Pic ¼ ðcosðhi1Þ; cosðhi2Þ; . . .; cosðhinÞÞ ð3Þ

Pis ¼ ðsinðhi1Þ; sinðhi2Þ; . . .; sinðhinÞÞ ð4Þ

X j
ic ¼

1
2

bið1þ a j
i Þþ aið1� a j

i Þ
� � ð5Þ

X j
ic ¼

1
2

bið1þ b j
i Þþ aið1� b j

i Þ
� � ð6Þ
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Dhl ¼
2pþ hilj þ hijðhijl � hij\� pÞ
hijl � hijð�p� hijl � hij � pÞ
hijl � hij � 2pðhilj � hij [ pÞ

8<
: ð7Þ

Dhg ¼
2pþ hgj þ hijðhgj � hij\� pÞ
hgj � hijð�p� hgj � hij � pÞ
hgj � hij � 2pðhgj � hij [ pÞ

8<
: ð8Þ

Dhijðtþ 1Þ ¼ wDhijðtÞþ c1r1ðDhlÞþ c2r2ðDhgÞ ð9Þ

Table 1. The procedure of the optimization by QPSO
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~Pic ¼ ðcosðhilðtÞþDhilðtþ 1ÞÞ; . . .. . .; cosðhinðtÞþDhinðtþ 1ÞÞÞ ð10Þ
~Pic ¼ ðsinðhilðtÞþDhilðtþ 1ÞÞ; . . .. . .; sinðhinðtÞþDhinðtþ 1ÞÞÞ ð11Þ

0 1
0 1

� �
cosðhijÞ
sinðhijÞ

� �
¼ sinðhijÞ

cosðhijÞ
� �

¼ cos p
2 � hij
� �

sin p
2 � hij
� �� �

ð12Þ

3 The IOCA-PSO Method Simulations and Discussions

This section is devoted to analyzing EBML by extensive experiments. To provide a
deep insight into actual urban traffic congestion, we speculate and verify the cause of
traffic congestion in Sect. 3.1, which is combined with typical configurations. Fur-
thermore, Sect. 3.2 describes the effect of the sites similar to overpass to EBML, which
is practically important to alleviate the traffic congestion and improve the traffic flow.
In Sect. 3.3, the timing scheduling of traffic lights in an actual urban case is optimized
by EBML in extensive comparative experiments.

3.1 Typical Configurations and Traffic Congestions

Although 75 % of lattice sites can hold more than one vehicle in EBML, the traffic
congestion happens more easily than that in BML with the same initial distribution of
vehicles. In order to analysis the difference about traffic congestions in these two
models, we implement numerical simulations at q ¼ 0:18 and q ¼ 0:3, which are the
values from the first range and the second range, respectively.

As shown in Fig. 6, the velocity at the beginning in EBM is higher than that in
BML at q ¼ 0:18 and q ¼ 0:3. Because with the same initial distribution of vehicles,
most eastern or northern vehicles can still advance one lattice site in EBML, even if the
next sites hold vehicles in the same direction. But only when the next site is empty can
vehicles advance one site in BML. And the average velocities versus the time step have
the similar changing trend in two models at q ¼ 0:18 in Fig. 6(a). Nevertheless, the
changing trends of the average velocity versus the time step are opposite obviously at
q ¼ 0:3 in Fig. 6(b). When t = 20000, the configurations in Fig. 6 can be seen as the
final stable states in these two models at q ¼ 0:3. The traffic flow in BML (Fig. 7(a))
finally self-organizes into alternating free-flow stripes (velocity = 1), but falls into
global jams (velocity = 0) in EBML (Fig. 7(b)). What causes the different changing
trends at q ¼ 0:18 and q ¼ 0:3 attracts us to discuss below.

Firstly, what uniquely differs from BML is that we add the sites with capacity 2, 3
and 4 in EBML. So it is speculated that the interference among different site capacities
is the reason why the flow in EBML is jammed more easily.

Secondly, the speculation above can be verified as follows: (1) Enlarging site
capacity to the same value is helpful for the flow velocity in fact. Comparing with the
simulation above in BML, we implement simulations at q ¼ 0:3 on a 150 × 150 lattice
with the single capacity 2, 3 and 4, respectively. As shown in Fig. 8, the velocities with
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the single capacity 2, 3 and 4 are higher than BML, which is equivalent to simulations
with single capacity 1. Because there are no traffic congestions at q ¼ 0:3, the
velocities with the single capacity 2, 3 and 4 have the same outstanding performance. If
the vehicle density is enlarged, the advantages of the highest single capacity 4 will
increase. (2) When we implement the simulations in EBML, only the interference
among different capacities can eliminate the advantage of enlarging site capacity. Let
us consider two adjacent sites, the latter is filled with vehicles and the former is empty.
When in EBML with single capacity, such as BML, all vehicles in the latter can
advance together at the same time step. Nevertheless, when in the models with multiple
capacities, assuming the latter with capacity 4 and the former with capacity 1, the
vehicles in the latter need at least four corresponding time steps to evacuate. The
accumulation of many similar partial phenomena results in the whole increase of the
interference among different capacities, which makes the traffic flow jammed more
easily in EBML.

(a) (b)

Fig. 6. (a) the average velocity of the traffic flow versus the time step in the two models at
q ¼ 0:18; (b) the average velocity of the traffic flow versus time step in the two models at
q ¼ 0:3. Red solid (blue dotted) lines are for the EBML (BML) (Color figure online).

(a)                          (b)

Fig. 7. The typical configurations at q ¼ 0:3 in 150 × 150 cellular space at t ¼ 20000. (a) is in
BML. (b) is in EBML.
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Furthermore, we can obtain the reason for different changing trends at q ¼ 0:18 and
at q ¼ 0:3. Under the lower density, the interference among different capacities is
non-significant in EBML, so the similar changing trends of these two models are
shown in Fig. 7(a). But when the density increases, the mixed completely occupied
sites with different capacities increase versus the time step. The interference among
different capacities strengthens rapidly, and the changing trends of these two models
become opposite in Fig. 7(b).

3.2 The Effect of Overpasses

After adding the mixed sites to the EBML, simulations with different Ro are imple-
mented, which are shown in Fig. 9. Because the sites ratios of four different unidi-
rectional capacities are equivalent in EBML, we restrict that the ratios of corresponding
four mixed sites are equivalent in the simulations. So we can draw conclusions as
follows. (1) After we add some mixed sites, the average velocity improves at the same
time step. With the ratio of overpasses increasing, the improved effect becomes
increasingly evident. As the traffic congestion is mitigated, the final state always
accompanies with the motion of some vehicles. As shown in Fig. 10, especially when
Ro ¼ 0:6 and Ro ¼ 0:8, the average velocity is significantly higher than EBML. They
all maintain at a steady flowing velocity finally. And more and more cars still move at
last, when the ratio of overpasses increases. (2) The interference among different site
capacities still exists in EBML with overpasses, which disturbs the running vehicles. At
a low rate of the overpasses, the interference can be obviously reflected. As shown in
Fig. 10, when at Ro ¼ 0:4, the average velocity shows a small decreasing change from
t ¼ 1000 to t ¼ 4000. It can be concluded that when the traffic congestion becomes
more and more serious in EBML with overpasses, the interference among different site
capacities increasingly inhibits the flowing velocity.

Fig. 8. One kernel at xs (dotted kernel) or two kernels at xi and xj (left and right) lead to the same
summed estimate at xs. This shows a figure consisting of different types of lines. Elements of the
figure described in the caption should be set in italics, in parentheses, as shown in this sample
caption.
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3.3 Optimization Results by QPSO

To verify the optimization by EBML, an actual urban case is selected randomly as an
example in this section. As is shown in Fig. 4(a), an area centering Xudong in Wuhan is
used as the objective urban area, which covers approximately 3 km2 with 15 inter-
sections. According to the traffic management bureau in Wuhan (http://www.whjg.gov.
cn/), the traffic information in the main roads is obtained every 10 min, which is
collected by sensor detections. Three typical time periods (8:00–8:20, 10:30–10:50, 20:
30–20:50) in July 1, 2014 are selected, which are called as the congestion period, the
half free flow period, the free flow period, respectively. The average vehicle velocities
of the three time periods are 17 km/h, 34 km/h, and 51 km/h, respectively. The
simulation in EBML is shown in Fig. 4(b). The swarm size in optimization is 100. The
simulation time in EBML for a typical time periods are 1200 s (1200 time steps).

The PSO algorithm [12] and the RANDOM algorithm [12] are introduced as two
comparison algorithms against the QPSO algorithm in EBML. The fitness function, the
swarm size and the running time of two comparison algorithms are same with the
QPSO algorithm, and their other parameters are set in accordance of their original
settings. The boxplots of the fitness values for three algorithms in the three time periods
are shown in Fig. 10. Among the three comparison algorithms, the QPSO algorithm

Fig. 9. The average velocity versus time step in EBML with the mixed sites at q ¼ 0:3 with
different Ro. The black solid line, the red circle line, the green star and the blue cross line denote
Ro ¼ 0;Ro ¼ 0:4;Ro ¼ 0:6 and Ro ¼ 0:8, respectively (Color figure online).

(a) (b) (c)

Fig. 10. Boxplots of the fitness value for three algorithms appearing in three time periods.
(a) The congestion period (8:00–8:20). (b) The half free flow period (10:30–10:50). (c) The free
flow period (20:30–20:50).
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always achieves the best performance in limited iterations. In three different time
periods, the QPSO algorithm has the largest fluctuation range, and discovers the timing
scheduling with the smallest fitness value. Compared with the PSO algorithm and the
RANDOM algorithm, the QPSO algorithm can find a better timing scheduling in
limited iterations.

4 Conclusion

An extended BML model (EBML) is proposed in this paper, which can model the
traffic flow in the actual urban road network with different two-way multi-lane roads.
Based on the scheduling simulation, the QPSO algorithm in EBML is used to improve
the urban traffic flow by optimizing the timing scheduling of urban traffic lights.
Several conclusions can be draw: (1) EBML exhibits a sharp phase transition from free
flow to global jams. The critical density in EBML is distinctly smaller than that in
BML, which means that the actual urban traffic flow can easily trap into global jams
than the ideal situation in existing variants based on BML; (2) The experiments show
that the interference among different site capacities in the actual urban traffic condition
is the main reason why the traffic flow in EBML is jammed easily. Overpasses can
alleviate the interference of EBML; (3) By on the scheduling simulation of EBML, the
QPSO algorithm is improved to apply in the timing scheduling of urban traffic lights.
Compared with the PSO algorithm and the RANDOM algorithm, the QPSO algorithm
in EBML can find the better optimization results in the limited time.
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Abstract. Detecting concurrency bugs is becoming increasingly impor-
tant. Many pattern-based concurrency bug detectors focus on the specific
types of interleavings that are correlated to concurrency bugs. To detect
multiple types of concurrency bugs, general detectors focus on multi-
ple types of interleaving patterns, including data race pattern, atomicity
violation pattern, and atomic-set violation pattern. Unfortunately, they
suffer from redundant analysis due to repeated interleavings, which may
affect the efficiency of concurrency bug detection. Hence, we propose an
approach to identify the repeated interleavings. To the best of our knowl-
edge, this is the first approach that can prune repeated interleavings to
improve the efficiency of concurrency bug detection. We apply our app-
roach to existing general detectors (PECAN and Maple) to avoid analyz-
ing repeated interleavings. We evaluated the general detectors with and
without our approach, respectively. The experimental results show that
the bug detection results are not affected. With our approach, the bug
detection time of PECAN and Maple are reduced by 40.0 % and 44.4 %,
respectively. Additionally, our approach does not affect the overhead of
bug detection, and consumes only a little memory.

Keywords: Concurrency bug detection · Repeated interleaving ·
Pattern-based · Interleaving pattern · General detector

1 Introduction

Concurrent programs are prone to concurrency bugs. These bugs are difficult to
be detected due to their non-deterministic characteristics. Even if a programmer
manages to construct a test input that can trigger the bug, it is often difficult
to expose the hidden bug. The concurrency bugs are hard to be detected during
in-house testing and may cause severe damages after software deployment [1].

Recently, many detectors are proposed to detect concurrency bugs. RELAY
[2], RaceMob [3], and SimRT [4] have focused on detecting data races. A data
race occurs when two threads are about to access the same memory location, and
at least one of the two accesses is a write, and the relative ordering of the two
accesses is not enforced using synchronization primitives. These detectors can
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 175–188, 2015.
DOI: 10.1007/978-3-319-27140-8 13
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effectively detect the data races. However, atomicity violation is also one of the
important types of concurrency bugs, and widely exists in concurrent programs.
An atomicity violation occurs when the assumed atomicity is broken if the code
region is unserializably interleaved by accesses from another thread. To detect
atomicity violations, Ctrigger [5] and AssetFuzzer [6] are proposed. The above
detectors are limited to detect single type of concurrency bug. Programmers
need to use several existing detectors to detect all types of concurrency bugs,
each of which detects a specific type of concurrency bug. However, using several
detectors separately may increase detecting time significantly, and understanding
different formats of results may need additional effort.

Fortunately, many general detectors are proposed to detect multiple types of
concurrency bugs [7–10]. Unlike the detectors such as RELAY [2] and Ctrigger
[5] which focus on specific type of interleaving pattern, general detectors are
based on multiple types of interleaving patterns that can detect not only data
races, but also atomicity violations and atomic-set violations. Therefore, the
general detectors can detect more concurrency bugs during in-house testing.
However, in those general detectors, we observe that repeated potential inter-
leavings are analyzed since different interleaving patterns overlap, which reduces
the efficiency of concurrency bug detection.

Fig. 1. A piece of code from MySQL

The general detectors always consist of multiple steps. The most important
steps are predicting step and verifying step. The predicting step examines sev-
eral dynamic executions to predict a set of potential interleavings based on the
interleaving patterns. The verifying step actively controls thread schedule to
verify the potential interleavings in many re-executions. However, the first step
may produce many repeated potential interleavings, bringing many repeated
re-executions in the second step, which affects the efficiency of concurrency
bug detection. Figure 1 shows an example. Three potential interleavings (two
data races and one atomicity violation) would be predicted in the first step.
If the potential interleaving S1->S3->S2 (S1, S2, S3 are statements or static
instructions) has been verified, it is unnecessary to verify the other two poten-
tial interleavings S1->S3 and S3->S2 again. Since the instance iS1->iS3->iS2
of S1->S3->S2 denotes three memory access events between two threads, and
the instance iS1->iS3 of S1->S3 denotes two memory access events between
two threads. We observe that it is unnecessary to verify the instance iS1->iS3
as another instance iS1->iS3->iS2 has contained this instance. If the repeated
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potential interleavings S1->S3 and S3->S2 are not verified in re-executions, the
efficiency would be improved significantly.

Based on our observation, we approximately evaluated the repeated poten-
tial interleavings in most of the general detectors. For example, in PECAN [7],
66.7 % of the potential interleavings are analyzed repeatedly in program Cache4j,
and 57.1 % of the potential interleavings are analyzed repeatedly in program
ArrayList. Therefore, there is a large space to improve the efficiency.

This paper proposes a new approach to identify repeated interleavings so that
the general detectors can avoid verifying repeated potential interleavings. Our
approach is not designed for data race detectors (e.g. RaceMob [3]) and atomicity
violation detectors (e.g. Ctrigger [5]), since they focus on the specific interleaving
pattern, and there are no repeated interleavings analyzed. Actually, multiple
types of concurrency bugs exist in concurrent programs. General detectors that
are based on general interleaving patterns suffer from verifying repeated potential
interleavings.

To identify the repeated potential interleavings, we compare any two poten-
tial interleavings, checking whether one potential interleaving is repeated due
to the other. We propose some metrics to determine whether a potential inter-
leaving is repeated. If all memory access events of one potential interleaving
(P1 ) are contained in another potential interleaving (P2 ), and the sequences of
these memory access events in these two potential interleavings are consistent,
we determine P1 as a repeated potential interleaving. Based on the metrics, we
can compare the repeated relations between each pair of potential interleavings,
and compute a set of potential interleavings which is necessary for verification.
Therefore, general detectors can verify fewer potential interleavings, improving
the efficiency of bug detection.

Overall, this paper makes the following contributions:

(1) To our knowledge, this is the first approach that can identify
repeated potential interleavings to improve the efficiency of concur-
rency bug detection. Through analyzing potential interleavings produced by
the general detectors, many repeated interleavings are identified and pruned.
Therefore, the general detectors can verify fewer potential interleavings, improv-
ing the efficiency significantly.
(2) We propose some metrics to determine whether a potential inter-
leaving is repeated. To avoid analyzing repeated potential interleavings in
re-executions, we compare the memory access events of one potential interleav-
ing with other potential interleavings, determining whether this interleaving is
repeated.
(3) We apply our approach to two general detectors (PECAN [7] and
Maple [8]), and evaluate the enhanced general detectors on a number
of real-world concurrent programs. Results show that the bug detection
results are not affected due to our approach. With our approach, the bug detec-
tion time of PECAN and Maple are reduced by 40.0 % and 44.4 %, respectively.
Additionally, our approach does not affect the overhead, and consumes only a
little memory.
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2 Background

Concurrency bugs are difficult to be detected due to a combination of two condi-
tions to manifest them. First, they require the right set of program inputs, which
is exponential in number. Second, they also require the right thread interleaving,
which is hidden in huge interleaving space [16]. Many previous tools assume that
input design is out of the scope of concurrency bug detection, and this paper
follows the same assumption.

Since different types of concurrency bugs always consist of different numbers
of memory access events, some concurrency bugs reported by general detectors
may be contained in other concurrency bugs. The repeated analysis may affect
the efficiency of bug detection. The repeated results also need additional effort
to understand. Figure 2(a) shows that the atomicity is violated due to data race.
Thread 1’s read-write sequence may falsely mingle with thread 2’s read-write
sequence to the same shared variable, leading to program’s misbehavior. Since
two threads read/write the same shared variable buf->outcnt, general detectors
would report two data races and one atomicity violation in this piece of code,
which may need additional effort. We observe that general detectors repeatedly
analyze the interleavings that are correlated with data races. Figure 2(b) shows
an atomicity violation which is data race free. In this piece of code, the three
memory access events are protected by the common lock. The general detectors
will report no data races. Therefore, there are no repeated interleavings analyzed.

According to the study on real world concurrency bug characteristics [20],
most of the concurrency bugs involve no more than two shared variables. The
study also finds that concurrency bugs can deterministically manifest, if certain
orders among at most four memory accesses are enforced. These findings guide
us to propose some metrics to determine whether an interleaving is repeated.

To detect the real concurrency bugs, general detectors need to verify all
potential interleavings in many re-executions. During each re-execution, the
general detectors actively control thread schedule to verify one potential inter-
leaving. However, the repeated potential interleavings may cause the general
detectors to repeatedly re-execute the program. We observe that there is a large
space to improve the efficiency of general detectors.

Fig. 2. Concurrency bugs from MySQL and Apache
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3 Design and Implementation

3.1 Overview

General detectors such as PECAN [7] and Maple [8] always consist of two main
phases. They use imprecise technique to predict potential interleavings. Then,
for each potential interleaving, they re-execute the program by controlling thread
schedule, verifying whether the potential interleaving can lead to a real concur-
rency bug. Unfortunately, some potential interleavings are verified repeatedly,
affecting the efficiency. We propose a new approach to identify the repeated
potential interleavings. Figure 3 shows the new architecture of a general detector,
comprising three main components: (1) the predictor, (2) the iAnalyzer (inter-
leaving analyzer), and (3) the verifier. The predictor analyzes program trace to
predict potential interleavings. The verifier actively controls thread schedule to
verify the potential interleavings.

Fig. 3. New architecture of general detector

The iAnalyzer component is our key technique. It inputs a set of potential
interleavings, and identifies the repeated ones, and outputs a set of potential
interleavings which is necessary for verification. The iAnalyzer works in two
phases. It first categorizes all potential interleavings into N groups. The poten-
tial interleavings with the same number of memory access events are in the same
group. Then, it traverses all the potential interleavings in each group, compar-
ing each interleaving with all the potential interleavings in other groups, and
determining whether it is repeated.

3.2 Definition

Through investigating many real-world concurrency bugs, we observe that the
manifestations of most concurrency bugs involve no more than two shared vari-
ables and no more than four memory access events. According to [7,8,20], the
interleaving patterns defined in general detectors are sequences of 2–4 mem-
ory access events generated by two different threads (see Fig. 4). A memory
access event is a shared memory access (either a read operation or a write
operation) by a thread. We use Event(i) to describe the interleaving patterns.
For example, Pattern1 can be described as Event1->Event2, and Pattern2 can
be described as Event1->Event2->Event3. An instance of Pattern1 can be
described as event1->event2, and an instance of Pattern2 can be described as
event1->event2->event3.



180 Z. Wu et al.

Fig. 4. Interleaving patterns in most general detectors

To help programmers to understand the concurrency bugs, general detectors
always report concurrency bugs as sequences of statements executed by two
different threads. For example, the general detectors will report S1->S3->S2 as
a concurrency bug in Fig. 1. The instance of each pattern can also be described
as 2–4 statements. Different from the general detectors that analyze the dynamic
instances of statements to infer potential interleavings, our work is based on the
inferred potential interleavings.

3.3 Determining Repeated Potential Interleavings

To determine whether an instance p1 of Pattern1 is repeated, we check whether
both of the two events of p1 equal the two events of another instance p2 of
Pattern2 (or another instance p3 of Pattern3), and the sequence of these two
events are consistent in these two instances. The events are statements or static
instructions that would access the same shared variables. To check whether two
events are equal, we only need to compare the statements or static instructions.
Therefore, two potential interleavings (data races) in Fig. 1 are both repeated
since the other potential interleaving (atomicity violation) has already contained
them. If the general detectors have verified S1->S3->S2, it is unnecessary to
verify S1->S3 and S3->S2. Our strategy is checking whether the two events
of p1 equal the first and the second events of p2, or equal the second and the
third events of p2. If so, we say p1 is repeated due to p2. If we can determine
p1 is repeated due to any instance of Pattern2, we continue to analyze the
other potential interleavings. If p1 cannot be determined repeated due to all
the instances of Pattern2, we compare p1 with all the instances of Pattern3.
Similarly, we check whether the two events of p1 equal the first and the second
events of p3, or equal the third and the fourth events of p3. If so, we can say p1
is repeated due to p3.

To determine whether an instance p2 of Pattern2 is repeated, we need to
check whether all the three events of p2 equal the three events of another instance
of Pattern3, and the sequences of these three events are consistent. Since the
instances of Pattern3 contain four events, there are no other instances of other
patterns which can contain all of these four events. Therefore, all the instances
of Pattern3 are not repeated in our current metrics.
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The definition of interleaving patterns in different general detectors may be a
little different from each other, but the strategies to determine repeated potential
interleavings are similar.

We have discussed how to determine whether a potential interleaving (an
instance of one interleaving pattern) is repeated based on the definition of inter-
leaving patterns. Our current metrics indicate that the potential interleavings
which have 2–3 memory access events would be determined as repeated inter-
leavings. Therefore, we need to check each pair of potential interleavings which
has different number of memory access events.

Before comparing each pair of potential interleavings, we group all potential
interleavings based on the number of events. The potential interleavings which
have the same number of events are grouped into the same group. After grouping,
we check all potential interleavings in all groups, identifying all the repeated
ones. Then, before verification, we prune the repeated potential interleavings.
Consequently, to detect the real concurrency bugs, the general detectors need to
verify fewer potential interleavings, improving the efficiency.

3.4 Applying Our Approach to PECAN and Maple

We have implemented our approach as a Java tool which is called iAnalyzer. We
applied iAnalyzer to two existing general detectors (PECAN [7] and Maple [8]),
checking whether the efficiency of these two detectors are improved.

PECAN. PECAN is a persuasive bug prediction tool that can detect not only
atomicity violations but also data races and atomic-set violations. It takes the
bytecode of a Java program and produces two versions of this program: the
record version and the replay version. The record version is executed for trace
collection, and the replay version is used to create a concrete execution that
exposes the predicted potential interleavings. PECAN executes the record ver-
sion to collect trace. It then analyzes the collected trace, and predicts potential
interleavings. To find the true concurrency bugs, it controls thread schedule to
enforce a deterministic execution order of all the events, creating the potential
interleaving, checking whether program failure occurs. If so, one true concur-
rency bug is exposed and detected. The interleaving patterns defined in PECAN
are generic, which makes it can detect multiple types of concurrency bugs.

PECAN comprises four jar files that are responsible for instrumenting Java
programs statically, collecting the trace of memory access events, predicting
potential interleavings, and controlling thread schedule to verify the potential
interleavings. These jar files can be executed separately. Therefore, it is con-
venient to apply iAnalyzer to PECAN. We use iAnalyzer to read the potential
interleavings, identifying the repeated ones. Then, iAnalyzer deletes the schedule
files which are related to the repeated interleavings. Finally, PECAN re-executes
the program fewer times to verify the remaining potential interleavings.
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Maple. Maple is a new interleaving coverage-driven testing tool that can expose
untested interleavings as many as possible. It memorizes tested interleavings and
actively seeks to expose untested interleavings for a given test input. To detect
multiple types of concurrency bugs, Maple defines a set of interleaving patterns,
including atomicity violation pattern, data race pattern, atomic-set violation
pattern. Maple works in two phases. First, it uses an online imprecise technique
to predict potential interleavings that can potentially be exposed for a given
test input. The predicted potential interleavings are untested before. Second,
the predicted potential interleavings are exposed by actively controlling thread
schedule. Maple avoids testing the same interleavings across different test inputs,
improving the efficiency of concurrency bug detection.

Maple is implemented as a binary instrumentation tool, and invoked by
Python. To apply iAnalyzer to Maple, a little modification is needed. We mod-
ified some Python code to execute iAnalyzer between the predictor and the
verifier. Before the verifier works, iAnalyzer reads potential interleavings from
DB files, identifying and pruning the repeated ones, and saving the remaining
potential interleavings into the same DB files. Therefore, Maple would re-execute
the program fewer times to verify fewer potential interleavings.

4 Evaluation

The goal of our work is to identify repeated interleavings to improve the effi-
ciency. Accordingly, our evaluation aims at two aspects:

(1) Effectiveness-will our approach affect the bug detection results? To answer
this question, we evaluated the bug detection results of PECAN and Maple, with-
out and with iAnalyzer, respectively. Whether the results of these two enhanced
detectors are affected was to evaluate the effectiveness of iAnalyzer.
(2) Efficiency-how efficient is our approach for general detectors? To answer this
question, we evaluated the bug detection time of PECAN and Maple. We com-
puted how much time is reduced by iAnalyzer. We also evaluated the overhead
of PECAN and Maple, checking if the overhead is affected due to iAnalyzer.

4.1 Benchmarks

PECAN and Maple are implemented for different programming languages. We
evaluated them on different programs. Table 1 shows the benchmarks. Column
1 shows the ID of programs. Column 2, 3 show the names and lines of programs
for PECAN. Column 4, 5 show the names and lines of programs for Maple.

Programs for PECAN. Among these programs, 4 (#1 to #4) are open
libraries from JDK 1.4.2. We write test cases to test these libraries. 1 (#5)
is an standard benchmark from the Java Grande Forum. 2 (#6 to #7) are from
IBM ConTest. 1 (#8) is a thread-safe implementation of cache for Java objects.

Programs for Maple. Among these programs, 3 (#1 to #3) are kernel pro-
grams. 1 (#4) is a parallel implementation of the bzip2 block-sorting file com-
pressor. 1 (#5) is a parallel file scanning tool. 1 (#6) is a file downloader. 2 (#7
to #8) are scientific programs from splash2 [21].
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Table 1. Programs for PECAN and Maple

PECAN Maple

ID Programs LOC Programs LOC

1 ArrayList 5,866 StringBuffer 180

2 HashSet 7,086 CircularList 155

3 LinkedList 5,979 MySQL* 120

4 TreeSet 7,352 Pbzip2 1,957

5 RayTracer 1,923 Pfscan 944

6 MergeSort 456 Aget 2,527

7 BuggyProg 385 FFT 901

8 Cache4j 3,897 Radix 787

4.2 Bug Detection Results

Since PECAN and Maple are designed to detect general concurrency bugs, the
results reported by them always have some repeated results. For example, in
Fig. 1, the detectors may report two concurrency bugs: S1->S3->S2 and S3->S2.
However, the programmers only need to fix bug S1->S3->S2. Therefore, bug
S3->S2 is repeatedly reported. To count the correct number of reported con-
currency bugs, we group the reported bugs according to the technique in Griffin
[22]. The grouping strategy is: if the memory accesses of one concurrency bug
(bug1 ) are contained in another concurrency bug (bugX ) and the sequence of
these memory accesses is consistent, we determine bug1 as a repeated bug.

In our evaluation, the repeated results are omitted. To evaluate the effec-
tiveness of iAnalyzer, we compared the results of general detectors with and
without iAnalyzer, respectively (Table 2). Column 2, 3 show the bug detection
results (the number of concurrency bugs) of PECAN, without and with iAna-
lyzer, respectively. As we can see, the concurrency bugs reported by PECAN
and Maple with iAnalyzer are the same as without iAnalyzer, which indicates
that iAnalyzer has not affected the bug detection results.

Table 2. Bug detection results of PECAN and Maple, without and with iAnalyzer

PECAN Maple

Programs Original By iAnalyzer Programs Original By iAnalyzer

ArrayList 2 2 StringBuffer 3 3

HashSet 5 5 CircularList 3 3

LinkedList 3 3 MySQL* 1 1

TreeSet 4 4 Pbzip2 1 1

RayTracer 1 1 Pfscan 2 2

MergeSort 1 1 Aget 1 1

BuggyProg 1 1 FFT 2 2

Cache4j 2 2 Radix 8 8
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4.3 Performance

The key contribution of our work is to improve the efficiency of concurrency bug
detection. By iAnalyzer, general detectors can avoid verifying repeated inter-
leavings, and the number of program re-executions is also reduced.

We evaluated the bug detection time of general detectors, without and with
iAnalyzer, respectively, checking whether iAnalyzer can reduce the time. Table 3
shows the experimental results of PECAN and Maple. Column 2, 3 report the bug
detection time of PECAN, without and with iAnalyzer, respectively. Column 6, 7
report the bug detection time of Maple, without and with iAnalyzer, respectively.
The reported time numbers are the average across 10 runs. As we can see, the
bug detection time of PECAN is reduced significantly, ranges from 3.9 % to
54.3 %. Therefore, iAnalyzer reduces the bug detection time of PECAN, with an
average of 40.0 %. For Maple, the reduced time ranges from 10.2 % to 89.8 %,
and on average is at about 44.4 %.

Table 3. Bug detection time of PECAN and Maple, without and with iAnalyzer

PECAN (ms) Maple (second)

Programs Original By iAna Reduced Programs Original By iAna Reduced

ArrayList 898 410 54.3 % StringBuffer 951.8 770.6 19.0 %

HashSet 827 421 49.1 % CircularList 74.8 24.0 67.9 %

LinkedList 2,105 1,334 36.6 % MySQL* 367.6 323.6 12.0 %

TreeSet 625 312 50.1 % Pbzip2 57.1 11.4 80.0 %

RayTracer 470,979 235,936 49.9 % Pfscan 476.2 48.5 89.8 %

MergeSort 8,034 4,789 40.4 % Aget 735.2 532.2 27.6 %

BuggyProg 9,188 8,832 3.9 % FFT 13,329.3 11,967.1 10.2 %

Cache4j 7,842 6,308 19.6 % Radix 86.1 43.9 49.0 %

Average 40.0 % Average 44.4 %

To identify the repeated potential interleavings, iAnalyzer traverses all the
potential interleavings, which may affects the efficiency of general detectors.
Since iAnalyzer is an off-line tool, the time spent on each program is small. For
PECAN, we evaluated the time spent by iAnalyzer on each program. The average
time is only 15.5 ms. Comparing with the time spent by PECAN, iAnalyzer
would affect the efficiency only a littile. For Maple, the average time spent by
iAnalyzer is 390 ms, which is also much smaller than the time spent by Maple.

Since general detectors dynamically control thread schedule to verify poten-
tial interleavings, runtime overhead is imposed due to instrumentation. We eval-
uated the overhead, without and with iAnalyzer, respectively. Table 4 shows the
average overhead on each program. Column 2, 3 report the overhead of PECAN,
without and with iAnalyzer, respectively. Column 5, 6 report the overhead of
Maple, without and with iAnalyzer, respectively. Since general detectors execute
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Table 4. Overhead of PECAN and Maple, without and with iAnalyzer

PECAN Maple

Programs Original By iAnalyzer Programs Original By iAnalyzer

ArrayList 1.4X 1.3X StringBuffer 2.1X 2.6X

HashSet 1.0X 1.1X CircularList 2.5X 2.7X

LinkedList 2.2X 2.3X MySQL* 1.8X 1.1X

TreeSet 1.5X 1.9X Pbzip2 15.4X 12X

RayTracer 4.5X 4.1X Pfscan 9.7X 9.4X

MergeSort 1.7X 1.6X Aget 34.8X 35.3X

BuggyProg 2.5X 2.8X FFT 14.3X 13.9X

Cache4j 0.5X 0.7X Radix 13.8X 13.3X

the program multiple times to verify multiple potential interleavings, the over-
head of each execution may be different. The reported overhead numbers are
the average across all executions of each program. As we can see, the average
overhead of each program is nearly not affected.

Additionally, we evaluated the memory used in each phase of PECAN. Table 5
shows the memory used by PECAN and iAnalyzer. Column 2 reports the mem-
ory used by instrumentation phase of PECAN. This phase consumes much more
memory than others, because it analyzes the control flow graph of the whole
program and instruments logging and replaying functions before memory access
instructions. Column 3, 4 report the memory used by monitor phase and replay
phase, respectively. Column 5 reports the memory used by iAnalyzer, which
indicates that our approach uses only a little memory.

Table 5. Memory used by PECAN and iAnalyzer

Programs Instrumentation Record Replay iAnalyzer

ArrayList 1445M 48M 45M 4M

HashSet 1405M 49M 46M 8M

LinkedList 1441M 49M 47M 9M

TreeSet 1485M 50M 47M 10M

RayTracer 1312M 48M 42M 7M

MergeSort 1370M 49M 48M 6M

BuggyProg 1276M 49M 49M 5M

Cache4j 1381M 229M 163M 13M

Average 1397M 68M 59M 7M
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5 Discussion

Since the potential interleavings are verified dynamically, general detectors may
produce false negatives due to limited execution paths [13,23]. The dynamic
verification can accurately identify the real bugs that are in execution paths.

To expose the real concurrency bugs quickly, what potential interleavings
should be verified first is also important. The ranking strategy used in Ctrigger
[5] exposes the deeply hidden atomicity violations more quickly. Our approach
analyzes the potential interleavings, identifying and pruning the repeated ones.
It is also easy to rank the remaining potential interleavings.

Additionally, general detectors always instrument the program to monitor
execution behaviors and dynamically control thread schedule to verify potential
interleavings so that runtime overhead is imposed. Our approach cannot reduce
the number of instrumentation so that the overhead is not reduced. The efficiency
is improved due to the pruning of repeated interleavings. We also try to design
some strategies (hardware support [16]) to achieve lower overhead.

6 Related Work

Recently, many detectors are proposed to detect concurrency bugs. Some detec-
tors focus on data races [2–4,11–13]. RELAY [2] is a lockset-based race detector
which uses inter-procedural analysis. It flags a race whenever it sees at least two
accesses to the same memory location, and at least one of the accesses is a write,
and the accesses are not protected by at least one common lock. RaceFuzzer [13]
is a dynamic race detector that first uses imprecise information to compute a
set of data races. It then executes the program by controlling thread schedule,
detecting the harmful races. RaceMob [3] is a crowdsourcing based approach
for race detection. RD2 [14] is dynamic commutativity race detector which can
detect the races due to concurrent interaction at the library interface.

However, atomicity violation is also common. Many detectors have been pro-
posed [5,6,15]. AVIO [15] uses access interleaving invariants to detect atomicity
violations. Ctrigger [5] focuses on unserializable interleavings that are correlated
to atomicity violations. It first uses trace analysis to identify feasible unserial-
izable interleavings. Then, it actively controls thread schedule to exercise low-
probability interleavings, and exposes atomicity violations. AssetFuzzer [6] is an
active randomized testing technique which can detect atomic-set serializability
violations. Kivati [16] uses hardware watchpoints to efficiently detect and prevent
atomicity violations. DoubleChecker [17] achieves lower overhead than previous
tools, making dynamic atomicity checking more practical.

Unfortunately, both race detectors and atomicity violation detectors are easy
to miss concurrency bugs due to limited interleaving patterns. For example, the
race detectors cannot detect some atomicity violations in concurrent programs.
To detect more types of concurrency bugs, general detectors are proposed [7–10].
PECAN [7] uses persuasive bug prediction technique, which can detect not only
atomicity violations, but also data races and atomic-set violations. These detec-
tors define general interleaving patterns, including data race pattern, atomicity
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violation pattern. They can detect multiple types of concurrency bugs. Since gen-
eral interleaving patterns defined in these detectors overlap each other, repeated
potential interleavings may be analyzed, which affects the efficiency of bug detec-
tion. Our approach can identify repeated potential interleavings.

7 Conclusion and Future Work

This paper proposes a new approach that can identify and prune repeated poten-
tial interleavings for concurrency bug detection. We apply our approach to two
general detectors (PECAN [7] and Maple [8]). The experimental results show
that our approach would not affect the results, and the efficiency is improved.
To our knowledge, this is the first approach that is introduced for concurrency
bug detection to improve the efficiency. Future work will concern several aspects.
First, we plan to combine with other techniques [24–27] to detect more bugs.
Second, we plan to apply our approach to more general detectors. Third, we plan
to use deterministic techniques [18,19] to reduce interleaving space.
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Abstract. In addition to the traditional reactive fault-tolerant tech-
nologies, such as erasure codes and replication, proactive fault tolerance
can be used to improve the system’s reliability significantly. To the best
of our knowledge, however, there is no previous publications on the relia-
bility of such a cloud storage system except for those on RAID systems.
In this paper, several Markov-based models are respectively proposed
to evaluate the reliability of the cloud storage systems with/without
proactive fault tolerance from the system perspective. Since proactive
measure should be coupled with some reactive measure to ensure the
systems reliability, the reliability model for such a system will be very
intricate. To facilitate model building, we propose the basic state transi-
tion unit (BSTU), to describe the general pattern of state transition in
the proactive cloud storage systems. BSTU serves as the generic “brick”
for building the overall reliability model for such a system. Using our
models, we demonstrate the benefits that proactive fault tolerance has
on a system’s reliability, and also estimate the impacts of some system
parameters on it.

Keywords: Cloud storage system · Proactive fault tolerance · Reactive
fault tolerance · Global reliability model · Rack aware replication

1 Introduction

Replication and erasure codes are the traditional means by which cloud stor-
age systems are made reliable. If some replicas are lost due to node failures,
other survived replicas can be used to restore them to maintain the same level
of reliability. This is a typical reactive fault-tolerant manner. Recently, some
researchers have proposed deploying proactive fault tolerance on storage sys-
tems [1–7], which undertakes to predict failures and handle them in advance.
The main advantage of proactive fault tolerance is the early head start for the
rebuild while the dying drive/node is still alive.
c© Springer International Publishing Switzerland 2015
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At present, the research work on the reliability for cloud storage system,
has mainly been focused on a single file or an independent peer, and does not
consider the rack aware placement strategy which is common in the current
systems. Moreover, as said in [8], since proactive fault tolerance can not avoid
failure completely, it is also necessary to be coupled with a reactive fault tolerance
measure to ensure a system’s reliability. Therefore the state transitions of the
system are very intricate. So far, there is no relevant research on reliability for
such a cloud storage system except for those on RAID-5/6 systems [7,8].

In this work we use Markov chain based methods to respectively present
several global reliability evaluation models for the cloud storage systems with/
without proactive fault tolerance. To construct the complex and intractable reli-
ability models for systems with proactive fault tolerance, we propose a generic
“brick” – basic state transition unit (BSTU), to describe the fundamental laws of
state transitions in the model. Using our reliability models, we deduce the actual
reliability gaps between systems with different replication factors, demonstrate
the effects that proactive fault tolerance has on the reliability of a system given
a parameterized sensitivity, and also estimate the impacts of other system para-
meters.

2 Related Work

Many studies [9,10] were on the distributed file system based on P2P networks,
but their focuses were on the reliability of a single file or an independent peer,
rather than on the systematic study of data reliability. Based on Markov model,
Lian et al. [11] provided an analytical framework to reason and quantify the
impact of replica placement policy on storage system reliability. However they
did not consider the real placement strategy that replicas are random distributed
across racks and nodes. And, a few studies had used probabilistic methods [12,13]
to estimate the reliability of the system, however, the probability of data loss in
these works took into account only the time spent by the system in failure-free
state and ignored the rebuild times, which made their results not reflecting a
realistic picture of the system’s reliability. Moreover, KK Rao et al. [14] presented
Markov models to determine the reliability of the high-end enterprise storage
systems, which were realized through networked storage nodes. Our work is
similar to KK Rao’s, however we focus on the effect of failure prediction for
rack aware replication, which is a common placement policy used in the current
systems.

For storage systems with proactive fault tolerance, there are only few studies
focusing on their reliability. Eckart et al. [8] first used Markov models to rigor-
ously demonstrate the effects that failure prediction has on a system’s MTTDL
(mean time to data loss). They only devised models for a single hard drive,
RAID-1, and RAID-5 systems. In our previous work [7], we extended this study
into RAID-6 systems. However, to our best knowledge, there is no study on such
cloud storage systems based on replication schemes.



Global Reliability Evaluation for Cloud Storage Systems 191

3 Reliability Models for Reactive Cloud Storage Systems

Assuming independent exponential probability distributions for failure and repair
of individual storage nodes, we build the Markov reliability evaluation models
for traditional reactive cloud storage systems.

Consider cloud storage systems with r racks and each rack having n nodes,
replicas of each data block are spread across nodes and racks. The systems are
block-based storage systems, and maintain two invariants: first, no two replicas
of a data block are stored on the same node; and second, replicas of a data block
must be found on at least two racks. We use c to denote storage capacity of each
node, λ to denote failure rate of a node, and μ to denote rebuild rate of a failure.

3.1 Reactive with Replication Factor Two

In a system with replication factor 2, every user data block is replicated 2 times
and the 2 replicas must be stored on two separate racks. We assume that there
have been enough data blocks in the system and they are fully dispersed, such
that any pair of nodes from different racks share at least one data block. A system
with replication factor 2 can tolerate any single node failure and a portion of t
node failures for 2 ≤ t ≤ n. System data loss occurs if and only if node failures
occur on two or more racks.

We build the reliability model for a system with replication factor 2 as shown
in Fig. 1. In this model, there are n+2 states in total, which fall into three types:
(1) S0 represents a completely healthy state, during which there is no node failure
at all; (2) Si, where 1 ≤ i ≤ n, represent the degraded states, during which i
nodes have already failed and all the i failures are on the same rack; (3) DL
represents the absorbing state at which point true data loss occurs.

The system begins in the healthy state S0, and will transfer to state S1

with the rate of rnλ, when a storage node failure occurs. During the state S1,
the system initiates a rebuild process to repair the failure, then the system can
transfer to any one of three states: S0, with the rate of μ, if the failure has been

S0 S1 S2 SnS3

DL

rn (n-1) (n-2)

2 3

(r-1)n

(r-1)n (r-1)n
(r-1)n

Fig. 1. Markov model for replication
factor two without failure prediction.
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Fig. 2. Markov model for replication
factor three without failure prediction.
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repaired at rate μ; S2, with the rate of (n − 1)λ, if another failure occurs on the
same rack with the existing one before the rebuild process is finished; or DL,
with the rate of (r − 1)nλ, if a new failure occurs on the other rack before the
rebuild process is finished, and at this point, since there have happened some
node failures on two different racks, the system goes into data loss state.

Similarly, during the state Si (1 < i < n), the system can transfer to any
one of three states: Si−1, with the rate of iμ, if one of the i failures has been
repaired; Si+1, with the rate of (n− i)λ, if a new failure occurs on the same rack
with the existing ones; or DL, with the rate of (r − 1)nλ, if a new failure occurs
on a previously healthy rack. During the state Sn, when all nodes on some rack
have failed, the system is already in the critical condition and can transfer to
either of two states: Sn−1, with the rate of nμ, if one of the n failures has been
repaired; DL, with the rate of (r − 1)nλ, if a new failure occurs.

3.2 Reactive with Replication Factor Three

In a system with replication factor 3, every user data block is replicated 3 times,
and then the 3 replicas need to be stored in some 3 nodes out of which 2 nodes
are on a same rack and 1 node is on another rack. We assume that there have
been enough data blocks in the system and they are fully dispersed, such that
any set of 3 nodes, in which 2 nodes are on a single rack and 1 node is on another
rack, shares replicas of at least one data block.

The system can tolerate more than 2 failures without data loss in the follow-
ing two cases: first, all the node failures happen to be on a single rack; or second,
all the node failures are on different racks which means that there is up to one
node failure on each rack. Therefore, the system can tolerate all the single and
double node failures and a portion of t node failures for 3 ≤ t ≤ max(n, r).

We construct the reliability model for systems with replication factor 3 as
shown in Fig. 2. In this model, there are r + n + 2 states in total, which can
be classified into five types: (1) S0 represents a completely healthy state; (2) S1

denotes the degraded system state, during which 1 node has already failed; (3)
SAi, where 2 ≤ i ≤ r, denote the degraded system states, during which i nodes
have already failed and they are separately on i different racks; (4) SBi, where
2 ≤ i ≤ n, denote the degraded system states, during which i nodes have already
failed and all of them are on a single rack; (5) DL is the absorbing state at which
point data loss occurs.

The system begins in the healthy state S0, and can transfer to state S1 with
the rate of rnλ, when a node failure occurs in the system. During the state S1,
the system can transfer to any one of three states: S0, with the rate of μ, if the
failure has been repaired; state SA2, with the rate of n(r − 1)λ, if a new failure
occurs on the other rack; or SB2, with the rate of (n−1)λ, if a new failure occurs
on the same rack with the existing one.

During the state SAi, the system can transfer to any of three states: state
SA(i+1), with the rate of n(r−i)λ, if a new failure occurs on a completely healthy
rack; state SA(i−1), with the rate of iμ, if one of the i failures has been repaired;
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or DL, with the rate of i(n − 1)λ, if any one of the i racks, which have already
a node failure on them, generates a new failure.

During the state SAr, when each rack in the system has had one failure on it,
the system is already in the critical condition and can transfer to either of two
states: SA(r−1), with the rate of rμ, if one of the r failures has been repaired; or
DL, with the rate of r(n − 1)λ, if a new failure happens.

During the state SBi, the system can transfer to either of two states: SB(i+1),
with the rate of (n − i)λ, if a new node failure occurs on the same rack with
the existing ones; SB(i−1), with the rate of iμ, if one of the i failures has been
repaired; or DL, with the rate of n(r−1)λ, if a new failure occurs on a previously
healthy rack.

During the state SBn, when all nodes on some rack have failed, the system is
already in the critical condition and can transfer to either of two states: SB(n−1),
with the rate of nμ, if one of the n failures has been repaired; or DL, with the
rate of n(r − 1)λ, if a new failure happens.

4 Reliability Models for Systems with Proactive
Fault Tolerance

In addition to the assumption of independent exponential probability distribu-
tions for failure and repair of individual storage nodes, we also assume indepen-
dent exponential probability distributions for node warnings and their repairs,
and then construct the Markov reliability models for the proactive cloud storage
systems.

4.1 Basic State Transition Unit (BSTU)

Since no node failure predictor can guarantee 100 % accuracy, it is necessary to
combine the proactive and reactive fault-tolerant measures to ensure reliability.
Therefore, the state transitions in the reliability model for such a system are
very intricate. One could not describe the model easily in the traditional way.
Therefore, we design a generic “brick” – basic state transition unit (BSTU), by
composing which we can derive the complex and intractable reliability models
for cloud storage systems with proactive fault tolerance.

Using the BSTU shown in Fig. 3, we want to describe the fundamental laws
of state transitions in the Markov models. The symbol p represents the failure
detection rate of predictors deployed in the systems, γ represents the failure rate
of a node warning, and μ represents the rebuild rate of a node failure/warning.

We use Pij to represent the degraded states during which i nodes have actu-
ally failed and j nodes are currently predicted imminent failures. The symbol
Aij is used to represent the probability that the system can tolerate the (i+1)-th
node failure without data loss and the new failure occurs on a previously com-
pletely healthy node. We use Bij to represent the probability that the system
can survive from the (i + 1)-th node failure and the new failure evolves out of a
warning. And Cij is used to represent the probability that the (i + 1)-th failure
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Pi(j-1) Pij Pi(j+1)

P(i-1)j

P(i+1)j
P(i+1)(j-1) DL
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j ij
(nr-i-j) ij Cij

Fig. 3. Basic state transition unit
(BSTU) for cloud storage systems with
proactive fault tolerance.
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Fig. 4. A reliability model composed
by BSTUs for a proactive cloud stor-
age system.

induces system data loss. For simplicity sake, we only draw the outgoing edges
and the corresponding transition rates for state Pij , and its incoming edges and
their transition rates can be drawn similarly. We can calculate the values of Aij ,
Bij and Cij for each Pij in some system using combinatorial analyses.

In addition to the basic internal states Pij , there are some boundary states,
the transitions of which are similar to the BSTU except for missing some incom-
ing and outgoing edges. For cloud storage systems with proactive fault tolerance,
we can construct their reliability models by combining a large number of internal
and boundary BSTUs. For example, Fig. 4 is a simple diagram for a reliability
model composed by 25 BSTUs for a proactive system, in which the state of data
loss is omitted.

Based on Fig. 4, we want to explain some concepts used in the following.
The BSTUs numbered 1–7 make up the upper boundary of the model. The
ones numbered 1, 8, 14, 19, 23 make up the left boundary. The ones numbered
7, 13, 18, 22, 25 make up the right boundary. The ones numbered 23–25 make
up the lower boundary. For the proactive systems with replication factor two,
the ones numbered 9–12, 15–17, 20, 21 are the internal states. For the proactive
systems with replication factor three, the ones numbered 8–13 make up the
second layer of the model, and the ones numbered 15–17, 20, 21 are the internal
states.

The systems with proactive fault tolerance have the same fault tolerance and
characteristics as the traditional reactive systems except for having the ability
of failure prediction and pre-warning treatment.

4.2 Proactive with Replication Factor Two

There are five types of state transition units at all, by combining which we
can construct the overall reliability model for the proactive storage system with
replication factor two.

The model is composed mainly of intact BSTUs, namely internal states.
During an internal state Pij (0 < i < n and 0 < j < nr − i), the system can
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transfer to any one of six states: (1) state P(i−1)j with the rate of iμ, if one of
the i node failures has been repaired; (2) state Pi(j−1) with the rate of jμ, if
one of the j node warnings has been repaired; (3) state P(i+1)j with the rate of
(nr− i− j)(1−p)Aijλ, if a healthy node fails, and fortunately it does not induce
system data loss; (4) state Pi(j+1) with the rate of (nr − i − j)pλ, if a healthy
node is predicted to be facing an impending failure; (5) state P(i+1)(j−1) with
the rate of jBijγ, if a warning node does not be repaired timely and actually
fails at last, however it does not induce system data loss fortunately; (6) state
DL with the rate of Cij , if a new failure does induce system data loss.

The value of Aij can be calculated by counting the proportion of healthy-to-
fail transitions occurring on the faulty rack. We use x to denote the number of
warnings which are on the same rack with the i failures. For some x, (n − i −
x)Cx

n−iC
j−x
n(r−1) is the number of cases for which one healthy node on the faulty

rack fails. The formula (nr − i − j)Cj
nr−i is the number of cases for which a

healthy node in the system fails. So the value of Aij can be calculated as:

Aij =

∑min(n−i−1,j)
x=0 (n − i − x)Cx

n−iC
j−x
n(r−1)

(nr − i − j)Cj
nr−i

. (1)

We calculate Bij by counting the proportion of warning-to-fail transitions
occurring on the faulty rack. We use x to denote the similar thing as in (1). For
some x, xCx

n−iC
j−x
n(r−1) is the number of cases for which a previously warning

node on the faulty rack fails. And, jCj
nr−i is the number of all cases for which a

previously warning node in the system fails. So the value of Bij can be calculated
as:

Bij =

∑min(n−i,j)
x=1 xCx

n−iC
j−x
n(r−1)

jCj
nr−i

. (2)

The Cij represent the probability that the new failure is not on the faulty
rack and incurs system data loss. The formula (1 − p)λ(nr − i − j)(1 − Aij)
denotes the probability that a failure occurring on a previously healthy node is
not predicted by the predictor and induces the system data loss. So the value of
Cij can be calculated as:

Cij = (1 − p)λ(nr − i − j)(1 − Aij) + jγ(1 − Bij). (3)

Besides the internal states, there are other four types of boundary states.
They are similar to the intact BSTUs, except for missing some transitions:

(1) when i = 0 and 0 < j < rn: states Pij make up the upper boundary
of the model, during which no node failure happens and just j warnings
are predicted by the predictor. Since i = 0, there is no state P(i−1)j and
transition Pij −→ P(i−1)j ; since the system can tolerate any single-failure,
there is no transition Pij −→ DL.
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(2) when j = 0 and 0 < i < n: states Pij make up the left boundary of the model,
during which i node failures have happened and no warning is predicted.
Accordingly, there is neither Pij −→ Pi(j−1) nor Pij −→ P(i+1)(j−1) transition.

(3) When i = n and 0 < j < (r − 1)n: states Pij make up the lower boundary
of the model, during which all nodes on some rack have failed already and j
warnings are also predicted. Since the system can tolerate at most n failures,
there is neither Pij −→ P(i+1)j nor Pij −→ P(i+1)(j−1) transition.

(4) when j = nr− i and 0 < i < n: states Pij make up the right boundary of the
model, during which i node failures have happened and all the rest nodes in
system are also predicted to be soon-to-fail. Since there is no healthy node
left, neither Pij −→ Pi(j+1) nor Pij −→ P(i+1)j exists.

4.3 Proactive with Replication Factor Three

There are six types of state transition units in the reliability model for the
proactive cloud storage systems with replication factor three.

Similarly, most states are intact BSTUs, namely internal states Pij , where
1 < i < max(n, r) and 0 < j < nr − i. They are basically the same as those in
the model for replication factor two, except for the values of Aij , Bij and Cij .
Accordingly, we only discuss how to calculate the three probabilities here.

There are two cases for which the system survives from i node failures, where
2 < i ≤ min(n, r): first, all the i node failures are on a single rack; or second,
the i node failures are respectively on i different racks. We use qi to represent
the proportion of the first case in the both, and the value of qi can be calculated
as:

qi =
rCi

n

(rCi
n + niCi

r)
. (4)

The proportion of the second case is 1 − qi. When min(n, r) < i ≤ max(n, r),
the value of qi is equal to either 0 or 1.

For the case that the system tolerates the (i+1)-th failure which occurs on
a previously healthy node, we use Ns to denote the number of cases for which
the new failure is on the same rack with the existing i failures, and use Nd to
denote the number of cases for which the new failure is on a previously healthy
rack. The value of Ns can be calculated as:

Ns =
min(n−i−1,j)∑

x=0

(n − i − x)Cx
n−iC

j−x
n(r−1) (5)

where x denotes the number of warnings which are on the same rack with the i
failures.

The value of Nd can be calculated as:

Nd =
min(n(r−i)−1,j)∑

x=0

(n(r − i) − x)Cx
n(r−i)C

j−x
i(n−1)) (6)

where x denotes the number of warnings which are on the healthy racks.
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Then the value of Aij can be calculated as:

Aij =
(qiNs + (1 − qi)Nd)
(nr − i − j)Cj

nr−i

(7)

Similarly, for the case that the system tolerates the (i+1)-th failure which
evolves out of a warning, we use N ′

s to denote the number of cases for which a
warning on the same rack with the existing failures fails, and use N ′

d to denote
the number of cases for which a warning on a previously healthy rack fails. The
value of N ′

s can be calculated as:

N ′
s =

min(n−i,j)∑

x=1

xCx
n−iC

j−x
n(r−1) (8)

where x denotes the similar thing as in (5).
The value of N ′

d can be calculated as:

N ′
d =

min(n(r−i),j)∑

x=1

xCx
n(r−i)C

j−x
i(n−1) (9)

where x denotes the similar thing as in (6).
Then the value of Bij can be calculated as:

Bij =
(qiN ′

s + (1 − qi)N ′
d)

jCj
nr−i

. (10)

And, the value of Cij can be calculated as:

Cij = (1 − p)λ(nr − i − j)(1 − Aij) + jγ(1 − Bij). (11)

Besides the internal states, there are other five types of boundary states.
They are similar to the intact BSTUs, except for missing some transitions:

(1) when i = 0 and 0 < j < rn: states Pij make up the upper boundary
of the model, during which no node failure happens and just j warnings
are predicted by the predictor. Since i = 0, there is no state P(i−1)j and
transition Pij −→ P(i−1)j ; since the system with replication factor 3 can
tolerate any double-failure, there is no transition Pij −→ DL.

(2) when i = 1 and 0 < j < rn − 1: states Pij make up the second layer of
the model, during which only 1 node failure happens and j warnings are
predicted by the predictor. There is no transition Pij −→ DL either.

(3) when j = 0 and 0 < i < max(n, r): states Pij make up the left boundary
of the model, during which i node failures have happened and no warning is
predicted. Accordingly, there is neither Pij −→ Pi(j−1) nor Pij −→ P(i+1)(j−1)

transition.
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(4) when i = max(n, r) and 0 < j < rn − i: states Pij make up the lower
boundary of the model, during which the system is already in the critical
condition and j warnings are also predicted. Since the system can tolerate at
most max(n, r) failures, there is neither Pij −→ P(i+1)j nor Pij −→ P(i+1)(j−1)

transition.
(5) when j = nr − i and 0 < i < max(n, r): states Pij make up the right bound-

ary of the model, during which i node failures have happened and all the
rest nodes in system are predicted to happen impending failure. Since there
is no healthy node left, neither Pij −→ Pi(j+1) nor Pij −→ P(i+1)j transition
exists.

5 Experiment and Analyses

Table 1 shows the values of parameters used in our experiments. Typical values
for practical systems are used for all parameters, except the sensitivity of node
failure predictors, which have not been really used in systems. In our previous
work [7], our classification tree prediction models can achieve the failure detec-
tion rate (FDR) of 95% with the mean time in advance (TIA) of near 360 h,
and can maintain a FDR above 90% for the long-term use and for both drive
families. In this paper, we have chosen a relatively conservative prediction sensi-
tivity (the FDR of 80% and the TIA of 360 h) for the failure predictors. Unless
otherwise stated, we keep these settings unchanged in the following experiments.

Limited by the memory and computing ability, it is difficult to use Markov
models to obtain the reliability values at a large data center scale, even using the
best matrix algorithm. Therefore, to obtain the reliability of large scale storage
systems (Sect. 5.2), we run simulations of systems using Monte Carlo methods, in
which the chronological behavior of a system is simulated [15]. For each setting,
we run simulation 100 times, and finally the bootstrap 95% confidence interval
for the time to data loss is computed. However, since the error margins are nearly
10 times less than the average values, to make the compared results more clearly,
we only draw the average values of simulations on the figures.

We compare systems with the same effective storage space (excluding the space
for redundant data). And, We transform the MTTDL to a useful measure – the

Table 1. The value of system parameters used in our experiments.

Parameter Meaning Range

c storage capacity of each node 12 TB

n the number of nodes on each rack 15

1/λ mean time to failure of storage nodes 100000 h

1/μ mean time to repair a failure/warning 24 h

p failure detection rate of failure predictors 80 %

1/γ mean time in advance of a node warning 360 h
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expected number of data lost event per usable petabyte within one year, by which
ones can better understand the reliability gaps between different cloud storage
systems.

5.1 Sensitivity of Node Reliability

We assume that there are 40 racks in the systems with replication factor 2, and
60 racks in the systems with replication factor 3, which means that the systems
can respectively store 3600 TB user data. Unless otherwise stated, we keep this
assumption in the following experiments.

Fig. 5. The change of the reliability
of systems with replication factor 2
according to the node reliability.
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Fig. 6. The change of the reliability
of systems with replication factor 3
according to the node reliability.

We can see from Figs. 5 and 6, with the different node MTTF, Markov-based
results have a perfect match with the simulation-based values, which verifies the
accuracy of our reliability models and the Monte Carlo simulations. In addition,
we can learn about the following: first, all the four systems’ reliability have
be improved hardly with the enhanced node MTTF, which demonstrates the
great value of redundancy distributed within nodes; second, the systems with
replication factor 3 yield larger gains than the ones with replication factor 2 with
the enhanced node MTTF. Specifically, when the node MTTF is doubled with
other parameters constant, the reliability of systems with replication factor 2 will
decline by three-quarters and the reliability of systems with replication factor 3
will decline by seven-eighths; and third, having the predictor with the FDR of
80%, both the systems with replication factor 2 and 3 can reduce redundancy
within their nodes to decrease the node MTTF nearly by three-quarters, while
the reliability of them remain the same.

5.2 Sensitivity of System Size

Figure 7 shows the change of systems reliability, as the effective storage space is
varied. We can adjust the storage space size by changing the number of racks in
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system. Three observations are evident from Fig. 7: first, for all the four systems,
the reliability will be reduced by less than a half for each doubling in capacity
and these decrease taper off as systems grow larger; second, having a predictor
with the FDR of 80%, the reliability of system with replication factor 2 can
be improved by more than one order of magnitude and the reliability of system
with replication factor 3 can be improved by nearly two orders of magnitude;
and third, providing the same effective storage space, the system with replication
factor 3 requires 50% more storage nodes and achieves the reliability two orders
of magnitude higher than that with replication factor 2.
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Fig. 7. The change of systems reliabil-
ity according to the effective space size.

Fig. 8. The change of systems reliabil-
ity according to the rebuild time.

5.3 Sensitivity of Rebuild Time

Figure 8 shows how the reliability of systems changes according to the rebuild
time. We can also learn about that: first, the systems with replication factor
3 are more sensitivity to the rebuild time than the systems with replication
factor 2. Specifically, when the rebuild time for a failure/warning is doubled
with other parameters constant, the reliability of systems with replication factor
2 will decline by half and the reliability of systems with replication factor 3 will
decline by three-quarters; second, having a predictor with the FDR of 80%, both
the systems can reduce the bandwidth available for rebuild process to extend the
rebuild time seven times longer (by which systems can reserve more bandwidth
to serve user requests), while the reliability of them remain the same.

5.4 Sensitivity of Failure Detection Rate (FDR)

We compare the reliability as the FDR is varied. The results are shown in Fig. 9.
We can learn about the following: first, it’s clear that the more accurate are
the predictors the more reliable are the systems; second, for the system with
replication factor 2, when the FDR of predictor is higher than 70%, its reliability
is more sensitivity to the capability of failure prediction and can be improved
by 1 ∼ 2 orders of magnitude with other system parameters constant; third,
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for the system with replication factor 3, when the FDR is higher than 60%, its
reliability is more sensitivity to the capability of failure prediction and can be
improved by 1 ∼ 3 orders of magnitude with other system parameters constant;
and third, when the FDR achieves 97%, the proactive system with replication
factor 2 can achieve the same level of reliability as the reactive system with
replication factor 3, which demonstrates the great value of the proactive fault
tolerance mechanism.

Fig. 9. The change of proactive sys-
tems reliability according to the failure
detection rate of predictors.

Fig. 10. The change of proactive sys-
tems reliability according to the mean
time in advance of predictors.

5.5 Sensitivity of Time in Advance

Figure 10 shows the effect of TIA on the reliability of proactive systems. The
systems reliability is significantly improved as the increase of TIA. Beyond that,
both the curves are relatively flat after the TIA of 180 h, which denotes that the
TIA of 180 h is the borderline between prominent and non-prominent influence
on the reliability of systems. This observation can guide designers to build a
appropriate predictor for cloud storage systems. Note that, this borderline is
drawn given the rebuild time of 24 h for a node warning, and a longer rebuild
time may induce a higher borderline.

6 Conclusion

In this paper, we present several Markov-based reliability models for cloud stor-
age systems with/without proactive fault tolerance respectively, by which one
can systematically analyze the reliability of systems. To describe and compute
the intricate reliability models for proactive cloud storage systems, we propose
a generic “brick” – basic state transition unit (BSTU), to describe the general
pattern of state transitions in the reliability models. Using our models, we evalu-
ate the influences of some system parameters such as the sensitivity of predictor,
node MTTF, rebuild time, and system size on the reliability of cloud storage sys-
tems. We wish that our models could serve as a guideline for system designers
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and administrators, who are not reliability experts, to decide system parameters
when building cloud storage systems. For example, to ensure the system avail-
ability, users will want to take up as less bandwidth as possible for the rebuild
process, which induces a long time to repair the failure or warning. However,
as shown in Fig. 8, the increasing of the rebuild time will significantly decrease
the reliability. Therefore, using our models, users can choose the proper rebuild
bandwidth to coordinate the availability and reliability.

However, the Markov models are build by the assumptions that node failures
and rebuild time follow an exponential distribution, which have been contested
by recent empirical studies of real world storage systems. Therefore in the future
work, we want to extend our methods to support non-exponential distributions.
Moreover, it is an important work of further investigation to take into account the
behavior of correlated failures to understand cloud storage system’s reliability.
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Abstract. In the mobile networking environment, there is an increasing need
for different devices such as computers, smartphones, and smartTVs to interact
with each other. One popular type of interaction is screencast (or remote dis-
play), where the content on one device’s display appears (synchronously) on
another device. To facilitate this type of application, several standards have been
proposed, from earlier DLNA (Digital Living Network Alliance), to Airplay by
Apple, and Wi-Fi Display by Wi-Fi Alliance more recently. One distinct yet
challenging requirement for screencast is synchronicity. However, despite the
increasing popularity of screencast and the related standards, their performance
metric has received little study. In this paper, we take Wi-Fi Display and its
implementation on Android as our target, and perform an in-depth study on its
performance. This evaluation identifies an important bottleneck arising from the
interactions among a couple of asynchronous threads. From these findings, we
propose an event-driven mechanism that shortens the latency among the relevant
threads. The experimental evaluation indicates a 20 % reduction on total pro-
cessing time on screencast at the Source device side, which proves the effec-
tiveness of this new mechanism. In addition, our evaluation also identifies
encoding of frame content as another major source of latency. This finding
means that we either need more powerful video/image encoding hardware, or an
encoding standard that takes computation requirement as a more important
metric than compression ratio.

Keywords: Screencast � Wi-Fi display � Miracast � Latency � Performance
evaluation

1 Introduction

With the flourishing of smartphones and smartTVs, there is a strong need for close
interactions among different types of devices. One popular such interaction is
screencast (or remote display), where the content on one screen is cast on the screen of
another device. For example, as shown in Fig. 1, a smartphone user at home might
want to share the photos on the smartphone with her family on the big screen of the
smartTV, or she might want to play a game using the smartphone, but prefer to watch
the scenes on the smartTV for better user experience.

The increasing popularity of screencast applications has attracted the attention of
major industrial vendors and organizations, and several standards have been proposed
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to facilitate screencast interactions among heterogeneous devices, such as DLNA [1],
Apple’s Airplay [2], Wi-Fi Display [3], and Google’s ChromeCast [4].

An inherent requirement for a screencast standard and its implementation is
real-time performance: the content needs to be displayed synchronously on both the
Source and Sink devices. This means that for each frame of content, the latency
between the Source device and Sink device should be as short as possible, such that no
user observable delay is experienced. Among the earlier mentioned standards, DLNA is
far behind this requirement. In fact, it is primarily designed for scenarios with
non-real-time content sharing. Apple’s AirPlay is a proprietary standard that is
designed for sceencast among Apple’s devices. Wi-Fi Display is designed by WiFi
Alliance, and Miracast is the authentication for devices that support Wi-Fi Display [5].
In some cases, the term Wi-Fi Display and Miracast are used interchangeably.

Despite the popularity of these standards, their performance has not received suf-
ficient evaluation, and the reasons leading to potential screencast delays are poorly
understood. In this paper, we conduct an in-depth performance evaluation on screen-
cast, and propose optimization mechanisms from our findings. We take Wi-Fi Display
and its implementation on Android (AWFD) [6] as our target, as it is an open standard
(as opposed to AirPlay), and is very popular. Most importantly, the source code of the
implementation is completely available.

Our performance evaluation indicates that screen content encoding is not the only
source of time delay. In fact, the complex interactions among multiple Android
modules and the multi-threading mechanism also introduce considerable latency. In
particular, the major producer and consumer of the frame buffer along the screencast
processing path work in different mechanisms, resulting in the consumption of the
frame buffer being delayed sometimes, or being unnecessarily consumed multiple times

Fig. 1. Screencast (Remote Display)
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in some other times. With this insight, we introduce an event-driven mechanism to
facilitate timely interaction among frame buffer producers and consumers. We imple-
ment this new mechanism by modifying the Wi-Fi Display Source code of Android and
run it on a Google’s Nexus7 [7] tablet using a set of popular benchmarks. The
experimental results show a 20 % reduction on the total screencast processing time at
the Source side. This optimization will effectively improve the synchronicity between
the Source devices and Sink devices, thereby improving screencast user experiences.

The remainder of this paper is organized as follows. Section 2 surveys the related
work. Section 3 makes analysis on the mechanism of AWFD to serve as a guidance for
subsequent performance evaluation. Section 4 describes the experimentation on per-
formance evaluation and our observations on performance bottlenecks. Section 5
provides an event-driven framework for the optimization of a critical performance
bottleneck, and evaluates its effectiveness with experiments. Finally, Sect. 6 makes
conclusions on this work.

2 Related Work

There are many scenarios where screencast is needed, such as traditional thin client
[8, 9] and remote desktops [10, 11] in the local area network consisting of personal
computers, and more recently cloud computing screen sharing application [12].
Performance measurement and optimization of these screencast technologies have been
done in the literature. For example, the performance of thin client has been studied, and
corresponding optimization techniques have been proposed in [13–15]; the user
experience of remote desktop has been studied under different network conditions in
[16]; and optimization techniques for remote display of cloud applications on mobile
devices have been proposed in [17].

In the context of mobile computing, many hardware- or software- based screencast
technologies have emerged to facilitate the need of real-time screen sharing. Hardware-
based technologies include Airplay, Chromecast, DisplayCast [18], SmartVNC [19],
and CloneCloud [20], and software-based technologies include MirrorOp [21] and
Splashtop [22]. Compared to those early screencast technologies mentioned above,
these state-of-the-art technologies aims at achieving high visual quality for dynamic
and complicated display scenes, and are mainly designed for smart devices. By far,
these goals have not been well met in reality, and there is a strong need to understand
the reason behind the unsatisfactory user experience, and find optimization techniques
accordingly. However, the literature on this issue is very scarce. In [23], external test
devices such as camera are used to detect the frame rate of screencast for some of the
above mentioned technologies such as WFD, Airplay, Chromecast, MirrorOp and
Splashtop. Unfortunately, the efforts stop at a very shallow understanding of the
problems, and none of them conducts a deep reasoning on the mechanisms leading to
these problems.

As far as we know, our work presented in this paper is the first attempt to conduct a
detailed code-level analysis of AWFD, followed by an in-depth evaluation of its per-
formance. With a detailed view on the processing procedure of the display frame
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and quantitative evaluation, we accurately identify a couple of bottlenecks, and propose
a pure software solution for one of the bottlenecks, which are caused by inefficient
multithreading and asynchronous tasking.

3 Analysis of AWFD Screencast Mechanism

3.1 Overview of AWFD

Screencast typically involves one Source device, one or multiple Sink device(s), and an
underlying Wifi network connection among these devices. As illustrated in Fig. 2.
A typical Source device is a smartphone or a tablet, a Sink device is a smartTV with
Wifi support or a traditional TV with a Set-Top Box.

The Source device obtains raw graphics/video/audio data from a local frame buffer,
then encodes these data with appropriate codec, e.g., h264 for video and aac for audio.
The encoded frame will be disassembled into a number of packets by a packetizer,
which will be sent to the Sink devices using RTP protocols over the Wifi connection.
The Sink receives and reassembles the RTP packets, and decodes them to restore the
original frame buffer. Note the encoding at the Source devices is usually lossy com-
pression, and the “restoring” process cannot recover the original content. This may
introduce user perceivable quality degradation for non-video content (textual content
such as Word document, PowerPoint slides, etc.).

3.2 Source-End Display Frame Processing

From Fig. 2 processing procedure we can see total time from a display frame be
produced in Source device to displayed on Sink device is mainly consisted by three
parts: i, the time spent by the Source device to acquire, encode and packetize a display
frame; ii, the time spent on the transmission of the frame packets from the Source
device to the Sink device through Wifi network; and iii, the time spent on decoding and
displaying the frame on the Sink device. Among them, ii is determined by Wifi
technology, and is a relatively short time compared to i; similarly, iii is also relatively

Fig. 2. Overview of AWFD
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small because frame decoding is relatively simple compared to the work at the
Source-end. As a result, we focus on the evaluation and optimization of the procedure
at the Source device. In the subsequent part of this section, we make a reasonably
detailed study on the procedure of display frame processing at the Source device.

When the AWFD service is launched at the Source device, a Remote Display
BufferQueue (RDBQ) object will be created, which is responsible for maintaining
buffers to be transported to the Sink device. Specifically, RDBQ is one of the output
targets of the SurfaceFlinger (SF) service, which composes surfaces (layers of graphics)
from applications to generate the ultimate display frame. Figure 3 highlights the pro-
cedure, and note that NDBQ and the corresponding procedure is for local display at the
Source device. To support screencast, SF will fill the two BQ objects concurrently.

In more detail, the procedure of display frame processing in the Source device is
presented in Fig. 4. Three related threads participate in this process: repeaterLooper
(RLP), pullLooper (PLP) and wfdLooper (WLP), and they work as follows.

At first, RLP tries to obtain a buffer from RDBQ, and upon success, it will pass the
data to mBuffer, a temporary storage object shared by RLP and PLP. Then thread PLP
will obtain the display data from mBuffer, and will packetize it into a message object,
which will be sent to thread WLP. Note that unlike RLP, PLP works periodically. If it
fails to receive the data from mBuffer in current period, it will block itself until the next
period, regardless of whether the data is fed into mBuffer between the two periods.
Finally, with the message mechanism, the display data is received by a thread named
WLP, which will invoke other threads. As shown in Fig. 4, when a message sent by
PLP is received, WLP calls an object named Converter to conduct actual encode work.
When Converter finished its work, it will send back a message to WLP, which will call
an object named Packetizer to packetize the encoded display data. Eventually, WLP
will call TSSender to send display data packets through Wifi network. This completes
the processing of display frame at the Source-end.

SF

AWFD

RDBQ

NativeDisplay

NDBQFill
Buffer

Fill
Buffer

Get
Buffer

Get
Buffer

Fig. 3. Two BQs for SF: NDBQ for native display, and RDBQ for remote AWFD display
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3.3 Analysis on the Disparity Between Threads

For many complex systems, multi-threading is an unavoidably technique for modular
design and performance improvement. From the analysis in the previous section, we
can see that there is no exception for AWFD with its reliance on multi-threading.

However, multi-threading, if misused, might be a performance detriment, and there
is such a potential risk in current AWFD’s multi-threading framework. Specifically, we
have seen that PLP works periodically, partly due to the fixed FPS (frames-per-second)
for screen update. But on the other hand, the RLP thread may feed PLP with display
data right after PLP has failed to fetch the data at its beginning of current period. In this
case, the time-consuming processing of the display data by PLP and WLP will be
postponed to the beginning of the next period. This will eventually lead to a user
perceivable delay on remote display. In essence, this problem is caused by a disparity
of multi-threading between the producer (RLP) and the consumers (PLP and WLP) of
the remote display frame.

To understand how serious the problem is, we perform a quantitative performance
evaluation on the procedure of remote display frame processing, such that we can find
the optimization technique accordingly.

4 Performance Evaluation on AWFD

4.1 Experimental Setup

With Android’s support for WFD since its 4.2 release, more and more devices that run
Android begin to provide hardware support for WFD. In this paper we choose Nexus7
(2013) that runs Android 4.4.2 as the Source device, whose display content needs to be
transported to the Sink device, which is MiBox1S, a Set-Top Box offered by Xiaomi.
MiBox1S runs Android 4.2.2, and it is attached to a TV with HDMI input.

Based on the analysis in Sect. 3.2, we further decompose the procedure of AWFD
into 12 steps, and we instrument each step with logs to acquire time consumption

Fig. 4. Display frame process procedure in Source device
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information of the whole procedure of Source device process display frame. These
corresponding 12 key points to add logs are shown in Fig. 5.

In Fig. 5, each block is depicted with three lines. The top line is the module/class
name involved in that step; the middle line is the step index, and the bottom line
describes the main function of this step. We calculate time of every adjacent step to
evaluate time distribution of AWFD Source device process display frame.

We select six popular apps with different image complexities and refresh rates,
which are: Slide Desktop, Storm Player, Baidu Map, Temple Run, Hill Climb Racing
and Ski Safari.

Slide Desktop represents scenes where we slide the home screen of the smartphone.
This scene has low refresh rate and simple content. Storm Player is a video player with
high refresh rate and complex content. Baidu Map is a famous map application that has
low refresh rate and complex content. Temple Run, Hill Climb Racing and Ski Safari
are three popular games, which have high frame refresh rate and complex/dynamic
content.

We install these six apps on Nexus7 (2013), which runs instrumented Android 4.4.2
to collect timing logs at different steps as listed in Fig. 5. The time distribution of the
steps for each app is shown in Fig. 6, and the total processing time of each app is given
in Table 1.

Fig. 5. Key points to add logs
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4.2 Data Analysis

From Fig. 6 we can get two observations. First, although the apps that we choose to
evaluate are significantly different in frame fresh rate and complexity, they have very
similar time distributions among the 12 Steps. Second, from any application we can
easily see that Steps 1, 3, 6, and 11 are the major part of the total processing time at the
Source end. Among them, Step 6 takes more than half of the total time for most apps,
with the only exceptions for Storm Player, which takes 43 % of the processing time.
Second to the top is Step 3, which consumes more than 20 % processing time, except
for Ski Safari (18 %).

Based on above analysis, we make the following conclusions: the time spent on
encoding a display frame is the most time-consuming task for remote display frame

Fig. 6. Time distribution of every application

Table 1. Average value of every application’s total time

Application Time(ms)

Slide Desktop 36.12
Storm Player 46.93
Baidu Map 40.95
Temple Run 33.83
Hill Climb Racing 33.71
Ski Safari 42.30
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processing; and it is closely followed by the interval between the producing of the
mBuffer by RLP to the consuming of it by PLP. Therefore, they should be the primary
concerns for further study and performance optimization.

5 Method to Optimize AWFD

5.1 Design of the Optimization Framework

According to analysis results in Sect. 4.2, we identify two steps: Steps 3 and 6 as the
two most time-consuming steps. Since Step 6 is about frame data encoding, whose
performance is mainly determined by the underlying hardware acceleration. As a result,
we are only interested in optimizing Step 3, which may attribute its performance
significance to the disparity between the producer thread RLP and the consumer
thread PLP.

In more details, PLP works periodically, and each time it tries to acquire mBuffer at
the beginning of a period, it may fail and delay its next probe to the round. On the other
hand, RLP doesn’t have a fixed period. In case the RLP feeds mBuffer right after the
PLP’s failed data probe, it will take a significant delay for PLP to get the data, although
the data has become ready long before that time. Clearly, this introduces waste of time.

In addition, because RLP does not work with a fixed period, some display frames
produced by RLP will not be processed by PLP, and in other cases, a display frame
may be processed more than once by PLP. This phenomenon will have negative impact
on the performance of AWFD because of loss of some display frames and time waste
on redundant processing of display frames.

Based on above analysis, the key point is to change the interaction mechanism of
thread RLP and thread PLP. For this purpose, we change the periodical work mech-
anism of PLP to a message driven work mechanism. In essence, PLP will no longer be
driven by a fixed period; instead, it is activated each time a ready message sent by RLP
is observed by PLP. Therefore, upon receiving this message, PLP will almost imme-
diately start processing this display frame, instead of waiting a certain time as in the
original periodical mechanism. The difference of the two workflows: fixed period and
message-driven, is illustrated in Figs. 7 and 8.

RLP

mBuffer

PLP

RDBQ WLP
read mBuffer 
(periodically)acquire 

BufferItem
fill

mBuffer

send 
display 
frame

through
message

Fig. 7. Work flow of fixed period
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5.2 Implementation and Evaluation

We modify Android Source Code to change the work mechanism of PLP to message
driven mechanism and flash the modified system to Nexus7 (2013). After that, we
install and run the same set of apps mentioned in Sect. 4.1, and collect the performance
data similarly as in Fig. 6. The results are presented in Fig. 9 and Table 2.

From Fig. 9, we can clearly observe that Step 3 now takes negligible time, in stark
contrast to the result in the original periodic mechanism. As for the overall optimization
effect, by comparing Table 2 against Table 1, we get very favorable latency reduction.
As shown in Table 3, the latency reduction ranges from 18 % to 27 %, with an average
of 21 % latency reduction. This optimization will reduce the chance of user perceived
delays on the remote display.

RLP

mBuffer

PLP

RDBQ WLP
 read mBuffer 

(message-driven)
acquire

BufferItem
fill

mBuffer
send

display 
frame

through
message

send display frame 
ready message

Fig. 8. Work flow of message driven

Fig. 9. Time distribution of every application after optimization
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Another benefit obtained from the optimization framework is the reduction of
redundant work. In the new message-driven framework, because PLP is driven by
RLP’s output, every display frame produced by RLP will processed by PLP once and
only once. So the problem that some display frames may not be processed or processed
more than once by PLP is solved altogether.

6 Conclusions

Screencast (remote display) has wide applications in the age of heterogeneous com-
puting devices. The major challenge of screencast is its real-time performance
requirements. The main aim of this paper is to understand the performance bottlenecks
of leading screencast mechanisms, and find optimization methods to improve user
experiences on screencast. For this purpose, we choose Android’s implementation of
Wi-Fi Display (AWFD) as the target. We first instrument Android Source Code of
version 4.4.2 based on an in-depth analysis of WFD work mechanism and its imple-
mentation on Android, then we choose six representative apps to collect time distri-
bution data of AWFD at the Source end.

The result indicates that frame encoding is not the only source of delay, inappro-
priate design of multi-threading contributes to a significant portion in the processing
procedure. Based on this observation, we propose a message-driven mechanism to
replace a periodical mechanism in one key processing step. Experimental results show
that the proposed optimization effectively reduces the overall processing time by 21 %
on average. This will reduce the chance of user perceived delay on screencast.

Table 2. Average value of every application’s total time

Application Time(ms)

Slide Desktop 29.27
Storm Player 34.15
Baidu Map 34.43
Temple Run 25.84
Hill Climb Racing 25.03
Ski Safari 34.39

Table 3. Percentage of latency reduction after optimization

Application Time(ms)

Slide Desktop 19 %
Storm Player 27 %
Baidu Map 15 %
Temple Run 23 %
Hill Climb Racing 25 %
Ski Safari 18 %
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Abstract. A novel scheduling algorithm is proposed to optimize file
fetch process in transparent computing (TC) environment. A single
TC server will receive file requests for operating systems, applications
or user data from multiple clients. Considering limited size of server’s
memory and the dependency between these file requests, the paper
firstly addresses the features of valid file fetch sequence generating prob-
lem. Then explodes the methods to determine time cost for file fetch
sequence. Based on the model established, we propose a heuristic and
greedy (HG) algorithm at the end. According to the simulation results,
we can conclude that HG algorithm can reduce overall file fetch time
roughly by 50 % in the best cases compared to the time cost of tradi-
tional approaches.

Keywords: File dependency · File fetch · Transparent computing ·
Green computing

1 Introduction

In the past decades, the desktop terminals has gradually developed into the
ubiquitous computing in the computing paradigm. Ubiquitous computing was
applied to various research areas, including software adaptation [1], school learn-
ing [2] and multimedia retrieval [3], and proposed many achievements. Tradi-
tional view of computing is hardware or software-centric, now it is slowly turning
into service-oriented [4]. Transparent computing (TC) [5,6] is a concrete applica-
tion form of ubiquitous computing, and has become a new pervasive computing
paradigm in which no OS, middle ware and any application program are installed
in the clients, they are loaded from the server through network dynamically when
users want to run them in a client. Users can choose any OS and application
programs running on it, which has been installed in the server and can be run
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 216–229, 2015.
DOI: 10.1007/978-3-319-27140-8 16
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by the clients [7]. The goal of this computing pattern is to reduce the burden of
the server and improve the system maintainability. Therefore, users simply just
accomplish their tasks on their data and do not care about the machine specifics
and management details [8].

One server is usually responsible for the file transmission requests from mul-
tiple clients in transparent computing environment. In the research of transpar-
ent computing, the transmission process between server and clients has a very
important role. Due to the multiplicity of files requested (such as operation sys-
tem(OS), application or user data), file transmission in TC has encountered a
special challenge — the dependency between these files. In many cases, to suc-
cessfully run applications or operating systems, files must be loaded in a specific
order. All the files are fetched from the server, when multiple clients request
various files, it is an important issue to generate a reasonable file fetch and
transmission sequence at the server.

Solving the file dependency problem will bring critical influence upon clients
concerning the Quality of Service (QoS) and also improve the efficiency of TC
servers. In our model, with a file fetch sequence and a fixed size memory buffer,
the best case expected is to fetch each identical file one time and send it to all
clients need it. Thus, the server should provide an optimized file fetch sequence
which satisfying: Each client, upon receiving any file, can directly load it with-
out waiting for pre-required files (called “receive and load”); and (2) the server
can achieve optimization in reducing overall file fetch time cost. These require-
ments have become new challenges in the area of file transmission in transparent
computing environment.

In recent years, the research of TC has been more and more popular. Our
research group is performing some important research issues. In cooperation with
scholars from other universities, we are constructing an optimized algorithm to
dependent file fetch in transparent computing platform. This paper proposes key
definitions and features of the dependent file fetch problem, describes a heuristic
and greedy approach and evaluates the performance of the proposed algorithm.

The rest of this paper is organized as follows. Sections 2 explains the
related works of transparent computing and file transmission approaches, Sect. 3
describes the system model and problem description, and Sect. 4 presents
the solution for the problem, including all the information related, algorithm
description. Section 5 provides performance evaluation and experimental results.
Section 6 concludes our work and points out the future work.

2 Related Works

Transparent computing is a computing pattern to provide transparent services
for users [9]. In TC environment, users only need to care about the result and
quality of the services they want, and do not have to pay attention to the
details of the Apps in system.Therefore, users are able to freely access the ser-
vices on network across heterogeneous software and hardware platforms [10].
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In TC architecture, computation, storage and management are separated. The
users can access the services through cross-terminal and cross-OS operations [11].

The concept of TC was proposed in 1990s, references [7] gave the concept,
architecture and example to TC. In the past decade, based on the theory of TC,
researchers proposed some representative architectures and developed demon-
stration applications. Reference [12] developed the client terminal and related
systems according to their TC study and proposed a novel Meta OS approach
for streaming programs named 4VP. Reference [13] proposed the performance
modelling and analysis algorithm of the booting process in TC environment.
In 2012, reference [14] reported the work on building a virtual machine-based
network storage system for TC platform.

From 2007, a cooperated research team was established with Intel Corpo-
ration by combining a new-generation BIOS named UEFI (Unified Extensible
Firmware Interface) with TC architecture [15,16], many applications were pro-
posed based on this combination platform. Some research groups have developed
TransOS clients supporting various client hardware architectures (e.g. x86, ARM
and MIPS) through UEFI [6].

For the transmission protocol, Kuang et al. developed a novel network stor-
age access protocol for TC named NSAP [17]. For the virtualization technol-
ogy, references [5,9] presented a separating computation and storage strategy.
In addition, references [6,18] described the relationship between TC and cloud
computing.

File fetch and transmission scheme [19,20] is an indispensable part in the
implementation of transparent computing. The file fetch performance is one of
the most important factors in the system evaluation. The research of file fetch
scheme has a close relationship to some hot research fields such as communica-
tion network, computing pattern and data optimization management, etc. The
importance of file fetch is addressed in many documents, which identify it as
a core area for transparent computing. The traditional file fetch schemes have
three.

The first scheme is big file sharing. In this scheme, a big file (e.g. an OS image)
is stored in the file system of the server. After multiple clients submitting file
request lists, the server will read the blocks from the big file, then transfer the
blocks from memory buffer to each clients. This method is simple and efficient in
the case of clients having the same hardware platforms and requesting the same
files. For example, multiple clients request Android 4.0, we only need to deploy
a single OS image at the server side to be requested by clients. However, when
the clients’ request is various and different, this scheme will no longer be valid.

The second scheme is file packaging. When the client requests arrive, for each
client, this scheme fetches the files and packages them as a single big file, and
then transfers it to the corresponding client. File packaging ensures that the
clients obtain the files when their requests are different. However, this approach
has two disadvantages: (1) Packaging process costs much computation resources.
The files, which are requested by different clients, will be repeatedly fetched and
packaged. (2) The packaged file may be large, and clients have to wait for the
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entire package transmission is complete, and then unpack it to load the files to
the memory, which costs expensive computation resources.

Another scheme is random transmission. In this scheme, we directly fetch
and transfer the files according to the file request list of each client, instead
of making them into one package. Some files, which are requested by multiple
clients, will be fetched once from the file system of the server. This approach
can save the time cost which is caused by repeated fetch. However, this scheme
does not consider the file dependency in the requested list. The client may have
to hold some received files and wait for some other files they rely on. This will
decrease the QoS for clients.

In transparent computing environment, the hardware configuration of clients
may be various, and the file request lists will be different. Meanwhile, some
files may be requested by multiple clients. For example, different clients request
different OS versions, but they request the same application. In this case, the
above schemes are not able to possess good performance. In order to solve the
problems, our group is engaged in the development of optimized file set fetch
algorithm. The proposed HG algorithm is proved to possess a good performance
for dependent file fetch from transparent computing server.

3 System Model and Problem Description

This section will present the system model on how to organize the file fetch
sequence from the file system of the server. Generally, each file in the server
has three parameters: (1) file path, which represents the storage location of the
file in server’s disk, and to each file, the file path is unique; (2) file size, which
represents the space cost when it is fetched to the memory; and (3) file fetch
time, which represents the time cost including searching the file on the server’s
disk and reading the file to the memory. After a file is fetched to the memory,
it will be transferred to the corresponding client. We assume that the server has
already carried out some data preprocessing to guarantee that to each file, the
server stores the file size, fetch time and the file list which it must rely on.

3.1 System Model

Figure 1 shows the process in which the server organizes the file fetch sequence
to fetch files to the memory and transfer them to the clients. This process
mainly consists of 4 steps: (1) send file requests (at the clients), (2) generate
file dependency graphs (at the server), (3) organize the file fetch sequence (at
the server), and (4) fetch (search and read) the file from server’s disk according
to the sequence and then transfer it to clients (at the clients and server).

In the system, we firstly request some parameters (hardware parameters, OS
requirements, application and data requirements) at the client to be obtained
(Fig. 1 (1)). After the acquisition, these parameters will be packaged and sent
to the server. At the server, the request package is unpackaged. The server will
search the relevant file list and determine whether it is able to provide the
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transparent service to the client. If the server satisfies all the requirements from
client, it will extract the file dependency and generate a file directed graph to
store the dependency (Fig. 1(2)).

The server is able to provide services to multiple clients, and each client has
its corresponding graph. Then all the graphs will be combined and a file fetch
sequence will be generated (Fig. 1(3)).

Therefore, we can perform the fetch process according to the file sequence
(Fig. 1(4)). In the memory, a buffer with fixed size is responsible for storing the
files which will be transferred to client.
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Fig. 1. System working process

3.2 Problem Description

In the system addressed above, we assume that there are m clients represented
as C = {c1, c2, ..., cm}, and the graph set is Γ = {G1, G2, ..., Gm}, where Gi is
the corresponding directed graph of ci and Gi = (Vi, Ei).

Theorem 1. ∀Gi ∈ Γ, Gi is a directed acyclic graph.

Proof. Assume that we can find a cycle in Gi, ∀v in this cycle, v relies on another
file. This means that we cannot find the first file which is able to be loaded at
the client. So this cycle cannot exist in Gi.

A valid file fetch sequence can be defined as follows.

Definition 1. Valid Sequence (VS): Given Γ = {G1, G2, ..., Gm} , a VS is a
linear sequence S = [s1, s2, ...sN ] satisfying:
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1. N =
∑m

i=1 |Vi|, where |Vi| is the number of vertices in a graph.
2. ∀v ∈ Vi, occ(v, S)=1 where occ(v, S) is the occurrence number of v in S.
3. ∀(u, v) ∈ Ei, idx(u, S) < idx(v, S), where idx(v, S) is the index number of v

in S.

We define the process of generating a VS as Valid Sequence Generating (VSG).
The VSG problem concerns that the sequence S must contain all the files and
keep the dependency for each client.

According to the above theorem, it can be known that if m = 1, VSG process
is equivalent to finding a topological sort sequence of Gi. For m > 1, VSG process
is equivalent to merging all the topological sort sequences of each graph.

After VSG process, the server is able to fetch the file according to the VS.
The space allocation of the buffer satisfies the following criteria: (1) if the buffer
has no sufficient space to accept the next file in the sequence, it will remove the
file which is not used for the longest time; and (2) if the next file in the sequence
has existed in the buffer, the server will directly use the existed file, instead of
fetch the file from server’s disk.

The problem to be solved is to organize the file sequence to minimize the
total file fetch time cost under the premise of keeping the file dependency for
each client. In order to compute the total time cost, ∀s ∈ S, s.time should be
determined according to the buffer size. We define the Time Cost Assignment
(TCA) process as following.

Definition 2. Time Cost Assignment (TCA): Given a buffer size B and a valid
sequence S, ∀[sr, ..., st], sr.path = st.path and si.path �= sr.path (r < i < t), the
TCA(S,B) process assigns the file fetch time of st as follows:

st.time =

⎧
⎨

⎩

0
∑t

i=r distinct(si).size ≤ B

st.time others

where
∑t

i=r distinct(si).size represents that the si.size is counted only once for
si.path repeatedly appears in [sr, ..., st]. The total time cost can be represented
as follows:

Cost(S) =
N∑

i=1

si.time (1)

Theorem 2. Given a buffer size B and a valid sequence S, TCA satisfies the
proper use of buffer in Algorithm 1.

Proof. ∀st ∈ S, on the one hand, if TCA assigns st.time = 0, this means
that ∃[sr, ..., st], where sr.path = st.path, si.path �= sr.path (r < i < t) and∑t

i=r distinct(si).size ≤ B. In other words, when the server want to read st,
another file sr, whose path is same as st, is still in the buffer. Assume that we
change the time to st.time �= 0, this will result in an unnecessary fetch. On the



222 K. Guo et al.

other hand, if TCA assigns st.time �= 0, this means that st.path is the first occur-
rence in S or if we choose [sr, ..., st], where sr.path = st.path, si.path �= sr.path
(r < i < t),

∑t
i=r distinct(si).size will exceed B. In other words, when the server

want to read st, files after sr have filled the buffer and sr has been removed.
Assume that we change the time to st.time = 0, which means the file does not
be fetched from disk, this will result in that the server is unable to find the file
data in the buffer.

The definition of the Minimum Valid Sequence (MVS) problem is given
below.

Definition 3. Minimum Valid Sequence (MVS) Problem: Given Γ = {G1, G2,
..., Gm} and a buffer size B, the MVS problem seeks S in all sequences generated
by VSG and satisfies Cost(TCA(S,B)) has the minimum value.

We then consider the hardness of the MVS problem. In fact, MVS process is
equivalent to find S with minimum cost in all the possible topological sort merg-
ing result. The hardness can be described from two factors:(1) Given a graph
Gi, the topological sort result may be multiple. If Gi is a linear list, it only has
one topological sort result; if Gi has no edges, the possibility will be |Vi|!. (2)
Given m topological sort sequences, when S is organized, every time we can
choose the first vertex from each sequence. So the upper bound of the result
space is m|s| = mN , the lower bound is m!. Therefore, the number of sequences
generated by VSG may be very large. Exhaustive approach is difficult to obtain
good results.

4 Solution for the MVS Problem

In MVS problem, because merging all the topological sort sequences into one
valid sequence S is infeasible, we directly generate the valid sequence S from
graphs and try to seek an approximate minimum case that can be solved in
polynomial time. In this section, we first analyze the conditions which S must
satisfies and find the test algorithm. And then we propose some characters of
the valid sequence S. Furthermore, we design a heuristic and greedy algorithm
to solve the MVS problem.

4.1 Preliminaries

For a sequence S which satisfies all the file dependency, according to the defini-
tion of VS, ∀Gi ∈ Γ, a topological sort sequence must exists in sequence S. We
first propose an algorithm to test whether S contains a topological sort sequence
of Gi.

The algorithm we propose scans the sequence S and finds the files which will
be transferred to the corresponding client of graph G. If a file si is found, we test
whether it is a vertex with zero indegree in G. If the indegree is not zero, the
algorithm will return false. Otherwise we will remove si and all the edges starting
from si from graph G and then seek the next si in S. If the whole algorithm has
not returned false, it means that S contains a topological sort sequence of G.
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Theorem 3. The above algorithm is able to detect whether sequence S contains
topological sort sequence of each graph Γ.

Proof. The “if statement” at line 6 guarantees that all the vertices which are
checked are in graph G. We combine these vertices as another sub-sequence sg.
Each file vertex in graph G appears once in sg. On the one hand, if sg is not a
topological sort sequence of graph G, this means that there exists a directed edge
(u, v) ∈ E satisfying idx(v) < idx(u). Algorithm 2 will first check vertex v, in
this case, v.indegree �= 0 because there exists an edge from u to v, Algorithm 2
will return false. On the other hand, because every loop in Algorithm 2 will
check the vertices whose indegree is zero and then remove these vertices and all
the related edges. If sg is a topological sort sequence of graph G, the algorithm
will return true.

Therefore, given Γ = {G1, G2, ..., Gm} and a sequence S, each graph Gi can
be tested by the algorithm.

4.2 Heuristic and Greedy (HG) Algorithm

The basic idea of HG algorithm to MVS problem is to choose the vertex which
can currently save most time cost and add it to sequence S. The cost a vertex
can save is calculated by estimated value.

Definition 4. Weight Assignment (WAss) Process: Given a graph G(V,E),
WAss process assigns each vertex v a weight (w) satisfies: (1) ∀v ∈ V , if
v.indegree = 0, then v.w = 0; and (2) ∀v ∈ V , if v.indegree �= 0, v.w =∑

u.size, where idx(u) < idx(v).

We propose an algorithm to assign the weight to each vertex in graph G.
The algorithm first scans the graph G and finds vertex v whose indegree is

zero and then assigns the weight as zero. Otherwise, v.w will be assigned as the
summation of the sizes of all the vertices whose location is before v.

Definition 5. Choose Vertex (CV) Process: Given Γ = {G1, G2, ..., Gm}, CV
process(Γ − v) chooses a vertex v and adds v into sequence S, then delete v and
the edges starting from v in corresponding graph.

Theorem 4. Given a sub-sequence S′ = [s1, ..., st] (t<N), st+1 chosen by CV
process must satisfies: st+1.indegree = 0.

Proof. If st+1.indegree �= 0, this means that ∃(u, st+1) ∈ E, and u is not removed
from the corresponding graph. In sequence S, idx(u) > idx(st+1) , this contra-
dicts the definition of valid sequence S.

If a vertex v is deleted by CV process, the weight of the rest vertices must be
adjusted to satisfy the conditions in definition of WAss. The algorithm first adds
v into a queue. Second a vertex u is popped and the vertices starting from u are
assigned as a new weight and added into the queue. The loop will stop when the
queue is empty.
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Definition 6. Estimated Cost Saving (ECS): Given a sub-sequence S′ =
[s1, ..., st] (t < N), and Γ′ = Γ − ∑t

i=1 si the Estimated Cost Saving of st+1

satisfies:

ECS(st+1) = {cs(S′, st+1), cs(Γ′, st+1), ecs(Γ′ − st+1)} (2)

Seek sr satisfying r < t + 1, sr.path = st+1.path and si.path �= st+1.path
(r < i < t + 1), if sr does not exist in S′, cs(S′, st+1)will be zero. Otherwise,
cs(S′, st+1) is defined as follows:

cs(S′, st+1) =

⎧
⎨

⎩

st+1.time
∑t

i=r distinct(si).size ≤ B

0 others

cs(Γ′, st+1) is defined as follows:

cs(Γ′, st+1) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

st+1.time ∃v ∈ (Γ′ − st+1)
where v.path = st+1.path
and v.indegree = 0

0 others

From the formula, we can see that in Γ′ − st+1, if there exists a vertex whose
indegree is zero and the path is the same as st+1.time the cs(Γ′, st+1) will be
assigned as st+1.time, otherwise, it will be zero.

We divide Γ′ − st+1 as {V1, V2, ..., Vk} satisfying: (1) for u ∈ Vi and v ∈ Vi,
u.path = v.path, if idx(u) < idx(v), then u.w ≤ v.w; (2) if u ∈ Vi and v ∈
Vj(i �= j), u.path �= v.path. It can be seen that all the files in Vi have the same
file path and size. ecs(Γ′ − st+1)is defined as follows:

ecs(Γ′ − st+1) =
k∑

i=1

|Vi|−1∑

j=1

exp(
Vi,j .size − Vi,j+1.size

B
)Vi,j .size

(3)

Definition 7. Heuristic and Greedy (HG) Algorithm to MVS Problem: Given
Γ′ = {G1, G2, ..., Gm}, the Heuristic and Greedy Algorithm generates a linear
sequence S = [s1, s2, ..., sN ].

This function first scans all the vertices whose weight is zero, and then chooses
a vertex u with maximum positive cs(S, u) value, if all the cs(S, u) are zero, we
chooses a vertex u with maximum positive cs(Γ, u) value, if all the cs(Γ, u) are
zero, we choose a vertex u with maximum ecs(Γ − u) value. After this step, u
will be added to sequence S and deleted from Γ. After adjusting the weights of
vertices in Γ, the function will choose the next vertex in the rest graph Γ − u. If
all the vertices in Γ are removed, this function will return S and the algorithm
will stop.
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Theorem 5. The sequence S generated by HG algorithm is able to pass the
sequence test in the first algorithm.

Proof. If sequence S generated by HG algorithm cannot pass the sequence test
in Algorithm 1, this means that ∃Gi ∈ Γ, an edge < u, v >∈ Ei satisfying
idx(v) < idx(u). HG algorithm will first delete vertex v and then delete vertex
u. But when HG algorithm delete v, v.indegree �= 0, v.w is not zero. This
contradicts the description of CV process and HG algorithm.

5 Simulation Experiments

5.1 Experiment Settings

To evaluate the performance of the proposed algorithms, we conduct a set of
simulation experiments by using Java. We first investigate the performance
of the three approaches to the file fetch problem, namely (1) Sequentially
Merging (SM, sequentially merge the topological sort sequence of each graph);
(2) Sequentially Choosing (SC, sequentially choose vertices from each graph);
(3) Randomly Choosing (RC, randomly choose vertices from each graph) and
HG algorithm, then study their performance in solving the MVS problem. In
the experiments, we construct a database containing some files whose file sizes
are randomly assigned. We will randomly generate some clients. For each client
which connects to the server, we randomly generate a graph containing vertices
and edges.

The primary metric concerned is the total time cost of file fetch. We consider
five important parameters that may impact the total time cost of file fetch: the
number of vertices (|Vi|), the number of edges (|Ei|) and vertex redundancy. The
performance evaluation model is designed as follows.

Definition 8. Given a sequence S = [s1, s2, ..., sN ] , the performance of S can
be measured by:

p(S) =
cost

lower
(4)

where lower =
∑N

i=1 distinct(si).time, cost = Cost(TCA(S,B)). Particu-
larly, we define p(lower) = 1 and p(upper) = upper/lower, where upper =
∑N

i=1 si.time.

From this definition we can see that when the cost is close to lower, p will be
small, which means that the sequence S has good performance. The value of p
satisfies:

(p(lower) = 1) ≤ p(S) ≤ p(upper) (5)

5.2 Performance Comparison

First of all, we testify the effectiveness of our algorithm. In the experiments,
the vertices and edges are randomly generated in a database containing 100 files
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whose file sizes are between 10 and 20, the time cost of each file is proportional to
the file size. We will randomly generate 10 clients. For each client which connects
to the server, we randomly generate a graph containing 10 to 20 vertices and
some edges. The buffer size is chosen as the three times of the max size of files
in the database.

In order to demonstrate the performance, we record the performances of
all sequences generated by each algorithm. For every algorithm, we perform 10
experiments (No. 1–10) and compute the performance of each sequence. The
performances are illustrated in Fig. 2.
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Fig. 2. Performance comparison of 10 experiments

Figure 2 indicates that in each experiment, the p(S) of HG algorithm is about
50 % of the other three approaches, which shows that the performance of our
solution is better than some traditional ones.

The second experiment will illustrate the performance comparisons between
the proposed algorithm and the other three typical approaches when the number
of vertices and edges changes. We define r = |Ei|/C2

|Gi| and choose it from 0 to
1.0. r = 0 means that no dependency exists in the file request list, and when
r increases, the dependency will be more and more. For every r, we perform 4
different algorithms and record the performances. The final results are listed in
Fig. 3.

From Fig. 3, we can see that HG algorithm achieves good performance.
Especially, when r is close to zero, which means few dependencies exist in the
requested file list, p(S) of HG is very close to 1.0. This shows that HG algorithm
is suitable for the case of not only many file dependencies, but also few file
dependencies. When r > 0.1, the performance surpasses the other approaches.

The third experiment will illustrate the performance comparisons between
the proposed algorithm and the other three typical approaches when vertex
redundancy changes. We define t = min|Gi|/fileNumber. When t is small, it
means that we randomly choose a small amount of vertices from a big file data-
base, the vertex redundancy will be small. And when t increases, the choosing
range will be expanded, especially when t = 1, the number of vertices is equal
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Fig. 3. Performance impact of the ratio of vertices and edges

to the number of files, many vertices with same path will exist in Γ. We use t
from 0 to 1.0. For every t, we perform 4 different algorithms and compute the
performances. The final results are listed in Fig. 4.
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Fig. 4. Performance impact of the vertex redundancy

From Fig. 4, we can see that HG algorithm achieves good performance in
most cases. Especially, when t > 0.4 and increases, clear advantages can be
indicated from this experiment in comparison with the other three approaches.
The performance surpasses about 50 % over the other approaches.

6 Conclusions and Future Work

In this paper, we propose an optimized algorithm to solve the dependent file fetch
problem in transparent computing environment. We introduce the framework
of file fetch problem and describe the definition of file, valid sequence, time
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cost assignment and minimum valid sequence problem. A heuristic and greedy
algorithm has been proposed.

We have performed several experiments to evaluate the performance of HG
algorithm. Comparisons in experiments demonstrate that HG algorithm obtains
remarkable time saving performance.

Although this work is built on the file fetch in transparent computing, the
proposed solution could be extended to be applicable to more generalized cases
such as the resource generating in cloud computing and distributed computing
environment.

In the future work, we will concentrate on exploring several improvements
on HG, including performing the experiments in the real transparent computing
environment and increasing the time saving performance.
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Abstract. In this paper, we evaluate and analyze the performance of
HPGMG on the world’s largest supercomputer, Tianhe-2. We design and
implement a general testing framework according to the performance-
related parameters in HPGMG-FV and the architecture characteristics
of Tianhe-2. This framework can automatically construct testing spaces,
filter them by constrains, modify them by actual running results, and
extract useful information from output files. By using this framework,
we evaluate the performance of HPGMG at small-scale with different
tunable parameters, and at large-scale of 8192 nodes with an overall
performance of 5.511e+11 DOF/s.

Keywords: HPGMG-FV · Benchmark · Testing framework · Tianhe-2 ·
High-performance

1 Introduction

The High-Performance Linpack (HPL) benchmark, currently used for the TOP500
list [14], has been the most successful and broadly accepted performance metric of
supercomputers for over twenty years. HPL is representative for applications with
high computational intensity and uniform data access patterns. The relevance
between HPL and real-world applications, however, is becoming lower, especially
for problems that require high memory bandwidth and low data access latency. To
better correlate computation and data access patterns found in many applications
today, new benchmarks, such as the Graph500 benchmark [4,11], the High Per-
formance Conjugate Gradient (HPCG) benchmark [7], and the High Performance
Geometric Multigrid (HPGMG) benchmark [1,2], begin to draw increasingly more
attention.

The Graph500 benchmark concerns data-intensive applications based on the
breadth-first search in a large weighted and undirected graph. It addresses three
important graph kernels, namely, concurrent search, optimization (single source
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 230–243, 2015.
DOI: 10.1007/978-3-319-27140-8 17
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shortest path), and edge-oriented (maximal independent set). Instead of using
floating-point operations per second (FLOPS), Graph500 proposes a new met-
rics called traversed edges per second (TEPS) [11] for ranking supercomputers.
The chosen data sets represent five graph-related business and scientific areas
including cybersecurity, medical informatics, data enrichment, social networks,
and symbolic networks.

The HPCG and HPGMG benchmarks both measure the capability of a super-
computer in solving discretized equations arising from elliptic partial differential
equations on a 3D structured mesh. In HPCG, a large, sparse linear system is
generated based on the 27-point finite difference scheme for the Poisson equation
and is solved by using the conjugate gradient algorithm preconditioned with a
geometric multigrid method. The performance metric used in HPCG is the tra-
ditional FLOP/s, but with some penalties from the overhead of generating the
optimized data structures and the increased number of iterations. HPGMG, on
the other hand, solves both constant- and variable-coefficient elliptic problems
using the geometric multigrid algorithm, which is based on stencil computa-
tions without explicitly generating the sparse matrix. To reflect the capability
of solving problems, HPGMG uses a new metric, degrees of freedom per second
(DOF/s). There are two variants in HPGMG, namely the finite element ver-
sion (HPGMG-FE) and the finite volume version (HPGMG-FV). All available
HPGMG results, to date, are based on the HPGMG-FV version.

In this paper, we focus on the performance evaluation of HPGMG-FV on the
world fastest supercomputer, the Tianhe-2. Tianhe-2 is a heterogeneous system
comprised of both Intel Xeon CPUs and Intel Xeon Phi coprocessors. It is worth
noting that, on most other similar hybrid systems such as Titan and Stempde
[2], the current best HPGMG performances are all obtained from pure CPU
configurations. This is because, for now, the support of HPGMG-FV for Xeon
Phi is still premature. Therefore, in this paper we only focus on the performance
evaluation on Tianhe-2 without using the Xeon Phi coprocessors.

The paper is organized as follows. We first give a detailed overview and
analysis on the algorithms, data structures and implementations of HPGMG-
FV in Sect. 2. Then, in Sect. 3, we setup a testing framework to help simplify
the procedure of the performance evaluation of HPGMG-FV on Tianhe-2. In
Sect. 4, we provide extensive experiment results, including small-scale results
collected by the testing framework for helping setup parameters in larger-scale
tests, and large-scale results on 8192 nodes with an aggregated performance of
5.511e+11 DOF/s. In the last two sections, we discuss some related work and
give a conclusion of this paper.

2 Overview and Analysis of HPGMG-FV

2.1 Algorithm

HPGMG-FV solves both constant- and variable-coefficient elliptic problems, in
a three-dimensional cubic domain, in the follow general form

aα(x)u(x) − b∇ · β(x)∇u(x) = f(x), (1)
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with homogeneous Dirichlet boundary conditions. Here the constants a and b
control the type of the problem (a �= 0 for Helmholtz and a = 0 for Poisson),
and the variable coefficients α(x) and β(x) are pre-stored variables. By default,
HPGMG-FV solves the variable-coefficient Poisson equation with a = 0 and
b = 1. The 7-point finite difference stencil is used to discretize the variable-
coefficient Laplacian operator.

The top-level solver used in HPGMG-FV is the full geometric multigrid
algorithm, which is proved, for the constant-coefficient Laplacian, to converge
with an optimal computing complexity. The full multigrid (i.e. F-cycle) shown
in Algorithm 1 [1,13] can be viewed as a special nested iteration method in
which the smoothing step in line 6 is a V-cycle multigrid. The V-cycle multi-
grid, as shown in Algorithm 2, is embedded in the F-cycle multigrid to solve the
fine level problem after the interpolation from the coarse to the fine level. The
F-cycle multigrid is only required to sweep for one time, leading to a computing
complexity of O(N).

Algorithm 1. F-cycle multigrid algorithm.
1 h ← h0

2 uh ← A−1
h fh /* coarsest solve */

3 while not done do

4 uh/2 ← I
h/2

h uh /* FMG interpolation */

5 h ← h
2

6 uh ← V-cycle(Ah, uh, fh)
7 eh ← error(uh) /* error for convergence test */

8 end

Algorithm 2. V-cycle multigrid algorithm.
1 Function uh ←V-cycle(Ah, uh

0 , fh)
2 if h == h0 then
3 return uh ← A−1

h fh /* bottom solver */

4 uh ← smooth(Ah, uh
0 , fh) /* pre-smooth */

5 rh ← fh − Ahuh /* residual */

6 r2h ← I2hh rh /* restriction */

7 u2h
0 ← 0

8 δ2h ← V-cycle(A2h, u2h
0 , r2h) /* recursive call */

9 uh ← uh + Ih2hδ2h /* interpolation */

10 uh ← smooth(Ah, uh, fh) /* post-smooth */

11 return uh

12 end

There are a number of operations [1,13] carried out in the V-cycle algorithm,
which are listed as follows.
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– Smooth: The pre-smooth and post-smooth are traditional relaxation oper-
ations. HPGMG-FV supports smoothers such as the Chebyshev polynomi-
als, the Gauss-Seidel with red-black reordering (GSRB), the weighted and L1

Jacobi, and the symmetric Gauss-Seidel (SymGS).
– Restriction: After reducing the error by several smooth steps, the restriction

operation maps the residual on fine grid with grid spacing h to the coarse grid
with grid spacing 2h. This progress does not stop until reaching the coarsest
grid.

– Bottom solver: It is an iterative solver employed to solve the problem
on the coarsest grid. The available bottom solvers in HPGMG-FV include
the biconjugate gradient stabilized (BiCGSTAB) algorithm, the conjugate
gradient algorithm (CG), and their corresponding communication-avoiding
versions.

– Interpolation: The interpolation operation, as opposed to restriction, maps
the coarsest correction solved by bottom solver back up to the finest grid level
by level with post-smooth.

In HPGMG, the default pre-smooth and post-smooth operators are both
the Chebyshev polynomials with degree 4, and the default bottom solvers is
BiCGSTAB. These default parameters are used for the performance evaluation.
The whole data flow of the full multigrid algorithm, as well as all major opera-
tions in it, are illustrated in Fig. 1.

smooth

residual

restriction

v-cycle interpolation 

f-cycle interpolation 

Fig. 1. The data flow and major operations in the full multigrid algorithm.

2.2 Data Structure

The global 3D domain of each level in HPGMG-FV is partitioned into subdo-
mains called box. The resultant boxes, grouped in a list, are distributed among
multiple MPI processes. The exchanging of data from different MPI processes
requires allocated buffers for sending and receiving messages. Those data for
boxes owned by the same MPI process are stored contiguously in the corre-
sponding separate arrays. Further more, Memory allocation of them uses a bulk
way. We can access the data in a cell by referencing the pointer plus an offset
from the index calculation in a matrix-free manner.
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Figure 2 shows types and layout of data for different purposes owned by
one process. These data, either cell-centered or face-centered, are all double-
precision. The parameter β in Eq. (1) is face-centered coefficient and divided
into three vectors beta {i, j, k} which are left-right, back-front, and bottom-top,
respectively. On the other hand, the parameter α in Eq. (1), stored in alpha, is
cell-centered. Both the exact solution utrue and the computed numerical solution
u are cell-centered, used for final error calculation. All the rest vectors, such as
the residual f − Av, the original right-hand side f , the inverse of the diagonal
dinv, and the L1 norm of each row l1inv, are cell-centered as well. There are also
two special vectors temp and valid. The former is used to keep the intermediate
results from different computations and the latter is a cell-centered array to
identify whether the cells are outside of boundaries of the domain and used
in the stencil computation with fused boundary condition. Besides, a reserved
vector will be allocated for any auxiliary bottom solver grids. All these vectors of
each box also contain ghost zones which store data from their neighboring boxes.
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Fig. 2. Types and layout of data for different purpose owned by each process.

2.3 Implementation

HPGMG-FV is written in C based on a hybrid parallel computation model, in
which MPI is used for message passing and OpenMP is used for multi-threading.
The program follows a four-phase running procedure, namely: problem setup,
geometry construction, solver running, and results report. At the geometry con-
struction phase, the program firstly creates the finest level structure and then
utilize it to create the rest levels progressively from the finest to the coarsest. In
the process of constructing every level, the data of boxes will be flattened into
smaller blocks which are the actual unit for operations. This block mechanism
makes the fine-grained level parallelism control possible.

The main operations in the solver running step, as described by Algorithms 1
and 2, can be generally grouped into two classes. In the first class, there are
smooth and residual operations. They need to exchange data with each other
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on the same level before computation. The second class contains operations
such as restriction and interpolation which may involve communication between
adjacent two levels. No matter whether the communication is intra-level or inter-
level, there exist two execution paths, i.e. the remote path and the local path,
both executed concurrently. On the remote path, firstly the source process packs
and updates the data into the MPI send buffer and then sends to the destination
process. Once the destination process receives the data in the MPI receive buffer,
it will unpack them into the corresponding block. While on the local path, data
exchange and update happens on the same process. This asynchronous execution
mechanism will be very effective. For example, the detail procedure of these two
paths in restriction can be seen in Fig. 3. Interpolation and ghost exchange in
smooth and residual are similar to restriction except that ghost exchange just
do some data moving without updating them.
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1 blocking 2 local restriction 3 local copy

1 blocking restriction to send buffer
3 remote exchange

2 r
4 copy from receive buffer

w
ait a

ll

start

Fig. 3. Asynchronous execution of the remote and local restrictions.

3 Metric and Framework

3.1 Evaluated Platform and Performance Metric

We evaluate the HPGMG benchmark on the Tianhe-2 supercomputer, which
ranked the first place in the latest TOP 500 list released on November 2014.
It consists of 16,000 computing nodes connected with a customized network
TH-Express2. The software system contains a 64-bit Kylin OS, the Intel compiler
icc 14.0.2, and the MPICH2 with a customized GLEX channel. Table 1 shows the
architectural characteristics of each computing node of the Tianhe-2, in which
there are two Intel Xeon E5-2692 processors and three Intel Xeon Phi 31S1P
coprocessors. As mentioned earlier, the Xeon Phi coprocessors are not activated
in our performance evaluation.

Instead of floating point operations per second (FLOP/s) that has been
widely applied as the standard performance metric for years, HPGMG-FV uses
a new metric, degrees of freedom per second (DOF/s), in order to better reflect
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Table 1. Architectural characteristics of Tianhe-2.

Intel Xeon E5-2692 Intel Xeon Phi 31S1P

Frequency (GHz) 2.2 1.1

cores/threads 12/24 57/228

SIMD width (DP/SP) 4-way/8-way 8-way/ 16-way

Peak Gflop/s in D.P 422.4 1003.2

L1/L2/L3 cache (KB) 32/256/30 32/512/-

Memory capacity (GB) 64 8

the capability of problems solving. In particular, the performance is measured
in HPGMG-FV as

perf =
dim i × dim j × dim k

avg time
, (2)

where dim {i, j, k} are the respective numbers of grid points in each dimension,
and avg time is the averaged time per solve. The actual number of solves is esti-
mated by the quotient of the minimum time the benchmark should run divided
by the average time of ten warm-up solves before timing. It is obvious that
the numerator of Eq. (2), which equals the total number of unknowns dof =
dim i × dim j × dim k, is determined by three factors, including the total num-
ber of processes (num procs), the number of boxes per process (boxes per proc),
and the dimension of each box (2box dim). Their relationship can be described by

dof = num procs × boxes per proc × (2box dim)3, (3)

where num procs equals to the multiplication of the number of nodes (num nodes)
and the number of processes per node (procs per node). Besides, there is another
important parameter, namely the number of threads per process (thrs per proc),
that may have a strong impact on the performance. It is worth noting that the
program will automatically adjust boxes per proc, inputted by the user, to make
the final grid size satisfy (B ×2k)3, where B3 stands for the coarsest problem size
for any 1 ≤ B ≤ 11.

3.2 The Testing Framework

Evaluating a benchmark on extreme-scale supercomputers usually requires a
large number of running cases with different testing and tuning parameters. It
is therefore of great importance to design a testing plan to get the maximum
performance with relatively low cost. To that end, we present a basic testing
framework as shown in Fig. 4. Before conducting large-scale performance evalu-
ations, we can use this framework to do adequate experimental tests on a small
number of nodes. Then we can make use of the clues we get from the small-scale
tests to reduce the parameter space in a heuristic way. In the testing framework,
we first construct the testing space based on the following two aspects.
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Fig. 4. The testing framework of HPGMG-FV.

– Program Model. Is the benchmark shared memory, message passing, or a
combination of both? For shared memory, we need to choose the number of
threads per process and set the thread affinity for them. For message passing,
similar things should also be taken into consideration. For the combined situa-
tion, we should firstly decide the configuration of processes and then consider
thread setting within each process.

– Execution Parameters. We should decide the numbers of computing nodes
used in small-scale tests. Based on our experience, node numbers less than
512 can be considered as small-scale and those numbers that are the power
of 2, i.e. (1, 2, 4, 8, · · · 512) , can serve as the proxy of less than 512 nodes. In
HPGMG-FV, we also need to provide the number of boxes per process and box
dimension. There are also some performance-related macros in HPGMG-FV,
such as the blocking size and the alignment choice.

We then reduce the testing space based on the constraints from hardware, soft-
ware and user input. The reduced testing space in HPGMG-FV is displayed in
Table 2. Based on the reduced testing space, the framework can automatically
generate all the parameters for later testing. In order to ensure the robustness,
a feedback path is added for deleting unsuitable parameters based on the actual
running results. At last, we can extract useful information from output files based
on what purpose we want to inspect in the benchmark such as scalability, coor-
dination between process and thread, relationship between parameters, and time
of different operations etc. All the modules of the framework are implemented
in script languages such as bash, awk and python.
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Table 2. Testing space for HPGMG-FV on Tianhe-2.

Number of nodes 1, 2, 4, 8, 16, 32, 64, 128, 256, 512

(Processes per node,
Threads per
process)

(1,24), (2,12), (3,8), (4,6), (6,4),
(8,3), (12,2), (24,1)

Affinity process: none, sockets, cache, cores
thread: none, scatter, compact

Box dimension 4, 5, 6, 7, 8

Boxes per process 1–64

4 Performance Evaluation

4.1 Effects of Box-Related Parameters

To examine how the performance is affected by the two box-related parameters,
namely the box dimension, box dim, and the number of boxes per process, boxes
per proc, we run the test on a single node of Tianhe-2 with procs per node =
2 and thrs per proc = 12. The test results are shown in Fig. 5. From the figure,
we find that enlarging box dim or boxes per proc leads to an increase of the total
time, and more importantly, the overall performance as well. This observation
indicates that as long as the memory capacity allows, maximizing box dim or
boxes per proc is an effective way to improve the performance. Similar conclusions
are made when different numbers of procs per node and thrs per proc are set.
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Fig. 5. Results of tuning the box-related parameters.

4.2 Effects of process- and thread-related parameters

As mentioned earlier, HPGMG-FV supports both message passing and shared
memory programing models. Therefore it is important to choose the number
of processes per node, procs per node, and the number of threads per process,
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thrs per proc, so that the performance is maximized. Since there are 24 CPU
cores available in each node of Tianhe-2, we may set the parameter space to be a
pair of positive integers, (ppn, tpp) = (procs per node, thrs per proc), satisfying
ppn × tpp = 24. In the test, we fix box dim = 6 and change boxes per proc to
coordinate with different (ppn, tpp) pairs so that the total degrees of freedom,
dof , are fixed when number of computing nodes is fixed. For each number of
computing nodes, we use the averaged performance over all (ppn, tpp) pairs as the
baseline, and calculate the relative performance of each (ppn, tpp) configuration.
The tested results are shown in Fig. 6. When measuring the performance, we try
different ways for setting the thread affinity and only count the result with the
highest performance. From the figure, we find that: (i) for (1, 24) and (3, 8) the
performance is low, which is mainly because of the NUMA effect of threads from
different sockets within each process; (ii) for all other cases the performance is
relatively close, among which (4, 6) and (6, 4) seem to be the most promising.
It is worth noting that in the test we fix box dim = 6 instead of other larger
values, because if box dim > 6, there is not enough available memory to fully
adjust boxes per proc as (ppn, tpp) are changed.
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Fig. 6. Relative performance for different (ppn, tpp) pairs with respect to the average
performance.

Based on the observations made in Sects. 4.1 and 4.2, and considering the
hardware restriction of Tianhe-2, we find that using a flat-MPI approach, in
which we enable 24 single-threaded MPI processes in each computing node of
Tianhe-2, leads to a relatively acceptable performance in all cases, especially
when the memory capacity is fully exploited with an box dimension of 8. There
may exist better choices of the (ppn, tpp) pair, but we restrict ourself in the
single-thread case to fit within the short benchmarking time-frame and simplify
all tests in the sequel.
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4.3 Scalability results

In the scalability test, we fix the number of processes per node to be procs
per node = 24, the number of threads per process to be thrs per proc = 1, the
number of boxes per process to be boxes per proc = 1, and the box dimension to
be box dim = 4, 5, 6, 7, 8 to make sure the amount of work assigned to every node
is a constant. Then we increase the number of computing nodes and examine the
total elapsed time, which, in the ideal case, should remain constant as well. The
results are shown in Fig. 7(a), from which we find that the time grows rapidly
when num nodes ≤ 16 and then become steady as more nodes are used. This is
because when num nodes is small, there are not enough nodes amortizing the
cost of communication; and when num nodes increases above 16, the total time
approaches to a constant level. Figure 7(a) further shows the aggregate perfor-
mance in the same time, from which we observe that: (i) for a same box dim,
the aggregate performance increases as more nodes are used, which is straight-
forward due to relationship (2) and (3); and (ii) when num nodes is fixed, a
larger box dim leads to higher performance, which is less obvious than the first
observation because both the numerator and the denominator of Eq. (2) become
larger.
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Fig. 7. Results of scalability tests.

To further examine the time breakdown of different operations, we divide the
total solution time of each solve into seven parts. Among them, smooth, residual,
restriction, interpolation, and ghost exchange, are the five major operations in
the multigrid algorithm, MPI collective stands for the time of all MPI collec-
tives, and other represents other operations such as the BLAS operations and
the evaluation of boundary conditions, etc. The breakdown results for the case
of box dim = 8 are shown in Fig. 8. We can clearly see that the proportion of
the different parts nearly keeps unchanged when increasing the number of nodes.
In HPGMG-FV, Each smooth needs to sweep 4 times of the domain while each
residual just requires one. So the time cost of each smooth is approximately
4 times of each residual. Each restriction also needs only one sweep, but the
computation in it is only about 1/4 of each residual. So the total time spent
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by residual is about 4 times of restriction. Although restriction needs data 8
times as much as interpolation between adjacent two levels, they spend almost
the same time. This phenomenon shows that the inter-level communication is
very effective. The time spent in the two MPI-related operations, namely ghost
exchange and MPI collective, is relatively small, indicating again that the com-
munication overhead is low.
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Fig. 8. Time breakdown for box dimension 8 given 24 processes per node and 1 thread
per process

Table 3. The submitted HPGMG-FV performance on Tianhe-2.

num nodes (ppn, tpp) boxes per proc box dim Time (s) Perf. (DOF/s)

8192 (24, 1) 1 6 0.131047 3.513e+11

8192 (24, 1) 1 7 0.857948 4.293e+11

8192 (24, 1) 1 8 5.346149 5.511e+11

HPGMG-FV requires that the submitted results include three sets of data
with increasingly larger box dim. Therefore we extend the scalability test of
box dim = 6, 7, and 8 to the maximum available number of computing nodes,
8192, at the time of the tests. The reported performance of the three tests are
shown in Table 3, in which the maximum performance is 5.511e+11 DOF/s.

5 Related Work

On Tianhe-2, much work is done on performance evaluation and optimization
of other emerging benchmarks, such as the HPCG benchmark as in [10,17],
the Graph 500 benchmark as in [4]. The main computation involved in the
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full multigrid algorithm is stencil computations, i.e. nearest neighbor calcula-
tions, which have low computational intensity. Lots of research has been done
on the parallelism and data reuse of stencil computations, such as loop tiling [5],
SIMD vectorization [9], cache oblivious [8], time skewing [3], blocking [12], and
wavefront [15]. The implementation of stencil computation in HPGMG-FV uses
optimizations based on [6] such as NUMA-aware allocation, multilevel block-
ing, and array padding etc. The optimization of full multigrid also utilizes some
techniques including communication-aggregation and communication-avoiding
from [16].

6 Conclusion

In this paper, we describe and analyze the characteristics of HPGMG-FV and
then design and implement a testing framework for the performance evaluation
of HPGMG-FV on Tianhe-2. According to the observations and conclusions
provided by the framework from small scale tests, we can design better and
fewer testing plans to achieve the maximum performance when given the limited
resources with less effort. By using this framework, we reach an overall perfor-
mance of 5.511e+11 DOF/s using 8192 computing nodes of Tianhe-2. Future
work may include a more thorough design of the test framework and further
investigation of optimization opportunities using both the CPUs and the Intel
Xeon Phi coprocessors.
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Abstract. This paper proposes a joint mode selection and resource
block (RB) allocation for the direct device-to-device (D2D) commu-
nication underlying cellular network. Universal-filtered multi-carrier
(UFMC) technique which is considered as a potential candidate for
the future communication systems due to its robustness against inter-
carrier interference (ICI), is introduced for D2D communication. In this
paper, our goal is to design a network that selects the transmission mode
between D2D and traditional cellular transmission mode. Unlike exist-
ing work on the mode selection which focused on network performance
to improve overall throughput and providing required quality-of-service
(QoS) for cellular users (CUs), we study the interference from the other
D2D links operating on the edge of the neighboring cells. D2D commu-
nications provide a reliable transmission near edge of the cells but is
limited by interference from CUs as well as D2D pairs belong to edge of
the neighboring cells. We present an approach in UFMC-based D2D sce-
nario to reduce the spectral leakage to nearby RBs used for same or other
D2D links. Further, we develop an optimization framework that aims to
maximize signal-to-interference-and-noise ratio (SINR) and improves the
overall throughput.

Keywords: Device-to-device communication · Cellular networks ·
Resource management

1 Introduction

Researchers around the world are in pursuit of developing the technologies that
enable human-centric and machine-centric networks to meet the requirements of
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radio systems beyond 2020 namely 5G [3]. A major focus in 5G would be on the
multimedia applications such as 4K TV, high-definition (HD), and uncompressed
video streaming applications with large frame sizes and uplink-downlink symme-
tries in case of conferencing and other applications. Due to the ever increasing
demands of the proximity-based services in social networking applications, the
direct device-to-device (D2D) communication [14] becomes an emerging concept
in the next generation wireless networks.

Apart from the improved spectrum utilization, high data rate, and low
end-to-end delay between D2D user equipment (UE), the D2D communication
benefits offloading cellular traffic, that subsequently improves other non-D2D
UEs. Unlike many social networking applications, where the proximity typically
works in a non-autonomous manner, a self-organizing architecture design issue
is actively investigated within the 3rd generation partnership project (3GPP)
targeting the availability of D2D communication in long term evolution (LTE)
release 12, termed as proximity service (ProSe) [11] in 3GPP.

Filter bank-based multi-carrier (FBMC) [10] has been proposed by mobile
and wireless communications enablers for the twenty-twenty information society
(METIS) research group with low out-of-band radiation to overcome the weak-
ness of cyclic prefix (CP)-based OFDM that suffers from high spectrum leakage
to the incumbent signals. Recently, FBMC-based scheme [17] is discussed in
D2D to suppress spectrum leakage. Universal-filtered multi-carrier (UFMC) [15]
based on Dolph-Chebyshev filter which is considered as an intermediate filter-
ing technique between filtered OFDM and FBMC, uses subband-basis filtering.
UFMC retains all the benefits of filtered-OFDM while uses lower the filter-length
compared to FBMC. Afterward, a filter optimization technique [16] has been dis-
cussed on signal-to-in-band distortion plus out-of-band leakage ratio (SDLR).
The approach shows a better performance compared to the earlier scheme [15]
even in the presence of frequency offsets.

Based on the resource-block (RB) allocation, the D2D communication can
be categorized into underlay- and overlay-scenario as in cognitive radio (CR).
Although, the overlay-D2D UEs use RB outside of the spectrum used by cel-
lular users (CUs), some amount of RB must be reserved for control signaling,
channel state information (CSI), and synchronization to CUs via evolved node
B (eNB). Most existing research have considered the underlaying [4,5,18,23]
resource usage with high spectral efficiency. For the direct D2D communication
underlaying cellular networks, D2D links reuse either uplink (UL) or downlink
(DL) [4]. Generally, it is assumed that there will be a high-dense D2D links
near the edge of the cell to offload the data of cellular links. An example of a
D2D communication is illustrated in Fig. 1. It is obvious that there will be a
strong interference to D2D links from the CUs in UL reused for D2D UEs due to
the power control schemes used for cellular links to overcome the near-far effect
[4,5]. Thus, from the D2D point of view, it can be a good choice if DL RBs
are fully reused by the D2D communications. Although, it has been assumed
that different sets of orthogonal RBs have been allocated to neighboring cells to
minimize inter-carrier or inter-block interference, however due to high spectral
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Fig. 1. An illustration of a interference scenario for the D2D communication under-
laying cellular network that shares the downlink resource. Both the transmitter and
receiver of D2D pair 1 are in the same cell, i.e., cell 1. Same follows to the D2D pair
3. However, the transmitter and the receiver of the D2D pair 2 operate on the edge of
two different cells.

leakage to nearby RBs reused by D2D links, it is important to design a low
spectral leakage-based RB for the D2D communication. Our contributions are
summarized in the following.

– This work is concerned with the interference occurred in D2D overlaying cel-
lular network due to the neighboring cells. We use the power efficiency as an
utility function to formulate the non-linear optimization problem.

– To the best of our knowledge, we introduce UFMC-based D2D underlaying
cellular network with the aim to suppress the high spectral-leakage from the
edge of the neighboring cells.

– We present an efficient algorithm that jointly optimizes the number of edge
subcarriers in the RB with the proposed suppressed spectrum-leakage app-
roach and the amount of power alloted to the D2D links while protecting the
target signal-to-interference-and-noise ratio (SINR) at the CU links.

The rest of the paper is organized as follows. We discuss the related work
in Sect. 2. The two-cell-based system model with resource reuse of D2D links
underlaying cellular network is discussed in Sect. 3. The optimization problem is
formulated to jointly optimize power and number of subcarriers in RB for the
D2D links in Sect. 4. In Sect. 5, an efficient algorithm is proposed to address the
optimization problem. The performance results are presented in Sect. 6. Finally,
conclusions and future work are discussed in Sect. 7.

2 Related Work

There has been a considerable research on power and resource allocation for
the D2D communication to properly coordinate the interference. The authors
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in [19] pointed out an adaptive strategy to switch between beamforming and
interference pre-processing techniques to enhance the system performance under
the perfect CSI at transmitter. An interference co-ordination, termed as δD-
interference limited area control scheme [12], is discussed to limit the power of
the D2D links and exclude the CUs from a δD-interference zone. A target SINR
degradation-based scheme [20] has been proposed for D2D transmitter power
control to protect the required QoS for CU links.

In [24], authors studied the problem of the RB allocation to the D2D link
formulated as mixed integer non-linear programming (MINLP). However, the
MINLP problem is a very hard to solve within short scheduling time during
UL/DL (for example, 1 ms). Thus, a greedy heuristic search algorithm was dis-
cussed for the RB allocation. An interesting scheme, called power-efficiency-based
joint mode selection and power allocation scheme [9] is introduced. Although the
power-efficiency-based optimization is not a concave function for transmission
power, a sub-optimal solution [9] is suggested for the maximal power-efficiency
among all possible modes of the UEs. Further, Gao et al. [6] developed an effec-
tive algorithm with an interesting step function of SINR with about 57% power
saving compared to the several proposed schemes. Most recently, a Stackelberg
game model-based approach [4] is formulated to group the D2D links. In this app-
roach, the D2D and the CU links are modeled as a seller and a buyer, respectively.
The final price covered by both the CUs and the D2D, is equilibrium of the game-
strategic model.

Aforementioned works consider mainly single-cell architecture. In addition,
the mode selection-based algorithms mostly follow fixed-power allocation of CU
links. Hence, it is quite promising to consider the interference effects from the
nearby edge-UEs in the neighboring cells, that can be further used for the power
allocation for D2D links.

3 System Model

Consider a hybrid two-cell network as illustrated in Fig. 1 comprised by one e-NB
per cell. We consider the scenario consisting of K(i) pairs of the D2D links and
C(i) orthogonal CUs with a total N (i) RB1 in the ith cell. Both the D2D links
and the base station to the mobile station (BS-MS) communication operate in
the same DL frequency. We denote RBc(i) as the number of the RB used for
the c(i)th CU in the ith cell. The k(i)th D2D pair kTx

(i)→Rx
(i) in the ith cell

consists of one D2D transmitting user k
(i)
Tx

and one D2D receiving user k
(i)
Rx

.
In the present scenario, there are total three D2D links in the two cells and
three CUs communicating with their respective correspondent through eNB in
each cell. Figure 1 represents the interference pattern in the D2D underlaying
DL cellular network. Both the transmitter and the receiver of D2D pair 1 are
1 As per the physical layer (PHY) standard of 3GPP LTE, each RB contains 12

subcarriers, occupies 1 slot (0.5 ms) in the time and 180 kHz in the frequency
domain with a subcarrier spacing 15 kHz. The smallest unit of the RB assigned to
any CU is two.
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in the same cell, (i.e., in cell 1). The same follows to D2D pair 3. However,
the transmitter and the receiver of the D2D pair 2 operate on the edge of two
different cells (i.e., transmitter in cell 2 and receiver in cell 1).

We focus to analyze the interference due to the D2D operating on different
cells and the interference due to the leakage from the other RBs used by CUs in
a neighboring cells. For convenient description, we choose only to calculate the
interference to receiver of D2D pair 1 due to other D2D links and CUs, further
this interference calculation can be applied to other UE.

3.1 Data Rate and Resource Reuse Model

We assume a continuous-rate M-ary quadrature amplitude modulation (QAM) to
calculate the data rate. The data rate for RB is given by WRB log2

(
1 + −1.5

ln(5×BER)

×SINR
)

b/s [7], where WRB is the bandwidth of each RB, SINR is the instan-
taneous signal-to-interference-and-noise ratio on RB, and we set the target bit-
error rate (BER) equals to 1 × 10−2. Then, the data rate for the c(i)th CU
corresponds to

Rc(i) = RBc(i)WRB log2

(

1 +
−1.5

ln (5 × BER)
SINRc(i)

)

, (1)

where SINRc(i) denotes the instantaneous SINR at the c(i)th CU. Similarly, we
calculate the data rate of kTx(i)→Rx

(i)th D2D link as

Rk(i) =
C(i)
∑

c(i)=1

ζk(i),c(i)WRBlog2

(

1+
−1.5

ln (5 × BER)
SINR

k
(i)
Rx

)

, (2)

where SINR
k
(i)
Rx

is the instantaneous SINR at the k
(i)
Rx

th receiver pair of D2D

link in the ith cell, and ζk(i),c(i) = 1 if the RB of the c(i)th CU is re-used by the
k(i)th D2D link and 0 otherwise.

3.2 Channel Model

It is important to note that the effect of shadowing attenuation is more in D2D
pair compared to eNB-CU link. Thus, we need to consider the interference from
nearby UEs close to any D2D link. The distance dependent pathloss and the
shadow fading pathloss model are preferred for a proximity service-based D2D
service. We take the urban macro cell (UMa) model for a LTE-advanced (LTE-A)
[1] for our study. The average pathloss at a distance d can be measured as
PLdB(d) = αPLLOS + (1 − α)PLNLOS, where PLLOS and PLNLOS are the
pathloss components in a line-of-sight (LOS) and a non-line-of-sight (NLOS)
scenario, respectively, and α is the probability of LOS as a function of the
distance d (in m).
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4 Interference Coordination and Problem Formulation

For a underlaying cellular network, we impose the target SINR to protect the
quality-of-service (QoS) requirement for the c(i)th CU in the ith cell as

SINRc(i) =
Pc(i)Gc(i)

K(i)∑

k(i)

ζk(i),c(i)Pk
(i)
Tx

G
k
(i)
Tx,c(i)

+ N0 + Leakage
≥ γ(i)

c , (3)

where Pc(i) and P
k
(i)
Tx

denote the power alloted to the c(i)th CU at eNB and the

transmitter of k(i)th D2D pair, respectively, Gc(i) and G
k
(i)
Tx,c(i)

are the channel

gain from BS to the c(i)th CU and the channel gain from the k(i)th D2D trans-
mitter to the c(i)th CU, respectively, and N0 is the AWGN noise power density.
The interference due to the spectrum leakage is discussed in next subsection. We
set the target SINR as γ

(i)
c to protect the QoS for the CU users in the ith cell.

Further, SINRk(i) can be expressed as

SINR
k
(i)
Rx

=
P

k
(i)
Tx

G
k
(i)
Tx,k

(i)
Rx(

M(i)∑

c(i)
ζk(i),c(i)Pc(i)Gc(i),k

(i)
Rx

+
M∑

j=1

M(i)∑

k′(j),k′(j)=k(i)

× P
k

′(i)
Tx

G
k

′(j)
Tx ,k

(i)
Rx

+ N0 + Leakage

)

, (4)

where G
c(i),k

(i)
Rx

is the channel gain from the BS to the k(i)th D2D receiver,

G
k

′(j)
Tx ,k

(i)
Rx

is the channel gain from k
′(j)th D2D transmitter belongs to the jth

neighboring cell to the k(i)th D2D receiver of the ith cell, M is the total number
of first-tier interfering nearby cells. We define the leakage-effect as a error vector
magnitude (EVM) concept discussed in the 3GPP specification [2]. The in-band
emission is measured as the ratio of power in non-allocated RB to the allocated
RB for a given UE. Finally, using (1) and (2), the total sum-rate can be expressed
as

RTotal =
K(i)
∑

k(i)

Rk(i) +
M(i)
∑

c(i)

Rc(i) (5)

Objective Function: Generally, we consider to maximize the sum-rate to
enhance the cell throughput ensuring the QoS requirement for CUs. However, it
is more appealing to consider the power-efficiency [9], defined as sum-rate per
total power as a maximization function. Since, the power-efficiency optimization
is not a concave fuction, it is shown that this optimization function can be easily
transformed to a (log, log) concave function using [9, (13) and (14)]. It jointly
considers the power and the sum-rate with a interference co-ordination in the
D2D scenario underlaying cellular network. The power-efficiency [9] is given by
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U =
RTotal

K(i)∑

k(i)

P
k
(i)
Tx

+
M(i)∑

c(i)
Pc(i)

(6)

Therefore, we can obtain the optimization problem as

max U (7)

s.t. SINRc(i) ≥ γ(i)
c ∀i ∈ {1, 2} (8a)

Pc(i) ≤ Pmax
B ∀c(i) ∈ C(i) ∀i ∈ {1, 2} (8b)

P
k
(i)
Tx

≤ Pmax

k
(i)
Tx

∀k(i) ∈ K(i) ∀i ∈ {1, 2} (8c)

C(i)
∑

c(i)

ζk(i),c(i) ≤ 1 ∀k(i) ∈ K(i) ∀i ∈ {1, 2} (8d)

Leakage < LeakageTh (8e)

The constraint in (8a) ensures the target SINR of CUs. The upper-bound trans-

mission power of a CU at BS (Pmax
B ) and transmitter of D2D link

(

Pmax

k
(i)
Tx

)

is

considered as in (8b) and (8c), respectively. We also adopt the constrain in (8e)
that ensures the maximum permissible leakage (LeakageTh) to the nearby RB
used by other UEs within the radius of D2D transmitter. Constrain in (8d) is to
ensure that each D2D shares at most one CU’s RB. During the DL RB alloca-
tion underlaying cellular network, the interference to the CUs due to D2D link
need to be restricted. We note that the transmitter of the D2D pair needs to
increase the power to maintain the link for a long distance between D2D pair.
Accordingly, this may create more interference to the CUs. In the following, we
discuss about the interference coordination for both CUs and D2D links.

5 Proposed Algorithm for Joint Power and Spectral
Leakage-Based Resource Allocation

Antipodal Bohman Filter-based Scheme: It is preferred to apply the filtering or
the subcarrier-weighting scheme to the edge subcarriers in the RBs with a aim to
keep acceptable throughput in contrast to the transmit filtering [21] applied to
the overall RBs. The filter used in the most of the out-of-band (OOB)-reduction
schemes [22] is a rectangular window function that has a high-peak side-lobe
power of −13 dB and a low side-lobe fall rate of −6 dB/Octave among the
well-known filters. In addition, we have found that Dolph-Chebyshev filter is
not the optimum filter that can be used for UFMC [15] due to its low side-lobe
fall rate. A novel Bohman-window-based antipodal approach [13] was introduced
that outperforms the state-of-the art on suppressed spectral leakage in overlay-
CR. We observe that the Bohman filtering scheme [8] is well-suited for our
purpose for the high side-lobe fall-rate of −24 dB/octave compared to other well-
known filters. Apart from this, we also intend to combine the benefits of reduced
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Algorithm 1. Joint RB and D2D power allocation scheme
1 Input: ζ

k(i),c(i)
, N

c(i)
;Pmax

B , SINRmin
c(i)

, Pmax

k
(i)
Tx

∀k(i), c(i) i ∈ {1, 2} ;

2 M : Shorted list of all DL CUs with CQI in decreasing order ;
3 K : List of D2D connection yet to be assigned RBs and power ;

4 Output: ζ∗
k(i),c(i)

, P
k
(i)
Tx

∀k(i), c(i) i ∈ {1, 2} ;

ζ
k(i),c(i)

← 0 ∀k(i) ∈ K, ∀c(i) ∈ M ; /* Initialize RB reuse variable */

5 begin
6 while K �= φ do

7 Pick RBs of the c(i)th CU with highest CQI ;

8 Find the c(i)th D2D pair which creates less interference to c(i)th CU ;

9 SINR
c(j)

← Calculate SINR according to (3) ; /* SINR for c(i)th CU */

10 SINR
k
(j)
Rx

← Calculate SINR according to (4); /* SINR for k(i) D2D pair */

11 if SINR
c(i)

> SINRmin
c(i)

then

12 if P
k(i) + 2ΔP(i) < Pmax

(i) then

13 P
k(i) ← P

k(i) + ΔP(i) ; /* Increase D2D Tx power */

14 K
′ ← List of UEs in the neighboring cells within the radius of k

(i)
Tx

;

15 use Algorithm 2 ; /* To obtain the number of egde subcarrier of RBs
where we apply antipodal Bohman-filter */

16 go to 9;

17 else
/* Consider the interference to the other cell due to RB and power

allocation of the current D2D pair */

18 if Rx of the k(i)th D2D pair belongs to neighboring cell then

19 K
′′ ← List of CUs in the neighboring cells within the radius of k

(i)
Tx

;

20 Calculate SINR
m(j) ; /* Calculate SINR for jth cell CU; i �= j */

21 SINRj =
{

SINR
c(j)

}
K

′′

c(j)=1
;

22 if min [SINRj ] < SINRmin

c(i)
then

23 P
k(i) ← P

k(i) − 0.5ΔP(i) ; /* Decrease the k(i)th D2D Tx power
*/

24 go to 9

end

end

end

25 K = K − {ki} ; /* update the List of D2D connection yet to be assigned */
26 C ← C + 1 ; /* Pick the next DL CU */
27 ζ∗

k(i),c(i)
= 1 ; /* update the RB reuse variable */

28 else

29 Do not assign RB to the k(i)th D2D pair ;
30 ζ∗

k(i),c(i)
= 0 ; /* update the RB reuse variable */

end

end

end

complexity burden and the improved flexibility with antipodal subcarrier coding
scheme [22] at the edge subcarriers of the RBs. The 3-dB bandwidth of 1.71 bins
of the Bohman filter, while small compared to some other filters, still creates
some overlapping between subcarriers in UFMC systems with low separation
between subcarriers. This can be partially solved by employing antipodal symbol
pairs on adjacent Bohman-filtered edge subcarriers.
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Algorithm 2. Optimize the set of edge subcarriers
1 Input: ζ

k(i),c(i)
, RB

c(i)
;P

c(i)
, P

k
(i)
Tx

, Lmin
k(i)∀k(i), c(i)i ∈ {1, 2}, K′;

2 Output: ζ∗
k(i),c(i)

, P
k
(i)
Tx

∀k(i), c(i) i ∈ {1, 2} ;

3 ζ
k(i),c(i)

← 0 ∀k(i) ∈ K, ∀c(i) ∈ M ; /* Initialize RB reuse variable */

4 M
k(i) ← N

k(i) − 2 ;

5 N
e,k(i) ←

{

0, 1, . . . �
N

k(i)−M
k(i)

2 	 − 1, M
k(i) + �

N
k(i)−M

k(i)
2 	 − 1, M

k(i) +

�
N

k(i)−M
k(i)

2 	, . . . N
k(i) − 1

}

; /* Edge subcarrier set */

6 N
c,k(i) ← N

k(i) \ N
e,k(i) ; /* Center subcarrier set */

7 begin
8 Apply antipodal Bohman-filtering scheme on N

e,k(i) ;

9 Calculate L
k(i) ;

10 if L
k(i) > Lmax

k(i) and M
k(i) >

N
k(i)
2 + 2 then

11 M
k(i) ← M

k(i) + 2 ; /* Increase the number of edge subcarrier */

12 Update M
k(i) ;

13 go to 8

end

end

It is important to note that, the sidelobe rolls off asymptotically as of f−8

in the Bohman filter-based scheme [13] compared to f−2 for the conventional
OFDM and of f−4 for the schemes in [22]. In this article, we use antipodal symbol
pairs that are mapped to lower- and upper-edge subcarriers with Bohman pulse
shaping. We further optimize the set of edge subcarrier indices in the proposed
algorithm to control the spectrum leakage in the D2D links.

5.1 Power and Spectral Leakage-Based Resource Allocation

We propose an algorithm to jointly optimize power control and RB allocation for
the D2D link. The basic idea of Algorithm1 is to consider the interference due
to the neighboring UEs and adjust the number of edge subcarrier to suppress
the spectrum leakage to the nearby RBs. We first take the list of D2D links yet
to be assigned RBs and power. Then, we pick the D2D link that creates a low
interference to the RB of CU with a highest channel quality information (CQI).
In the next step, we increase the power of D2D transmitter by an amount, say
ΔP(i), if the allocated power of D2D link is less then the maximum permissible
power Pmax

k
(i)
Tx

for D2D transmitter in the ith cell. Subsequently it increase the

interference to the nearby CU links. To tackle this problem, we need to check
the minimum SINR threshold at CU.

Afterwards, we take a comprehensive consideration on the leakage interfer-
ence due to other nearby cells within the range of D2D transmitter. The antipo-
dal Bohman window-based scheme is applied for the high side-lobe fall rate of
RBs. We define Ne,k(i) =

{
0, 1, . . . �N

k(i)−M
k(i)

2 � − 1, Mk(i) + �N
k(i)−M

k(i)

2 � −
1,Mk(i) + �N

k(i)−M
k(i)

2 �, . . . Nk(i) − 1
}

as the set of edge subcarrier indices and
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Table 1. Simulation parameters and values

Parameter Values

Carrier frequency 2 GHz

Bandwidth 10 MHz

Cell layout Hexagonal grid

Cell radius 500 m

Modulation and coding scheme (MCS) 16 QAM: 1/2

Shadowing standard deviation 4 dB

Shadowing decorrelation distance dcorr = 37m

No of subcarrier per RB 12

Cell level user distribution Uniform

RB bandwidth 180 kHz

Number of available RB 100

UE noise figure 9 dB

Maximum UE Transmitter power 24 dBm

UE thermal noise density −174 dBm/Hz

Nc,k(i) = Nk(i) \ Ne,k(i) as the set of center subcarrier indices, where Nk(i) is the
set of all available subcarriers in the RB yet to be allocated for the k(i)th D2D
link and |Nk(i) | = Nk(i) .

We optimize the edge subcarrier Ne,k(i) to meet the target spectrum leakage
to all UEs within the radius of D2D transmitter as discussed in Algorithm2. If
the target SINR of all the UEs does not meet required SINR, then we roll back
to the lower power by reducing 0.5ΔP(i) amount of power.

6 Numerical Results

In this section, simulation results are provided to evaluate the performance of
the proposed Algorithm1 and Algorithm2 for the D2D communications under-
laying cellular network. To show the advantage of Algorithm2, we denote the
Algorithm1 without Algorithm2 as scheme 1, and full Algorithm1 as scheme 2.
Table 1 summarizes the list of simulation parameters and their default values.

Normalized Aggregate Network Throughput: In Fig. 2, we show the performance
comparison in terms of the normalized aggregate network throughput. We fix
the number of D2D link at 25% of the total UEs in the cell and consider the
interference due to 10% of the total UEs from the interfering nearby cell. Gener-
ally, it is expected that the network throughput will increase with the number of
active UEs. However, the capacity of a cellular link is limited by multiple access
interference (MAI). From the above figure, it is observed that after a certain
number of UEs, the network throughput does not increase with the number of
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Fig. 2. Normalized-aggregate network throughput comparison between the proposed
scheme 1, scheme 2 and the scheme by Zulhasnine et al., 2010 [24]. The number of
D2D link is 25 % of the cell UEs. We consider the interference due to 10 % of the total
UEs from the interfering neighboring cell.

UEs. Thus, a floor is observed in all the schemes. This is because of MAI due to
interference from RBs shared by both D2D and CU links, and from UEs in the
neighboring cells. We term the traditional scheme that does not consider any
power or resource allocation algorithm. For this reason, the traditional scheme
creates higher interference on the D2D link as well as CU links. We observe
that the network throughput decreases after a certain number (30 UEs/cell) of
UEs in traditional scheme. An efficient resource allocation scheme [24] based on
greedy heuristic search algorithm performs better than the traditional scheme.
We observe that the proposed scheme 1 and scheme 2 outperform the scheme
discussed in [24]. An average 16% and 22% improvement in throughput are
achieved in scheme 1 and scheme 2, respectively, compared to the scheme [24].
The proposed scheme 2 that considers leakage interference due to nearby cells
and apply antipodal Bohman filtering on the edge subcarriers, performs bet-
ter compared to all schemes and achieve high normalized-network throughput
capacity of about 0.9 with 45 UEs per cell.

Total Power Consumption: Figure. 3 illustrates the total power consumption
with different values of D2D links in three scenarios. We maintain the above
mentioned ratio of interfering UEs from the nearby cell. We fix the number of
CU links at 16 and maintain the same ratio of interfering UEs from the nearby
cell. We observe that the total power consumption monotonically increases with
the number of D2D links irrespective of the schemes. It is observed from the
simulation results that the power consumption increases significantly slower in
both proposed schemes compared to the current state-of-the-art [6]. The pro-
posed algorithms jointly consider the maximum permissible power for the D2D
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Fig. 3. Total power consumption comparison between proposed scheme 1, scheme 2
and the scheme by Gao et al., 2014 [6]. The number of CU links is fixed at 16. We
consider the interference due to 10 % of the total UEs from the interfering neighboring
cell.

link and allocate RB which minimizes the interference. The advantage of allocat-
ing D2D link that creates low interference to the RB used by CU link, benefits
in total power consumption. Further, we observe that the scheme 2 performs
slightly better compared to scheme 1 with lower number of D2D links. The
reason is the scheme 2 adjusts the number of edge subcarriers where we apply
antipodal Bohman filtering with a aim to suppress spectral leakage. However,
the benefit of scheme 2 goes down with a large number of D2D links due to the
limitation in the optimization technique that adjusts the number of edge sub-
carriers in the RBs. Nevertheless, the performance of both scheme 1 and scheme
2 significantly are better in terms of total power consumption even in a large
number of D2D links. About 40% saving in total power consumption is observed
in both algorithms compared to the scheme in [6] (Fig. 4).

Total power consumption with different number of interfering UEs from
neighboring cells: We plot the impact of number of interfering nearby UEs on the
total power consumption for the proposed two algorithms. Based on the results
shown in Figs. 2 and 3, we observe that the proposed scheme 2 performs bet-
ter compared to the scheme 1 in terms of normalized-network throughput and
total power consumption. Thus, we choose to compare scheme 2 that considers
the interference due to spectrum leakage from the nearby cells with the scheme
that does not consider the interference from other cells for allocating the RBs
and power to the D2D links. Irrespective of both the schemes, we observe that
the total power consumption increases with the number of interfering UEs from
nearby cell. However, it is interesting to note that, the scheme 2 performs sig-
nificantly better than the scheme without interference consideration from other
cells. Total power savings of about 25% and 22% are observed in scheme 2 with
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15% and 20% interfering UEs from other cell, respectively. It is intuitively clear
that more number of interfering UEs from nearby cells creates more interference
and leads to increase in total power consumption with a higher number of UEs
under consideration from other cells. More importantly, it is observed that total
power consumption in scheme 2 with 20% nearby interfering UEs grows slowly
compared to the scheme that does not consider the interference with less (i.e.,
15%) neighboring users.
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Fig. 4. Total power consumption comparison between proposed scheme 2 and the
scheme without interference consideration. The number of CU links is fixed at 16;
interference due to 15 % or 20 % of the total UEs from the interfering nearby cell.

7 Conclusions and Future Work

In this paper, we proposed a joint power and reduced spectral leakage-based
resource allocation that considers the maximum permissible power for the D2D
transmitter and the minimum threshold SINR for the CU links in UFMC sys-
tems for the D2D communication. We developed a network model that considers
the interference from other UEs belong to the nearby cells. Numerical results
show that the proposed algorithm achieves a higher network throughput com-
pared to the current state-of-the art. With the increase of D2D links, the total
power consumption grows slowly and about 40% saving in power consumption
is obtained in the proposed schemes compared to the recently discussed schemes.
Additionally, the proposed algorithm performs better than the scheme without
interference consideration even in a higher ratio of the interfering UEs from
nearby cells. An analytical approach to solve the MINLP optimization would be
an interesting extension.



Joint Power and Reduced Spectral Leakage-Based Resource Allocation 257

Acknowledgments. This work was supported in part by the 2013 Special Fund of
Guangdong Higher School Talent Recruitment, in part by the Educational Commis-
sion of Guangdong Province, China, under Project 2013KJCX0131, in part by the
Guangdong High-Tech Development Fund under Grant 2013B010401035, in part by
the 2013 Top Level Talents Project in Sailing Plan of Guangdong Province, in part by
the National Natural Science Foundation of China under Grant 61401107, and in part
by the 2014 Guangdong Province Outstanding Young Professor Project.

The work of K. Wang was supported by NSFC under Grant 61572262 and NSF of
Jiangsu under Grant BK20141427.

References

1. Guidelines for evaluation of radio interface technologies for IMT-Advanced. Techi-
cal report ITU-R M.2135-1, December 2009

2. Evolved universal terrestrial radio access (E-UTRA); user equipment (UE) Radio
Transmission and Reception ( Release 10). Technical report 3GPP TS 36.101 ver-
sion 10.1.1, January 2011

3. Andrews, J., Buzzi, S., Choi, W., Hanly, S., Lozano, A., Soong, A., Zhang, J.:
What will 5G be? IEEE J. Select. Areas Commun. 32(6), 1065–1082 (2014)

4. Chen, X., Hu, R.Q., Qian, Y.: Distributed resource and power allocation for device-
to-device communications underlaying cellular network. In: Proceedings of the
IEEE Global Communications Conference, pp. 4947–4952, December 2014

5. Chen, X., Hu, R., Qian, Y.: Coverage study of dense device-to-device communica-
tions underlaying cellular networks. In: Proceedings of the IEEE Global Commu-
nications Conference, pp. 4353–4358, December 2014

6. Gao, C., Sheng, X., Tang, J., Zhang, W., Zou, S., Guizani, M.: Joint mode selec-
tion, channel allocation and power assignment for green device-to-device commu-
nications. In: Proceedings of the IEEE ICC, pp. 178–183, June 2014

7. Goldsmith, A., Chua, S.G.: Variable-rate variable-power MQAM for fading chan-
nels. IEEE Trans. Commun. 45(10), 1218–1230 (1997)

8. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier
transform. Proc. IEEE 66(1), 51–83 (1978)

9. Jung, M., Hwang, K., Choi, S.: Joint mode selection and power allocation scheme
for power-efficient device-to-device (D2D) communication. In: Proceedings of the
IEEE VTC, pp. 1–5, May 2012

10. Lin, H., Siohan, P.: An advanced multi-carrier modulation for future radio systems.
In: Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 8097–8101, May 2014

11. Lin, X., Andrews, J., Ghosh, A., Ratasuk, R.: An overview of 3GPP device-to-
device proximity services. IEEE Commun. Mag. 52(4), 40–48 (2014)

12. Min, H., Lee, J., Park, S., Hong, D.: Capacity enhancement using an interference
limited area for device-to-device uplink underlaying cellular networks. IEEE Trans.
Wireless Commun. 10(12), 3995–4000 (2011)

13. Mukherjee, M., Chang, R.Y., Kumar, V.: OFDM-based overlay cognitive radios
with improved spectral leakage suppression for future generation communications.
In: Proceedings of the IEEE WCNC, March 2015

14. Tehrani, M., Uysal, M., Yanikomeroglu, H.: Device-to-device communication in
5G cellular networks: challenges, solutions, and future directions. IEEE Commun.
Mag. 52(5), 86–92 (2014)



258 M. Mukherjee et al.

15. Vakilian, V., Wild, T., Schaich, F., ten Brink, S., Frigon, J.F.: Universal-filtered
multi-carrier technique for wireless systems beyond LTE. In: Proceedings of the
IEEE Globecom Workshops, pp. 223–228, December 2013

16. Wang, X., Wild, T., Schaich, F., Fonseca dos Santos, A.: Universal filtered multi-
carrier with leakage-based filter optimization. In: Proceedings of the European
Wireless Conference, pp. 1–5, May 2014

17. Xing, H., Renfors, M.: Investigation of filter bank based device-to-device communi-
cation integrated into OFDMA cellular system. In: Proceedings of the International
Symposium Wireless Communication Systems (ISWCS), pp. 513–518, August 2014

18. Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Jiao, B.: Interference-aware resource
allocation for device-to-device communications as an underlay using sequential
second price auction. In: Proceedings of the IEEE ICC, pp. 445–449, June 2012

19. Xu, W., Liang, L., Zhang, H., Jin, S., Li, J., Lei, M.: Performance enhanced trans-
mission in device-to-device communications: Beamforming or interference cancel-
lation, In: Proceedings of the IEEE Global Communications Conference, pp. 4296–
4301, December 2012

20. Yu, C.H., Tirkkonen, O., Doppler, K., Ribeiro, C.: On the performance of device-
to-device underlay communication with simple power control. In: Proceedings of
the IEEE VTC, pp. 1–5, April 2009

21. Yu, L., Rao, B., Milstein, L., Proakis, J.: Reducing out-of-band radiation of OFDM-
based cognitive radios. In: Proceedings of the IEEE SPAWC, pp. 1–5, June 2010

22. Zhou, X., Li, G., Sun, G.: Multiuser spectral precoding for OFDM-based cognitive
radio systems. IEEE J. Select. Areas Commun. 31(3), 345–352 (2013)

23. Zhou, Z., Dong, M., Ota, K., Wu, J., Sato, T.: Distributed interference-aware
energy-efficient resource allocation for device-to-device communications underlay-
ing cellular networks. In: Proceedings of the IEEE Global Commununications Con-
ference, pp. 4454–4459, December 2014

24. Zulhasnine, M., Huang, C., Srinivasan, A.: Efficient resource allocation for device-
to-device communication underlaying LTE network. In: Proceedings of the IEEE
WiMob, pp. 368–375, October 2010



Performance Analysis for Job Scheduling
in Hierarchical HPC Systems: A Coloured Petri

Nets Method

Zhijia Li1,2(B), Li Jiao1, and Xiang Hu1,2

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing 100190, China

{lizj,ljiao,hux}@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing 100049, China

Abstract. Distributed computing technology has been widely used to
solve complex problems appearing in parallel processing systems. Job
scheduling is very important in many distributed computing systems,
like grid systems and high performance computers. Their performance is
directly related to the efficiency of the distributed computing systems.
Modeling them and analyzing their performance can provide quantita-
tive performance metrics and predictions, which are helpful to guide
capacity planning and scheduling optimization. In this paper, we study
job scheduling systems widespread in high performance computing sys-
tems and propose a coloured Petri net method for analyzing their perfor-
mance, which can be easily implemented in CPN software by potential
users. We also propose an approximative modeling technique so as to
reduce the model size. As a model-based performance analysis method,
our method is low cost and highly flexible. Experimental results show
that our method is feasible and can be applied to more complex and
large-scale systems.

Keywords: Job scheduling · Performance analysis · Modeling · Simu-
lation · CPNs · HPC

1 Introduction

Performance analysis can be used to make predictions about key performance
metrics and detect possible bottlenecks, so that we can understand the as-is sit-
uations and compare them with possible to-be situations. In other words, perfor-
mance analysis helps to answer questions such as “Which is the best scheduling
strategy in this situation?”, “How many servers we need to buy in order to han-
dle the network traffic in the next month?”, “Are the current operators enough
if there are 5000 calls in this customer service center?”, “How long is the average
user waiting time?”, “How much the average user waiting time will reduce if 10
more nodes are deployed?”.
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As an important distributed computing technology, high performance com-
puting (HPC) has been widely applied to various fields of science and engi-
neering. HPC systems, like grid systems and high performance computers, inte-
grate and coordinate resources and users with the goal of delivering various high
quality services. In these distributed systems, job scheduling plays a fundamen-
tal role. Modeling them and analyzing their performance can provide quantita-
tive performance analysis and prediction, which are very important towards the
establishment of HPC infrastructure.

As a formal model, coloured Petri nets [1] inherit many merits of Petri nets.
Additionally, they have more powerful modeling capabilities benefiting from
colour sets, which make CPNs widely used in many fields, such as business
process management, protocol verification, software engineering, and system
analysis. What’s more, CPNs can also be used to analyze performance based
on simulation [2–7]. The method of performance analysis using CPNs is system-
atically proposed in [2,3], specifying how to model, simulate and analyze systems
using CPNs. A new method for modeling, simulation and analysis of the network
environment using CPNs is proposed in [4]. The method is different from the
traditional methods on network analysis using queuing theory. It is suitable for
performance analysis of many networks with different structures and workloads.
A method on how to use CPNs to describe and analyze components in embedded
systems is proposed in [5], which helps designers choose platforms and software
with their special requirements. A CPN method to predict the performance of
parallel program running on the HPC is proposed in [6]. The comparative eval-
uation with other simulation tools shows the method is feasible. A CPN method
to analyze the performance of search engines is proposed in [7], and the most
valuable contribution of this research is that tens of millions of user data can be
used in its simulation, which shows that CPNs can still play a role in the era of
big data. All of the above works indicate that the method of performance analy-
sis based on CPNs is feasible and has great practical value. Besides, compared
with other languages (e.g., MATLAB), CPNs are easier to program and offer a
variety of other analysis techniques.

The motivation why we explore a coloured Petri nets (CPNs) method for
performance analysis of job scheduling in hierarchical HPC systems, is that we
have not yet found any other similar method, however we believe that CPNs are
suitable for solving the problem. The second motivation is that our CPNs method
helps to improve the previous work. The method proposed in [8] is not easy to
be applied in large-scale systems and can’t support more complex workloads.
The method proposed in [9,10] also can’t support complex workloads and the
simulation software Flexsim is very expensive. [11] focuses on the reliability
evaluation of grid services and doesn’t provide modeling method of scheduling
strategies. In this paper, we will propose a coloured Petri net method to improve
the above problems.

This paper makes three main contributions. Firstly, we propose a new CPN
method for modeling job scheduling systems in HPC and analyzing their per-
formance. An approximative modeling technique is designed so as to reduce the



Performance Analysis for Job Scheduling in Hierarchical HPC Systems 261

model size. Secondly, we implement CPN models for many scheduling strate-
gies using CPN Tools [12] and conduct experiments to verify that our method
is feasible. We also extend the stochastic Petri net method proposed in [8] to
the job scheduling system in HPC and conduct comparative experiments with
it to confirm that our method is credible and can be applied to larger systems.
Thirdly, we propose a kind of potential application of our method.

The rest of the paper is structured as follows. Section 2 presents an overview
of CPNs and the job scheduling system. Section 3 elaborates the proposed perfor-
mance analysismethod for the job scheduling system inHPCusingCPNs. Section 4
shows our experimental results. Section 5 introduces some related works. Section 6
provides conclusions and future implications for this work.

2 Preliminaries

In this section, we will give a brief introduction about CPNs and job scheduling
systems. More details about them can be found in [1,13].

2.1 Coloured Petri Nets

Definition 1 (Coloured Petri Nets). A coloured Petri net (CPN) is a nine-
tuple
CPN = (P, T, F,Σ, V,C,G,E, I), where

– P is a finite set of places.
– T is a finite set of transitions, such that P ∩ T = ∅.
– F ⊆ P × T ∪ T × P is a set of directed arcs.
– Σ is the non-empty finite multiset of all colour sets.
– V is the finite set of typed variables, so that ∀v ∈ V, Type[v] ∈ Σ.
– C : P → Σ is colour set function, which assigns a colour set to each place,
indicating the type of tokens in this place.

– G : T → EXPRv is a guard function, which assigns a guard, one prerequisite
for transition firing, to each transition, so that Type[G(t)] = Bool.

– E : F → EXPRv is an arc expression function, which assigns an expression
to each arc f , so that Type[E(f)] = C(P )MS , where MS denotes a multiset.

– I : P → EXPRv is an initial function which assigns a token set to each place.

A place p ∈ P is an input place of a transition t if (p, t) ∈ F ; a place p ∈ P is
an output place of a transition t if (t, p) ∈ F . In CPNs, a token is no longer an
unidentified dot but a kind of data with special type. A transition can fire if there
are enough tokens in its input places and its guard is evaluated to True. The
transition is called an enabled transition if it can fire. The tokens in the input
places and output places of the enabled transition will be redistributed when it
fires, which also means that the state of the CPN model changes. The behaviors
of the real system are modeled by the firing behaviors of the corresponding CPN
model. A CPN model can be further explored in two ways, state space technology
and simulation technology. State space technology explores all the possible states
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of the model, while simulation technology only explores one random trace in the
state space. Firing behaviors make a CPN an executable model. The simulation
for a model is to let the executable model run several times. We call each run
a simulation and we call it a n-step simulation if a run contains n successive
firings. CPNs can be used to model complex and large-scale systems. Moreover,
there are many mature CPN software tools, among which CPN Tools [1,12] is
the most famous one. It is widely used for modeling, simulating and analyzing
various systems.

2.2 Job Scheduling Systems of HPC

A job scheduling system, like the classical job scheduler LSF [13,14], is one of
the most important software in HPC systems as a connector between users and
machines. The cluster environment of LSF is shown in Fig. 1. The scheduling
framework can be centralized or decentralized. The most common decentralized
architecture is the hierarchical architecture which includes a global scheduler,
various distributed local schedulers and many computing resources. In general,
a classical job scheduler consists of many submission hosts and one master host.
Submission hosts are used to receive the jobs submitted by the users or systems.
Master host, designed as a global scheduler, is used to allocate the jobs to every
node. In high performance computing systems with hierarchical architecture,
distributed local schedulers exist in every node which are used to allocate the
jobs to the execution hosts. The life cycle of a job consists of five main stages:
submission, scheduling, dispatch, execution, and feedback. Figure 1 also describes
the skeleton scheduling process of a job. Some concepts involved in this paper
are described in detail as follows.

– Job: a unit of work runs in the LSF system. A job is a command submitted
to LSF for execution. LSF schedules, controls, and tracks the job according
to configured strategies. Jobs may be complex problems, simulation scenarios
or extensive calculations, anything that needs computing power.

– Queue: a container for jobs. All jobs wait in queues until they are scheduled
and dispatched to hosts. There may be many queues.

– Host: an individual computer in the cluster.
– Submission host: the host where jobs are submitted to the cluster.
– Execution host: the host where a job runs. Each execution host may have one

or more CPUs. In this paper, we assume that each execution host has one
CPU.

– Node: a group of computers (execution hosts) running in LSF that work
together as a single unit.

– Master host: the host for scheduling and dispatching all jobs.

A job scheduling system supports a variety of scheduling strategies. For exam-
ple, LSF supports the first come first served, fair share, preemption, exclusive,
resource reservation and some other strategies. In addition, a job scheduling sys-
tem is divided into three types: centralized scheduling, distributed scheduling
and hierarchical scheduling, depending on the location of the scheduler.
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Fig. 1. The job scheduling process of LSF

3 The Performance Analysis Method Using CPNs

In this section, we will propose a performance analysis approach for job schedul-
ing systems. Without loss of generality, we choose a two-level hierarchical job
scheduling system as an example. The first level called the inter-node schedul-
ing is responsible for scheduling a job to a node and the second level called the
intra-node scheduling is responsible for scheduling a job from a node to a CPU.
For model-based performance analysis methods, how to construct the model of
the target system, which relates to the accuracy of the performance analysis,
is the essential problem. Our modeling method can be divided into three steps.
The first one is to model a job scheduling system abstractly. Then, we refine
the abstract model to a more detailed model and finally propose how to analyze
performance using the refined model based on simulation. The detailed steps
will be listed as follows.

3.1 Abstractly Modeling for Job Scheduling Systems

Firstly, we construct an abstract model for a two-level hierarchical job scheduling
system, in the light of the basic principles of job scheduling systems introduced
in Sect. 2. The most critical parameters for modeling are the details of the system
structures and workloads. More specifically, an n×m HPC contains n nodes and
m execution hosts (CPUs) in each node. As we mentioned in Sect. 2, the work-
load adopted in this paper is composed of jobs which only require one computing
resource. A job can be defined as J =< Queue, ID, T ime >, where Queue is
the queue number of a job, ID is the name of a job, and Time is the arriving
time of a job. The time of a job is automatically generated by different random
distribution functions. CPNs support many probability distributions suitable for
modeling time durations, such as the negative exponential distribution, the uni-
form distribution and so on [15]. Perhaps one may wonder why other important
properties of jobs, like deadlines, are not considered. Actually, they are charac-
terized in another way. We use the job arriving rate r to represent that there will
be r jobs submitted to the HPC in each unit time (the unit time may be second,
minute, hour, day or any unit of time). Similarly, we characterize each CPU
with an execution speed rij (i denotes the sequence number of the node which
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Fig. 2. The abstract model for a two-level hierarchical job scheduling system

the CPU belongs to and j denotes the sequence number of the CPU within the
node) which means how many jobs each CPU processes in each unit time. The
above definitions of workload are similar with the ones in [8–10].

Besides the parameters, the behavior is another important factor that needs
be considered for modeling. For a job scheduling system, scheduling each job to
an execution host is the most critical behavior. Firstly, each job is scheduled to
a node, after that it will be scheduled to an execution host in the node. Accord-
ing to the detailed information for parameters and behaviors, we construct an
abstract CPN model for a two-level hierarchical job scheduling system, as shown
in Fig. 2. All the declarations of colour sets and variables appeared in the CPN
models in the rest of this paper are also shown in Fig. 2. The meanings of the
places and transitions in Fig. 2 are described as follows, and for the symbols
below, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ q.

Places:

– JobPool: the place that stores all the jobs submitted from all the submission
hosts. We model each submission host as a job arriving queue Queuek.

– Ratek: the place that controls the arriving rate of Queuek.
– Nextk: the place that records the next arriving job of Queuek.
– Ni: the place that stores all the jobs scheduled to the node i.
– NiCj : the place that stores all the jobs scheduled to the execution host CPU

j within node i.

Transitions:

– Arrivek: the transition that models jobs submitted by submission host k. The
firing rate of the transition is rk which is used to model the job arriving rate.

– ToNi: the transition that models jobs scheduled to the node Ni from JobPool.
– ToNiCj : the transition that models jobs scheduled to the CPU NiCj from

node Ni.

It should be noted that time is introduced in the models of Fig. 2 by assuming
a globalclock representing the current model time. Each token in each timed
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Fig. 3. (a): An abstract model of Ni; (b): The model of Ni with CPU’s execution speed
and waiting time; (c): The basic model of Ni with the MEWT scheduling strategy
between two CPUs

place has a time stamp, denoted by a symbol “@”, indicating when the token
can be consumed. A real time delay can be expressed by a symbol “@++”. More
details can be found in [1].

Obviously, the model in Fig. 2 is not specific enough. Many detailed fac-
tors are not included, among which, the most important one is the scheduling
strategy. Next, we will elaborate how to model the intra-node and inter-node
scheduling strategy using CPNs.

3.2 Modeling the Intra-node Scheduling Strategy

The intra-node scheduling strategy is responsible for scheduling jobs within a
node to separated CPUs. Without loss of generality, we choose the minimum
expected waiting time (MEWT) scheduling strategy as an example to state our
modeling method, which always schedules the next job to the CPU that has the
minimum expected waiting time (specially, jobs will be scheduled evenly among
CPUs if all CPUs have the same waiting time). We will build the CPN model
for it step by step.

Firstly, we construct a model with implementation of the MEWT scheduling
strategy between two CPUs. Figure 3(a) is the abstract model for a node Ni

extracted from Fig. 2. Figure 3(b) adds two places: Rij and WT ij . Rij controls
the execution speed by time delay @++(1.0/rij), which means the token in Rij

can only be consumed again after 1.0/rij units of time. WT ij records the waiting
time of CPU NiCj by the expression ModelTime.time()+(1.0/rij), which means
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Fig. 4. The model of Ni added an updater from Fig. 3(c)

Fig. 5. The model of Ni with the MEWT scheduling strategy among more than two
CPUs

the earliest time when the CPU NiCj becomes idle again is ModelTime.time()
+(1.0/rij). Figure 3(c) adds one transition Compare to decide which CPU has
the minimum waiting time between two CPUs, and also adds one place Decider
to record the comparison results. Each time the transition ToNiCj fires, it must
satisfy that the guard of ToNiCj , [s1 =“cpuj”], is evaluated to True which
means that the only token in place Decider is “cpuj”, in other words, NiCj

has the minimum expected waiting time. The waiting time of CPUs will change
after any ToNiCj fires, so one place Updater is added in Fig. 4 to ensure that
the minimum expected waiting time will be updated after each ToNiCj fires.
That is to say, the comparison and updating module will be triggered after each
ToNiCj fires.
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Fig. 6. The complete model of Ni with the MEWT scheduling strategy

Next, we extend the scheduling strategy modeling method to Ni with more
than two CPUs in Fig. 5. Differently from the former model in Fig. 3(c), it adds
m − 1 comparisons to decide which CPU has the minimum expected waiting
time for a node with m CPUs. The result of each comparison is stored in place
Tempj . Similar to Fig. 3(c), we add an updater and get a new model as shown in
Fig. 6 which completely implements the MEWT scheduling strategy in node Ni.

At last, we still need to optimize the model in Fig. 6 in case that all CPUs
have the same waiting time, which occurs frequently when the workloads are
too low and almost all the CPUs are idle. The model shown in Fig. 6 always
schedules jobs to the former CPUs when t1 = t2 in the if then else statement
such as “if t1 > t2 then (t2, “cpu2”) else (t1, “cpu1”)”. More improvements are
required, so that every CPU has an equal opportunity to be scheduled when all
their waiting time is equal. However, the CPN models will become more complex
if we design an exact modeling method to meet the above requirements. Next, we
will introduce an approximative modeling method so as to reduce the complexity
of the exact models.

3.3 An Approximative Modeling Method for the Scheduling
Strategy

We improve the statements by adding a random number p, 0 < p < 1, in order
to deal with the case that t1 equals to t2. The new improved statements are
shown in Table 1.

The parameters x1, x2 · · · , xm−1 appeared in the improved statements can
be solved by the following equations by guaranteeing that all CPUs have the
same probability of 1/m to be scheduled when all their waiting time is equal.
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⎧
⎪⎨

⎪⎩

∏m−1
i=1 xi = (1 − x1)

∏m−1
i=2 xi = 1/m

(1 − xk)
∏m−1

i=k+1 xi = (1 − xk+1)
∏m−1

i=k+2 xi = 1/m,

1 ≤ k ≤ m − 2

The solution of the above equations is xk = k
k+1 , where 1 ≤ k ≤ m−1. Thus,

we can get the exact models just by updating some statements. This modeling
method doesn’t change any structures of the original models, but it can reduce
the complexity of the exact models. This approximative modeling method almost
ensures that the next job will be scheduled to the CPU which has the minimum
expected waiting time and will be scheduled evenly among CPUs which have
the same waiting time. In other words, the scheduling strategy modeled by the
improved statements approximates the fair strategy for low workloads. We will
also verify that this approximative modeling method is credible by the following
experiments. Actually, this approximative modeling method is also suitable for
modeling other similar scheduling strategies, such as the minimum length of
queue scheduling strategy and so on.

3.4 Modeling the Inter-node Scheduling Strategy

The inter-node scheduling strategy is responsible for scheduling jobs to nodes
from the job pool. Without loss of generality, we also choose the MEWT schedul-
ing strategy as an example to state our modeling method. We will also construct
the CPN model for it step by step.

Firstly, we construct a basic model for each node’s scheduling environment
as shown in Fig. 7. Place WN i is in charge of recording the number of waiting
jobs in the node Ni. Place WT i is in charge of recording the whole waiting time

Table 1. Improved statements

Statements in Fig.6 Improved Statements
if t1 > t2 then (t2,“cpu2”)
else if (t1 = t2) then

if t1 > t2 then (t2, “cpu2”) if (p < x1) then (t1,“cpu1”)
else (t1, “cpu1”) else (t2,“cpu2”)

else (t1,“cpu1”)
if t1 > t2 then “cpum”
else if (t1 = t2) then

if t1 > t2 then “cpum” if (p < xm−1 ) then s

else s else “cpum”
else s

Fig. 7. A basic model of the scheduling environment of the node Ni
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Fig. 8. The model with the MEWT scheduling strategy among nodes

of the node Ni, which is approximatively calculated by num/(ri1 + · · · + rim),
where num is the number of waiting jobs and rij is the process speed of the
CPU NiCj . Although the accurate time, when a node has an available CPU
to execute the next job in a real system, may refer to the earliest time when
one CPU becomes idle, we find that the model will become very large in such
a situation. In addition, we find through our experiment that the errors of the
approximate calculation in Fig. 7 are very small, so we still adopt this method
in order to tackle large-scale systems. The number of waiting jobs will increase
when a new job is scheduled to the node Ni and will decrease when a job is
scheduled to a CPU NiCj . At the same time, the waiting time of the node Ni

will increase and decrease, correspondingly. These are all implemented by arc
inscriptions in the model.

Secondly, we model the scheduling strategy and get a new model with the
implementation of the MEWT strategy among nodes in Fig. 8. The model-
ing method is similar to that stated in Subsects. 3.2 and 3.3. The parameters
y1, y2, · · · , yn−1 appeared in the model can be also calculated similarly.

At last, we can get a complete model with the implementation of the MEWT
scheduling strategy among nodes by combining the models in Figs. 7 and 8.

3.5 A Complete Model for a Job Scheduling System

In Subsects. 3.1, 3.2, and3.4,we construct an abstractCPNmodel for a job schedul-
ing system, thenmodel the intra-node and inter-node scheduling strategies, respec-
tively. Then we can get a complete CPN model for a job scheduling system with



270 Z. Li et al.

the MEWT scheduling strategy shown in Fig. 9. The complete model consists of
three parts: the job arriving environment module, the inter-node scheduling mod-
ule, and the intra-node scheduling module. The first one is modeled in Fig. 2, the
second one is modeled by combining Figs. 7 and 8, and the third one is modeled in
Fig. 6.

In the above section, CPN models are used to state how to model a job
scheduling system with a specified scheduling strategy. We implemented their
executable models in CPN tools. The final executable CPN model for an n × m
HPC with the MEWT strategy is composed of 4n(m + 1) + 3 places, n(2m + 1)
transitions, and n(16m + 11) + 3 arcs.

3.6 The Simulation Based Performance Analysis Method

The models we construct in the above section are not sufficient enough if we
want to analyze the performance. We need to indicate what kind of data should
be collected for different performance metrics, such as throughput, utilization,
flow time and delay. CPN Tools [12] offers the function to collect data during
simulations by using monitors. For example, a Marking size monitor counts the
average number of tokens in a place when a simulation runs. We add different
monitors to our model in terms of what kind of performance metrics we need
to analyze without “polluting” the model with additional places or transitions.
Monitors can be directly attached to places or transitions where we need to
collect data. Next, we will explain how to analyze the performance with the
data collected by monitors.

The throughput of node Ni can be formulated as Th(Ni) = (D(ToNi) −
D(WNi))/T , where D(ToN i) is the firing number of transition ToNi during T
time units of simulation, and D(WN i) is the number of tokens in place WN i

after the simulation stops. In other words, there are D(ToN i) − D(WN i) jobs
executed by the CPUs in the node Ni during T time units of simulation.

Similarly, the throughput of the CPU NiCj can be formulated as Th(NiCj) =
D(ToN iCj)/T , where D(ToN iCj) is the firing number of transition ToN iCj

during T time units of simulation.
The utilization of Ni can be formulated as Ut(Ni) = Th(Ni)/

∑m
j=1 rij , where

∑m
j=1 rij is the process speed of Ni. The utilization of NiCj can be formulated

as Ut(NiCj) = D(ToN iCj)/(T × rij).
The average delay of job DT comprises two parts, inter-node scheduling

delay and intra-node scheduling delay. The inter-node scheduling delay can
be formulated as D(JobPool)/

∑n
i=1 Th(Ni), where D(JobPool) is the aver-

age number of tokens in place JobPool indicating how many jobs are waiting
in JobPool on average. The intra-node scheduling delay can be formulated as
∑n

i=1(Davrg(WNi)/Th(Ni))

n , where Davrg(WN i) is the average number of tokens in
place WN i during one simulation. As a result, DT can be formulated as

D(JobPool)/
∑n

i=1 Th(Ni) +
∑n

i=1(Davrg(WNi)/Th(Ni))

n .

Many other performance metrics can also be computed by the data collected
during the simulation, such as flow time of jobs, loss rate of jobs with a specified
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capacity of JobPool and so on. We will only provide the experimental results
about throughput and utilization in the following section because of the paper
length.

4 Experiment and Analysis

In this section, we will present the experimental results. At first, we verify that
our method is feasible with an experiment. Then we confirm that it is credible
in comparison with the stochastic Petri net method.

Fig. 9. A complete CPN model for a job scheduling system with the MEWT scheduling
strategy

4.1 Experimental Results of Our Method

We use the software package CPN Tools [12] to implement the CPN model of
a 4 × 2 HPC. The detailed experiment parameters are described in Table 2. We
execute several 20000-step simulations for each arriving rate. The results are
described as follows.
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(a) Throughputs of nodes (b) Utilizations of nodes

Fig. 10. The experimental results of nodes

Table 2. Experiment parameters

Name Value Meaning

r11 60 jobs/ut Speed of CPU1 in Node1

r12 60 jobs/ut Speed of CPU2 in Node1

r21 50 jobs/ut Speed of CPU1 in Node2

r22 50 jobs/ut Speed of CPU2 in Node2

r31 40 jobs/ut Speed of CPU1 in Node3

r32 40 jobs/ut Speed of CPU2 in Node3

r41 30 jobs/ut Speed of CPU1 in Node4

r42 30 jobs/ut Speed of CPU2 in Node4

Figure 10(a) is the result about the throughputs of nodes. The throughputs
of the four nodes are almost the same when the arriving rate ranges from 0/ut
(ut denotes unit time) to 100/ut, because they are almost idle during this time
due to the low workloads. At this time, jobs will be scheduled evenly to all
CPUs. As the arriving rate increases, the throughputs increase as well. The
throughput is proportional to the speed of each node for workloads more than
100/ut. Particularly, when the arriving rate rises to 360/ut, the throughputs
reach the maximum values and then keep stable at these values, because the
total speed of all nodes is 360/ut(60 + 60 + 50 + 50 + 40 + 40 + 30 + 30). The
similar situation is also found in Fig. 10(b), which shows the utilizations of nodes.
The utilizations of all nodes achieve nearly 100 % when the arriving rate rises
to 360/ut. It is shown in Fig. 10(b) that the utilization is inversely proportional
to the speed of each CPU for low workloads, which is caused by the scheduling
strategy we described in Sect. 3.

Besides, the throughputs and utilizations of all CPUs are also shown in
Fig. 11. The trends of CPUs’ performance metrics coincide with the trends of
nodes’ performance metrics. It should be noted that we only observe 4 curves
for 8 CPUs, since the speeds of the two CPUs in each node are the same.
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(a) Throughputs of CPUs (b) Utilizations of CPUs

Fig. 11. The experimental results of CPUs

(a) The CPN method (b) The SPN method

Fig. 12. The comparative experiments of throughputs

In addition, we may observe that from the experimental results of through-
put, jobs are scheduled evenly to every node and CPU with low workloads (when
the arriving rate ranges from 0/ut to 100/ut). All about this can indicate that
our approximative modeling method is feasible.

4.2 The Comparative Experiments with the SPN Method

We also perform comparative experiments with the method proposed in [8]. [8]
proposed a SPN method for modeling and performance evaluation of a hierar-
chical job scheduling on the Grids. We extend it to the job scheduling system of
HPC and implement the same scheduling strategy as described in Sect. 3. The
configurations and parameters are exactly the same with the SPN method. The
experiment results are shown in the following figures.

Figure 12 is the contrast of throughputs analyzed by the two methods, respec-
tively. Figure 12(a) shows the curves of the throughtputs derived by our method.
Figure 12(b) shows the curves of the throughputs derived by the SPN method.
Obviously, the lines in Fig. 12(a) are curves, but the lines in Fig. 12(b) are straight
lines. That is because our method is based on the simulation technique, whereas
the SPN method is based on the state space technique. Despite a big difference
between these two methods, we observe that the curves generated by our method
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(a) The CPN method (b) The SPN method

Fig. 13. The comparative experiments of utilizations

Fig. 14. Throughput generated by the Flexsim method

are very consistent with the curves generated by the SPN method. The slopes
of curves in Fig. 12(a) are almost the same as the ones in Fig. 12(b), which indi-
cates that the jobs are scheduled evenly to all nodes when the job arriving rates
are low. We also observe that the comparison diagrams of utilizations in Fig. 13
show the similar results. The correctness of both methods is testified by each
other.

Besides, we also conduct experiments with the method applied in [9], which
analyzes performance using the commercial software Flexsim. The experiment
result is shown in Fig. 14. We can find that the result is very similar with the
above results shown in Fig. 12 generated by our method and the SPN method.

Compared with the SPN method, our method has some advantages. For
example, the following case study will show that our method can be applied to
HPC systems with larger scale. However, the SPN method is not easy to deal with
them due to the state space explosion problem. Actually, the SPN method can’t
work well when the HPC system is larger than 8*2 in our another experiment.
Although the SPN method can also be used for simulation, it is hard to model
real workloads coming from a real HPC system since the tokens in SPN are
indistinguishable. Whereas our CPN method can be easily improved to support
real workloads due to CPN’s modeling capacity. Figure 15 shows two kinds of
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(a) The real workload (b) The exponential distribution
workload

Fig. 15. Two kinds of workloads

workloads modeled by our method. The first one is real workload, which has
more attributes, like arriving time and execution time. For example, we can use
a token (1,“cal”,10,0.1256)@2.3 in our models to describe a real job submitted
in queue 1, named by “cal”, numbered by 10, arriving at time 2.3 and whose
execution time is 0.1256. The second one is exponential distribution workload
which can be used to describe workload whose arriving time and execution time
is exponential distribution. CPNs support more distributions, such as Erlang
distribution and so on [15].

4.3 A Case Study

In this subsection, we will demonstrate the usefulness of our method by a case
study.

Case description: A is an e-commerce company who provides online shopping
services and supports online payment through the third party payment company
C. B is a bank who supports quick payment service of the third party payment
company C. A client of A places an online shopping order and will pay for the
order by C. C sends the payment request to B. Then B fulfills the payment
by transferring money from the client’s bank account. In view of the payment
service quality, B opens 80 servers affiliated to its branches in 20 cities to C
(each branch opens 4 servers and each server process α payment requests every
second).

We have to consider the following problems to ensure the payment service
quality, such as “Are the current servers enough if there are β payment requests
every second?”, “How long is the average scheduling delay?”, “Which scheduling
strategy is the best one to deploy on the payment system?”, “How much the
average user waiting time will reduce if 10 more servers are opened?”.

We abstract the above payment system into a hierarchical HPC system which
has 20 nodes and 4 CPUs in each node. The random first come first serve (FCFS)
scheduling strategy is selected in this experiment. The detailed experiment para-
meters are described in Table 3. The job arriving rate is 50 jobs/ut. The exper-
imental machine has 4 Intel Core2 CPUs, 4G memory and installs Win7 64-bit
operating system. We execute a 30000-step simulation which spends about 20 s,
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Table 3. Experiment parameters

Name Value Meaning

r1x, x = 1, 2, 3, 4 0.1 jobs/ut Speed of CPUs in Node1

r2x, x = 1, 2, 3, 4 0.2 jobs/ut Speed of CPUs in Node2

r3x, x = 1, 2, 3, 4 0.3 jobs/ut Speed of CPUs in Node3

r4x, x = 1, 2, 3, 4 0.4 jobs/ut Speed of CPUs in Node4

r5x, x = 1, 2, 3, 4 0.5 jobs/ut Speed of CPUs in Node5

r6x, x = 1, 2, 3, 4 0.6 jobs/ut Speed of CPUs in Node6

r7x, x = 1, 2, 3, 4 0.7 jobs/ut Speed of CPUs in Node7

r8x, x = 1, 2, 3, 4 0.8 jobs/ut Speed of CPUs in Node8

r9x, x = 1, 2, 3, 4 0.9 jobs/ut Speed of CPUs in Node9

r10x, x = 1, 2, 3, 4 1.0 jobs/ut Speed of CPUs in Node10

r11x, x = 1, 2, 3, 4 1.1 jobs/ut Speed of CPUs in Node11

r12x, x = 1, 2, 3, 4 1.2 jobs/ut Speed of CPUs in Node12

r13x, x = 1, 2, 3, 4 1.3 jobs/ut Speed of CPUs in Node13

r14x, x = 1, 2, 3, 4 1.4 jobs/ut Speed of CPUs in Node14

r15x, x = 1, 2, 3, 4 1.5 jobs/ut Speed of CPUs in Node15

r16x, x = 1, 2, 3, 4 1.6 jobs/ut Speed of CPUs in Node16

r17x, x = 1, 2, 3, 4 1.7 jobs/ut Speed of CPUs in Node17

r18x, x = 1, 2, 3, 4 1.8 jobs/ut Speed of CPUs in Node18

r19x, x = 1, 2, 3, 4 1.9 jobs/ut Speed of CPUs in Node19

r20x, x = 1, 2, 3, 4 2.0 jobs/ut Speed of CPUs in Node20

26 % of CPU and 49 M memory (actually, more simulations may be executed to
improve the reliability). Some results are described as follows.

– Taking node N6 as an example, it receives 512 jobs among which 497 jobs
have been executed and 15 jobs are still waiting in the queue.

– Taking CPU N18C1 as an example, its total busy time is 77.22 ut and its
utilization is 36.90 %.

– Taking node N10 as an example, its throughput is 2.60 jobs/ut and its utiliza-
tion is 65 %.

– Taking node N1 as an example, its utilization is about 100 %.
– The average waiting queue length is 34.38. N1 has the largest average length

of waiting queue which is 236.17, and N20 has the smallest length of waiting
queue, which is only 0.0033.

– The throughput of all nodes is 43.33 jobs/ut, and the average intra-node
scheduling delay is 0.79 ut.

If we compute confidence intervals based on 10 simulation runs, we can get
some 90 % confidence intervals. For example, the average waiting queue length
is 34.28 ± 1.18. That is, with 90 % confidence the average waiting queue length
is between 33.10 and 35.46.
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These performance results allow us to detect performance bottlenecks so that
we can optimize system. For example, not all nodes’ utilizations reach 100 %
in current situation, but there are still some jobs waiting in the queue, which
indicates that the selected scheduling strategy is not the best one. Actually,
the scheduling delay decreases greatly in another experiment with the MEWT
scheduling strategy. For another example, the maximum waiting queue length
of N2 is 327 and the average length is 166.07, however the maximum waiting
queue length of N16 is 4 and the average length is only 0.02, which indicates
that the scheduling delay is different among all nodes. Besides, we can compute
the quantitative curve of some performance metrics by more experiments.

5 Related Works

As job scheduling is very important in HPC systems and many other distrib-
uted systems, there are many works focusing on its performance analysis. [16]
proposes a new method to find the optimal co-scheduling solution for a mix of
serial and parallel jobs. [17] proposes a user-based grid workload model which is
based on clustering users according to their behaviors in the system and their
applications. [18] analyzes the performance of online scheduling in hierarchical
grids using different workloads which are generated by real grid systems. [19]
offers a novel abstraction framework and a heuristic, called BalancedPools, that
efficiently utilizes performance properties of MapReduce jobs in a given work-
load for constructing an optimized job schedule. [20] proposes the use of shared
resource monitoring to improve overall datacenter throughput and improve qual-
ity of service, and it also conducts detailed experiments emulating datacenter
scenarios including several different kinds of workloads. [21] explores four unique
approaches to achieve the scheduling goals of maximizing utilization on four
distinct resources at the National Institute for Computational Sciences with a
diverse job (workload) mix.

On the evaluation of solutions or on the performance analysis for the distrib-
uted computing systems (e.g. schedulers, resource management policies, through-
put analysis and utilization analysis), it is desirable to analyze how the proposed
solutions behave on several representative scenarios of the target system. Usu-
ally, the different scenarios are obtained by varying the workloads of the systems.
All the above literatures [16–21] focus on performance analysis for HPC systems,
but they use completely different workloads. In a general way, there are two kinds
of workloads on the basis of different required quantity of computing resources
(like CPUs, memories or others). One kind of workload is composed of jobs which
require more than one computing resource, like the workload used in [18]. The
other is composed of jobs which only require one computing resource [8–11]. The
first one is widely used in scientific computing, such as parallel computing on
supercomputers, while the second one is widely used in online systems of internet
companies, such as cluster systems of search engine.

This paper focuses on modeling the job scheduling systems in hierarchical
HPC systems and analyzing their performance with the second kind of workloads
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which is adopted in [8–11]. [8] proposes a stochastic Petri net (SPN) method
for modeling and performance evaluation of hierarchical job scheduling on the
grids. [9,10] analyze the performance of the scheduling strategies using a business
software Flexsim, which is widely used in many fields. [11] proposes a coloured
Petri nets-based method to model task scheduling and evaluate reliability of
grid services. However, the method proposed in [8] is not easy to be applied
in large-scale systems and can’t support more complex workloads. The method
proposed in [9,10] also can’t support complex workloads and the simulation
software Flexsim is very expensive. [11] focuses on the reliability evaluation of
grid services and doesn’t provide modeling method of scheduling strategies.

In this paper, we propose a new CPN method for modeling job scheduling
systems in HPCs and analyzing their performance. Our method helps to improve
some of the previous works. To our knowledge, we have not discovered some other
methods similar with ours.

6 Summary and Future Work

In this paper, a modeling and performance analysis method for job scheduling
systems using CPNs is proposed. A CPN modeling method and a simulation-
based performance analysis method are presented. Specially, we design modeling
method for some scheduling strategies, which is not considered in [11]. The
experimental results show that our method is feasible and can be used to make
predictions about key performance metrics. The comparative experiments with
SPN method show that our method is credible and can be applied to much larger
systems. What’s more, our method supports real workloads which improves the
SPN method [8] and the Flexsim method [9,10]. Besides, our method is low cost
compared with the Flexsim method [9,10]. In the future, we still need to improve
our method to support more kinds of workloads and scheduling strategies.
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Abstract. With the wide deployment of mobile network, it’s very important to
utilize mobile networks resource efficiently and decrease energy consumption of
wireless terminals for constructing green mobile computing. This paper mainly
studies minimization problem of energy consumption in data transmission under
the given data generation rate and transmission delay demand in wireless links.
Firstly, a finite horizon optimal stopping problem with transmission data
quantity constraint and energy consumption minimization is constructed, and
then we prove the existence of optimal stopping rule and offer the solutions and
processes. At last, we obtain the optimal transmission rate threshold of the
sending terminal for each channel detection slot time, so as to form the opti-
mization strategy of energy consumption for data transmission based on optimal
stopping theory. The simulation results show that the strategy proposed by this
paper has lower average energy consumption and higher average delivery
success ratio than other strategies, and achieves better optimization effect in
energy consumption.

Keywords: Mobile networks � Data transmission � Optimal stopping � Energy
consumption optimization � Optimal rate

1 Introduction

It’s necessary to reduce energy consumption of mobile terminals (MTs), which improves
users’ network experience and constructs green mobile computing [1]. In mobile net-
works environment, channel quality changes with time. The strategy which wireless
networks make use of the characteristics of the time varying channel to transmit data
efficiently is called opportunistic scheduling [2]. Opportunistic scheduling can be divi-
ded into centralized opportunistic scheduling and distributed opportunistic scheduling.
The distributed opportunistic scheduling not only increases energy efficiency [3–6], but
also improves network performance [10], such as throughput.
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For the minimization of average energy consumption in data transmission on the
link, send terminal (ST) must detect channel quality in real time, and choose optimal
time to send data according to current cumulative data quantity. Actually, this is a
distributed opportunistic scheduling problem [3–6, 10]. In this distributed opportunistic
scheduling, ST detects channel conditions in the link continuously, and then chooses
the optimal energy efficiency time (that is the average energy consumption for data
transmission is minimal) to stop observing and send data. Hence, this problem can be
further turned into an optimal stopping rule strategy to be solved.

The remainder of this paper is organized as follows. Section 2 reviews the related
research work. Section 3 describes the system model and the specific optimization
problem. Section 4 gives the optimization strategy of energy consumption for data
transmission based on optimal stopping theory. Section 5 shows simulation results and
analysis. And conclude this paper and prospect the future work in Sect. 6.

2 Related Work

In order to decrease energy consumption in mobile networks, some researches concern
how to choose the best channel quality time to deliver data [3–6], others pay attention
to selecting the whole route from source to destination [7–9].

Given the access probability of multiple devices competing channel, they con-
structed an optimal stopping problem of infinite horizon using optimal stopping theory
in [3]. They derived the optimal transmission rate threshold at each detection time in
homogeneous scenario. But they didn’t consider the transmission delay. Considering
the maximum delay, they studied the energy consumption in the wireless link with
time-varying channel in [4]. They obtained the optimal power threshold of ST at each
detection time by optimal stopping theory. But they assumed an ideal situation that ST
always had enough data to deliver. In real networks, when ST gets good transmission
chance, the amount of data to deliver maybe more or less than the one that ST can
transmit within that transmission duration. In [5], the scheduling problem that data flow
is delivered from roadside unit to passing-by vehicle is studied. They obtained the
optimal scheduling time using optimal stopping theory, so as to effectively save
transmission cos. Furthermore, they further studied this problem in [6].

Due to rapid fluctuation of channel conditions, opportunistic route is introduced.
The energy efficient cooperative communication method is proposed in [7]. They made
full use of the transient characteristics of mobile network channel. Energy consumption
objective functions for calculating end-to-end energy consumption are introduced into
opportunistic routing in [8]. Then they designed energy-efficient routing algorithms
based on Dijkstra algorithm. In [9], we proposed minimization route scheme of energy
consumption in transmission with delay constraint in mobile environment, which
reduced energy consumption of network efficiently.

In this paper, we study the optimization problem of energy consumption in the case
of single device selecting single channel. To be different from ST always having
enough data for transmission in [4], we assume that ST generates data in given rate.
Moreover, the problems of the minimization of the expected energy consumption and
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the minimization of average energy consumption per unit time were studied in [4].
And we consider the minimization of average energy consumption per unit data
transmitted, with the constraint of finishing delivering all cumulative data.

3 System Model and Problem Description

3.1 System Model

In mobile network, assume time is divided into a fixed period T(S). In a wireless link
composed of a wireless ST and a wireless receive terminal (RT), the channel gain g
obeys certain distribution and remains constant in T [3, 4, 10]. ST generates data in a
given rate c(bit/s), and transmits data with fixed power P(W) to RT under delay no
more than Dm. ST detects channel quality every T, and consumes energy ED(J) every
time. Detection duration of each time is very short and far less than T. If ST finds good
channel, it’ll transmit data in duration t. Transmission energy consumption is P·t(J) and
its value is far more than ED. Duration t satisfies t ≤ T. The whole process is named as a
round of channel detection and data transmission. It is described in Fig. 1.

The total amount of data transmitted in a round is R·t(bit), and R(bit/s) is the
transmission rate. According to the Shannon formula:

R ¼ W log2ð1þ g � P � ðN0 �WÞ�1Þ ð1Þ

Transmission rate R is defined by bandwidth W, gain g, transmission power P and
noise power spectral density N0. Therefore, ST must detect the channel quality of link
in real time, so as to select the optimal transmission time of best channel quality. In this
paper, we obtain the optimal transmission time by the optimal stopping theory.

3.2 Optimal Stopping Theory

In order to maximize the expected payoff or minimize the expected cost, the decision
maker observes the random variables sequentially in the optimal stopping theory, and
selects a proper time to take a given action [12]. The stopping rule problem is defined:

(1) a sequence of random variables X1, X2,…, whose joint distribution is assumed
known; (2) a sequence of real-valued reward or cost functions: y0, y1(x1), y2(x1, x2),…,
y∞(x1, x2,…).

T t

0    1   2  3  4

Discover good channel, stop to transmit data

D D D D S

D D D S
0     1    2         Dm/T

Detect until Dm, stop to transmit data

D:Detect Channel
S:Stop to Transmit Data
T:Detection Cycle
t:Transmission Period
Dm:Maximum Delay

Fig. 1. A round of channel detection and data transmission
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The associated stopping rule may be described as: After observing X1 = x1, X2 = x2,
…, Xn = xn(n = 1, 2,…), decision maker may stop observing and accept reward or cost
function yn(x1,…, xn), or continue observing Xn+1. If decision maker chooses not to take
any observation, he accepts the constant value y0; if he never stops observing, he
accepts y∞(x1, x2,…). This rule makes the decision maker to choose the optimal time N
(0 ≤ N ≤ ∞) to stop, thus maximize expected reward or minimize expected cost E[YN].
Here, YN = yN(x1,…, xN) is a random reward or cost stopping at N, and E[•] represents
expected value. When n doesn’t exceed a maximal value Nm, and thus it is a problem
known as an optimal stopping problem of finite horizon, which can be solved by
backward induction. It is computed from Nm to 0, reversely.

3.3 Optimal Stopping Problem About Data Transmission
in Mobile Network

In this paper, we assume the ST generates data in given rate, of which the maximum
delay of data transmission is Dm(S). The data beyond the delay will be discarded.
Therefore, this problem is an optimal stopping problem of finite horizon with maximum
transmission delay Dm. The correspondence of associated elements between optimal
stopping strategy and the problem studied in this paper is shown in Fig. 2.

4 Optimization Strategy of Energy Consumption

4.1 Construction of Optimal Stopping Problem About Energy
Consumption Minimization (OSPECM)

Define variable sequence Xn = {ΔTn, Rn} for ST detecting channel quality at the n’th
times. Where ΔTn is the sequence of the total detection duration and Rn is the sequence
of transmission rate. ST detects channel at least once. Assume N to be time index
(time for short) that ST stops detecting. And assume M to be the maximum time ST
must stop detecting and transmit data, and M is max{n: ΔTn ≤ Dm}. Then there is
1 ≤ n ≤ N ≤ M. Hence, the total energy consumption of a round is:

EN ¼ NED þPt ð2Þ

Decision maker                        Sending device

Observe                                    Detect

Random variable                     Channel quality

Cost function                           Average energy consumption

Take action                              Transmit data

Fig. 2. Optimal stopping problem elements in data transmission
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If ST repeats the stopping rule in Y rounds, we get stopping time sequence {N1, N2,
…, Ni,…, NY} and total energy consumption sequence fEN1 ;EN2 ; . . .;ENi ; . . .;ENYg. Ni

is stopping time of the i’th round. It is counted from the end of the i-1’th round. The
initial time of the first round is 0. Thus 1 ≤ Ni ≤ M holds. The total duration of the i’th
round is DTNi þ t, and DTNi is T·Ni. ENi is the total energy consumption of the i’th
round stopping at Ni. If ST accumulated cðDTNi þ tÞ bits data waiting for transmission,
and transmission rate is RNi , there will be LNi bits data left undelivered. So,

LNi ¼ ðcðDTNi þ tÞ � RNi tÞþ ¼ cðDTNi þ tÞ � RNi t; cðDTNi þ tÞ[RNi t

0; cðDTNi þ tÞ�RNi t

(
ð3Þ

Define energy efficiency ζ of average consumption per bit data transmitted as:

f ¼
PY

i¼1 ENiPY
i¼1 ðcðDTNi þ tÞ � LNiÞ

ð4Þ

According to the law of large numbers, expression (4) converges to E[EN]/E[c
(ΔTN + t) − LN]. Where N is the time of ST’s stopping detection and transmitting data.
This is an optimal stopping rule, which selects stopping time N to minimize E[EN]/E[c
(ΔTN + t) − LN]. And 1 ≤ N ≤ M holds. Because we require ST to finish delivering all
cumulative data in t, this optimal stopping problem has a constraint condition φ, and
it’s RNt ≥ c(ΔTN + t). Hence, the stopping time set is defined as:

N þ ¼ fN : 1�N �M;E DTN½ � �Dm;ug ð5Þ

And the minimization problem of energy consumption is described as:

minN2N þ
E½NED þPt�

E½cðDTN þ tÞ � LN �
s:t: E½RNt� �E½cðDTN þ tÞ�

ð6Þ

4.2 Transformation of OSPECM

According to expression (4), we define the optimal energy efficiency ζ* as:

f� ¼ infN2N þ
E½NED þPt�

E½cðDTN þ tÞ � LN � ð7Þ

The optimal problem in expression (7) is equal to:

infN2N þ ðE½NED þPt� � f�E½cðDTN þ tÞ � LN �Þ ¼ 0 ð8Þ
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Set ZN = NED + Pt − ζ(c(ΔTN + t) − LN). For each ζ, there is an optimal time set
N(ζ)2N+ to minimize E[ZN]. To get ζ*, we must obtain optimal stopping time N* = N
(ζ*). Then,

N� ¼ arg infN2N þ
E½NED þPt�

E½cðDTN þ tÞ � LN � ð9Þ

Therefore, the expression (6) in Sect. 4.1 is transformed as:

minN2N þ ðE½NED þPt� � fE½cðDTN þ tÞ � LN �Þ
s:t: E½RNt� � E½cðDTN þ tÞ� � 0

ð10Þ

According to the Lagrange duality theory, the above problem is turned as:

minN2N þ E½YN � ¼ minN2N þ ðE½NED þPt� � fE½cðDTN þ tÞ � LN � þ kðE½cðDTN þ tÞ�
� E½RNt�ÞÞ

ð11Þ

Where λ is a Lagrange multiplier and λ ≥ 0 holds.

Remark 1. In expression (11), there is
k ¼ 0; E½cðDTN þ tÞ� �E½RNt�
k[ 0; E½cðDTN þ tÞ�[E½RNt�

(
. So,

kðE½cðDTN þ tÞ� � E½RNt�Þ ¼ 0; E½cðDTN þ tÞ� �E½RNt�
kðE½cðDTN þ tÞ� � E½RNt�Þ; E½cðDTN þ tÞ�[E½RNt�

�

According to expression (3), there is kðE½cðDTN þ tÞ � RNt�Þ ¼ kE½LN �.
Consequently, expression (11) is expressed as follows.

minN2N þ E½YN � ¼ minN2N þ ðE½NED þPt� � fE½cðDTN þ tÞ � LN � þ kðE½LN � Þ ð12Þ

Remark 2. For ζ, there is ED/(cT) < ζ < Pt/(ct). When LN is 0 at N, ζ is the smallest. Its
value is (NED + Pt)/(cNT + ct). Because t ≤ T, there is ζ > (NED + Pt)/(cNT + ct).
According to Sect. 3.3, Pt is bigger than ED. So ζ > ED/(cT). And Pt/(ct) is the ratio of
Pt to the value of accumulative data ct. If ζ > Pt/(ct) holds, ST can transmit data without
detecting channel to obtain less value of ζ. Hence, ζ < Pt/(ct).

4.3 Solution to OSPECM

We first offer the following proposition 1 as follow.

Proposition 1. Optimal stopping rule exists in expression (12).

Proof. According to [12], if the problem meets the following two conditions:
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A1. E[infn Yn] > − ∞ A2. lim infn→∞ Yn ≥ Y∞ a.s.
Optimal stopping rule exists. Because ΔTn is equal to nT, there is in expression

(12): Yn ¼ nED þPt � fcðnT þ tÞ þ ðkþ fÞLn
Because Ln ≥ 0 is satisfied, and ζ < Pt/ct holds, there is Yn [ nED � fcnT .
Meanwhile, there is ζ > ED/cT. Furthermore, nT ≤ Dm is satisfied, that is

n ≤ Dm/T. Thus, Yn > − ∞ holds. Consequently, condition A1 is satisfied.
When n → ∞, there is Ln → c(nT + t). nED → ∞ and c(nT + t) → ∞ also hold.

Hence,

lim infn!1Yn ¼ lim infn!1ðnED þPt � fcðnT þ tÞ þ ðkþ fÞLnÞ
¼ lim infn!1ðnED þPtþ kcðnT þ tÞÞ ¼ 1

Obviously Y∞ = ∞. Condition A2 is satisfied.
End.
For this optimal stopping problem of finite horizon, we derive the expected value

from the end to the first step reversely using backward induction. According to [10],
when ST stops detecting at n, the minimum rate of return Wn(λ, ζ) is as follows.

Wnðk; fÞ ¼ minðPtþ nED � fcðnT þ tÞþ ðkþ fÞLn;VM�n�1ðk; fÞÞ ð13Þ

Where, n = 1, 2,…, M-1, VM-n-1(λ, ζ) = E[Wn+1(λ, ζ)|Fn]. Here, energy consumption
cost ED is considered. The rate of return at n is compared with expected value VM-n-1(λ, ζ)
obtained from n + 1 toM using optimal stopping rule. When the rate of return at n is less
than or equal to expected value VM-n-1(λ, ζ), ST stops detecting. That is

Ptþ nED � fcðnT þ tÞþ ðkþ fÞLn �VM�n�1ðk; fÞ ð14Þ

According to expression (3), if c(nT + t) > Rnt, expression (14) can be turned as:

Ptþ nED þ kcðnT þ tÞ � ðkþ fÞRnt�VM�n�1ðk; fÞ

When c(nT + t) ≤ Rnt is satisfied, expression (14) is transformed as:

Ptþ nED � fcðnT þ tÞ�VM�n�1ðk; fÞ

Finally, due to the delay boundary Dm, ST must stop detecting and transmit data if
the detection time reaches M. So the transmission rate threshold of ST at M is zero.

Based on above analysis, the transmission rate threshold of ST stopping at n is

Rth;n k; fð Þ ¼
a; b[ a; n ¼ 1; 2; . . .;M � 1

b; b\a; and c1 holds; n ¼ 1; 2; . . .;M � 1

0; n ¼ M

8><
>:

a ¼ Ptþ nED þ kcðnT þ tÞ � VM�n�1 k; fð Þ
ðkþ fÞt ; b ¼ cðnT þ tÞ=t

c1 : Ptþ nED � fcðnT þ tÞ�VM�n�1 k; fð Þ

ð15Þ

An Optimization Strategy of Energy Consumption 287



Assume the probability density function (PDF) of transmission rate to be fR(r). The

cumulative distribution function (CDF) of transmission rate at M is
R Rmax

0 fRðrÞdr, and
denoted as F~R. The expected value is

R Rmax

0 rfRðrÞdr, and denoted as ~R. Define
Rth = c (MT + t)/t. If Rth < Rmax, the cdf of transmission rate which is less than Rth at

M is
R Rth

0 fRðrÞdr, and denoted as FR̂th. The expected value is
R Rth

0 rfRðrÞdr, and denoted

as R̂th. If ST stops at M, the expected value of the rate of return V0(λ, ζ) is

V0 k; fð Þ ¼
ðPtþMEDÞF~Rþ kcðMT þ tÞFR̂th � ðkþ fÞR̂tht

�fcðMT þ tÞðF~R� FR̂thÞ; Rth �Rmax

ðPtþMED þ kcðMT þ tÞÞF~R� ðkþ fÞ~Rt; Rth [Rmax

8><
>: ð16Þ

According to backward induction, combining expression (13), we obtain the
expected value of the rate of return VM-n(λ, ζ) at n is as follows.

VM�n k; fð Þ ¼ E½minðPtþ nED � fcðnT þ tÞþ ðkþ fÞLn;VM�n�1ðk; fÞÞ�

¼
Z Rmax

Rth;nðk;fÞ
ðPtþ nED � fcðnT þ tÞþ ðkþ fÞLnÞfRðrÞdr

þ
Z Rth;nðk;fÞ

0
VM�n�1ðk; fÞfRðrÞdr n ¼ 1; 2; . . .;M � 1

ð17Þ

Where Rth,n(λ,ζ) is given by expression (15). Consequently, we obtain the optimal
stopping rule for expression (12) as follows.

Nðf�Þ ¼ min M� n� 1 : Rn �Rth;nðk; f�Þ
� � ð18Þ

Where Rth,n(λ, ζ
*) is given by expression (15). Next, we need to obtain the value of

λ and ζ*. The following optimal equation exists in the optimal stopping rule.

V�ðk; f�Þ ¼ E½minðPtþNED � f�cðNT þ tÞ þ ðkþ f�ÞLN ; V�ðk; f�ÞÞ�

And the optimal solution is V* (λ, ζ*) = 0. Consequently, we have:

0 ¼ E½minðPtþNED � f�cðNT þ tÞþ ðkþ f�ÞLN ; 0Þ� ð19Þ

Meanwhile, according to the KKT (Karush-Kuhn- Tucker) conditions, we have:

kcE½ðNT þ tÞ� � kE½RNt� ¼ 0 ð20Þ

Next, we analyze E[RN] and E[N]. Assume the random variable transmission rate at
N to be RN, and then the CDF of RN is as follows.
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FRN ðrÞ ¼ Pr½RN;n � rjstop at n� ¼
FRðrÞ�FRðRth;nðk; f�ÞÞ
1� FRðRth;nðk; f�ÞÞ ; r�Rth;nðk; f�Þ

0 ; r\ Rth;nðk; f�Þ

8><
>: ð21Þ

And the probability of ST stopping at n is as follows.

qn ¼
Yn�1

i¼1
ð 1� FRðRth;iðk; f�ÞÞ Þ

� �
FRðRth;nðk; f�Þ ð22Þ

Hence, the expected value of RN is given as follows.

E½RN � ¼
XM
n¼1

E½RN;njstop at n� � qn ¼
XM
n¼1

Z Rmax

Rth;nðk;f�Þ

r
1� FRðRth;nðk; f�ÞÞ dFRðrÞ

 !
� qn

ð23Þ

The expected value of the random variable stop time N is given as follows.

E½N� ¼
XM

n¼1
nqn ð24Þ

Consequently, we have the following equations.

0 ¼ minðPtþE½N�ED � f�cðE½N�T þ tÞþ ðkþ f�ÞE½LN �; 0Þ
kcTE½N� þ kct � ktE½RN � ¼ 0

(
ð25Þ

Where E[RN] and E[N] are defined in expression (23) and (24), respectively. We
solve expression (25) to obtain the value of ζ* and λ. And the process is below.

Rth,n(λ, ζ
*) not only offers stopping threshold of ST at each time n, but also gives

rate threshold of the minimum average energy consumption per data transmitted.
It controls the time that ST stops detecting. When ST discovers transmission rate at
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current time n is equal to or greater than Rth,n(λ, ζ
*), it will stop detecting and start to

transmit data; otherwise, it will continue detecting. If the total detection duration
reaches the maximum duration M·t, ST must send data. ST does channel detection and
data transmission continuously in this policy, so as to reduce average energy con-
sumption per unit data transmitted and increase average delivery success ratio.

5 Simulation Results and Analysis

In the simulation, we assume ST and RT have the same CDF of the channel conditions,
and ST observe channel through periodic signal detection. According to [11], PDF of
Rayleigh channel gain is fGðgÞ ¼ gr�2 exp �0:5g2r�2ð Þ; g� 0. Where σ2 is the cor-
relation value of channel gain mean variance, and g is channel gain. PDF of Rician
channel gain is fGðgÞ ¼ gr�2 exp �0:5ðg2 þA2Þr�2ð ÞI0 gAr�2ð Þ; g� 0. Where A is the
peak value of main signal amplitude, and I0(•) is the first class 0 order correction Bessel
function. The parameter values in simulation are givens as follow. W = 1[MHZ],
N0 = 10−6[W/HZ], σ2 = 1, g = 0*4, P = 100[mW], A = 1.

We compare our Energy Consumption Optimization Strategy for data transmission
(ECOS) with other seven strategies in [5] using Matlab, and then analyze the results
under different parameter values. Here are the seven strategies. (1) Deterministic
Transmission Strategy (DTS). When ST waits until the maximum delay Dm, it starts to
transmit data. (2) Random Transmission Strategy (RTS). During Dm, ST randomly
selects one with the probability of 1/M to transmit data. (3) Probabilistic Transmission
Strategy (PTS). If ST predicts the probability of a future transmission rate being greater
than the current one is less than a given threshold, ST transmits data. Otherwise, it
continues detecting. (4) Average Rate Transmission Strategy (ARTS). When the cur-
rent transmission rate is greater than the mean value of past, ST transmits data.
Otherwise, it continues detecting. (5) Optimal Transmission Strategy based on Secre-
tary Problem (OTSSP). ST detects channel within 37 % of Dm to obtain the maximum
transmission rate Rc-max, then it continuously detects current transmission rate within
the following 63 % of duration. It stops to transmit, if it finds a transmission rate greater
than Rc-max or detection duration reaches Dm. (6) Energy-Efficient Opportunistic
Transmission Scheduler (E2OTS): It includes E2OTS-I (minimizing the expected
energy consumption) and E2OTS-II (minimizing the average energy consumption per
unit time). When current transmission power is less than or equal to the corresponding
optimal power threshold, it transmits data. Otherwise, it continues detecting.

5.1 Average Energy Consumption (AEC)

AEC reflects the energy consumed for each bit data transmitted, which includes Pt and
ED. AEC comparison results are shown in Fig. 3. From Fig. 3, we can get AEC of our
ECOS is the lowest. That is, the effect of energy saving is the best. ECOS obtains
optimal rate threshold at each detection time through optimal stopping rule, so ST can
accurately select the optimal energy-efficient time to transmit data in each round and
improve energy efficiency. AEC of DTS, RTS are the largest, because they don’t
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consider the energy factor. PTS, ARTS and OTSSP all select transmission time from
the perspective of energy saving, so their AEC is far less than that of DTS and RTS.
But they don’t select the optimal energy efficiency time. Thus the effect of energy
saving of those is not only far worse than that of ECOS, but also lower than that of
E2OTS. AEC of E2OTS-I is lower than that of E2OTS-II. Because E2OTS-II, we
consider minimize the AEC per unit time.

5.2 Average Delivery Success Ratio (ADSR)

ADSR is the ratio of the amount of data successfully transmitted to that generated by
ST. ADSR comparison results are shown in Fig. 4. From Fig. 4, we get that ADSR of
ECOS is larger. That is, the amount of data discarded is less. Because we design a
constraint condition of finishing transmitting all data accumulated. The optimal
transmission rate threshold of ECOS improves ADSR. However, ADSR of DTS is
smallest. Because DTS selects the maximum delay time to transmit data, a considerable
amount of data beyond delay is discarded. ADSR of RTS and PTS is related with the
transmission rate distribution. ARTS selects transmission time through comparing the
mean value of transmission rate in the past and transmission time selected is earlier.
Thus the data has more opportunities to be transmitted. ADSR of OTSSP, E2OTS-I and

Fig. 3. Average Energy Consumption Comparisons

Fig. 4. Average Delivery Success Ratio Comparisons
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E2OTS-II is low. The total detection duration of OTSSP is more than 37 % of delay, so
more data beyond delay is discarded. E2OTS-I and E2OTS-II only consider energy
consumption optimization, and don’t take the ADSR into consideration.

6 Conclusion

We propose an optimization strategy of energy consumption for data transmission
based on the optimal stopping theory in this paper. The optimization strategy can better
enhance the energy utilization ratio and reduce the probability of data loss, so as to
optimize network efficiency on the basis of guaranteeing network performance. And it
is a future research to improve energy efficiency and delivery success ratio when the
data generation rate in link is variable.
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Abstract. Just-in-Time (JIT) compilation is a key technique for pro-
grams written in managed languages, such as Java and JavaScript. Tra-
ditionally, a conservative JIT compilation policy is used without impact-
ing application threads too much on single-core machines. Nowadays,
modern machines provide more and more processor cores, which are
abundant computing resources. Modern virtual machines also have the
ability to use an aggressive compilation policy, such as spawning multi-
ple concurrent compiler threads, which is suitable to multicore situation.
However, the suitable JIT compilation policy varies with the number of
microprocessor cores. The goal of this work is to explore the relationship
between the number of microprocessor cores on modern machines and
the suitable JIT compilation policies that can enable existing as well as
future VMs to realize better program performance.

In this work, we design novel experiments and implement new VM
configurations to effectively control the compiler aggressiveness in the
industry-standard Oracle HotSpot Java VM to achieve the goal. We
notice that when single core is used, traditional foreground compilation
with single compiler thread has better performance. As the number of
cores increases, which makes more abundant computing resources avail-
able, background compilation with more compiler threads and smaller
compilation threshold reaches better performance. After comparison
between the foreground compilation and the background compilation,
we propose a novel compilation policy, the throttling compilation, which
stops interpretation when the compilation queue is too long. This policy
combines the advantages of the foreground compilation and the back-
ground compilation, which gains better performance.

Keywords: Virtual machines ·Dynamic compilation ·Multicore · Java ·
OpenJDK

1 Introduction

Managed programming languages, such as Java [7] and JavaScript, are widely
used in the internet era for their portability, network-mobility, and high
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 293–307, 2015.
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software productivity. The programs written by them are distributed as platform-
independent intermediate codes for a virtual machine (VM) architecture [19].
VMs usually employ either interpretation or Just-in-Time (JIT) to bridge the
intermediate codes and the native ISA. The ability of JIT to create native code
at runtime makes it a key technique to achieve high performance for VMs. JIT
is a time-consuming task. However, once the native codes are generated, they
can be reused many times. To reduce the JIT overheads, only those methods run
enough times are selected to compile. Those are called hot methods. A compi-
lation threshold decides which methods are hot. Considering the large JIT over-
heads, only conservative JIT compilation policy is used on traditional single-core
machine.

Nowadays, much more opportunities appear to utilize aggressive JIT com-
pilation policy to improve the performance of VMs [13]. That is the important
trend in the microprocessor progress, i.e., more and more cores are integrated on
one chip. Even a processor in a mobile phone may contain over four cores. Most
of the time, there is not enough parallelism to feed so many cores, so the cores
are often redundant. In order to improve the parallelism of VMs, researchers
developed the strategy in which the interpretation continues after creating a
compilation task. This strategy is called background compilation, opposite to
the traditional foreground compilation, which stops interpretation during com-
pilation. Later, researchers developed aggressive compilation policy spawning
multiple concurrent compiler threads, which largely increases the parallelism of
software running on multicore processors. At the same time, a smaller compila-
tion threshold is employed so that more methods become hot sooner. However, as
the number of processor cores varies, the compilation policy should be adjusted
to achieve better performance.

The objective of this work is to investigate and recommend JIT compi-
lation strategies to enable VMs to realize the best program performance on
existing microprocessors. We progressively decrease the compilation threshold
and increase the number of concurrent compiler threads when more numbers of
microprocessor cores are used, and analyze their relationship to achieve better
program performance.

This is the work to explore and evaluate these various compilation parameters
and strategies as the number of utilized microprocessor cores varies. The major
contributions of this research are:

– Thanks to the parallelism of JVM itself, utilizing more microprocessor cores
significantly improves the performance of JVM. The configuration of threshold
and thread number needs cooperation, considering the core number.

– On single-core machines, the traditional foreground compilation with a con-
servative compilation threshold reaches the best performance. However, the
default compilation strategy is the background compilation, which lowers the
performance of JVM.
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– On multicore machines, background compilation is needed to supply paral-
lelism. When there are more cores, more threads are needed to increase the
parallelism of JVM to make use of these cores. When more threads are used,
which increases the throughput of compilation, lower threshold is needed to
supply more methods earlier.

– After comparison between the foreground compilation and the background
compilation, we propose a novel compilation policy, the throttling compila-
tion, which stops interpretation when the compilation queue is too long. This
policy combines the advantages of both the foreground compilation and the
background compilation, and has better performance.

The rest of the paper is organized as follows. In the next section, we present
background information on existing JIT compilation policies. We describe our
general experimental setup in Sect. 3. In Sect. 4, we present results that explore
the most effective JIT compilation policies for different number of utilized micro-
processor cores. After that, we propose the throttling compilation to combine
the advantages of the foreground compilation and the background compilation
in Sect. 5. In Sect. 6, we describe some related works. Finally, we present our
conclusions in Sect. 7.

2 Background

JVM uses a platform-independent intermediate code, which is not compatible
with the native ISA, so interpretation is usually adopted to run this code. The
execution time distribution is illustrated in Fig. 1(a), in which the x-axis repre-
sents different methods, and the y-axis means the execution time per method.
The methods are sorted by the execution time, and the total area shows the
total execution time.

Interpretation is inefficient as it contains a lot of extra operations compared to
native code, so Just-in-Time (JIT) compilation, which compiles the intermediate
code to native code during execution, is introduced to improve the performance
of JVM. The total execution cost includes the compilation cost and the native
code execution cost. Though compilation is slow, it is one-run cost, which is
less cost if the code runs many times. In contrast, if the code run only several
times, the compilation is not afforded. Dynamic adaptive compilation (DAC) is
presented to address this issue. It only compiles some hot methods, and interpret
other cold methods, in which way to get a better total effect. The critical problem
is how to decide the methods are hot. Theoretically speaking, if the compilation
time plus the native code execution time is less than the interpretation time,
it is profitable to compile this method, i.e., this method is hot. However, it
is difficult to know the execution count before execute the method. Usually,
JVM employs a simple prediction model that estimates that frequently executed
current hot methods will also remain hot in the future. The method is sent for
compilation if the respective method counters exceed a fixed threshold. The ski-
renting principle is used to decide the threshold [15]. Following it, if a method
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Fig. 1. A simplified JVM time distribution.

has already run n count, it is predicted to run n count later. If the successor n
count makes compilation profitable, the method should be compiled. Hence, the
n count, which makes compilation time plus the native code execution time equal
to the interpretation time, is used as the threshold deciding which method is hot.
This means, after n count interpretation, the method is selected to compile.

When compiling a method, the interpretation can be stopped or keep going.
Stopping, which is called foreground compilation, makes the method execution
take more count in native mode, so this is more efficient. In contrast, keeping
going, which is called background compilation, makes the interpretation and
compilation concurrent. While interpretation keeps going, maybe more methods
are judged to be hot, so it makes chance to concurrently compile several methods
using separate compiler threads, which further increase the parallelism of JVM.
Today multicore microprocessor is widely used, which need parallel software to
fully utilize, so background compilation, which makes JVM running in parallel
even if the application is serial, is default setting of JVM. The execution time
distribution of background compilation is showed in Fig. 1(b), in which interpre-
tation and compilation is overlapped for some time. We can see that the total
execution time is reduced by DAC.

With the technique evolution, more and more cores are integrated on one
microprocessor chip, so more concurrent compilation threads can be utilized
to exploit these additional computing resources as the compilation of different
methods is highly parallel. This situation is similar to reduce the compilation
cost, which is showed in Fig. 1(c). In this figure, not only the compilation cost
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is reduced, but also the interpretation time is reduced by running in native mode
earlier, so the total execution time is significantly reduced. While the compilation
cost is reduced, the corresponding threshold n also need to decrease, which is
showed in Fig. 1(d). Hence, the total execution time is further reduced.

Our focus in this paper is to explore the relationship between the compilation
policy and the number of available microprocessor cores, which is simply described
above. The results guide better utilizing the parallelism of JVM itself to exploit
the parallelism supplied by multicore for improving the performance of JVM.

3 Experimental Framework

Our research is performed using Oracle’s OpenJDK/HotSpot Java virtual
machine (64-bit, version 1.6.0 20) [16]. The HotSpot VM uses interpretation at
program startup. It then employs a counter-based profiling mechanism and uses
the sum of a method’s invocation and loop back-edge counters to detect and pro-
mote hot methods for compilation. We call the sum of these counters the execu-
tion count of the method. Methods are determined to be hot if the corresponding
method execution count exceeds a fixed threshold. The HotSpot VM uses sep-
arate threads to compile methods. The threads running Java application can be
configured to run concurrently with the compiler threads, a.k.a. background com-
pilation. The HotSpot VM allows the creation of an arbitrary number of compiler
threads, as specified on the command line. This 64-bit Java VM makes use of a
server compiler which applies an aggressive optimization strategy to maximize
performance benefits for long running applications. Background compilation is
used, unless specified otherwise. The HotSpot server VM uses a default setting of
2 compiler threads and 10 K as the compilation threshold.

Our experiments were conducted using all the benchmarks from DaCapo-
9.12-bach [2] using default input. In order to limit possible sources of variation
in our experiments, we set the number of application threads to 1 whenever
possible (using the option -t 1).

All our experiments were performed on a machine with two 2.40 GHz Intel
Xeon E5620 CPU (quad-core, 64-bit, x64) and 32 GB 1333 MHz DDR3 SDRAM,
running Red Hat Enterprise Linux 6 as the operating system.

Each benchmark is run in isolation to prevent interference from other user
programs. In order to account for inherent timing variations during the bench-
mark runs, all the performance results report the median over 5 runs (after 1
warmup run) for each benchmark.

We describe the four experimental parameters to explore the Java VM com-
pilation policy and the way to adjust them below:

Core Number: Number of utilized microprocessor cores. This is adjusted by
the Linux API sched setaffinity, which determines the set of CPUs on which
it is eligible to run.

Background Compilation: A thread requesting compilation is not blocked
during compilation. This is controlled by the Java command line option -
XX:BackgroundCompilation.
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Thread Number: Number of compiler threads to run. This is controlled by
the Java command line option -XX:CICompilerCount.

Compilation Threshold: Number of interpreted method invocations before
(re-)compiling. This is controlled by the Java command line option -XX:
CompileThreshold.

The remainder of this paper explores and explains the impact of different JIT
compilation strategies on modern architectures using the HotSpot server VM.

4 Experimental Results

We change the four parameters, core number, background compilation, thread
number and compilation threshold, to evaluate the relationship between the core
number and the compilation policy. The settings of core number include 1, 2,
4, 8. The thread number is from 1 to 4. The compilation threshold ranges from
1 K to 20K, with step 1K. The results are presented in Fig. 2. The speedup is
computed based on the compilation policy using 1 compiler thread and using 1 K
as the compilation threshold while utilizing only one processor core, which we
call base, and the geomean of all benchmarks’ speedup is illustrated. In Fig. 2,
(a) to (d) is evaluated using 1, 2, 4, 8 cores correspondingly, and (e) is formed by
concatenating the lines from (a) to (d) one-by-one to compare all the compilation
policies together. The default settings are denoted by red, and the best settings
are denoted by green.

4.1 Single-Core Compilation Policy

On single-core machine, the traditional compilation strategy is foreground com-
pilation, in which way the interpretation is stopped when a method is sent to
compile. The results in Fig. 2(a) show the relative performance of foreground
compilation with varied compilation threshold. Increasing the compilation thresh-
old from 1 K to 8K improve the performance of JVM. The configuration with
threshold 8 K reaches the best performance, which is 2.59 times of the baseline.
The large threshold shows that only a small portion of all methods, which exe-
cute much frequently, are valuable to compile. The reason is that the compilation
cost of the server compiler is expensive. The interpretation time of other methods
may be less than the compilation time of them. Increasing the threshold larger
than 8 K slightly lower the performance, as it delays sending valuable methods
to compilation.

The background compilation is the default setting of JVM to suit the mul-
ticore era. We also evaluate whether the background compilation is suitable to
the single-core machine, which is showed in Fig. 2(a). We adjust the compiler
thread number and compilation threshold to get different configurations. The
results show that background compilation lower the performance of JVM, so it
is not suitable to the single-core machine. We think the worse performance of
background compilation comes from the ineffective interpretation, i.e., the exe-
cution after the method is detected hot is more effective in native code than
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Fig. 2. Normalized performance of different compilation policies.
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in interpretation. We compare different configurations of background compila-
tion below to further analysis it.

When 1 compiler thread is used, increasing the compilation threshold from
1 K to 20 K significantly improve the performance of JVM. The best performance
is reached at the threshold of 20 K, which is 2.18 times of the base performance.
The best evaluated threshold in this situation is larger than that of foreground
compilation. In theory, the non-stop policy increases the interpretation time, so
a higher threshold is needed, according to the ski-renting principle.

When 2 compiler threads are used instead of only 1 compiler thread, the per-
formance is improved to 1.43 times at the threshold of 1 K. When the threshold
is 1 K, a large number of methods are sent to the compilation queue, but the
server compiler is slow, so many methods are delayed to compile, which impacts
the performance. As the threads are scheduled equally by the operating system,
2 compiler threads increase the chance that the time is devoted to compilation,
so the delay is reduced. Differently, when the threshold is 20 K, the performance
of the compilation policy using 1 compiler thread and that using 2 compiler
threads is almost the same. The threshold of 20 K selects only a small number
of methods, which shortens the compilation delay, so the effect of reducing delay
by using 2 compiler threads is small.

When more compiler threads are used, more time is devoted to compila-
tion, so the compilation delay is further reduced, which leads to a little better
performance. The best number of compiler threads is 4, and using 15 K as the
compilation threshold reaches the best performance, which is 2.31 times of that
of the base. The best threshold of compilation policy using 4 compiler threads is
lower than that of compilation policy using 1 compiler thread. We think the rea-
son is that more compiler threads reduce the compilation delay, making method
compilation more valuable. The performance of the default setting is denoted
by a red bigger diamond in Fig. 2(a), crossed by a dashed line. It is 2.20 times
the base performance, showing that it is less suitable to this circumstance. We
conclude that:

– On single-core machines, the traditional foreground compilation with a con-
servative compilation threshold reaches the best performance. However, the
default compilation strategy is the background compilation, which lowers the
performance of JVM.

Although the multicore microprocessor occupies a dominant position today,
these experimental results also have meaning in that if the program itself is
parallel or there are other applications occupy the microprocessor, which leads to
no redundant resource, foreground compilation may be better than background
compilation.

4.2 Multicore Compilation Policy

The experimental results of running JVM utilizing 2, 4, and 8 cores are showed
in Fig. 2(b), (c) and (d). We analysis the result of using 2 cores first. When only
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1 compiler thread is used, the performance improves as the compilation threshold
rising from 1 K to 17 K, at which 2.89 times performance is reached. After that,
the performance slightly degrades. The best threshold 17 K is lower than the best
threshold 20 K when using single-core. We think that the additional free core
improves the throughput of the compiler thread and reduce the compilation
delay, so as to lower the best threshold, which is similar to the comparison
between the compilation policy of using 1 compiler thread and the compilation
policy of using 2 compiler threads when utilizing single-core.

Similar to using single-core, more compiler threads and lower compilation
threshold further improves the performance. The best 3.11 times performance is
reached at using 3 compiler threads and using 6 K as the compilation threshold.
This time, the best performance is reached when not using the most compiler
threads. Maybe the free core significantly improve the throughput of compiler
and reduce the compilation delay, so no more compiler threads are needed.

Look through Fig. 2(a), (b), (c) and (d), it is clearly that the peak value moves
leftwards. When utilizing 4 cores, the configuration using 3 compiler threads and
threshold 5 K reaches the best 4.19 times base performance. When utilizing 8
cores, the setting utilizing 4 compiler threads and threshold 3 K reaches the best
4.49 times base performance. As there are more cores devoted to compilation,
more methods are valuable to compile. This trend is not clear for the compilation
policy using only 1 compiler thread, as 1 compiler thread cannot utilize more
cores. We conclude that:

– On multicore machines, background compilation is needed to supply paral-
lelism. When there are more cores, more threads are needed to increase the
parallelism of JVM to make use of these cores. When more threads are used,
which increases the throughput of compilation, lower threshold is needed to
supply more methods earlier.

4.3 Composite Results

We concatenate the lines in Fig. 2(a), (b), (c) and (d) forming (e) to show the
total performance variation. Clearly, when the utilized number of microproces-
sor cores increases, the performance dramatically improves. This is owing to the
parallel compilation ability of OpenJDK. Table 1 shows the best configurations
of different core numbers and the corresponding performance improvement com-
pared to default configuration. It is clearly that as the available core number
increases, slightly more compilation threads and lower compilation threshold
are needed. The default settings is somehow conservative. The performance of
default setting is nearest to that of the peak setting while utilizing 2 cores,
which is 3.09 times against 3.11 times, probably as the compilation thread num-
ber is equal to the core number. As more cores are available, the performance
gap between the best configuration and the default configuration enlarges. The
choice of such conservative setting may be owing to that the application scenario
in the designer’s thought is several applications running at the same time. Hence,
if the load of microprocessor is low, more aggressive compilation policy can be
adopted to improve the JVM’s performance. We conclude that:
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– Thanks to the parallelism of JVM itself, utilizing more microprocessor cores
significantly improves the performance of JVM. The setting of threshold and
thread number needs cooperate, considering the core number.

Table 1. The best configurations of different core numbers

Core number 2 cores 4 cores 8 cores

Number of compilation thread 3 3 4

Compilation threshold 6 K 5 K 3 K

Performance improvement 1.64 % 23.08 % 39.93 %

5 Throttling Compilation

The comparison results in previous section show that the effectiveness of the
foreground compilation is higher than that of the background compilation, i.e.,
the foreground compilation executes more time in native code than the back-
ground compilation, but the parallelism of the foreground compilation is lower
than that of the background compilation. If combining the foreground compila-
tion and background compilation, the effectiveness and parallelism may be both
reached.

The parallelism comes from the compilation tasks which can be done by the
compiler threads in parallel. The effectiveness comes from stopping the inef-
fective interpretation. When there are redundant cores, the parallelism is more
important. When the parallelism is enough to feed the cores, effectiveness makes
sense. Hence, we propose stopping interpretation when the compilation queue is
too long based on background compilation, which we call throttling compilation.

As throttling compilation is based on background compilation, it can make
use of parallel compiler threads to utilize the redundant cores. When the com-
pilation queue is not long, throttling compilation acts the same as background
compilation, i.e., continues to interpret to discover more compilation tasks. How-
ever, when the compilation queue becomes longer than a threshold, the paral-
lelism is enough, so throttling compilation stops the ineffective interpretation.
In this way, throttling compilation gains better performance than background
compilation.

We expect the performance of the throttling compilation is about the max-
imum of that of the foreground compilation and the background compilation.
We empirically choose the throttling threshold to be 2× the number of compiler
threads. We evaluate the three compilation policy using 2 processor cores, 2
compilation threads and 1 application thread, with the best compilation thresh-
old in the range 1 K to 10 K, resulting Fig. 3(a). The performance is normalized
to the configuration using the background compilation at compilation threshold
10 K, which is default setting, and using the same number of cores, compilation
threads and application threads. Considering the performance of the throttling
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compilation may be about the maximum of that of the other two policies, we
place it in between in the figure. The result obeys our expectation. For most
of the benchmarks, the performance of the background compilation is better,
and the performance of the throttling compilation is similar to the background
compilation. The foreground compilation only outperforms the background com-
pilation for pmd, and the performance of the throttling compilation is similar
to the foreground compilation this time. Thanks to the 37.94 % performance
improvement for pmd, the throttling compilation outperforms the background
compilation 1.62 % on average.
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Fig. 3. Performance of throttling compilation.

In previous sections, we discuss that when the pressure of application is high,
the performance of the foreground compilation may be better, so we increase the
number of application threads to equal to the number of processor cores, which
is 2, resulting Fig. 3(b). The baseline configuration is using 2 application threads
too. This time, the foreground compilation outperforms the background compi-
lation for more benchmarks, so does the throttling compilation. The throttling
compilation outperforms the background compilation 4.48 % on average.

We also evaluate the three compilation policy using 4 processor cores, result-
ing Fig. 3(c) and (d). The results in Fig. 3(c) are evaluated using 1 application
thread. The throttling compilation lower the performance by 0.64 % than the
background compilation on average, as there are more free resources, which lower
the need to stop interpretation. As showed in Fig. 3(d), the throttling compila-
tion improve the performance by 3.13 % than the background compilation on
average using 4 application threads, because of more application pressure.



304 M. Huang et al.

As we run only one benchmark at a time, the redundant core left for com-
pilation usually keeps stable. In reality, there are several applications run at
the same time, the redundant core varies. We will consider using CPU utiliza-
tion information to adjust the number of compiler threads and the compilation
threshold in the future. The throttling compilation is used to adjust the balance
between the interpreter threads and the compiler threads. It can cooperate with
such adjustment, and needs no concern about the redundant core variation.

6 Related Work

The research on high-level language virtual machines has lasted for decades. The
virtual machine usually employs interpreters to execute the virtual code (code
in the instruction set of the virtual machine). Considering the native code is
much faster, researchers introduced just-in-time compilation, which translates
the virtual code to the native code during application execution, to boost the
performance of VMs, such as the ParcPlace SmallTalk VM [5]. Aycock gave a
brief history of just-in-time [1]. The compilation task is complicated and time-
consuming if highly optimized native code is needed, so only some methods,
which is frequently executed or hot, are selected to compile. This is called selec-
tive compilation or dynamic adaptive compilation. Usually the past execution is
used to predict the future hotness. If the method execution exceeds a thresh-
old, which means it was hot in the past, it is expected to be hot in the future
and selected for compilation. Several researches were proposed to estimate the
future execution [14,15,18]. Schilling proposed that the simplest heuristics, such
as the method invocation count and the method size, are efficient to detect the
hot methods [18]. The work [14] traces the execution of virtual code, so more
precious judgement is made. Namjoshi and Kulkarni pointed out that early deter-
mination of loop iteration bounds led to early detection of hot methods, which
improve the program performance [15].

Previous works are developed considering single-core machine. As more and
more cores are integrated in a single processor chip, researchers started to pay
attention to increasing the parallelism of JIT for multicore machines, such as
background compilation [8,11,20] and parallel compilation [3,9]. Krintz et al.
investigated the impact of background compilation in a separated thread to
reduce the overhead of dynamic compilation [11]. This technique uses a single
compiler thread and employs offline profiling to determine and prioritize hot
methods to compile. While the work [11] is for Java, Ha et al. [8] introduced
background compilation to JavaScript. Unnikrishnan et al. overlap the next code
fragment compilation and the current code fragment execution [20]. Prior work
by Bohm et al. explored the issue of parallel JIT compilation with a priority
queue based dynamic work scheduling strategy in the context of their dynamic
binary translator [3]. Hong et al. uses a separate thread to optimize code, which
is concurrent with the original dynamic binary translator [9]. Existing JVMs,
such as Oracle’s HotSpot server VM [16], support background compilation and
multiple compiler threads but do not present any discussions on ideal compilation
strategies for multicore machines.
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As the compilation policy becomes complex, researchers investigated the
adjustment of the compilation policy [6,10,12,13]. Kulkarni et al. explored increas-
ing the priority of JIT compilation thread and saw obvious performance improve-
ment [12]. Kulkarni explored some aspects of the impact of varying the aggres-
siveness of dynamic compilation on modern machines for JVMs with multiple
compiler threads [13]. Then Jantz and Kulkarni extended these earlier works by
investigating the effects on multitiered compiler and the effects of compilation
task order [10]. This paper further extends earlier works by exploring compila-
tion policy variation when the number of utilized microprocessor cores varies
on multicore machines and comparing background compilation using several
concurrent compiler threads with traditional foreground compilation on single-
core machines, and inspired by traditional foreground compilation, proposing
throttling compilation for multicore machines. Ding et al. explored the potential
of optimizing compilation task order and saw huge performance improvement
potential [6].

The work [4] and [17] analyzed different mapping between JVM and asym-
metric multicore processor (AMP) to exploit the asymmetric of JVM service
threads, but they did not discuss the compilation policy.

7 Conclusion

Nowadays, there are more and more cores integrated on a single microprocessor
chip. While running serial application, the JVM itself has parallelism, so the
more cores can be utilized to boost the performance of JVM. In this paper,
we explore the suitable compilation policy as the number of cores increases to
reach better performance. We conclude that when only one core is utilized, the
traditional foreground compilation is more efficient, and when more cores are
utilized, a few compiler threads and smaller compilation threshold is better. We
also propose a novel compilation policy, the throttling compilation, which stops
interpretation when the compilation queue is too long. This policy combines the
advantages of both the foreground compilation and the background compilation,
and has better performance.

The availability of free resource depends not only on the number of processor
cores, but also on the running workload, so it is better to adjust the compilation
policy according to the processor utilization rate dynamically. We will explore
this direction in the future. As there will be more and more cores in the future,
we can investigate more complicated strategy to optimize the generated native
code in our future work.
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Abstract. The development of climate simulation applications highly
depends on high-performance computers. A fundamental problem in con-
structing a high-performance computer is how to select the processors.
A straightforward solution is to use a state-of-the-art processor version
available from the market. However, this approach is not economical for
climate simulation applications.

To pick out a suitable processor version, we propose to predict the
performances of climate simulation applications on various processor ver-
sions, and design and develop a new cross-architecture performance pre-
dictor CSAP (Climate Simulation Applications performance Predictor),
based on the performance characteristics of climate simulation applica-
tions. Our experimental evaluation shows that CSAP can predict the
performances of climate simulation applications on various Intel CPU
versions with high accuracy and low overhead.

Keywords: Climate simulation applications · High-performance com-
puters · Cross-architecture performance prediction · Intel CPUs · CSAP

1 Introduction

Numerical simulation models play a critical role in understanding or predict-
ing the past, present, and future climate. A number of numerical models have
been developed for simulating the components of the climate system, including
atmosphere models, ocean models, land surface models, sea ice models, wave
models, etc. There are also coupled models, such as climate system models
(CSMs) and earth system models (ESMs), each of which consists of several
component models.

The numerical models has been improved substantially under the rapid devel-
opment of science and technology. Many important aspects of the climate sys-
tem can be successfully captured by state-of-the-art models, but uncertainties
remain an important issue. These uncertainties arise in part due to limitations
in the understanding of physical processes, and in part due to the relatively low
c© Springer International Publishing Switzerland 2015
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Table 1. Information of four Intel Xeon CPU versions that are available in the market
currently. The price of each CPU version was obtained from amazon.com on June 2,
2014.

CPU version E5-2697 v2 E5-2650 X5670 E5520

Peak computation
performance
(GFLOPs)

518.40 256.00 140.64 72.64

Perk memory
bandwidth (GB/s)

59.7 51.2 32.0 25.6

Nuber of cores 12 8 6 4

Width of SIMD 256 256 128 128

Release date Sep, 2013 Mar, 2012 Mar, 2010 Mar 2009

Price (USD) 2,718 1,1169 400 94

Peak computing
performance per
price
(GFLOPs/USD)

0.191 0.219 0.352 0.772

Peak memory
bandwidth per
price (GB/s/USD)

0.0220 0.0438 0.0800 0.2720

resolution of the models. The refinement of model resolutions results in rapid
increase in computation amount. The peak computing performance of modern
high-performance computers almost doubles every year due to the rapid devel-
opment of processors, which enables models to achieve higher and higher resolu-
tions. Now high-performance computers with a large amount of processor cores
play a critical role in climate simulations. To achieve high-resolution climate sim-
ulations, scientists have to buy or hire expensive high-performance computers.
On the other hand, to construct a public high-performance computer, climate
simulation applications are significant benchmarks.

A fundamental question for constructing a high-performance computer is how
to select the processors. To construct public high-performance computers, one
popular strategy is to use the state-of-the-art processors. For example, Tianhe-2,
which was announced as the fastest supercomputer in the world by TOP500 [1]
from June 2013 to November 2014, contains 32,000 Intel Xeon E5-2692 12-core
CPUs. This version of CPU was state-of-the-art in the middle of 2013. However,
to construct a high-performance computer specifically for climate simulation
applications, it is not economical to use the state-of-the-art processors due to at
least three reasons. First, compared to previous processors, the state-of-the-art
processors are always much more expensive without significant boost of the peak
performance. For example, Table 1 lists out the information of four versions of
the Intel CPU available in the market now. Peak computational performance
and memory bandwidth are two important measurements of CPU. When nor-
malizing them to per price, we can find that the older CPU versions achieve
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Table 2. Simulation speed per price of four climate simulation applications on the four
CPU versions in Table 1.

CPU version Simulation speed per price(SYPD/1000USD)
(SYPD means simulation year per day)

CAM-SE ne30np4 CAM-FV 0.9◦x1.25◦ GAMIL 1◦x1◦ CoLM 1◦x1◦

E5-2697 v2 0.0632 0.1147 0.1201 6.6315

E5-2650 0.0833 0.1361 0.2012 6.9842

X5670 0.1968 0.3521 0.4769 19.8338

E5520 0.5340 0.8979 1.2261 48.7234

Fig. 1. Simulation speed of four climate model versions (CAM-FV, CAM-SE, GAMIL
and CoLM) when varying the CPU versions in Table 1 from the older to the newer.
The simulation speed of each model version is normalized to the Intel Xeon E5520.

higher normalized performance (the 8th and 9th column in Table 1). Second, the
simulation speed of the climate models does not keep linear increase with the
peak performance of processors. For example, Fig. 1 shows the simulation speed
of three atmosphere model versions (CAM-FV [2], CAM-SE [3], and GAMIL [4])
and one land surface model version (CoLM [5]) on the CPU versions in Table 1.
Generally, each climate model achieves a higher simulation speed on a newer
CPU version. However, the increment of simulation speed is much slower than
the boost of peak computing performance or peak memory bandwidth. Moreover,
when normalizing the simulation speed to per price, each climate model achieves
much higher normalized simulation speed on an older CPU version, as shown in
Table 2. Third, different climate models have different sensitivities to the critical
factors in processor architecture design, e.g., processor frequency, width of vector
processing, number of cores, on-chip cache size and off-chip memory bandwidth.
As shown in Fig. 1, different climate models achieve different speedups when
varying the CPU version from the older to the newer. The simulation speed of
CoLM is only slightly improved when upgrading the CPU version from the Intel
Xeon X5670 to the Intel Xeon E5-2650.

To pick out a suitable candidate of processors for constructing a high-
performance computer specifically for climate simulation applications, the appli-
cation performance on each available processor version needs to be known.
A straightforward solution is to directly run the applications on all processor



CSAP: A Performance Predictor for Climate Simulation Applications 311

versions available in the market. This solution is impractical because it requires
users to buy or hire a lot of processors (for example, currently there are more
than 100 Intel CPU versions available in the market). Moreover, accelerators
such as GPGPU, Intel Xeon Phi and FPGA are also candidate processors.

A much more practical approach is to use a cross-architecture performance
predictor to predict the application performance on various processor versions
without buying or hiring them. In this paper, we carefully study the performance
characteristics of climate simulation applications and then propose a new tool
named CSAP (Climate Simulation Applications performance Predictor) for such
a purpose. We take the Intel CPU versions as the first step because Intel CPUs
are most widely used for climate simulations, and will extend CSAP to other
kinds of processors in near future. The evaluations with real climate simulation
applications and a set of CPU versions demonstrate that CSAP can achieve accu-
rate cross-architecture performance prediction of climate simulation applications
with low overheads.

The rest of this paper is organized as follows. Section 2 briefly introduces
related works. Section 3 analyzes the performance characteristics of climate sim-
ulation applications. Section 4 details CSAP. Section 5 evaluates the overheads
and accuracy of CSAP. We conclude this paper in Sect. 6.

2 Related Work

Several existing performance predictors can be used for cross-architecture per-
formance prediction of applications.

Marin et al. [6] aim to predict the cross-architecture performance of scientific
applications through profiling the reuse distances of memory accesses. Proce-
dures for tracing the memory accesses are instrumented into the executable
when running an application. After analyzing the memory reuse distances, the
execution time of an application can be predicted through simulating the cache
hits and misses when accessing the cache hierarchies. One dramatic drawback
of this approach is that significant overheads are observed. The instrumented
programs for tracing memory accesses can dramatically slow down the applica-
tion execution for hundreds even thousands of times, and the size of the memory
access trace can be very large (i.e., at a terabyte level). Moreover, this approach
is infeasible for climate simulation applications because the computing perfor-
mance of numerical models for earth science is insensitive to the cache hierarchies
on modern CPUs (please refer to Sect. 3.2 for details).

Sadjadi et al. [7] and Shimizu et al. [8] aim to predict the cross-architecture
performance of a specific application with a fitting function of several perfor-
mance factors, i.e., processor frequency, cache size, memory size, disk I/O speed
and number of processes. A number of test runs on various computer platforms
with different performance factors are required for generating such a fitting func-
tion. The accuracy of the prediction highly depends on the selection of perfor-
mance factors, the form of the fitting function, the diversity of the computer
platforms in performance factors, and the number of the test runs. The eval-
uation results show that, for some applications, the prediction accuracy is less
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than 80 %. For higher prediction accuracy, more computer platforms and test
runs are required, which is inconvenient and will introduce higher overheads

Yang et al. [9] aim to predict the cross-architecture performance of a specific
application according to a partial execution. To predict the computing perfor-
mance on a target hardware platform A according to another hardware platform
B, the first step is to run the application completely on the platform B, to draw
a relationship between the partial execution and the whole execution. After
obtaining the time of the partial execution on the platform A, the predicted
computing performance on the platform A can be calculated according to the
above relationship. Although this approach can achieve high prediction accuracy
with low overheads, it requires the target hardware platform to be available for
the partial execution, which is infeasible for our target in this paper.

Petit et al. [10] aim to predict the cross-architecture performance of various
applications according to a database of microbenchmarks with various perfor-
mance characteristics. To construct such a database, a number of microbench-
marks need to be generated and to be run on all target hardware platforms. To
predict the computing performance of an application on a target hardware plat-
form, the application will be divided into a number of small segments, each of
which is mapped to a microbenchmark with similar performance characteristics
in the database. This approach is infeasible for our target in this paper, because
it requires the target hardware platform available for running all microbench-
marks in the database.

To achieve low-overhead and accurate cross-architecture performance pre-
diction of climate simulation applications when target processor versions are
unavailable, in this work, we develop a new tool CSAP based on the perfor-
mance characteristics of climate simulation applications.

3 Performance Characteristics of Climate
Simulation Applications

The architecture of modern CPUs becomes more and more complicated so that
an increasing number of performance factors can impact the performance of
applications. To develop an efficient performance prediction tool, the perfor-
mance factors that are trivial to the application performance can be neglected.
We therefore conduct a performance characterization of climate simulation appli-
cations to find out sensitive performance factors before designing CSAP. The
sequential performance of applications is generally determined by the computing
performance and memory performance. Almost all climate simulation applica-
tions are parallel applications with a number of processes, threads or the hybrid.
For the parallel performance, load imbalance and communication overhead (or
synchronization overhead) between multiple processes (or threads) needs to be
concerned. As this work only focuses on the application performance intra a com-
puting node, the communication overhead (or synchronization overhead) can be
neglected. In the following context of this section, we use real climate simulation
applications as benchmarks to characterize the memory performance, computing
performance and load imbalance.
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Table 3. Detailed setups of benchmark applications.

Application Version Resolution/grid Simulation time

CAM-FV 5.2 0.9◦x1.25◦ 1 day

CAM-SE 5.2 ne30np4 1 day

GAMIL 2.0 1◦x1◦ 1 day

3.1 Benchmarking Applications

Several climate simulation models, which have been widely used in scientific
researches, are used as benchmarking applications, including CAM5 (Community
Atmosphere Model, version 5) [11] and GAMIL2 (the Grid-point Atmospheric
Model of IAP (Institute of Atmospheric Physics) - LASG (State Laboratory of
Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics),
version2) [4]. CAM5 is released as the atmospheric component of the Community
Earth System Model (CESM) [12]. It has been parallelized using MPI, OpenMP
and their hybrid. It contains several different dynamic cores including Eulerian
Spectral, Semi-Lagrangian Spectral, Finite Volume and Spectral Element. The
Finite-Volume dynamic core (CAM-FV) is often used for climate simulations. For
example, CAM-FV was used for all CMIP5 (the Coupled Model Intercomparison
Project, Phase 5) experiments performed by CESM. Spectral Element (CAM-
SE) is the latest dynamic core of CAM5. We therefore select both CAM-FV and
CAM-SE as benchmark applications.

GAMIL2 is the atmospheric component of FGOALS-g2 (the grid-point ver-
sions of the Flexible Global Ocean - Atmosphere - Land System version 2) [13],
which has been widely used in model intercomparison projects and scientific
researches. It also has been parallelized using MPI, OpenMP and their hybrid.

Table 3 shows the detailed setups of the benchmark application, including the
version number, resolution or grid and simulation duration. All the benchmark
applications are run on a computer with dual Intel Xeon E5-2650 and quad-
channel 64 GB DDR3-1333 DRAM, and are compiled by Intel Composer XE
2013 SP1 at optimization level -O3.

3.2 Memory Performance

The memory performance of applications on modern CPUs is generally deter-
mined by the cache performance and memory bandwidth requirement. We there-
fore characterize them respectively.

Cache Performance. Different CPU versions can have different sizes of on-chip
cache. Bigger size of cache can generally result in better cache performance as
well as better application performance, while the sensitivity of cache performance
to the variation of cache size depends on applications own characteristics. To
quantify this sensitivity for climate simulation applications, we use a tool MICA
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Fig. 2. Numbers of MPKI (misses per kilo instructions) when scaling the cache size
from 32 KB to 4 GB. These results are calculated according to the memory reuse dis-
tances collected by MICA [14]. The scaling of cache sizes can be partitioned into three
stages: from 32 KB to 2 MB, from 2 MB to 64 MB, and from 64 MB to 4 GB, because
the sizes of L1 cache and L2 cache on modern CPUs generally range from 32 KB to
2 MB while the last level cache size generally ranges from 2 MB to 64 MB. As the
last level cache is generally shared by a number of cores and the cache size per core
generally ranges from 2 MB to 4 MB, we highlight the corresponding two bars in green
color (Color figure online).

[14] that can calculate the number of cache misses with the variation of cache
size through measuring the memory reuse distances of applications.

Figure 2 shows the numbers of MPKI (Misses Per Kilo Instructions) of the
three benchmark applications when scaling the cache size from 64 KB to 4 GB,
where cache prefetching is not considered. When enlarging the cache size from
64 KB to 2 MB, the MPKI is reduced rapidly. When enlarging the cache size
from 2 MB to 64 MB, the MPKI gets much slower. Given a typical 3-level cache
hierarchy, Fig. 3 shows the average memory access latency. When enlarging the
last-level cache size from 512 KB to 4 GB, the average memory access latency is
slightly decreased.

The above results without the consideration of cache prefetching indicate
that the cache performance of climate simulation applications is not sensitive to
the cache sizes on modern CPUs. Almost all modern CPUs provide the func-
tionality of cache prefetching for improving the cache performance. When cache
prefetching is considered, the sensitivity will be further decreased, because many
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Fig. 3. Average memory access latency when scaling the size of the last level cache
from 512 KB to 4 GB, assuming that there are three levels in the cache hierarchy, the
sizes of the L1 cache and L2 cache are 32 KB and 256 KB respectively and the latencies
of accessing the L1 cache, L2 cache, L3 cache (the last level cache) and main memory
are 2, 6, 14 and 63 ns respectively. These results are calculated according to the MPKI
in Fig. 2.

modules in climate simulation applications, such as the dynamical core, which
have good spatial locality with a high proportion of sequential array accesses,
can benefit from cache prefetching.

Memory Bandwidth Requirement. The data accesses that miss on-chip
cache hierarchies will be served by the main memory. When the memory band-
width capacity provided by the CPU cannot satisfy the main memory accesses,
memory bandwidth requirement can dominate the application performance.

Figure 4 shows the average memory bandwidth requirement of the benchmark
applications when scaling the cache size from 64 KB to 4 GB. Given a typical
cache size between 2 MB and 64 MB, the average memory bandwidth requirement
is between 0.08 GB/s and 1.53 GB/s, which can be satisfied by almost all modern
CPU versions.

The above results indicate that the performance of climate simulation appli-
cations is not sensitive to the memory bandwidth capacity of modern CPUs.
However, Fig. 5 shows that the memory bandwidth requirement of climate sim-
ulation applications is not constant, and can burst at some time intervals where
the memory bandwidth capacity provided by most of modern CPU versions
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Fig. 4. Average memory bandwidth requirement when scaling the cache size from
32 KB to 4 GB, assuming that one third of the memory accesses are store instructions,
the cycles per instruction (CPI) is 1.0, and the CPU clock rate is 2 GHz.

Fig. 5. Footprint of memory bandwidth requirement in the sequential execution of
GAMIL on the Intel Xeon E5520. Instantaneous memory bandwidth requirements can
be much larger the memory bandwidth capacity per core provide by the Intel Xeon
E5520 (the orange line). Similar phenomenon can be observed when using the other two
benchmark applications. The footprint is collected by the CSAP profiler (Sect. 4.2).

cannot fully satisfy the corresponding requirement. For example, the aver-
age memory bandwidth capacity per core of the dual Intel Xeon E5-2650
used in this paper is 3.14 GB/s (measured by STREAM [15]), which is much
smaller than the peak memory bandwidth requirement of the three benchmark
applications.



CSAP: A Performance Predictor for Climate Simulation Applications 317

Fig. 6. Speedups of the benchmark applications with the scaling of the CPU clock
rate when the memory bandwidth capacity provided by the CPU is sufficient. We
collect these results in the sequential execution on a dual Intel Xeon E5-2650 platform
that can provide enough memory bandwidth capacity to cover the memory bandwidth
requirement in the sequential application execution.

3.3 Computing Performance

The computing performance on modern CPUs is generally determined by the
CPU clock rate, SIMD (single instruction, multiple data) capability and ILP
(Instruction Level Parallelism). As shown in Fig. 6, the performance of climate
simulation applications can almost achieve linear speedup with the scaling of
the CPU clock rate when the memory bandwidth capacity of the CPU is suffi-
cient. As shown in Table 4, climate simulation applications can effectively bene-
fit from the SIMD capability, and bigger performance speedup can be obtained
with wider SIMD capability. Table 4 also shows the ILP (measured by the IPC
(Instructions Per Clock)) achieved by the benchmark applications. Different ILP

Table 4. IPC (instruction per clock) and SIMD performance of benchmark applications
on two Intel CPU versions (E5-2650 and X5670). These results are obtained from
sequential application run, where the memory bandwidth capacity provided by the
CPU versions is larger than any instantaneous memory bandwidth requirement of the
applications.

Application version CPU Width SIMD enabled SIMD disabled SIMD

clock of speedup

rate SIMD Time(s) IPC Time(s) IPC

GAMIL E5-2650 2.0 GHz 256 6402.5 1.25 7367.8 1.24 1.151

X5670 2.93 GHz 128 4889.4 1.17 5549.0 1.12 1.135

CAM-SE IE5-2650 2.0 GHz 256 16590.8 1.51 18959.9 1.51 1.143

X5670 2.93 GHz 128 13096.0 1.31 15052.9 1.30 1.149

CAM-FV E5-2650 2.0 GHz 256 11024.8 1.38 12090.7 1.34 1.097

X5670 2.93 GHz 128 8182.1 1.27 8813.5 1.25 1.077
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Fig. 7. Load imbalance ratio of CAM-SE at different core numbers on various CPU
versions. Given a core number, the load imbalance ratios on different CPU versions are
almost the same.

can be achieved on different microarchitectures of CPUs. Moreover, different ILP
can be achieved when the SIMD capability is enabled or not.

3.4 Load Imbalance

To quantify the load imbalance of climate simulation applications, we use the
load imbalance rate calculated by Formula 1 (Ti is computation time of ith
process/thread of the application). Figure 7 shows the load imbalance rate of the
benchmark applications on different CPU microarchitectures, when increasing
the number of cores from 2 to 16. It indicates that climate simulation applications
also have the problem of load imbalance, and load imbalance gets more serious
given a bigger number of cores.

L =
maxTi

Ti

(1)

4 Design of CSAP

Based on the performance characteristics revealed in the previous section, we
designed and implemented CSAP for predicting the performance of climate sim-
ulation applications on Intel CPU versions. The overall design of CSAP will be
introduced in Sect. 4.1. Guided by the overall design, we implemented a CSAP
profiler (Sect. 4.2) and a CSAP predictor (Sect. 4.3).

4.1 Overall Design

As the average memory access latency of climate simulation applications is insen-
sitive to the increment of cache size (Fig. 3), we neglect the factor of cache
size in CSAP. We need to take consideration of other factors including memory
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Fig. 8. Overall flowchart of CSAP. The squares in green, yellow and purple are the per-
formance characteristics of climate simulation applications or the performance factors
of CPU versions.

bandwidth, CPU clock rate, SIMD capability, ILP, number of cores and load
imbalance because each of them affects the performance of climate simulation
applications (Sect. 3).

As the footprint of memory bandwidth requirement of climate simulation
applications is too uneven to predict and each application has its own memory
bandwidth requirement, we implemented a profiler for sampling the footprint of
memory bandwidth requirement (Sect. 4.2). The impact of CPU clock rate can
be easily predicted because the performance of climate simulation applications
almost keeps linear to the clock rate when the memory bandwidth capacity of
the CPU is sufficient (Fig. 6).

The impact of SIMD capability and ILP is determined by the microarchitec-
ture of the CPU when the memory bandwidth capacity of the CPU is sufficient.
It is a challenge to predict the impact of SIMD capability and ILP on various
microarchitectures. Although a cycle-accurate simulator can be used, it is always
very complex and can significantly slow down the performance prediction. On
the other hand, the microarchitectures of CPUs are not upgraded frequently.
For example, there are currently more than one hundred Intel CPU versions on
the market but only several different types of microarchitectures. We therefore
measure the impact of SIMD capability and ILP through directly running the
applications on a CPU with a certain microarchitecture.

The speedup achieved through parallelization intra a computing node gen-
erally cannot keep linear scaling with the core number, due to the overhead of
load imbalance and the limit of memory bandwidth capacity provided by the
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CPU. We therefore measure the impact of the parallel execution based on the
load imbalance ratio and memory bandwidth requirement of climate simulation
applications at certain core numbers.

Based on the above analysis, we design the overall flowchart of CSAP (Fig. 8),
where a series of performance factors (squares in Fig. 8) are considered for pre-
dicting the performance of a climate simulation application on a specific Intel
CPU version. These performance factors can be divided into three categories:

1. Architecture independent factors (green squares in Fig. 8), including load
imbalance ratio. According to Sect. 3.4, given the same core number, the
load imbalance ratios of a climate simulation application on different types
of CPUs are similar (Fig. 7). Load imbalance ratio can be measured through
collecting and accumulating the computing time, communication time and
synchronization time of each process or thread during the parallel execution
of an application at a certain number of cores. Load imbalance ratio can be
measured artificially by scientists through inserting timers into the applica-
tion code. A number of tools can also be used for such purpose, such as mpiP
[16], Jumpshot [17], Scalasca [18] and HPCToolkit [19]. One application run
is required for getting the load imbalance ratio at a core number.

2. Microarchitecture dependent factors (yellow squares in Fig. 8), including
SIMD, ILP, and memory bandwidth requirement. We designed and imple-
mented a profiler for sampling the footprint of memory bandwidth require-
ment on a CPU version with a specific microarchitecture. Such footprint has
already taken account of the relationship between SIMD, ILP and memory
bandwidth requirement. A run of the application is required for getting the
footprint of memory bandwidth requirement on a specific type of microarchi-
tecture.

3. CPU version specific factors (purple squares in Fig. 8), including clock rate,
memory bandwidth capacity, and number of cores. These factors are metrics
of a CPU version which can be easily obtained without an application run.
The memory bandwidth capacity here is not the peak memory bandwidth
of the CPU version but the maximum memory bandwidth that an applica-
tion can obtain. It can be measured by STREAM on the target platform or
calculated from other measured value of similar platforms.

Given a climate simulation application and a set of N CPU versions of M
types of microarchitectures, the performance prediction can be conducted in
following steps:

1. Pick out a CPU version with maximum number of cores, and then run the
application with different number of cores to get the load imbalance ratios.

2. For each type of microarchitecture, select one CPU version as a reference
platform and then run the application with the CSAP profiler to get the
footprint of memory bandwidth requirement.

3. For each CPU version, use the CSAP predictor to get the prediction result.
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Finally, the application will be run at most K + M times, where K is the
maximum of the core numbers, while there is almost no slowdown in each run.
CSAP only requires users to run the application on one CPU version of a type of
microarchitecture. Then the application performance on any other CPU version
of the same type of microarchitecture can be predicted.

4.2 CSAP Profiler

The CSAP profiler is responsible for collecting the footprint of memory band-
width usage of a climate simulation application. Similar to other performance
profilers such as Intel VTune, the CSAP profiler also employs a sampling app-
roach for the collection. Regarding to the Intel CPUs, a number of tools, such
as Intel VTune and Intel Performance Counter Monitor (PCM), can be used
to sample the memory bandwidth usage. We prefer PCM because it is an open
source tool and therefore can be modified according to our specific purposes,
such as the functionality of pausing and resuming the sampling (for example,
I/O is not considered in the performance prediction) and various sampling fre-
quencies, while the VTune is not open-source and cannot export the footprint
for our usage. During an application run, the sampling interval is a constant
physical time such as 5 ms or even shorter. The footprint of memory bandwidth
usage is quantified by the total size of memory accesses (include memory read
and write) and the number of clock ticks in each sampling frame.

The footprint of memory bandwidth usage can be used as the footprint of
memory bandwidth requirement only when the memory bandwidth capacity of
the CPU is larger than the memory bandwidth requirement at any time. Con-
sidering that the memory bandwidth requirement of an application execution
increases with the increment of the core number, we propose to collect the foot-
print of memory bandwidth usage in a sequential execution of the application.
We find that the memory bandwidth capacity of an Intel CPU for a sequential
execution is generally enough for covering the memory bandwidth usage of the
application.

4.3 CSAP Predictor

The CSAP predictor is responsible for predicting the execution time of a climate
simulation application on a CPU version, taking a set of performance factors as
input, including the footprint of memory bandwidth requirement, CPU clock
rate, memory bandwidth capacity, number of cores and the corresponding load
imbalance ratio. It iterates on all sampling frames of the footprint and predicts
the execution time of each sampling frame. The execution time of a sampling
frame is predicted according to Formula 2 (the definitions of the variables in
Formula 2 are described in Table 5). It is determined by the maximum of com-
putation time and memory time. The computation time is calculated according
to the number of clock ticks in the sampling frame, the clock rate and the num-
ber of cores of the CPU version, because the computing performance can achieve
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Table 5. Descriptions of the variables in Formulas 2 and 3.

Variable Definition Unit

mi Total size of memory access requirements in sampling frame i Byte

ki Number of clock ticks in sampling frame i -

c CPU clock rate of the CPU version Hz

b Memory bandwidth capacity of the CPU version Byte/s

n Number of cores to use -

L Corresponding load imbalance ratio of n cores -

almost linear speedup with the scaling of the CPU clock rate and with the incre-
ment of the core number when the load imbalance is not considered. The memory
time is calculated according to the total size of memory accesses in the sampling
frame and memory bandwidth capacity of the CPU version.

ti = max{ ki
cn

,
mi

b
} (2)

As shown in Formula 3, the predicted execution time of the application will
be adjusted according to the corresponding load imbalance ratio.

tp = (1 + L)
∑

ti (3)

5 Experimental Evaluation

In this section, we will evaluate CSAP in terms of time consumption, storage
consumption and accuracy, with the experimental setup described in Sect. 5.1.

5.1 Experimental Setup

Besides the three climate simulation applications (GAMIL, CAM-FV and CAM-
SE) that have been described in Sect. 3, one more application is added for this
evaluation, i.e., the land surface model CoLM (Common Land Model) [20].
CoLM is developed based on the early Common Land Model [5], which is a
third-generation land surface model based on the Biosphere-Atmosphere Trans-
fer Scheme (BATS), the Institute of Atmospheric Physics Land Surface Model
(IAP94) and the Land Surface Model (LSM). CoLM has been parallelized using
MPI. In our experiment, the resolution of CoLM is 1◦x1◦, and the simulation
time is 500 hours (20.83 days).

In this evaluation, 4 real Intel CPU versions are used. They are different in
microarchitecture, core number, CPU clock rate and memory bandwidth capac-
ity, as shown in Table 6. We call them basic CPU versions. Based on a basic CPU
version, a number of extended CPU versions can be generated through varying
the CPU clock rate, memory bandwidth capacity or the number of cores used
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Table 6. Information of the 4 Intel CPU versions used for the evaluation. For each CPU
version, a two-way computer is used. The memory bandwidth capacity corresponding
to a CPU version is measured on the corresponding two-way computer.

CPU version Microarchitecture CPU clock rate Memory configuration

Xeon E5-2650 Sandy Bridge 2.0 GHz 64 GB DDR3-1333

Xeon E5-2697 v2 Ivy Bridge 2.7 GHz 64 GB DDR3-1333

Xeon E5520 Nehalem 2.27 GHz 32 GB DDR3-1067

Xeon X5670 Westmere 2.93 GHz 48 GB DDR3-1333

for running an application. The clock rate of an extended CPU version can be
set in BIOS. Memory bandwidth capacity can be changed through enabling or
disabling memory channels.

Table 7. Load imbalance ratios at different numbers of cores. These results are mea-
sured on the dual Intel Xeon E5-2697 v2.

Cores GAMIL CAM-FV CAM-SE CoLM

2 0.0041 0.0096 0.0151 0.0042

4 0.0188 0.0154 0.0254 0.0126

6 0.0199 0.0139 0.0278 0.0052

8 0.0242 0.0207 0.0287 0.0105

12 0.0409 0.0155 0.0298 0.0119

16 0.0667 0.0197 0.0318 0.0204

24 0.0802 0.0169 0.0342 0.0414

5.2 Time Consumption and Storage Consumption

For an application, we conduct the performance prediction on various CPU ver-
sions as follows:

1. For each basic CPU version, run CSAP profiler to collect the footprint of
memory bandwidth usage. For different applications, the sampling interval
can be different.

2. Use the dual Intel Xeon E5-2697 v2 to quantify the load imbalance ratio at
different core numbers, as shown in Table 7.

3. Run CSAP predictor to predict the performance on each basic CPU version
and on each extended CPU version.

Table 8 shows the time consumption and storage consumption for the per-
formance prediction of each application, which demonstrates that CSAP is an
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Table 8. Time consumption and storage consumption of performance prediction of
the four benchmark applications in four CPUs listed on Table 6. Execution time is
one process execution time on Intel Xeon E5-2650. Time consumption includes execu-
tion time for measuring load imbalance ratios, execution time for collecting memory
bandwidth requirement footprint on four CPUs.

Application Execution time (s) Sampling interval (ms) Consumption

Time (s) Storage

GAMIL 6402.5 5 40328.8 324

CAM-FV 11024.8 10 57636.5 72

CAM-SE 16590.8 10 86622.0 112

CoLM 4741.2 10 24771.9 28

Table 9. Accuracy of performance prediction on the basic CPU versions. All CPU
cores on each computer are fully used for the evaluation. The percentages between the
brackets are the errors of predictions.

Computer Running time(s) and prediction error (%)

GAMIL CAM-FV CAM-SE CoLM

E5-2650 497.3 (−3.3) 719.2 (−1.6) 1132.9 (−1.8) 302.0 (+0.6)

E5-2697 v2 362.5 (−2.1) 361.0 (−1.6) 648.7 (−0.6) 136.8 (+0.3)

E5520 1054.0 (−2.7) 1340.8 (+2.8) 2197.2 (+2.3) 538.4 (−0.2)

X5670 643.6 (−2.6) 791.3 (+1.7) 1398.6 (+1.7) 310.8 (−0.4)

Table 10. Accuracy of performance prediction on the extended CPU versions that are
generated from the dual Intel Xeon E5-2650 through varying the number of cores. The
percentages between the brackets are the errors of predictions

cores Running time(s) and prediction error (%)

GAMIL CAM-FV CAM-SE CoLM

2 3223.0 (+1.3) 5447.9 (+2.2) 8321.3 (+3.7) 2382.7 (−0.1)

4 1636.4 (+1.4) 2781.7 (+0.7) 4264.4 (+1.9) 1201.7 (−0.1)

6 1115.9 (+0.3) 1868.0 (−0.2) 2871.0 (+1.4) 789.8 (+0.6)

8 860.1 (−1.3) 1409.1 (−0.1) 2172.2 (+0.8) 596.2 (+0.5)

12 621.1 (−3.7) 953.6 (−1.8) 1497.0 (−2.2) 397.9 (+0.7)

16 497.3 (−3.3) 719.2 (−1.6) 1132.9 (−1.9) 302.0 (+0.6)

efficient tool. When we increase the extended CPU versions, the time consump-
tion will be only slightly increased because the time for the above third step can
be neglected.
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Table 11. Accuracy of performance prediction on the extended CPU versions that
are generated from the dual E5-2650 through varying the CPU clock rates. All CPU
cores of the dual E5-2650 are fully used for the evaluation. The percentages between
the brackets are the errors of predictions.

CPU clock rate (GHz) Running time(s) and prediction error (%)

GAMIL CAM-FV CAM-SE CoLM

1.2 786.8 (−1.1) 1188.8 (−1.3) 1820.2 (+0.7) 504.1 (+0.0)

1.3 718.0 (−1.9) 1098.5 (−1.4) 1684.6 (+0.5) 465.1 (+0.1)

1.4 674.4 (−2.4) 1019.8 (−1.3) 1570.8 (+0.1) 435.5 (−0.6)

1.5 631.8 (−2.2) 954.0 (−1.5) 1475.4 (−0.5) 404.1 (−0.1)

1.6 597.9 (−2.4) 896.5 (−1.7) 1388.2 (−0.8) 378.0 (+0.2)

1.7 570.0 (−2.9) 846.4 (−1.9) 1312.9 (−1.2) 356.5 (+0.1)

1.8 544.7 (−3.4) 800.8 (−2.0) 1246.4 (−1.4) 335.8 (+0.4)

1.9 521.6 (−3.7) 760.5 (−2.2) 1186.4 (−1.6) 318.4 (+0.4)

2.0 497.3 (−3.3) 719.2 (−1.6) 1132.9 (−1.8) 302.0 (+0.6)

5.3 Accuracy of Performance Prediction

We first evaluate the accuracy of CSAP using the basic CPU versions when
all the cores on each CPU version are used. As shown in Table 9, the errors of
performance prediction range from −3.3% to +2.8%.

Next we generate several extended CPU versions based on the dual E5-2650
through gradually increasing the CPU clock rate from 1.2 GHz to 2.0 GHz. As
shown in Table 11, the corresponding errors of performance prediction range
from −3.7% to +0.7%.

We further generate several extended CPU versions based on the dual E5-
2650 through reducing the number of memory channels from the maximum num-
ber 3 to 4. We do not consider the case of 1 or 2 memory channels because
modern CPU versions generally have at least 3 memory channels. As shown in
Table 12, the corresponding errors of performance prediction range from −6.6%
to +0.8%.

Finally, we design 8 extended CPU versions based on the dual E5-2650
through combining different CPU clock rates, different memory bandwidth
capacities and different numbers of cores, as shown in Table 13. The correspond-
ing errors of performance prediction range from −4.3% to +2.0%.

Table 10 shows the accuracy of performance prediction on the dual E5-2650
when using different number of cores. The corresponding errors range from
−3.7% to 3.7%.

Besides the dual E5-2650, we also use the other basic CPU versions to gen-
erate extended CPU versions for the evaluation, where small errors of perfor-
mance prediction are still observed. The maximum and average absolute value
of the errors are 6.9% and 1.2% respectively, which demonstrate that CSAP can
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Table 12. Accuracy of performance prediction on the extended CPU versions that are
generated from the dual Intel Xeon E5-2650 through varying the memory bandwidth
capacity. All CPU cores of the dual Intel Xeon E5-2650 are fully used for the evaluation.
The percentages between the brackets are the errors of predictions.

Memory bandwidth
capacity (MB/s)

Running time(s) and prediction error (%)

Peak Measured GAMIL CAM-FV CAM-SE CoLM

65, 519 53, 089 535.0 (−6.6) 720.1 (−1.4) 1155.5 (−2.4) 302.4 (+0.8)

87, 359 65, 457 497.3 (−3.3) 719.2 (−1.6) 1132.9 (−1.9) 302.0 (+0.6)

Table 13. Accuracy of performance prediction on 8 extended CPU versions generated
from the dual Intel Xeon E5-2650 through combining different CPU clock rates, dif-
ferent memory bandwidth capacities and different numbers of cores. The percentages
between the brackets are the errors of predictions.

CPU Measured Number Running time(s) and prediction error (%)

clock memory of cores

rate bandwidth

capacity

(MB/s) GAMIL CAM-FV CAM-SE CoLM

1.8GHz 53, 089 (triple) 12 702.0 (−4.3) 1056.1 (−1.4) 1672.6 (−3.2) 445.2 (+0.0)

1.8GHz 53, 089 (triple) 8 979.7 (−3.0) 1560.9 (+0.3) 2404.8 (+0.8) 662.8 (+0.4)

1.8GHz 65, 457 (quad) 12 681.3 (−3.5) 1055.0 (−1.5) 1625.9 (−0.7) 441.5 (+0.7)

1.8GHz 65, 457 (quad) 8 956.5 (−1.4) 1562.0 (+0.2) 2398.4 (+1.0) 658.6 (+0.4)

1.4GHz 53, 089 (triple) 12 866.2 (−2.8) 1345.6 (−0.7) 2093.1 (−0.8) 568.4 (+0.6)

1.4GHz 53, 089 (triple) 8 1212.3 (−0.0) 1999.7 (+0.6) 3055.8 (+1.9) 850.0 (+0.7)

1.4GHz 65, 457 (quad) 12 851.2 (−1.9) 1352.6 (−1.3) 2087.0 (−0.6) 571.7 (−0.1)

1.4GHz 65, 457 (quad) 8 1199.4 (+0.9) 1997.1 (+0.7) 3054.7 (+2.0) 848.7 (+0.8)

accurately predict the performance of climate simulation applications on modern
Intel CPU versions.

6 Conclusion and Future Works

In this paper, we propose a new tool CSAP for the performance prediction of
climate simulation applications on the Intel CPU versions. Through consider-
ing the performance characteristics of climate simulation applications, CSAP
can achieve high accuracy and low overhead at the same time. We believe that
such an approach can help the design of specific cross-architecture performance
predictors for other applications.

We take Intel CPUs as the first step of CSAP. For the future works, we will
extend it to other kinds of CPUs, e.g., AMD CPUs and IBM PowerPC processors,
etc. The performance characteristics of climate simulation applications need to
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be reanalyzed and CSAP may need to be upgraded accordingly. However, we
believe that the overall flowchart of CSAP can keep the same.
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Abstract. The DPillar data centre networks were introduced as an
attractive topology for server-centric data centre networks and have
recently received considerable attention. In this paper, we first derive
analytically, and validate experimentally, the average hop count and the
aggregate bottleneck throughput of the DPillar networks with a focus on
single-path routing algorithms and the all-to-all traffic pattern. We use
these models to explore the design space of the DPillar networks as a
case study. In addition, we discuss the limitations of the original routing
algorithms, showing that they do not benefit from the rich connectivity
provided by the DPillar network and consequently do not tolerate link
failures very well. To overcome these limitations we propose a collection
of routing algorithms which keep the simplicity of the original but enable
a more effective utilisation of the network. We empirically evaluate our
proposed routing algorithms and we find that they outperform the origi-
nal algorithms as regards network throughput (∼ 2x), average hop count
(∼ 5 % − 10 %), load balance and fault tolerance.

Keywords: Data centre network · Interconnection network · Routing
algorithms · Performance evaluation · Analytical modelling · Design
space exploration

1 Introduction

Computing and storage are increasingly being moved from personal comput-
ers to computing platforms resembling a warehouse full of computers that are
accessed over the internet from portable computing devices [3]. The last few years
have witnessed the emergence of modern data centres with tens of thousands of
servers, each consisting of processors, memory, storage and a high bandwidth
network interface [1]. As the number of servers in data centres and their perfor-
mance continue to increase, the data centre network (DCN) plays a greater role
in the overall system performance.
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DCNs can be roughly classified into two categories which we call switch-
centric network and server-centric network [8,10]. In the former the routing
intelligence is put on switches while in the latter it resides in servers and switches
are used only as crossbars. In the current switch-centric design, multiple levels of
switches are connected by a tree structure and servers are attached to the lowest-
level switches. Fat-Tree [2] and VL2 [5] fall into this category. Tree-based archi-
tectures face difficulties in meeting the reliability and scalability requirements of
DCNs; for example, a high-level switch in the tree network is a single point of
failure for the sub-tree rooted from it [9,10] and the top-level switches become
the cost and performance bottleneck as the number of servers grows. Conversely,
server-centric DCNs use cheap low-end switches while servers are responsible for
packet routing. Putting the network intelligence on servers results in a higher
degree of flexibility when designing data centres. DCell [7], BCube [6], FiConn [9]
and DPillar [11,12] fall into this category. Recently, the DPillar network, whose
topology is inspired by the wrapped butterfly network, has attracted consider-
able attention [10]. It provides an interconnection topology for a large number
of servers using a low number of communication channels while providing a high
level of redundancy, resulting in adequate network scalability and fault toler-
ance [12]. The DPillar network has many desirable features including symmetry
and low diameter and average inter-server hop count [12].

Routing algorithms play an essential role in the design of a DCN, in that
the greatest levels of efficiency are achieved when the topological characteristics
of the DCN are exploited by the routing algorithms. In order to provide max-
imum system performance, a routing algorithm should have high throughput
and exhibit some other important features, including low-latency packet deliv-
ery, path diversity, fault-tolerance and, in general, the ability to work well under
various workload conditions.

In this paper, we show the performance limitations in terms of load-balancing
capability and reliability of the original routing algorithms, DPillarSP and DPil-
larMP from [12], which are proposed for DPillar. First, we characterize the per-
formance of the routing algorithms DPillarSP and DPillarMP by deriving the
average hop count and the aggregate throughput, and assess their accuracy by
comparing them with empirical results. Furthermore, we propose a collection
of routing algorithms based on the original ones, but which incorporate some
simple, but effective, modifications. A detailed evaluation shows the deficiencies
of the routing algorithms DPillarSP and DPillarMP and that the proposed algo-
rithms can reduce the average hop count and increase the aggregate throughput
by more than 2x, while keeping a more balanced utilisation of network resources
and degrading much more gracefully with network failures.

2 Preliminaries

We define the DPillar topology, and then study the mathematical properties
of its structure, which serve as the foundation of designing packet routing and
forwarding mechanisms for DPillar.
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Fig. 1. A vertical view of DPillar with k columns of servers (Hi) and k columns of
switches (Si)

2.1 Topology

An (n, k) DPillar network is built from k columns of servers (Hi, 0 ≤ i ≤ k − 1),
comprising dual-port servers, and k columns of n-port switches (Si, 0 ≤ i ≤
k − 1) where n is even and n ≥ 4. Each server column has (n/2)k servers
and each switch column has (n/2)k−1 switches. As shown in the Fig. 1, DPil-
lar network can be imagined as columns of servers and columns of switches,
arranged alternately and vertically on the surface of a cylindrical pillar, hence
the name. An (n, k) DPillar network connects k(n/2)k servers via k(n/2)k−1

switches and has bisection width of (n/2)k [11]. One server in DPillar can be
uniquely addressed as (c, vk−1vk−2...v0) where 0 ≤ c ≤ k−1 and 0 ≤ vi ≤ n/2−1.
The first parameter, c, is the column-index and denotes the column in which the
server resides, whilst the second parameter, vk−1vk−2...v0, is the row-index and
denotes the position of the server within a column. Similarly, one switch can be
uniquely identified as (c, vk−2vk−3...v0). Note that the server row-index has k
coordinates (vk−1vk−2...v0) whereas the switch row-index has k − 1 coordinates
(vk−2vk−3...v0). Two servers in the server column Hi are connected to the same
switch in the column Si if their row-indices differ at the ith symbol only. Simi-
larly, two servers in the server column Hi are connected to the same switch in the
column S(i−1) mod k if their row-indices differ at the ((i − 1) mod k)th symbol
only. In the rest of the paper, for simplicity in the notation, we use ⊕ and �
signs as modulo-k addition and modulo-k subtraction operations, respectively.
More precisely, i ⊕ 1 = (i + 1) mod k and i � 1 = (i − 1) mod k. Figure 2 shows
a (6,3) DPillar network in a two-dimensional view. It is worth mentioning that
the servers in the rightmost and leftmost columns are identical but are shown
separately to facilitate visualization.

2.2 Single-Path Routing (DPillarSP)

Thanks to the symmetry of the DPillar interconnection network, a straight-
forward packet routing was proposed whose main objective was to simplify its
implementation in practical environments. In this canonical single-path rout-
ing algorithm (DPillarSP) [12], the next hop can be determined by continuously
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Fig. 2. Two-dimensional view of a (6,3) DPillar network. The red lines show the route
between servers 0,000 and 2,222 computed by the routing algorithm DPillarSP in the
clockwise direction. Note that the rightmost and leftmost columns are the same (color
figure online).

moving clockwise (or anti-clockwise) and replacing the ith (accordingly (i−1)th)
coordinate in the row-index of the current server with the corresponding symbol
in the row-index of the destination server.

Let u and v be consecutive servers on a route from source server src to
destination server dst, computed by DPillarSP. If the server u in column Hi

forwards the packet to the server v in the column Hi⊕1 (in a clockwise direction),
the ith symbol of the row-index of v and destination are the same. Similarly, if
u forwards the packet from Hi to Hi�1 (in an anti-clockwise direction), the
(i � 1)th symbol of the row-index of v and the destination are the same. By
continuing to do this, the packet can be forwarded to a server whose row-index
is the same as the destinations row-index. After that, the packet can be sent to
its destination by always forwarding to a next hop server with the same row-
index. Note that in two neighbouring columns, servers with the same row-index
are directly connected by a switch. Lets give an example in the (6,3) DPillar
network (Fig. 2) to clarify the DPillarSP routing algorithm. The clockwise route
for a packet from server (0, 000) to server (2, 222) is (0, 000), (1, 002), (2, 022),
(0, 222), (1, 222), and (2, 222) and the anti-clockwise route is (0, 000), (2, 200),
(1, 220), (0, 222), (2, 222). Figure 2 shows the route in the clockwise direction.
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Fig. 3. n/2 disjoint paths between any source and destination

2.3 Multi-path Routing (DPillarMP)

In an (n, k) DPillar network, each server is connected to n/2 servers via its clock-
wise neighbouring switch and n/2 servers via its anti-clockwise neighbouring
switch. However, the routing algorithm DPillarSP uses only one of the neigh-
bours of the source server and one of the neighbours of the destination server.
In order to exploit the rich connections inside a DPillar network and to tolerate
failures, the DPillar multi-path routing algorithm DPillarMP was proposed to
provide n/2 disjoint paths between any pair of source and destination servers [12];
in [12], paths from a source server to a destination server are disjoint if they do
not have any common server or switch except the switches connected to the
source and destination servers. The routing algorithm DPillarMP can be sum-
marised in three steps: (1) forward a packet from the source server to a proxy
source server which is one of the n/2 neighbours of the source server, (2) route
the packet according to the routing algorithm DPillarSP from the proxy source
server to a proxy destination server which is one of the n/2 neighbours of the
destination server, and (3) simply forward the packet from the proxy destination
server to the destination server. Figure 3 shows an example of the routing algo-
rithm DPillarMP. More details on how to pair a proxy source server with a proxy
destination server can be found in [12]. It has been shown that the diameter of
DPillarMP in the (n, k) DPillar network is 2k + 1 which is 2 hops more than
diameter of DPillarSP [12].

3 Performance of DPillarSP

In this section, we continue the study of the routing algorithm DPillarSP by inves-
tigating the average hop count and throughput of DPillarSP routing algorithm.

3.1 Average Hop Count

As the average hop count is an indicator of expected packet latency under a
moderate workload, it is widely acknowledged as an important static parameter
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of interconnection networks. However, to the best of our knowledge, a formula
for the average hop count in DPillar network has not been published yet. In
this section, we derive an exact formula for the average hop count in the DPil-
lar network under all-to-all (uniform random) traffic pattern and the DPillarSP
routing algorithm. We define the average hop count in a DCN as the mean num-
ber of hops messages will need to travel between every pair of servers, including
self-sent messages. In this work we assume that the distance between any neigh-
bouring servers (server-switch-server) is one hop. Table 1 represents parameters
and notations used in this study.

Table 1. Parameters and notations

⊕ modulo-k addition

� modulo-k subtraction

n number of ports per switch

k number of columns in the DPillar network

N number of servers in the network

F number of flows in the network

C number of channels in the network

Ni number of servers which are i hops away from a given server

d̄c average number of channels traversed per route

d̄ average hop count in the network

γmax maximum channel load in the network

ABT aggregate bottleneck throughput

DPillarSP single-path routing algorithm [12]

DPillarMP multi-path routing algorithm [12]

RND SP random direction DPillarSP

SHD SP shorter direction DPillarSP

RND MP random direction DPillarMP

SHD MP shorter direction DPillarMP

RND SP+TRN RND SP with turn back

SHD SP+TRN RND SP with turn back

RND MP+TRN RND MP with turn back

SHD MP+TRN RND MP with turn back

Lemma 1. The average hop count in the (n, k) DPillar network with the routing
algorithm DPillarSP is 3k−1

2 + 1−(n/2)−k

1−(n/2) .

Proof. Consider the routing algorithm DPillarSP and let Ni be the number of
servers that are i hops away from server A = (c, vk−1vk−2...vc+1vcvc−1...v0).
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We have 0 ≤ i ≤ 2k − 1, since the maximum hop count in an (n, k) DPillar
when using DPillarSP is 2k − 1 [12]. We consider first the case when 0 ≤ i ≤
k − 1. It is obvious that N0 represents self-sent traffic so, N0 = 1. As men-
tioned in Sect. 2.2, the routing algorithm DPillarSP can forward a packet from
server A = (c, vk−1vk−2...vc+1vcvc−1...v0) to an adjacent server B = (c ⊕ 1,
vk−1vk−2...vc+1xvc−1...v0) in the clockwise direction with 0 ≤ x ≤ n/2 − 1.
Hence, there are n/2 possibilities for coordinate c in the row-index of B. Conse-
quently, n/2 servers are 1 hop away from server A and all are reachable by the
routing algorithm DPillarSP. Similarly, server B forwards the packet to server
C = (c ⊕ 2, vk−1vk−2...vc+2yxvc−1...v0) with 0 ≤ y ≤ n/2 − 1. It means that
there are n/2 choices for the symbol in position c and n/2 choices for the symbol
in position c + 1 in the row-index of C. Hence, (n/2)2 servers are 2 hops away
from server A via server B. Generally, we can say that (n/2)i servers are i hops
away from a server when 0 ≤ i ≤ k − 1, i.e., during the first turn around the
pillar.

Now we consider the case when k ≤ i ≤ 2k − 1. In the case of i = k, packets
travel k hops and in each hop there are n/2 choices from {0, 1, 2, ..., n/2− 1} for
one of the symbols in the row-index of intermediate servers. As a result, there are
(n/2)k servers which are k hops away from the source node but notice that one
of these servers is the source node. Hence, we can say that Nk = (n/2)k − N0 =
(n/2)k − 1.

Using the same approach, we can find Ni when k < i ≤ 2k − 1. Packets visit
the destination column twice, which take place at ith (last) hop and (i − k)th

hop. Hence, to calculate Ni, we need to exclude the possible destinations in the
first round; Ni = (n/2)k − Ni−k = (n/2)k − (n/2)i−k. To put it in nutshell

Ni =
{

(n/2)i if 0 ≤ i ≤ k − 1
(n/2)k − (n/2)i−k if k ≤ i ≤ 2k − 1 (1)

Applying the same procedure for DPillarSP in anti-clockwise direction results
in the same formula. As we calculated the distribution of the path length, it is
easy to find the average hop count in the network; d̄ =

∑2k−1
i=0 iNi/N in which

N is the number of servers in the DPillar network. We compute
∑2k−1

i=0 iNi by
using sum identities.

2k−1∑

i=0

iNi =
k−1∑

i=0

i(n/2)i +
2k−1∑

i=k

i
(
(n/2)k − (n/2)i−k

)

=
k(3k − 1)

2
(n/2)k − k

(n/2)k − 1
(n/2) − 1

Now we are able to compute d̄.

d̄ =
∑2k−1

i=0 iNi

N
=

3k − 1
2

+
1 − (n/2)−k

1 − (n/2)
(2)
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It is worth mentioning that −1 < 1−(n/2)−k

1−(n/2) < 0. Using this fact, we can
determine lower and upper bounds for the average hop count: 3k−3

2 < d̄ < 3k−1
2 .

3.2 Aggregate Bottleneck Throughput

The aggregate bottleneck throughput (ABT) is a metric introduced in [6] and
is well-suited to evaluate DCNs as it is based on the all-to-all traffic patterns
typically found in such systems. The reasoning behind ABT is that the perfor-
mance of an all-to-all operation is limited by its slowest flow, i.e., the flow with
the lowest throughput. Since data centres are a form of stream processing and
are therefore bandwidth limited, this is an extremely important performance
metric. The ABT is defined as the total number of flows, F , over the maximum
channel load, γmax, which means ABT = F/γmax. γmax is determined by the
channel that carries the largest fraction of traffic and, in the case of a symmetric
topology (such as DPillar), it can be calculated as γmax = d̄cF/C [4] where d̄c is
the average number of channels traversed per route, which equals 2d̄ because in
Lemma 1, we assume that the length of a server-switch-server hop is counted as 1.
C is the number of channels in the network that carry traffic, and in the case
of the DPillarSP routing algorithm it is equal to twice the number of servers,
as each server has 2 ports. Hence, we can calculate the aggregate bottleneck
throughput as ABT = F/γmax = C/d̄c. Substituting d̄c and C with d̄ and the
number of servers results in

ABT =
k(n/2)k

d̄
(3)

4 Improving Routing Algorithms

The main problem of the routing algorithms DPillarSP and DPillarMP is that
they route packets in a single direction around the ring (typically clockwise).
Hence, half of the connection resources in the DPillar network (those going
anti-clockwise) will be left unused. We propose to improve upon the routing
algorithms DPillarSP and DPillarMP by utilising both the clockwise and anti-
clockwise links.

4.1 Random Direction DPillarSP

Random direction DPillarSP (RND SP) randomly decides a direction (either
clockwise or anti-clockwise) at injection time and then applies the DPillarSP
in that direction. This way, RND SP ensures a balanced distribution of the
traffic among the two directions. Because RND SP distributes traffic over a larger
number of links (exactly twice) it can sustain considerably higher throughput
than DPillarSP. However, RND SP is not able to improve upon the average hop
count of DPillarSP. The rationale is that, as we showed in Lemma 1, the average
hop counts in both directions are the same, so choosing randomly between them
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Algorithm 1. RND SP(src, dst)
1: if rand() mod 2=0 then � if the random number is even
2: path = DPillarSP(src, dst, clockwise)
3: if path = null then � the clockwise path is faulty
4: path = DPillarSP(src, dst, anti-clockwise)
5: end if
6: else � if the random number is odd
7: path = DPillarSP(src, dst, anti-clockwise)
8: if path = null then � the anti-clockwise path is faulty
9: path = DPillarSP(src, dst, clockwise)

10: end if
11: end if
12: return path

leads to exactly the same value. The pseudocode of our random direction single-
path routing algorithm, denoted as RND SP, is shown in Algorithm 1. This
algorithm takes the address of the source server (src) and the address of the
destination server (dst) and returns the path between source and destination
servers (path). RND SP is based on the routing algorithm DPillarSP which takes
source (src), destination (dst) and direction (clockwise or anti-clockwise) and
returns the path (path) between source and destination servers. If the route is
faulty then DPillarSP returns null. For fault tolerance purposes, if the route in
the selected direction is faulty, we will try the route in the opposite direction.

4.2 Shorter Direction DPillarSP

Adding more intelligence to RND SP routing algorithms, we are able to reduce
the average path length in the DPillar networks. We simply estimate which direc-
tion will be shorter and try it first. Then, if due to faults in servers, switches, or
links the route is not available then we will try the route in the other direction.
The shorter direction is estimated on the basis of information about column-
indices of source and destination servers. Although this estimation is not always
accurate (in some cases it can select a longer direction) it chooses the shortest
path in most of the cases and avoids a more complex computation of the shortest
path. As will be shown in the next section this simple approach substantially
reduces the diameter and average hop count in the DPillar data centre networks.
Algorithm 2 shows the pseudocode of shorter direction single-path routing algo-
rithm, SHD SP.

As already discussed, DPillarMP routes a packet according to the routing
algorithm DPillarSP from a proxy source server to a proxy destination server.
Using RND SP and SHD SP instead of DPillarSP in multi-path routing, we will
benefit from load balancing and fault tolerance at the same time. We name the
new algorithms RND MP and SHD MP, respectively.
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Algorithm 2. SHD SP(src, dst)
1: cw hop = (dst.col - src.col + k) mod k � estimate clockwise hop count
2: acw hop = (src.col - dst.col + k) mod k � estimate anti-clockwise hop count
3: if cw hop < acw hop then � clockwise path is shorter
4: path = DPillarSP(src, dst, clockwise)
5: if path = null then � the clockwise path is faulty
6: path = DPillarSP(src, dst, anti-clockwise)
7: end if
8: else if acw hop < cw hop then � anti-clockwise path is shorter
9: path = DPillarSP(src, dst, anti-clockwise)

10: if path = null then � the anti-clockwise path is faulty
11: path = DPillarSP(src, dst, clockwise)
12: end if
13: else � both hop counts are the same
14: path = RND SP(src, dst)
15: end if
16: return path

4.3 Turn Back Feature

The routing algorithms DPillarSP and DPillarMP assume a server always for-
wards packets in one direction. However, it is possible to send packets in the
reverse direction. Servers in two neighbouring columns with the same row-index
are connected to the same switch. Hence, after forwarding a packet to an inter-
mediate server whose row-index is the same as the row-index of the destination,
the intermediate server estimates which direction will be shorter (similar to
SHD SP). If the route in the reverse direction is shorter, the packet forwarding
direction will be changed (turn back) to bypass the longer route.

5 Experimental Results

We used an in-house developed software tool to carry out the experimental work.
The tool provides implementations of the discussed routing algorithms and enables
us to ascertain how they will compare against each other. The tool also under-
takes a breadth-first search (BFS) which allows us to compute the length of the
shortest path between any two servers and also to examine whether two servers
become disconnected in the presence of link failures. The operation of the tool is
as follows: for each flow in the workload, it computes the route using the routing
algorithm and updates link utilisation accordingly. Then it reports a large number
of statistics of interest about scalability (in terms of diameter, average hop count
and ABT) and fault tolerance (in terms of node-to-node connectivity under link
failures).

Figure 4 shows how the average hop count and ABT scale with the number of
servers, for different values of n and k when using DPillarSP. These figures also
confirm that our analytical model (Sect. 3.1) perfectly matches the experimental
results.
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Fig. 4. The average hop count and the ABT for different size of DPillar DCNs when
using DPillarSP, comparing experimental results with those derived in Lemma 1

Once the correctness of the analytical models has been ascertained, we pro-
ceed to discuss on how these models can be used when designing a DPillar-based
data centre. Basically, they can be employed to carry out a broad exploration of
the design space which would otherwise be prohibited to do based on other form
of empirical or practical data. A representative example of such exploration can
be seen in Fig. 5. There, we show the average hop count and ABT of a wide
range of DPillar sizes and switch radices. This information, together with cost
and power estimates – which are outside of the scope of this paper – can be
used to decide the best configuration of the datacentre. Note that the best may
have different meanings in different contexts and, indeed, may possibly lead to
a Pareto front in some cases.
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Fig. 6. Diameter and average hop count of proposed and canonical routing algorithms

Fig. 7. ABT and load distribution of proposed and canonical routing algorithms

We next compare the performance of our proposed routing algorithms in
the (64,3) DPillar DCN comprising 98304 servers and 3072 switches. Figure 6
shows the maximum and average hop count and compares them with the results
obtained from BFS which is used to find the shortest path between any source
and destination. We can see that adding randomness to the canonical algorithms
(RND SP and RND MP) does not make any change in diameter and average
hop count. However, choosing shorter direction (SHD SP and SHD MP) results
in lower diameter and average hop count, as we expected. These figures also show
that the turn back feature can help to reduce both maximum and average hop
count. Having compared the average hop count with diameter in each routing
algorithm, we can infer that the hop count histogram in DPillar networks follows
a skewed distribution with the tail on the left-hand side.
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The above figures show a clear improvement (∼ 5% − 10%) in terms of hop
counts over the routing algorithms DPillarSP and DPillarMP. Figure 7 shows
that when it comes to the aggregate bottleneck throughput the improvement is
much more substantial (∼2x). In the context of datacentres, whose performance
is bandwidth limited, this can translate into a huge impact.

Our experimental results also show that in the algorithms DPillarSP and
DPillarMP half of the channels are never used and the other half have exactly
the same load which means that the traffic is perfectly distributed over these
channels. The experimental results also reveal that in our proposed routing algo-
rithms all channels have a very similar load that is very close to maximum load,
which demonstrates very good load balancing properties.

We have seen above that the single-path routing family (DPillarSP, RND SP,
and SHD SP with and without turn back) can sustain a better performance than
multi-path routing family (DPillarMP, RND MP, and SHD MP with and with-
out turn back) in terms of scalability. However, in the context of large-scale
data centres, better performance may not necessarily be sufficient if it is not
accompanied by a high resistance to failures. The rationale for this is that when
scaling up to hundreds of thousands of servers, failures are common with the
mean-time between failures being as short as hours or even minutes. In other
words, failures are ubiquitous and so the DCN should be able to deal with
them and remain competitively operational. Any network whose performance
degrades rapidly with the number of failures is unacceptable, even if it does
provide the best performance in a fault-free environment. Figure 8 shows how
the (64,3) DPillar DCN is affected by link failures in the terms of connectivity.
Looking at the obtained result from BFS, we can see that DPillar network offers
a rich connection between servers. However, the routing algorithms DPillarSP
and DPillarMP are not able to exploit this richness and in fact have a very poor
resilience to failures. For a 20 % failure rate, less than 20 % of the system remains
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connected. This goes up to a still disappointing 64 % with DPillarMP. Our pro-
posed MP algorithms keep a 87 % connectivity, much closer to the optimal value
(96 %).

6 Conclusion

The DPillar DCN has attracted considerable attention as a server-centric DCN
because of its nice theoretical properties (short distances, symmetry, path diver-
sity). However, the originally proposed routing algorithms, DPillarSP and DPil-
larMP, have some limitations that prevent them from exploiting these properties
and, hence, suffer from poor performance and resilience to failures. In this paper,
we propose a collection of algorithms based on the two original ones. A detailed
evaluation shows that the proposed algorithms can reduce the average hop count
and increase the aggregate bottleneck throughput by more than two times, while
keeping a balanced utilisation of network resources and degrading much more
gracefully with network failures. Another contribution of this paper is that we
derived the average hop count and ABT for DPillarSP, so it would enable a
quick exploration of the design space. We provide a case study to illustrate
the proposed methodology. Our next objective is to carry out timing analysis
in DPillar networks and to develop an analytical model and validate it under
different workload conditions.
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Abstract. Hadoop/MapReduce has emerged as a de facto programming
framework to explore cloud-computing resources. Hadoop has many configu-
ration parameters, some of which are crucial to the performance of MapReduce
jobs. In practice, these parameters are usually set to default or inappropriate
values. This severely limits system performance (e.g., execution time). There-
fore, it is essential but also challenging to investigate how to automatically tune
these parameters to optimize MapReduce job performance. In this paper, we
propose an automatic MapReduce configuration optimization framework named
as MR-COF. By monitoring and analyzing the runtime behavior, the framework
adopts a cost-based performance prediction model that predicts the MapReduce
job performance. In addition, we design a genetic search algorithm which
iteratively tunes parameters in order to find out the best one. Testbed-based
experimental results show that the average MapReduce job performance is
increased by 35 % with MR-COF compared to the default configuration.

Keywords: Mapreduce � Massive data processing � Parameter configuration �
Performance optimization � Search algorithm

1 Introduction

In recent years, massive data processing applications (e.g., web indexing and searching;
enterprise and scientific data processing) have become increasingly more and more
popular. Traditional parallel programming techniques are constrained by their devel-
opment complexity, scalability, and flexibility; therefore, they cannot meet the growing
requirements of large-scale data processing. To explore bulk cloud computing
resources, the MapReduce programming model [1] emerges as a promising technology
to deal with big data processing. Hadoop [2] is an open source implementation of
MapReduce characterized by its programming simplicity, scalability, and fault toler-
ance. Consequently, it has been widely studied in academia and business communities.
However, some recent studies show that Hadoop/MapReduce suffers some perfor-
mance and cost-effectiveness problems, especially when a job occupies intensive
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hardware resources. For example, Pavlo et al. [3] showed that MapReduce program is
2–30 times slower than a parallel database program with the same function in the same
medium-scale cluster environment.

Obviously, the values of configuration parameters in Hadoop settings have sig-
nificant influence or even are crucial to job performance and system efficiency.
Therefore, it is important to know how to adjust these parameters so as to improve the
MapReduce job performance [4, 5]. For example, consider the configuration parameter
mapred.tasktracker.map.tasks.maximum, which is used to control the number of map
tasks within each task node. Setting the parameter to a smaller value can result in lower
CPU utilization, while a larger value may lead to resource competition and job per-
formance degradation. Hadoop administrators and users normally use default parameter
settings or manually adjust the values of few parameters based on their experiences.
However, there is no one-size-fits-all solution. The default settings are generally not the
best for most MapReduce jobs, and manual adjustment tends to be inefficient or even
error-prone. To tackle this issue, pioneering researchers and engineers have carried out
some preliminary research on automatic optimization of Hadoop parameters based on
different aspects. For example, Babu et al. [6] proposed a system-level code
rewrite-based approach to automatically adjust Hadoop settings by adding a functional
module. However, this approach has two main disadvantages. First, some parameters
are subject to the application characteristics and to available resources in Hadoop;
therefore, the lack of an accurate cost model makes it hard to achieve optimized results
at the system level. Second, the underlying system code modification is complex,
making it difficult to effectively manage and maintain.

Furthermore, parameter tuning in Hadoop is time consuming because a large
number of configuration parameters (over 100) must be configured. To solve this
problem, in this paper, we present a genetic MapReduce Configuration Optimization
Framework (MR-COF) for massive data processing applications. MR-COF adopts a
dynamic monitoring mechanism to profile the runtime behaviors of MapReduce jobs.
In addition, a cost-based performance prediction model is developed and incorporated.
MR-COF provides the ability to constantly adjust parameters through a heuristic search
strategy to enhance MapReduce job performance in Hadoop.

The rest of this paper is organized as follows. Section 2 discusses works related to
MapReduce performance optimization. The system architecture and key mechanisms
of MR-COF for MapReduce parameter optimization are presented in Sect. 3. Section 4
describes the experimental environment and presents the performance evaluation.
Finally, we conclude this work in Sect. 5.

2 Related Works

Because the basic implementation of MapReduce model has many deficiencies,
researchers have conducted many optimization studies from different perspectives to
improve MapReduce job performance. In this section, we summary some recent work
on MapReduce optimization from three different aspects, i.e., usability optimization,
process optimization and parameter configuration optimization.
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MapReduce Usability Optimization: A number of techniques have been proposed to
provide support for SQL semantics to enhance the usability of MapReduce program-
ming [7–10]. PigLatin [7], designed by Yahoo, is a dataflow programming language on
top of MapReduce and uses advanced declarative query SQL concepts to provide data
manipulation primitives, such as projection and connection. Sawzall [8] is a scripting
language used for Google MapReduce applications. Sawzall provides an output
primitive emit, which transmits data to an external aggregator (e.g., Sum, Average).
Hive [9, 10] is an open source data warehousing solution developed by Facebook. Hive
supports a SQL subset and provides complex types (e.g., maps, lists). In addition, Hive
provides HiveQL, a declarative query language. Therefore, queries written in HiveQL
can be compiled into MapReduce jobs and then run in Hadoop environments.

MapReduce Process Optimization: The basic MapReduce framework mandatorily
writes the output data of each map and reduce task to a local file. The next phase of
MapReduce tasks need to read data from disk. Such process may cause performance
degradation in the plurality of consecutive MapReduce jobs. The performance opti-
mization of the MapReduce process itself has gained attention in research community
[11, 12]. Yang et al. [11] proposed a Map-Reduce-Merge model, which introduces a
Merge phase to MapReduce that can efficiently merge partitioned and sorted data from
two different reducer outputs into one. The Map-Join-Reduce [12] system improves
and extends the MapReduce runtime framework by adding a Join phase to support the
implementation of complex data analyses on a large cluster and to avoid frequent
checkpoints and the exchange of intermediate results.

MapReduce Parameter Configuration Optimization: It has been shown that
MapReduce parameter configuration optimization is time consuming because the
parameter space can go up to 100 [13]. Moreover, different parameters have different
effects on the performance of massive data processing applications. Some of them are
even interdependent. In recent years, a number of studies have concentrate on opti-
mizing MapReduce configuration parameters.

From the perspective of Hadoop job performance predication, a variety of per-
formance models have been proposed. For example, Shi et al. [14] proposed MRTuner,
a MapReduce job overall optimization tool that uses a Production–Transmission–
Consumption Model to analyze the parallel execution of MapReduce tasks. MRON-
LINE [15] is an on line tuning system that provides the fine-grained control of Hadoop
configuration parameters and supports different settings for different tasks. A regres-
sion-based model is proposed in [16]. This model can predict the performance of
massive data processing jobs running on large-scale Hadoop clusters through data
sampling and job execution within a small number of nodes. Zhang et al. [17] proposed
a MapReduce job performance model based on automatic resource allocation and
deduction. The model is applicable to estimate completion time using varied input data
and cluster resources. Yigibasi et al. [18] studied a Support Vector Regression
(SVR) model used to automatically tune Hadoop cluster configuration parameters. In
[19], the time cost model of a MapReduce job is represented as the weighted linear
combination of a set of non-linear functions.

In terms of the search schema to find optimal Hadoop configuration parameters,
many parameter optimization search strategies in the Hadoop cloud have been studied.
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Gunther [20] is a search-based automatic tuning tool using a heuristic algorithm to
identify optimal Hadoop configuration parameters. Herodotou et al. [21] proposed
Starfish, a cost-based self-tuning system that uses a subspace random search method to
find the approximate optimal parameter configurations through enumeration.

Different methods can also be used with regard to resource usage statistics for
Hadoop jobs. To achieve the goal of maximizing the MapReduce job performance
while minimizing cost, a statistical signature generation model is proposed in [22],
aiming to optimize MapReduce job resource provision in the cloud. The optimization
method includes two components. First, a RS (Resource Set) Maximizer is responsible
for calculating optimal configuration parameters to fully utilize the resources. Second, a
RS Sizer is designed to determine the set of resources required to maintain the balance
between costs and performance. This method improves the provision capability of
Hadoop jobs by counting the resource consumption of jobs. Wang et al. [23] proposed
MRPerf, a simulator to capture setup information such as node, storage capacity,
network topology configuration, data layout, and the application’s I/O characteristics.
This information is used to predict application performance and improve the envi-
ronment settings in MapReduce. Verma et al. [24] proposed SimMR, another simu-
lation environment for MapReduce clusters that comprises three components: a trace
generator, a simulator, and a scheduling policy.

3 Design of MR-COF

3.1 System Overview

The overall architecture of MR-COF is shown in Fig. 1. MR-COF is an automatic
optimizer based on performance prediction to tune MapReduce configuration param-
eters. The design of MR-COF mainly consists of three parts: the runtime monitoring
and analysis module (MAM), the performance prediction module (PPM) and the
configuration parameter optimization module (POM). MAM is used to monitor and
statistically analyze the running information of a MapReduce job and then write to a
profile. PPM is responsible for predicting job performance based on the current con-
figuration parameters according to the MAM output file. In accordance with the esti-
mated job completion time, POM is then applied to adjust configuration parameters
based on a genetic search algorithm.

The working process of the MR-COF system is as follows. First, the client submits
a MapReduce job to the Hadoop environment through the command interface. The
Hadoop Distributed File System (HDFS) is used to persistently store programs, input
and output data, and configuration files. Second, MR-COF starts MAM and transmits
the output information to PPM to estimate the job completion time. Third, POM
iteratively searches for better configuration parameters until the termination condition is
satisfied, and the result is sent back to the client, allowing the client to rerun the
MapReduce job with the optimized configuration parameters.
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3.2 MapReduce Monitoring and Analysis

In MR-COF, the MAM module is used to monitor and statistically analyze data flow
information and the execution time of map or reduce tasks during a job running. The
data flow information consists of the size of the data bytes generated by each pro-
cessing phase during the execution of a MapReduce job. For example, an intermediate
result created by a map task may flow to a reduce task as input data. The execution time
information includes all the time cost in each phase of the map or the reduce task
during the execution of a MapReduce job. The statistical operation mainly counts the
aggregation or average value of the data flow or the execution time information.

The MAM module integrates Btrace [25], a dynamic monitoring tool, to support the
collection of statistical information in the map or reduce tasks on each work node. At the
same time, MAM allows to generate an approximate monitoring and analysis profile
based on the feedback, regarding the monitoring information through the online con-
trolling of the Btrace proxy switch on each work node and MapReduce task sampling.
Afterwards, the master node can predict the MapReduce job performance and search for
optimized configuration parameters. Details of the performance model and parameter
configuration optimization algorithm will be described in Sects. 3.3 and 3.4.

The MAM process flow can be divided into five steps. (1) The Btrace script
monitoring code is inserted into the MapReduce program in the master node.

MR-COF

Client
Job1 (MapReduce

program)

Hadoop

MapReduce HDFS

MAM (the runtime 
Monitoring and Analysis 

module)

 PPM (the Performance 
Prediction Module)

POM (the configuration 
Parameter Optimization 

Module)

Optimized 
Configration

Jobn (MapReduce
program)

…

Fig. 1. MR-COF system architecture
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(2) The modified MapReduce program is distributed to each work node for processing.
(3) The job begins to execute map tasks. The MR-COF MAM module dynamically
monitors and collects the data flow information and execution time of each phase of
map tasks and then aggregates that information. (4) The job begins to execute reduce
tasks, and similarly the MAM module monitors, collects, and aggregates all the
information in each reduce task. (5) All the monitoring information is written to a
profile and finally merged to generate MapReduce job monitoring and analysis files.

Using dynamic monitoring reduce tasks as an example, we describe how the MAM
module inserts Btrace monitoring functions at the point when a job or task state
changes (e.g., reduce task start time and end time). The process can be divided into four
steps. (1) The map output intermediate data must be copied before performing the
reduce tasks. Therefore, the reduceTask_shuffle monitoring point should be inserted
prior to the reduceCopier() method. (2) The merge and sort operations are launched as
soon as the full input data is fetched. Thus, the reduceTask_merge monitoring point
should be inserted after the copyPhase.complete() method in the ReduceTask class.
(3) Subsequently, the system executes the reduce.run () method after completing the
sort operation, so the reduceTask_reducer monitoring point should be inserted next to
the sortPhase.complete() method. (4) Finally, the output results are written back to the
underlying distributed file system. Therefore, the reduceTask_writeDFS monitoring
point should be inserted before the mapreduce.RecordWriter() method.

3.3 Cost-Based Performance Prediction Model

In this section, we present the cost-based performance model used to estimate the
execution time of a MapReduce job. First, we describe the basic parameters of the
performance model (Table 1).

The basic parameters can be classified into three types, i.e., input and output (I/O)
parameters, cluster configuration parameters and program parameters. The I/O param-
eters consist of inputBytes, mapOutputBytes, combineOutputBytes, and outputBytes.
The cluster configuration parameters include numNodes and chunkBytes. The program
parameters contain numReducers.

Table 1. Performance model parameters

Parameter Name Description

inputBytes The number of bytes in the job input data
mapOutputBytes The number of bytes in all map task output data
combineOutputBytes The total number of bytes of all map task output data after applying

the Combine function. If not applied, the number is equal to
mapOutputBytes.

outputBytes The number of bytes in the job output data
numNodes The number of nodes in the Hadoop environment
chunkBytes The number of bytes in a data chunk
numReducers The number of reduce tasks actually executed
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Next, we explain the time cost of each phase of a MapReduce job and define some
terms used to deduce the cost-based performance model.

Startup Time: The startup time is denoted as Tstartup and is related to CPU time, the
disk and network I/O time for job execution, depending on the computing environment.
For example, consider a user who submits a MapReduce job. First, it causes job startup
cost TjobStartup. Following the initialization of the job, the task allocation process is
started and incurs task startup cost TtaskStartup. In general, the data scale of massive
data-processing applications is far larger than a piece of chunkBytes; therefore, the
startup time is usually negligible because the processing time is dominant.

Job Processing Time: The processing overhead of the map phase and the reduce
phase constitutes the job processing time. The processing overhead of the map phase is
denoted as Tmap. It can be divided into five parts: TreadDFS, TMapper, Tsort, Tcombiner, and
Tspill, referring to the overhead of reading a byte from HDFS, the overhead of executing
the Mapper function on the byte that was just read, the overhead of sorting a byte, the
overhead of executing the Combiner function on a byte, the overhead of spilling a byte
to the local file system, respectively. The processing overhead of the reduce phase is
denoted as Treduce. It consists of four parts: Tshuffle, Tmerge, TReducer, and TwriteDFS,
referring to the overhead of reading a byte that is transmitted through the network from
the intermediate results generated by the Mapper function, the overhead of sorting and
merging a byte from the previous step, the overhead of executing the Reducer function
on a byte, the overhead of writing a byte of the resulting data to HDFS, respectively.

T ¼ TjobStartup þ TtaskStartup �
inputBytes
chunkBytes þ numReudcers

numNodes

þðTreadDFS þ TMapperÞ � inputBytesnumNodes

ðTsort þ TcombinerÞ � mapOutputBytesnumNodes

Tspill � combineOutputBytesnumNodes

þðTsuffle þ Tmerge þ TReducerÞ � mapOutputBytesnumReducers

þ TwriteDFS � outputBytes
numReducers

ð1Þ

The performance prediction of a MapReduce job can be represented as the total
time predicted from the job’s beginning to when the job processing is complete.
According to the above analysis, the execution time of a MapReduce job includes
TjobStartup, TtaskStartup, Tmap, and Treduce. Therefore, we propose a cost-based MapRe-
duce performance prediction model, as shown in Eq. (1).

In Eq. (1), different parameters imply different costs. TjobStartup and TtaskStartup
involve the CPU, disk, and network costs. TMapper, Tsort, Tcombiner, Tmerge, and TReducer
mainly refer to the CPU cost. Tspill and TwriteDFS are primarily about the disk I/O cost.
Finally, Tshuffle covers the network I/O cost.
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We use MRPerf [23], a lightweight Hadoop simulator, to support the establishment
of a discrete-time simulating MapReduce job execution model. The structure of the
performance prediction module is shown in Fig. 2. The execution flow for job per-
formance prediction is as follows. First, a MapReduce job is given with a fixed input
data size and uses the default parameter configuration. Then, the PPM actually executes
the job using sampling technology to gain statistical information about the time cost of
each task processing phase by monitoring and analyzing the MapReduce job. Second,
the PPM can be established using the previous statistical information. Third, the virtual
job profile of the same MapReduce job with a modified parameter configuration can be
deduced through the combination of PPM and the MRPerf simulator. Finally, the time
cost of the MapReduce job with the altered configuration is calculated.

3.4 Automatic Parameter Configuration Optimization Algorithm

In this section, we first provide the formal definition for parameter configuration set,
MapReduce job, and optimization objective. Then, we propose an automatic parameter
optimization algorithm implemented in POM.

Definition 1. Suppose that S is the parameter configuration set, which is composed of
pairs of parameter names and attribute values. The value range of each attribute value

can be expressed as a one-dimensional vector S½i��!
, where the length represents the

number of possible values for the i-th parameter.

Definition 2. A MapReduce job J can be seen as a quad-tuple related to MapReduce
program p, the data d to be processed, the resource set R in the running environment,
and the specified system parameter configuration set S, i.e., J = < p, d, R, S >. In this
paper, we assume that the data is sampled in fixed size and the resource in the job’s
running environment is unchanged. Therefore, d and R can both be viewed as constant.

Job Profile
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Cost Statistics of 
each Task 

Processing Phase 

Optimizing Job 
Configuration File

PPM(the Performance 
Prediction Module)

Cost-based
Performance 

Model

MRPerf
Simulator

Virtual Job 
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Fig. 2. The PPM structure
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Definition 3. For a certain MapReduce program p, we aim to find a parameter con-
figuration set Si, according to the special search schema and restriction condition so that
the job execution time T is approximately shortest. The optimized configuration set is
expressed as Sopt, i.e.,

Sopt ¼ argmin Tp
si2C

where C is the value space of the parameter configuration set.
Our optimization objective is to find an optimized parameter configuration from the

finite vector space of parameter values so that the performance of the MapReduce job is
approximately optimal. Genetic algorithm (GA) is a heuristic global search algorithm
that simulates the process of biological evolution. Depending on the proper fitness
function, GA can effectively avoid falling into the local optimum. Therefore, GA is
widely used in combinatorial optimization problems [26]. In our MR-COF system, a
search algorithm to optimize MapReduce job parameter configurations is proposed
based on GA and is integrated into the POM. The algorithm is shown in Fig. 3.

The evaluation function of an individual in the population, fitness(Ci), is defined as
1=JobCompletionTimei, and the distance() function is used to calculate the difference
between the average fitness of the current population and the average fitness of the
previous generation population. Empirically, we set T = 20 and μ = 0.05. The algorithm
is terminated until the converge condition is satisfied. Due to the quick sort method is
applied to sort the n individuals according to the fitness values during each while loop,
so the time complexity of the quick sort equals to OðN � logNÞ. As T is the number of
loops, the overall time complexity of the parameter configuration optimization algo-
rithm is OðN � T* logNÞ.

Fig. 3. Parameter configuration-optimization algorithm
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4 Performance Evaluation

4.1 Experimental Environment

The experiments are run in an in-house cloud environment comprising eight homo-
geneous machine nodes. One node is treated as the master node and is used to deploy
NameNode and JobTracker. The other seven nodes are slavers to deploy DataNode and
TaskTracker. Each node has the same software and hardware settings as follows.

Hardware Settings: The CPU is a 2 × Intel 2.26GHZ Xeon E5520 with four cores and
an 8 MB L3 cache. The memory is 16 GB DDR 3 with a 1066 MHZ FSB frequency.
The SAS disk has a 146 GB capacity. Finally, each node is equipped with 2 × 1000 M
Ethernet cards.

Software Setting: The software installation includes RHEL 5.1 OS (kernel version
2.6.18-128.e15), Java (version 1.6.0_18), and Hadoop (version 0.20.2).

Selected Parameters: The selected lists of parameters tuned through the MR-COF
optimizer are shown in Table 2. The other parameters are set by default.

4.2 Accuracy of Performance Prediction Model

To evaluate the prediction accuracy of MR-COF, we use the default configuration to
compare the actual execution time and the MR-COF’s predicted time for three different
MapReduce jobs by varying the size of the input data. We run the experiments three
times and record the average time. The results for Sort, WordCount, and Grep jobs with
1 GB, 5 GB, and 10 GB of input data are shown in Fig. 4. In general, the relative
differences between the predicted time and the actual execution time range from 6 % to
13 %, indicating that the accuracy is within an acceptable range.

Figure 5 compares the actual and predicted execution time for the Map and Reduce
breakdown phases respectively, using a WordCount MapReduce job with 1 GB of data
as an example. As seen in Fig. 5(a), the predicted time is fairly close to the actual

Table 2. Descriptions of the 10 selected parameters

Configuration Parameters Default Value Range: Step

dfs.block.size 64 MB [64, 512]: 64
mapred.reduce.tasks 1 [5, 50]: 5
mapred.tasktracker.map.tasks.maximum 2 [2, 10]: 2
mapred.tasktracker.reduce.tasks.maximum 2 [2, 10]: 2
io.sort.factor 10 [10, 100]: 10
io.sort.mb 100 [100, 300]: 50
io.sort.record.percent 0.05 [0.05,0.15]:0.02
io.sort.spill.percent 0.8 [0.2, 0.8]: 0.1
mapred.job.shuffle.input.buffer.percent 0.7 [0.7, 0.8]: 0.01
mapred.job.shuffle.merge.percent 0.66 [0.66, 0.8]:0.01
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execution time in each Map breakdown phase except for the predicted time in the Spill
operation, which is significantly different from the actual time. The main reason for this
is that our cost-based MapReduce performance prediction model does not consider the
actual disk I/O overhead. In Fig. 5(b), we also can observe that the difference between
the predicted and actual execution time for the Reduce phases is negligible.

4.3 Performance of Configuration Parameter Optimization

To verify MR-COF’s enhanced effect on job performance, we compare the execution
time of Sort, WordCount, and Grep jobs using the default configuration and the
optimized configuration. For example, with 10 GB of input data, the time spent on a
Sort job with the optimized configuration decreases 41 %, compared to the time spent
on a job with the default configuration (Fig. 6).

Table 3 shows the optimized parameter configuration results for three different jobs
with 1 GB of input data. It is noted that, the configurations are found through the
proposed heuristic algorithm in Sect. 3.4. We can observe that the optimized parameter

(a) Sort                   (b) WordCount                       (c) Grep

0
200
400
600
800

1000
1200
1400

1 5 10

E
xe

cu
ti

on
 T

im
e 

of
 S

or
t 

(s
ec

) 

Input Data Size (GB)

Actual
Predicted

0

200

400

600

800

1000

1 5 10

E
xe

cu
ti

on
 T

im
e 

of
 

W
or

dC
ou

nt
 (s

ec
)  

   
  

Input Data Size (GB)

Actual
Predicted

0

200

400

600

800

1000

1200

1 5 10E
xe

cu
ti

on
 T

im
e 

of
 G

re
p

 
(s

ec
) 

Input Data Size (GB)

Actual
Predicted

Fig. 4. Total execution times for three jobs from the actual run and as predicted by MR-COF

(a) Map                                      (b) Reduce 

0

5

10

15

20

25

30

35

40

45

50

Actual Predicted

M
ap

 P
ha

se
 E

xe
cu

ti
on

 T
im

e 
(s

ec
)

Spill

Combine

Sort

Mapper

readDFS

0

20

40

60

80

100

120

140

160

180

Actual Predicted

R
ed

uc
e 

P
ha

se
 E

xe
cu

ti
on

 T
im

e 
(s

ec
)

writeDFS

Reducer

Merge

Shuffle

Fig. 5. Map phase and Reduce phase execution time breakdown for a 1 GB WordCount
MapReduce job from the actual run and as predicted by MR-COF

354 C. Liu et al.



values for Grep are different from those of Sort and WordCount. The reason behind
such fact is that Grep is CPU intensive, while Sort and WordCount are data intensive.
For example, Sort and WordCount handle more sorting operations in memory than
Grep. Therefore, Sort and WordCount set larger values for parameters related sort
operation (i.e., io.sort.mb and io.sort.record.percent) compared to Grep.

5 Conclusions

In Hadoop, a large number of parameters can affect the performance of MapReduce
jobs. In this paper, we present MR-COF, a genetic MapReduce parameter configuration
optimization framework. The optimization framework includes three main modules:
the runtime monitoring and analysis module, the performance prediction module and
the configuration parameter optimization module. We propose a cost-based job per-
formance prediction model and study a genetic parameter configuration optimization
algorithm. We conduct extensive experiments using three types of massive data
analysis applications: Sort, WordCount, and Grep. The experimental results show that
MR-COF has good prediction accuracy. In addition, the optimized configuration
substantially increases the job execution performance, compared to the default
configuration.
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Table 3. Optimized parameter configuration comparison of Sort, WordCount, and Grep

Configuration Parameters Sort Word-Count Grep

dfs.block.size 256 256 320
mapred.reduce.tasks 15 20 40
mapred.tasktracker.map.tasks.maximum 4 4 8
mapred.tasktracker.reduce.tasks.maximum 4 4 6
io.sort.factor 80 90 30
io.sort.mb 200 250 150
io.sort.record.percent 0.15 0.12 0.06
io.sort.spill.percent 0.8 0.8 0.6
mapred.job.shuffle.input.buffer.percent 0.78 0.75 0.74
mapred.job.shuffle.merge.percent 0.68 0.68 0.66
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Abstract. To achieve reliability in distributed storage systems, fault
tolerance techniques like replication strategy are adopted. As the rapid
growth of data, distributed storage systems have been transitioning repli-
cation strategy to coding strategies like Reed Solomon codes to achieve
higher storage efficiency. But the repair cost of Reed Solomon codes in
terms of network bandwidth is high. For repair efficiency, a new class
of codes called Regenerating Codes are proposed and become more pop-
ular. However, how to quantify and evaluate the repair cost of these
coding strategies at the system level remains unexplored. In this paper,
we propose a metric of the repair cost at the level of whole systems, and
then compare the two main classes of codes Reed Solomon codes and
Regenerating codes. Our goal is to provide system designers with eval-
uation methods of the system level repair cost. Thus, system designers
can choose optimal coding strategies according to their certain systems.

Keywords: Regenerating codes · Reed Solomon codes · Repair cost ·
Fault tolerance · Coding strategies · Distributed storage systems

1 Introduction

The availability and reliability of data are extremely critical to distributed stor-
age systems. Thus, a lot of fault tolerance techniques are applied in distributed
storage systems. Replication and erasure codes are used most widely. When
using the same storage capacity, erasure codes are more reliable than repli-
cation. However, erasure codes require higher repair cost in terms of network
bandwidth resources(data transferred through the network for repairing failed
storage nodes) than replication when storage node failures occurs. To reduce
the repair cost, Dimakis et al. [1] proposed a new class of codes, called Regen-
erating Codes, which offer significantly lower repair cost compared to erasure
codes. Regenerating codes have been proven to achieve optimal repair cost at
the level of repairing a single node. And then many works followed under the
single node level.

To our best knowledge, Jiekak et al. [2] firstly considered the repair cost at
the whole system and obtained some interesting results. However, they focused
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 358–371, 2015.
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on analyzing the impact of parameters of Regenerating codes on the system
repair cost and did not consider the impact of different kinds of codes on the
system repair cost. So their work can not extend to compare and quantify the
repair cost of coding strategies like Regenerating Codes and Reed Solomon codes
from the system perspective. This motivates us to propose a general metric to
evaluate and quantify the repair cost of various kinds of codes in distributed
storage systems at the system level.

In this paper, we make the following contributions:

(1) We are the first to evaluate and quantify the repair cost at the level of whole
system of various kinds of codes in distributed storage systems, to the best
of our knowledge.

(2) We propose a framework of metric of the repair cost at the level of whole
system under two system scenarios. We show that our metric is suitable for
various kinds of codes, not just for Regenerating codes.

(3) We compare Reed Solomon codes with Regenerating codes, and we have
an interesting phenomena: Regenerating codes that are optimal at the node
level do not always be suitable at the system level.

2 Related Work

Many studies [3,4] followed [1] and focused on reducing the repair cost. However,
they just considered the repair cost at the level of node not the system repair
cost. [2] just models the distributed storage system repair events with Poisson
process to analyze the system repair cost, and do not consider the system node
failure case, and the dynamically changing process of the nodes failure and repair.
Ramabhadran and Pasquale [5] developed the Markov chain model to analyze
the reliability of a distributed system that using replication strategy. [6,7] used
the Markov chain model to analyze the reliability of the distributed storage
systems that using coding strategies. But all these studies just discussed the
reliability of the distributed storage system.

3 Background

3.1 Fault Tolerant Coding Techniques in Distributed
Storage Systems

Erasure codes [8] are used most widely in distributed storage systems for fault
tolerance of storage nodes. As to distributed storage system with Reed Solomon
codes (RS), each file is divided into k blocks, which generates n − k coding
blocks. Then the system sends the n data blocks to n different storage nodes.
According to Reed Solomon codes (n, k), we can recover the file if there are any
k available blocks out of n blocks. For repairing one block, the system has to
recover the whole file and then encode the lost block. That is, the system has to
read any k blocks from k nodes and transfer them in the network for repairing
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Fig. 1. Repair methods of replication, Reed Solomon codes (RS) and Regenerating
Codes (RC) and repair cost. For repairing one node size data A, the repair cost of
Reed Solomon codes is 2 size data A and A+B. While repairing one node (block) size
data [A1, A2], the repair cost of Regenerating Codes is 3/2 node size data: B1 + B2 of
1/2 size, A1 +B1 + 2A2 +B2 of 1/2 size, and 2A1 +B1 +A2 +B2 of 1/2 size. We can
see that the repair cost of RC is smaller than that of RS.

just one block, which is showed in Fig. 1(a). Note that the size of node is equal to
the size of one block, so we use block and node interchangeably throughout our
discussion. As to Regenerating codes, there are two kinds of repairing methods.
Figure 1(b) shows the one method called Regeneration. And the other is the same
as the repair method of Reed Solomon codes, which is showed in Fig. 1(a), and
we call this method Reconstruction.

3.2 Quantification of Both Codes at the Single Node Level

Let the original file size be M and each block (node) size be α, where M = kα.

Reconstruction: For repairing one lost block, the system has to reconstruct the
whole file and then encode and store the block into a new node. In other words,
the system has to read any k blocks from k nodes and transfer M = kα size
data in the network to repair only α size data. As discussed above, Reed Solomon
codes apply and have to apply the repair method.

Regeneration: In this method, the system read data from d nodes, and each node
is read β, where β < α, k ≤ d ≤ n − 1. So the repair cost for one node is dβ.

Regenerating codes(n, k, d): parameters n and k are the same as Reed Solomon
codes(n, k), while d is the number of nodes that helps in the repair process,
where k ≤ d ≤ n − 1. Each node has a mount of α fragments data. Let i
denote the number of available nodes in the system. If i ≥ d, Regenerating codes
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apply Regeneration method for repair. If k ≤ i < d , Regenerating codes apply
Reconstruction method for repair. If i < k, the file can not be recovered and the
lost block can not be repair.

Dimakis et al. proved that the repair cost of Regeneration method is lower
than that of Reconstruction, i.e., dβ < kα. So Regenerating codes have the lower
repair cost than Reed Solomon codes at the level of a single node device. Regener-
ating codes proposed the tradeoff between the each node storage capacity α and
the repair cost γ for repairing one node. Minimum-storage regenerating codes
(MSR), which correspond to the best storage cost, and minimum-bandwidth
regenerating codes (MBR), which correspond to the minimum repair cost, are
two extreme cases in the tradeoff. MSR has the same storage cost as Reed
Solomon codes at the same parameters (n, k), while MBR has higher storage cost
than Reed Solomon codes. We only compare MSR with Reed Solomon codes.
In this paper, we focus on analysis of Reed Solomon codes and Regenerating
codes. Note that our results are also suitable to other codes, such as the locally
repairable codes [9].

4 Definition of Metric

4.1 Motivation

Due to software or device failures, the storage node repairs have to be done con-
stantly. So distributed storage systems are in a dynamical process, i.e., leaving
and returning of storage nodes. That means the number of the surviving nodes
changes as time grows. Thus, So it is difficult to derive the optimal repair cost
of the whole system out of the optimal repair cost of the individual node device,
especially under the impact of practical considerations such as network band-
width limits and I/O performance of the system. In particular, a key question
we ask is: can optimal repair cost of single node lead to optimal repair cost of
whole system, i.e. can Regenerating codes be also optimal at the system level?
Therefore, we need to propose a metric and evaluate Regenerating codes.

4.2 System Analysis

It is obvious that the surviving nodes are mainly determined by the repair rate
and the failure rate. Different kinds of codes have different repair cost at the node
level, so different kinds of codes have different failure rate under the same network
bandwidth. So our work is to exactly model the dynamically changing system
and define the metric for the system level repair. Note that network bandwidth
represents network transfer rate, while network bandwidth resources(repair cost)
represents amount of data transferred through the network.

We can see that distributed storage systems with fault tolerance are repairable
systems. If we think a storage node as a repairable device, distributed storage
systems with Reed Solomon codes(n, k) are k-out-of-n repairable systems. As
to repairable systems, there are many schemes and models in reliability(safety)
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engineering [10], such as fault trees, Markov chains, stochastic Petri nets and
so on. Thus, we can use them to model the systems. Here we focus on Markov
chains, and then propose metric of the system level repair cost. Note that others
models (e.g. fault trees) can also be suitable.

First, we discuss Markov chains for k-out-of-n repairable systems. This is
illustrated in Fig. 2. Assume that there are n surviving devices in the systems
at the initiate time. The symbols λ and μ represent failure rates and repair
rates respectively. Each state, represented by a circle, in the chain represents the
number of devices that are surviving in the system at time t. There are n−k+2
states in the chain, n to k − 1, the state n is the initial state and state k − 1
is the failed state. If system is in state k − 1, the system can not be repaired.
As to Markov chains for distributed storage systems, we just need to consider
a storage node as a repairable device. So there are also n − k + 2 states in the
chain, and if system is in state k − 1, the data can not be repaired.

Fig. 2. Markov chains for k-out-of-n repairable systems

According to Markov chains for k-out-of-n repairable systems, we can obtain
the probabilities of each state which the system be in at the time t, which are
functions of the time t. And each state represents the number of surviving nodes
in system. So the repair cost at each state is determinated if the coding scheme is
determinated. Thus, we can take the expectation of repair cost at all repairable
states(except the failed state k − 1) as metric for the system repair cost.

4.3 Formulation

Let probabilities of all repairable states be the vector P (t):

P (t) =

⎡

⎢
⎢
⎢
⎣

pn(t)
pn−1(t)

...
pk(t)

⎤

⎥
⎥
⎥
⎦

(1)

where pj(t) is the probability of the system being in state j at time t, j =
n, n − 1, . . . , k.

As discussed above, the repair cost at each state is constant, if the coding
scheme is determinated. We denote C repair cost in all repairable states: C =[
cn, cn−1, · · · , ck

]
, where cj denotes repair cost in state j, j = n, n − 1, . . . , k.

And cn = 0 (state n is the initial state).
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Definition 1. Define SRCt (the System Level Repair Cost at time t):

SRCt = C · P (t) (2)

And then we give our metric for the repair cost for the system repair cost.

Definition 2. Define the metric as ASRCt (Average System Repair Cost in
time interval [0, t]):

ASRCt =

∫ t

0
C · P (t)dt

t
=

∫ t

0
SRCtdt

t
(3)

As to the metric ASRCt, the vector P (t) is the key. And then we focus on
obtaining P (t). According to Markov model and Chapman-Kolmogorov equation
[11], we need solve a system of n − k + 2 linear differential equations to obtain
P (t).

Lemma 1. Let Q be the equations coefficient matrix.

dP (t)
dt

= Q · P (t) (4)

For Q, different coding schemes have different Q. We will discuss them in the
following section according to specific coding schemes.

Lemma 2. Let the matrix eQ be the matrix exponential. The solution of this
system of Eq. 3 is

P (t) = eQ · P (n) (5)

where P (n) is the initial state, P (n) = [1, 0, . . . , 0]T. Now we propose the metric
ASRCt for the repair cost at the level of whole system. As to C in ASRCt,
different coding schemes have different C. We will discuss them in the following
section according to specific coding schemes.

Flexibility of Our Metric. In fact, our metric is a framework. As we discussed
above, many schemes and models in reliability(safety) engineering [10], such as
fault trees and stochastic Petri nets are all adopted in our metric to obtain Eq. 1.
Thus, it is easy for system designers to use our metric.

5 Analysis of ASRCt

According to Definition 2, we can see that C and P (t) are key to analyze ASRCt.

5.1 Analysis of P (t)

Our metric is based on Markov chains, so the key of analysis is to consider the
transition paths and the transition rates of states in Markov chains.
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Transition Paths. We consider two repair modes of Reed Solomon codes: one-
node-repair mode and all-nodes-repair mode. Figure 3(a) represents one-node-
repair mode and the corresponding transition rates. In one-node-repair mode,
nodes are repaired one by one even facing to many multiple failed nodes. While
Fig. 3(b) shows all node repair mode and the corresponding transition rates. All
failed nodes are repaired at once in all-nodes-repair mode.

Regenerating codes have two kinds of repair: Regeneration and Reconstruc-
tion. Figure 3(c) shows the Markov chain for Regenerating codes. If i ≥ d, there
are enough surviving nodes for Regeneration; if i < d, the system has to apply
Reconstruction method to repair all failed nodes. Note that Regeneration method
of Regenerating codes is just one-node-repair mode, not all-nodes-repair mode.
Cooperative Regenerating Codes [12] introduce all-nodes-repair mode, but we
do not discuss them in this paper.

Fig. 3. One-node-repair mode and all-nodes-repair mode of Reed Solomon codes (RS)
vs. two repair methods of Regenerating codes (RC)

Transition Rates. Failure rates in Markov chains, i.e., transitions to lower
states, are caused by hard disk crashes or system reinstalls and so on. Let μ be
the node failure rate. And let the transition rate μi from state i to state i − 1,
where i = k, k + 1, . . . , n. For the repair rate, let μi denote the transition rate
from state i to state i + 1, where i = k, k + 1, . . . , n − 1.

While the repair rate of Regenerating codes, there are two kinds of rates.
Let μrg be the repair rate of Regeneration method; μrc be the repair rate of
Reconstruction method. Thus, according to Markov model and the Chapman-
Kolmogorov equation, we can obtain a system of linear differential equations
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about P (t). We just show one equation, which represents the Markov chains of
ne-node-repair mode of Reed Solomon codes, which is illustrated in Eq. 6. Others
are alike and are not showed here. For value of transition rates, we will discuss
in Sect. 6.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

p′
n(t)

p′
n−1(t)

p′
n−2(t)

p′
n−3(t)

...
p′
k+2(t)

p′
k+1(t)
p′
k(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−λn μn−1 0 · · · 0
λn −μn−1 − λn−1 μn−2 · · · 0
0 λn−1 −μn−2 − λn−2 · · · 0
0 0 λn−2 · · · 0
...

...
...

. . .
...

0 0 0 · · · μk+1

0 0 0 · · · −μk+1 − λk

0 0 0 · · · λk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

pn(t)
pn−1(t)
pn−2(t)
pn−3(t)

...
pk+2(t)
pk+1(t)
pk(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)

5.2 Discussion of C

Reed Solomon Codes. For Reed Solomon codes, the systems apply Recon-
struction method. So repair cost cj in state j is M, cj = M, where j =
k, k + 1, , n − 1. And cn = 0, the initial state of systems.

Regenerating Codes. For Reconstruction method, that is, k ≤ i < d, ci = M,
where i = d, d + 1, . . . , n − 1; cn = 0.

For Regeneration method, that is, d ≤ i ≤ n − 1, repair cost ci in state j,
ci = Md/k(d − k + 1), where i = k, k + 1, , d − 1.

6 Metric Under Repair Bandwidth Constraints

We introduce the key term repair bandwidth constraints in practical distributed
storage systems, which are ignored in previous works about Regenerating codes
[1]. For practical storage systems (e.g. cloud storage systems), the performance
of reading (fetching) data for users is the most important. It has been shown
that the performance of data retrieving has a large impact on user experience
and service provider revenue [13]. So network bandwidth for this is account for
most, with high priority; while network bandwidth for repair is with low priority.
In other words, when no users ask for reading the data, i.e., the system is idle,
the repair bandwidth is not constrained. When users are reading the data, the
repair bandwidth is under constraint. Under this system scenario, analyze the
impact of repair bandwidth constraints and give the corresponding metric. Here
we consider two main factors: the system busy (reading) degree and the repair
bandwidth constraint degree.

Let the system busy ratio br represent the system busy (reading) degree.
Let the repair bandwidth ratio rr(0 < rr < 1) to reflect the repair bandwidth
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constraint degree. That is, when the system is idle, all nodes have B repair
bandwidth; when system is busy, idle nodes have B repair bandwidth, and busy
nodes have rrB repair bandwidth. Note that not all nodes are participated in
fetching data. This is showed in Fig. 4.

Fig. 4. Repair bandwidth constraints in practical storage system with Reed Solomon
codes (4,3)

Now we give the definition of metric under the repair bandwidth constraints.
First, we analyse two main factors the system busy ratio br and the repair
bandwidth ratio rr in the followings, respectively.

System Busy Ratio br. We apply queueing theory to model the system to
denote the system busy ratio br. Data retrieval (read) is provided through any
k nodes out of n nodes. When read requests arrive, they are first enqueued.
The system then determines how to allocate nodes for each request. We consider
nodes allocation scheme as FCFS, that is to block subsequent read requests until
the head-of-line request is processed. When users request for fetching the original
data, both systems select any i nodes out of i(k ≤ i ≤ n) surviving nodes, and
transfer k blocks simultaneously to users. The system can serve only one request
at any time. This model can be depicted as a one-server queue with arrivals of
data retrieving requests and one server corresponding to any k nodes. Under
this setting, the systems can be modeled as M/M/1 queueing systems. Let read
request arrivals occur at rate λ′, service times have an exponential distribution
with parameter μ′. Set ρ = λ′/μ′. According to queueing theory [14], we obtain:

Pr[system idle] = 1 − ρ

Pr[system busy] = ρ

So the system busy ratio br = ρ = λ′/μ′.

Repair Bandwidth Ratio rr. As to repair bandwidth ratio rr, it is determined
by the situations of conditions of distributed storage systems. System designers
can get the value of repair bandwidth ratio rr by simulation.



Analysis of Repair Cost in Distributed Storage Systems 367

6.1 Definition of Metric Under Repair Bandwidth Constraint

Let ASRCidle
t represents ASRCt if the system is idle, and the repair bandwidth

is not constrained; let ASRCbusy
t represents ASRCt if the system is busy, and

the repair bandwidth is constrained. It is obvious that ASRCidle
t = ASRCt.

And we can see that the repair bandwidth ratio rr determine ASRCbusy
t . For

more specific discussion of ASRCbusy
t will be given in the following section.

Definition 3. Define the metric as ASRCrbc
t under consideration of repair

bandwidth constraints:

ASRCrbc
t = (1 − br)ASRCidle

t + brASRCbusy
t (7)

Analysis of ASRCbusy
t . In order to obtain ASRCbusy

t , we must the repair
bandwidth at every state i(k ≤ i ≤ n) in the Markov model of the system which
is busy. The system is in state i, that is, there are i nodes alive in system. In
other words, there are k busy nodes and i−k idle nodes. Assume that the system
selects idle nodes first for repair, if no idle nodes left, then selects busy nodes.

Repair Bandwidth at Every State for Reed Solomon Codes

– k > i − k, the repair rate at state i is rrB (no matter how select, busy nodes
have to been chose).

– k ≤ i − k, the repair rate at state i is B (we assume that system selects idle
nodes first for repair, there are i − k idle nodes, so system can always select
k idle nodes for repair).

Repair Bandwidth at Every State for Regenerating Codes

– i < d (same as Regenerating Codes, reconstruction operation)
the repair rate at state i is rrB, if k > i − k;
the repair rate at state i is B, if k ≤ i − k.

– i ≥ d (regeneration operation)
the repair rate at state i is rrB, if d > i − k;
the repair rate at state i is B, if d ≤ i − k.

7 Transition Rates

In this section, we analyse failure rates and repair rates in Marov chains.

Failure Rates. We make a conventional assumption that the time between
failures of the node is exponentially distributed and storage nodes are indepen-
dent [8]. This was shown to be valid in certain distributed storage systems (e.g.
PlanetLab). So the transition rate λi from state i to state i − 1 is iλ, where
i = k, k + 1, . . . , n.
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Repair Rates. For repair rates, there are two main schemes to obtain: the
one is the experimental measurements and the other is simulation assumption
[6,8,15]. In [6] show the repair rate mainly depends on the traffic amount and
the network traffic rate. For simplicity, we adopt the scheme in [6]. This scheme
showed that uploading data took almost the entire of the repair time. Let tu

denote uploading time and tr denote repair time. We assume that all storage
nodes have the same uploading network bandwidth. For tr ≈ tu, repair rates μj

in state j is:
μj =

cj
trj

=
cj
tuj

(8)

8 Evaluation

Now, we use NCCloud [6] and CORE [16] prototype to evaluate ASRCt and
ASRCrbc

t of Reed-Solomon codes and Regenerating codes in distributed storage
systems. Our evaluation consists of two parts, with λ = 0.1 pd(perday), network
bandwidth B = 1Mbps, and α = 4Gb : (1) for ASRCt, with n = 4 and k = 2;
(2)for ASRCrbc

t , with n = 5 and k = 3.

8.1 Evaluation of ASRCt

Figure 6(a) shows in the first year ASRCt of both repair modes. Horizontal axis
represents the time t with a unit of per day. Vertical axis represents ASRCt,
and the unit is the proportion of ASRCt to the size of file M. We can see Reed
Solomon codes with all-nodes-repair mode have lower ASRCt than those with
one-node-repair mode.

We compare Regenerating codes (4,2,3) with Reed Solomon codes (4,2),which
is illustrated in Fig. 6(b). To be fair, we just consider Minimum Storage Regen-
erating codes (MSR), because MSR have the same storage efficiency as Reed
Solomon codes. Figure 6(b) shows in the first year ASRCt of Reed Solomon codes
with two repair modes and Regenerating codes (MSR). We can see Regenerat-
ing codes has much smaller ASRCt than all-nodes-repair mode of Regenerating
codes. Under our settings of parameters, Regenerating codes just has 1/3 the
system repair cost of Reed Solomon codes. It reveals that Regenerating codes
have much lower repair cost than Reed Solomon codes not only at the level of
a single node device but also at the level of the whole system. This result is
suitable to the systems without network bandwidth constraint.

8.2 Evaluation of ASRCrbc
t

For ASRCrbc
t , two main factors: the system busy ratio br and the repair band-

width ratio rr, are focused on in this subsection. Here we compare Regenerating
codes (5,2,3) with Reed Solomon codes (5,2) in order to analyse the impact of
br and rr on ASRCrbc

t .
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Discussion of rr. In order to discussion rr, we set br = 1, i.e., system is always
busy. And then we analyse the impact of rr on ASRCrbc

t .
In Fig. 6(a), horizontal axis represents rr. Note that we do not discuss the

situation 0 < rr < 0.2. Because we can not guarantee that the repair rates
are much larger than the failure rates.In other words, the system goes into the
failed state k − 1 with high probability. ASRCrbc

t of both codes decreases as rr
goes up. We can see that rr has a little impact on Reed Solomon codes, while
Regenerating codes are affected a lot. If rr > 0.374, ASRCrbc

t of Regenerat-
ing codes is lower than that of Reed Solomon codes. If c = 1, i.e., the repair
bandwidth is not constrained, ASRCrbc

t of Regenerating codes is much smaller
than that of Reed Solomon codes. We observe an interesting phenomena: at the
opposite of the common intuition, ASRCrbc

t of Reed Solomon codes is lower than
that of Regenerating codes, if 0.2 ≤ rr < 0.374. The explanation can be that the
decrease of repair bandwidth leads to the decrease of probability of the system
in the initial state and the increase of probability of the system in other states.
And there is no need for repairing in the initial state.

As discussed above, Regenerating codes has much smaller ASRCidle
t than

Reed Solomon codes. Then we consider the system busy case ASRCbusy
t . We can

see that ASRCbusy
t of Regenerating codes is smaller than that of Reed Solomon

codes, if rr > 0.374. So ASRCrbc
t of Regenerating codes is always smaller than

that of Reed Solomon codes, when rr > 0.374. We just need to discuss the
impact of br on ASRCrbc

t in the case 0.2 ≤ c < 0.374 (Fig. 5).

Fig. 5. Evaluation of ASRCt of Regenerating codes (RC) and Reed Solomon
codes (RS).

Discussion of br. Here we take c = 0.2 and c = 0.3 for discussion of both codes.
In Fig. 6(b), horizontal axis represents the system with busy ratio br, 0 < br < 1.
We can see that ASRCrbc

t of Reed Solomon codes keeps unchanged, as br varies
from 0 to 1, and is almost equal to each other for c = 0.2, 0.3. While ASRCrbc

t

of Regenerating codes increases as br increases. When br is fixed, ASRCrbc
t of

Regenerating codes (c = 0.2) is larger than that of Regenerating codes (c = 0.3).
When c = 0.2 (or c = 0.3), if 0 < br < 0.418, ASRCrbc

t of Regenerating codes
is smaller than that of Reed Solomon codes. There is another phenomena of
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the opposite common intuition, ASRCrbc
t of Regenerating codes is larger than

that of Reed Solomon codes, if 0.418 ≤ br < 1. We can see that the system
busy ratio br does influence the system repair cost, and Regenerating codes are
affected more greatly. It is revealed that Regenerating codes has much smaller
ASRCrbc

t than Reed Solomon codes in low reading load system, while in high
load system Reed Solomon codes performs smaller ASRCrbc

t , under the same
repair bandwidth constraint. Repair bandwidth constrained is the basic impact
factor, and system busy ratio is the extend impact factor. The latter intensify
the influence of the former for ASRCrbc

t of both codes.

Fig. 6. Evaluation of ASRCrbc
t of Regenerating codes (RC) and Reed Solomon

codes (RS).

9 Conclusion and Future Work

In this paper, we are the first to quantify and evaluate the repair cost at the level
of whole system of various kinds of codes and propose a framework of metric
under two system scenarios. We gave an evaluation of analysis of the effect of
network bandwidth constraints on the system repair cost.

Our analysis reveals that when the repair bandwidth is not constrained,
Regenerating codes have much lower repair cost than erasure codes not only at
the level of a single node device but also at the level of the whole system. So
Regenerating codes are more suitable for the systems in which the data stored are
rarely read, such as the long-term archives storage systems. Under the condition
of repair bandwidth constraint, the repair bandwidth and the system busy degree
are impact factors. As for high busy (reading) load ratio system, Regenerating
codes have higher average system repair cost than erasure codes. Our results can
be applied to many distributed storage systems and our metric is not complex for
system designers to analyze. Therefore, our work is widely applicable, practical
to analyze the system repair cost for distributed storage system.
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Abstract. Multimedia application designers often required to make the
choice of whether storing multimedia objects as files in the file system,
or as BLOBs (Binary Large Objects) in a database, or a combination of
both. Towards small multimedia data, it often suggested to store them
as BLOB data of database. However, previous study indicated that the
efficiency of BLOB based video storage not always suffice. In this paper,
By learning from the issues discovered from our previous performance
evaluation, we proposed an efficient in-database video storage approach
named TIViS (Temporal Interval based Video Storage). When a video
object store into database by TIViS, it will be decomposed into temporal
intervals and each interval will be sequential stored based on its tempo-
ral information. Additionally, in TIViS approach, a specialized buffer
management mechanism is also developed to optimize the data access
of multimedia objects. In our work, we implemented TIViS approach
into the open source database system PostgreSQL 8.4. We conducted
a series of experiments to verify the efficiency of TIViS approach, the
results demonstrate that TIViS based video storage is significantly supe-
rior to traditional database system’s built-in BLOB approach (e.g., Post-
greSQL’s Bytea).

Keywords: Video data storage ·Video data access · Binary large object ·
Database system · Performance evaluation

1 Introduction

1.1 Background

The volume of video data increased rapidly since last decade [14,26]. Video
becomes popular in our everyday life for both professional and consumer appli-
cations, e.g., surveillance, education and entertainment. Such needs require data
management system should provide mechanism to store and access video data
in an efficiency way.
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In video related applications, designers often have the choice of whether stor-
ing multimedia objects as files in the file system, or as BLOBs (Binary Large
Objects [8,28]) in a database, or a combination of both. Generally, this deci-
sion must based on the trade-off among various application specific factors such
as simplicity, manageability and performance. Although some theoretical work
proves that certain storage policies will be superior to another policies in certain
workloads, these analysis is either hard to adopt into real application or it often
behave poorly in practice. Unfortunately, only folklore and specific experiences
available to guide the decision of multimedia storage polices.

Currently, many video applications, e.g., video surveillance, video-on-demand
and online video sharing system are adopting the former one, file system based
video data storage. In this approach, the UNC (Universal Naming Convention)
path of video files or other location description information are stored into a
database-like system. While processing a video data access request, the appli-
cations should get the data file location information from database before per-
forming the corresponding data access operation. This mechanism simplified the
video data management into video data file location information management.
However, there are some disadvantages in adopting the file based video storage
strategy. Firstly, due to content files are outside database, it is hard to coordinate
them with its location information and other metadata in consistency. Secondly,
putting a large number of video thumbnails or content files in a directory of
(distributed) file system will result in inefficiency for responding data request
[9,12]. In fact, it has been a serious bottleneck in YouTube until it was acquired
by Google and employed the distributed file system GFS [15] as the underlying
infrastructure [12]. Thirdly, the development of a distributed file system based
video application, is still harder than database based application. Actually, devel-
oping the GFS-like solution start from scratch, e.g., General Parallel File System
(a.k.a. GPFS [24]), or deploying an application system that store and manage a
large-scale video data underlying similar open source system, such as Hadoop,
it’s still not a easy task.

Another video storage solution is store video data in the BLOB field of the
database [18–20,23]. Previous experiences have showed that, through utilizing
its built-in data management functionality and the well provided development
interface in DBMS, it is easy to build a large-scale application and achieve better
performance [11,21,27]. Unfortunately, the folklore tells us that DBMS was only
efficiently in handle small objects. But which size means “small” and where is the
break-even point for accessing an object as BLOB in database will be cheaper
than accessing an object as a file, is remain unanswered and need further study.

For the video related web application, e.g. YouTube, the largest video clips
sharing web site, most of the uploaded clips are small and last 30 s to 2.5 min
[2], the size of its temporal interval (key frame) is around 25 KB per second in
standard resolution. In some others video applications, such as content based
video retrieval system, video surveillance system and VoD system, the small
video objects is also required. In content based video retrieval, the large video
files are segmented into shots as the basic content unit for retrieval, and each
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shot is often less than 30 s [22]. Towards (intelligent) video surveillance system,
since the video event is often to be a short video clips as in content based video
retrieval system, the archived event videos also can be consider as small video
objects. In VoD system, for the purpose of balancing throughput, robustness
and convenient for scheduling, the video content is desired to divide into as
many pieces as possible, and often take the smallest viewable unit as the basic
storage unit [13,16]. For instance, recent research [16] indicate that, PPLive.com,
one of the largest VoD system in China, its MPEG-1 based VoD system, using
the 16 KB size as the basic viewable segment when the bandwidth is less than
1.4 Mbps. Towards above types of applications, storing the small objects into
database has a high possibility to become a valid approach.

1.2 Motivations: The Issues We Learned from Our Previous
Performance Evaluation

For both file system and database based video strategies, give a specific temporal
information (timestamp), whether it is able to provide temporal interval (key
frame) based video content access is important. Towards applications like video-
on-demand and online video sharing, just return the required specific video clips
to save the bandwidths is significant to both the customers and applications
owners [7]. If a video content access approach is capable to access any part of
video object directly without sequential scan and buffering, it not only decreased
the respond time of the request, but also saved the bandwidth because it avoided
the unnecessary data transfer and buffering.

Towards traditional relational database system, although there are some
study indicate that the efficiency of BLOB based video storage not always suf-
fice, there are still existed some folklore suggest system designer to store “small”
multimedia data as BLOB data in the database. However, there still exist cer-
tain questions need to know before choose a database as multimedia storage
platform: (1) Which size means “small” and where is the break-even point for
accessing an object as BLOB in database will be cheaper than accessing an
object as a file? This question is remain unanswered and need further study; (2)
How to obtain the long-term performance impacts of a certain storage policies?
Currently, most storage benchmarks focus on short-term behavior, few of people
know how to evaluate the long-term performance of certain storage policies, this
technical issues is important for choose a multimedia storage strategy.

Motivated by above questions, in our previous study [17], we conduct a com-
prehensive performance evaluation of BLOB in two popular database, one com-
mercial database system (anonymized as CDB system) and one open source
database system (PostgreSQL, noted it as PG for short). In our evaluation,
we investigate the break-even point in DBMS for storing the video objects, we
found that store video objects into database could be a preferred solution in some
circumstance, and hence is necessary to develop more efficiently database based
video content access approach. Furthermore, by evaluating long-term read/write
performance, we discovered that different DBMS will vary greatly in break-even
point. We also explored certain buffer parameters that usually have important
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effects on relational data access, however the results revealed that they have few
impacts to the throughput of video objects, thus we need new buffer management
approach for BLOB based data access.

By learning from the experimental study, we awared the following two prob-
lems: (1) in ceratin scenarios, store “small” multimedia objects in database can
obtain optimal query performance as well as the better manageability, but its
performance still need further improvement to meet the requirement of applica-
tions; (2) in current DBMS, the size of shared database buffer often have little
impact in video data read/write performance, and the buffer management mech-
anism seems didn’t work properly for BLOB data, although it often played an
important role in relational data throughput.

To solve above two problems, we propose an efficient in-database video stor-
age approach named TIViS (Time Interval based Video Storage) and imple-
mented in PostgreSQL database system, which enable us to access any part
of video object directly without sequential scan and buffering, thus the service
response time decreased. When a video file store into database by TIViS, it will
be decomposed into temporal intervals (key frames) and each interval will be
sequential stored based on its temporal information (timestamp). Furthermore,
by learning from the performance evaluation and look around the source code
of PostgreSQL, we found there is no specialized buffer management mechanism
for binary large objects, thus we designed and implemented a specialized buffer
management strategy into PostgreSQL to optimize video data access for obtain
a better performance.

1.3 Contributions

In this paper, our works were focused on design and implement an efficient
in-database video storage approach by learning from the issues discovered in
our previous extensive preformation evaluation of BLOB mechanism [17]. Our
contributions were summarized as follows:

We devised a temporal interval based video content access approach for the
videos stored in BLOB column of database. It provides a transparent way to
wrapper the required content to the end user instead of sending the whole video
file from beginning. Our experiments showed that, because the extracted tem-
poral information enable us store video data in database in a more efficient way,
and we design and implemented a specialized buffer management strategy into
PostgreSQL database system to facilitate the in-database video data access.

The remainder of this paper is organized as follows: Sect. 2 present a brief
description of the related work. Section 3 presents our database based in-database
video content storage and access approach, the specialized buffer management
mechanism also described in this section. The reports of experiments in Sect. 4.
Section 5 concludes the paper.
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2 Related Work

Data Storage: GFS [15] and its open source implementation HDFS is a distrib-
uted file system designed for terabyte volume archive, and GFS was the underly-
ing infrastructure of YouTube. Benefit from its fault tolerant features and other
advantages, YouTube obtained highly scalability. Tawards the modern DBMSs,
all of them are adopt the EXODUS [8,28] design for efficient insertion or deletion
toward a large object by a B-Tree based storage. Besides file system and BLOB
[18–20,23] based storage, there is another hybrid solution named Data Links [5]
which was adopted in DB2 database system. It stores BLOB data in the file
system, and uses the database to coordinate the BLOB file and its metadata
with a transactional semantic consistence.

Storage Performance Evaluation: There are little work concerned with video
storage evaluation. SPC-2 [10] is a benchmark paid attentions to read-only on-
demand access to video files. The performance study in [10] is measured in the
view of long-run and fragmentation analysis. Similarly, the works in [25] stud-
ied the large object repository on file system and database under long-run, the
fragmentation issues also were considered, furthermore, it verified the viewpoint
indicated by [6] that insertions and deletions within an object can lead to frag-
mentation.

Video Content Access Approach: At present, most of the video content
access approaches are developed in an application-oriented case by case way and
underlying a file system based data storage. In the modern database system,
some commercial DBMS products provided limited functionality to support the
video content access, such as Oracle Multimedia [4], Oracle DICOM [3] and DB2
Video Extender [1]. But all of them are only capable to access some metadata
of video file that is still far from enough.

3 TIViS: An In-Database Video Content
Access Approach

3.1 Temporal Interval Based Video Content Access Approach

In our previous experimental study [17], our performance evaluation verified the
efficiency and possibility of store small video objects into database. However,
most of DBMSs only support the access to some metadata of video files, they
didn’t provide the capability of temporal interval based video content access
or other types of raw data accessibility. This functionality can just return the
required specific video clips to save the bandwidths, which is significant to both
the customers and applications owners [7]. If a video content access approach is
capable to access any part of video object directly without sequential scan and
buffering, it not only decreased the respond time of the request, but also saved
the bandwidth because it avoided the unnecessary data transfer and buffering.
Therefore, we motivated to develop database based video content access app-
roach. In our work, we implemented the functionality of access video data to
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three mainstream formats (AVI, MPEG-1and MPEG-4) into the open source
DBMS PostgreSQL 8.4. Because the techniques issues proposed to support tem-
poral interval based in-database AVI video content access is similar to MPEG-1,
and the involved procedures are common, thus we only present the outline of
how we support in-database video content access for AVI video and MPEG-4,
the entire content can refer to our long version technical report [17].

Generally speaking, in order to support temporal interval based video access in
database, preprocess is needed to parsing the video’s format, extracting and com-
posing the temporal-index information. Extracted temporal-index information is
stored into database. When a temporal interval based video access request arrived,
these extracted information were be used to locate and speed up the access.

(a) Format of AVI Video Files

(b) Temporal Interval Index of a AVI Video File

Fig. 1. Data structures for AVI video files

The key to support temporal interval based access for AVI data is build
temporal information (timestamp) index. The file format structure of AVI is
presented in Fig. 1(a). Sample is the lowest granularity unit for AVI content
storage. The index block is an optional component. When an AVI file is loading
into database as BLOB data, we will analyze the “File header” at first, include
extracting the duration time, location and length of raw video data block, then
scan the “index block” to build temporal information if this component is existed,
otherwise, we will scan the whole AVI file to record the position of each key
sample so as to construct the temporal information index for locate the specific
temporal interval.

The structure indexed the temporal information of AVI is illustrated in
Fig. 1(b), it was stored in database as a table. “Sample ID” refers to the ID
of video frames, “Is Key Frame” suggests whether the frame is a key frame,
“Sample Time” tells the timestamp of this frame, which indicates the time of
when this key frame is to be played. The “Sample Offset” expresses the offset of
this frame in the video file.

When a service request is arrived and required to access certain part of AVI
content, it will be handled as follows:

Step 1: Parse the request and get the ID of requested video file, the start time
and termination time;
Step 2: Retrieve the temporal interval based indexing information from data-
base based on above three data items;
Step 3: Locate the position in BLOB column according to the existed indexing
information and read the corresponding raw video data;
Step 4: Rebuild the segmented content to a new file by combine file header and the
wrapped raw data block based on the AVI file format standard, and then deliver
the segmented clips instead of the whole file to complete this service request.
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The file structure of MPEG-4 video files is shown in Fig. 2(a). There are
large differences in the content organization between MPEG-4 and AVIfiles.
MPEG-4 file has a complex compressed metadata structure which placed at
either the front or the tail of the file. Through parsing the metadata and take
a series of complex computation, the temporal interval based index information
for key sample will be obtained. Due to the complexity of compressed metadata
structure, split MPEG-4 video file in the style that just based on the temporal
index information couldn’t ensure the segmented clips is conform with the file
structure standard, it will result the clip cannot decode and played correctly
by video player. Therefore, in the time based MPEG-4 video content access,
rebuild the new file header and metadata based on the original whole metadata
that matched the raw content of segmented video are required. In our in-database
based approach, we implemented this functionality transparently to users.

(a) Format of MPEG-4 Video Files

(b) Temporal Interval Index of a MPEG4 Video File

Fig. 2. Data structures for MPEG-4 video files

From above illustrations and file format structure showed in Fig. 2(a), we
know that the preprocess procedure for loading MPEG-4 video file into database
is much more complex than AVI video. Due to its complex container-style file
format standard, there are many kinds of encode methods for MPEG-4 raw video
content and each of them has certain distinction in file structure organization,
which will course the difficulty to locate video content in a uniform way. As
a result, we transform the encoded raw content into a standard organization
under certain circumstance by the FFMPEG package before loading them into
database.
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When a temporal interval based MPEG-4 video content request arrived, it
will be handled like AVI videos in the flow that has described in this section,
but they are several detailed difference exist in step 2 and step 4. For example,
in the step 2, we will build a 5-Array index structure with RLE (Run-Length
Encoding) that given in Fig. 2(b); in the step 4, the raw content and metadata
was reconstructed “chunk by chunk” rather than the way “sample by sample”
or “packet by packet”. It should be noted that chunk is the upper level data
structure of video sample.

Figure 2(b) showed that, sample’s size, ID and duration time are stored in
the A, B and E, respectively. Where D represented the offset of each chunk,
and the array C mapped the relation between each sample and its upper level
chunk. Due to we only want to outline the core idea of implement the in-database
video content access without detail the underlying engineering techniques issue,
we only introduced the core procedures, the entire approach are detailed in our
technical report [17].

3.2 Buffer Management for In-Database BLOB Data

As we learned from our experimental study [17], traditional buffer management
mechanism nearly have no impacts to the BLOB based data, such as image and
video. We also taken an insight look at the source code of PostgreSQL database,
there is also no buffer mechanism for BLOB based data, thus the in-database
stored complex multimedia data cannot enjoy the benefit of buffer manager. This
problem motivated us devise a specialized buffer management techniques for our
in-database stored video data. In this section, we will describe how we implement
an efficient buffer mechanism into the open source database management system
PostgreSQL 8.4.

Since the data items in database buffer implicit indicates its whole data
are available in main memory space across different tranactions, thus when we
are implement the BLOB data buffer management strategies, we are required
to insure our BLOB buffering techniques meet such characteristic. There are
two technique solutions to achieve above requirement: (1) design a brand-new
data structure and corresponding maintenance methods; (2) revise PostgreSQL’s
relational data buffer to meet the requirement of BLOB data. To simplify the
implementation, we choose the latter one, revise PostgreSQL’s main memory
cache structure to meet the caching requirement of TIViS approach.

In PostgreSQL, there are several memory data structure can be utilized as
cache, such as MemoryContext, TopMemoryContext, ExprContext, CacheMem-
oryContext and so on. Because above first three memory cache data structures
are allocated when database system started, they cannot share the inside data
across transactions, thus we have to choose revise CacheMemoryContext into the
needed BLOB data cache structure BLOBCacheMemoryContex. In PostgreSQL
system, CacheMemoryContext is a memory buffer data structure caching the
relational data, e.g., table, schema, index and so on. In order to finish this
revise, two types of work is needed: (1) revise the corresponding memory man-
agement mechanism to fit the access pattern of BLOB data. E.g., rewrite its
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space (page) allocation, reallocation and dispose functions, because these opera-
tions often needs refer to some metadata in catalog pg largeobject (holds the data
making up “large objects”) to verify the validity of corresponding operations; (2)
rewrite PostgreSQL’s lo exprot function to optimize the access of BLOB data. In
PostgreSQL system, each read operation of BLOB data are resolved as certain
lo export operations. Since we have BLOB data buffer CacheMemoryContext
now, the lo export should be rewrite to locate needed data in CacheMemoryCon-
text before take data from its original table or catalog pg largeobject. The data
structure of CacheMemoryContext is illustrated as Fig. 3.

Fig. 3. Structure of BLOBCacheMemoryContext

BLOBCacheMemoryContex consist of two parts, data layer and weight layer.
While the prior one is a linked list store the real BLOB data, the latter one
is store the weight of corresponding BLOB data. In our work, we define the
weight as the number of usage of BLOB data. When the weight is bigger than
certain threshold, we will assign its values as the negative value of its absolute
value, which means it has a high priority to stay in main memory. Though
BLOBCacheMemoryContex is inherited from CacheMemoryContex, we still need
to implement our own buffer management methods. Towards buffer replacement,
we firstly handle BLOB data with positive weight by the LRU (Least Recently
Used) strategy, and then replace high priority BLOB data in the same strategy
if necessary. The maximum size of cached BLOB data is limited by the size of
main memory, it can be setup by the parameter BLOB MAXIMUM SIZE. The
evaluations of the proposed buffer management are present in the next section.

4 Experimental Results

In this section, we will verify the efficiency of the proposed TIViS approach and
prove it could be used in small video related applications. Our experiments are
performed on PC whose CUP is P4 2.8G, memory is 4G, and running Win-
dows 2003 Server on a disk that is 7200 rotations per second. We compare the
performance of our in-database based temporal interval based video content
access approach TIViS with the PostgreSQL’s (version 8.4) built-in BLOB app-
roach named Bytea. For the simplicity, we run the experiments by simulated a
client/server style application but running it in the identical machine without
consider the network overheads. In the experiments, we use JDBC APIs to fulfill
all the database-related operations, and the video objects are small AVI video
files.



Design Efficient In-Database Video Storage Approach 381

4.1 Effect of Temporal Interval Based Access

At first, we compare the query performance of TIViS and Bytea without enable
TIViS ’s buffer management capability, thus the evaluation will fairly demon-
strate the efficiency of TIViS ’s temporal interval based video content access.
Since the performance of read 128 KB and 256 KB from PG/Bytea will compar-
ative or superior than PG/UNC, thus we only evaluate how fast TIViS fetch
certain part of 128 KB or 256 KB video data from a BLOB column of a given
table. The procedures of how we employ TIViS approach to handle temporal
interval based video content access has been detailed in Sect. 3.1 (Step 1 - Step 4).
During the evaluation, the query service ask 128 KB from a 256 KB BLOB video
data, and ask 256 KB video data from a 512 KB BLOB storage, the database
buffer of PostgreSQL 8.4 are using the default settings, which means the value
of parameter shared buffers is 32 MB. The result of this evaluation is presented
in Fig. 4.

(a) Evaluation for fetch 128KB video
data

(b) Evaluation for fetch 256KB video
data

Fig. 4. Efficiency of TIViS (Disabled BLOB Buffer)

Figure 4(a) showed the performance of fetch 128 KB video data in Bytea and
TIViS approach. As our other performance testing, the X-axes is storage age, and
the Y-axes is throughput (second/object). From this result, we can easy to learn
that TIViS is about 40 %–45 % faster than Bytea in nearly most cases. While
we fetch 256 KB video data using TIViS approach, the experimental result in
Fig. 4(b) also clearly demonstrate TIViS’s efficiency, it is about 50 %–60 % faster
than Bytea.

The overhead of our TIViS based video content approach is divided into two
parts: one is the time consumption of calculate and locate the starting offset of
segmented video content, the other is cost of fetching the designate content to
the client side from the starting offset to ending offset. Since our TIViS approach
have stored temporal interval information for the in-database video data, it is
easy to get a portion of video data from the middle of a video objects. This is
one of the major reason why our TIViS approach will faster than Bytea in this
situation.
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4.2 Effect of TIViS’s Buffer Mechanism

The second experiment of TIViS is verify the efficiency our implementation of
BLOB buffer management strategy. The result is present in Fig. 5. In this evalu-
ation, we set PostgreSQL’s shared database buffer size (indicated by parameter
shared buffers) to be 256 MB. It should be noted that, during this performance
testing, we carefully arranged the data operations and query requests that make
the database buffer hold a constant portion (10 %) of data (about 25 MB) which
can be directly return as the result of query request.

(a) Evaluation for fetch 128KB video
data

(b) Evaluation for fetch 256KB video
data

Fig. 5. Efficiency of TIViS (Enabled BLOB Buffer)

In the performance testing of fetch 128 KB video data, the result in Fig. 5(a)
showed that when storage age is less than 6, TIViS is about 60 %–75 % times
faster than Bytea. When storage age is greater than 6, TIViS is about 70 %
times better than Bytea in most scenarios. This phenomenon is in common with
folklore that the long-term performance of a storage will degrade. When we eval-
uate the performance of fetch 256 KB video objects, the result in Fig. 5(b) also
demonstrated TIViS ’s superiority, it’s about 60 %–80 % times faster than Bytea
approach. However, with the increase of storage age, its long-term performance
also showed a slightly downward trend.

4.3 Effect of Video Object’s Size

The third experiment is to evaluate how the size of video object size impact
the performance of TIViS and Bytea. In this experiment, the database buffer
parameter shared buffers is set to 256 MB and the buffer mechanism of TIViS
is enabled. After above settings, we evaluated the performance of fetch different
sized video objects by TIViS and Bytea approach in the condition of storage
age is 0 and 10, the results is presented in Fig. 6.
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(a) Storage Age = 0 (b) Storage Age = 10

Fig. 6. Effects of video object size

Figure 6(a) present how video object size impact query performance of TIViS
and Bytea when storage is 0. The result clearly showed TIViS ’s superiority:
TIViS approach is about 65 %–80 % times faster than Bytea. The only excep-
tion is when the video size is 512 KB, the query performance of TIViS is about
58 % times better than Bytea. When storage age is 10, the superiority of TIViS
presented in Fig. 6(b) is similar to Fig. 6(b) as storage age is 0. Although the
performance of both TIViS and Bytea are degraded, TIViS is still around
75 %–85 % times faster than Bytea. Similarly, the only exception is also occurred
when video size is 256 KB. At this moment, the query performance of TIViS is
about 63 % times better than Bytea approach.

5 Conclusions

In our previous performance evaluation [17] of video data storage revealed the
break-even point of large objects storage, and verified that the small video clips
related applications (e.g., VoD, online video sharing, video events archive and
retrieval) are have the possibility to adopt the database based storage. We also
discovered that, in current DBMS, the size of shared database buffer often have
little impact in video data read/write performance, although it often played an
important role in relational data throughput. In order to speed up the access
of small video objects which may be suitable to store into database, we devised
a temporal interval based in-database video content storage approach named
TIViS. The TIViS approach provides a cheap way to wrapper the required
content to the end user instead of send or buffering the video file from beginning,
thus we not only saved the bandwidth but also improved the response time.
Additionally, a specialized buffer management mechanism is also developed to
optimize the data access in the proposed TIViS approach. Our experiments
showed that, because the TIViS based video storage approach enable us store
video data into database in a more efficient way, and the specialized buffer
further facilitate the in-database video data access, the performance was boosted.
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We believe that our initial work indicated a compromise approach for video
archive, i.e., store small video object into database and the big objects are placed
in file system. However, there are remain many problems need to be studied
and clarified before this solution become practical. And we will continuous to
optimize the implementation of TIViS to make it become more efficiently.
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Abstract. Skyline query has attracted considerable attention since its intro-
duction in databases. Algorithms for solving skyline query are proposed con-
secutively, and most of them ignore data distribution or assume dimensional
independence, which leads to poor performance when performing such algo-
rithms on anti-correlated distributions. To accelerate the query process, spatial
index is extensively employed, and the state-of-the-art skyline algorithm for
anti-correlated distributions, SOAD, is no exception as well. However, the
SOAD algorithm internally uses two index structures for the step of determi-
nation and elimination respectively, which is complex to implement and
imposes extra overhead for index maintenance. In this paper, we propose an
efficient algorithm RSAC for anti-correlated distributions, which solely uses one
index structure to implement such two steps. Experiments reveal that RSAC
achieves up to 3 times performance improvement than SOAD on various
datasets.

Keywords: Skyline � Anti-correlation ratio � Spatial index � Kd-tree � Bound
array � Tree balance maintenance

1 Introduction

Skyline query originates from maximal vector problem [13]. Starting with Borzsony
et al. [3], database community begins to pay close attention to this issue. For an
N-dimensional dataset, each item in the dataset can be described as an N-dimensional
point. The skyline query finds all the points that are not dominated by any other points
in the dataset. The seaside tourism problem [3] is a classic instance of skyline query.
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A tourist traveling to the seaside prefers to choose a hotel which has a short distance to
the beach and a low price as well. Such hotels are the skyline points in the dataset of
hotels, which are not dominated by any other hotels, i.e., there does not exist a hotel
which is both cheaper and nearer to the beach than the tourist’s choices.

Skyline query is an important operation in certain applications, such as wireless
sensor networks [15, 17], and geographic based services [5, 20]. Thus, it attracts lots of
attention and becomes a hotspot in database research. In the past decade, database
community has made significant research efforts in this issue, and many skyline query
algorithms have been proposed. However, most of these algorithms ignore data dis-
tribution or assume dimensional independence, which leads to poor performance when
applying such algorithms on anti-correlated distributions.

A few previous works study skyline on anti-correlated distributions. Shang and
Kitzurewaga [19] propose an algorithm termed SOAD, which is the state-of-the-art
algorithm for anti-correlations. SOAD divides skyline computation into two steps,
determination and elimination, and temporary skyline points are organized in spatial
index. However, SOAD uses two index structures internally for the step of determi-
nation and elimination respectively, i.e., AVL tree for determination and QuadTree for
elimination. Maintaining two index structures simultaneously is an expensive opera-
tion, and it increases memory consumption as well. The straightforward way for per-
formance improvement is performing such two steps on one index structure, and this
observation plays a central role in the development of our algorithm.

In this paper, we propose a novel algorithm termed RSAC for anti-correlated
distributions, which promotes performance by performing the step of determination and
elimination on the same index structure, and this achieves about 10 %–20 % perfor-
mance improvement. In addition, we present three optimization methods for RSAC.
Comparing with SOAD, a fully optimized RSAC achieves up to 3 times performance
improvement.

The main contributions of this paper are summarized as follows:

• We redefine the anti-correlation ratio c, which is more appropriate for
high-dimensional datasets.

• We propose a novel algorithm for anti-correlated distributions RSAC, which
answers the skyline query by determination and elimination on one index.

• Three efficient strategies are proposed to optimize the RSAC algorithm.

The rest of the paper is structured as follows. Section 2 reviews the existing work.
Section 3 describes the preliminary knowledge. Section 4 presents the algorithm and
optimizations. Performance evaluation is presented in Sect. 5. Finally, we end this
paper with conclusion in Sect. 6.

2 Related Work

Over the past decade, a large number of algorithms for skyline query have been
proposed. In this section, we review the literature most relevant to this paper.
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2.1 Skyline Algorithms Revisited

Generic skyline algorithms are extensively studied, the BNL algorithm [3] and D&C
algorithm [3] are typical ones. Recent work proposes several generic algorithm as well,
i.e., APSkyline [16], BSkyTree [14], and Scalagon [6]. These algorithms are simple
and easy to implement, but they barely have a competitive performance. Sort-based
algorithms, such as SFS [4], LESS [8] and SaLSa [1], achieve a better performance by
reducing point comparisons.

Skyline algorithms with index structure avoid scanning the entire dataset, which
accelerates the process of dominance check. The first index-based algorithm was
proposed by Borzsony et al. [3], and refined by many following works. A variety of
index structures are used in existing algorithms.

The NN algorithm is proposed by Kossmann et al. [12]. Firstly, it builds an R*-tree
on candidate dataset. Next, NN finds the nearest point to the origin, denoted as p, and
this point becomes the initial skyline point. Then, the data space is partitioned by the
nearest neighbor to some subspaces. The spaces dominated by p are discarded.
The same process is executed on other spaces recursively. Finally, results from each
space will be merged. During partitioning, there may exist some overlapping points in
the spaces, which will lead to duplicated computation. NN uses some methods, such as
Laisser-faire, Propagate, Merge and Fine-grained Partitioning, to avoid duplicates.

The Branch and Bound Skyline (BBS) algorithm [18] is an improvement of NN.
BBS collects close points as a group and finds their minimum bounding rectangles
(MBR). If the minimal corner in MBR is dominated by the candidate point, all points in
the same group must be dominated, so these points should be discarded directly. In
addition, MBR can also be used to quickly determine if some points in the corre-
sponding group can dominate the candidate point, because if the upper-bound vector of
MBR does not dominate the candidate point, no point will.

Inspired by NN, the skyline breaker algorithm [11] exploits LSD-tree, a variant of
kd-tree, to achieve nearest neighbor search. Due to the benefit from
dimension-robustness of LSD-tree, parallel skyline computation is performed in sky-
line breaker.

2.2 Skyline Query Algorithms for Anti-correlated Distributions

To the best of our knowledge, there are only two lines of work that concern the issue of
skyline query on anti-correlations. Köhler et al. [10] present algorithms applying to 2 or
3 dimensional dataset. Shang and Kitzurewaga [19] present a general algorithm SOAD
for anti-correlations, which has no limitation in the number of dimensions. Various
spatial indices can be used in SOAD, such as QuadTree [7], Octree [9], kd-tree [2], etc.

SOAD is the state-of-the-art skyline algorithm for anti-correlated distributions,
which answers the skyline query in two steps: determination and elimination. In the
first step, SOAD takes a candidate point and determines if it is a skyline point. If so, the
point is inserted into the skyline set. Otherwise, the point has the probability of being a
non-skyline point. The second step tries to eliminate the non-skyline points as many as
possible. In order to execute efficiently, both steps are performed on index structures.
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In SOAD, temporary skyline points are stored in index. During the steps of
determination and elimination, candidate points are compared with skyline points
organized in index. However, indices are conventionally employed to store candidate
dataset, i.e., NN and BBS use R*-tree to store all points of the original dataset, and
execute the nearest neighbor search function provided by R*-tree to compute skyline
result.

3 Preliminaries

Symbols referred in the context are shown in Table 1.

Next, we give the formal definition of skyline query.

Definition 1: For two N-dimensional vector M, Q. M dominates Q, denoted as M ≺ Q,
iff the following conditions are satisfied, (1) 8i;M i½ � �Q i½ �, 1� i�N (2) 9j;M j½ �\
Q j½ �; 1� j�N.1

Based on this definition, skyline on D is defined as follows.

S ¼ st 6 9sk; sk � st; st; sk 2 Djf g

Shang and Kitzurewaga propose the definition of anti-correlated distribution in
[19], and define the anti-correlation ratio c as follows.

For a set of N-dimensional points with anti-correlation ratio c, any points (x1,…,xN)
follow the condition of 1� PN

i¼1 xi � 1þ c; where the value of each dimension xi falls
in the interval (0, 1).

However, this definition does not take the dimension N into consideration, which is
not appropriate for high-dimensional dataset, i.e., for a 10-dimensional dataset with a
medium anti-correlated ratio (such as 0.1 which is used in [19]), the skyline cardinality

Table 1. Summary of symbols

Symbol Meaning

D The dataset for skyline query
S The result of skyline
V[i] The ith dimension of vector V
Vc Candidate vector
Vt Vector in skyline
P A node in tree
Tree(P) A tree with P as the root
DISC(P) The discriminator of P in kd-tree
P.KEY Data point stored in P

1 small value is preferable in this paper.
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takes up more than 99.9 % of the cardinality of the dataset. Thus, we redefine the
anti-correlation ratio c as follows.

Definition 2: For an N-dimensional dataset with the anti-correlation ratio c, any points
(x1,…,xd) in the dataset satisfy the condition:

1�
XN

i¼1
xi � N � 1ð Þ � cþ 1ð Þc;

where the value of xi falls in the interval (0, 1).

Based on this definition, the smaller c is, the more serious anti-correlation happens. As
can be seen in Sect. 5, this anti-correlation ratio model avoids data skew with the
growth of dimensions.

4 Algorithm Presentation

In this section, we present the algorithm RSAC (Reduced Skyline algorithm for Anti-
Correlated distributions), and then propose three optimization strategies, which is
insertion optimization, tightening bound array and maintaining a balanced tree.

4.1 Baseline Algorithm

To reduce the overhead induced by maintaining two index structures, we develop an
algorithm termed RSAC which performs all operations on one index. The pseudocode
of baseline of RSAC is shown in Algorithm 1.

Algorithm 1. baseline of RSAC(D) 
Input: D is the N-dimensional dataset
Output: S is the skyline of input dataset 
1 Sort D by F(X) 
2 S=
3 foreach t in D do
4  if dominate(S, t) is false 
5   insert(S, t) 
6  endif 
7 endfor 

At the very beginning, the algorithm sorts input dataset D in the light of monotonic
function F(X) (line 1). S is a spatial index which holds current skyline points. Then
each point t in D is checked whether it is dominated by any points in S (line 4). If t is
not dominated, it is guaranteed to be a skyline point, and then will be inserted into
S (line 5). During the process of dominance check, determination and elimination is
performed by resorting to the spatial index S.
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RSAC employs the kd-tree [2] as the spatial index. The kd-tree is a space parti-
tioning data structure for k-dimensional space, and it has efficient search performance
for high dimensional data. Each node in kd-tree contains a bound array (BA). For a
node M, all points in Tree(M) fall into the space bounded by BA of M in terms of
definition. The determination step can be performed with aid of the lower-bound of
BA. The proof of correctness is presented as follows.

Theorem 1: If a candidate point Vc is not dominated by the lower-bound vector of BA
of node M, then there does not exist a point in Tree(M) which dominates Vc.

Proof: Suppose there exists a point P in Tree(M) which dominates Vc, then the
lower-bound vector of BA of M dominates Vc, since the value in each dimension of the
lower-bound vector is less than or equal to the value in corresponding dimension of P. This
leads to a contradiction, thus, such a point must not exist. The theorem holds. □

If Vc passes the determination step, then it is guaranteed to be a skyline point. Like-
wise, the upper-bound of BA is of great help for the step of elimination, and the
correctness is proved as follows:

Theorem 2: If a candidate point Vc is dominated by the upper-bound vector of BA of
node M, then there exists a point in Tree(M) which dominates Vc.

Proof: By definition, for any point P in Tree(M), the BA of M encloses P. Thus the
value in each dimension of P is less than or equal to the value in corresponding
dimension of the upper-bound vector of BA. Therefore, P dominates Vc, the theorem
holds. □

From Theorem 2, we know that if Vc is dominated by upper-bound of any node, Vc is
not a skyline point and should be disregarded. For a node M, if Vc passes determination
and elimination, and is not dominated by the point stored in M as well, then the
algorithm executes the search process recursively, which is detailed in the following.

Each node in the kd-tree associates with a discriminator DISC, indicating which
dimension is used to partition the subspace. Assume that j equals DISC(M), and Sj be
the super key, we define Sj of Vc as follows:

Sj Vcð Þ ¼ Vc j½ � Vc jþ 1½ � . . .Vc N� 1½ � Vc 0½ �. . .Vc j� 1½ �

Sj is the cyclical concatenation of all dimensions starting with j. When a candidate
point Vc comes, it will be compared with nodes whose data point may dominate it. This
procedure starts with the root node, and descends to leaf nodes. For each node M in the
search path, compare the data point stored in M with Vc to determine which subtree to
traverse. Let us define Vc to be j-less than M if Sj(Vc) is less than Sj(M.KEY), and
define Vc to be j-greater than M if Sj(Vc) is greater than Sj(M.KEY).
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If Vc[j] is less than M.KEY[j], or Vc is j-less than M, then the procedure only needs
to search left subtree of M, since data points in right subtree of M cannot dominate Vc.
If Vc[j] is greater than M.KEY[j], or Vc is j-greater than M, both subtrees have to be
searched. If Sj(Vc) is equal to Sj(M), Vc is identical to M.KEY, thus, Vc will be ignored.

Now we present a proof of correctness for the search process.

Theorem 3: Assume j equals DISC(M), if Vc[j] is less than M.KEY[j], or Vc is j-less
than M, then there does not exist a point in the right subtree of M, which dominates Vc.

Proof: Suppose there exists a point P in the right subtree of M. If P dominates Vc, then
Vc[j] is greater than P.KEY[j], or Vc is j-greater than P. Thus, Vc [j] must be greater
than M.KEY[j], or Vc is j-greater than M. A contradiction, the theorem holds. □

4.2 Algorithm Optimization

The baseline algorithm is not sufficient for salient performance promotion, therefore,
we polish the algorithm in the following.

4.2.1 Determine Insertion Position During Dominance Check
In RSAC, the candidate point Vc is checked if it is dominated by any points in the
kd-tree. If Vc is not dominated, it will be inserted into the kd-tree. During this process,
Vc is compared with nodes in a top-down way. However, the path from the root node to
the insertion position is covered by the dominance check process. Thus, the insertion
operation can be combined with the process of dominance check.

For the candidate point Vc, the first empty node encountered by recursively
traversing kd-tree in the order of root, right subtree, left subtree, is the position that Vc

should be inserted. For example, a kd-tree on dataset {A(25,20), B(10,70), C(5,75),
D(80,15)} is shown in Fig. 1.

Fig. 1. Determine insertion position during dominance check (Color figure online)
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Vc(8,85) is the current candidate point. Initially, the pointer Pt points to the root
node A, and the value in the first dimension of Vc is less than that of Pt. Then traversing
the left subtree of Pt, so Pt points to B. The value in the second dimension of Vc is
larger than that of Pt, thus Pt points to C. Finally, the value in the first dimension of Vc

is larger than that of C, and the right subtree is empty (colored in red), which is the
place Vc should be inserted.

Next we present a proof of correctness for this process.

Theorem 4: Let T be a kd-tree and Vc be the candidate point. The first empty node
encountered by recursively traversing T in the order of root, right subtree, left subtree,
is the right position that Vc be inserted in T.

Proof: Let Pt be the current node during the traversing process, j be the discriminator
of P, I be the insertion algorithm and Ck be the dominance check algorithm. Initially, Pt
points to the root of T. If Vc[j] < Pt.KEY[j], or Vc is j-less than Pt, I will traverse the left
subtree of Pt, similarly, Ck will traverse the same subtree as well. If Vc[j] > Pt.KEY[j],
or Vc is j-greater than Pt, both of the two algorithms will traverse the right subtree.
Clearly, before arriving at an empty node, denoted by E, both algorithms traverse the
tree along the same path. This means the node E found by I is the first empty node
found by Ck. Therefore, Vc should be inserted in E. Thus, the theorem holds. □

Based on this theorem, we can deduce the following corollary.

Corollary 1. Let T be a kd-tree and Vc be a vector to be inserted in T. The last empty
node encountered by recursively traversing T in the order of root, left subtree, right
subtree, is the right position that Vc be inserted in T.

4.2.2 Bound Array Tightening
The native bound array in kd-tree describes the space where the node lies in, and it is
determined at the time of node insertion, which simply partitions space where parent
node locates, without considering nodes in subtrees. Thus, the bound array generated in
such a way is too loose for the step of determination and elimination. Here, we redefine
bound array.

Definition 3: The lower-bound vector of a point P in kd-tree is denoted as LB(P), and
the upper-bound vector is denoted as UB(P). LB(P) and UB(P) are N-dimensional
vectors, formalized as follows.

LB Pð Þ ¼ ½a0; a1; . . .; aN�1�; ai ¼ minfQ:KEY i½ �jQ 2 Tree Pð Þg
UB Pð Þ ¼ ½b0; b1; . . .; bN�1�; bi ¼ maxfQ:KEY i½ �jQ 2 Tree Pð Þg
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From the above definition, we can see that the value in each dimension of
lower-bound(upper-bound) vector is equal to the smallest (largest) value in corre-
sponding dimension of points in its subtree. For any node M, the initial value of LB and
UB is equal to the point stored in M. When a new node P is inserted, the bound array in
path from P to the root will be updated. Comparing with the native bound array which
is determined by the top-down way, this bottom-up update strategy makes a much
tighter bound array. Leveraging such a tight bound array, the efficiency of determi-
nation and elimination is improved.

4.2.3 Balanced Tree Maintenance
As we all know, unbalanced trees degrade the efficiency of insertion, query, and
deletion operations in tree structure. Dynamic data insertion makes kd-tree unbalanced.
In this part, we make efforts to mitigate the effect caused by such case.

It is trivial to build a balanced kd-tree on a static dataset. In each step, choosing the
median of the data objects as the root, the rest of the data objects are equally divided
into two subsets, which guarantees that the number of nodes in two subtrees is roughly
the same. Repeat this process recursively until all the data objects are inserted. How-
ever, this method does not work in RSAC, since it is almost impossible to find the
median of skyline points before all the skyline points are known. Tree rotation is a very
common internal operation on self-balancing trees to maintain balance, but it does not
work for kd-tree either, since rotation breaks the invariant.

The algorithm employs a strategy of periodical tree reconstruction, and uses
average node depth as a measurement. For a balanced binary tree with n nodes, the
depth of tree is log2ðnþ 1Þd e, and there are 2i nodes in level i (root node locates
in level 0), and the average node depth of a balanced tree with n nodes can be
calculated as

DEPavg nð Þ ¼
X log2ðnþ 1Þd e�2

i¼0
2i � iþ nþ 1� 2 log2ðnþ 1Þd e�1

� �
� ð log2 nþ 1ð Þd e � 1

h i
=n

ð1Þ

When the average node depth of a kd-tree reaches a specific threshold, i.e., x times
deeper than DEPavg(n), the reconstruction procedure is triggered to build a balanced
kd-tree based on temporary skyline points.

Building a balanced kd-tree needs to find the median of data objects. However, the
worst case complexity of finding the median is O(nlogn), worse still, this operation will
be invoked many times in a single construction process. To reduce the overhead of
finding the median, we make compromise for precise median, since building a strict
balanced kd-tree is not necessary. In RSAC, we use the linear-time algorithm median of
medians [21] to determine an approximate median. By this way, although the newly
built kd-tree is still unbalanced, the average node depth is getting lower, from which
the performance benefits.
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4.3 Algorithm Presentation

The RSAC algorithm is illustrated in Algorithm 2.

Algorithm 2. RSAC(D) 
Input: D is the N-dimensional dataset 
Output: S is the Skyline of input dataset 
1 Sort D by F(X) 
2 S=
3 foreach t in D do
4  pos=null 
5 if dominate(S.root, t) is false and pos is not null 
6 insert(S, pos, t) 
7 updatefilter(pos,t) 
8 pos=null 
9 if needrebuild(S) 
10  construct (S)
11 endif 
12 endif 
13 endfor 

If t is a skyline point, it will be inserted into S with the position indicated by pos
(line 6). Then bound array of nodes in the path from pos to root will be updated (line 7).
If the threshold is reached (line 9), then a new tree is constructed (line 10). The function
dominate invoked in line 5 is a key component, and it is shown in Algorithm 3.

Algorithm 3. dominate (node,x) 
Input: a node in kd-tree and a candidate point 
Output: true if there exists a node in TREE(node) dominates x, otherwise returns false 
1 if domtest(node,x) 17   if dominate (node.right,x)
2  return true 18 return true
3 endif 19 endif
4 if equal(node,x) 20  endif 
5  return false 21 endif 
6 endif 22  
7 if pos is not null and  23 if node.left is null 
 not domtest (node.ba,x) 24 if pos is null
8  return false 25 pos= node
9 endif 26  endif 
10 cmp=veccmp(node,x) 27 else 
11 if 820<pmc if dominate (node.left,x) 
12  if node.right is null 29   return true 
13   if pos is null 30  endif 
14    pos= node 31 endif 
15   endif 32
16  else 33 return false 
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The algorithm firstly determines if the candidate point x is dominated by or equal to
current node (line 1 and line 4), and then determines if x is dominated by the bound array
of current node (line 7). If x passes all these tests, then the algorithm recursively repeats
this process in the order of right subtree, left subtree of node (line 10–31). During this
process, the algorithm determines insertion position for x (line 13–15, 24–26).

5 Performance Evaluation

Experiments in this section are performed on a Linux server with 4 CPUs, each CPU has
8 cores with 2.2 GHz frequency. The RAM is 64 GB, and a SATA disk with 7200 RPM
is attached. The RSAC algorithm is implemented in JAVA, running on JDK1.7.0. We
modify the tool written by Borzsony [3] to generate anti-correlated datasets with various
ratio c which is defined above. We generate datasets with c = 0.1, c = 0.3 and c = 1 as
strong anti-correlated datasets, medium anti-correlated datasets and week anti-correlated
datasets. The size of datasets ranges from 100 k to 1 m, and dimensions from 4 to 10. To
simplify statement, we use size, dimension and anti-correlation ratio to represent
datasets, i.e., 1 m8d.1r for dataset with size of 1 m, dimension of 8 and anti-correlation
ration ratio of 0.1. The skyline cardinality of experimental datasets is shown in Tables 2
and 3.

5.1 Evaluation on Impact of Anti-correlation Ratio

Section 4.2.3 describes an optimization method of maintaining a balanced tree, in
which the balance threshold is a pivotal parameter that directly affects the algorithm
performance. We manage to find an optimal value of the threshold through

Table 2. Skyline cardinality of 100 k dataset

c
Dimension  

0.1 0.3 1 

4 59018 13246 3095 
6 98858 77904 4129
8 99997 87083 9921 

10 100000 89567 24279 

Table 3. Skyline cardinality of 1 m dataset

c
Dimension  

0.1 0.3 1 

4 327339 56108 14141 
6 917268 439807 14392 
8 999739 609298 34032

10 999999 573663 102278 
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experiments. The 1 m dataset with different dimensions and anti-correlation ratio c is
used. The threshold ranges between 1.1 and 1.4. We use baseline algorithm solely with
the optimization of maintaining a balanced tree, and the result is shown in Fig. 2.

From this result, we notice that RSAC is sensitive to strong anti-correlated,
high-dimensional datasets. Among all these values of threshold, 1.3 is an appropriate
value for all test cases, since the algorithm with different anti-correlation ratio has a
considerable performance benefits when c is set to 1.3. Thus, we consider 1.3 as an
optimal value of c, which is used in following experiments.

5.2 Evaluation on Balance Strategy

When maintaining the balanced kd-tree, RSAC uses the median of medians algorithm
(MMA) to build an approximate balanced tree, rather than using median algorithm
(MA) to build a strict balanced tree. In this section, we verify the effectiveness of this
approach through experiments performing on 1 m dataset. The result is shown in Fig. 3.

From Fig. 3, we see that, comparing with MA algorithm, RSAC with MMA
algorithm has an evident performance advantage on strong anti-correlated, high-
dimensional dataset, i.e., RSAC with MMA is about 40 % faster than that with MA on
1m10d.1r dataset. Comparing with the linear time complexity of MA, the complexity
of MMA is O(nlogn), which will efficiently degrade the performance on strong
anti-correlated, high-dimensional dataset, since such dataset contains more skyline
point than weak anti-correlated, low-dimensional dataset. We perform such two
algorithms on 1m dataset with the anti-correlation ratio of 0.1 to investigate the pro-
portion of tree balancing time.

(a) dataset with c=0.1                 (b) dataset with c=0.3              (c) dataset with c=1 

Fig. 2. Effects of anti-correlation ratio
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As illustrated in Fig. 4, the proportion of tree balancing time in both algorithms
increases with the growth of dimension, and the proportion of tree balancing time of
MA increases faster than that of MMA, it almost takes up 10 % of total execution time
for tree balancing in 10-dimensional dataset. We also notice that the MA algorithm has
a larger proportion of tree balancing time than MMA algorithm in all test cases. All
experiments in this subsection verify the correctness of using MMA for tree balancing.

5.3 Optimization Evaluation

In this section, we evaluate the performance of our algorithm RSAC, and verify the
effectiveness of optimization methods, to be specific, the insertion optimization (termed
as InOp), the bound array tightening optimization (termed as BTOp) and the optimization
of maintaining a balanced tree (BOp), and compare all these with SOAD algorithm.
Besides that, we also investigate the performance of the baseline algorithm of RSAC
(termed as native RSAC). All three optimizations will be tested solely with the baseline
algorithm of RSAC, i.e., RSAC InOp stands for the baseline algorithm with only opti-
mization of insertion. The evaluation results are shown in Figs. 5 and 6.

     (a) dataset with c=0.1                 (b) dataset with c=0.3              (c) dataset with c=1 

Fig. 3. Effects of tree building algorithm

Fig. 4. Proportion of tree balancing time
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Firstly, we notice that the baseline algorithm of RSAC outperforms SOAD in all
test cases. The performance improvement is about 10 %–20 %, and this gap becomes
prominent on dataset with large skyline cardinality (i.e., on 1m10d.1r). This phe-
nomenon can be explained by that RSAC uses one index structure internally, which
reduces the overhead of maintaining two index structures simultaneously in SOAD.

The optimizations of bound array tightening and maintaining a balanced tree do
have an effect on performance promotion, and the effect of them is noticeable on strong
anti-correlated, high-dimensional dataset. However, the insertion optimization has a
weak effect, since the time of insertion operation takes a little proportion of the whole
execution time, thus, there is not much room for improvement. Finally, comparing with
SOAD, the RSAC algorithm, which is the baseline algorithm with all optimizations,
has 2–3 times performance improvement.

(a) dataset with c=0.1              (b) dataset with c=0.3              (c) dataset with c=1 

Fig. 5. Performance evaluation on 100 k dataset

(a) dataset with c=0.1         (b) dataset with c=0.3         (c) dataset with c=1 

Fig. 6. Performance evaluation on 1 m dataset
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6 Conclusion

The skyline cardinality on anti-correlated dataset is large, thus, a candidate point has to
be compared with a large number of temporary skyline points, which leads to high
complexity for skyline computation. Spatial indices are extensively utilized to accel-
erate the query process, especially in algorithms for anti-correlated distributions. This
paper gives a new definition of the anti-correlation ratio, which takes the value of
dimension into consideration. This paper also investigates skyline query on anti-
correlated distributions from the perspective of spatial index, and proposes an algo-
rithm named RSAC, which uses the kd-tree as the index structure. We improve the
performance of RSAC by optimization from three aspects. Experiments demonstrate
that RSAC performs 2–3 times faster than the state-of-the-art algorithm.
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Abstract. As we all know, application firewall provides in-depth inspec-
tion to ensure application-layer security services, but brings a serious
decline for network performance of application service, even more seri-
ous impact on service usability, worse, in the face of increasingly com-
plex and diverse network application services that require an integrated
network security protection, different types of application firewall collab-
orate together to ensure security use of integrated services, but multiple
application firewalls lead to more serious performance problems than a
single one. Recent efforts have provided a large number of optimization
measures and algorithms, what is more, have offered a lot of new secu-
rity architecture for application firewalls, unfortunately, most of them
did not achieve the desired results. We have proposed a novel archi-
tecture that combines the characteristics of cloud computing, namely,
parallel network security inspection Mechanism based on cloud com-
puting (PNSICC) that is able to addresses performance problems for
multiple intertwined application firewalls that protect network security
of integrated service. PNSICC not only provides effective network secu-
rity protections for the protected objects, but also has greatly improved
security inspection efficiency. We have proved by experiments that our
scheme is an effective and efficient method.

Keywords: Security meta-group · SW · UTM · PNSICC · Delay ·
Throughput · Loss rate

1 Introduction

Information security reports released by National Vulnerability Database [15] in
February 2013 have shown that network security is a major threat to a vari-
ety of network-based application services. Although there are multiple ways to
c© Springer International Publishing Switzerland 2015
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solve such security issues, today, the vast majority of ways in commercializa-
tion is that security devices (e.g., firewall, anti-virus, anti-spam) are placed at
front-end of the protected objects. Once a packet or stream accesses a protected
object, they must go through security devices placed at the protected objects to
be inspected, thus ensuring the security of the protected object. In order to avoid
direct access to these protected objects, security devices have commonly used
proxy mode [5,7] to restraint data packets or stream directly access to them.
Today, most commercial application firewalls (e.g., SonicWALL [22]) are based
on proxy mode and dominated a large number of market. Although proxy-based
application firewalls based on in-depth inspection can provide security assurance
for network-based application services, they cause serious performance bottle-
neck [10] (e.g., latency, throughput). For example, Unified Threat Managemen
(UTM) of SonicWALL [22] activates anti-virus and application firewall with
much degraded system performance. Al-Aqrabi et al. [1] have presented that
UTM cloud may not be a feasible approach to security protection as it may
become a performance bottleneck for protecting application services when open-
ing anti-virus, anti-spy and anti-spam application. Abdul Aziz et al. [4] have
further conducted simulations on application firewalls and shows that, in the
worst case, the latency seriously affected system uses.

In-depth inspection of application firewall lead to performance problems,
there are a large number of related research to solve these problems, at present,
these solutions can be mainly divided into two categories: single security device
optimization and integrated security solutions. For first class solutions,
Nassar et al. [12] have improved network latency by using parallel firewalls that
contain SMTP in-depth inspection, however, compared to single firewall, this
solution causes more decrease in link utilization. Optimization schemes of Tree-
Rule Firewall and stream-based mail proxy, in some aspects of performance
for anti-spam and anti-virus, have a great performance improvement, however,
they cannot provides network-based application services with integrated secu-
rity requirements, such as e-mail security including anti-virus, anti-spam and
keyword filtering.

For second class solutions, Ali et al. [2] integrate multiple security middle-
boxes together to form UTM approach for in-depth inspection, but bring two
problems: First, UTM causes a serious decreased performance [22]; Second, UTM
has too large code to lead to unexpected vulnerabilities due to the large size of
the trusted computing base [24]. APLOMB [21] and NetSeCC [9] present a new
architecture about middlebox consolidation deployments to improve security and
performance for modern enterprises’ networks, but they also face the same prob-
lem: middlebox has too large code to lead to unexpected vulnerabilities. Salah
et al. [19] can provide security services (e.g., anti-virus and anti-spam, and dis-
tributed denial-of-service prevention) based on virtual platform, this also faces
the same performance problems as UTM, as the author finally said: future
research is necessary to quantify the actual performance latency that could be
associated with implementing cloud security solutions.

In short, the above approaches do not propose effective measures to resolve
performance bottlenecks generated by in-depth inspection. A proposed solution
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is called parallel network security inspection based on cloud computing to both
ensure network security and overcome the above drawbacks, and not to bring in
new vulnerabilities.

The rest of the paper is organized as follows: Sect. 2 discusses issues and
challenges of security devices. Section 3 provides design of PNSICC. Section 4
presents the implementation of PNSICC. Section 5 details PNSICC’s perfor-
mance evaluation. Finally, Sect. 6 is the conclusion.

Fig. 1. Working mechanism of two current popular security deployment

2 Issues and Challenges

In-depth inspection is based on application-layer security, different types of appli-
cation services are required to go through one or more middleboxes to ensure
their security. For example, e-mail service simultaneously needs anti-virus, anti-
spam, keyword filtering to protect its security, where anti-virus filters e-mail with
virus, anti-spam filters spam, keyword filtering filters sensitive words. Using anti-
virus, anti-spam, keyword filter as an example of in-depth inspection describes
how to deploy these security middleboxes to protect application-layer security.
Today, there are two popular deployment: series way (SW) and UTM. A tenant
chain uses SW (e.g., CoMb [20]) to go through one or more desired middleboxes,
where these security middleboxes only provide a single-function protection for
the protected objects, SW deployment simplify shows in Fig. 1(a). A tenant
chain goes through one middlebox to ensure its security, where the middlebox is
a consolidated middlebox architecture, including multiple single-function mid-
dleboxes, we simplify the model shown in Fig. 1(b). For two deployment, next,
we give their working mechanism, then point out the existing problems and faces
current challenges.

2.1 Working Mechanism

Figure 1 lists the current popular two security deployment to solve application-
layer security problems. Figure 1(a) shows that SW uses multiple single-function
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security middleboxs to protect application service security, every middlebox uses
proxy to isolate the customer and the server to prevent attackers from direct
attack on the server. Using anti-virus [18] as an example describes their working
mechanism [8,17].

(1) Network driver accepts network packets (1a), then forwards them to kernel
or proxy. Note that some security middleboxs use zero-copy technique [11],
these packets directly bypass kernel (1b and 1c) to proxy.

(2) Proxy extracts data from network packets and stores them in the data cache
(1d) by a certain format. When data cache reaches a certain size or over a
certain time interval, proxy informs anti-virus scanner to inspect data (1e).

(3) Anti-virus scanner inspects data to determine whether these data in the
cache carry viruses (1f). If there are viruses, then terminates the forward to
the next hop, otherwise proxy re-packs cache data into network packets, and
forwarded them to the next hop by kernel or driver.

Anti-spam and keyword filter work the same mechanism as anti-virus. UTM
shown in Fig. 1(b)has the same operating mechanism as Fig. 1(a), while the main
difference of working mechanism between UTM and SW is that UTM places all
scanner together sharing a proxy, while Fig. 1(a) puts to use a proxy and a
scanner together.

2.2 Problem Analysis

Performance. The above mechanism shows that it takes some time for proxy to
extract data from network packets to put them in the data cache, and each scan-
ner inspects whether data in the cache have viruses, which takes some time. So
both proxy and scanner cause packet latency and throughput decline. Next, The
specific number is illustrated the increasing latency and throughput degradation
that two employments protect network-based application services to result in.

Definition 1 (Inspection Delay). A inspection delay is network delay that is
due to middleboxes perform in-depth inspection traffic before reaching network-
based application services. TID indicates inspection delay, TID=Tproxy+Tscanner,
where

• Tproxy denotes proxy delay, including the data extraction time from network
packets, the time stored in the data cache, the read data time from the cache
and the time packed into network packets.

• Tscanner denotes security inspection delay, including the time spent by
application-layer in-depth inspection.

Definition 2 (Anti-Virus, Anti-Spam and Keyword-Filter Inspec-
tion Delay). Anti-Virus inspection delay is denoted by TAV , TAV =
TAV proxy + TAV scanner; Similarly, TAS denotes anti-spam inspection delay,
TAS=TASproxy+TASscanner; TKF denotes keyword filter inspection delay,
TKF=TKFproxy+TKFscanner, Where
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• TAV proxy, TASproxy and TKFproxy denote anti-virus, anti-spam and keyword-
filter proxy time, respectively.

• TAV scanner, TASscanner and TKFscanner denote anti-virus, anti-spam and
keyword-filter inspection time, respectively.

To explain that in order to simplify the complexity of in-depth inspection,
it is assumed that three types of proxy use the same mechanism and take
the same time, so Tproxy = TAV proxy = TASproxy = TKFproxy; TMAXscanner =
MAX(TAV scanner, TASscanner, TKFscanner).

Fig. 2. Pipeline of SW and UTM

SW Inspection Delay: TSW denotes the sum of SW inspection delay shown
in Fig. 2(a), TSW is determined by TAV , TAS and TKF by adding together.

TSW = TAV + TAS + TKF

= (TAV proxy + TAV scanner) + (TASproxy

+TASscanner) + (TKFproxy + TKFscanner)
= 3(Tproxy) + TAV scanner

+TASscanner + TKFscanner

= 3(Tproxy) + MAX(TAV scanner,

TASscanner, TKFscanner)
= 3(Tproxy) + TMAXscanner. (1)

UTM Inspection Delay: TUTM denotes UTM inspection delay shown in
Fig. 2(b).

TUTM = Tproxy + TAV scanner

+TASscanner + TKFscanner

= Tproxy + MAX(TAV scanner,

TASscanner, TKFscanner)
= Tproxy + TMAXscanner. (2)

SW Inspection Throughput: TPSM denotes SW inspection throughput,
TPSW=n/TnSW where
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• n is the number of packets.
• TnSW is a time that n packets pass through SW to spend.

TnSW = TAV + MAX (TAV + TAS)
+MAX (TAV + TAS + TKF )
× (n − 2)
+MAX (TAS + TKF ) + TKF

≈ (n + 2)TMAXscanner. (3)

• TPSW≈n/(n+2)MAXTscanner≈1/TID=1/(Tproxy+Tscanner).

UTM Inspection Throughput: TPUTM denotes UTM inspection through-
put, TPUTM=n/TnUTM where TnUTMCT is a time that n packets pass through
UTM to take.

TnUTM = n(Tproxy + 3MAXTscanner) (4)
TPUTM = n/TnUTM

= n/n (Tproxy + 3TMAXscanner)
= 1/ (Tproxy + 3TMAXscanner) . (5)

Fig. 3. Security architecture and working mechanism of PNSICC

In summary, it is able to get such a conclusion from the above corollaries:
UTM is shorter than SW in terms of latency, while SW is higher than UTM
in throughput. If network-based application services require both a short delay
and a high throughput, then these two way are not suitable for this type of
network-based application service. Overall, these two way are not good in terms
of performance, latency and throughput are needed to be improved to ensure a
safe and efficient network communication.

Isolation. UTM as shown in Fig. 1(b) consists of proxy, anti-virus scanner,
anti-spam scanner and keyword filter, there are a lot of code in every scanner
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and proxy, since the greater amount of code causes the more unexpected vulner-
abilities [14], so UTM may cause uncontrollable threats to seriously risk its own
security. In order to reduce security threats, this is not a feasible way to cut out
code in UTM, PNSICC enforces isolation of these scanners to reduce security
threats being equivalent to reduce code.

2.3 Challenges

As shown in Fig. 1, the above existing two ways can not obtain efficient secure
communications, it is needed to overcome the above two major drawbacks and to
design a novel architecture that provides short delay and higher throughput for
network-based application services, and also enforces isolation between scanners
and between scanners and proxy.

3 Proposed Solution

In order to resolve the existing problems of the above popular two security
deployment, existing efforts are powerless. As shown Fig. 3, we have proposed a
new deployment coupled with the characteristics of virtual platform [3] (e.g., iso-
lation, scalability, on-demand services) that is able to effectively solve the above
existing disadvantages. Next, PNSICC working mechanism is first described.

3.1 Working Mechanism

As shown in Fig. 3(a), we have migrated AS, AV and KF into virtual platform.
They, respectively, constitute AV, AS and KF group, each node in every group
was deployed in a stand-alone virtual machine. To further strengthen their own
security, thus avoiding too large code to lead to unexpected vulnerabilities, proxy
and every scanner were isolated, thus forming proxy group and scanner group
(e.g., AV group). PNSICC’s working mechanism is as follows:

(1) NIC
request−−−−−→

1
security meta-group

request−−−−−→
2

service domains: NIC accepts
request packets from client, then forwards them to security meta-group to
perform parallel in-depth inspection. If these packets are valid, they are for-
warded to server in service domains, otherwise drop them.

(2) Service domains
response−−−−−−→

2
security meta-group

response−−−−−−→
1

NIC: For servers’
response packet, the process is similar to step 1, a valid packet is forwarded
to NIC after security inspection of security meta-group, otherwise drop them.

(3) Security Meta-Group
collect information−−−−−−−−−−−−−→

3
Inspection monitor (IM): Every

group report their own in-depth inspection time (e.g., TAV scanner, TASscanner)
that it takes for one member (node) in every group to inspect and filter for a
full cache data.

(4) IM
issue information−−−−−−−−−−−−→

4
Security Meta-Group: IM determines to create the

number of proxies or scanners according to delay demand and simple in-
depth inspection time (§III-B).
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3.2 Fine-Grained Scanning

Figure 3(b) shows parallel inspection mechanism of security meta-group based
on virtual platform, PNSICC’s parallelism reflects two aspects: not only dif-
ferent type of middleboxes simultaneously perform in-depth inspection in par-
allel, but also the same type of middleboxes cooperate together to achieve
in-depth inspection in parallel. The main purpose of PNSICC design reduces
network latency caused by in-depth inspection and improves network through-
put, thereby providing security network with low-latency and high through-
put. PNSICC is also able to dynamically adjust network latency according to
delay-sensitive services (e.g., video conferencing). Given Tneed as the tolerable
delay of a service, we assume Tproxy is a constant value, so TNscanner=Tneed-
Tproxy, where TNscanner denotes the inspection time it takes to complete the
acceptable latency for delay-sensitive services. �TAV scanner/TNscanner� denotes
the number of anti-virus required to complete synchronous parallel inspection
within Tneed time. Similarly, �TASscanner/TNscanner� denotes the number of anti-
spam, �TKFscanner/TNscanner� denotes the number of keyword filter. For exam-
ple, Fig. 3(b) shows that 3 anti-spam (3*TNscanner=TASscanner), 4 anti-virus
(4*TNscanner=TAV scanner) and 2 keyword filter (2*TNscanner=TKFscanner) can
cooperate together to achieve in-depth inspection within TNscanner time. We list
the efficient parallel inspection process of security meta-group.

(1) Network packets arrive proxy from driver by means of VMM-bypass and
OS-bypass [11].

(2) Proxy extracts data from network packets and stores them in the data cache
by means of a certain format.

(3) AS, AV and KF group simultaneously inspect data in the cache to determine
whether these data have viruses, spam and sensitive keyword words. If any
one of these conditions occurs, then proxy drops network packets. Otherwise,
it re-packs data in the cache into network packets, and forwards them to
kernel or driver.

3.3 Performance

Similar to Sect. 2, we can get PNSICC’s packet delay and throughput.

PNSICC Inspection Delay: As shown in Fig. 4, TPNSICC denotes PNSICC
inspection delay for network-based application services.

• If TMAXscanner + Tproxy ≤ Tneed then

TPNSICC = Tproxy + MAX(TAV scanner,

TASscanner, TKFscanner).
= Tproxy + TMAXscanner (6)

• If TMAXscanner + Tproxy > Tneed then

TPNSICC = Tneed (7)
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Fig. 4. PNSICC pipeline Fig. 5. PNSICC inspection process

PNSICC Inspection Throughput: TPPNSICC denotes PNSICC Through-
put, TPPNSICC=n/TnPNSICC where TnPNSICC is a time that n packets pass
through PNSICC to spend.

• If TPNSICC = Tproxy+TMAXscanner then

TnPNSICC = Tproxy

+ (n − 1)MAX (TMAXscanner, Tproxy)
TPPNSICC = n/TnPNSICC

≈ n/ (n − 1)MAX (TMAXscanner, Tproxy)
≈ 1/MAX (TMAXscanner, Tproxy) (8)

• If TPNSICC = Tneed then

TnPNSICC = Tproxy

+ (n − 1)MAX (TNscanner, Tproxy) (9)
TPPNSICC = n/TnPNSICC

≈ n/ (n − 1)MAX (TNscanner, Tproxy)
≈ 1/MAX (TNscanner, Tproxy) (10)

Compared with SW and UTM, PNSICC is much higher than them in terms
of delay and throughput. PNSICC demonstrates superior performance without
affecting security protection.

3.4 Isolation

Compared to UTM, PNSICC not only completely isolates AS, AV and KF scan-
ner, but also segregates proxy with every scanner, thus improving security to
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avoid causing the entire system failure due to a vulnerability being attacked. In
the worst case, even if one scanner loses efficacy, it does not affect the normal
operation of PNSICC. Compared with SW, PNSICC isolates scanner with poxy
to enforce security. In short, PNSICC enforce isolation of security products or
softwares to further improve virtual middleboxes’ own security.

4 Implementation

AV, AS and KF are migrated to virtual machine, migration results are shown in
Fig. 3(a). This article does not elaborate on the migration process, but implement
fine-grained parallel inspection and filtering in virtual environment to improve
secure communication performance. Figure 5 presents efficient parallel inspection
process.

(1) Client
request−−−−−→

1
proxy group: Client request a service through security inspec-

tion in virtual environment.
(2) Proxy group

inspect request−−−−−−−−−−→
2

AV, AS and KF group: Proxy group extracts
data from network packets and store them in the data cache, then sends
inspect requests to AV, AS and KF group that scan data in the cache in
parallel.

(3) AV, AS and KF group
inspect response−−−−−−−−−−−→

3
proxy group: Inspection results from

each node of AV, AS and KF group returns to proxy group.
(4) Proxy group

request−−−−−→
4

server: According to inspection results, proxy group
determine whether to continue to forward network packets to the server
or lose these packets. Determine rules: if any one of scanner group has
intrusion problem, then throw away these data, only if all group do not
detect any problems, then forward them to servers.

(5) Server
request response−−−−−−−−−−−→

5
proxy group: Proxy group receive response packets

from servers.
(6) Proxy group

inspect response−−−−−−−−−−−→
6

AV, AS and KF group: Similar steps 2, PNSICC
performs the above similar inspection for the response data.

(7) AV, AS and KF group
inspect response−−−−−−−−−−−→

7
proxy group: Similar steps 3.

(8) Proxy group
response−−−−−−→

8
client: If there are no security risks in the response

packets, proxy group forward them to client.

Table 1. Performance comparison between PNSICC and other scheme

Method Delay Throughput

SW 3(Tproxy+Tscanner) 1/(Tproxy+Tscanner)

UTM Tproxy+3Tscanner 1/(Tproxy+3Tscanner)

PNSICC Tproxy+Tscanner 1/MAX(Tproxy,Tscanner)
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5 Performance Evaluation

5.1 Theoretical Analysis

Next, we present performance evaluation of PNSICC. According to Sects. 2 and 3,
Table 1 has theoretically shown that PNSICC has rendered more excellent than
SW and UTM in term of latency and throughput. By the actual environment, it
is needed to further prove whether the above theoretical result is right.

Table 2. The list of open source security software

Middlebox name Open source software

Anti-virus ClamAV [6]

Anti-spam SpamAssassin [23]

Keyword filter Amavisd-new [13]

Fig. 6. Performance comparison about three kinds of security architecture

5.2 Actual Simulation

Experimental environment. Virtual platform was conducted on a Dell Server
with 4 core, 3.42 GHz Intel CPU, 16GB memory. IXIA [16] is considered as a
performance test instrument. Open source security software shown in Table 2.
Three experimental simulation scenarios is as follows:

(1) SW simulation environment : Open source security middleboxs in Table 2
were installed in a independent VM, respectively. According to virtual iso-
lation technology, each VM in virtual platform is equivalent to a separate
security middleboxes, these softwares in VMs constitute SW employment
(AV-AS-KF) as shown in Fig. 1(a).

(2) UTM simulation environment : Open source security middleboxs are moved
to the same VM, thus forming UTM as shown in Fig. 1(b).

(3) PNSICC environment : This article has achieved PNSICC system as shown
in Fig. 3.
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To evaluate PNSICC system performance, we focus on latency, throughput
and packet loss rate that are important indicator of system performance, Fig. 6
shows performance comparison results. According to three sets of comparative
test, we can observe PNSICC’s advantage performance comparing with SW and
UTM.

Latency : Figure 6(a) has presented three characteristics: First, network latency
of three kinds of security employment is larger as the packet size increases, specif-
ically, UTM and SW increase rapidly, mainly because there are multiple proxies
in SW whose latency increases with the packet size, while UTM has three serial
scanner, every scanner’s latency increases as the packet size increases; Second,
UTM is lower than SW in term of latency, this was mainly due to SW has sev-
eral proxies than UTM to lead to delay increase. Finally, PNSICC has lower
delay than UTM and SW, mainly because PNSICC provides parallel inspection,
and decreases the number of proxies. Figure 6(a) indicates that PNSICC not
only meets the same network security as UTM and SW, but also provides bet-
ter network service, especially low-latency network requirements, such as video
conference, video surveillance, etc.

Throughput : Figure 6(b) has shown throughput of three kinds of security
employment, it is easy to see that their throughput increases with the packet
size increase, PNSICC’ growth rate is more rapid than UTM and SW with the
packet size from 1Kbit to 10000Kbit, and PNSICC has higher throughput than
UTM and SW in the same packet size. In a good case, PNSICC’s throughput
sometimes is even twice as UTM.

Packet Loss Rate : Experimental environment of packet loss rate is not the
same as latency and throughput, all open source security middleboxs are used
the default configuration (such as cache memory, the number of threads), and
we always keep 50Mbit/s throughput regardless of packet size from 64bit to
16000bit. In the stress test, Fig. 6(c) has shown packet loss rate of three kinds of
security architecture, PNSICC had no packet loss, while packet loss of SW and
UTM occurred, this was mainly due to SW and UTM having high delay and low
throughput to cause packet loss.

In summary, PNSICC is a high-performance security architecture whose
delay, throughput and packet loss rate are far superior to existing framework, at
the same time, PNSICC also enhances their own security of security softwares
or products, and is easily applied to cloud platform.

6 Conclusion

It can be seen from the above design, implementation and experiments that
PNSICC based on cloud platform provides parallel network security inspection
with a novel efficient architecture. It not only overcomes the shortcomings of
the current popular two security deployment, but also improves the security
inspection performance of the system. In the future research, we will provide
a better load balancing algorithm in security meta-group to further improve
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PNSICC inspection efficiency, in the face of such a efficient parallel inspection
architecture, we have reason to believe that PNSICC is able to obtain a wide
range of applications in the actual business.

Acknowledgments. This work is partially supported by JSPS KAKENHI Grant
Number 26730056, 15K15976, JSPS A3 Foresight Program.
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Abstract. Reconstruction of Computed Tomography (CT) images is
a computationally and memory demanding tool. The creation of new
algorithms for the reduction of the X-Ray dose and the increasing res-
olution of the detectors have complicated the obtaining of a good per-
formance. Accelerators have become essential for the processing of the
algorithm in a reasonable time. Nowadays, with the emergence of new
mobile architectures that are not only powerful but also energy efficient
and the possibility of easily porting the already existing code thanks
to different programming models they could become an alternative to
desktop and high performance accelerators. We evaluate four different
platforms for our simulation framework for CT images. The evaluation
results demonstrate that although in terms of performance, low-power
platforms are still far from GPGPUs, the reduction of the energy con-
sumption to almost a half in the case of the Jetson TK1 is an evident
incentive that can lead to the creation of smaller and mobile medical
image scanners.

Keywords: Computed Tomography (CT) · Iterative reconstruction ·
Simulation

1 Introduction

The medical image field, and more concretely the field of image reconstruction in
Computed Tomography (CT), is a multidisciplinary topic that draws on knowl-
edge from medicine, physics, and computer science. The CT scanner allows us
to obtain images from the interior of the body through the application of X-
Rays. These rays are directed from different angles to create the scanner images,
which means increasing the dose received by the patient. This may be harm-
ful for patients undergoing CT and it may have secondary effects and ulterior
consequences, as X-Rays are considered harmful and carcinogenic in high and
repeated doses.

One of the research lines in this field is related to the reduction of the dose
applied to the patient without affecting the diagnosis capacity. New algorithms
have been created, which are able to reconstruct images obtained using scanners
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 416–426, 2015.
DOI: 10.1007/978-3-319-27140-8 29



Simulation Platform for X-Ray Computed Tomography 417

with less number of angles or with lower voltage, at the cost of more compu-
tational resources. Those algorithms, called iterative reconstruction algorithms,
are based on applying the reconstruction process several times until obtaining
accurate results. For each iteration the projections obtained from the scanner
are processed to obtain a final 3D image of the body. Error correction is made
on each iteration, so that the final results may be even better than, for example,
those of the Feldkamp, Davis and Kress (FDK) algorithm.

Due to the increasing size and resolution of the scanners, the computational
cost of the reconstruction has also augmented. Considering that the iterative
algorithms represent a high computational overhead over the basic algorithms,
it has become unfeasible to execute these algorithms in multicore machines. To
cope with those needs, new paradigms and architectures, such as GPGPUs, have
been adopted. The usage of heterogeneous computing allows the user to obtain
results in a reasonable time and, because of the existence of a standardized
programming model available (OpenCL), the solutions implemented can be exe-
cuted in many architectures. One of them are ARM devices, that have become
very popular nowadays because of their usage in mobile devices. Moreover, they
have also been integrated in mini-computers with very-low power consumption,
which is a major advantage for embedded devices. OpenCL programming model
is available for both previously mentioned architectures, apart from CPU or
many-core solutions. Opposite to CUDA, which is an NVidia proprietary model,
OpenCL allows us to execute the same code in several different devices without
major changes.

In this work we present the implementation and the evaluation of a modu-
lar Scan CT 3D image simulator, which includes an iterative reconstructor with
two main stages: backprojection and projection. This simulator has been imple-
mented using both CUDA and OpenCL and ported for evaluation to three dif-
ferent hardware platforms: NVidia GPUs, AMD GPUs, and ARM architectures.
Apart from the performance, power consumption and installation constraints are
also studied in the paper, as the small size in the case of ARM architecture can
lead to a future generation of mobile and miniaturized scanner computer units.

In two previous works [11,12], we presented an evaluation of the reconstruction
algorithm over different high performance devices, such as modern GPGPU, cloud
computing platforms, and Intel Xeon Phi. In this paper, we describe our advances
in image processing, showing an integrated simulation tool that contains the back-
projector mechanism discussed previously and a novel projector implementation.
Additionally, we evaluate a new implementation based on OpenCL.

The remainder of the paper is structured as follows. Section 2 presents some
related work. Main operation and implementation of the iterative simulator are
shown in Sect. 3. Evaluation results from the different platforms are shown in
Sect. 4. Finally, conclusions are presented in Sect. 5.

2 Related Work

Due to the nature of reconstruction algorithms, researchers have sought ways to
accelerate execution by using high-performance techniques [7], being nowadays
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very popular using many-core accelerators based on GPGPUs [1]. To ensure
full usage of heterogeneous architectures, it is essential to use well-established
programming models, such as OpenMP 4.0, CUDA, or OpenCL. CUDA and
OpenCL programming models have already been used in previous works for the
reconstruction of 3D medical imaging. Examples are the works presented in [8]
and [13]. In the last one, Siegl et al. studied the usage of OpenCL for high-
performance medical image reconstruction by using RabbitCT [10] as a bench-
marking platform for CT reconstruction algorithms implemented in OpenCL.
They proved that the use of the standard programming model available for dif-
ferent platforms does not penalize the performance excessively, being able to run
on different architectures with a loss of around 10 %.

Leeser et al. [6] presented a more complete example, comparing programming
models for heterogeneous computing systems (OpenMP, CUDA, and OpenCL) in
3D image processing. In this work, phase and rear projections were parallelized,
and implementations for both AMD and NVIDIA cards were evaluated. Their
results show that OpenCL performs better on AMD that on NVIDIA and, unlike
in our case, the implementation in CUDA got the worst outcomes. The usage of
filtering libraries and optimizations in our work may be related to this difference
in results. The authors also performed a comparison of the obtained results,
showing that image errors are not noticeable between both implementations.
Finally, Park et al. [9] presented an implementation of the overhead projector
based on OpenCL, showing high performance in GPGPUs. They also performed
a quality comparison, showing that using GPUs in the reconstruction process
does not affect the final image accuracy.

As for the projection module, studies focus on making forward projection access.
As an example, Zhou et al. [15] face the usage of OpenCL to accelerate the pro-
jection phase, obtaining a speedup of 543 compared to sequential CPU implemen-
tation. In [5], the authors propose to optimize iterative image reconstruction by
accelerating forward-projection through a water-filling buffer to remove pipeline
stalls, and out-of-order processing to reduce the off-chip memory access by up to
three orders of magnitude. In both cases, the proposals try to enhance parallelism
by overlapping computing and input/output, as much as possible.

With respect to the usage of mobile platforms for the execution of scien-
tific applications, there are some recent studies that use, i.e. NVidia Jetson
TK1 boards. In [2] the authors evaluate an audio processing application with
a GPU-based implementation on these boards, demonstrating that Jetson TK1
is capable of executing the application in real time and that even if it is a low
power device it can provide with a real good performance. Another example is
[14] where they also study the energy efficiency of video encoding applications
on mobile platforms maintaining the minimum performance requirements.

As we will see in Sect. 4, in general, previous studies are consistent with our
results. However, our work provides new contributions by comparing 3D images
generated using different programming models to asses quality, by including both
modules (reconstruction and projection) in performance evaluation, and by the
inclusion of energy as a parameter to consider for a mobile CT Scan computing
platform.
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3 ScanCT Iterative Simulation Tool

Based on our previous reconstruction algorithms [11,12], an Iterative Simulation
Tool (IST) has been developed. IST includes different algorithms and modules
to, not only reconstruct, but also simulate the functionality of the scanner.

The iterative reconstruction functionality relies on both backprojector and
projector operators. The iterative process starts with a dummy volume composed
by constant values. This volume will be refined on each iteration. Following
Fig. 1, first the backprojector is applied to the volume to get the new projections.
Those projections are compared with the original projections obtained from the
scanner. If the difference is bigger than a threshold, the projections are passed to
the backprojector in order to generate a new volume. This volume is combined
with the former one to get the entry volume for the new iteration. If the error
is lower than a threshold the algorithm stops.

Fig. 1. Workflow of the IST when executing an iterative reconstruction.

In this work we are focused on the two main modules used for iterative recon-
struction: projection and reconstructor. Both of them have been implemented
in the two main programming models for accelerators: CUDA and OpenCL.
A generic modular software API has been designed and implemented to trans-
parently offer the functionality of the different programming models to the upper
levels of the application.

3.1 Reconstruction and Projection Modules

The reconstruction module transforms 2D projections into a 3D volume through
the use of an optional filter and a backprojector kernel. The backprojection kernel
is based on the FDK algorithm for cone-beam geometry in flat panel detectors
[3]. The filter used in this solution is a rampfilter, implemented through a discrete
Fourier transform in both programming models (CUDA and OpenCL). In the
case of CUDA, we rely on the native library cuFFT1. In OpenCL, an open source
library called clFFT2 is used.
1 https://developer.nvidia.com/cuFFT.
2 http://clmathlibraries.github.io/clFFT.

https://developer.nvidia.com/cuFFT
http://clmathlibraries.github.io/clFFT
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The other main module, the projection one, transforms a 3D volume into a
configurable number of 2D projections, in a similar way that the scanner process
to obtain projections. The projector module is considered as the inverse of the
backprojection operation. In this case, no filter is applied during the process and
execution model is computationally easier.

3.2 Generic Application Programming Interface

This API is a wrapper that includes the necessary functions for the execution
of the algorithm. It transparently provides the functionality for the different
programming models to the application. The functions have been grouped in
four fundamental blocks described below: Memory allocation functions; Memory
transfer functions; Kernel calls; and Platform management.

The memory allocation functions consist of the methods necessary to allocate
memory in the accelerator and the host, including utilities for the entire volume
(or the corresponding volume partition depending on the available memory) and
projections. Volume and projections act as input or output data respectively,
depending on the module executed, projection and backprojection respectively.

Regarding the memory transfer functions, they allow the data movement
from accelerator to host. Data are maintained inside the accelerator, until their
destruction, during the execution of the application. These functions include:
host to accelerator transfer of projections and accelerator to host transfer of vol-
ume (reconstruction module), host to accelerator transfer of volume and accel-
erator to host transfer of projections (projection module).

Listing 1.1. Example of the API functions used by the projection.

int create_textures_gpu(int numDevices , short roi_coronal , short roi_sagittal
, short roi_axial);

int send_projection_gpu(int thread , float * volume , short roi_coronal , short
roi_sagittal , short roi_axial );

int execute_projection_gpu(int thread , long position , const size_t roi_s ,
size_t roi_z , float rad_angle , struct propar param);

int receive_projection_gpu(int thread , float * st, long position , size_t
count);

int allocate_memory_projections_gpu(int countDevices , long size);
int free_memory_projections_gpu(int countDevices);
int memset_projections_gpu(int thread , long size);

The Kernel calls are used to invoke the execution of the different kernels
for both programming models. For the execution of the iterative reconstructor
method, there are currently three kernels available: rampfilter, backprojection
(part of the reconstruction module); and projection (projection module). These
kernels can be customized through the parameters that can specify the geometry
and characteristics of the scanner.

Finally, the platform management functions provide information, setup, and
destruction utilities for the platform and software configuration. It contains
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generic functions for obtaining information needed for the correct operation of
the application, such as devices that will run the application or, the adaptation
of the volume size to the memory available. In addition, if OpenCL is used, an
additional context initialization of the device must be performed. This initial-
ization is included within this set of functions.

We have used this API to construct the two main modules of the iterative
simulation tool: reconstructor and projection. It could be used to generate new
functionality by the user, abstracting its design from the programming model
in which they can be implemented. An example of the functions used by the
projection modules is shown in Listing 1.1.

4 Experimental Evaluation

In order to evaluate the proposed solution, we have implemented the IST using
both CUDA and OpenCL programming paradigms. The goal of the evaluation
is to study and compare the performance of that implementation in terms of
performance and energy consumption to assess the feasibility of each platform.
We have evaluated the solution under four different platforms: ARM ODROID
XU3-lite (low-power profile), NVidia Jetson (low-power profile), NVidia GTX
760 (desktop profile), and AMD Radeon R9 290 (HPC profile).

The ODROID XU3-lite device includes a Samsung Exynos 5 Octa (5422)
processor with a quad core Cortex-A15 2.0 GHz and another CPU with 4 Cortex-
A7 cores (ARM architecture big.LITTLE). The NVidia Jetson system comprises
a quad-core ARM Cortex A15 processor and an NVIDIA “Kepler” GPU with
192 CUDA cores. We also evaluated two regular GPUs, a GTX 760 and an AMD
Radeon R9 290 with, 1152 and 2560 cores respectively.

The operating system chosen for the evaluation is Linux Ubuntu 14.04 LTS.
The compiler used was GCC 4.8. A SSD drive was connected to the USB port
3.0 in the devices to store the experimental data. Total energy consumed by the
board during application execution was measured using an external device. The
energy measurements include the overall computer components, such as PSU,
memory, etc. The results plotted in the figures correspond with an average of
five consecutive executions.

The original projection images were taken from a PET/CT scanner with
resolution of 5122 pixels. The scanned object was a crocodile scapula. For the
evaluation of lower resolution studies, the original projections were partitioned.
The complete original size study was only used in the case of the GPGPU plat-
forms due to the memory limitations of the ARM platforms.

4.1 Platform Evaluation

Due to the requirements of the application, an evaluation of the support pro-
vided by the different platforms was done. This evaluation has as objective
the selection of the most suitable architecture considering performance and
energy comparisons. Since CUDA is clearly a non standard programming model
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(only valid for NVidia devices), OpenCL is the option that, theoretically, will be
supported in most cases. The main problem with OpenCL support is the exis-
tence of several types of profiles, which shorten the compatibility of the applica-
tion with the different platforms. Those profiles provide different features, such
as types of memory objects, floating point calculations, etc. that can affect to
the execution of our algorithms. Table 1 shows the features offered by each com-
puting platform evaluated plus Intel Xeon Phi. These platforms were selected
taking into account their theoretical compatibility with the two programming
models chosen. The features presented, along with the support for one or both
of the programming models represent the minimum requirements for the correct
execution of the application in the different platforms.

Table 1. Features offered by each computing platform.

Platform NVidia
GPU

AMD
GPU

Odroid XU3
Lite

Wandboard
Quad

Jetson TK1 Intel Xeon
Phi

Architecture Kepler GCN ARM ARM ARM+Kepler x86

Peak Perf. (GFlops) 2985 2000 60 ? 200 2000

CUDA version 7.0 ✗ ✗ ✗ 6.5 ✗

OpenCL version 1.2 2.0 1.2 1.2 ✗ 1.1

3D memory objects � � � ✗ � ✗

2D memory objects � � � � � ✗

FFT library � � � � � �

At the end, and despite of the OpenCL standardization, we could only evalu-
ate the following platforms: NVidia, AMD, Odroid XU 3 Lite, and Jetson TK1.
The OpenCL modules were executed in the AMD, Odroid and NVidia GTX
760 platform meanwhile CUDA was only executed on Jetson TK1 that lacks of
OpenCL support.

4.2 Performance Evaluation

To evaluate performance on the different platforms, we have compared the
GFLOPS provided by the different modules of the iterative simulation tool.
Figure 2 shows the computing performance results over the four different archi-
tectures proposed using OpenCL and CUDA. As may bee seen, the ODROID
platform provides a poor performance as compared to the platforms using high-
performance GPUs, but Jetson TK1, which also uses ARM architecture, provides
better results in terms of performance than AMD for low resolution studies.
This demonstrates that, for projections and volumes of lower sizes, architectures
designed for mobile platforms can be a serious alternative to GPUs and other
parallel architectures.

In general, the results obtained for accelerators (both OpenCL and CUDA)
are good comparing with other implementation in the literature (for example
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Fig. 2. Computing performance of the simulator modules on the different architectures
evaluated for different image sizes: Backprojector (left) and Projector (rigth).

the one in [9] or [4]). However, the results are far from the ones obtained by
[7], in which the authors complete the reconstruction in less than one second for
floating point precision and 10243 voxels. Taking into account that our kernel
is generalized for the support of several geometries and execution modes, the
optimizations that can be done must be less specific and therefore not as efficient
as the ones presented in that work.

4.3 Energy Consumption

Another point to take into account is the energy consumption depending of the
size of the problem, which is directly proportional to the computational load.
The metric used in this section is Joules (J), by showing the energy consumed
during the execution of the different kernels for the same problem. Figure 3 shows
the results of this evaluation. In all cases, Jetson TK1 obtains the best results,
consuming approximately half of the energy with respect to the AMD card.
In the case of the ODROID, its advantages disappear when the problem size
increases, consuming the same as the NVidia card for the 2563 study.

Fig. 3. Energy consumption of the simulator modules on the different architectures
evaluated for different image sizes: Backprojector (left) and Projector (right).
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We also show the results for the performance per unit of energy of each
kernel in each of the devices in Tables 2 and 3. The results are coherent with
respect the previous data shown in this study. The best performance per unit of
energy is given by the NVidia GTX 760 when using CUDA although the Jetson
TK1 is near. Odroid and AMD are far, the first because of the evident lack
of performance and the second because of the higher consumption and lower
performance compared to the NVidia GTX 760.

Table 2. Performance per unit of energy of the backprojection kernel for the different
devices and programming models.

Device Programming model Performance/Unit of energy (GFlops/J)

32 64 128 256 512

AMD R9 OpenCL 0.006 0.064 0.011 0.053 0.126

NVidia GTX 760 CUDA 0.427 4.062 5.037 1.342 0.179

OpenCL 0.250 2.024 3.268 0.863 0.130

NVidia Jetson TK1 CUDA 0.916 3.342 4.185 1.005 -

Odroid XU3 OpenCL 0.161 0.168 0.032 0.004 -

Table 3. Performance per unit of energy of the projection kernel for the different
devices and programming models.

Device Programming model P erformance/Unit of energy (GFlops/J)

32 64 128 256 512

AMD R9 OpenCL 0.047 0.326 0.062 0.620 0.328

NVidia GTX 760 CUDA 1.263 10.401 14.601 8.934 0.841

OpenCL 1.731 10.401 17.376 9.160 0.302

NVidia Jetson TK1 CUDA 5.999 6.582 3.800 1.189 -

Odroid XU3 OpenCL 0.166 0.173 0.095 0.026 -

4.4 Image Quality

Due to the differences in the programming models and architectures supported,
one concern was that differences in the resulting images could occur due to the
different precision and optimizations supported both by hardware and software.
For this reason, an evaluation of the quality of the images obtained is necessary
to asses that obtaining of a better performance and a faster reconstruction time
does not imply a severe degradation of the image which would not make it
suitable for diagnosis.

In our case, the difference between images reconstructed using different pro-
gramming paradigms and devices are, in the worst case, lower or equal to
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0.1x10−7. When talking about projections, the difference is even lower, in the
order of 0.1x10−9. Between the images obtained with CUDA in Jetson TK1 and
the GTX 760 there were no differences, which means that there are not precision
looses due to the low-power architecture.

5 Conclusions

In this work we have shown the main components of the ScanCT Iterative Sim-
ulation Tool, projection and backprojection, and the algorithms used in them.
Those components have been implemented for heterogeneous platforms using
two well known programming models: CUDA and OpenCL. OpenCL compat-
ibility has allowed us to execute the IST on four heterogeneous platforms. We
have executed the IST on the different platforms using OpenCL and CUDA and
measured results in terms of computational performance and energy efficiency.

The results obtained for computational performance are similar for the GPUs,
independently of the programming model used. Performance is smaller in the
ARM platforms, but energy efficiency is much better, which makes them an
alternative for processing small volumes and for embedded systems. But not
all ARM chips consume the same amount of energy. In our evaluation, while
the Jetson TK1 platform saved almost half of the energy comparing it with
a GPGPU, the Odroid board consumed quantities similar to the NVidia card
and even slightly more in very large volume cases. Whatever, the main problem
found with the mobile platforms was memory size, which, in a memory bound
application, such as the IST, leads to results in performance that can be far
away from the maximum of the platform. This probably will be solved due to
the current trends of increasing the memory available in mobile platforms and
the arrival of 64 bit ARM architectures.
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Abstract. Auction has been regarded as one of the promising methods
for the scarce resources allocation due to its fairness. Thus, spectrum auc-
tion is an efficient way to allocate licensed spectrum to new demanders
for mitigating the spectrum scarcity. Most of the existing studies assume
that the spectrum resources are homogeneous. However, spectrums with
different frequencies are intrinsically heterogeneous due to their different
licensed areas and interference ranges. In this paper, we concentrate on
the heterogeneity of spectrum resources and propose a strategyproof dou-
ble auction mechanism STRUCTURE. The STRUCTURE assumes that
all the buyers are selfish and rational, and they will submit their bids
for each interested spectrum. To achieve the strategyproofness, many
existing double spectrum auction mechanisms adopt the bid-independent
methods to construct buyer groups, which may cause unfairness for the
buyers with high bid values. To tackle this, we turn to choose a bid-
related buyer group construction algorithm, which is more suitable for
the laws of market and can further avoid the collusion between buy-
ers. After that, we propose a collusion-free allocation mechanism and
a bid-independent payment mechanism to ensure the strategyproofness
for both buyers and sellers. Simulation results show that the proposed
mechanism significantly improves the spectrum utilization with low run-
ning time. Furthermore, we also find that the buyers with higher bid
values have a higher winning ratio than the buyers with low bids in the
STRUCTURE.

Keywords: Spectrum allocation · Double auction · Heterogeneous ·
Strategyproof · Spectrum utilization

1 Introduction

In recent years, with the increasing popularity of various mobile devices and
applications [7], the demand for available radio spectrum resources are increasing
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rapidly. Unfortunately, many new spectrum demanders cannot access the limited
spectrum licensees in time while a large pool of spectrum resources are extremely
underutilized. Spectrum auction is regarded as one of the most promising methods
and natural ways to solve the spectrum scarcity due to its fairness and allocation
efficiency. Through the auction, spectrum owners (a.k.a sellers) could gain utili-
ties by leasing the idle resources while new demanders (a.k.a buyers) could gain
access to the spectrum.

The design of a spectrum auction mechanism mainly faces three major chal-
lenges. First, spectrum can be reused by multiple users without interference in
spatial or temporal domains. Second, the spectrum channels are heterogeneous,
which have different frequencies, coverage areas and so on. Third, strategyproof-
ness (a.k.a truthfully, we will use these two words interchangeably in the fol-
lowing paragraph) is one of the most critical properties of auction mechanisms,
which ensures that the dominant strategy of each buyer or seller is to bid the true
valuation of channels. However, it is not a trivial job to design a strategyproof
auction mechanism for heterogeneous spectrum channels when the channels can
be reused in spatial or temporal domains.

Spectrum auction has been well studied in recent years. These studies can be
mainly categorized into two types: single-sided auction and double auction. One
strategyproof spectrum auction mechanism design often includes two procedures:
channel allocation mechanism design and payment calculation. Since spectrum
channels are reusable, the auctioneer will choose a set of conflict-free buyers to
share one channel. Clearly, how to choose the conflict-free buyers and allocate
them in channels will affect the utility of buyers. Most of the existing single-sided
spectrum auctions are aiming to maximize the social efficiency or the profit of
sellers, which means their channel allocation mechanisms are bid-dependent. In
these bid-dependent channel allocation mechanisms, if one given buyer wins by
bidding a bid value bi, it will always win by any bid values higher than bi to
ensure the strategyproofness of buyers. Thus, buyers with higher bid values will
have more chances to win the auction than the buyers with low bid values. By
considering the reusability and heterogeneity of spectrum channels, many effec-
tive single-sided spectrum auctions have been proposed [1,8,10,12,14,23–26,30].
However, there is only one seller in this single-sided spectrum auctions, which
may restrict the auction model to falling within a very limited scenario. To sup-
port multiple sellers in one spectrum auction, many double spectrum auction
mechanisms were proposed. In a strategyproof double auction mechanism, both
the buyers and sellers should submit their true valuations of channels to the
auctioneer. Thus, it is more challenging to design a strategyproof double spec-
trum auction mechanism than the single-sided one. To tackle this challenge, the
existing studies mainly use a bid-independent buyer set constructing method to
construct a set of conflict-free buyer sets. Then, they view each buyer set as
a super buyer and adopt the traditional double auction mechanism to decide
which super buyer will win the auction [31]. Unfortunately, the higher bid val-
ues of buyers will not guarantee higher winning probabilities in the auctions
with bid-independent allocation mechanism, which is against the laws of market
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and unfair to the buyers with high bid values. To avoid being involved in a buyer
group with lower bid value by the auctioneer, buyers with higher bid values may
prefer to collude with each other.

In this paper, we design STRUCTURE, A STRategyproof DoUble AuCtion
mechanism for HeTerogeneoUs SecondaRy SpEctrum markets, which includes
a bid-monotone channel allocation mechanism and a bid-independent payment
calculation mechanism. We say a channel allocation mechanism is bid-monotone
if a buyer/seller wins by bidding a bid value bi, then it will always win by any
bid values larger/smaller than bi. And we say a payment calculation mechanism
is bid-independent if there is no relationship between the payment and bid value
of each winner i. In our bid-monotone channel allocation mechanism, we first
propose a bid-dependent buyer group formation algorithm, which can maximize
the winning probability of buyers and can further avoid the case that the buyers
with high bid values collude with each other. We allocate heterogeneous channels
to the buyers iteratively in STRUCTURE. In each iteration, we first find the
buyer group with the highest bid value for each channel. Then, we allocate
channels to the buyers in the buyer groups with highest bid values. We assume
that each buyer only wants to buy one channel. However, one buyer may be
involved into multiple buyer groups in each iteration. If different buyer groups
with no less than one same buyer, we say they conflict with each other. In
this case, only the buyer group with the largest number of buyers will win the
auction in this iteration. The losing channels and buyers will participate in the
next iteration of the auction until there is no buyer wins in the auction. In our
bid-independent payment calculation mechanism, we prove that the payments
or charges of winners will not be decided by the bid values of their own. To the
best of our knowledge, we are the first to design strategyproof double spectrum
auction for heterogeneous spectrum channels with bid-dependent buyer group
constructing algorithm, which can avoid the collusion between buyers.

The major contributions of the proposed STRUCTURE can be identified as
follows:

– We propose a bid-dependent buyer group construction algorithm for hetero-
geneous spectrum channels, which can maximize the winning probability of
buyers and can further avoid the case that the buyers with high bid values
collude with each other.

– We design a strategyproof double spectrum auction mechanism for heteroge-
neous spectrum channels, which allocates channels to buyers iteratively and
can significantly improve the utilization of spectrums.

2 Preliminaries

2.1 Wireless Network Model

Consider a wireless network consisting of M spectrum owners (a.k.a sellers)
Q = {q1, q2, ..., qM}, a set of new users (a.k.a buyers) V = {1, 2, ..., N} and
a third-party auctioneer who hosts the auction. Spectrum owner qi holds some
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heterogeneous spectrum channels. We use S = {s1, s2, ..., sK} to denote channels
contributed by all the primary users. Each spectrum channel is denoted as sj =
{bj , rj ,Dj}, where bj is the bid of spectrum owner for the channel, rj is the
interference range of the channel and Dj is the description of the channel. The
description of channels may include their frequency, bandwidth, coverage area
and so on. The channels supplied by the spectrum owners may have different
frequencies and coverage areas, and these channels can accommodate to different
cellular networks. Thus, each buyer will only be interested in a part of them.
After reading the description of channels, the buyers will submit their profiles to
the auctioneer. The profile of each buyer i can be defined as i = {{bi,k}sk∈Si

, Li},
where Si is the interested channel set of buyer i, bi,k is the bid value of buyer
i for channel sk and Li is the location where buyer i wants to access in the
channel. We stress that if buyer i wins the auction, it only wants to buy one of
the channels in set Si. Thus, the auction result of different channels will influence
with each other. We also use vi,k to denote the true valuation of secondary user
i for channel sk. Note that buyers may submit bid values which are not equal to
their true valuations. Thus, we need to design mechanism to make sure that the
dominate strategy of buyers are bidding their true valuations. We also assume
that bi,k may not be equal to bi,p if k �= p in our work, which is very different
with the previous homogeneous spectrum auctions and makes our work more
challenging.

We say two secondary users i and l are conflicted with each other if the
distance between Li and Ll is smaller than twice of the interference radius of
the channel they used. Since the heterogeneous channels may have different
interference radii, the conflict relationships may be different for the same buyers
when they use different channels. Thus, we use a matrix C = (ci,j,l)N∗N∗M to
represent the conflict relationships of buyers, where ci,j,l = 1 if buyers i and l
conflict with each other in channel j, or ci,j,l = 0 otherwise. Since each buyer
is only interested in a part of the channels, we need a matrix Y = (yi,j)N∗M to
represent whether sj is in set Si, where yi,j = 1 if sj ∈ Si, or yi,j = 0 otherwise.
Thus two buyers i and l can share channel sj if and only if ci,j,l = 0 and yi,j = 1,
yl,j = 1.

2.2 Problem Formulation

The target of our work is to design a strategyproof double auction mechanism for
heterogeneous channels. The spectrum auction studied in this work is the sealed-
bid auction, which will be executed periodically. In each round, the buyers and
sellers first send their concealed profiles to the auctioneer, then the auctioneer
decides the winners as well as their payments.

We say a double auction mechanism is strategyproof if buyers or sellers bid
their true valuations then they will maximize their profits regardless of the bids
of others. If the auctioneer allocates channel sj to some buyers in the allocation
phase, we say channel sj wins the auction. A winning channel sj is getting paid
psj by the auctioneer. Then, the utility of the channel sj is us

j = psj−bj . The utility
(payment) of a seller is the total utility (payment) of winning channels that it
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supplied. If the auctioneer allocates a buyer i in one channel in the allocation
phase, then we say buyer i wins the auction. Each winning buyer i is charged pui
by the auctioneer. Suppose xi,j denotes whether the auctioneer allocates channel
sj to buyer i or not. Then, we let xi,j = 1 when the auctioneer allocates sj to
i, and xi,j = 0 otherwise. The payment of buyer i is pui =

∑
sj∈Si

pui,jxi,j , where
pui,j is the value of the auctioneer charged buyer i for channel sj . Thus, the
utility of buyer i is uu

i =
∑

sj∈Si
(bi,j − pui,j)xi,j . The payments, charges, and

corresponding utilities are all equal to zero for all losing buyers and channels.
The utility of the auctioneer is uA =

∑
i∈V pui − ∑

sj∈S psj .

2.3 Economic Requirements

Since some economic properties are essential in the double auction mechanism
design, we will briefly introduce these properties in this subsection.

(1) Individual Rationality : The auctioneer cannot charge pui,j ≥ bi,j for each
buyer i who wins channel sj , then the utility of each buyer will no less than zero.
At the same time, the auctioneer cannot pay psj ≤ bj for each winning channel,
then the utility of each seller will no less than zero.
(2) Ex-post Budget Balance : The gain of the auctioneer should be no less
than zero, i.e., the overall payment of all buyers who win in the auction should
be no less than the auctioneer’s total payment to the sellers.
(3) Strategy-Proofness (Truthfulness): Both buyers and sellers who partic-
ipate in the auction can achieve the maximum utilities only if they submit their
bids truthfully.

3 STRUCTURE: Mechanism Design

Given a set of heterogeneous spectrum channels S that is supplied by multiple
sellers and a set of buyers V, the STRUCTURE mechanism allocates channels
to buyers iteratively. In each iteration, STRUCTURE performs the auction in
three steps. We first forms a buyer group with highest bid value for each unal-
located heterogenous spectrum channel. Then, it decides which buyer groups
and channels win the auction in this iteration. Finally, the proposed mechanism
computes a bid-independent payment or charge for each winner.

3.1 Buyer Group Construction

Since the spectrum channels can be reused by some non-conflicting buyers, we
organize the buyers that are assigned to the same channel into one buyer group.
Moreover, all the channels are heterogenous and have different interference radii.
Thus, the conflict relationships of buyers are different for different channels. To
tackle this issue, the STRUCTURE first constructs the conflict graph Gj for
each channel sj , where one vertex in conflict graph Gj denotes the buyer who is
interested in sj and there exists an edge between two buyers if they are conflict
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Algorithm 1. Bid-dependent buyer group constructing mechanism
Require: The set of channels S, and the set of buyers V ;
Ensure: The buyer group sets with the highest bid values Gf = {gf

1 , ..., gf
K}, and the

buyer group sets with the second highest bid values Gs = {gs
1, ..., g

s
K};

1: for j = 1 to K do
2: gf

j =Max weight g f(Φ, Gj);
3: gs

j=Max weight g s(Φ, Gj);
4: return Gf and Gs;

with each other. Then, the STRUCTURE forms one buyer group for each channel
sj based on Gj since each channel can only be allocated to one buyer group finally.

In the existing studies, most of the buyer group formation algorithms are bid-
independent. For instance, [31] forms buyer groups through a random algorithm
and [21] views the buyer group formation problem as a unweighted maximum
K-colorable subgraph problem. In fact, a bid-independent buyer group forma-
tion method can greatly make the problem of designing strategyproof auction
mechanism becoming easier to solve. However, in order to ensure the proper-
ties of strategyproofness, almost all the winner determination mechanisms are
bid-dependent. We use Bgk to denote the bid value of buyer group gk, bmin

gk
to

denote the minimum bid value of buyers in gk and |gk| to denote the number of
buyers in gk. Then, Bgk = bmin

gk
∗ |gk|. It means that the bid value of each buyer

group is decided by the buyer with the lowest bid value in this group, which
in turn decides whether the buyer group can win the auction or not. Therefore,
unsuitable buyer group formation method may cause the buyers with high bid
values are willing to collude with each other to avoid being formed into one
buyer group with low bid value. To tackle this problem, we judiciously design a
bid-dependent buyer group constructing mechanism, as shown in Algorithm1.

Algorithm 2. Max weight g f(IS, G)
1: if G = Φ then
2: return IS;
3: else
4: randomly choose one buyer i in G;
5: delete i from G;
6: Temp G = G;
7: delete all the buyers which are conflicted with i from Temp G;
8: Temp IS1=Max weight g f(IS, G);
9: Temp IS2=Max weight g f(IS ∪ {i}, Temp G);

10: if BTemp IS1 > BTemp IS2 then
11: return Temp IS1;
12: else
13: return Temp IS2;
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In Algorithm 1, the function of Max weight g f(Φ, Gj) will return the buyer
group gfj which has the highest bid value for each channel sj . Then, the STRUC-
TURE constructs K buyer groups with top bid values for K channels, and pre-
pares to allocate channels to these buyer groups. To ensure the strategyproofness
of buyers, the payments of winning buyers should be independent of their own
bids. Assume that gsj is the buyer group constructed based on Gj , which has the
highest bid value and bmin

gs
j

does not come from a member of gfj . The STRUC-
TURE finds the buyer group gsj for each channel sj by running the function
of Max weight g s(Φ, Gj). The payment of gfj is Bgs

j
if it wins in the auction.

The details of Max weight g f(IS, G) and Max weight g s(IS, Gj) are shown in
Algorithms 2 and 3.

Algorithm 3. Max weight g s(IS, Gj)
1: if G = Φ then
2: return IS;
3: else
4: randomly choose one buyer i in Gj ;
5: delete i from Gj ;
6: Temp G = Gj ;
7: delete all the buyers that are conflicted with i from Temp G;
8: Temp IS1=Max weight g s(IS, Gj);
9: Temp IS2=Max weight g s(IS ∪ {i}, Temp G);

10: if BTemp IS1 > BTemp IS2 then
11: return Temp IS1;
12: else if i ∈ gf

j &bi,j = bmin
Temp IS2 then

13: return Temp IS1;
14: else
15: return Temp IS2;

We assume that all the buyers are rational and selfish, and each of them view
the process of buyer group construction as a game among buyers. In this game, it
is obvious that all the buyers want to improve their winning probabilities. Since
one buyer group with higher bid value also has a higher winning probability in
the auction, each buyer always wants to join into a group with higher bid. Thus,
we construct the buyer group with highest bid value for each channel in the
STRUCTURE, and the sellers are willing to sell channels to the buyers in these
buyer groups. The utility of buyers which are constructed in the buyer groups
with highest bid values are maximized by the STRUCTURE. Therefore, these
buyers have no incentive to collude with other buyers. Moreover, the collusion
between the buyers which are not in the buyer groups with highest bid values
will not affect our auction results. Thus, we can get that:

Theorem 1. STRUCTURE can avoid the collusion among buyers.
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3.2 Winner Determination and Payment Calculation

Let Gf = {gf1 , ..., gfK} be the buyer groups constructed by the STRUCTURE. We
say two buyer groups gfj and gfk are conflicting with each other if they have same
buyers. The STRUCTURE may construct one buyer into multiple buyer groups
if this buyer is interested in multiple heterogeneous channels. However, one buyer
only wants to pay for one channel if it wins the auction based on our assumption.
To improve the utilization of channels, the STRUCTURE always chooses the
buyer group with the largest number of buyers as winner if there exists conflicting
relationship. The details of the winner determination and payment calculation
algorithm in each iteration is shown in Algorithm4.

Algorithm 4. The winner determination and payment calculation algorithm
1: Sort the buyer groups in Gf in the descending order according to |gf

j |;
2: for j = 1 to the remaining buyer groups in Gf do
3: if Bgsj

≥ bj then

4: allocate sj to gf
j ;

5: for each buyer i ∈ gf
j do

6: set pu
i = Bgsj

/|gf
j |;

7: set ps
j = Bgsj

;

8: delete all the buyer groups that conflict with gf
j from Gf ;

Let |gfj | be the number of buyers in gfj . In Algorithm 4, the proposed STRUC-
TURE first sorts the buyer groups in descending order according to |gfj |, then
scans all the buyer groups one by one. When the buyer group gfj is being scanned,
we first compare the bid of gsj and the bid of channel sj . Then, STRUCTURE
allocates channel sj to the buyers in gfj if Bgs

j
≥ bj . To ensure the strategyproof-

ness of buyers and sellers, the payment of each winning buyer i is pui = Bgs
j
/|gfj |

if gfj wins the auction, and the payment of channel sj is Bgs
j
, if it wins the auc-

tion. After that, STRUCTURE deletes all the buyer groups which conflict with
gfj from Gf , and scans the next buyer group in Gf until all the buyer groups in
Gf have been scanned.

4 Analysis of the STRUCTURE

In this section, we will demonstrate all the essential economic properties of the
STRUCTURE mechanism.

Theorem 2. STRUCTURE is ex-post budget balanced and individual rational.

Proof. Due to page limits, the proof is referred to [18].



STRUCTURE: A Strategyproof Double Auction 435

In order to prove the strategyproofness of the STRUCTURE, we need to
show that for any buyer or seller, it cannot improve its own utility by bidding
any other bid values than its true valuation. For this, we first show that the
STRUCTURE is strategyproof for buyers.

Lemma 1. STRUCTURE is strategyproof for buyers.

Proof. There are only two cases that each buyer i may benefit from its untruthful
bidding. We now examine the two cases one by one.

Case 1: Buyer i loses the auction when it bids its true valuation and wins
when it bids untruthfully. That means buyer i fails to be constructed in the
buyer group with highest bid value of any its interested channel, or the buyer
groups which include i lose in the auction. If i wants to win the auction, it needs
to increase its bid value. Suppose i is allocated in sj when it increases its bid
value to b′

i,j . Let gfj be the buyer group constructed by Algorithm 1 when i

bids truthfully. Let gf
′

j and gs
′

j be the buyer groups constructed by Algorithm 1

when i bids untruthfully. Then, we can get that b′
i,j ∗ |gf ′

j | > Bgf
j

> vi,j ∗ |gf ′
j |.

Moreover, the probability of Bgs′
j

> vi,j ∗ |gf ′
j | is much larger than that of the

opposite. In the other words, pui is larger than vi,j in most of time. Thus, the
expected utility of buyer i will decrease when i bids b′

i,j > vi,j in this case, while
a rational buyer will not do that.

Case 2: Buyer i wins either it bids truthfully or untruthfully. In the situation
of STRUCTURE allocates the same channel sj to i when i bids truthfully and
untruthfully, Bgs

j
is also the same in this two situations. The payment of i is

decided by Bgs
j

and |gfj |. If i wants to decrease its payment, it needs to decrease
its bid lower than bmin

j . However, i has more opportunity to lose the auction but
not decrease its payment. Thus the expected utility of buyer i will not increase if i
decreases its bid lower than bmin

j . The other possible situation is STRUCTURE
allocates different channels i when i bids truthfully and untruthfully. Since i
has no way to get the bids and conflict relationship of buyers in our sealed-bid
auction, i has no idea about how to improve its utility even by telling untruthful
bid values.

In conclusion, buyers cannot improve their utilities by bidding untruthful
bids. Thus, the STRUCTURE is strategyproof for buyers. ��
Lemma 2. STRUCTURE is strategyproof for sellers.

Proof. We first show that each seller cannot obtain a higher utility from one chan-
nel by bidding an untruthful bid value. According to Algorithm4, STRUCTURE
scans the buyer groups according to their |gfj |. In other words, changing the bid
of a channel will not change the order it been scanned in each or which iteration.
This is only decided by the conflict relationships and the bids of buyers, but not
the bids of channels. When channel sj has been scanned, it will win as long as
bj ≤ Bgs

j
and the payment is always equal to Bgs

j
. Thus, each seller cannot obtain

a higher utility from one channel by bidding an untruthful bid value.
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Since each seller has multiple spectrum channels, sellers may improve their
utility by misreporting the bid values of parts of their channels. According to the
STRUCTURE, the auction between different channels will interfere with each
other only when there are common buyers in their buyer groups with highest bid
value and only one of them can win the auction. Assume that sj wins the auction
and sk loses and their owners bid their true valuations. We further assume that
sj and sk belong to the same seller and there are common buyers in gfj and gfk .
Note that we study the sealed-bid auction in this work. Thus, sellers have no
idea of the relationships or the bids of buyers. The expectation utility of the
seller that owns sj and sk will decrease if it changes its bid value to make sk
wins the auction and sj loses. This finishes our proof. ��

We have proved that the STRUCTURE is strategyproof for both buyers and
sellers, then we can get that:

Theorem 3. The proposed STRUCTURE mechanism is strategyproof.

5 Simulation Results

In this section, we conduct extensive simulations to evaluate the performance of
the proposed STRUCTURE. In order to show the improvement of the STRUC-
TURE, we compare it with the existing double auction mechanism TAMES [2].

5.1 Simulation Setup

We first introduce three major metrics to evaluate the performance of spectrum
auction mechanism, which are the buyer’s satisfaction ratio, spectrum transac-
tion ratio, and spectrum utilization. We define the buyer’s satisfaction ratio as
the ratio between the number of buyers who take part in the auction and the
number of buyers who win the auction. We define the spectrum transaction ratio
as the ratio between the total number of spectrum channels that supplied by sell-
ers and the number of spectrum channels that win the auction. The spectrum
utilization is the ratio between the number of winning buyers and the number
of winning spectrum channels.

In our simulation, we assume that all the buyers are randomly distributed
in a fixed area of 100 × 100 square units, the bid values of buyers are randomly
distributed in [70, 130], and the bid values of sellers for each spectrum channel are
randomly distributed in [100, 110]. The total number of spectrum channels that
supplied by sellers is 10, and the interference range of these spectrum channels
are randomly distributed in [20, 30]. In each set of evaluations, we vary the
number of buyers, and fix the other settings. All the results are averaged over
1000 rounds.
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5.2 Simulation Results

Figure 1 shows that the buyer’s satisfaction ratios achieved by TAMES and
STRUCTURE. We notice that the satisfaction ratios of the two auctions increase
as the number of buyers increases at first. This is because that more buyers may
lead to higher buyer group bid values, and more buyers and spectrum channels
will win the auction in the case of that there are plenty of spectrum channels.
Then, the satisfaction ratios will decrease as the number of buyers increases after
the number of buyers larger than 10. This is because there are only 10 spectrum
channels in our setting, and the increasing number of buyers means more com-
petition among them. Many buyers will lose the auction due to the confliction.
Thus, the increasing speed of the number of winning buyers will slower than the
increasing speed of number of losing buyers when there are plenty of buyers.
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Further, the STRUCTURE adopts a bid-dependent buyer group construct-
ing mechanism, which can ensure that the buyer group constructed for each
spectrum channel is the buyer group with highest bid values. However, the auc-
tion mechanisms with bid-independent buyer group construction mechanisms,
such as TAMES, may construct a set of buyer groups with small bid values,
whose bid values are smaller than the sellers’ bids. Thus, the buyer groups in
STRUCTURE have more chances to win the auction than the buyer groups in
TAMES. As shown in Fig. 1, the buyer’s satisfaction ratio of STRUCTURE is
obviously higher than that of the TAMES, which indicates that our evaluation
results corroborate our theoretical analysis.

Figure 2 shows the relationship between the spectrum transaction ratio and
the number of buyers. Since the bid values of buyer groups increases as the
number of buyers increases, the number of winning spectrum channels increases.
Moreover, the number of spectrum channels that supplied by the seller is
unchanged in our setting, thus spectrum transaction ratio increases as the num-
ber of buyers increases. We can also get that the STRUCTURE performs better
than TAMES, because STRUCTURE maximizes the bid value of each buyer
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group, but the TAMES only uses a greedy-like buyer group constructing mech-
anism without taking the bid values of buyers into consideration.

As shown in Fig. 3, the spectrum utilization of the STRUCTURE is better
than that of the TAMES. This is because STRUCTURE sells the spectrum
channels to the buyer groups with highest bid values, and the buyer groups with
higher bid value often have more buyers than the buyer groups with lower bid
values. Thus, the winning buyer groups of the STRUCTURE often have more
buyers than the winning buyer groups of the TAMES, which further enlarges
spectrum utilization.

In the STRUCTURE, the buyers with high bid values have more chances
to win the auction, as shown in Fig. 4. From Fig. 4, we also find that the bid
values of buyers in the TAMES have no direct relationship with their winning
probabilities. It means that buyers with high bid values in the TAMES are
willing to collude with others to improve their winning probabilities. However,
buyers cannot improve their winning probabilities by colluding with others in
the STRUCTURE. Thus, Fig. 4 shows why the STRUCTURE performs better
in avoiding the collusion of buyers.

6 Literature Review

Auction theory, regarded as an important subfield of economics and game theory,
serves as an efficient and fair way to redistribute various scarce resources among
competing participators. In recent years, auction theory has been successfully
applied in the wireless communication and networking fields [13,22,27–29].

Due to the demand for available spectrum resource is experiencing a rapid
growth, auction has also been widely studied in the scope of spectrum alloca-
tion. Many traditional state-of-art spectrum allocation studies failed to address
the truthful properties in mechanism design. To encourage participation, the
spectrum auction should be economically robust. Truthfulness (Strategyproof-
ness) is considered as one of the most critical economic factors in the auction
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design [4,9,17,19]. However, most of the classical strategyproof auction cannot
be directly applied in spectrum auction without changes due to some constraints,
such as spatial and temporal reuse.

The spectrum auction studies can be categorized into two major groups:
single-sided spectrum auction (one-seller and multi-buyer) [1,8,10,12,14,16,23,
25,26,30] and double spectrum auction (multi-seller and multi-buyer) [2,3,5,6,
11,15,20,21,31]. In the study of single-sided auction, most of the literatures con-
centrate on maximizing social efficiency or revenue with consideration of spatial
and temporal reuse. Strategyproofness is first addressed in [30] for single-sided
spectrum auction, where only spatial reuse is considered. [1] and [14] mainly focus
on the revenue maximization for auctioneer. [8] studied the trade-off between
social efficiency maximization and fairness while designing strategyproof auction
mechanism. Huang et al. first proposed a series of near-optimal strategyproof
spectrum auction mechanisms with performance guarantee, which jointly con-
sidered spatial and temporal reuse [12]. Compared to the single-sided auction,
double auction framework is more suitable for spectrum redistribution due to
its fairness and efficiency. TRUST [31] first took the extended McAfee double
auction model [17] into spectrum redistribution to achieve the essential eco-
nomic properties. Wang et al. proposed an economically robust double auction
with consideration of spectrum locality property [21]. Huang et al. first con-
sidered multi-unit double spectrum auction mechanism design [11]. Feng et al.
[6] first took the spectrum heterogeneity factor into consideration in the dou-
ble auction mechanism design. TAMES also focused on heterogeneous double
spectrum auction design, and it can be extended to comply with the multi-unit
spectrum trading [2]. However, all the above mentioned double auction mech-
anisms choose to adopt the bid-independent buyer group formation method to
achieve the strategyproofness, which may greatly simplify the economic proper-
ties demonstration. In comparison, this paper proposes a bid-dependent buyer
group constructing algorithm for heterogeneous spectrum channels, which can
maximize the winning probability of buyers and can further avoid the buyers
with high bid value colluding with each other.

7 Conclusion

We propose a strategyproof double auction mechanism, STRUCTURE, for het-
erogeneous spectrum channels. To avoid the collusion between buyers with high
bid values, we first design a bid-dependent buyer group constructing mechanism.
Then, we design a channel allocation mechanism, which can allocate spectrum
channels to the buyer groups iteratively and tackle the competition between spec-
trum channels. At last, we use a second-price payment calculation mechanism to
ensure the strategyproofness of both buyers and sellers. Our evaluation results
demonstrate that the proposed STRUCTURE not only achieves good buyer’s
satisfaction, spectrum transaction ratio and utilization, but also can avoid the
collusion of buyers.
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Abstract. Recent studies have increasingly turned to graph theory to
model Realistic Contact Networks (RCNs) for characterizing propaga-
tion dynamics. Several of these studies have demonstrated that RCNs are
best described as having exponential degree distributions. In this arti-
cle, based on the mobile data gathered from in-vehicle wireless devices,
we show that RCNs do not always have exponential degree distribu-
tions, especially in dynamic environments. On this basis, a model is
designed to recognize the structure of networks. Based on the model,
we investigate the impacts of network structure on disease dynamics
that is an important empirical study to the propagation dynamics. The
time-varying infected number R is the important parameter that is used
to quantify the disease dynamics. In this study, the prediction accuracy
for R is improved by utilizing realistic structural knowledge mined by
our recognition model.

Keywords: Reality mining · Mobile data · Structural knowledge · Prop-
agation dynamics

1 Introduction

In recent years, there have been increasing efforts to uncover, model, and under-
stand propagation processes arising over a wide variety of networks, e.g., propa-
gation of infectious diseases [3,4], propagation of information [9,10,15,23], and
even propagation of computer viruses [5,8]. Observing a propagation process,
and quantifying and predicting the dynamics of the propagation, are important
for: (i) reducing the transmission rate of an infectious disease, (ii) decreasing
the number of infected individuals during an epidemic, (iii) allocating public
health resources and responding to public health events, (iv) acquiring timely
c© Springer International Publishing Switzerland 2015
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and accurate information, (v) capturing a new behavior or a new development
tendency from the propagation of information/knowledge, and (vi) controlling
the number of infected nodes with the propagation of computer viruses. And
these propagation processes arise over a wide variety of networks. It is necessary
to figure out the impacts of network structure on the propagation dynamics, and
automatically recognize the network structure based on a recognition model.

As an important aspect of propagation dynamics [25], the quantification and
prediction of disease dynamics during epidemics [30,31] are very important in
allocating public health resources and in responding to public health events.
Underestimating the impact of a disease can lead to an inadequate public health
response, while overestimating can lead to the misallocation of limited public
health resources. The time-varying infected number R1 can be used to quan-
tify the disease dynamics during an epidemic, and a wide range of methods
have been proposed to estimate or predict the parameter R [1,11,21,27,28] with
time-based or network-based models. However, the existing methods are based
on Exponential Networks (ENs)2. Compared with the ENs, Realistic Contact
Networks (RCNs) [2] contain realistic structural knowledge that is helpful to
improve the prediction accuracy for disease dynamics during an epidemic.

In this article, based on the mobile data gathered from in-vehicle and hand-
held wireless devices, we show that RCNs do not always have exponential degree
distributions. On this basis, a model is designed to recognize the structure of
networks, for mining the knowledge of network structure. With the model, we
investigate the impacts of network structure on propagation dynamics. As the
important empirical study for the propagation dynamics, we investigate the
impacts of network structure on disease dynamics, and the key parameter R
is used to quantify the disease dynamics.

The scientific contributions of this article are shown as follows:

– We compare RCNs with ENs, and measure the differences between them in
their network structures with precise measurements.

– A model is designed to recognize the structure of networks.
– Real surveillance data is used to evaluate the prediction performance for R.

And realistic structural knowledge is used into the prediction, which is mined
and acquired by our recognition model.

The achieved main results of this article are: (i) RCNs do not always have
exponential degree distributions, (ii) the structural knowledge from RCNs is
helpful to improve the prediction accuracy for propagation dynamics, and (iii) as
the basic and important structural knowledge for networks, degree distribution,
is effective to reflect the structure of a network, and to improve the accuracy of
predicting for the infected number R.
1 R is defined as the number of infected cases during an epidemic over time.
2 In this study, the network with exponential degree distribution is named as “Expo-

nential Network”.
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The remainder of this article is organized as follows. Section 2 introduces
the preparatory work and methods of carrying out our study. In Sect. 3, fitting
results are shown and discussed in detail, and these results are about fitting the
network structure of RCNs into exponential, normal, poisson and power-law dis-
tributions. Based on these results, in Sect. 4, a model is designed to recognize the
structure of networks. In Sect. 5, we investigate the impacts of network structure
on propagation dynamics. With the structural knowledge of respective networks,
the prediction accuracy for R on the RCNs and ENs is measured respectively,
and the prediction results for R are compared with real surveillance data. As the
background of this study, Sect. 6 provides related work. This article is concluded
in Sect. 7.

2 Methods

Two types of networks and the real surveillance data of a disease outbreak are
used in our study. For evaluating the impacts of the structural knowledge about
networks on propagation dynamics, extensive experiments for a knowledge-based
Susceptible-Infected-Recovered (SIR) model [29] are run on these networks.

2.1 Networks

Two types of networks are used: (i) Exponential Networks, and (ii) Realistic
Contact Networks from the real physical world.

Exponential Networks. It has recently been demonstrated that empirical con-
tact networks are best described as having exponential degree distributions [2].

Through analyzing empirical contact networks [2] and based on the analysis
and proof of literature [1], a Bansal Network (BN) is implemented and used as
the EN. In the BN, each pair is generated using an algorithm of Bansal et al. [2]
(Greedy Rewiring Algorithm (Algorithm 1)).

The probability mass function (pmf) of BN’s degree distribution meets Eq. (1).

f(x;λ) =

{
λe−λx, x ≥ 0,

0, x < 0,
(1)

where x ∈ [0,∞) is the degree of a node, and λ > 0 is the key parameter of an
exponential distribution, which is called “rate parameter”. This can be described
as: X ∼ Exp(λ), which means the random variable X has an exponential distri-
bution.

The nodes of BN are labeled (1, ..., N), and an edge between two nodes
indicates the presence of a transmission probability for a disease from one node
to another. For example, there is a pair of nodes, i and j, i �= j, the edge between
them is e{i,j}, and the transmission probability on the edge between i and j is
given by p{i,j}.
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The input of Greedy Rewiring Algorithm is a connected and undirected net-
work G, and the algorithm rewires edges until the degree distribution of the
network becomes approximately exponential. In particular, the algorithm runs
until the coefficient of variation ( standard deviation(sd)

mathematical expectation(E[fx]) ) of the degree dis-
tribution is less than 1 (this ensures an exponential distribution of network).
The algorithm is described below and illustrated in Fig. 1.

Algorithm 1. Greedy rewiring algorithm
Input: A fully connected, undirected network G
1: select a random node i from the network G.
2: select a random edge e{i,j} from the network G such that the degree of node j is

greater than one.
3: select a random edge e{j,m} from the network G, where the selected node m has

the maximum probability of km/
∑

km, and km means the degree of node m.
Meanwhile m �= i and the node m is not the neighbor of node i.

4: If we find the appropriate node j and m, we remove the edge e{i,j} and add the
edge e{i,m} to the network G.

5: The termination condition for re-building the network G is: sd/E[fx] < 1
– sd is the standard deviation of the degree distribution
– The degree distribution of network G is fitted into an exponential distribution

fx
– E[fx] is the mathematical expectation of fx

Output: A network with exponential degree distribution

j

i

m

Fig. 1. Greedy rewiring process: node i is chosen at random, the edge e{i,j} is selected
at random from the edges of node i, and the edge e{j,m} is selected at random from the
edges of node j with probability proportion to the degree of node m. The edge e{i,j}
(shown with a dotted line) is removed and the edge e{i,m} (shown with a dashed line)
is added.

Realistic Contact Networks. Two RCNs from the real physical world are
studied in this article.

Vehicle-based contact network (Fig. 2). There are 2483 nodes in this network
with spatio-temporal GPS traces of vehicles, and the traces come from in-vehicle
and GPS-enabled wireless devices. The network can be modelled as a dynamic
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graph Gt with the time-varying velocities of different traffic segments, and the
velocities can be estimated using a combination of sources, including Automatic
Number Plate Recognition (ANPR) cameras, in-vehicle and GPS-enabled wire-
less devices and inductive loops built into road surfaces (a scenario is illustrated
in Fig. 3).
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Fig. 2. Vehicle-based contact network. Using the coordinates of junctions of each traffic
segment, the network can be built, where the black nodes are junctions, and the lines
between these junctions are traffic segments that are with different traffic velocities.

Fig. 3. A scenario of vehicle-based contact network. This network includes Automatic
Number Plate Recognition (ANPR) cameras, in-vehicle and GPS-enabled wireless
devices and inductive loops built into road surfaces. With this network, massive mobile
data of different traffic segments can be gathered based on various sensor nodes and
wireless devices. The mobile sensing data is gathered by the Highways Agency, in
England.

The dynamic graph Gt can be described as follows. An undirected weighted
graph Gt = (Vt, Et,Wt), where Vt is a set of nt vertices with an online sequence
of updates: (i) Delete(e{i,j}): delete the edge e{i,j} from Et and corresponding
vertices i and j from Vt; (ii) Insert(e{i,j}): insert the edge e{i,j} into Et and
corresponding vertices i and j into Vt; (iii) Update(w{i,j}): update the weight
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w{i,j} related to the edge e{i,j} to Wt, and the weight w{i,j} is the velocity on
the corresponding edge e{i,j}. On the above (i), (ii) and (iii) basis, the graph Gt

is updated, from Gt = (Vt, Et,Wt) to Gt+1 = (Vt+1, Et+1,Wt+1). It means that
at different time points, with different velocities on different traffic segments,
the transmission rates on these traffic segments are different. This vehicle-based
contact network is time-varying.

Moreover, the data for this network is gathered from all motorways and ‘A’
roads managed by the Highways Agency, in England. The data provides average
velocities and traffic flow information for 15-minute periods since April 2009
on these motorways and roads. The data includes these variables: (i) Segment
ID. A unique alphanumeric segment id represents a segment from one junction
(intersection) to another junction; (ii) Date. There is a date for each record; (iii)
Time Period. There are 96 time periods, 0-95, with 15-minute intervals, in a day
(1440 minutes); (iv) Average Velocity. The average velocity (km/h) of vehicles
on a traffic segment within a given 15-minute time period; (v) Segment Length.
The length of a traffic segment (km).

Human-based contact network. There are 942 nodes in this network. With
the wireless communication devices held by volunteers of epidemic areas, the vol-
unteers report new cases (confirmed and suspected cases), corresponding loca-
tions, and relationships between these cases, and then, these reported cases with
corresponding locations can be used to build the human-based contact network
(an example is shown in Fig. 4). During an epidemic, the network is time-varying
along with the propagation of an infectious disease, with the order of time stamps
of reports. As the vehicle-based contact network, the human-based contact net-
work can be modelled as a dynamic graph Gt. However, the weight w{i,j} is the
transmission probability (p{i,j}) of a disease from vertex i to vertex j (on the
corresponding edge e{i,j}). For this network, there are four variables: (i) Case
ID. A unique number indicates a case; (ii) Source ID. A source id indicates the
source of infection for a case; (iii) Date. It is the date that a case is reported; (iv)
Location. It indicates the coordinates (longitude and latitude) of a reported case.

2.2 Outbreak Data

The outbreak data of Ebola in West Africa from March 2014, is used as real
surveillance data to evaluate the prediction performance for R on RCNs and
ENs.

As a latest outbreak of disease, until February 15, 2015, Ebola Virus Disease
(EVD. It is commonly known as “Ebola”) has killed 9380 people, and the total
cases have reached 23253. Researchers generally believe that from a 2-year-old
boy of Guinea to his mother, sister and grandmother (a human-based contact
network), Ebola rapidly spreads in West Africa, from March 2014.

The reported Ebola cases with time series and location information are gath-
ered by the World Health Organization (WHO), as well as the ministries of health
of epidemic countries. And in this study, we select part of data from three typ-
ical outbreak countries, Guinea, Nigeria and Liberia. Guinea is the source of
this outbreak and is with relatively high quantity of confirmed cases (2727, as of



448 Y. Chen et al.

4 6 8 10 12 14
−1

5
−1

0
−5

0
5

X

Y
4 6 8 10 12 14

−1
5

−1
0

−5
0

5

Fig. 4. An example of our human-based contact network. This example displays 50
cases and their relationships (contact), from three typical countries and seven regions
of the Ebola outbreak in 2014. Three countries are: Guinea, Nigeria and Liberia. Seven
regions are: Gueckedou, Macenta, Kissidougou, Conakry, Monrovia, Lagos and Port
Harcourt. The black nodes of this network are cases (suspected and confirmed) and
if there is an edge between two nodes, it means that there is contact between the
individuals of the two cases.

February 15, 2015), and Nigeria is far away from the source of the outbreak, and
is with relatively low quantity of confirmed cases (19, as of February 15, 2015),
and Liberia is close to the source of the outbreak, and is with high quantity
of confirmed cases (3149, as of February 15, 2015). And seven regions of these
three countries are: Gueckedou of Guinea, Macenta of Guinea, Kissidougou of
Guinea, Conakry of Guinea, Monrovia of Liberia, Lagos of Nigeria, and Port
Harcourt of Nigeria. And these variables are included in the outbreak data: (i)
Case ID. A unique number indicates a case; (ii) Source ID. A source id indicates
the source of infection for a case; (iii) Date. It is the date that a case is reported;
(iv) Location. It indicates the coordinates (longitude and latitude) of a reported
case.

2.3 Methods

A knowledge-based SIR model is used to evaluate the impacts of network struc-
ture on disease dynamics. As the results of this evaluation, the number of infected
cases (infected number R) is calculated for each time period (different time peri-
ods have different network structures along with the propagation of a disease
during an epidemic).

The SIR model is a model from epidemiology [13]. This model is developed
to describe the propagation of an epidemic that occurs during a period of time.
The individuals of a contact network might be in three states: Susceptible (S),
Infected (I) and Recovered (R). Susceptible individuals become infected at a
given rate through contact with infected individuals. Infected individuals recover
with a given rate and become recovered. The model is capable of showing the
important parameter R which is measured to quantify the disease dynamics
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during an epidemic. The parameter R is the number of infected cases over time.
In this study, we consider a knowledge-based SIR model with the knowledge of
network structure.

Moreover, we consider different time periods (t), for our RCNs. For the
vehicle-based contact network, the unit of time period is “15 minutes”, and
for the human-based contact network, the unit of time period is “day”. And for
comparing the impacts of different networks, the ratio RA/B is used to measure
the different impacts of the network A and the network B. And for a network,
the degree distribution is used to characterize and reflect the structure of the
network.

3 Results and Analysis

To evaluate the impacts of network structure on disease dynamics, the basic and
important structural knowledge of networks, degree distribution, is measured
and compared for each network that is studied in this article.

In a network, the degree of a node is its most basic structural knowledge, and
it indicates the number of adjacent edges of the node. The degree distribution is
the probability distribution of these degrees over the network. It gives the overall
structural information of the network. For a real-world network, the relationships
between nodes are complex. The degree distribution is helpful to characterize
and model a real-world network. On this basis, the structural knowledge of a
complex network can be acquired and formulated. The formulated knowledge is
effective for analyzing and solving network-related problems.

In this study, we analyze the degree distributions of RCNs in detail, by
conducting maximum-likelihood fitting to fit the degree distributions of these
networks into exponential, normal, poisson and power-law distributions [2], and
calculating and comparing the estimated standard deviations and the estimated
variance-covariance matrices of these fittings.

Vehicle-based Contact Network. Figure 5 illustrates the degree distribution
of vehicle-based contact network.

From Fig. 5, we can observe that the degrees of nodes are not exponen-
tial distribution, in this real-world contact network. For figuring out the differ-
ences between them, the degree distribution of vehicle-based contact network and
exponential, normal, poisson and power-law distributions, maximum-likelihood
fitting is conducted to fit the degree distribution of vehicle-based contact network
into exponential, normal, poisson and power-law distributions (Fig. 6), and then
the estimated standard deviations and the estimated variance-covariance matri-
ces of these fittings are measured to quantify “how many differences between
two different degree distributions”.

With these fittings that are shown in Fig. 6, corresponding parameter esti-
mates can be calculated, for example, using maximum-likelihood fitting, the
most likely value of parameter λ (rate parameter) is 0.4966, for the fitting with
the exponential distribution. Corresponding estimated standard deviations and
estimated variance-covariance matrices are measured, and these deviations and
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Fig. 5. Degree distribution of our vehicle-based contact network. There are 2483 nodes
and 2500 edges in this network. The black spots are the probability distribution of
nodes’ degrees.
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Fig. 6. Maximum-likelihood fitting of degree distributions. The degree distribution of
vehicle-based contact network is fitted into exponential, normal, poisson and power-law
distributions with maximum-likelihood fitting. The black spots display the probability
distribution of nodes’ degrees to the vehicle-based contact network, and the red lines are
the corresponding fittings for exponential, normal, poisson and power-law distributions.

matrices are calculated by comparing with standard distributions that are with
corresponding parameter estimates, for example, the exponential distribution
with λ = 0.4966 is used as the standard distribution for the fitting with the
exponential distribution. These deviations and matrices show how many differ-
ences between two distributions. Moreover, the parameter estimates for different
distributions from maximum-likelihood fitting, are listed as follows: (i) the rate
parameter λ of exponential distribution is 0.4966, (ii) μ = 2.013693113 and
σ = 0.539810394 for the normal distribution, (iii) λ = 2.013693 for the poisson
distribution, (iv) xmin = 2 and α = 5.785002 for the power-law distribution.

Table 1 shows the estimated standard deviations and the estimated variance-
covariance matrices of these fittings.
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Table 1. Estimated standard deviations and estimated variance-covariance matrices
for different fittings

Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.009965942
rate parameter

rate parameter 9.932e − 05

Normal μ (mean): 0.010833103, σ (standard
deviation (sd)): 0.007660161

mean sd

mean 0.0001173561 0.0000000000

sd 0.0000000000 5.867806e − 05

Poisson λ (lambda): 0.02847792
lambda

lambda 0.000810992

Power-law xmin + α: 0.006375843 NULL

From the fitting results displayed in Fig. 6 and Table 1, the degree distribution
of nodes for the vehicle-based contact network, is approximate to the power-law
distribution with xmin = 2 and α = 5.785002 and with the standard deviation
0.006375843.

Human-based Contact Network. Fig. 7a illustrates the degree distribution
of human-based contact network. On Fig. 7a basis, for figuring out the degree
distribution of human-based contact network, maximum-likelihood fitting is con-
ducted to fit the degree distribution of human-based contact network into expo-
nential, normal, poisson and power-law distributions, and then the estimated
standard deviations and the estimated variance-covariance matrices of these fit-
tings are measured to quantify “how many differences between two different
distributions”. The results of fittings are illustrated in Fig. 7b.

In Fig. 7, the results show that the degree distribution of human-based con-
tact network is approximate to the exponential distribution with λ = 0.50159915.

The parameter estimates for different distributions from maximum-likelihood
fitting are: (i) the rate parameter λ = 0.50159915 for the exponential distribu-
tion, (ii) μ = 1.99362380 and σ = 2.77914691 for the normal distribution, (iii)
λ = 1.9936238 for the poisson distribution, and (iv) xmin = 2 and α = 2.803973
for the power-law distribution.

Table 2 shows the estimated standard deviations and the estimated variance-
covariance matrices of these fittings.

Comparing the estimated standard deviations and estimated variance-
covariance matrices listed in Table 2, the minimum standard deviation for these
fittings is 0.01635166. This minimum standard deviation is corresponding to the
exponential distribution with the rate parameter λ = 0.50159915.

However, based on the descriptions for the networks that are studied in this
article, the human-based contact network is time-varying along with the prop-
agation of an infectious disease. As an example, the analysis results of the sub-
network that is with 96 time periods of August 26th, 20143, are shown in Fig. 8
and Table 3.
3 This subnetwork is obtained by a time-based sample. It is the contact network of

this day, August 26th, 2014.
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(a) Degree distribution of our human-
based contact network. There are 942
nodes and 938 edges in this network.
The black spots are the probability dis-
tribution of nodes’ degrees.
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(b) Maximum-likelihood fitting of de-
gree distributions. The degree distri-
bution of human-based contact net-
work is fitted into exponential, nor-
mal, poisson and power-law distribu-
tions with maximum-likelihood fitting.
The black spots display the probabil-
ity distribution of nodes’ degrees to the
human-based contact network, and the
red lines are the corresponding fittings
for exponential, normal, poisson and
power-law distributions.

Fig. 7. Degree distribution and maximum-likelihood fitting for our human-based con-
tact network.

Table 2. Estimated standard deviations and estimated variance-covariance matrices
for different fittings

Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.01635166
rate parameter

rate parameter 2.673769e − 04

Normal μ (mean): 0.09059760, σ (standard
deviation (sd)): 0.06406218

mean sd

mean 0.008207925 0.000000000

sd 0.000000000 0.004103963

Poisson λ (lambda): 0.0460285
lambda

lambda 0.002118623

Power-law xmin + α: 0.03831463 NULL

With the fittings for the subnetwork of human-based contact network, the para-
meter estimates fordifferentdistributionsare: (i) the rateparameterλ = 0.74796748
for the exponential distribution, (ii) μ = 1.33695652 and σ = 1.00841216 for the
normal distribution, (iii) λ = 1.33695652 for the poisson distribution, and (iv)
xmin = 1 and α = 3.041947 for the power-law distribution.
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(a) Degree distribution for the subnet-
work of human-based contact network.
There are 96 time periods of August
26th, 2014 in this network. The black
spots are the probability distribution of
nodes’ degrees.

1 2 3 4 5 6 7

0
50

10
0

15
0

Exponential distribution

Degree

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
50

10
0

15
0

1 2 3 4 5 6 7

0
50

10
0

15
0

Normal distribution

Degree

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
50

10
0

15
0

1 2 3 4 5 6 7

0
50

10
0

15
0

Poisson distribution

Degree

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
50

10
0

15
0

1 2 3 4 5 6 7

0
50

10
0

15
0

Power−law distribution

Degree

Fr
eq

ue
nc

y

1 2 3 4 5 6 7

0
50

10
0

15
0

(b) Maximum-likelihood fitting of
degree distributions. The degree
distribution for the subnetwork of
human-based contact network is fitted
into exponential, normal, poisson
and power-law distributions with
maximum-likelihood fitting. The
black spots display the probability
distribution of nodes’ degrees to the
subnetwork, and the red lines are the
corresponding fittings for exponen-
tial, normal, poisson and power-law
distributions.

Fig. 8. Degree distribution and maximum-likelihood fitting for the subnetwork of
human-based contact network.

Table 3 shows the estimated standard deviations and the estimated variance-
covariance matrices of the fittings for the subnetwork.

From the fitting results for the subnetwork of August 26th, 2014, which are
listed in Table 3, the degree distribution of the subnetwork is approximate to the
power-law distribution with xmin = 1 and α = 3.041947.

With the above detailed analyses on the structure of networks, this fact can
be observed: network structure is different to different networks, and is time-
varying to dynamic networks.

4 Recognition Model of Network Structure

Because network structure is different to different networks, and the network
structure is time-varying to dynamic networks, it is necessary to recognize the
structure of a network, for analyzing the propagation dynamics on the network.

Our recognition model consists of: fitting, selection and parameter adjust-
ment, and it can be formulated and described as follows:
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Table 3. Estimated standard deviations and estimated variance-covariance matrices
for different fittings

Distribution Standard deviation Variance-covariance matrix

Exponential λ (rate parameter): 0.05514089
rate parameter

rate parameter 0.003040518

Normal μ (mean): 0.07434113, σ (standard
deviation (sd)): 0.05256712

mean sd

mean 0.005526604 0.000000000

sd 0.000000000 0.002763302

Poisson λ (lambda): 0.08524123
lambda

lambda 0.007266068

Power-law xmin + α: 0.02865438 NULL

– As the first step of model, the fitting is to fit the structure of a network
into exponential, normal, poisson and power-law distributions with maximum-
likelihood fitting, and the fitting calculates the parameter estimates and stan-
dard deviations to corresponding distributions. The parameter estimates and
standard deviations to corresponding distributions, can be denoted as: (i)
peexp and sdexp for the exponential distribution, (ii) penorm, sdμ,norm and
sdσ,norm for the normal distribution, (iii) pepois and sdpois for the poisson
distribution, and (iv) pepl and sdpl for the power-law distribution.

– And then, the selection is to select an approximate distribution by comparing
the calculated standard deviations of four distributions. This step is denoted
as:
min{sdexp, sdnorm = sdμ,norm+sdσ,norm

2 , sdpois, sdpl}.
– Finally, our model uses the standard deviation of the selected approximate

distribution to adjust the degree distribution function of the selected approx-
imate distribution, and the selected approximate distribution is with the cor-
responding parameter estimate calculated by the fitting of first step.

Degree distribution functions and the detailed process of adjustment are intro-
duced as follows:

(i) The degree distribution functions of exponential, normal, poisson and
power-law distributions:

– The degree distribution function of exponential distribution is: f(x;λ) =
λe−λx(x ≥ 0).

– The degree distribution function of normal distribution is: f(x;μ, σ) =
1

σ
√
2π

e− (x−μ)2

2σ2 .

– The degree distribution function of poisson distribution is: f(x;λ) = λxe−λ

x! .
– The degree distribution function of power-law distribution is: f(x;xmin, α) =

α−1
xmin ( x

xmin )−α.
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(ii) The detailed process of adjustment:
Based on (i) above degree distribution functions, and (ii) the parameter

estimates and standard deviations to corresponding distributions, the adjusted
degree distribution functions can be obtained and these adjusted degree dis-
tribution functions reflect the structure of real networks. The adjusted degree
distribution functions to corresponding distributions are listed in Eq. (2).

f(x; (λ ± sdexp)) = (λ ± sdexp)e−(λ±sdexp)x(x ≥ 0),
f(x; (μ ± sdμ,norm, (σ ± sdσ,norm)

=
1

(σ ± sdσ,norm)
√

2π
e
− (x−(μ±sdμ,norm))2

2(σ±sdσ,norm)2 ,

f(x; (λ ± sdpois)) =
(λ ± sdpois)xe−(λ±sdpois)

x!
,

f(x; (xmin ± sdpl), (α ± sdpl))

=
(α ± sdpl) − 1
(xmin ± sdpl)

(
x

(xmin ± sdpl)
)−(α±sdpl).

(2)

An example is provided to explain the adjustment. The human-based contact
network is approximate to the exponential distribution with λ = 0.50159915, and
the standard deviation from the rate parameter λ of this exponential distribu-
tion is 0.01635166, so the degree distribution function of this human-based con-
tact network can be denoted as: f(x; 0.50159915 ± 0.01635166) = (0.50159915 ±
0.01635166)e−(0.50159915±0.01635166)x(x ≥ 0). And the degree distribution func-
tion can be used to reflect the network structure of this human-based contact
network.

5 Evaluation

We investigate the impacts of network structure on propagation dynamics. With
the structural knowledge of respective networks, the prediction accuracy for R
on the RCNs and ENs is measured respectively, and the prediction results for R
are compared with real surveillance data.

Knowledge-based SIR Model. For a SIR model, the following differential
equations represent this model:

dS

dt
= δR − βSI,

dI

dt
= βSI − γI,

dR

dt
= γI − δR,

(3)

where β is the rate at which susceptible individuals contract the disease when
exposed to infection, γ is the rate at which infected individuals recover from
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the disease and δ is the rate at which recovered individuals lose immunity and
become susceptible again.

The important parameter I in Eq. (3) indicates an individual is infected, and
is used to calculate the infected number R. In this study, our SIR model is based
on the knowledge of network structure. For our knowledge-based SIR model, the
important parameter I is formulated in Eq. (4).

I = β0 + β1f(x), (4)

where f(x) is the degree distribution function of a network, and it can be
acquired by our recognition model.

Parameter Configuration of Experiments. Based on the description of BN,
a BN is an exponential network. For the comparability with RNs, the values of
rate parameter λ for BNs are set to: (i) 0.4966 corresponding to our vehicle-
based contact network, and (ii) 0.50159915 corresponding to our human-based
contact network. And the number of nodes: (i) the BN with λ = 0.4966, is 2483,
and (ii) the BN with λ = 0.50159915, is 942.

We repeat the process 100000 times for each network in our experiments with
different randomly selected individuals. We use the average number of infected
cases across all 100000 realizations as the value of R for each network.

Prediction Accuracy for R. Based on our knowledge-based SIR model, exten-
sive experiments are run on different networks, and on these experiments basis,
the infected number R can be predicted, and the parameter R is time-varying
to reflect the propagation dynamics of a disease. And the prediction results for
R from different networks are compared with real surveillance data, to show
network structure impacts the propagation dynamics on the network. And uti-
lizing realistic structural knowledge can help to improve the prediction accuracy
for R that is used to reflect the propagation dynamics on a network. Figure 9
illustrates: (i) the prediction results, and (ii) the comparison of the prediction
results and real surveillance data.

From Fig. 9, we acquire: with realistic structural knowledge of networks, the
prediction accuracy for R is improved, and network structure impacts prop-
agation dynamics. For comparing the impacts of different networks, the ratio
RA/B = RA

RB
is calculated, at different time points, respectively, to measure

the different impacts of the network A and the network B. First, we use A to
denote real surveillance data, B to denote our vehicle-based contact network, C
to denote our human-based contact network, D to denote the BN with λ = 0.4966
and 2483 nodes, and E to denote the BN with λ = 0.50159915 and 942 nodes.
And then, Rt

A/B denotes the ratio for network A and network B, at the tth time
point. Finally, Rt

B/A, Rt
C/A, Rt

D/A and Rt
E/A (t = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

(12 months)) are calculated and listed in Table 4.
The ratios listed in Table 4, are all different, so the impacts of these networks

on propagation dynamics are different.
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Fig. 9. Comparison of prediction results and real surveillance data. (i) The black line
with triangular spots displays the acquired result by mining real surveillance data. (ii)
The green line with star spots is the prediction result on our vehicle-based contact
network. (iii) The red line with diamond-shaped spots is the prediction result on our
human-based contact network. (iv) The pink line with square spots is the prediction
result on the BN with λ = 0.4966 and 2483 nodes. (v) The blue line with circular spots
is the prediction result on the BN with λ = 0.50159915 and 942 nodes (Color figure
online).

Table 4. Ratios of R to measure the different impacts of two different networks on
propagation dynamics

Rt
B/A Rt

C/A Rt
D/A Rt

E/A

t=1 0.91 2.6 0.039 0.052

t=2 0.82 0.58 0.11 0.16

t=3 1.3 0 0.43 0.75

t=4 1.8 0 1.7 2.5

t=5 2.2 0 5.5 5.8

t=6 3.1 0 14 11

t=7 5.2 0 31 19

t=8 6.7 0 60 28

t=9 8 0 105.7 40.9

t=10 5 0 186.5 63.5

t=11 35 0 281.5 84

t=12 10 0 550 148.5

6 Related Work

6.1 Propagation Dynamics

Understanding the propagation processes arising over a wide variety of network
structures is very important to mine useful knowledge about how a behavior
on a network to impact the nodes of the network, and even is helpful to model
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the behavior. In recent years, there is an increasing effort to study propagation
dynamics based on a variety of networks. Recent achievements can be divided
into two categories based on different types of networks:

– The propagation dynamics of information on social networks [14,17]. In the
information propagation of social networks, exponential and power-law models
that reflect network structure have been widely used to model the dynamics
of propagation [9,26]. Not only the network structure but also the prior prob-
abilities of activation of edges [22] or the transmission rates of networks [7] are
used to study the propagation dynamics of information on social networks.

– The propagation dynamics of real phenomena on contact networks. The con-
tact networks describe the real relationships between individuals/systems of
the physical world. Based on the real relationships from the physical world,
the propagation dynamics on these networks is different from the propagation
dynamics on social networks. With the development of the IoT (Internet of
Things) and the help of various sensors and wireless devices, some researchers
have paid their attention to this propagation dynamics, and have obtained
some achievements: (i) for the propagation of infectious diseases [6,12,18,24],
and (ii) for the propagation of contaminants [16]. Analyzing and studying the
dynamics of propagation between individuals/systems can help us to under-
stand and control the propagation dynamics on these real networks.

Some previous achievements assume networks to be static so that information
propagates over these networks that their structures remain constant over time,
and these achievements consider that different networks possess similar network
structures and the structures of different networks can be modelled into unified
models, e.g., exponential models and power-law models.

6.2 Disease Dynamics

As an important aspect of propagation dynamics, the disease dynamics on con-
tact networks has been widely studied.

The quantification and prediction of disease dynamics during epidemics
[20,30,31] are very important to public health [19] in allocating public health
resources and in responding to public health events.

The infected number R can be used to quantify the disease dynamics during
epidemics. For studying the quantized disease dynamics, a wide range of meth-
ods have been proposed to estimate or predict R [1,11,21,27,28] based on the
assumptions of network structure, e.g., the contact networks for the spread of
disease are best described as having exponential degree distributions [2].

However, realistic contact networks are not always and absolutely with the
assumptions of network structure (e.g., exponential degree distributions). For
improving the accuracy of estimating and predicting for R during an epidemic
on a network, the realistic structure of the network needs to be mined.
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7 Conclusion

In this article, we have mined the impacts of network structure on propagation
dynamics through studying the disease dynamics that is an important aspect of
propagation dynamics. Our study is based on the mobile data gathered from the
real physical world, and with the mobile data, two RCNs are built, and as a com-
parison, we have implemented exponential networks using the greedy rewiring
algorithm that is proposed by Bansal et al. Exponential networks are widely
used into RCN-based studies, and it has been demonstrated that the RCNs are
best described as having exponential degree distributions. As a key result of
this study, we have observed that RCNs do not always have exponential degree
distributions, especially in dynamic environments. On this result basis, we have
designed a model to recognize the structure of a network. Based on the model,
we have investigated the impacts of network structure on propagation dynamics
with evaluating and comparing the accuracy of prediction for the time-varying
infected number R. In this comparing, the prediction results for R from differ-
ent networks are compared with real surveillance data. From this investigation,
we have obtained another key result of this study, the structure of a network
impacts the propagation dynamics related on this network, and the prediction
accuracy for R can be improved by utilizing realistic structural knowledge mined
by our recognition model.
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Abstract. Journaling technique is widely used in modern file systems
for high reliability and fast recovery from system failures. However, jour-
naling mechanism accounts for extra journal traffic flushed from the
buffer cache to storage, greatly impeding the performance of file sys-
tems. Emerging non-volatile memory (NVM) technologies bring a new
perspective of resolving this issue. But replacing DRAM with NVM as
the whole buffer cache encounters the challenge of limited lifetime of
NVM. As such, in this paper, we exploit a hybrid NVM-DRAM buffer
cache architecture to optimize the journaling overhead using the non-
volatility of NVM and the unlimited write endurance of DRAM. We
propose a novel page management policy to direct page placement and
migration while ensuring DRAM absorb most writes. Besides, a write-
burst predictor is presented to further reduce write activities on NVM to
prolong the lifespan of the hybrid buffer cache. Furthermore, we present
a hybrid-commit journaling scheme to support the in-place commit of
NVM and the in-memory commit of DRAM. We implement the pro-
posed techniques on Linux 2.6.38 and measure the performance with
various file I/O benchmarks. The experimental results show that our
scheme significantly improves the I/O performance compared with the
existing Linux buffer cache with ext4 and prolongs the lifetime compared
with the NVM based buffer cache.

Keywords: Reliability · Journaling · Non-volatile memory · Perfor-
mance

1 Introduction

Reliability is an important issue in computer systems. But in traditional systems,
an unexpected event, such as a system crash or a power failure, may result in
an inconsistent and/or out-of-date file system. In order to relieve this problem,
modern file systems exploit the journaling technique, which keeps track of the
changes that will be made in a journal space before committing them to the
main file system, to improve the reliability and robustness. Though the journal-
ing is designed for high reliability and fast recovery from system failures, it is a
serious impediment to high I/O performance since the journal space is usually a
c© Springer International Publishing Switzerland 2015
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dedicated area in storage, which causes extra write traffic and frequent storage
accesses. For example, one source [1] reports that the write traffic with journal-
ing is about 2.7 times more than that without journaling on average. Besides,
in cloud storage systems, even though there is consensus that journaling is nec-
essary, it is not deployed due to the high cost of network accesses involved in
journaling [2]. Thus, high journaling overhead hinders the reliability benefit of
the journaling technique.

Fortunately, emerging non-volatile memory (NVM) technologies bring a new
perspective of resolving this issue. Non-volatile memories, such as PCM (Phase-
change memory), STT-RAM (Spin-Transfer Torque RAM) and RRAM (Resis-
tive RAM), have recently been extensively studied as promising alternative of
DRAM, which has been widely used as main memory for decades. Compared
with DRAM, NVM shows its advantages of non-volatility, higher density, bet-
ter scalability and energy efficiency. However, the drawbacks of asymmetric
read/write operations and limited write endurance make NVM unfit for com-
pleted replacement of DRAM. As such, hybrid NVM-DRAM main memory, as
an ideal architecture, is proposed to utilize the respective strengths of NVM and
DRAM [3–7].

The hybrid NVM-DRAM architecture brings a non-volatile main memory
which maintains data even after a power failure. Therefore, compared with tra-
ditional file systems, introducing NVM to buffer cache can effectively remove
the journal traffic since the data in buffer cache can act its own journal without
committing to permanent storage, e.g. flash or disk. However, directly replac-
ing DRAM with NVM as the buffer cache encounters the challenge of limited
lifetime of NVM since in most caces, the buffer cache is accessed when read-
ing from or writing to storage. Hence, in order to avoid NVM being worn out
within a short period of time, in this paper, we adopt a hybrid NVM-DRAM
based buffer cache, utilizing the non-volatility of NVM and the unlimited write
endurance of DRAM, to relieve the performance degradation caused by journal-
ing and improve the lifespan of the hybrid main memory.

However, the hybrid buffer cache architecture complicates the page man-
agement policy of traditional file systems. Writing to NVM removes the journal
traffic from buffer cache to storage since NVM is non-volatile, but a bulk of writes
affects the lifetime of the hybrid memory. Writing to DRAM has no impacts on
the lifetime of NVM, but it causes extra in-memory migrations between DRAM
and NVM since the updates to file system have to be copied from DRAM to
NVM as journal. Though the in-memory copy is much faster than that from
main memory to storage, it still impedes the performance of file system.

Our goal is to improve the performance of journaling file system without
any loss of reliability. Meanwhile, we utmostly prolong the lifetime of the hybrid
buffer cache by reducing write accesses to NVM. The main contributions of this
paper can be summarized as follows:

(1) We propose a novel page management policy for the hybrid NVM-DRAM
based buffer cache. The policy directs page placement and migration between
NVM and DRAM, taking both high performance and less writes to NVM
into account.
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(2) We put forward a hybrid-commit journaling mechanism for the hybrid buffer
cache. The mechanism comprises the in-place commit of NVM and the in-
memory commit of DRAM, removing all the I/O traffic caused by journaling.

(3) We implement our page management policy and the hybrid-commit jour-
naling scheme on Linux 2.6.38. The experimental results show the hybrid
buffer cache with proposed techniques significantly improve the I/O perfor-
mance compared to the existing Linux buffer cache with ext4 and prolong
the lifetime compared to the NVM based buffer cache.

The remainder of this paper is organized as follows. Section 2 reports the
background of NVM and DRAM, journaling technique and the hybrid buffer
cache architecture employed in our work. Section 3 presents our page manage-
ment policy. Section 4 describes the hybrid-commit journaling scheme for the
hybrid buffer cache. Experimental results and correlation analysis are presented
in Sect. 5. Section 6 describes the previous work and finally, this paper is con-
cluded in Sect. 7.

2 Background and Problem Analysis

2.1 Non-volatile Memory

Recently, non-volatile memory technologies have received intensive attention.
Compared with DRAM, NVM shows the advantages in many aspects, such as
non-volatility, better scalability and low power. It is worth mentioning that the
access time of NVM is in the nanosecond range. For example, one source reports
a read latency of 50 ns and a write latency of 60-120 ns for PCM, and less than
20 ns read and write latency for STT-RAM [8]. In addition, NVM has higher
density than DRAM. For example, PCM holds about four times more data than
DRAM cells in the same area [7]. As such, all these benefits make NVM become
a promising substitute main memory of DRAM, especially for embedded devices
and energy hungry computer systems, providing disk-like data persistence at
DRAM-like latency.

However, NVM has limited number of writes which significantly limits its
lifetime. For example, state-of-the-art process technology has demonstrated that
the maximum writes number of PCM is only around 108 to 109. Therefore, hybrid
main memory architecture, as an ideal architecture, has been proposed to utilize
the respective strengths of DRAM and NVM.

2.2 Journaling Technique

Journaling technique employs transaction based recovery protocols to provide
the ACID (Atomicity, Consistency, Isolation, Durability) properties for file sys-
tems. Journaling file system reserves a journal space in addition to the real file
system image in permanent storage. The file system periodically creates trans-
actions to log the updates to file system and commits the updates to journal
space.
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Unfortunately, journaling technique greatly impedes the system performance.
As mentioned above, the write traffic from the buffer cache to storage with jour-
naling is about 2.7 times more than that without journaling on average [1]. The
emergence of NVM relieves this problem. Since NVM is non-volatile, the update
in NVM can act as its own journal without committing to the journal space in
permanent storage. However, frequent writes to NVM affect the lifetime of the
hybrid main memory. Therefore, how to improve the performance of journaling
file systems and prolong the lifetime of the hybrid buffer cache without any loss
of reliability is the problem to be addressed in this study.

2.3 Hybrid Buffer Cache Architecture

The hybrid buffer cache employed in this paper is composed of DRAM and
NVM. We aim to exploit the hybrid buffer cache to remove the I/O traffic
caused by journaling, while ensuring minimal writes to NVM to prolong the
lifetime of the hybrid main memory. To this end, firstly, an intelligent page
management policy is required for the hybrid buffer cache. The page management
policy should be designed for two requirements. First, the DRAM portion should
absorb as many write requests as possible, thus prolonging the lifetime of NVM.
Secondly, the pages with less writes should be placed in NVM to remove the
bursty synchronous in-memory copy since NVM has the characteristics of non-
volatility and higher density.

Moreover, a hybrid-commit journaling scheme is demanded for the hybrid
buffer cache architecture. Since NVM is non-volatile, when a journal commit
occurs, the updates in NVM are committed in-place. But the updates in DRAM
have to be copied to NVM as journal. Thus, the journaling scheme for the hybrid
buffer cache need to be carefully designed to coordinate the different journaling
patterns of NVM and DRAM.

3 Page Management Policy for the Hybrid Buffer Cache

3.1 Policy Design

Figure 1 shows the flow chart of our proposed page management policy upon
receiving a write request. As shown in this figure, when a new page enters into
the buffer cache, since we don’t know its access pattern, we place it to DRAM
to prevent excessive writes on NVM. The pages in DRAM are managed by
our proposed WA-CLOCK (Write-aware CLOCK) algorithm. The WA-CLOCK
algorithm distinguishes the write pattern, write-hot or write-cold, from the per-
spective of write recency. When a new page need to be entered into buffer cache
and there is no free space in DRAM buffer, WA-CLOCK chooses a write-cold
victim page and migrates it to NVM to make space for it.

Since we unite the buffer cache and journaling layers in our hybrid buffer
cache, both data blocks and journal blocks reside in the buffer cache. We set
the state of journal blocks to frozen to distinguish from the normal data blocks.
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Fig. 1. Flow chart of the proposed page management policy

As the journal blocks record the previous changes, they are important to ensure
consistency of the file system. As such, the frozen blocks are write protected. If
a write request hits in a frozen block, we have to copy it to a new location and
write the updated data to the copy, i.e. copy before writing (CBW). Here, we
propose a shadow mechanism to aid CBW to be performed in a more reasonable
way to further reduce writes to NVM, which will be detailed in Sect. 4. Moreover,
if a normal data block in NVM is written frequently within a short period of
time, we migrate it to DRAM with consideration of the lifetime of the hybrid
buffer cache. To this end, a write-burst predictor is integrated into our page
management policy. If a write hit in NVM is predicted to be a write burst
access, the data block will be migrated to DRAM.

In our proposed page management policy, when a new page is loaded into
the buffer cache from the storage, it is placed in DRAM. If it needs to be evicted
from the buffer cache, it is evicted from NVM. The write-hot pages reside in
DRAM, while the write-cold pages and journal pages are maintained in NVM.
The effective migration policy ensures high performance of the file system and
less writes to NVM.

3.2 WA-CLOCK Policy for the DRAM Buffer Cache

In our design, we divide the data pages into two categories: write-hot pages and
write-cold pages. The write-hot pages are placed to DRAM, while the write-
cold pages are maintained in NVM. We manage the pages in NVM and DRAM
separately so as to fully exploit the characteristics of each memory media. For
DRAM buffer cache, we use a variant of CLOCK algorithm. CLOCK algorithm
is a well-known page replacement algorithm, which is widely used in virtual
memory environments.

CLOCK algorithm was introduced as a one-bit approximation to LRU. Dif-
ferent from LRU, which keeps pages in the order of access time, CLOCK only
monitors whether a page has recently been accessed or not. To do this, a ref-
erence bit is associated to each page. When a page is referenced (read/write),
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the corresponding reference bit is set to 1. CLOCK keeps a circular list with the
hand pointer to the last referenced page in the list. When a replacement occurs,
the reference bit is inspected at the hand pointer location. If it is 0, the page is
replaced out, otherwise, the reference bit is cleared to 0 and the hand pointer
is increased to check the next page in the circle. The process is repeated until a
page is replaced out. The schematic diagram of CLOCK is shown in Fig. 2.

A
reference_bit(A)=1

B

C

reference_bit(B)=1

reference_bit(C)=0

A
reference_bit(A)=0

B

C

reference_bit(B)=0

reference_bit(C)=0

(a) The state when replacement occurs (b) Page C is about to be replaced out

Fig. 2. Schematic diagram of the CLOCK algorithm

Unlike traditional DRAM based buffer cache, the proposed hybrid buffer
cache is write-sensitive since NVM has limited write endurance. Thus, in our
design, we evaluate the access pattern of a page only exploiting the write history
since the write temporal locality based on write history alone and that based on
both read/write histories show similar results [9]. Since the CLOCK algorithm
does not have the ability to distinguish the write-cold and write-hot pages, sev-
eral extra fields, write bit, rotation count and write count, are associated to each
page in our proposed WA-CLOCK algorithm. Where, the write bit replaces the
reference bit to record the write recency, and the write count is used to record
the write frequency. Our goal is to allocate the write-hot pages in DRAM and the
write-cold pages in NVM. As such, if a page is write-hot, WA-CLOCK does not
evict it but the rotation count is increased by one. The rotation count records
how many times the page was overlooked even though the write bit is 0. The
detailed rules of the WA-CLOCK policy are listed as follows.

Rule 1: When a page enters into DRAM and the DRAM buffer cache is not full,
we put it into the DRAM buffer cache and initialize the write bit, write count
and rotation count to 0.

Rule 2: When a write request hits in DRAM, WA-CLOCK sets the correspond-
ing write bit to 1 and increases the write count by one.

Rule 3: When a page enters into DRAM but the DRAM buffer cache is full,
page replacement occurs. WA-CLOCK traverses the circular list to find a victim
page with write bit is 0. However, if a page’s write bit is 0 but it is a write-hot
page, WA-CLOCK does not evict it but the rotation count is increased by one.
Only when the rotation count reaches to the preset threshold value, which means
the page has not been written for a long time and it is no longer write-hot, it
is evicted from DRAM to NVM. The algorithm of the replacement is shown in
Algorithm 1.



468 Z. Zhang et al.

Algorithm 1. Replacement Rule of the WA-CLOCK Policy
1: while (1) do
2: p= the page pointed by the hand pointer;
3: hand pointer points to next page;
4: if (write bit(p)==1) then
5: write bit(p)=0;
6: rotation count(p)=0;
7: else
8: if (write count(p)�hot page threshold &&
9: rotation count(p)<expiration threshold) then

10: rotation count(p)++;
11: else
12: evict the page p from DRAM to NVM;
13: the new page enters into DRAM;
14: return;
15: end if
16: end if
17: end while

3.3 Pre-CLOCK Policy for the NVM Buffer Cache

WA-CLOCK algorithm allocates most of the write-hot pages in DRAM while
moves the write-cold pages to NVM. In order to further reduce write accesses to
NVM and correct the unreasonable judgments of the write-cold pages, a write-
burst predictor is designed to monitor the pages in NVM and migrate the write-
burst pages to DRAM in real time. When a write request hits in NVM, the
predictor is accessed to predict whether it is a write-burst request. Similarly, the
write-burst predictor is designed based on the information of write frequency and
write recency. If a page in NVM is written frequently within a short period of
time, we migrate it to DRAM to increase the lifespan of the hybrid buffer cache.
Here, we design another variant of CLOCK algorithm, called Pre-CLOCK (Clock
with Prediction), to manage the NVM buffer cache. The Pre-CLOCK policy
integrates the write-burst predictor, whose rules are detailed as follows.

Rule 1: When a write request hits in NVM, Pre-CLOCK sets the corresponding
write bit to 1 and increases the write count by one. The write-burst predictor
examines whether the write count exceeds the preset write-burst threshold. If so,
this is a write-burst request and the page is migrated to DRAM. It is worth
noting that, if the page is frozen, it is copied to a new location and the updates
are written to the copy. Here, we introduce a shadow scheme which will be
detailed in Sect. 4.

Rule 2: When a write-cold page of DRAM is moved to NVM and the NVM
buffer cache is not full, we put it into the NVM buffer cache and initialize
the write bit, write count and rotation count to 0. Otherwise, page replacement
occurs. Different from CLOCK algorithm, Pre-CLOCK does not evict the poten-
tial write-burst pages (the write count is not less than a preset ratio, e.g. 50 %
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of the write-burst threshold) but with the rotation counts increased by one,
even their write bits are 0. However, If the rotation count reaches the expira-
tion threshold, which means this page has not been written for a long time, it is
evicted from NVM to storage.

3.4 Page Management Policy for the Hybrid Buffer Cache

Now we are ready to present our page management policy for the hybrid buffer
cache, which is depicted in Algorithm 2. In our policy, we use WA-CLOCK and
Pre-CLOCK algorithm to manage the DRAM buffer cache and the NVM buffer
cache, respectively. The WA-CLOCK allocates the write-hot pages to DRAM
and the write-cold pages to NVM, while the Pre-CLOCK integrates a write-
burst predictor to migrate the write-burst pages from NVM to DRAM.

Algorithm 2. Page Management Policy (page p, operation op)
1: if (p ∈ DRAM) then
2: if (op==write) then
3: execute Rule 2 of WA-CLOCK;
4: end if
5: else if (p ∈ NVM) then
6: if (op==write) then
7: execute Rule 1 of Pre-CLOCK algorithm;
8: If p is a write-burst page, Rule 3 of WA-CLOCK
9: and Rule 2 of Pre-CLOCK are executed;

10: end if
11: else /*page fault*/
12: If there is free page in DRAM, Rule 1 of WA-CLOCK
13: algorithm is executed;
14: If there is no free page in DRAM, Rule 3 of WA-
15: CLOCK and Rule2 of Pre-CLOCK are executed;
16: end if

4 Hybrid-Commit Journaling Scheme

The journaling scheme in the hybrid buffer cache comprises the in-place commit
of NVM and the in-memory commit of DRAM. We reference the idea of frozen
blocks proposed in [1], which changes the state of updated cache blocks to frozen
right at where they are currently located when a commit operation is issued.
But for the updated blocks in DRAM, they are copied to NVM and then are
changed to frozen as journal, while the original data blocks in DRAM are free
and can be reclaimed by other processes. When a read request hits in a frozen
block, if the frozen block is up-to-date, it can still be used as a cache block.
As mentioned above, the frozen blocks are write protected, that is, writing to a
frozen block leads to a copy be made to a new location and then the updated
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data is written to the copy. Accordingly, the copy becomes up-to-date, while the
original frozen block becomes out-of-date. This guarantees the journal remain
unchanged before the corresponding data is written to the real file system.

When writing to a frozen block, the block can be copied to a new location,
NVM or DRAM. If the block will only be written one time before next commit, it
should be copied to NVM which results in one block written to NVM. Otherwise,
if it is copied to DRAM, it leads to one block written to DRAM, one block in-
memory copy from DRAM to NVM and one block written to NVM. However,
if the block will be written two or more times, it should be copied to DRAM
to reduce writes to NVM since in these kinds of cases, only one journal block is
written to NVM. To do this, we propose a shadow mechanism for the distinction.
We introduce two extra lists: list L1 records the dirty pages which have been
modified only once since last commit, and list L2 records the dirty pages modified
two or more times. The design is on the assumption that if a page was written
frequently, it is likely to be written frequently again in the future. Hence, if a
block is in list L1 before being committed, the write copy will be performed in
NVM, or if it is in list L2, it will be copied to DRAM.

In the NVM buffer cache, we maintain a shadow table to keep track of the
committed blocks in L2 list. The shadow table maintains the entries instead of
the whole pages. This can be implemented very easily in modern file systems.
When a write operation occurs on a frozen block, if it is in the shadow table, it
is copied to DRAM, otherwise, it is copied to NVM.

5 Experiments

5.1 Experiment Setup

We implemented our page management policy and the hybrid-commit journaling
mechanism on Linux 2.6.38. We compared our scheme with ext4 file system and
the Union of Buffer cache and Journaling (UBJ) scheme proposed in [1]. As
mentioned above, UBJ adopts NVM as the entire buffer cache while our scheme
employs the hybrid buffer cache. As such, UBJ represents the performance upper
bound of our scheme since there are no overheads of migrations and in-memory
copies. We set the journaling option of ext4 to journal-mode, which logs both
data and metadata, to provides the same consistency semantics as UBJ and our
scheme.

Since our proposed techniques provide the same reliability with traditional
journaling schemes, we focus on the performance improvement and writes reduc-
tion on NVM. Furthermore, since NVM is not commercially available now, we
use a small portion of DRAM as NVM, with the assumption that NVM provides
disk-like data persistence at DRAM-like latency according to the recent research
reports.

5.2 Experimental Results

Filebench is a file system and storage benchmark which uses loadable work-
load personalities to allow easy emulation of complex applications. Here, we use
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four applications, varmail, webproxy, fileserver and webserver, to measure the
throughput of the three different journaling schemes. The characteristics of the
four workloads is shown in Table 1. Respectively, we run the four workloads
30 min under different schemes. The results are shown in Fig. 3.

Table 1. Characteristics of different workloads

workload avg. file size # of files avg. op. size r:w ratio

Varmail 16K 1000 4K 1:1

Webproxy 16K 10000 4K 5:1

Fileserver 128K 10000 72K 1:2

Webserver 16K 1000 16K 10:1

Fig. 3. Throughput of Filebench workloads

As shown in Fig. 3, the throughput of our journaling scheme is better than
ext4 by 89.6 %, while with only 4.75 % performance gap compared to UBJ,
on average. Specifically, the performance improvement of varmail is the largest
among the four workloads. This is because that varmail generates a large num-
ber of writes, incurring frequent commit operations. However, since the small
memory footprint, the varmail workload does not cause frequent checkpointing.
Hence, the introduce of NVM significantly improves the performance in this
situation. As for the fileserver workload, the situation is different. The large
writes trigger frequent checkpointing. Therefore, the performance gains of NVM
is relatively small compared to varmail.

It is worth noting that, frequent commits affect the performance benefits of
our scheme since the DRAM portion of the hybrid buffer cache has to commit
the updates to NVM as journal. Since the memory footprint is small in varmail
workload, compared with UBJ, the in-memory commit does not lead a significant
performance drop. But for the fileserver workload, the large writes cause large
in-memory copy, which leads to largest performance gap, about 10 %, compared
with UBJ.
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Additionally, even for read-intensive workloads like webproxy and webserver,
our scheme and UBJ scheme improve I/O performance due to the reduction of
journal traffic relieves the contention to hardware resources like memory bus and
DMAs.

Figure 4 shows the write distribution on NVM with the baseline of the writes
under UBJ. We observe that, varmail issues frequent writes to small files. In addi-
tion, our scheme ensures that write-hot data is located in DRAM and write-burst
data is migrated out of NVM. As such, for varmail workload, the large memory
portion, i.e. NVM, absorbs only 35 % of the total write size compared to UBJ.
But for fileserver, the write size of NVM is relatively large, 58.4 %, since the large
memory footprint leads to considerable in-memory copy on NVM. Therefore, for
write-intensive workloads, varmail and fileserver, our scheme improve the lifetime
of NVM by 185 % and 71 %, compared to UBJ, respectively. It is worth noting
that, for the read-intensive workloads, DRAM absorbs almost all the writes.
However, in our statistics, when a data block is loaded into DRAM/NVM for
the first time, it causes a block write on the hybrid buffer cache. So, for the
read-intensive workloads, the loading activities dominate the total write traffic.
As we can see, the write ratio of NVM is relatively large for webproxy and web-
server. However, the large write ratio will not cause significant influence on the
lifetime of NVM under the read-intensive workloads. Therefore, our scheme alle-
viates the write endurance of NVM effectively, especially for the write-intensive
workloads.

Fig. 4. The normalized write size on NVM with different workloads

6 Related Work

Traditional DRAM based main memory is volatile, the unexpected system
crashes may result in an inconsistent file system. To relieve this problem, journal-
ing file systems exploit the journaling technique to log the updates to non-volatile
storage. However, journaling mechanism is transaction based [10–14] and leads
to a large number of journal traffic, greatly impeding system performance. The
introduction of NVM brings a new perspective of resolving this issue. Youyou
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Lu et al. designed a new embedded transaction mechanism for SSDs with non-
volatile disk cache to improve performance of data consistency [12]. In order
to reduce overhead caused by strict ordering of writes, a loose-ordering consis-
tency mechanism was proposed for persistent memory [15]. Previous work [16,17]
attempted to reduce journaling overhead using NVM for database and file sys-
tem. However, these techniques either were not integrated into file system or kept
NVM separately from the buffer cache. A UBJ scheme uniting the buffer cache
and journaling layers with NVM was proposed in [1]. But this study employed
NVM as the whole main memory without considering the write endurance of
NVM. Therefore, in this paper, we employ a hybrid NVM-DRAM buffer cache.
However, the hybrid buffer cache complicates the traditional DRAM based or
NVM based journaling mechanism, but the problem has not been studied exten-
sively yet.

Emerging non-volatile memory technologies, such as PCM and RRAM, have
been intensively studied as a promising candidate main memory. Compared with
DRAM, NVM shows the advantages of non-volatility, low power, better scala-
bility and high density [18,19]. However, considering the disadvantage of NVM
in terms of write operation, architectures integrating NVM and DRAM into the
main memory have been proposed in [3–5,20,21].

In modern computer systems, a large amount of main memory is used as a
page cache. Traditional page management algorithms, such as LRU, LIRS [22],
ARC [23], and CLOCK-Pro [24], were designed for DRAM based main memory
and did not consider the different characteristics of NVM and DRAM. H-ARC,
an extended ARC algorithm, was proposed in [25] to improve NVM based cache
performance. Focusing on caching and endurance problem, the migration policy
between NVM and DRAM is presented in [26,27]. In order to predict future write
references of pages, a CLOCK-DWF algorithm is presented in [9]. However, all
these studies were only dedicated to reducing write operations on NVM and did
not take the journaling mechanism into account to reduce the in-memory journal
traffic between DRAM and NVM.

Therefore, in this paper, we focus on reducing the storage accesses caused by
journaling using NVM. We study the page management policy and the hybrid-
commit journaling scheme for the hybrid buffer cache architecture. The proposed
techniques aim to enormously improve the performance of file system without
any loss of reliability while reducing write accesses to NVM.

7 Concluding Remarks

In this paper, we aim to optimize the performance overhead caused by journaling
for modern file systems. We solve the problem using emerging NVM technologies.
Considering the non-volatility of NVM and the unlimited write endurance of
DRAM, we exploit a hybrid NVM-DRAM buffer cache architecture. We propose
a page management policy to direct page placement and migration between
NVM and DRAM. The policy distinguishes the write-hot and write-cold data to
ensure DRAM absorb most writes. Meanwhile, a predictor is integrated to avoid
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the write-burst activity on NVM. Furthermore, we present a hybrid-commit
journaling scheme to support the in-place commit of NVM and the in-memory
commit of DRAM. We implement the page management policy and the hybrid-
commit journaling scheme on Linux 2.6.38 and the experimental results show
the proposed techniques significantly improve the performance of file system and
prolong the lifetime of the hybrid buffer cache.
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Abstract. In recent years, a large number of cloud data centers have
been built around the world to provide all kinds of service. The high
power consumption of the servers in those data centers deteriorates the
already serious global warming. Many Internet operators have devoted
much effort in power-aware scheduling using renewable resources. How-
ever, the intermittent nature of renewable resources proposes new chal-
lenges for us: how to distribute the incoming requests to the data centers
that are powered by renewable energy, while minimizing the carbon emis-
sions under a certain budget. In this paper, we model the problem as a
constraint optimization problem. The goal is to minimize total carbon
emissions of those geographically distributed data centers, while satis-
fying the constraints: (1) The electricity budget in each time slot; (2)
The intermittent supply of renewable energy; (3) The number of each
type of heterogeneous servers in each data center; (4) QoS constraint in
request processing time. We ingeniously transformed this problem into
a mixed integer linear programming problem, and solved it using Cplex.
Our simulation is based on traces from real world, and we can get opti-
mum solution when problem scale like Wiki workload is not so large.
Experiments show that our scheduler can minimize carbon emissions
while satisfying the above mentioned constraints.

Keywords: Cloud computing · Data center · Renewable resource ·
Green scheduling · Carbon emissions

1 Introduction

Cloud computing is developing so fast that a large number of data centers have
been built in recent years. It is the servers running in those data centers that
cause high power consumption as well as high electricity cost. According to
a recent report, the power consumption of Google is over 1,120 GWh with 67
million dollars per year, and Microsoft consumes 600 GWh with 36 million
dollars [1] annually. The power consumption of data centers accounts for 1.3 %
currently, and it is estimated to reach 8 % in 2020. Thus, cloud data centers
c© Springer International Publishing Switzerland 2015
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contribute greatly to global warming, since 2/3 of the electricity of the world is
generated by burning fossil fuels [2]. Some Internet service providers have already
taken steps to promote the usage of renewable energy for data centers. For exam-
ple, Facebook has built solar-powered data center in Oregon, and Green House
Data built its wind-powered data center in Wyoming [3]. Besides, Google and
Yahoo have already powered their own data centers using clean energy, which
account for 39.4 and 56.4, respectively. Therefore, it is significant for cloud data
centers to make green scheduling using renewable energy.

Existing work on scheduling for cloud data centers mainly focus on energy
saving policy designs, minimizing total electricity, or maximally using renew-
able energy, as to be discussed in Sect. 2. Different from the work in literature,
our focus is to design a green scheduler for requests dispatching, so that the
carbon emissions can be minimized. In this paper, we first model our problem
as a constraint optimization problem with the goal of minimizing total carbon
emissions of geographically distributed data centers. The constraints are: (1)
the electricity budget in each time slot; (2) the intermittent supply of renew-
able energy; (3) the number of each type of heterogeneous servers in each data
center; (4) QoS constraint in request processing time. It should be noted that
the supply of renewable energy and the electricity price in different locations are
fluctuating with time. We ingeniously transform our problem into mixed inte-
ger programming problem, and solved it using Cplex. Our simulation is based
on traces from real world. Some data are collected in a coarse granularity such
as one hour. However, our scheduling granularity is 5 min, so there is need to
divide each value of the original traces into several ones in a finer granularity.
We propose to use quadratic function discretization to generate the traces in a
finer granularity while maintaining the trend of data in time series. To evaluate
our method, we give four baselines: Minimum Cost Scheduling, Maximum Cost
Scheduling, Minimum Carbon Emission Scheduling, and Minimum Transmission
Time Scheduling. Experiments show that our method can minimize carbon emis-
sions while satisfying the constraints. And our method can get optimum solution
when the problem scale is not large enough like Wiki workload in simulation.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 demonstrates the architecture of green scheduler. In Sect. 4, details of
the modeling for our problem is discussed and solution is given. In Sect. 5, we
will show how the simulation is made using traces from real world, and evaluate
the performance of our model. Finally, Sect. 6 concludes this paper.

2 Related Work

Scheduling for cloud data centers has been a hot topic in recent years. In general,
it can be classified into three categories: energy saving, managing electricity cost,
and utilizing renewable energy.

In Energy Saving. Chen et al. in [4] and Chase in [5] propose a request response
service model to reduce power consumption from long-lived TCP connections.
Elnozahy et al. in [6] combine DVFS and power on/off techniques to reduce power
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consumption of data centers. But none of these work take varying electricity price
into consideration, and they did not consider that data centers may be powered
by renewable energy besides brown energy.

In Cost Management. Qureshi et al. in [7] propose to reduce total cost of
the data centers in geographically distributed locations with varying electricity
prices. Rao et al. in [8] consider the multi-electricity market to reduce electricity
cost. Zhang et al. in [9] propose an electricity capping algorithm to minimize
electricity cost under certain budgets. Lin te al. in [10] propose a dynamic right
sizing method to minimize energy cost with delay cost. But none of these work
consider the supply of renewable resource to power data centers.

In Utilizing Renewable Energy. Le et al. in [11,12] propose a capping method
for brown energy while satisfying SLA constraint. Liu et al. in [13] exploit how to
lower brown energy price using renewable resources in a specific market. Brown
et al. in [14] propose an infrastructure called Rerack to simulate data center with
renewable energy simulation. Stewart in [15] propose to maximize renewable
resources for data centers. Li et al. in [16] try to characterize the renewable
resource pattern. They also give a scheme for power management by tuning
workload with renewable resources. Authors in [17] built a demo system with
scheduler designed to maximize the usage of solar energy. Green Hadoop [18] and
Green Slot [19] are the two schedulers based on this system. The two schdulers
try to use as much solar energy as possible while satisfying the finishing deadlines
of all incoming tasks. The authors in [20] try to use renewable energy as much
as possible while maintaining load balancing between data centers.

Similar to our work, Zhang et al. in [21] propose GreenWare, a scheduler
that maximally uses renewable resources under a certain budget. The short-
age of GreenWare is that it can not quantify how green the scheduler is. And
maximizing the usage of renewable resource does not mean minimizing carbon
emissions, because some cheap renewable resource may emit more carbon com-
pared with expensive ones. Another work in [22] simulates requests dispatching
for data center powered by renewable resource. But they only build a simple
model that assume the data centers are composed of homogeneous servers. In
their simulation, the granularity is one hour, which is too large to reflect the
intermittency of renewable resources very well. In our work, we assume all the
data centers are composed of different types of servers. Furthermore, our schedul-
ing frequency is 5 min, a fine scheduling granularity. As far as we know, we are
the first to propose green scheduling for heterogeneous data centers using renew-
able energy with fine grained scheduling time slot. The following section will give
the architecture of our green scheduler.

3 Architecture of Green Scheduler

Internet service operators like Google always build their data centers in geo-
graphically distributed locations for special purposes. In this paper, we mainly
focus on minimizing carbon emissions of each data center. We assume the data
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centers are built near the locations abundant in renewable resources such that
the losses of electricity during transmission can be neglected. Wind and solar
energy are the dominant renewable resources, which account for 62 percent and
13 percent non-hydro renewable resources, respectively [23]. In this paper, we
assume that all the data centers are powered by solar energy, wind energy, as
well as traditional brown energy. The architecture of our scheduling system is
shown in Fig. 1.

Fig. 1. Architecture of green scheduler [22]

As can be seen in Fig. 1, the green scheduler is responsible for dispatching the
incoming requests to each data center. The scheduler itself is a high performance
server or a cluster of servers. It should be noted that the servers in the same data
center are heterogeneous. The request transmission delays from scheduler to each
data center are different. Each data center is powered by wind, solar and brown
energy, and the supply of each type of energy can be switched seamless using
micro-grid technology. Thus, the applications running in the data center will
not be affected when there are switchings between different energy supply. The
input for each scheduling includes: (1) predicted climate condition (including
temperature, solar illumination and wind speed), which are used for calculating
the power supply of wind and solar in this time slot; (2) the budget for this
time slot; (3) QoS, the maximum response time of the requests. (4) electricity
price in this time slot. (5) the number of each type of servers in the data center.
Different from existing architectures, the task of our scheduler is to dispatch
requests to the data centers, with the goal of minimizing total carbon emissions.
It should satisfy the constraints like: response time, number of different types
of servers in each data center, renewable power supply, and budget per hour.
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Since the servers in each data center are heterogenous, the task for dispatching
the incoming requests to different types of servers are also considered in this
system. Servers with no requests dispatched should be in sleeping state with
little power consumed. In the following section, modeling for this problem will
be given in detail.

4 Problem Modeling and Solution

Data centers can not be powered only by renewable energy due to its intermittent
nature. And traditional brown energy generated by burning fossil fuels is still
needed when there is not enough renewable energy. Suppose there are N data
centers, and each is powered by wind, solar and brown energy. In each data
center i, there are Mi types of servers, and each type has Mij servers. The
running period of our scheduler is T time slots, and for each slot t, t ∈ T . The
electricity price in different places may be different, and it fluctuates with time.
In time slot t, the electricity price of wind, solar and brown energy for data
center i can be denoted as Pwt

i , Psti and Pbti, respectively. The demand of wind,
solar and brown energy for data center i are denoted as Dwt

i , Dsti, and Dbti,
respectively. The supply of wind, solar and brown resources for data center i
are denoted as Swt

i , Ssti, and Sbti, respectively. The total electricity budget of all
data centers during T is denoted as C. The average response time of a request
dispatched to data center i in time slot t is denoted as rti , it should be smaller
than QoS constraint Ri. In each time slot t, the number of running servers with
type j in data center i is denoted as xt

ij , and it should be smaller than Mij in
any time slot. Let λt denote the number of incoming requests in time slot t, and
λt
i denote the number of requests dispatched to data center i in time slot t. Et

i

denotes the carbon emissions of data center i in time slot t.
In our scheduler, the response time of a request in data center i is denoted as

ri. It is composed of three parts: waiting time, processing time, and the trans-
mission delay from scheduler to each data center. Each data center has heteroge-
neous servers. When requests are dispatched to each data center, the scheduler
will determine how many requests are dispatched to each type of servers. Let λt

ij

denote the number of requests dispatched to servers with type j in data center
i during time slot t. We have:

λt
i =

Mi∑

j=1

λt
ij

Suppose all the requests need waiting in queue for homogeneous servers of a
certain type. Thus, M/M/n model can be used to simulate waiting time and
processing time of each request. Let the service rate of a server with type j in
data center i be denoted as μij , then the waiting time and processing time are
denoted as 1/(μij · xt

ij − λt
ij), and 1/μij , respectively. The transmission delay

from scheduler to data center i is di. So we have:

ri =
1

μij · xt
ij − λt

ij

+
1

μij
+ di, μij · xt

ij > λt
ij
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When QoS constraint of Ri is given, the minimum number of running servers
with type j in data center i during time slot t can be deduced like this:

xt
ij =

μij + λt
ij · Ri · μij − λt

ij · di · μij − λt
ij

μij(Ri · μij − di · μij − 1)
= f(λt

ij)

Obviously, xt
ij is in linear relationship with λt

ij . In fact, λt
ij can further be

decomposed into the number of requests dispatched to servers with type j in
datacenter i using wind, solar and brown energy in time slot t, denoted as λwt

ij ,
λstij , and λbtij , respectively.

λt
ij = λwt

ij + λstij + λbtij

It should be noted that λwt
ij , λstij , and λbtij may not be integers, but the sum

λt
ij , and λt

i are integers.
Suppose Pij is the peak power of a server with type j in data center i, and its

real power is in proportion to load. Thus, the amount of wind, solar, and brown
energy in each time slot t can be denoted as follows:

Dwt
i =

Mi∑

j=1

(
μij + λwt

ij · Ri · μij − λwt
ij · di · μij − λwt

ij

μij(Ri · μij − di · μij − 1)
· Pij)

Dsti =
Mi∑

j=1

(
μij + λstij · Ri · μij − λstij · di · μij − λstij

μij(Ri · μij − di · μij − 1)
· Pij)

Dbti =
Mi∑

j=1

(
μij + λbtij · Ri · μij − λbtij · di · μij − λbtij

μij(Ri · μij − di · μij − 1)
· Pij)

To calculate carbon emissions, we can use CER (carbon emission rate) for cal-
culation. CER represents the amount of carbon emissions in unit energy (kWh),
as can be seen in Table 1.

Table 1. CER of the energy sources [2]

Energy Source Coal Wind Solar

Carbon Emission Rate(gCO2e/kWh) 968 22.5 53

In many power plant around the world, coal is still the most widely used
brown energy, so we use coal as our brown energy in this paper. The CER of
brown, wind and solar energy are denoted as Eb, Ew, and Es, respectively. We
have:

Et
i = Eb · Dbti + Ew · Dwt

i + Es · Dsti
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Thus, our problem can be formulated as follows:

Minimize : E =
N∑

i=1

T∑

t=1

Et
i (1)

0 ≤ xt
ij ≤ Mij (2)

Dwt
i ≤ Swt

i (3)

Dsti ≤ Ssti (4)
N∑

i=1

T∑

t=1

(Dwt
i · Pwt

i + Dsti · Psti + Dbti · Pbti) ≤ C (5)

λt =
N∑

i=1

Mi∑

j=1

(λwt
ij + λstij + λbtij) (6)

λwt
ij , λstij , λbtij ∈ R

+ (R+ denotes set of positive real number) (7)

Mi∑

j=1

λwt
ij + λstij + λbtij ∈ N (N denotes set of natural number) (8)

In this optimization problem, there are N data centers, each is powered by
3 types of energy. Suppose each data center has M types of servers. Thus, this
optimization problem has N ×M ×3 decision variables in total during each time
slot t. They are λwt

ij , λstij , and λbtij in our formulation, where i ∈ N and j ∈ M .
It is not a classical programming problem, especially for constraint (8). To solve
this problem, auxiliary variables are needed. We consider λt

ij as integer variables
added to the formulation, and then we replace constraints (6)–(8) by (6-1)–(9-1)
as follows:

λt =
N∑

i=1

Mi∑

j=1

λt
ij (6 − 1)

λt
ij =

M∑

j=1

λwt
ij + λstij + λbtij , (7 − 1)

λt
ij ∈ N (8 − 1)

λwt
ij , λstij , λbtij ∈ R

+ (9 − 1)

Thus, our problem is transformed into a mixed integer linear programming
problem with N ×M × 4 variables in both real and integer type. They are λwt

ij ,
λstij , and λbtij , and λt

ij .
Since each time slot is a separate scheduling unit, there is no close relationship

between decision variables between two consecutive time slots. Thus, the whole
problem can be divided into T sub-problems, each is a separate mixed integer
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linear programming problem. In this paper, our scheduler is implemented using
mixed integer linear programming solver in Cplex. Though mixed integer linear
programming problem is an NP-hard problem, the optimum solution can be
calculated quickly when the problem scale is not large enough. In simulation
using data from Wiki, our scheduler can obtain optimum solution.

5 Performance Evaluation

5.1 Simulation Setup

To verify the effectiveness of our green scheduler in reducing carbon emissions for
data centers, our simulation data are based on traces from real world, includ-
ing climate data, server capacity, statistical request traces, prices in different
locations with time.

For servers in each data center, we use the same parameters in [24]. There are
four types of servers in each data center. The power consumption of each type of
server are 88.88, 34.10, 149.19, and 141.28 watts, respectively. The service rates
are 50, 30, 75, and 65 requests per second, respectively. Each data center has
200 servers, in which there are 50 servers for each type in each data center.

For the availability of renewable resources, we use models of solar panel and
wind turbines based on climate data from MIDC of National Renewable Energy
Laboratory [25]. The climate traces contain irradiation, wind speed and temper-
ature information from June 1st to June 30st in 2014. It includes four stations:
Loyola Marymount University, University of Arizona, Solar Technology Acceler-
ation Center, and National Energy Laboratory Hawaii Autoraty. We use 10000
BP-MSX-120 solar panels to power each data center. Based on P-V model [26],
the maximal power generated by a solar panel can be calculated using Lamberts
function with optimization technique proposed in [27]. We also use 200 NE-3000
wind turbines to power each data center. The power generated by wind can be
calculated using the model proposed in [28].

For workload traces, Wiki dump data is used [29]. We also choose traces from
June 1st to June 30st in 2014. It should be noted that the workload pattern of
Wiki in each month are similar, so that the traces can be used as prediction in
real scheduler.

For prices in different locations, we use traces from New York Independent
System Operator (NYISO). To make the prices consistent with the workload
in time, we also choose history prices from June 1st to June 30st in 2014.
The NYISO only provides brown energy prices. The simulation is based on
the assumption that given the price of brown energy Pbi, wind energy charges
Pbi + 1.5 cents, and solar energy charges Pbi + 18 cents per KWh [21].

For requests transmission from scheduler to each data center i, the delays
are d1 = 0.2, d2 = 0.25, d3 = 0.15, d4 = 0.1, respectively.

In simulation, some traces from real world may be collected in a coarse granu-
larity. We need to divide the data in a much finer granularity so that the scheduler
can be designed in a proper granularity. The dividing must reflect the trend of
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data changes with time slots. We propose a method using quadratic function dis-
cretization processing like this. Suppose there are three points (x1, y1), (x2, y2),
(x3, y3) consecutive in time series. For each point (x, y), x denotes the sequential
number of time slot, and y denotes the value in this time slot (eg. the number of
requests). We first built a quadratic function using these three points. Suppose
the original scheduling granularity of each time slot will be further divided into
n smaller time slots. We insert n points between x1 and x3, and x values of those
points are x1 + i ∗ (x3 − x1)/n, i ∈ [1, n]. Take these values into the calculated
quadratic function, we can obtain y value for each inserted point. The y value of
each point will be multiplied by a proportion ratio, such that the sum of those
values is equal to y2. Thus, we successfully simulate the traces in time slot x2 in
a much finer granularity while reflecting the real trend of the data using values
in time series like y1 and y3.

5.2 Model Evaluations

A. Baselines

To evaluate our method, we give four baselines: (1) Minimum Cost Schedul-
ing; (2) Maximum Cost Scheduling; (3) Minimum Carbon Emission Scheduling;
(4) Minimum Transmission Time Scheduling. Thus, we can estimate the upper
bound and lower bound of our budget.

(1) Minimum Cost Scheduling: This scheduling dispatches incoming requests
to data centers with low electricity price as many as possible. It is used to esti-
mate the lower bound of the total cost.
(2) Maximum Cost Scheduling: This scheduling dispatches incoming requests
to data centers with high electricity price as many as possible. It is mainly used
to estimate the upper bound of total cost.
(3) Minimum Carbon Emission Scheduling: This scheduling dispatches
incoming requests to data centers using as much renewable energy as possible. It
is used to estimate the lowest carbon emission we can achieve without considering
the cost.
(4) Minimum Transmission Time Scheduling: This scheduling dispatches
incoming requests to the nearest data centers so that the total request trans-
mission time can be minimized. It is mainly used to show the cost and carbon
emission as a tradeoff for best QoS.

For baselines, we propose to use simple greedy algorithm to solve each prob-
lem. For baseline (1) and (2), we first calculate the price per request using for-
mula like this: Pij ∗Pbti/μij for each server with type j in data center i. Then we
sort different types of servers in ascending or descending order, and dispatch our
requests to different types of servers in each data center until finish dispatching
all requests. For baseline (3), we dispatch requests to data centers powered by
the cheapest renewable energy with low carbon emission. For baseline (4), we
dispatch as many requests as possible to the nearest data centers. In simulation,
our scheduling granularity is 5 min.
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Fig. 2. The trend of cost and carbon emissions with response time

Before scheduling, we will first exploit how the changes of response time Ri

affect total cost and emission, as can be seen in Fig. 2. From this Figure, it can
be easily found that the total cost and carbon emissions of all data centers are
decreasing with the increase of response time for baseline (1), which is represen-
tative for all baselines. It can be explained using the Queue Theory we used in
the model. When the response time becomes larger, more requests will be wait-
ing in a queue, so that fewer servers are needed to process the heading requests
in the queue. Thus, the power consumption in this time slot can be reduced.
The saved money can also be used for purchasing green energy, so that the total
carbon emission is reduced. As is mentioned in Sect. 3, μijx

t
ij > λt

ij , so we have:

Ri >
1

μij
+ dij

So we set response time range from 0.3 s to 5 s.
Figure 3 is a verification for the four baselines, here we set Ri = 1 s for all

data centers. From this Figure, interesting discussions will be made as follows:
In (a), the goal is to use the cheapest energy as much as possible. Renewable
energy is usually much more expensive than brown energy, so brown energy is
consumed most in all of the four data centers. The usage of renewable energy
such as wind and solar is not so obvious in this Figure, because their usage is
so little compared with brown energy. The disadvantage of this scheduling is
that it will produce a lot of carbon emissions. In fact, the price of the most
expensive renewable energy in one place may even be lower than the cheapest
brown energy in other places, so that this scheduling is not so dirty because it
uses cheap renewable energy sometimes. In (b), the goal is to spend as much
money as possible. Solar energy is usually the most expensive energy, so that it
is consumed most in this case, as is shown in Figure (b). In fact, more money
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Fig. 3. Verifications for the four baselines. (a) Different types of energy consumed in
each data center using Minimum Cost Scheduling. (b) Different types of energy con-
sumed in each data center using Maximum Cost Scheduling. (c) Different types of
energy consumed in each data center using Minimum Carbon Emission Scheduling. (d)
The average requests per slot dispatched to each data center using Minimum Trans-
mission Scheduling.

does not mean much greener, because some cheap renewable energy can be much
greener with low carbon emissions. In (c), the goal is to use the energy with least
carbon emission. From this Figure, we found that wind is the greenest renewable
energy, it has merits of both low price and low carbon emission. In (d), requests
will be dispatched to the nearest data centers. In this Figure, the transmission
time of d3 = 0.1 s is the smallest, so that most of the requests will be dispatched
to data center3 with high priority, and then to data centers with transmission
time to be d4 = 0.15 s, d1 = 0.2 s, and d2 = 0.25 s, respectively. For data center
2, the number of requests dispatched to it is almost 0, because all requests are
dispatched to the other 3 data centers and they indeed have enough capacity to
process all the requests, so that no requests are left for this data center.
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Table 2. Upper bound and lower bound of cost and emissions

Electricity cost ($) Carbon emission (Ton)

MinCost 1882.89 50.55

MaxCost 7316072.40 12.36

MinEmission 1977012.70 8.70

MinTrans 63001.72 54.27

Table 2 gives upper bound and lower bound of cost and carbon emissions
based on the baselines mentioned above. We found that maximum cost does not
incur lowest carbon emission, because it uses only the most expensive energy
instead of cheapest renewable energy. It is better to make budgeting based
on Minimum Carbon Emissions Scheduling, because extra investment will not
reduce carbon emissions any more after reaching minimum carbon emission.

B. Comparisons for Our Scheduler

Renewable energy is usually much more expensive than brown energy. The four
baselines did not consider budget constraints in using renewable energy. In real-
ity, the energy generated in the next time slot can not be predicted very well,
and the electricity price also changes with time. So our budgeting is designed
like this. Let the total budget for the whole month of 30 days be denoted as B,
then we divide the total budget into each time slot. Our scheduling granularity
is 5 min, so there are 30 ∗ 24 ∗ 12 = 8640 time slots during this month, and
the initial budget for each time slot is B/8640. If the budget of the previous
time slot is not used up, the remained unused money can be added to current
time slot. So we have: bt = B/8640 + Remainert−1, where bt denotes the real
budget in time slot t, and Remaindert−1 denotes the remained unused budget
from previous time slot t − 1. Our budget is set to be 150$ per time slot. The
following are the analysis of experiment results based on our scheduler.

In our experiment, we define server slots as the number of servers accu-
mulated with time slots, such that we can quantify the usage of heterogenous
servers in each data center over the whole period of time. Figure 4 show the
server slots for each type of servers in the data centers. For each data center, it
can be found that servers of Type2 is the used most, then Type1, Type3 and
Type4. Type3 and Type4 are the most powerful servers among the four types,
but used less compared with Type1 and Type2. The reason behind this is that
Type3 and Type4 consumes high power. We define the Power Consumption per
Request (PCR) as Pij/μij , which is used to weigh how green the server is. We
found that the higher PCR is, the greener this server is. In our simulation, Type2
and Type1 are the servers with high PCR. Although the service rates are low,
these two types of servers consume lower power. Thus, it is still a good choice
to dispatch requests to these two types of servers considering PCR.
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Figure 5 shows different types of energy consumed in each data center using
our scheduler. Due to budget constraint, it can be seen that brown energy still
accounts for a large part in all data centers due to its low price. And then the
wind energy is used as much as possible, since it is cheap compared with solar
energy. We find that solar energy is used little due to its highest price among
the three types of energy. It is used only when budget of current time slot is
sufficient and wind energy has been used up.

Figure 6 gives a comprehensive comparison of our method with the four base-
lines in brown energy used, carbon emission, and total cost. Let the values of
brown energy, carbon emission and total cost of our scheduler be base with value
1. The values of other baselines are the ratios to our scheduler in brown energy
used, carbon emission, and total cost. It can be seen that the ratios between the
two groups of brown energy and carbon emissions are so similar. The reason lies
in that carbon emission is mainly generated by brown energy, while renewable
energy such as wind and solar emit little compared with brown energy. So, the
carbon emission seems in proportion to brown energy used in this Figure. As
can be seen, MinEmission Scheduling uses least brown energy so that it pro-
duces least carbon emissions, costing more money, about 8.2 times of base cost.
MaxCost Scheduling uses as much expensive energy as possible, so that solar
energy is used most, with 30.4 times of base cost. And its emission is very low.
However, highest cost does not mean lowest carbon emissions, because there
are some cheap renewable energy with lower carbon emissions like wind energy
that should be considered with higher priority. For the MinCost Scheduling,
energy with low price is considered first, so that brown energy is used most,
and its carbon emission is very high. We are surprised to find that MinTrans-
mission Scheduling has even higher carbon emissions than MinCost, but with
higher cost. It is because MinTransmission Scheduling are more concerned with
QoS, with the goal of minimizing transmission time, but at the expense of high
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cost and emissions. This is not always true for MinTransmission Scheduling,
because in this simulation, most of requests are dispatched to the data centers
whose transmission time is smallest, but have very high electricity prices and
less renewable energy provided. This is a special case, and the condition may
differ when simulation parameters change.

From our experiments, we find that wind is currently the most ideal renewable
energy with low emission as well as low price. The response time and budget also
affect the final emission. In general, more budget means more renewable energy
can be used for green scheduling. However, extra budget (like that of MaxCost)
is not necessary when budget of the whole period is equal to the total cost
of MinEmission. Experiments proved that our scheduler can minimize carbon
emissions in consideration of budget for data centers with heterogenous servers.
Therefore, it can be a good guide for real cloud data centers.

6 Conclusion

Cloud data centers are always consuming a large amount of power. Therefore,
it is significant to make green scheduling using renewable energy. In this paper,
we first build a green scheduling model for geographically distributed data cen-
ters with heterogenous servers. It must satisfy constrains such as budget per
time slot, QoS, number of each type of servers in different data centers, the
supply of intermittent renewable energy. We formulate the problem into a con-
straint optimization problem. The whole problem can be divided into separate
sub-problems of the same type. We ingeniously transform each sub-problem into
a mixed integer problem, and solved it using Cplex tools in Matlab. Experi-
ments show our scheduler can minimize carbon emissions under a certain budget.
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We also found that in heterogenous data centers, the power consumption per
request reflects how green the server is. Besides, increasing budget per time slot
can reduce emissions in a certain extend. Future work will consider electricity
losses when UPS is used to store energy to further reduce carbon emissions, and
tasks with strict starting time and finishing time in scheduling.
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Abstract. Due to the increase of physical defects in advanced manufacturing
processes, Networks-on-Chip (NoC) system reliability is a critical challenge as
faults often occur post manufacturing. Therefore it is important to add fault
tolerance to the NoC system. In this paper, a novel routing algorithm for 2D
mesh NoCs is proposed which aims to enhance the fault-tolerant capabilities via
a look-ahead function. A traffic status informing mechanism is developed to
provide information to local NoC routers on the interconnect conditions in far
distant routers. In addition, a weighted path mechanism is used to forward the
packets. The routing algorithm is implemented and verified on FPGA hardware.
Real-time throughput and traffic information were collected by a monitoring unit
on the FPGA. Results show that the proposed routing algorithm can maintain the
system function under low fault rates and only has a marginal (*5 %)
throughput degradation under high fault rate of 20 %. The router area is also
relatively low which demonstrated its scalability.

Keywords: NoC � Fault-tolerant � Adaptive routing � FPGA � Look-ahead

1 Introduction

NoC is an efficient interconnection strategy for various applications such as
brain-inspired computing [1, 2], multicore systems [3]. Research undertaken in [4]
showed that fault tolerance is especially crucial for NoC. Adaptive routing algorithms
are widely investigated in order to enhance the fault-tolerant capabilities of NoC
systems [5]. Several key challenges and capabilities need to be investigated and
achieved as follows: (a) To tolerate faults and to proceed in retaining system func-
tionality in the event of a physical impairment; (b) To make routing decisions under
complex traffic conditions. The traffic condition of an entire NoC system, a region, or
even just a node, cannot be classed as a single and simple condition, it’s more complex
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as the condition depends on a combination of different traffic statuses across many
paths. An adaptive routing algorithm should consider all the different types of traffic
statuses and make routing decisions based on these conditions in order to balance the
traffic workloads effectively across the entire NoC; and (c) To obtain sufficient
knowledge of the traffic information in the neighbouring regions and to make the
optimal routing decisions under various fault rates, avoid traffic starvation or overhead
and balance traffic loads across the NoC. The interconnect fault distribution problem
was summarized in [6]. In most of these fault patterns, the faulty interconnect are
clustered which requires the routing algorithm to have the capability to gauge the
interconnect condition in advance by looking ahead in each channel path and make
routing decisions in advance of packets arriving so as to avoid entering a faulty region.
Therefore, in this paper, a novel adaptive fault tolerant routing algorithm with
fine-grained look-ahead function, namely FG routing algorithm, is proposed. It
addresses the aforementioned challenges and investigates routing strategies that can
select the fault-free and minimal congested paths to route packets, reduce the overall
latency of packets and maintain the throughput performance of the NoC systems when
faults occur.

2 Previous Works

A fault-tolerant routing algorithm was proposed in [7] where detected faulty routers are
deactivated, and the routing algorithm is modified according to the change of topology.
It is only tolerant of faulty routers (node). The Gradient routing scheme [8] models the
NoC across eight different zones. Routing directions are then established according to
the zone where the destination node is located. EDXY routing algorithm [9] used two
dedicated wires per channel of the router to indicate the congestion status in the same
row or column as the current router. Its weakness is the potential for traffic starvation
and loss of traffic balance, as the congested flag does not provide positional information
regarding the congested node. FADyAD routing algorithm [10] combines the advan-
tages of both deterministic and adaptive routing schemes, but it only tolerates imme-
diate connected link faults. Most of the aforementioned routing algorithms make
routing decisions based solely on the immediate channel traffic conditions, i.e. they are
routing algorithms with only local-awareness. They do not have global knowledge of
the link status in the distant regions of the NoC; therefore the routing decisions are
non-optimal which may cause traffic starvation and traffic overload for other regions of
the NoC system. A fault-on-neighbour aware deflection routing algorithm makes
routing decisions to avoid faulty links and routers based on the link conditions within a
2-hop range or region [6]. FTDR used a routing table to store the distance for every
direction between the current and destination nodes [11]. The routing table is updated if
the link status changes. The current node can choose a fault-free path to forward the
packets. The main limitation of [6, 11] is that a faulty link has to be shut down in both
directions. Similar to [11], routing algorithms in [12–14] also used a routing table to
make routing decisions where the table was updated when a node or link was faulty.
The routing table prohibits these approaches in facilitating large NoC implementations,
i.e. scalability. In [15], a fault-tolerant routing algorithm was proposed where it uses a
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hierarchical model to route the packets. If the links or nodes are faulty, an echo model
is activated which can choose a valid path for routing. It employs a node stamping
mechanism which adds the router IDs to the packets while transmitting through them. It
increases the packet size linearly and can cause NoC traffic overload, especially for
long distance communications. LAFT routing algorithm receives the fault status from
the immediate neighbouring nodes and selects the routing path based on this infor-
mation [16]. If there are several candidates, the path with minimum distance and large
diversity will be chosen. However, the node with a large path diversity is probably busy
or faulty and not suitable for forwarding the packets. Current adaptive routing algo-
rithms do not meet the required characteristics to provide an efficient routing strategy
for modern NoC. In this paper, the FG routing algorithm is proposed which aims to
enhance the fault-tolerant capabilities via fine-grained look-ahead capability with a
relatively low area overhead.

3 Fine-Grained Routing Algorithm

In this section, the traffic status and link condition informing mechanism of FG routing
algorithm are presented firstly; then the FG routing algorithm is discussed in detail. In
addition, the deadlock and livelock avoidance techniques are also given.

3.1 Traffic Status and Link Condition Informing Mechanism

In the FG router, a traffic status and link condition informing mechanism is proposed to
provide regional traffic data. The data includes the immediate connected link traffic
statuses and the link conditions several hops away in each coordinate direction.

(1) Traffic Statuses of Immediate Connected Link. The number of free slots (Fs) in the
input FIFO of the receiver (RX) side reflects the channel traffic status. When the
input FIFO is empty or less than half-full, the channel is termed as Idle. If the FIFO
is half-full, or more than half-full and less than full, the channel is Busy. If the FIFO
is full, it is defined as Congested. Two dedicated traffic status signals of Busy and
Congested are connected from the RX side to the transmitter side [17]. These traffic
statuses aid the NoC router in making effective routing decisions that improves
throughput during busy traffic periods in the network.

(2) Link Conditions of Neighbouring Nodes. Besides the traffic signals of
Idle/Busy/Congested, another dedicated ‘Faulty’ signal is provided by the monitor
module in our previous work [17]. If it is high, the channel under test is classed as
faulty. In this paper, this fault flag signal is encoded to provide a ‘fault flag code’.
The fault flag coding and decoding modules aim to enhance the router with the
capability of sensing the traffic information of the links beyond a nearest neigh-
bour, i.e. several hops away. All the signals connected to the fault flag encoding
and decoding modules are labelled with a fault flag code presented in the Fig. 1(a).
In total there are 12 different fault flag codes which are named according to the
directions shown by Fig. 1(b). Figure 1(c) is a 9 × 9 2D-mesh NoC. There are 36
links labelled numerally from link #0 (L0) up to link #35 (L35) where the
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condition of several links are represented by a fault flag code. The corresponding
links of a fault flag code are ranked by the priority. The link which is closest to the
current node is defined as #1 link and the furthest link is defined as #3, e.g. in
Fig. 1(c), corresponding links (#1-#3) of URL for current node (5,5) are L8, L7,
L6. Similar to the Busy/Congested signals, the fault flag code is also represented
by dedicated signals, which are connected to the decoding module of each router.

Fault flag code is a 2-bit data. The coding process is given as follows. If all the links
are fault-free, the fault flag code is ‘00’. If #1 link is faulty, the fault flag code is ‘01’. In
this scenario, the conditions of #2 and #3 links are not important as #1 link is the
closest link to the current node which has the highest priority. Similarly, the fault flag
code is ‘10’ if the #1 link is fault-free, #2 link is faulty and the condition of #3 is not
important. If the links of #1, #2 are fault-free and #3 link is faulty, the fault flag code is
‘11’. Decoding is the reverse of the coding process. After the current node receives a
fault flag code, the conditions for corresponding #1 – #3 links are decoded. Therefore,
after receiving the 12 fault flag codes, the current node has knowledge of all the link
conditions of L0–L35 (green links in Fig. 1(c)) which provides key visibility of the
fault-status in the region and aids in making routing decisions.

The connecting combinations of L0–L35 are defined as a Regional Communication
Path (RCP). Figure 1(c) shows all the RCPs in the solid red or dash blue colours, e.g.
ranging from rcp[0] to rcp [19], within a bounding region. RCPs are combined by the
links along the path, e.g. rcp[0] includes L13, L9, L10, L11; the same rules are applied
to other RCPs. This bounding region is a sliding window as the flit is transmitted from
node to node on its destination journey. The RCPs include rcp[0-9] on the x-axis and
rcp [10–19] on the y-axis. They are divided into two categories according to the RCP
length; namely, Side RCP which has one or two turns (e.g. rcp[0], rcp [1]) and Middle
RCP which is straight (e.g. rcp[4]).

 

Fault flag Direction 
URL Fault Up Row Left direction       
USC Fault Up Same Column              
URR Fault Up Row Right direction      
RCU Fault Right Column Up direction   
RSR Fault Right Same Row              
RCD Fault Right Column Down direction 
DRL Fault Down Row Left direction     
DSC Fault Down Same Column            
DRR Fault Down Row Right direction    
LCU Fault Left Column Up direction    
LSR Fault Left Same Row               
LCD Fault Left Column Down direction  

(c).
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Fig. 1. Fault flag coding mechanism
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When the router receives a packet, it needs to know the length of RCP[i], i.e.
rcp_len[i]. The rcp_len[i] is determined by the relative position of the destination
node, where 1� rcp len½i� � 4. However, rcp_len varies according to the positions of
current and destination nodes. The rcp_len are initialized to 4 for side RCPs and 3 for
middle RCPs. For the rcp[0-4], if the current node is on the right border, rcp_len[0-4]
are equal to 1; if the current node is one hop away to the right border or the destination
node, rcp_len[0-3] are equal to 2 and rcp_len[4] is equal to 1; if the current node is
two hops away to the right border or the destination node, rcp_len[0-3] are equal to 3
and rcp_len[4] is equal to 2. For all other scenarios, i.e. the current node is three or
more hops away to the border or the destination node, rcp_len[0-3] are equal to an
initial value 4 and rcp_len[4] is equal to an initial value of 3. A similar path length
calculation process is applied to the rcp[5–19].

The rcp_len provides the information of the number of links contained in a specific
path when a current node attempts to transmit packets to a destination node. The RCP
is different from the Complete Communication Path (CCP), where CCP specifies the
complete path between source and destination nodes. The length of an RCP, rcp_len, is
defined by the number of hops. It can be smaller, equal or greater than the length of
CCP, ccp_len. If rcp len� ccp len, the destination node is inside or on the edge of the
cross-shape region; if rcp len\ccp len, the destination node is outside of the
cross-shape region. When rcp len� ccp len, the FG algorithm can always find the
optimal direction to forward the packets. When rcp len\ccp len, the packets are
forwarded through an optimal path toward the destination; however, the status-known
region is a sliding window and the destination node will be in this region eventually.

3.2 Fine-Grained Routing Algorithm

After the FG router receives the regional traffic information, it gets an idea about the
environment, and based on this traffic status it makes routing decisions. The FG
algorithm uses a path weight function to measure the quality of the path. The path
weight function includes several parameters: the priority weighting of RCP directions
(wp), Busy and congested weighting of immediate link (wlk1b and wlk1c), and Faulty
weighting of the regional links (wf). Based on these parameter values, the path weight
function calculates a total weight for each RCP and uses the RCP with a lowest weight
as an optimal direction to forward the packets.

(1) The Priority Weighting of RCP directions. It is determined by the preferred
direction definition which is given as follows: The direction of the first link in an
RCP defines the overall direction as the packet is forwarded to the next node via
the selected first link. The directions of the total 20 RCPs can be divided to four
groups – N/E/S/W, e.g. the direction of rcp[0] is north as the first link L13 points
to north.

A Q-value term [11] is used to define the preferred direction level, which is cal-
culated by the number of hops to the destination node shown by (1). Qc

dirðd; nÞ denotes
the number of hops from current node (c) to destination node (d) through direction
(dir) and neighbouring node (n). It is a deterministic value which is equal to one hop
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plus the minimum number of hops from node n to d over all directions (minQnðd; oÞ).
Note that among all the directions of node n, the direction has the minimum number of
hops from n to d as defined as o.

QC
dir d; nð Þ ¼ 1þminQnðd; oÞ ð1Þ

When a router forwards packets, the destination node can be one of 8 directions
denoted by D1–D8 (from east to south east) shown in the top half of Fig. 2. In the case
where the coordinates of the destination node is equal to the current node, this indicates
that the packet has arrived at its destination and should be forwarded to the local port.
When the destination node is located in D1-D8, it can be classed as type (1) diagonal
position (i.e. in D2, D4, D6, D8 directions) or (2) direct position (i.e. in D1, D3, D5,
D7). For each type, one example is provided to illustrate the concept of the preferred
direction definition. The preferred direction is defined as the direction which the current
node should choose preferably to forward a packet to its destination. The bottom left of
Fig. 2 presents the examples where the destination node is (4, 9) in the diagonal
position relative to the current node (2,7). Based on (1), the following can be calcu-

lated: Qð2;7Þ
East ð4; 9Þ; ð3; 7Þð Þ ¼ 4, Qð2;7Þ

South ð4; 9Þ; ð2; 8Þð Þ ¼ 4, Qð2;7Þ
West ð4; 9Þ; ð1; 7Þð Þ ¼ 6 and

Qð2;7Þ
North ð4; 9Þ; ð2; 6Þð Þ ¼ 6. Therefore, the east is defined as Preferred Direction 1 (PD1),

south as Preferred Direction 2 (PD2) and west and north directions are both defined as
Preferred Direction 3 (PD3). The levels are set in this ranking as the Q-values of the E
and S directions are smaller than W/N. The east port is defined as a higher level than
the south port as the FG algorithm gives the x-dimension priority to forward the
packets. The bottom right of Fig. 2 illustrates the Q-levels when the destination node is
in the direct position. Note, in this example N and S are assigned the same level (PD2)
as both have the same Q-value (i.e. 5) to the destination node.
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Fig. 2. Relative directions between source node and destination node (top half) and different
preferred port definition (bottom half)
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The symbol wp½rcp dir i½ �� denotes the direction priority weighting of rcp[i],
where the rcp_dir[i] is the direction of first link in the rcp[i]. It is determined
by the preferred direction level. If the direction of rcp[i] is a PD1 direction, the wp is
equal to 1; if it is a PD2 direction, wp ¼ 2; if it is a PD3 direction, wp ¼ 3. For
example, in Fig. 1(c) the current and destination nodes are (5,5) and (8,5); then the
destination node is in the D1 direction (according to the top half of Fig. 2) and
wp½N� ¼ f2g;wp½E� ¼ f1g;wp½S� ¼ wp½W � ¼ f3g. The priority weight of rcp[5] is
equal to wp½N�, i.e. 2. It is a second preferred path to transmit packets as the east
direction is the first choice. Therefore, ideally a lower priority weight value is sought
and the direction with the lowest value is selected as the preferred direction to route the
packets from the current node.

(2) Busy and Congested Weighting of Immediate Link. Every node has the knowledge
of the traffic statuses of the first links (neighbours) via dedicated Busy/Congested
input signals which are generated based on the FIFO occupancy of neighbouring
nodes. The notation of sb and sc is used to denote the Busy and Congested status
of the first link. If the status of the link is busy then sb ¼ 1 and if the link is
congested sc ¼ 1. If the link is not busy or congested then sb ¼ sc ¼ 0: The busy
and congested statuses determine two corresponding weights, wlk1b and wlk1c. The
weight values of wlk1b and wlk1c can be calculated using (2). It can be seen that the
weight wlk1c is given precedence (i.e. wlk1c [wlk1b when sb ¼ 1; sc ¼ 1) as the
channel status of Congested has the more significant performance impact on a
channel over Busy.

wlk1b ¼ 0; sb ¼ 0
2; sb ¼ 1

�
;wlk1c ¼ 0; sc ¼ 0

3; sc ¼ 1

�
ð2Þ

Each node connects to neighbouring nodes via four immediate links at the N/E/S/W
directions. The notations of wlk1b½rcp dir½i�� and wlk1c½rcp dir½i�� are used to denote the
busy and congested weights of rcp[i], where rcp dir½i� 2 fN;E; S;Wg. The weighting
of wlk1b and wlk1c reflect the traffic status of the immediate connected links of a current
node and will be used in the overall weight calculation.

(3) Faulty weighting of the regional links. The fault weight of the jth link in the rcp[i]
is defined as wf ½j�. It is set to a value according to the position as expressed by (3),

wf 1; 2; 3; 4½ � ¼ 10; 2; 2; 1f g; for sidepath
wf 1; 2; 3½ � ¼ 10; 4; 1f g; for middlepath

�
ð3Þ

where wf ½j� is set to be {10, 2, 2, 1} for the links sequentially in the side RCP, and
{10, 4, 1} for the links sequentially in the middle RCP. The weights are set in a
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decreased manner as the nearest link has the most significant impact for the path
selection over a more distant link.

(4) Total weight of the direction. Equation (4) illustrates the weight of rcp[i] cal-
culation process for the FG routing algorithm,

W i½ � ¼ wp rcp dir½i�½ � þwlk1b rcp dir½i�½ � þwlk1c rcp dir½i�½ � þ
Xrcp len½i�

j¼1
wf j½ � ð4Þ

where 0 ≤ i<20, W½i� is the total weight for rcp[i], rcp_dir[i] is the direction of the first
link in the rcp[i], wp rcp dir½i�½ � is the direction priority of the rcp[i], wlk1b rcp dir½i�½ �
and wlk1c rcp dir½i�½ � are the busy and congested weights of rcp[i], and wf ½j� is the fault
weight of the jth link in the rcp[i] which is accumulated from 1 to the RCP length.

The FG routing algorithm weights each of the links in a RCP to differentiate
between faulty and non-faulty links. It calculates the weights for all 20 RCPs and
selects the RCP with the lowest weight as the output path to forward the packets. For
complex fault patterns, it has the analysis capability to look ahead in more detail (finer
levels within a path) to make better routing decisions. This ultimately can reduce
communication latency of packets and improve system performance.

3.3 Deadlock and Livelock Avoidance

The FG router architecture is similar to a 5-stage NoC router architecture where the
technique of VC is employed to avoid deadlock. The VCs are used to temporarily store
the packets which cannot be forwarded on time; the packets that requesting the same
output port from different inputs can share the output physical channel based on the
time multiplexing division; and the adaptive arbitration policy (AAP) module in our
previous work [2] is employed to decide the arbitrations of VCs requesting the same
physical channel. Using this mechanism, all the packet can arrive at the destinations
eventually without deadlock occurring.

For the livelock avoidance, the FG algorithm imposes the restriction that data
packets from any given direction cannot return on the same direction. The FG algo-
rithm is livelock free when the path is fault-free and not congested. If congestion
occurs, for most cases, the path delay is a little longer but it does not introduce livelock.
For extreme scenarios, e.g. the congested links build up a circle, due to the AAP
module [2] that combines the fairness policy of a round-robin arbiter and a first-come
first-served priority scheme, the access to the busy channel can be granted regularly;
therefore the livelock is avoided. If the NoC system has faulty channels, the livelock
avoidance is restricted for some fault patterns, e.g. for convex faulty regions and the
concave faulty regions within a depth of 3 router hops, the packets can avoid livelock.
To avoid livelock with other concave faulty regions (e.g. larger than 3 hops depth) or
serious scenarios, a re-routing constraint mechanism [18] can be employed. It is an
efficient solution by adding a state component to the router. After adding a state
component, the router has two parts of traffic information – one is the traffic infor-

Fine-Grained Fault-Tolerant Adaptive Routing for Networks-on-Chip 499



mation of the observed region from the sensor and the other is the additional knowl-
edge of the unobserved region which is deduced by the state component. If the
re-routing number of a packet is beyond the threshold number, the state component can
deduce that this packet has fallen into a region with a complex fault pattern where the
sensor cannot completely observe the traffic conditions, and a livelock probably occurs;
then this packet is discarded. Therefore, the re-routing constraint mechanism based on
state component can be used to avoid livelock for the serious scenarios.

4 Hardware Verification and Evaluation

4.1 Hardware Verification of FG

The FG routing algorithm is validated on the FPGA hardware platform in real-time.
The open-source monitor tool in our previous work [19] is employed to evaluate the
performances under different fault rates. The NoC system is implemented in the FPGA
device and the traffic data is acquired in real time and uploaded to the monitor software;
the monitor software quantitatively analyses the NoC system’s fault-tolerant capability
by calculating throughput, the number of lost/corrupted packets calculation and the
generation of traffic heat maps for visualisation.

An 8 × 8 2D-mesh NoC system is implemented. The NoC system implements the
matrix multiplication application which is one of the most common numerical opera-
tions used in many applications, e.g. engineering and image processing. The detail
about matrix multiplication can be found in [20]. It calculates the multiplication pro-
duct of two matrices, A and B, resulting in a matrix C. Average throughput, the number
of lost packets and throughput degradation are used as the performance analysis
metrics. Each NoC router has four ports to connect neighbouring nodes and a local port
to connect the local processing element. For a given window time of N clock cycles, the
router throughput, T, can be calculated by (5), where

P
R ¼ RN þRE þRs þRw þRL,

i.e. the number of received packets through North/East/South/West/Local ports.

T ¼
P

R
N

ð5Þ

Average throughput is defined by (6), where the Tavg is the average throughput,
Tði; jÞ is the throughput of router (i,j), DIMx and DIMy are the size of NoC system in x
and y dimension.

Tavg ¼
XDIMx

i¼1

XDIMy

j¼1
Tði; jÞ=ðDIMx � DIMyÞ ð6Þ

The throughput degradation, Td ; is defines by (7) where Th is the throughput when
all the channels are healthy, and Tf is the throughput when channels are faulty. The
number of lost packets is equal to the number of received packets while no fault occurs,
minus the number of received packets when faults occur.
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Td ¼ ðTh � Tf Þ=Th ð7Þ

Figure 3 gives the experimental results of average throughput and the number of
lost packets under variable fault rates. The EDAR router with local fault-tolerant
capability in our previous work [21] is chosen as the benchmark. When the fault rate is
low (e.g. 5 %), both the EDAR and FG routers maintain the system performance and
don’t have throughput degradation. When the fault rate increases, they loss packets but
with different rates – the FG router loses fewer. When the fault rate is high at 20 %, the
EDAR and FG routers have 20 % and 5 % throughput degradation, respectively. In
Fig. 3, it can be seen the FG router achieves better throughput performance than the
EDAR router with increased fault rates.

Using the monitor tool, we can also plot the throughput of the NoC systems as a
distribution across the 2D NoC, e.g. 3D-columns. Figure 4 depicts the distribution with
fault rates of 5 %, 15 % and 20 %. When the fault rate is 5 %, the EDAR and FG
routers have very similar throughput distributions. Because of the matrix multiplication
traffic pattern and great path diversity in the middle region, the traffic load in the middle
is heavier, i.e. the throughput in the middle region is higher than the edges. However,
when the fault rate is 15 % or 20 %, their throughput distributions are different. In
contrast, when the fault rate is 15 % as shown in Fig. 4(c and d), the throughput
distributions change. For example, as the fault rate increases and the number of
fault-free channels decreases, these fault-free channels undertake more traffic; therefore
the number of channels with heavy traffic is increased. Overall, the maximum
throughput of the FG router is much higher than the EDAR router, as it has the
capability to use the limited healthy channels to transmit more packets which permits
the system performance to be more attainable. Figure 4(e) and (f) shows these channels
to have a higher throughput, e.g. the coloured rows of orange and green in (f) shows a
more even distribution than the EDAR in (e). When the fault rate is 20 %, due to the
fine grained look-ahead function, the FG algorithm has more distributed channels

Fig. 3. Average throughput (bars) and the number of lost packets (lines) of the EDAR and FG
router under various fault rates
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which are used than the EDAR router; therefore it has a lower throughput degradation
as more packets are transmitted across the larger number of visible paths.

In this subsection, we evaluated the throughput performance and traffic load balance
of the EDAR and FG routing algorithms based on a real application. The throughput
display in 3D-column demonstrated that the FG achieves a better fault-tolerant capa-
bility than the EDAR router due to the look-ahead functions, i.e. it has a lower
throughput degradation and a better traffic load balance capability under high fault rates.
In the next subsection, we will continue to evaluate the EDAR and FG routing algo-
rithms by considering the area overhead and power consumption. The relationship
between the performance and cost will be further explored.

4.2 Hardware Evaluation

The hardware evaluation process followed an FPGA design flow based on the
Stratix IV EP4SGX530KH40C2 using Quartus II software. Altera’s PowerPlay Power
Analysis tool was used to analyse power dissipation. The NoC systems with EDAR and
FG routing algorithms were designed; the toggle rate of data was derived sufficiently
from the Value Change Dump (.vcd) file which represents the system operation at gate
level; this aids estimating the power analysis in high level confidence.

Table 1 gives the resource utilization and power consumption of one router with the
EDAR and FG routing algorithms. Resource utilization includes combinational
ALUTS, dedicated logic registers and number of input/output signals; power con-
sumption includes static power dissipation. For the combinational ALUTs, the FG
router requires more than the EDAR router due to the additional look-ahead capability
however for dedicated logic registers, the FG is a less than the EDAR. The number of
input and output signals is the number of required signals of the router for the

Fig. 4. Throughputs of EDAR/FG routers under fault rates of 5 % (a/b), 15 % (c/d) and 20 %
(e/f). Colour code represents each row of the 8 × 8 NoC.
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connection and communication with processing element and other routers, where these
signals include clock, reset, router address, channels and traffic status flag (e.g. B/C/F
of EDAR router, fault flag of FG router etc.). The number of input/output signals is 366
for the EDAR router, 406 for FG routers. The FG router requires additional 10 fault
flag signals per direction; therefore in total an additional 40 signals are required. For the
power consumption, the dynamic power dissipation of the FG router is 72.31 mW,
whereas the EDAR router is 47.05 mW. It can be seen that the EDAR and FG routers
vary in values on the metrics of combinational ALUTs, number of input/output signals
and dynamic power dissipation. These metrics mainly reflect the hardware overhead
and power consumption of the router. The FG router has a larger resource utilization
than the EDAR; however, FG has a significant fault-tolerant capability over the EDAR
as demonstrated in the previous sections.

The implementation approach also followed the standard ASIC cell design flow,
synthesis and verification based on a SAED 90 nm CMOS technology. Table 2 pro-
vides a comparison of the FG algorithm against existing benchmark adaptive routing
schemes and illustrates the routing capabilities and router area. The approach in [22]
provides congestion-aware adaptive routing however it does not provide a fault-tolerant
capability, therefore the router area is relative low (56,000 µm2). Based on [22], the
router in [17] was extended with the monitor module to provide a level of fault
detection capability which increased the area overhead (182,076 µm2). However the
routing algorithms in [22] and [17] are not fault-tolerant. The EDAR router [21] is able
to detect interconnect faults and make routing decisions based on traffic status of the
link with a router area of 241,132 µm2. Although that the area overhead of the EDAR
router is smaller, the FG router has an improved fault-tolerant capability, e.g. *15 %
throughput improvement at 20 % fault rate. In consideration of the added fault

Table 1. Resource utilization and power consumption of one router with EDAR [21] and FG
routing algorithm

Resource utilization and
Power consumption

EDAR FG

Combinational ALUTs 2,696 3,932
Dedicated Logic Registers 4,190 4,142
Number of Input/Output signals 366 406
Dynamic Power Dissipation (mW) 47.05 72.31

Table 2. Area overhead comparison of adaptive routing scheme

The approach Fault
detection

Router capability Area overhead (µm2)
Congestion aware Fault tolerant Router Device technology

[22] × × 56,000 90 nm CMOS
[17] × 182,076 SAED 90 nm
EDAR [21] 241,132 SAED 90 nm
FG 342,172 SAED 90 nm
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tolerance capability and improved throughput performance of the FG, the additional
area overhead can be traded-off for higher reliability.

5 Conclusion

In this paper, a fault-tolerant routing algorithm with fine-grained look-ahead function
was presented which improves the NoC throughput performance under high fault rates.
It employs the fault status encoding/decoding mechanisms to transmit the channel
conditions; then selects the fault-free direction or regional path with minimal
congestion/faults to forward the packets. Hardware verification and validation proce-
dures were given and a performance monitoring and analysing mechanism was
employed to evaluate real-time performance of the proposed FG algorithm in hardware
under a real application with various fault rates. The results demonstrated that the FG
algorithm achieves a significant improvement in throughput, especially when high fault
rates are present. The hardware overhead was presented and demonstrated scalability as
a low area constraint was met for the algorithm.
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5 School of Computer and Information, Hefei University of Technology,
Hefei 230000, China

Abstract. In large-scale distributed storage systems (DSS), reliabil-
ity is provided by redundancy spread over storage servers across the
Internet. Network coding (NC) has been widely studied in DSS because
it can improve the reliability with low repair time. To maintain reli-
ability, an unavailable storage server should be firstly replaced by a
new server, named new comer. Then, multiple storage servers, called
providers, should be selected from surviving servers and send their coded
data through the Internet to the new comer for regenerating the lost
data. Therefore, in a large-scale DSS, provider selection and data rout-
ing during the regeneration phase have great impact on the performance
of regeneration time. In this paper, we investigate a problem of optimal
provider selection and data routing for minimizing the regeneration time
in the DSS with NC. Specifically, we first define the problem in the DSS
with NC. For the case that the providers are given, we model the problem
as a mathematical programming. Based on the mathematical program-
ming, we then formulate the optimal provider selection and data routing
problem as an integer linear programming problem and develop an effi-
cient near-optimal algorithm based on linear programming relaxation
(BLP). Finally, extensive simulation experiments have been conducted,
and the results show the effectiveness of the proposed algorithm.

Keywords: Network coding · Distributed storage system · Provider
selection · Routing · Linear programming · LP relaxation

1 Introduction

With the rapid development of big data, the information explosion results in
the rapid development of data storage. There are about 5 Exabytes independent
c© Springer International Publishing Switzerland 2015
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information created in 2015 and 8.6 Zettabytes of data center traffic by 2018 [1].
Therefore, many large-scale DSSs, e.g., Google File System [2], Azure [3], are
widely used for achieving high reliability by storing the data redundantly over
multiple unreliable storage servers.

Reliability is one of the basic requirements for these DSSs that users can
get data anywhere anytime. The traditional methods for providing reliability in
DSSs include replication and Reed-Solomon codes [4]. In 2000, NC was proposed
to increase the throughput of the network, balance network load and so on [5].
It has been proved distributed storage applications can achieve good benefits
with NC [6]. When using NC, it keeps the MDS property of erasure code that
the original file is divided into k packets, then encoded into n coded packets [7].
Users can recover the original file by any set of k coded packets among n coded
packets. Therefore, more and more researchers pay attention on NC in DSS.

Although NC can improve storage reliability, the data of distributed storage
systems is prone to be damaged, such as an outage of the server, invasion by
the hackers, disk damaged. To keep the same level of reliability, when a server
fails or leaves the system, a new server has to join the system and accesses
existing servers to regenerate the lost data, which leads to repair bandwidth
consumption and regeneration time. Based on the ideas of NC, the functional
minimum storage regeneration (FMSR) codes have been proposed to minimize
the repair bandwidth or regeneration time in DSS [8,9].

Although FMSR code can significantly minimize repair bandwidth, it cannot
ensure that the regeneration time is minimized. In order to reduce the regener-
ation time, Li et al. proposed a tree-structured data regeneration in the hetero-
geneous network [10,11]. Most of current studies focus on obtaining data from
multiple surviving servers to regenerate the lost data under the condition that
the bandwidth of the path between each servers and the new comer is given.
However, each link in physical network may be shared by multiple paths, which
means the bandwidth of each link should be shared between different paths.
Therefore, in practice, the bandwidth of the routing path from each selected
server, i.e., provider, to the new comer may not be achieved.

Next, we introduce an example that shows the effect for regenerating the
lost data by selecting a given number of servers as the providers and routing
paths from the providers to the new comer. Figure 1(a) gives the original network
topology and includes routers denoted as Rj and storage servers denoted as Fi. In
this example, each server Fi stores different coded packets of the same file. When
F4 is unavailable, to keep the same level of reliability, a new server should be
installed to replace F4 and acquire data packets from multiple available storage
servers to regenerate the lost data. Therefore, in this example, we also denote the
new comer as F4. We assume the number of providers is 3, which is denoted as d
in the rest of the paper and the size of the file is M = 300Mb. With the minimum-
storage regenerating code [12,13], each server storages α = M/k = 150Mb
data and F4 needs to download β = α/(d − k + 1) = 75Mb data from each
provider. The bandwidths of the links range from 30Mbps to 100Mbps. As
shown in Fig. 1(a), the maximum transmission rate from each storage server to
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(a) Network model. (b) Case 1.

(c) Case 2. (d) Case 3.

Fig. 1. Examples for providers and routing paths selection.

F4 is 30Mbps. Figure 1(b), (c) and (d) respectively show different selections of
the providers and routing paths. Next, we show different regeneration time of
these three kinds of selections as follows:

In Fig. 1(b), F1, F2 and F3 are selected as providers. Since all the routing
paths pass through the link between R3 and R5. The bandwidth is only 30Mbps.
Therefore, the transmission rate can be achieved per provider is 10Mbps and
the regeneration time is 75/10 = 7.5 s.

In Fig. 1(c), F1, F3 and F5 are selected as providers. As shown in the figure,
two routing paths pass through the link between R3 and R5. The transmis-
sion rates for F1 and F3 can be achieved are 15Mbps. Although the maximum
transmission rate of F5 can be 30Mbps, the regeneration time depends on the
transmission time of F1 and F3 (15Mbps). Therefore, the regeneration time is
75/15 = 5 s.

In Fig. 1(d), F1, F3 and F5 are also selected as providers. In this figure,
different routing paths are selected. The transmission rates for F1, F3 and F5

can be achieved are 30 Mbps, respectively. Therefore, the regeneration time is
75/30 = 2.5 s.
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The example above has well demonstrated that not only the selection of
providers but also routing paths can significantly affect the regeneration time,
which motivates the work of this paper. In this paper, we focus on selecting a
given number of providers and deciding the routing paths from them to the new
comer to minimize the regeneration time. The main contributions of this paper
are summarized as follows.

– We define the providers and routing paths selection (PRPS) problem in the
DSS with NC and model the problem as a mathematical programming.

– For the case that the providers are given, we model the PRPS problem as
a linear programming. Based on the linear programming, we then formulate
the optimal provider selection and data routing problem as an integer linear
programming.

– We develop an efficient near-optimal algorithm based on linear programming
relaxation (BLP).

– We conduct extensive simulation experiments and the results show the effec-
tiveness of the proposed algorithm.

The rest of the paper is organized as follows: in Sect. 2, we introduce the
related works. In Sect. 3, we show network model and notations. We propose a
linear programming(LP) in Sect. 4 to calculate the optimal regeneration time
when the selection of the providers is fixed. In Sect. 5, we formulate the opti-
mal provider selection problem as a mixed integer linear programming (MILP)
problem and develop an efficient near-optimal algorithm based on LP-relaxation
(BLP). We conduct extensive simulation experiments in Sect. 6. Finally, we con-
clude the paper in Sect. 7.

2 Related Works

Hu et al. considered functional minimum storage regenerating (FMSR) codes,
which achieved the minimum repair bandwidth [13]. However, in the practical net-
work, minimizing the repair bandwidth does not mean to minimize the regenera-
tion time. Based the heterogeneous network, Sun et al. proposed a tree-structure
regeneration model to reduce the regeneration time, which can reduce significantly
the regeneration time [14]. To further reduce the regeneration time, Wang et al.
reconsidered how to solve the problem in the heterogeneous network [15].

In [19,20], Gong et al. studied the provider selection problem of DSS in
overlay networks, which are represented as a complete graph, to minimize the
regeneration time. Comparing with previous works shown in [19,20], the main
differences of our paper is summarized as follows: Firstly, routing paths from each
server to the new comer are not given and the general physical network topology
is studied in this paper. Secondly, multiple routing paths can be utilized from
each selected server, i.e., provider, which makes the transmission topology from
the providers to the new comer may not be a tree. Thirdly, each link in the
network can be used simultaneously by different flows from different providers
and the bandwidth of the link can be shared between them. Moreover, the total
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bandwidth of each link is assigned to different flows based on the algorithm pro-
posed in Sect. 5 instead of assigning the bandwidth equally to different flows.
Finally, by considering the general physical network with heterogeneous band-
width on each links, we jointly study the provider selection from survival servers,
the routing path decision in physical network and the bandwidth assignment of
each link together to optimize the regeneration time.

3 Problem Formulation

In this section, we mainly give the definitions of the problem studied in this
work. Specifically, we firstly introduce the network model. We then introduce
important parameters and variables to be used in the rest of this paper.

3.1 The Network Model

The network consists of routers and storage servers. We assume that each server
is connected with a router1. Different links in the network may have different
bandwidths or transmission rates. In the DSS, the servers distribute in different
geographical area of the world [2,3]. In repair phase, the lost data are regenerated
by minimum-storage regenerating code with functional repair [7–10]. Moreover,
we assume each provider sends the same amount of data packets to new comer
(such transmission model has been investigated [13,14]). We also assume the
providers for regenerating the data in the network can be controlled to minimize
the regeneration time.

We model the network as a directed graph G = (N,E), where N consists
of the routers. Since each storage server is connected with a router, we use the
router to represent the connect server. We denote the set of routers, each of which
connects to a available storage server, as Mp, and Mp ⊆ N . Moreover, we use g to
represent the new comer or the connected router, g ∈ N . We assume the router
connected to each server represents it to transmit and receive data. Therefore, in
this paper, the problem is equivalent to selecting d routers as providers from the
subset of routers Mp. Specifically, we want to select d routers to regenerate the
lost data, denoted Md, Md ⊆ Mp. Therefore, we also call the subset of routers
Mp as servers in the rest of this paper.

3.2 Notations

In order to facilitate the discussion, we define the parameters and variables as
follows.

Parameters used in the rest of the paper are shown as follows:

– Mp: The subset of routers, each of which connects a surviving server which
can be selected as providers, Mp={n1, n2, ..., n|Mp|}.

1 If a server is connected with multiple routers, we can add a virtual router and this
virtual router is connected with multiple routers.
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– g: The router which connects the new comer.
– Mn: The set of the routers in the network, not including Mp and g.
– N : The set of the routers in the network, N = Mp ∪ Mn ∪ {g}.
– E: The set of links between routers in the network G.
– N(u): The set of downstream neighbor nodes of the router u. There exists a

link from node u to each node in N(u).
– N ′(u): The set of upstream neighbor nodes of the router u. There exists a link

from each node in N ′(u) to node u.
– Buv: The bandwidth of link euv from u to v in the network, euv ∈ E.
– β: The number of transmission data each provider need to send.
– d: The number of the providers.

Decision variables of the problem are shown as follows:

– λ: The regeneration time.
– f i

uv: The traffic load of traffic flow i on link euv. We note that each flow denotes
the data transmission from a available server to the new comer g.

– ri: The transmission rate routed to g for traffic flow i.
– wl: 0–1 variable, which indicates whether a server is selected as a provider.

3.3 Problem Definition

In the DSS, server failures are unavoidable. Therefore, it is desirable to regen-
erate the lost data in order to maintain the system reliability. In this paper, we
consider selecting optimal servers as the providers for regenerating the lost data
to minimize the regeneration time, which contains the selection of d providers
and routing paths from them to new comer, named providers and routing paths
selection (PRPS) problem.

4 Problem Formulation

In this section, we firstly assume d providers have been fixed, and give the
mathematical formulation to minimize the regeneration time. Specifically, to
solve the PRPS problem, we then develop a mixed integer linear programming
(MILP) to select d optimal servers as providers.

4.1 The PRPS Problem Formulation with Fixed Providers

When given parameter: Md, which denotes the set of fixed providers, Md=
{s1, s2, ..., sd}, Md ⊆ Mp. Let Q= {1, 2, ...d}. We assume there are d flows,
each of which from one provider to new comer. si is equivalent to the source
node of traffic flow i, i ∈ Q. The non-linear programming formulation for the
case of fixed providers is shown as follows:

Minimize : λ (1)
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Subject to:

λ ≥ β/ri,∀i ∈ Q (2)
∑

v∈N(u)

f i
uv − ∑

v∈N ′(u)
f i
vu = ri,∀i ∈ Q,u = si (3)

∑

v∈N(u)

f i
uv =

∑

v∈N ′(u)
f i
vu,∀i ∈ Q,∀u ∈ N − {si, g} (4)

∑

v∈N ′(u)
f i
vu − ∑

v∈N(u)

f i
uv = ri,∀i ∈ Q,u = g (5)

0 ≤ ∑

i∈Q

f i
uv ≤ Buv,∀euv ∈ E (6)

0 ≤ f i
uv,∀i ∈ Q,∀euv ∈ E (7)

The objective (1) is to route the data stored in providers to the new comer
through the network such that the regeneration time is minimized. Constraint (2)
gives the regeneration time no less than transmission time from each provider
to new comer g. ri denotes the transmission rate routed to g for traffic flow i.
Constraints (3)– (5) put network flow constraints between each provider and new
comer. Constraint (6) gives the bandwidth constraint for different flows through
the same link in the network. Constraint (7) gives value range of variables.

Although we have given the constraints of the problem, the constraint (2) is
a non-linear constraint. Next, we try to convert the non-linear constraint to a
linear constraint. The objective can be equally converted by the three steps:

– First, the optimal value of the objective is equivalent to minimize the value
of max

i∈Q
(β/ri);

– Second, the value max
i∈Q

(β/ri) can be simplified to the value β max
i∈Q

(1/ri), and

is equivalent to β/min
i∈Q

(ri);

– Finally, the objective can be converted to minimize the value of β/min
i∈Q

(ri),

which is equivalent to maximize the value of min
i∈Q

(ri). Suppose the maximum

value of min
i∈Q

(ri) is r, λ can be obtained by β/r.

4.2 The PRPS Problem

In this section, we assume d providers are not fixed but should be selected from
the set of available servers Mp. We assume there are |Mp| flows, each of which
from one server ni to the new comer g, ni ∈ Mp. Let Q= {1, 2, ...|Mp|}. We then
formulate PRPS problem as a mixed integer linear programming (MILP):

Maximize : r (8)



On the Optimal Provider Selection for Repair in Distributed Storage System 513

Subject to:

r ≤ oi,∀i ∈ Q (9)
oi = ri + (1 − wl)θ,∀i ∈ Q, l = ni (10)

∑

v∈N(l)

f i
lv − ∑

v∈N ′(l)
f i
vl = ri,∀i ∈ Q, l = ni (11)

∑

v∈N(u)

f i
uv =

∑

v∈N ′(u)
f i
vu,∀i ∈ Q,∀u ∈ N − {ni, g} (12)

∑

v∈N ′(u)
f i
vu − ∑

v∈N(u)

f i
uv = ri,∀i ∈ Q,u = g (13)

0 ≤ ∑

i∈Q

f i
uv ≤ Buv,∀eu,v ∈ E (14)

0 ≤ f i
lv ≤ wlBlv,∀i ∈ Q, l = ni, v ∈ N(ni) (15)

∑

l∈Mp

wl = d (16)

0 ≤ f i
uv,∀i ∈ Q,∀euv ∈ E (17)

wl ∈ {0, 1},∀l ∈ Mp (18)

In above MILP, we use the 0–1 variable wl denotes whether server nl ∈ Mp is
selected as a provider. Constraint (16) shows that only d servers can be selected
as providers. Constraints (11)– (13) and Constraint (15) give that there has a
non-zero transmission rate ri from server ni to the new comer g if only if server
nl ∈ Mp is selected as a provider. Constraint (10) is equivalents to

oi =
{

ri, if ri > 0;
θ, if ri = 0.

Let θ be a sufficiently large number. Consider the objective and Constraint (9),
r = min

i∈Q
oi. Since θ is set to be a sufficiently large constant value, i.e., θ > max

i∈Q
ri,

we have r = min
i∈Q and ri>0

ri, which means the objective r is to maximize the

minimum transmission rate of the providers. Finally, we can get the minimum
regeneration time, which is equivalent to β/r.

5 An Efficient Algorithm for Optimal Providers
and Routing Paths Selection

According to the MILP proposed in above section, we can obtain the minimum
regeneration time. The PRPS problem can be optimally solved by the proposed
MILP formulation when the size of the problem is small. However, when the
problem size is large, the computational complexity of MILP is considerably
large, which has been proved as NP-hard problem [16]. Therefore, when the
problem size is large, we need to develop a novel efficient algorithm to select d
providers and corresponding routing paths.

Next, we propose a novel efficient algorithm based on the LP-relaxation of
the proposed MILP, which contains three steps is shown as follows:
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Algorithm 1. The Effective Algorithm Based on LP Relaxation (BLP)
Step 1: Solve the LP-relaxation with the objective (8), constrains (9)– (17), (19) to
obtain an optimal solution {wM

l }.
Step 2: For each l ∈ Mp.
set w∗

l = 1 for the d largest wM
l in {wM

l |l ∈ Mp}.
Step 3: Set other w∗

l = 0.
Step 4: Fix the d selected providers with w∗

l = 1, solve the LP with the objective
(8), constrains (3)–(7), r <= ri and obtain the value of f i

uv, which denotes the data
transmission rate on link euv for each provider i.
Step 5: Return the sub-optimal solution: {w∗

l |l ∈ Mp} and {f i
uv|euv ∈ E, i ∈ Q}.

(1) We replace the constraint (18) by:

0 ≤ wl ≤ 1,∀l ∈ Mp (19)

We obtain the LP-relaxation of the proposed MILP.
(2) We solve the obtained LP-relaxation and use wM

l to represent the optimal
solution, where some values of wM

l may not be integers.
(3) We select d servers as providers based on the values of wM

l . Specifically,
Algorithm 1 gives the BLP algorithm. For each variable wM

l , l ∈ Mp, the first d
servers, which have first d highest value, will be selected as the providers, and
the corresponding variable wM

l is set to 1. Otherwise, it is set to 0.
It is known that LP can be efficient solved. The time complexity will take

O(Mp log Mp) for sorting the elements in wM
l . Therefore, the time complexity of

our algorithm is dominated by solving the LP relaxation.

6 Performance Evaluation

In this section, we will give simulation results to compare with the proposed BLP
algorithm, a random selection (RS) scheme and the maximum-flow (MF)scheme.

The RS scheme randomly selects d available servers as the providers. On
the other hand, in the MF scheme, we calculate maximum-flow Hu from each
available server u to g individually without considering that different flows may
pass through the same link, u ∈ Mp. Specifically, for each value Hu, the first d
servers, which have first d highest value, will be selected as the providers.

Moreover, let λr denote the regeneration time achieved by the RS scheme, λm

denote the regeneration time by MF scheme, and λb denote the regeneration time
achieved by the BLP algorithm. Compared with the RS scheme, the improvement
ratio of the BLP algorithm is defined as IRS = (λr −λb)/λr. On the other hand,
the improvement ratio of the BLP algorithm is defined as IMF = (λm − λb)/λm

compared with the MF scheme.

6.1 Simulation Setup

In this simulation, we assume the nodes in the network are randomly generated
in the 10 × 10 m2 square region, where the nodes denote servers, the routers
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and the new comer. As we know, the encoding time from each provider and
decoding time on the new server are ignored with the reason these operations
can be performed with the data transmission at the same time [10].

Moreover, the random network graph G is generated by the widely used
Waxman algorithm [17]. The nodes in G are a Poisson process mainly with
three kinds of variables, denoted as a, b and c. a denotes the intensity of the
Poisson process. Two nodes are connected by a link with probability P (u, v) =
be−d(u,v)/(c∗L), d(u, v) is Euclidean distance and L is the maximum distance
between any two nodes. In the simulation, we firstly let the set of nodes with
serial number in {1, · · · ,D} as Mp, i.e., the set of available servers, and let the
node has largest serial number as the new comer, denoted as g. Other nodes in
G are routers.

In this section, the file is coded with the redundancy of an (n = 10, k = 2)-
MDS code. The size of the file is M = 1024Mb and each server stores α =
M/k = 512Mb. Moreover, with the minimum-storage regenerating (MSR) codes
[8], each provider needs to send β data to the new comer for regenerating the
lost data and β can be calculated as the formula β = α/(d − k + 1), where d
represents the number of providers. We set θ as a sufficiently large number when
solve the LP relaxation of the MILP. Moreover, we use CPLEX [18] to solve the
linear programming in the simulation.

6.2 Simulation Results

In this section, we change different combinations of parameters to compare the
RS method, MF method and the proposed BLP algorithm.

In Fig. 2, we set b=0.4, c=0.4, D=7, d=4 and U=[10, 40]. Figure 2(a) shows
the regeneration time of all algorithms decreases with the increase of a. With
the increase of a, there are more nodes and links in the network, which leads
to multiple paths can be selected to routing the data and higher transmission
rate can be achieved. Therefore, the regeneration times of the three algorithms
decrease. Figure 2(a) shows our algorithm can achieve lower regeneration time
compared with other two schemes. In Fig. 2(b), the improvement ratios of BLP
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Fig. 2. Different values of a with b=0.4, c=0.4, d=4, U = [40, 90] and D=7.
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Fig. 3. Different values of b with a=0.4, c=0.4, d=4, U = [40, 90] and D=7.
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Fig. 4. Different values of c with a=0.4, b=0.4, d=4, U = [40, 90] and D=7.

decrease with the increase of a compared with RS and MF. The reasons include
that (1) the number of D is fixed, the optimization space is limited; and (2)
when multiple paths can be selected to routing the data and higher transmission
rate can be achieved with the increase of a, the selection of providers has lower
impact on the regeneration time. Our algorithm can achieve lower regeneration
time compared with MF because that MF does not consider the link sharing
between different flows and using network coding. The improvement ratio of
BLP still achieves 30% compared with RS scheme when a is sufficiently large.

In Fig. 3, we set a=0.4, c=0.4, D=7, d=4 and U=[10, 40]. In Fig. 4, we set
a=0.4, b=0.4, d=4 and D=7. Figures 3(a) and 4(a) show regeneration times of
all algorithms decrease with the increase of b and c, respectively. Although the
density of the nodes in the generated network does not change, the number of
links increases with the increase of b and c, which also leads to higher bandwidth
between the servers and the new comer. Therefore, the regeneration times of
the three algorithms decrease and the BLP algorithm outperforms other two
schemes. Figures 3(b) and 4(b) shows the improvement ratios of BLP decrease
with the increase of a compared with RS and MF. The reasons are similar with
the case shown in Fig. 2.
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Fig. 5. Different values of d with a=0.4, b=0.4, c=0.4, U = [40, 90] and D=10.
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Fig. 6. Different values of U with a=0.4, b=0.4, c=0.4, d = 4 and D=7.

In Fig. 5, we set a=0.4, b=0.4, c=0.4, D=10 and U=[10, 40]. Figure 5(a) shows
the regeneration time of all algorithms decreases with the increase of d. The
more servers can be selected as providers the less data that each provider needs
to transmit to the new comer, which leads to the decrease of regeneration time.
In Fig. 5(b), the improvement ratio of BLP is low in the cases that d is small and
large. On the other hand, the improvement ratio of BLP achieves the highest
value when d is median. The reason is that considering D is fixed, when d is
too small or too large, the optimization space of the BLP algorithm is small
comparing with the case that d is median.

In Fig. 6, we set a=0.4, b=0.4, c=0.4, D=7 and d=4. Figure 6(a) shows that
the regeneration time of all algorithms decreases because the range of link band-
width increases. Figure 6(b) shows the improvement ratio of BLP decreases. The
reason is that the optimization space of the BLP algorithm is small when the
range of the link bandwidth decreases. The simulation results also show that
the proposed BLP algorithm is suitable in heterogenous network. Note that the
proposed BLP algorithm can reduce about 40% and 10% regeneration time
comparing with RS scheme and MF scheme, respectively, when the range of the
link bandwidth is sufficiently large.
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Fig. 7. Different values of D with a=0.4, b=0.4, c=0.4, d=4 and U = [40, 90].

In Fig. 7, we set a=0.4, b=0.4, c=0.4, d=4 and U=[10, 40]. The Fig. 7(a)
shows the regeneration time of all algorithms decreases with the increase of D.
The more servers can be selected to be providers, the higher probability that
can find d “good” providers with higher bandwidth between them to the new
comer. Therefore, the regeneration time of all algorithms decreases. Figure 7(b)
shows the improvement ratio of BLP increases with the increase of D compared
with RS and MF schemes. When D increases, the optimization space becomes
larger.

7 Conclusion

In this paper, we investigate a problem of optimal provider selection to mini-
mize the regeneration time. Specifically, we first give the definitions of the PRPS
problem in the DSSs with NC. For the special case that the providers are given,
we model the PRPS problem as a mathematical programming. On the basis of
the special case, we then formulate the optimal provider selection problem as a
mixed integer linear programming problem and develop an efficient algorithm
based on LP-relaxation (BLP) to solve the PRPS problem. Finally, extensive
simulation experiments have been conducted, and the effectiveness of the pro-
posed algorithm are shown from the results. Specifically, when the range of link
bandwidth is large, the proposed BLP algorithm can reduce about 40% and 10%
regeneration time comparing with RS scheme and MF scheme, respectively.

In the future, we will conduct more experiments by using setups and traces
from a real-world scenario. Moreover, we will also take more characteristics of
the network into consideration.
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Abstract. Applying model checking to detect concurrency errors in
larger-scale multithreaded programs is limited by state explosion prob-
lem stemming from nondeterminism. We propose a novel approach estab-
lished on the insight into the relationship between thread interference and
nondeterminism to break the limitation. The approach works for partic-
ular parallel region that can be divided into disjoint groups among which
there is no thread interference. We demonstrate that the set of reachable
states of the parallel region is the Cartesian product of reachable states
of each disjoint group. Local states of disjoint groups explored in previ-
ous runs can be reused to avoid redundant state transitions such that
the time consumed by successive runs is decreased. The empirical results
indicate that the efficiency of model checking can be improved by orders
of magnitude through local state reusing.

Keywords: Software model checking · State explosion · Thread inter-
ference · Concurrent control flow · Local state reusing

1 Introduction

In the area of concurrency testing, stateless model checking [8,13] based on
state transition system occupies a unique seat. However, state explosion prob-
lem incurred by intrinsic nondeterminism of multithreaded programs limits its
application to large-scale multithreaded programs. Partial-order reduction tech-
niques [5,15,17] have been proposed to strike the problem through pruning
equivalent states. The mechanism of detecting dependence relations between
transition determines the optimization effect.

We propose a novel local state reusing technique to accelerate stateless model
checking. Aided by concurrent control flow graph [19,20] which depicts the
control flow, parallel flow, synchronization dependence and thread interference
between basic blocks in a multithreaded program, some parallel regions can be
divided into disjoint groups among which there is no thread interference. The
set of reachable states of such parallel region is equivalent to the Cartesian prod-
uct of the set of reachable states of each disjoint group. It means that a large
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number of end states reached by each disjoint group may be repeatedly explored
in simulated runs during state exploration. This fact motivates our local state
reusing technique.

Normalized state exploration, executing disjoint groups in order, is proposed
to simplify local state reusing. In normalized state exploration, it is feasible
to detect when exploration of disjoint groups is accomplished. The end states of
disjoint groups recorded in previous runs are reused to generate successive states.
Therefore the cost of computing persistent sets and performing state transitions
can be reduced. According to empirical results, the efficiency of stateless model
checking by SPIN can be improved in orders of magnitude. Our contributions
consist of mathematically analyzing the relation between reachable states of
disjoint groups and corresponding parallel region, the insight into the redundant
exploration of states reached by disjoint groups, and the implementation of SR-
SPIN model checker equipped with local state reusing technique.

This paper is organized as follows. Section 2 briefly introduces model checker
SPIN and concurrent control flow graph, a powerful method for statically analyz-
ing multithreaded programs. Preliminaries including notations, definitions and
theorems are given in Sect. 3. The implementation of state reusing is depicted in
Sect. 4. Experimental results are shown in Sect. 5. Sections 6 and 7 give related
work and conclusion and future work respectively.

2 Background

Promela

Program

Promela Parser

Verifier Code 

Template

Verifier Generator
Model Checker
(ANSI C Code)

Executable Verifier

Fig. 1. The structure of SPIN verification (Source: [21])

2.1 SPIN Model Checker

SPIN is a static model checker developed at Bell Labs [16,21]. Figure 1 illus-
trates its framework. The input is a Promela language program used to model
concurrent system. The output is a test harness (verifier) consisted of state tran-
sition system which takes charge of model checking using state exploration. The
semantics supported by Promela language is limited. The only way to express
parallelism is creating child thread using fork directive. Except for atomic, none
explicit synchronizations is supported. Condition statement involved in global
variable can be used as synchronizer between threads [22]. Dynamic memory
allocation, call-by-reference and pointer are illegal. Static analysis of Promela
program is relatively simple.
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2.2 Concurrent Control Flow Graph

CCFG, an intermediate representation of parallel programs, is a counterpart of
CFG (control flow graph) of sequential programs. It is a common method to
make static analysis of parallel programs [19,23], such as computing slices. We
utilize the edges in CCFG to visualize the disjointness relations between parallel
threads in Sect. 3.

Each node in CCFG corresponds to a statement. There are four classes of
edges in CCFG-control flow, parallel flow, conflict dependence and synchroniza-
tion dependence. Two nodes are linked by the parallel flow edge in two cases:
they represent creation of a thread and the entry of created thread respectively;
two nodes represent the exit of a thread and thread join operation respectively.
The bidirectional conflict edge links two concurrent basic blocks that can be
executed in parallel and reference the same shared variable (with one of the
references being a write) [14,19]. The synchronization edge connects synchro-
nization operations, such as barrier, post, wait, lock, and unlock.

3 Preliminaries

This section builds theory foundation for our local state reusing technique based
on Mazurkiewicz trace theory [27] and traditional formal representation of tran-
sition system [10].

3.1 Disjoint Groups

Definition 1 (Disjointness Relation). Let α and β denote two code snippets
from parallel threads σ and ω. The disjointness relation between α and β hold
iff the following properties are satisfied.

Property 1. There is no conflict dependence or synchronization dependence
between α and β.

Property 2. There is no parallel flow between α and β. If Ω is the set of enclosing
threads [19] of β (α), then α (β) doesn’t contain the statement where a thread
t ∈ Ω is forked.

Definition 2 (Disjoint Groups). Assume a parallel region R can be split into
disjoint groups g1,. . .,gn (n ≥ 2). Each disjoint group gi (1 ≤ i ≤ n) consists of
code snippets of which each code snippet is a code block extracted from a thread
in R. If α ∈ gi and β /∈ gi (1 ≤ i ≤ n) (β belongs to R), the disjointness
relation between α and β holds. It implies that if α ∈ gi and β ∈ gj (i �= j), then
disjointness relation between α and β holds.

Here we only discuss multithreaded shared-memory programs. To simplify the
illustration, we map the Promela language to generic parallel programming lan-
guage Pthreads. The “run” is mapped to “fork”. The term “disjoint groups” is
explained with the CCFG of a multithreaded program shown in Fig. 2.
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Fig. 2. A case of concurrent control flow graph

The main thread “init” [11] creates four child threads foo1, foo2, foo3 and foo4
successively. The edge between main thread and each child thread is parallel flow
edge. In total, there are three bidirectional conflict edges between the four child
threads. Let group g0 consist of foo1 and foo2 and group g1 consist of foo3 and
foo4. g0 and g1 are two disjoint groups.

In the following two subsections, we introduce the notion of normalized state
exploration and reason the concurrent behavior of parallel region which can be
split into disjoint groups as Cartesian product. Take a parallel region R that can
be split into a bunch of disjoint groups g1, g2, . . ., gn (n ≥ 2) as an example. Let
S represent the set of reachable states of R. Let s ∈ S (s is an element of S).
The projection of the state s on group gi is represented by s[gi] which consists of
program counter and local variables of each thread t (t ∈ gi) and global variables
shared among the threads owned by gi. Let S[gi] represents the set of reachable
states of group gi.

3.2 Normalized State Exploration

Definition 3 (Normalized Transition Sequence). Let s0 be the initial state
of the parallel region R mentioned above. Let Tnorm and T be two sequences of
transitions of R. Sequence Tnorm is considered as the normalization of T iff the
following properties hold.

Property 1. There is a unique state s such that s0
Tnorm====⇒ s and s0

T=⇒ s, i.e.,
Tnorm ≡ T (Mazurkiewicz equivalence trace [27]).

Property 2. Let t1 and t2 are the first transition and the last transition of gi

in Tnorm respectively. If t lies between t1 and t2 in Tnorm, then t ∈ gi. In
other words, the transitions of each disjoint group are consecutively executed
in explored transition sequences.

Property 3. All disjoint groups are sequentially executed. If t1 is the last transition
of gi, and t2 is the first transition of gi+1 in Tnorm, then t2 is next to t1.
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The first property of normalized transition sequence implies that if t1 and
t2 are a pair of transitions in Tnorm such that t1 ≺ t2 (≺ is a happens-before
relation [10]), then t1 ≺ t2 must hold in the sequence T , i.e., the relative position
of each pair of dependent transitions in Tnorm is the same as T . The second and
the last property formalize the transitions sequences explored in normalized state
exploration where disjoint groups are sequentially executed in each trace path.
Given the independence relation between disjoint groups (Definition 2) and the
properties of transition sequences in normalized state exploration (Definition 3),
it is feasible to yield a normalized state exploration of R such that there is at
least one equivalent transition sequence for unnormalized transition sequence
associated with R.

Theorem 1 (Feasibility of Normalized State Exploration). Assume the
parallel region R mentioned above is deadlock-free. For each sequence of transi-
tions T associated with R, there is a sequence Tnorm such that Tnorm ∈ [T ]≡.

Proof Denote the set of transitions of group gi as T [gi]. For each group gi, there
is no race relation and deadlock between T [gi] and the other transitions in T .
For each pair of transitions t ∈ T [gi] and t′ /∈ T [gi], independence relation [10]
holds (Definitions 1 and 2). Hence, according to trace theory [27], Tnorm resulted
from repeatedly exchanging the locations of adjacent transitions which are from
different disjoint groups in T satisfies the relation Tnorm ∈ [T ]≡.

3.3 Cartesian Product

We consider two cases of state exploration of R. One case is searching all partial
orders of the entire R. The other case is only searching partial orders of group
gi. Denote the set of reachable states of R and gi as S and S′ respectively. Use
s[gi] to denote the projection of the state s on gi under the first case and s′[gi] to
denote the state under the second case. The persistent set of a state s is denoted
as PSet(s). The concatenation of a state and a transition (sequence) is denoted
as s.t (s.T ).

Let S[gi] denote the set of the projection of reachable states on group gi under
the first case. Let S′[gi] denote the set of reachable states under the second case.
The sets of local state of any group gi resulted from state exploration under the
two cases are the same, S[gi] = S′[gi] (Theorem 2).

Theorem 2 (Local State Equivalence). S[gi] = S′[gi] holds (1 ≤ i ≤ n).

Proof If s0 and s′
0[gi] are the initial states at the entry of R in the two cases

respectively, then s0[gi] = s′
0[gi]. Let Sinter = S[gi] ∩ S′[gi]. Since s0[gi] ∈ S[gi]

and s′
0[gi] ∈ S′[gi], Sinter �= ∅. If S[gi] = S′[gi] doesn’t holds, then there exists at

least one pair of states s and s′ and a transition t ∈ gi such that s[gi] = s′[gi] and
s.t �= s′[gi].t. We prove this situation won’t happen below by induction on the
consistency of successive states of s[gi] and s′[gi] with respect to gi (1 ≤ i ≤ n).

Due to absence of dependence between any pair of transitions from different
disjoint groups, a subset of transitions from gi can be used as the persistent set
of each state s ∈ S under the first case.
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Basic Case. Denote the successive states of state s as Succ(s). As mentioned
above s0[gi] = s′

0[gi]. There are two situations for the persistent sets of s0 and
s′
0[gi] with respect to gi. If PSet(s0) ⊆ gi, PSet(s0) = PSet(s′

0[gi]). Else, given
the independence relation between disjoint groups (Definition 2), PSet(s)∩ gi =
∅. In the second situation, for each successive state ssucc of s0, ssucc[gi] = s′

0[gi]
still holds. For each ssucc and s′

0[gi], the second situation may repeat until
enabled(ssucc) ⊆ gi and PSet(ssucc) = PSet(s′

0[gi]). Eventually s0[gi] and s′
0[gi]

will be transformed to the same set of successive states. Consequently, the con-
sistency of successive states of s0[gi] and s′

0[gi] with respect to gi (1 ≤ i ≤ n) is
satisfied. Succ(s0[gi]) = Succ(s′

0[gi]) with respective to gi holds.

Inductive Step. Consider any pair of states s[gi] and s′[gi] such that s[gi] =
s′[gi]. The situation of consistency of successive states of s[gi] and s′[gi] with
respect to gi is the same as that of s0 and s′

0[gi]. Consequently, the procedures
of state transformation related to gi under the two cases of state exploration are
identical, Succ(s[gi]) = Succ(s′[gi]). In conclusion, S[gi] = S′[gi] (1 ≤ i ≤ n)
holds.

Assume that the parallel region R mentioned above is deadlock-free. The
concurrent behavior of R can be reasoned as the Cartesian product of each

disjoint group, S =
n∏

i=1

S′[gi] (Theorem 3).

Theorem 3 (Cartesian Product). The set S of reachable states of R is the
Cartesian product of the set of reachable states of each disjoint group,

S =
n∏

i=1

S′[gi].

Proof Let S[gi] denote the projection of the set of reachable states S of R on
gi (1 ≤ i ≤ n). State s ∈ S and s[gi] is the projection of state s on gi. S[gi] =
{s[gi] | s ∈ S}. According to the definition of normalized state exploration of R,
s = (s[g1], s[g2], . . . , s[gn]) (n ≥ 2) (s is an ordered set of reachable states of each

group). Hence, S =
n∏

i=1

S[gi]. In addition, S′[gi] = S[gi] (Theorem 2). It can be

inferred that S =
n∏

i=1

S′[gi].

4 Implementation

Our technique is implemented in SR-SPIN framework, an variant of SPIN
[16,21]. Particular extensions are made to each module of the SPIN framework
in SR-SPIN. Grammatical rules associated with disjoint groups are added to
Promela parser. The source code used to perform state reusing is integrated
into the template code of verifier. Rules of translating the entry and exit of dis-
joint group into pseudo transitions are incorporated into verifier generator. The
verifier generated by SR-SPIN is equipped with local state reusing.
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4.1 Normalized State Exploration

After static analysis of thread interferences aided by CCFG, a parallel region R
may be split into n disjoint groups. Each group identity i ∈ [1, n] is assigned to
one randomly selected group. In the normalized state exploration
(Definition 3), disjoint groups are sequentially executed: gi+1 is executed after
gi (i ∈ [1, n − 1]). Algorithm 1 gives the procedure of normalized state explo-
ration and local state reusing. The depth-first search algorithm is augmented
with well-controlled manipulations to runtime scheduler. The manipulations con-
sist of interferences to exploration status. When a transition is executed from
state s, new exploration status is computed according to the status at state s and
the type of transition. Runtime scheduler makes decisions on how to compute
successive states according to exploration status.

Exploration Status Maintenance. The exploration status consists of the
exploration stage, the identity of group being explored and the execution state
of threads. The exploration status relative to each explored state of transition
system is recorded in stack Status. An element status0 which represents the
initial exploration status is pushed onto Status (in initialization of Algorithm 1).
Once a new state s′ is generated, exploration status is refreshed and newly
generated status relative to s′ is pushed onto Status (line 10 and line 17). When
depth-first search backtracks to state s from successive state s′, the exploration
status relative to s′ is pulled from Status (line 27). Therefore, when state search
procedure backtracks to a history state s, the top element on stack Status is the
exploration status relative to s.

The relative location of program counter and the entry (and exit) of dis-
joint group splits each simulated run performed by verifier into three stages:
before group, in group, and after group. The shift among the three stages
happens when searching successive states or backtracking to history states. The
before group stage in each simulated run starts from the initial state s0. Run-
time supervises the relative position of program counter and the disjoint group
entry for each thread. Once a thread reaches the entry, it will be blocked until all
the other threads in the same parallel region reach the entry. As soon as all active
threads reach the entry of disjoint group, the stage is transformed to in group
from before group. Meanwhile, the active group is set to the first group g0 and
all the threads associated with g0 are waked up.

During in group stage in each simulated run, runtime monitors the relative
position of program counter of each related thread and the disjoint group exit
for each active group. As soon as all the threads of active disjoint group gi reach
the disjoint group exit, these threads are blocked and the active group is set to
the next disjoint group gi+1 (this is performed when refreshing the exploration
status). The way in which each disjoint group is set as the active group ensures
the normalized state exploration. Exploration stage is switched to after group
from in group when all active threads from current parallel region reach the
disjoint group exit. At the end of this stage, all the blocked threads related to
disjoint groups are waked up.
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Algorithm 1. Depth-First State Searching Equipped with Local State Reusing
Initialization: S = φ; H = φ; Status = status0; Tran = φ; stage = 0; s = s0;
1: function Search(s)
2: if s /∈ H then
3: S.push(s);
4: H.insert(s);
5: status = Status.top();
6: gi = status.active group;
7: if i ∈ [1, n] and gi.finished = true then
8: for each end state es[gi] in ES[gi] do
9: Generate successive state s′ through replacing s[gi] with es[gi];

10: Refresh the exploration status;
11: Search(s′);
12: end for
13: else
14: for each transition t ∈PersistentSet(s)\s.sleepset do
15: Tran.push(t);
16: s′ = s · t;
17: Refresh the exploration status;
18: if the group exit of gi is reached then
19: ES[gi].insert(s[gi]);
20: end if
21: s′.sleepset = {t′|t ∈ s.sleepet(s) and t′ is independent with t};
22: Search(s′);
23: s.sleepset.insert(t);
24: end for
25: end if
26: S.pop();
27: Status.pop();
28: if s is generated via state transition then
29: tran = Tran.top();
30: Tran.top();
31: if tran is the finish indicator of the group gj then
32: gj .finished = true;
33: end if
34: end if
35: end if
36: end function

Persistent Set Computation. The procedure of computing the persistent set
of transitions at each explored state is shown in Algorithm 2. To ensure sequential
execution of disjoint groups, candidate transitions performed from each state is
limited to unblocked threads owned by the active disjoint group (line 3). When
exploring the active disjoint group, the persistent set is the subset of enabled
transitions in the active group. Except this, there is no difference between our
persistent set computation and original persistent set computation in SPIN.
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The computation of persistent set for each state is a greedy procedure that
continually checks whether there are dependence relations between the remaining
transitions in the set of candidate transitions and the transitions in the persis-
tent set (line 7–19). Consequently, all possible partial orders of transitions can
be searched. This procedure halts only if no dependence relation is left or a tran-
sition related to the dependence n doesn’t belong to the candidate transitions of
current state.

Algorithm 2. Computing Persistent Set
Initialization: Pset(s) = φ;
Output: PSet(s);
1: function PersistentSet()
2: status = Status.top();
3: T={t | thread t is not blocked in status};
4: Trans = {tran | tran ∈ enabled(s) and active(t) ∩ T �= φ};
5: tran is a transition arbitrarily selected from Trans;
6: Pset = Pset ∪ {corresponding thread for tran};
7: for each transition trani ∈ Trans do
8: set ti to corresponding thread for transition trani;
9: for each transition tranj such that s(ti) = pre(tranj) do

10: for each active corresponding thread tj for tranj do
11: Pset = Pset ∪ {tj};
12: end for
13: end for
14: for each transition tranj do
15: if trani and tranj are not commutative then
16: Pset = Pset ∪ {corresponding thread for tranj};
17: end if
18: end for
19: end for
20: end function

4.2 Local State Reusing

Directly performing local state reusing during original state exploration pro-
cedure is intractable. We address this problem through normalizing the state
exploration procedure and only reusing the end states of each disjoint group.
Local end state es[gi] is the state where the program counter of each thread t
associated with gi (t ∈ gi) points to the disjoint group exit. ES[gi] denotes the
set of end states reached by gi. Each local end state es[gi] ∈ ES[gi] consists of
program counter and local variables of each thread t (t ∈ gi) and global variables
shared among the threads owned by gi.

Consider a parallel region R that consists of four threads t1, t2, t3, and
t4. There is a write-write dependence on shared variable x between t1 and t2,
while there is a write-write dependence on shared variable y between t3 and t4.
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Fig. 3. The simulated trace paths resulted from state exploration without and with
local state reusing

According to Definition 2, R can be split into two disjoint groups: g1 consisting
of t1 and t2 and g2 consisting of t3 and t4. Figure 3 visually makes a comparison
between the state exploration of R with (Fig. 3(b)) and without (Fig. 3(a)) local
end state reusing.

In Fig. 3, the nodes represent the states which the state exploration pro-
cedure goes through. The subscripts of state nodes increase progressively with
the order in which the states are explored. The directed edges represent the
state transitions during model checking. The source state at the beginning of
each solid arrowed line is transferred to the destination state through execut-
ing a single transition or an atomic region. Instead, each dotted arrowed line
denotes local end state reusing. Correspondingly, the label with thread identity
attached to each solid arrowed edge denotes the transition executed from the
source state node, such as t1: x=1 executed from s0 in Fig. 3(a) and (b), while
the label attached to each dotted arrowed edge without thread identity denotes
the reusing of a local end state, such as y=2 executed from s8 in Fig. 3(b).

In the normalized state exploration (Definition 3), n disjoint groups are
sequentially executed: gi+1 is executed after gi, i ∈ [1, n − 1]. Each local end
state es[gi] ∈ ES[gi] represents a partial order related to gi. We call the ordered
end states (es[g0], . . . , es[gi−1]) the partial order prefix of gi (1 ≤ i ≤ n). In each
simulated run resulted from normalized state exploration, the first transition
(not pseudo transition corresponding to the entry of gi) of gi is performed from
the state s where s[gj ] ∈ ES[gj ] (1 ≤ j ≤ i−1) and s[gi] is the initial state of gi.

With optimal partial order reduction [5], only the representatives of all pos-
sible states of R are explored, as shown in Fig. 3(a). We use ES[R] to denote
the end states of R where all the threads in R reach the disjoint group exits.
Each element ES[R] is an ordered set of the end states of each disjoint group in
R. The end states of g1, g2 and R are given in Eqs. (1), (2) and (3). The “exit”
denotes that the threads in a disjoint group reach the exit of the disjoint group
section.
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In normalized state exploration, g1 is executed before g2 in each simulated
trace. The partial order prefix of g2 is the end state of g1. Under different partial
order prefix of g2, the set of end states of g2 are equal. For example, s4[g2] =
s10[g2] and s6[g2] = s12[g2]. Such local state equivalence motivates our local state
reusing technique.

ES[g1] = {(x = 2, exit), (x = 1, exit)} (1)

ES[g2] = {(y = 2, exit), (y = 1, exit)} (2)

ES[R] = {((x = 2, exit), (y = 2, exit)), ((x = 2, exit), (y = 1, exit)),
((x = 1, exit), (y = 2, exit)), ((x = 1, exit), (y = 1, exit))} (3)

The local state equivalence with respect to a disjoint group under different
partial order prefixes allows local state reusing. According to Theorem4, the sets
of end states of each disjoint group explored from different partial order prefixes
are identical. Hence, the feasibility of local state reusing technique gets proved.

Theorem 4 (Feasibility of Reusing Local End States). Consider any two
partial order prefixes γ1 and γ2 of gi consisting of transitions of all the disjoint
groups executed in ahead of gi. Let sγ1 and sγ2 represent two states such that
s0

γ1=⇒ sγ1 and s0
γ2=⇒ sγ2 where s0 is the initial state at the entry of R. Let

ESγ1 [gi] and ESγ2 [gi] represent the set of end states of gi explored from sγ1 and
sγ2 respectively, then ESγ1 [gi] = ESγ2 [gi].

Proof. We prove the equality between the end states of gi explored from γ1 and
γ2 via induction on the equality between successive states of sr1 and sr2 . Since
there is no thread interferences between gi and gj (j �= i), sr1 [gi] = sr2 [gi].

Basic Case. At the beginning of executing gi, the persistent set for sγ1 and
sγ2 are identical, i.e., PSet(sr1) = PSet(sr2). Therefore,sγ1 and sγ2 should have
identical successive states. For each pair of successive states s′

r1
and s′

r2
, s′

r1
[gi] =

s′
r2

[gi](1 ≤ i ≤ n).

Inductive Step. Due to s′
r1

[gi] = s′
r2

[gi] (gi is the active group), PSet(s′
r1

) =
PSet(s′

r2
). Hence, the equality of successive states of s′

1 and s′
2 still holds.

In conclusion, the equality between the end states of gi explored from γ1 and
γ2 holds, i.e., ESγ1 [gi] = ESγ2 [gi].

Once possible partial orders related to gi are fully searched, ES[gi] contains all
the end states that can be reached by gi. In order to ensure the completeness of state
exploration equipped with local state reusing, reusing states of gi is forbidden until
all possible interleavings related to gi have been explored (line 7, Algorithm 1). If
successive states can’t be generated through reusing end states, the procedure to
compute the persistent set of enabled transitions at each reached is called.
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And the set of transitions explored from current state is the set difference of the
persistent set and the sleep set of current state s (line 14, Algorithm 1).

During in group stage in state exploration, runtime maintains the explo-
ration status of gi according to the backtracking of the accomplishment indicator
of gi. The accomplishment indicator of exploring gi is set to the predecessor tran-
sition of the firstly executed non-pseudo transition of gi. When runtime detects
that backtracking happens to the indicator of gi, the accomplishment flag of
exploration related to gi is set to true (line 32, Algorithm 1). In the subsequent
simulated runs where the exploration relative to gi is accomplished, the end
states recorded in ES[gi] are reused. The reusing is generating each successive
state s′ of state s where groups g1, g2, . . . , gi−1 reach their ends through replacing
local state s[gi] with each end state es[gi] stored in ES[gi] (line 9, Algorithm 1).

Take the state exploration in Fig. 3(b) as an example. After all possible end
states of g2 are explored under the prefix order (x=2,exit), the end states of g2
are recorded in ES[g2]. Instead of performing transitions in g2 under the prefix
order (x=1,exit), the value of variable y and program counters (exit) related to
end states of g2 are copied to s8 to generate the successive states s9 and s10. The
average trace path resulted from exploration with reusing local states is shorter
than without reusing local states. Model checking time could be saved with such
reduction of exploration.

5 Experimental Results

Our experiments are performed on a machine with i5 CPU (2.30 GHZ), 6 GB of
RAM running Linux operating system. We elaborately design a suit of Promela
programs to help us measure the effectiveness of state reusing. The Promela
programs in the suit of benchmarks are divided into two categories: 2 disjoint
groups and 3 disjoint groups. For each benchmark α with 3 groups, there is a
benchmark β with 2 groups such that the entire code of β is a part of α.

We use the verifier generated by SPIN which doesn’t support local state
reusing as the baseline to evaluate the local state reusing technique imple-
mented in SR-SPIN. We measure the effectiveness and the runtime overhead
of state reusing in certain metrics. The counts of state resulted from state explo-
ration without and with state reusing are represented by #State and #SRState
respectively. State reusing ratio, denoted by ε, is used to directly characterize
the effectiveness of state reusing. The state reusing ratio is

ε =
#State

#SRState
. (4)

The state exploration time consumed by test harnesses generated by SPIN and
SR-SPIN are denoted as Time and SRTime respectively. The speedup on model
checking time provided by state reusing is denoted by θ,

θ =
Time

SRTime
. (5)
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The ratio between the state reusing ratio ε and the time speedup θ is used to
measure the additional time overhead arising from state reusing, denoted ϕ,

ϕ =
ε

θ
. (6)

Table 1 shows the performance results for the benchmarks with 2 and with 3
disjoint groups: state count, reusing ratio ε, state exploration time, time speedup
θ and runtime overhead of local state reusing ϕ. The columns with the prefix
“SR” provide the results associated with local state reusing. The states explored
with local state reusing can be classified into two categories: the normal states
which are generated by performing transitions and the states which are generated
by reusing local states. #SRState is the count of normal states. The time result
for each benchmark is the average of the total time spent on executing each
benchmark 50 times.

Table 1. Performance results for the benchmarks

Benchmarks #State #SRState ε Time(ms) SRTime(ms) θ ϕ

2 disjoint groups

Kmeans 427958 1246 343.47 5438 27 201.41 1.71

Boundary 50 244084 3181 76.73 933 24 38.88 1.97

Boundary 100 449345 5296 84.85 1649 25 65.96 1.29

Boundary 150 579808 7292 79.51 2289 27 84.78 0.94

Boundary 200 730515 9414 77.60 2568 28 91.71 0.85

Boundary 250 884275 11525 76.73 2495 29 86.03 0.89

Boundary 300 942138 13521 69.68 2749 29 94.79 0.74

3 disjoint groups

Kmeans 1521771 14312 106.33 25009 213 117.41 0.91

Boundary 50 2016932 1972 1022.78 9177 30 305.9 3.34

Boundary 100 2113079 2268 931.69 10215 32 319.22 2.92

Boundary 150 2222419 2552 870.85 11126 32 347.69 2.50

Boundary 200 2247212 2855 787.11 11491 35 328.31 2.40

Boundary 250 2259605 3147 718.02 11694 36 324.83 2.21

Boundary 300 2269089 3431 661.35 11477 37 310.19 2.13

Kmeans with 2 or 3 disjoint groups aims to partition 24 objects into 2 or 3
clusters iteratively until a threshold is reached. The cyclic boundary condition
should be reached in Kmeans after partition is performed once, because SR-SPIN
is unable to dynamically split the concurrent region corresponding to subsequent
partition iterations into disjoint groups. The numbers after “Boundary ” is the
cyclic boundary in each benchmark which has a positive correlation with the
size of interleaving space of each benchmark. The state count grows with the
increase of cyclic boundary.
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The benchmarks listed in the first column in the table have 2 or 3 disjoint
groups. We call the firstly executed group in each explored trace during state
exploration the root group. Each code snippet owned by the root group is a
loop body iteratively operating on a shared variable. The condition of the loop
compares the global variable with the cyclic boundary ranging from 50 to 300.

To measure the scalability of the effectiveness of our technique, comparison
analyses are made in two dimensions: the number of disjoint groups and the cyclic
boundary. The trend of each curve in the following coordinate graphs exposes
whether our technique performs well when the benchmarks scales up. Each num-
ber on the horizontal axis is the cyclic boundary used by each benchmark.
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Fig. 4. Performance improvement and additional overhead resulted from local state
reusing

Figure 4(a) shows the time speedup across the benchmarks except for Kmeans.
We use θ2 and θ3 to denote the time speedup for 2 groups and 3 groups respectively.
θ2 ∈ [38, 94], and θ3 ∈ [305, 347]. The significant margin between speedup for the
benchmarks with 2 and with 3 disjoint groups suggests the good scalability of our
technique. Figure 4(b) exposes the additional time overhead of state reusing by the
value of ϕ. Under the same cyclic boundary, the runtime overhead for 3 disjoint
groups is much less than overhead for 2 disjoint groups. This is another proof for
the good scalability. The overhead decreases with the increase of cyclic boundary
overall. Figures 4(a) and (b) expose the potential of applying local state reusing
to large-scale multithreaded programs.

Due to the reduction of redundant local state exploration, memory space
used to store states is reduced dramatically. Figure 5 depicts the ratio between
memory space consumed without and with state reusing. For the benchmarks
with 2 disjoint groups, the ratio ranges from 10 to 30. And for benchmarks with
3 groups, the ratio ranges from 70 to 90. According to the amount of simulated
runs explored per micro second shown in Fig. 6, the average time spent on each
simulated run (trace) is cut down, which is the consequence of local state reusing.
Reusing previously explored states is more time-efficient than computing the
outgoing transitions at each state (persistent set).
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6 Related Work

In spite of the state explosion problem arising from nondeterminism of concurrent
programs, stateless model checking based on thoroughly searching states is still
attractive in that it can prove the absence of concurrency error. A rich body of
partial order reduction techniques have been proposed to strike state explosion
problem such as persistent sets [25], stubborn sets [26], and ample sets [24].
Such techniques are established on the Mazurkiewicz trace theory [27] which
provides the criterion for pruning redundant states. Each pair of interleavings
leading to the same state can be obtained from each other through repeatedly
exchanging adjacent independent transitions. According to the way to compute
the outgoing transitions at each explored state, such techniques are classified
into two categories: static and dynamic partial order reduction.

Classical static partial order reduction (SPOR) techniques [12,24–26] heav-
ily rely on static analysis to make state reduction. Model checking incorporated
with SPOR is usually protected from missing any state related to safe properties
through conservatively approximating inter-thread interferences. Due to the lim-
itation of static analysis, these techniques are helpless to prune state space when
working with the concurrent programs using dynamic memory. Dynamic partial
order reduction (DPOR) techniques accurately detect dependences on the fly
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with the aid of instrumentation on shared memory operations, leading to a bet-
ter state reduction than SPOR. Besides, in most cases, the runtime overhead
brought by detecting dependences can be paid off by the improvement of time
and memory efficiency. The difference between DPOR techniques [5,7,9,15,17]
lies in the way to construct the backtracked set.

The rules of state reduction used by SPOR and DPOR are all heuristic.
Consequently, a part of redundant states may escape from being eliminated.
Sleep sets [25] and wakeup tree [5] are integrated with persistent sets and source
sets respectively to strengthen state reduction. All the SPOR and DPOR tech-
niques mentioned above exploit the independence relations between transitions
to prune redundant exploration. State reduction employed in Zing [17] leverages
the independence relations between atomic code blocks. The exploited fact is
that concurrent program is a sequence of transactions in essence.

Static partial order reduction alone suffers from inaccuracy of dependence
relations and dynamic partial order reduction alone suffers runtime overhead.
The synergy between static and dynamic analysis of thread-locality completes
each other in an orthogonal way. Static and on-the-fly escape analysis techniques
are incorporated with partial order reduction techniques to deal with the chal-
lenges arised when working with concurrent object-oriented programs which may
use dynamic memory or deferencing [4]. Heap shape model is leveraged to ana-
lyze state equivalence to adapt partial order reduction techniques to dynamic
memory operations [18].

The POR techniques mentioned above only concern the nondeterminism
stemming from thread scheduling. Recently, [1,2,6] adapt dynamic partial order
reduction technique to work with the nondeterminism resulted from store buffer-
ing in concurrent programs under relax memory model. Nidhugg [1] introduces
chronological traces to characterize the equivalence between traces to support
state space reduction under TSO and PSO memory model. CDSchecker [6]
combines schedule-driven partial order reduction with relaxed model-checking
technique to overtake substantial state search space of the multithreaded pro-
grams written in C11/C++11. The similarity among partial order reduction
techniques for multithreaded programs under sequential consistency and relax
memory model lies in that redundant states should be eliminated according to
state equivalence.

7 Conclusion

We implement SR-SPIN framework aimed to further address state explosion
problem through local state reusing. Under the assumption that there exist cer-
tain parallel regions in multithreaded programs that can be partitioned into
disjoint groups, we achieve the insight that the concurrent behavior of concur-
rent systems can be reasoned as the Cartesian product of concurrent behavior
of each disjoint group. Based on this insight, our local state reusing technique
for efficient model checking is established.

According to the experimental results, the potential of applying state reusing
to large-scale multithread programs is confirmed from the perspective of its
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good scalability. SR-SPIN only can statically split parallel region into disjoint
groups, because the mechanism of dynamically analyzing thread interferences
is still absent. Dynamically splitting parallel region into disjoint groups will be
incorporated into SR-SPIN in the near future.
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Abstract. Road traffic has long been recognized to represent a country’s
prosperity. Unfortunately, traffic congestion coming with it is considered as one
of the most significant challenge in modern cities. Thus, a promising paradigm,
namely, Intelligent Transportation System (ITS) has become a research focus
which lies on its feasibility and efficiency of solving transportation issues. In the
open literature, researchers have proposed theories and developed corresponding
models to alleviate traffic congestion. However, many solutions are static, which
means they serve to analyze and evaluate the traffic systems rather than schedule
the road traffic dynamically. To this end, this paper develops a road traffic
congestion prediction model to forecast the congestion level. The congestion
performance metrics are obtained by developing a queueing system subject to
self-similar traffic. This is because Hurst parameter evaluation, subject to road
traffic flow at rush hour, presents strong self-similar characteristic. The devel-
oped model is validated by comparing results derived from model with that of
simulations on real road traffic data provided by government authorities.

Keywords: Queueing system � ITS � Traffic prediction � Queueing analysis �
Traffic engineering

1 Introduction

In modern society, road traffic system is an indispensable part of human life. According
to the authorities, an average of 40 % of the urban dwellers spend at least an hour on
road each day. Congestion poses a lot of problems such as fuel consumption, air
pollution and time waste [1]. Moreover, accident risks increase with the expansion of
traffic systems, particularly in several developing countries. Some reports published by
the U.S. Federal Highway Administration indicated traffic accidents that happened in
cities account for about 50 %–60 % of all congestion delays [2]. Last but not least, the
competitiveness of a country, its economic strength, and productivity heavily depends
on the performance of its traffic systems [3]. Thus, due to such urgent situations,
Intelligent Transportation Systems (ITS) are brought to deal with congestion.

There are researchers who try to provide a solution for congestion by adopting the
vehicles desired speed [4]. The research above yields interesting result yet it fails to
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look at the problem in a dynamic way as well as fails to focus on prediction other than
static analysis. In this paper, we develop an analytical model to make prediction of the
congestion dynamically by employing a queueing based model.

In open literature, there exists various strategies to modulate network traffic, and in
the worst case, we can just restart the network to avoid a system’s breaking down. Yet,
in real life, it is impossible to restart traffic systems when congestion happens. To fill
this gap, this paper proposes a solution to predict traffic congestion based on current
traffic status. By analyzing the data collected from a large amount of auxiliary
instruments in Jinan, we can derive the self-similar characteristics of the traffic system.
This paper applies service rate subject to exponential distribution to corresponding
traffic system because of the randomness characteristic traffic system has. This paper
presents numerical validation on real traffic data presented by government authorities
with different utilization.

The remainder of the paper is organized as follows. In Sect. 2, some preliminaries
are presented. In Sect. 3, a queueing based prediction model has been introduced in
detail. Section 4 validates the correctness as well as accuracy of the developed model.
Finally, the paper is concluded in Sect. 5.

2 Self-similarity Evaluation of Road Traffic

2.1 Measurement of Traffic Self-similarity

Self-similarity is an important and widespread phenomenon in nature. The
self-similarity of traffic can be examined by the following process [5]. Xt : t 2 Nf g is
an arbitrary time-series. Its autocorrelation function is denoted by RðkÞ.

RðkÞ�Mk�b1 ð1Þ

where, M[ 0 and b1 2 ð0; 1Þ. Hurst parameter which presents the degree of
self-similarity can be obtained by

H ¼ 1� b1
2

ð2Þ

The evaluation of Hurst parameter is critical. Rescaled Range (R/S) estimator and
Variance Time estimator are employed in this work [14].

Rescaled Range Estimator. R/S estimator is to provide means of evaluating vari-
ability changes with the length of time-ranged being concerned of a series [6].

logðE½rðnÞ=SðnÞ�Þ � logMH þHlogn ð3Þ

where rðnÞ is the range of the rescaled series, n is the block length and S stands for the
standard deviation of the rescaled series. And MH is a positive finite constant inde-
pendent of n. H, the Hurst parameter, is the slope of the line Eq. (3).

540 L. Gao et al.



Variance Time Estimator. Variance Time (VT) estimator, also known as aggregated
variance, which will be introduced in this section has low computational complexity [7].

log varðXðmÞÞ � � b3 logmþ logMm ð4Þ

By selecting different block size m, we can get a number of points by plotting
log varXðmÞ against logm where Mm is a finite positive value which is independent of
block size m. b3 is connected with Hurst parameter by equation H ¼ 1� b3=2. These
points are converged on a line which is presented by Eq. (4) with a slope �b3.

2.2 Measurement of Road Traffic

The data collected by the cameras depicts the number of vehicles that pass through an
intersection. 20 days’ data starting from May 6th, 2013 is employed.

In Table 1, passing time refers to the time that the car passes the camera placed at
the crossing and the time unit is millisecond. In our model, we ignore license number as
well as license type. Each crossing number represents a crossing in Jinan and speed is
calculated by cameras placed at the crossing. There are different types of crossings so
the number of directions may vary.

Table 1. The sample of the real traffic data

Passing time License number Vehicle type Crossing number Direction Speed

1367769600000 XX14090 99 9 4 0
1367769600060 XXL556S 2 384 3 3

Fig. 1. Traffic dataset collected on May 6, 2013
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Figure 1 plots the number of vehicles against the time epoch in minute, standing for
the number of vehicles on May 6, 2013. Estimating the rush hours from the time
information of all day, we select the period from 14:01:00 to 18:41:00. Figure 2 is
plotted to demonstrate the number of vehicles at rush hours on May 6, 2013.

By referring to the figures above, the road traffic flow conforms to self-similar
characteristics.

As aforementioned, the lines in Figs. 3 and 4 are mentioned in measurement of traffic
self-similarity, and the slopes of these lines are the parameters, respectively. In Table 2,

Fig. 2. Traffic dataset collected on May 6, 2013 (at rush hours)

Fig. 3. Hurst parameter approximations by using R/S method
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we present the Hurst parameter approximations according to the aforementioned
estimators.

It is clear that all two estimators can measure the desired value well. The result
shows that the road traffic flow conforms to a strong self-similar characteristic.

3 Analytical Model of Traffic Prediction

3.1 Modelling Self-Similar Road Traffic

This paper manages to develop an analytical model subject to self-similar traffic flow.
In queueing theory study, exponential distribution is often used to depict service rate of
real traffic system whose traffic flow possesses randomness, so we apply exponential
distribution to determine how many cars pass an intersection during a green light
period.

In this section, we consider our real world traffic system as a single server queueing
system. This paper emulates the traffic light as a server since the traffic light operates
periodically. So, the performance of the traffic system can be obtained by examining
this queueing system.

Let X ¼ Xtf g; t 2 N be a covariance stationary stochastic process with variance r2

and autocorrelation function rðkÞ; k� 0. Process X is said to be LRD [8], if

Table 2. Hurst estimation of road data

RS 0.83534
VT 0.86246

Fig. 4. Hurst parameter approximations by using VT method
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rðkÞ � qðkÞk�a; k ! 1 ð5Þ

where a 2 ð0; 1Þ and qðkÞ is a slowly varying function. For 8x[ 0; p txð Þ� p tð Þ
as t ! 1.

It is essentially a continuous time Gaussian process with zero expectation at any
time. In general, a traffic flow can be modelled as a stochastic process in a cumulative
arrival form as A ¼ AðtÞf g; t 2 N where AðtÞ is the cumulative amount of traffic arrived
up to time t. Then Aðs; tÞ : AðtÞ � AðsÞ can denote the amount of traffic arrived in time
interval ðs; t�. For a fractional Brownian motion (fBm) traffic flow, the corresponding
Af ðtÞ can be expressed as [9]

Af ðtÞ ¼ kf ðtÞþ Zf ðtÞ ð6Þ

where kf is the mean arrival rate and Zf ðtÞ ¼
ffiffiffiffiffiffiffiffiffi
af kf

p
Zf ðtÞ. Parameter af is the variance

coefficient of Af ðtÞ and Zf ðtÞ is a standard fBm with variance vf ðtÞ ¼ t2Hf , where
Hf 2 ½0:5; 1� is the Hurst parameter. According to vf ðtÞ, we can get the variance
function of Af ðtÞ as follows [9]:

vf ðtÞ ¼ af kf mf ðtÞ ¼ af k
2Hf

f ð7Þ

3.2 Performance Metrics

In this section, the expression is derived to calculate the queue length distribution of the
self-similar exponential queueing system by adopting an LDP-based method [10] to
handle the real time traffic flows. An LDP characterizes the behavior of self-similar
traffic based on a non-negative rate function especially examining the exponential decay
of the probability measures of extreme or tail events. LDP has been successfully applied
in information theory and risk management. This paper is built on the LDP specialized
for Gaussian processes where the reproducing kernel Hilbert space is used to deal with
the Gaussian case. This method requires that the variance vkðtÞ of Gaussian traffic flow
Ak fed into the queuing system satisfies 9a\2, such that limt ! 1; vkðtÞ=ta ¼ 0.

It has been successfully used to study the queue length distribution of self-similar
exponential queueing system subject to Gaussian traffic flows [10]. The Gaussian
characteristic of real network traffic has been demonstrated by measurement studies
(e.g., [11, 12]).

Now let us consider the self-similar exponential system. Let A ¼ AðtÞf g; t 2 N be
the traffic flow fed into the queuing system and Aðs; tÞ be the amount of this traffic flow
arrived during time interval ðs; t�. Consequently, the total queue length, QðtÞ, of the
system at time t can be denoted as [10]

QðtÞ ¼ sup
s� t

Aðs; tÞ � Cðt � sÞf g ð8Þ
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where C represents the service capacity of the self-similar exponential system. Note that
theoretically, as long as the sum of the mean arrival rates of the traffic flow is less than the
service capacity, the self-similar exponential system is able to converge to a steady state.

Based on the LDP method [10], we can derive the upper and lower bounds of the
total queue length distribution, PðQ[ xÞ, of the self-similar exponential queueing
system as follows:

expð� 1
2 hðtxÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pð1þ ffiffiffiffiffiffiffiffiffiffi
hðtxÞ

p Þ2
q �PðQ[ xÞ� expð� 1

2
hðtxÞÞ ð9Þ

where hðtÞ is referred to as the determinative function of the queue length distribution
and is given by

hðtÞ ¼ ð�xþðC � kÞtÞ2
vðtÞ ð10Þ

Parameter txð\0Þ minimizes hðtÞ, i.e. tx ¼ argmint hðtÞ Function and vðtÞ by Eq. (7).
Observing Eq. (9), we can find that the difference between the upper and lower

bounds of the queue length distribution is the coefficient of expð�0:5� hðtxÞÞ. This
fact motivates us to take a certain mean (e.g., arithmetic mean, geometric mean) of the
upper and lower bounds to approximate the queue length distribution. In this paper, we
adopt the geometric mean that has been proven effective [13]. As a result, the total
queue length distribution can be given by

PðQ[ xÞ 	 expð� 1
2 hðtxÞÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð1þ ffiffiffiffiffiffiffiffiffiffi

hðtxÞ
p Þ2

q ð11Þ

From the above, it is easy to see that the queue length distribution is simply decided by
the minimum value of the determinative function of hðtÞ. Upon solving the equation,
h0ðtÞ ¼ 0, and substituting the root, denoted as txð\0Þ, into the equation, we obtain the
minimum value of hðtÞ as mint hðtÞ ¼ hðtxÞ.

Additionally, based on the queue length distribution of the self-similar exponential
queueing system, we can easily get the waiting time distribution of the vehicles waiting
in the queue. The result can be derived by Eq. (12),

Pwðq\tÞ ¼ 1� p�t=w ð12Þ

where Pwðq\tÞ is the probability of a random vehicle’s waiting time less than time
period t and w is average waiting time which can be calculated by the following
equation,

W ¼ p
lð1� pÞ ð13Þ

where p is arrival rate(lambda)/service rate(C).

Intelligent Road Congestion Prediction 545



4 Numerical Validation

4.1 Standardization of the Dataset

According to the raw dataset, we can get some valuable information of Jinan’s traffic
system. Then, some preprocessings are done to each dataset to help to pick out the data
types that this paper needs.

Step1. Removal of irrelevant information and retaining useful information like passing
time, intersection number and driving direction.

Step2. By referring to dataset, the crossing that has the largest traffic flow is found. The
reason this paper uses the dataset with largest traffic flow is that our goal is to evaluate
and model the traffic flow at rush hours and high throughput is likely to have
self-similar feature. After doing the same work with crossing number 409 for a four
successive day in May, we derive the final dataset.

Step3. Further filtration is done to pick out the time period with the most vehicles
crossing the intersection. As a result, we get the busiest time period from 14:01:00 to
18:41:00, lasting for 20 days.

Step4. Converting the time unit of the raw dataset. We convert the time unit from
millisecond to minute as the data cumulates. We add a twenty days’ data during the
rush hour with same time gap, deriving the final dataset. By expanding the dataset, we
can get a more accurate result both from simulation and analytical model.

Step5. This paper takes the dataset derived from step 4 as input of simulation and the
dataset we use to calculate Hurst parameter is the number of vehicles.

By the way, we can draw the variance coefficient by

S2 ¼ ðx1 � AÞ2 þðx2 � AÞ2 þ . . .þðxn � AÞ2
n

ð14Þ

where n is the data set number, A is the mean, x1; x2; . . .; xn is the number of vehicles
every minute according to the time sequence.

4.2 Analytical Model Versus Simulation

According to Figs. 5 and 6, we can prove that the analytical model is able to be applied
to real traffic system.

Those two figures above illustrate the results of our model against the results
derived by simulation on the real traffic data. From the pictures, we can see the queue
length distribution, which is an essential parameter we should consider in network
traffic researches and real world traffic studies. The results are perfectly matched thus
strongly indicate the correctness as well as the accuracy of our model. Moreover, we
are convinced that our analytical model is capable to be applied to evaluate traffic flows
at rush hours.
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5 Conclusion

Road traffic prediction plays an important role in mitigating traffic congestion. This
paper has developed an analytical model for a single server queueing system in the
presence of self-similar road traffic system. We have obtained the performance metrics
of queue length distribution of the traffic system. Queue length distribution suggested

Fig. 5. Queue length distribution with utilization = 90 %

Fig. 6. Queue length distribution with utilization = 85 %
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the probability of a certain number of cars waiting in the line. The validity and accuracy
of the model make it a practical and feasible for making dynamical predictions of the
traffic system in real world traffic. The results have demonstrated that the model can be
used to identify the probability of exceeding the road capacity which serves as a
guidance for government authorities.

Acknowledgments. This work is partially supported by NSFC NO. 61402262 and 61572295,
SDSF NO. ZR2013FQ013.
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Abstract. Virtual router is regarded as one of key platforms for the deployment
and application of network virtualization technology, which can run multiple
router instances in parallel and in independent. However, due to the frequent
creation and deletion of router instances, there may be lots of resource frag-
mentations that can prevent this platform from establishing new router instances
in it. In order to analyze influences of above problem, this paper firstly estab-
lishes resource evaluation model for virtual router platform. And we evaluate
three typical resource allocation algorithms including first-fit algorithm, best-fit
algorithm, and worst-fit algorithm in terms of failure magnitude of creation of
router instances, magnitude of resource fragmentations, ratio of resource frag-
mentation, and execution time. At last, we further analyze advantages and
disadvantages of three algorithms through our designed simulator, namely
SoRAA. Our experimental results show that best-fit algorithm is the best among
three typical algorithms in the processing of resource allocation.

Keywords: Network virtualization � Virtual router � Resource fragmentation �
First-fit � Best-fit � Worst-fit

1 Introduction

Network virtualization technology [1–3] has been regarded as a gradual solution to
innovation of Internet architecture, which attracts lots of attentions from research
communities and equipment venders. This technology can run several virtual networks
synchronously, and these virtual networks may be isomorphic or isomerous network
architecture. Moreover, it has the ability to provide differential service, which can
establish a test-bed for evaluation of new protocols, or can provide different
network-resources for lessees in cloud environment [4, 5]. Virtual router is regarded as
one of key equipment for the deployment and implement of virtual networks, whose
role is the same as the traditional routers in the Internet [6, 7]. Virtual router platform
can run multiple router instances in parallel and in independent, and each router
instance plays an important role on packet forwarding in one virtual network. Thus,
service providers can rent network resources to lessees by creating virtual networks and
establishing router instances. Meanwhile, they can release network resources occupied
by virtual network after the lifecycle of virtual router comes to end.
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During service providers continually creating and deleting of router instances in
one virtual route platform, there will be lots of resource fragmentations whose resource
space is too small to meet requirements of new incoming requests of creation of router
instances. And these resource fragmentations are non-sequential spaces, which cannot
be combined to establish router instances. The meaning of resource fragmentation is
similar to “memory fragmentation” in general computers. In special, as the amount of
resource fragmentation increases, virtual router platform will have less available
resources. At last, it cannot normally dispose incoming requests any more, even though
it has enough resources including lots of resource fragmentations for new router
instances. For instance, one platform has two network interfaces with 10Gbps: NIC-A
and NIC-B, and service providers has partitioned one virtual interface with 4Gbps off
from NIC-A and another virtual interface with 4Gbps off from NIC-B. At the moment,
this platform has two resource fragmentations: one resource block with 6Gbps in
NIC-A and another resource block with 6Gbps in NIC-B. When one new request of the
creation of router instance including one interface with 8Gbps comes, this platform
cannot use the remainder of two network interfaces to create one virtual interface with
8Gbps, even though it has interface resources of 12Gbps. Thus, the resource frag-
mentations generated by the creation and deletion of router instances hinder virtual
router platform from continually establishing new router instances. In fact, “resource
fragmentation” problem in virtual router platform is a severe problem. Unluckily,
researchers don’t pay any attention on this problem, while they had put lots of efforts to
ensure the independence of router instances [8, 9] and made many attempts to advance
the overall performance of virtual router platform [10–12]. If we want virtual routers to
provide supports for network virtualization, we should change our research way and
start to attach importance to “resource fragmentation” problem.

In order to analyze influences of “resource fragmentation” problem on virtual router
problem, this paper firstly establishes resource evaluation model, and we can evaluate
resource allocation algorithms in terms of failure magnitude of creation of router
instances, magnitude of resource fragmentation, ratio of resource fragmentation, and
execution time. At present, virtual router platform usually adopts three typical resource
allocation algorithms to calculate the mapping relationship between router instances
and physical infrastructure, and these three algorithms include first-fit algorithm,
best-fit algorithm, and worst-fit algorithm. We design a simulator that is called as
SoRAA to analyze advantages and disadvantages of three algorithms. The simulator
can save appointed magnitude of physical resources (such as line-card number,
link-bandwidth, CPU number, and memory size), randomly create or delete router
instances, and set resource size of each router instance. Our experimental results that
best-fit algorithm is better than the other algorithms in terms of failure magnitude of
creation of router instances, magnitude of resource fragmentation, and ratio of resource
fragmentation. Although execution time of best-fit algorithm is longer than the others’,
best-fit algorithm is fit for resource allocation in virtual router platform. We hope that
our results can provide supports for the deployment of virtual routers.

The remainder of this paper is organized as follow. Section 2 discusses and illus-
trates the features and limitations of related works about resource allocation in virtual
router platform. Section 3 presents a general model for virtual router, and establishes
evaluation model for our platform. Section 4 mainly exhibits three algorithms in static
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allocation: first-fit algorithm, best-fit algorithm, and worst-fit algorithm. Section 5
presents our experimental results about three algorithms, and analyzes advantages and
disadvantages of three algorithms. Section 6 concludes this paper with a summary of
our studies and discusses next works in the future.

2 Related Works

Many major router vendors and research communities have begun to follow suit in
building support for router virtualization [6, 7, 10–12], and explore how the virtual
routers can support for multiple router instances running on the same underlying
physical device where the behavior of router instance is identical to the behavior of
physical router. It is a key device for bridging the gap between the new network
architectures and physical platforms. Thus, many focus on the virtual routers that can
support for polymorphic network architectures rather than monolithic network archi-
tectures and accommodate simultaneous coexistence of several router instances
including the traditional router in the current Internet.

However, how to control and manage virtual router platform to create (or delete)
router instance is cold topic relative to the above research topics. At the same time,
a real platform supporting virtual router doesn’t come down to earth. Dynamic migration
of router instances may provide a solution to “resource fragmentation” problem, as
shown in Fig. 1 [13]. The logical control plane of router instance RC2 is migrated from
one control blade to another control blade, the logical forwarding plane of router
instance Rf2 is migrated in the same way, and the two virtual network interfaces of
router instance are also migrated. At last, we can clearly see that these two router
instances are deployed in the same blades, which can efficiently reduce the amount of
resource fragmentation.

Fig. 1. Dynamic re-configuration processing
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However, dynamic migration of router instance must take time to move router
instances from one blade to another blade, which may results in cutoff of migrated
router instances. The best way to solve the “resource fragmentation” problem is static
allocation that must try to decrease the amount of resource fragmentations in the
processing of calculation of mapping relationship between router instances and phys-
ical infrastructure.

3 System Overview

In this section, we mainly present a general framework of virtual router platform. We
further establish resource evaluation model based on this framework and point out
which criterions can be used to evaluate resource allocation algorithms.

3.1 Platform Framework

We put forward three-layer model supporting the deployment of router instances. It
includes: resource management plane, control plane, and data plane, as shown in Fig. 2.
This model can provide a good interactive interface for service providers to manage
their platforms. Moreover, physical infrastructure adopts “pool” idea, which includes a
cluster of resource blades to provide high performance and high expansibility.

Fig. 2. Platform framework
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From the description of our proposed platform framework, it mainly includes three
key planes as follows:

Resource management plane: it is responsible for management tasks of overall
platform, such as providing an interactive interface for operators, managing phys-
ical platform, translating high-level language into executable content, calculating
the mapping relationship between router instances and physical infrastructure,
deploying the router instances, and releasing the occupied resources. Resource
Management plane usually run in a single server, which interconnect with any
equipment in control and forwarding resource pool via Ethernet or other ways. So
three typical resource allocation algorithms included in this paper are deployed in
this plane.
Control plane: it is used to run multiple logical control planes in parallel by using
system virtualization technology, such VMware [14], XEN [15], LXC [16], and
KVM [17] etc. These logical control planes share the same physical resources in
control-resource pool. And each logical control plane can either run routing demos,
such as Quagga [18] and XORP [19], or customized protocols to support new
network architecture. When any equipment of control-resource pool joins, it must
notify its resource information to resource management plane as soon as possible.
So that the latter can create logical control plane of router instance onto it.
Data plane: it is used to run multiple logical forwarding planes in parallel. It doesn’t
use system virtualization technology to virtualize data plane, due to the low per-
formance of the latter. Data plane can provide fixed of physical resources (such as
interface number, link-bandwidth, CPU number, and memory size) for each logical
forwarding plane. And each logical forwarding plane can adopt function-based
router (such as click [20]) or flow-based router (such as OpenFlow Switch [21]).
Each logical forwarding plane must have a corresponding logical control plane in
control plane. When any equipment of forwarding-resource pool joins, it must
notify its resource information to resource management plane as soon as possible.
So that the latter can create logical forwarding plane of router instance onto it.

When managers want to create one new router instance, resource management
plane firstly calculates the mapping relationship between router instance and physical
infrastructure based on installed resource allocation algorithm. It then sends configu-
ration rules to control and forwarding plane to create one logical control plane and one
logical forwarding plane of a single router instance. When the lifecycle of a router
instance is over, resource management plane should callback the resources occupied by
router instance. And, this platform will generate lots of resources fragmentations in the
processing of creation and deletion of router instances. The magnitude of resource
fragmentations is determined by resource allocation algorithms. Thus, it’s necessary to
evaluate these typical resource allocation algorithms in virtual router platform.

3.2 Resource Evaluation Model

Virtual router platform mainly includes two physical resources: control resource pool
and forwarding resource pool. These two types of physical resources are responsible
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for different functional planes. In order to judge whether or not physical resources meet
the requirements of router instances and calculate the amount of resource fragmenta-
tions, we firstly establish an evaluation model for virtual router platform, which
includes three types of resource models as follows:

Physical control resource model: it is used to describe physical resources in control
resource pool, which determines whether available resources meet requirements of
logical control plane. Cx refers to physical control blade that can run logical control
planes. Each Cx includes three parts of resources: (1) CPU, which is responsible for
calculation function of logical control plane; (2) link-bandwidth, which is mainly
used to communicate with the corresponding logical forwarding plane in data plane;
and (3) memory, which can save state information, such as routing tables, as shown
in Formula (1).

Cx ¼
X

Ccpu þClink þCmem
� � ð1Þ

And C refers to the total physical resources of control resource pool, which is
calculated as shown in Formula (2).

C ¼
XN
i¼1

Ci ði 2 control� bladeÞ ð2Þ

Physical forwarding resource model: it is used to describe forwarding resources in
forwarding resource pool. Fx refers to physical forwarding blade that running
logical forwarding planes. Each Fx also includes three parts of resources: (1) CPU,
which is responsible for calculation function of logical forwarding plane;
(2) link-bandwidth, which is used to communicate with the corresponding logical
control plane in control plane and interconnect with other nodes in underlying
network; (3) memory, which can save forwarding rules, such as forwarding tables
or flow tables, as shown in Formula (3).

Fx ¼
X

Fcpu þFlink þFmem
� � ð3Þ

And F refers to the total physical resources of forwarding resource pool, which is
calculated as shown in Formula (4).

F ¼
XN
i¼1

Fi ði 2 forwarding� bladeÞ ð4Þ

Router instance resource model: it is used to describe resources occupied by route
instances in virtual router platform. Rx refers to physical resources occupied by
router instance, which include two parts: Rx

CðmÞ, which stands for resources (onto

control blade m) occupied by logical control of router instance x, and Rx
FðnÞ, which

stands for resources (onto forwarding blade n) occupied by logical forwarding of
router instance x, as shown in Formula (5).
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Rx ¼ Rx
CðmÞ þRx

FðnÞðm 2 control� blade; n 2 forwarding� bladeÞ ð5Þ

And R refers to the total physical resources occupied by router instances, which is
calculated as shown in Formula (6).

R ¼
XN
i¼1

Riði 2 router � ins tan ceÞ ð6Þ

We can use three types of resource models to calculate resource utilization that is an
important criterion. The resource utilization refers to the ratio of resource occupied by
router instances to overall resources including overall control-resources and overall
forwarding-resources, as shown in Formula (7):

Rutilization ¼ R
CþF

ð7Þ

3.3 Evaluation Criterion

In order to evaluate resource allocation algorithms in virtual router platform, we put
forwarding four evaluation criterions: (1) failure magnitude of creation of router
instances, (2) magnitude of resource fragmentations, (3) ratio of resource fragmenta-
tion, and (4) execution time based on above resource evaluation model. The details of
four evaluation criterions are as follows.

1. Failure magnitude of creation of router instances

This evaluation criterion is used to record failure times in the processing of creation
of router instances. If requirements of logical forwarding plane or requirements of
logical control plane exceeds maximum of remainder in a single blade, resource
management plane cannot allocate any resource for them, as shown in Formula (8).

sumðfailureÞ ¼ sumðfailureÞþ 1
if ðRx

CðmÞ [MAXfRemainderðCxÞgÞ
if ðRx

FðnÞ [MAXfRemainderðFxÞgÞ
sumðfailureÞ other

(
ð8Þ

– MAXfRemainder (CxÞg: it refers to the maximum of resource block in
control-resource pool;

– MAXfRemainder (FxÞg: it refers to the maximum of resource block in
forwarding-resource pool;

We can use this above formula to know failure magnitude of creation of router
instances. If this evaluation criterion is too big, resource allocation algorithms has
worse ability to meet needs of creation of router instances. Otherwise, operators can
establish router instances with a lower possibility of failure of creation of router
instances.
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2. Magnitude of resource fragmentations

This evaluation criterion can refer to how many resource fragmentations are located in
our platform. We can calculate the sum of resource fragmentations in each blade, as
shown in Formula (9).

sumðfragÞ ¼
XM
i

X
p

Pp
CðmÞ þ

XN
j

X
q

Pq
FðnÞðm 2 control� blade;

n 2 forwarding� bladeÞ
ð9Þ

– Pp
CðmÞ: it refers to a resource fragmentation p in control blade m;

– Pq
FðnÞ: it refers to a resource fragmentation q in forwarding blade n;

–
PM
i

P
p
Pp
CðmÞ: it refers to magnitude of resource fragmentations in control-resource

pool;

–
PN
j

P
q
Pq
FðnÞ: it refers to magnitude of resource fragmentations in forwarding-

resource pool.

The value of this evaluation criterion is continually changing in the processing of
creation and deletion of router instances. If platform has low magnitude of resource
fragmentations, resource allocation algorithms have higher chance to allocate resources
for incoming requests of creation of router instances; otherwise, it may fails to establish
new router instances.

3. Ratio of resource fragmentation

In order to further analyzing “resource fragmentation” problem, we use an evaluation
criterion, namely ratio of resource fragmentation. It refers to the ratio of the largest
resource block to all resource space. The calculation of this evaluation criterion is as
shown in Formula (10):

fR ¼ fC if ðfC � fFÞ
fF if ðfF [ fCÞ

n
ð10Þ

– fC: it refers to ratio of resource fragmentation in control-resource pool, as shown in
Formula (10);

– fF : it refers to ratio of resource fragmentation in forwarding-resource pool.

When the ratio of resource fragmentation in control plane is no smaller than the
ratio of resource fragmentation in forwarding plane, the ratio of resource fragmentation
in our platform is determined by the ratio of resource fragmentation in control plane.
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And when the ratio of resource fragmentation in control plane is smaller than the ratio
of resource fragmentation in forwarding plane, the ratio of resource fragmentation in
our platform is determined by the ratio of resource fragmentation in forwarding plane.
fR is lower than 1; only when this platform only includes one control blade and one
forwarding blade, and doesn’t establish any router instance, fR is equal to 1. For
example, our platform has two control blades and four forwarding blades without
deploying any router instance, so fC is 0.5, fF is 0.75, and fR is 0.75. The smaller this
evaluation criterion is, the better resource allocation algorithm is.

Formula (11) is used to calculate the ratio of resource fragmentation in control
plane, numerator refers to the largest resource block in control plane, and denominator
refers to the total resources of control plane.

fF ¼ 1�
MAXðsizeðPq

FðnÞÞÞ
F

ð11Þ

Formula (12) is used to calculate the ratio of resource fragmentation in forwarding
plane, numerator refers to the largest resource block in forwarding plane, and
denominator refers to the total resources of forwarding plane.

fC ¼ 1�
MAXðsizeðPq

CðnÞÞÞ
C

ð12Þ

4. Execution time

Execution time refers to how long resource allocation algorithm calculates the mapping
relationship between router instances and physical infrastructure. In this paper, we
mainly make an experiment on execution time of three typical algorithms including
first-fit, best-fit, and worst-fit based on our simulator.

The shorter the execution time of resource allocation algorithm is, the better it is. If
an algorithm has a short execution time, it can calculate the wanted results as soon as
possible. And operators usually hope that resource allocation algorithm can calculate
mapping relationship in millisecond, which can provide quality of experience.

4 Description of Three Typical Algorithms

Static allocation arms to calculate mapping relationship between router instances and
underlying infrastructure before router instances are established by resource manage-
ment plane. The way of static allocation tries to solve “resource fragmentation”
problem by adopting the best configuration of creation of router instances. It makes
efforts to avoid occurrence of resource fragmentation during the creation of router
instance. However, the way may also increase the amount of resource fragmentations in
the processing of the creation and deletion of router instances. At last, our platform may
have lots of resource fragmentations, and cannot provide service for new requests until
it has enough physical resources.
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Though the way of static allocation cannot fundamentally solve “resource frag-
mentation” problem, it’s a useful way to slow the processing of increasing of resource
fragmentations. In this part, we introduce three typical algorithms into our platform:
first-fit algorithm [22], best-fit algorithm [23], and worst-fit algorithm [23]. And these
typical algorithms are usually used to solve “memory fragmentation” in traditional
computer architecture. So we hope that these three algorithms also have the ability to
solve “resource fragmentation” in virtual router platform.

4.1 First-Fit Algorithm

First-fit algorithm generally searches the first resource block that including enough
remained resources to establish new router instances. Only when both resource block in
control-resource pool and resource block in forwarding-resource pool meet needs of
new router instances, resource management plane will establish new router instances.

In first-fit algorithm, it includes four types of linked lists: C-idle list using to
manage idle resource blocks in control resource pool; C-allocated list using to manage
control resources occupied by router instances; F-idle list using to manage idle resource
blocks in forwarding resource pool; and F-allocated list using to manage forwarding
resources occupied by router instances, as shown in Figs. 3a and b.

a. Resource lists before allocating resources for incoming requests 

b. Resource lists after allocating resources for incoming requests 

Fig. 3. First-fit algorithm
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When resource management plane establishes one router instance, it allocates two
types of physical resources for the latter. Firstly, first-fit algorithm searches C-idle list
from head to tail, and finds the first resource block that meets the requirement of logic
control plane. And then this algorithm searches F-idle list to find the first resource
block that meet the requirement of logical forwarding plane. At last, if it finds selected
resource blocks both in C-idle list and in F-idle-allocated list, resource management
plane can allocate resources for this request; otherwise, resource management plane
cannot establish any router instance. For example, when a request of creation of router
instance including control resources with 28-unit and forwarding resources with
38-unit comes, resource management plane will establish logical control plane on
resource block with 35-unit of C-idle list and logical forwarding plane on resource
block with 40-unit of F-idle list based on the theory of first-fit algorithm, as shown in
Fig. 3b. From the above description, this algorithm generated two resource fragmen-
tations: one resource block with 7-unit in C-idle list and another resource block with
2-unit in F-idle list after this request is executed.

After one router instance is released, resource management plane should search
C-allocated list to find resource block occupied by this router instance, and search
C-idle list to judge whether or not the searched resource block can be consolidated with
resource blocks in C-idle list. At the same time, it also has to search F-allocated list to
find resource block occupied, and search F-idle list to judge whether or not the searched
resource block can be consolidated with resource blocks in F-idle list. Thus, overhead
of first-fit algorithm when it calculates mapping relationship between router instance
and physical resources is lower than overhead when it releases the resources occupied
by router instances.

4.2 Best-Fit Algorithm

Best-fit algorithm searches the best resource blade to establish new router instance. And
the best resource block isn’t smaller than resources required by router instance, and is
the smallest among idle resource blocks. So best-fit algorithm must ensure that the best
resource block in forwarding-resource pool is allocated for logical forwarding plane
and the best resource block in control-resource pool is allocated for logical control
plane. If platform doesn’t have the best resource block for logical forwarding plane or
logical control plane, it will give up this request.

In best-fit algorithm, it also includes four linked lists: C-idle list using to manage
idle resources in control resource pool; C-allocated list using to manage control
resources occupied by router instances; F-idle list using to manage idle resource in
forwarding resource pool; and F-allocated list using to manage the forwarding
resources occupied by router instances, as shown in Fig. 4a and b. Compared with
first-fit algorithm, both C-idle list and F-idle list in best-fit algorithm sort from smallest
to largest.

When resource management plane establishes one router instance, it allocates two
types of physical resources for the latter. Firstly, best-fit algorithm searches C-idle list
from head to tail, and find the first resource block that meets the requirement of logic
control plane. And then this algorithm searches F-idle list to find the first resource
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block that meet the requirement of logical forwarding plane. At last, if it finds its
selected resource blocks both in C-idle list and in F-idle-allocated list, resource man-
agement plane can allocate resources for this request; otherwise, resource management
plane cannot establish this router instance. For example, when a request of creation of
router instance including control resources with 28-unit and forwarding resources with
38-unit comes, resource management plane will establish logical control plane on
resource block with 30-unit of C-idle list and logical forwarding plane on resource
block with 40-unit of F-idle list based on the theory of best-fit algorithm. And, it also
sorts C-idle list and F-idle list from smallest to largest, as shown in Fig. 4b. From the
above description, this algorithm generated two resource fragmentations: one resource
block with 2-unit in C-idle list and another resource block with 2-unit in F-idle list after
this request is executed.

After one router instance is released, resource management plane should search
C-allocated list to find resource block occupied by this router instance, and search
C-idle list to judge whether or not the searched resource block can be consolidated
with resource blocks in C-idle list. At the same time, it also has to search F-allocated
list to find resource block occupied, and search F-idle list to judge whether or not the
searched resource block can be consolidated with resource blocks in F-idle list. Besides
the above tasks, it also sorts C-idle list and F-idle list from smallest to largest.

Fig. 4. Best-fit algorithm
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Thus, the overhead of best-fit algorithm when it calculates the mapping relationship
between router instance and physical resources is lower that the overhead when it
releases the resources occupied by router instances.

4.3 Worst-Fit Algorithm

Worst-fit algorithm usually searches the worst resource blade to establish new router
instance. And the worst resource block isn’t smaller than resources required by router
instance, and is the largest among idle resource blocks. So worst-fit algorithm must
ensure that the worst resource block in forwarding-resource pool is allocated for logical
forwarding plane and the worst resource block in control-resource pool is allocated for
logical control plane. If platform doesn’t have the worst resource block for logical
forwarding plane or logical control plane, it will give up this request.

In worst-fit algorithm, it also includes four linked lists: C-idle list using to manage
the idle resources in control resource pool; C-allocated list using to manage the control
resources occupied by router instances; F-idle list using to manage the idle resource in
forwarding resource pool; and F-allocated list using to manage the forwarding
resources occupied by router instances, as shown in Fig. 5a and b. Compared with
best-fit algorithm, both C-idle list and F-idle list in worst-fit algorithm sort from largest
to smallest. So worst-fit can quickly find the wanted result in the shortest time.

When resource management plane establishes one router instance, it allocates two
types of physical resources for the latter. Firstly, worst-fit algorithm searches C-idle list
from head to tail, and find the first resource block that meets the requirement of logic
control plane. And then this algorithm searches F-idle list to find the first resource
block that meet the requirement of logical forwarding plane. At last, if it finds its
selected resource blocks both in C-idle list and in F-idle-allocated list, resource man-
agement plane can allocate resources for this request; otherwise, resource management
plane cannot establish this router instance. For example, when a request of creation of
router instance including control resources with 28-unit and forwarding resources with
38-unit comes, resource management plane will establish logical control plane on
resource block with 40-unit of C-idle list and logical forwarding plane on resource
block with 40-unit of F-idle list based on the theory of worst-fit algorithm. And, it also
sorts C-idle list and F-idle list from largest to smallest, as shown in Fig. 5b. From the
above description, this algorithm generated two resource fragmentations: one resource
block with 12-unit in C-idle list and another resource block with 2-unit in F-idle list
after this request is executed.

After one router instance is released, resource management plane should search
C-allocated list to find resource block occupied by this router instance, and search
C-idle list to judge whether or not the searched resource block can be consolidated with
resource blocks in C-idle list. At the same time, it also has to search F-allocated list to
find resource block occupied, and search F-idle list to judge whether or not the searched
resource block can be consolidated with resource blocks in F-idle list. Besides the
above tasks, it also sorts C-idle list and F-idle list from largest to smallest.
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Thus, the overhead of worst-fit algorithm when it calculates the mapping rela-
tionship between router instance and physical resources is also lower that the overhead
when it releases the resources occupied by router instances.

5 Experimental Results and Analysis

In order to analyze the advantages and disadvantages of static allocation, we firstly
design a simulator which can calculate four evaluation criterions including failure
magnitude of creation of router instances, magnitude of resource fragmentations, ratio
of resource fragmentation, and execution time. At last, we contrast three typical
resource allocation algorithms based our experimental results.

5.1 Description of Simulator

We design a simulator to achieve goals of evaluation of three typical resource allo-
cation algorithms including first-fit, best-fit, and worst-fit. The simulator is called as

Fig. 5. Worst-fit algorithm
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SoRAA1 (Simulator of Resource Allocation Algorithm). The inputs and outputs of
SoRAA are as follows.

1. Inputs of SoRAA

– Quantity of control blades including CPU, link-bandwidth, and memory;
– Quantity of forwarding blades including CPU, link-bandwidth, and memory;
– Range of resources occupied by router instances;
– Appointed resource utilization;
– Times of resource allocation once runtime;
– Selection of resource allocation algorithm;

2. Outputs of SoRAA

– Failure magnitude of creation of router instances;
– Magnitude of resource fragmentations;
– Ratio of resource fragmentation;
– Execution time;

We mainly make an experiment on four evaluation criterions based on different
values of resource utilization. After operators set value of resource utilization, SoRAA
will randomly create router instances and delete the existing router instances. During
this processing, SoRAA will calculate these four evaluation criterions and record
experimental results into appointed files.

5.2 Failure Magnitude of Creation of Router Instances

We firstly measure failure magnitude of creation of router instances based on different
values of resource utilization, as shown in Fig. 6. This evaluation criterion is used to
reflect failure frequency whiling operators creating new router instances.

It shows failure magnitude of creation of router instances increases as value of
resource utilization continually increases. Besides, failure magnitude increases
severely, when value of resource utilization is larger than 70 %, because there are only
less than 30 % available resources and magnitude of resource fragmentations increases.
At the same time, worst-fit algorithm appears the first failure of creation of router
instances when the value of resource utilization is about 60 %; while the other two
algorithms cannot meet needs of router instances, when value of resource utilization is
no lower than 80 %. Besides, failure magnitude introduced by worst-fit algorithm is
larger than the other two algorithms, and best-fit algorithm is the best among them in
terms of failure magnitude of creation of router instances. However, three algorithms
have a high failure magnitude of creation of router instances.

1 SoRAA is developed by using “soft-thread” mechanism based on library functions provided by
Quagga. We can easily append other resource allocation algorithms to SoRAA. Both best-fit and
worst-fit use Quicksort to sort idle-lists. If you are interest in it, you can contact with us via e-mail.
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5.3 Magnitude of Resource Fragmentations

In order to further reflect the influences introduced by resource fragmentations on
failure magnitude, we measures magnitude of resource fragmentations based on dif-
ferent values of resource utilization, as shown in Fig. 7. This value can reflect how
many resource fragmentations are located in current platform.

It shows that when value of resource utilization ranges from 0 % to 90 %, magnitude
of resource fragmentations increases continually as value of resource utilization
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increases; while magnitude of resource fragmentations appears a declining trend when
value of resource fragmentations is larger than 90 %. Because there are less than 10 %
available resources, many resource fragmentations may be allocated for new router
instances. Besides, magnitude of resource fragmentations introduced by worst-fit algo-
rithm is larger than other two algorithms, and best-fit algorithm is better than other two
algorithms in terms of magnitude of resource fragmentation. And the amount of resource
fragmentations is about 12 in the processing of creation and deletion of router instances.

5.4 Ratio of Resource Fragmentation

We put forward a formula to reflect status of resource fragmentations. Thus, we
measure the maximum of size of source fragmentations and calculate ratio of resource
fragmentation when value of resource utilization is 50 %, as shown in Fig. 8.

It shows that ratio of resource fragmentation increases severely with a start, and
stays a fixed position. The fixed value in worst-fit algorithm is approximately 92 %, and
the fixed value of first-fit algorithm is 60 %, which is equal to the fixed value in best-fit
algorithm. The reason is that worst-fit algorithm always allocates maximal size of
resource fragmentations for router instances; while first-fit algorithm randomly selects
resource block to establish router instances and best-fit algorithm selects the best
resource block. From the point of ratio of resource fragmentation, first-fit algorithm and
best-fit algorithm are better than worst-fit algorithm. It means that best-fit and first-fit
always have large size of resource blocks, which are fit for requests of creation of router
instances including large resource needs.
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5.5 Execution Time of Three Algorithms

We use execution time to reflect efficiency of each algorithm. And we measure exe-
cution time of each algorithm based on different values of resource utilization, as
shown in Fig. 9.

It shows that when value of resource utilization ranges from 0 % to 90 %, execution
time of each algorithm increases as value of resource utilization continually increases.
The reason is that the amount of resource fragmentations increases and algorithms will
take more time to select fitted resource block from idle lists. However, once value of
resource utilization is larger than 90 %, execution time appears a declining trend,
because the amount of resource fragmentation decreases, which is resulted in by the
failure of creation of router instances. Besides, execution time of first-fit algorithm is
lower than other two algorithms, because it doesn’t sort resource fragmentations when
one router instance is created or deleted. And worst-fit algorithm is better than best-fit
algorithm in terms of execution time, because worst-fit can quickly select fitted
resource block, while best-fit should search idle-lists until it finds the best resource
block.

5.6 Summary and Contrast

We summarize the above experimental results to enumerate advantages and disad-
vantages of three algorithms, as shown in Table 1.
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Although execution time of best-fit is worse than the other algorithms, best-fit is no
worse than the other algorithms in terms of other evaluation criterions. Thus, best-fit
algorithm is fit for resource allocation in virtual router platform.

6 Conclusion and Future Works

In this paper, we firstly put forward “resource fragmentation” problem in virtual router
platform, and further propose static allocation including three typical algorithms:
first-fit, best-fit, and worst-fit. Static allocation just can avoid the occurrence of resource
fragmentations. Our experimental results show that best-fit algorithm is the best
selection for static allocation in virtual router platform.

However, when value of resource utilization is higher, best-fit algorithm also has
higher failure magnitude of creation of router instances. Thus, we should find a better
solution to “resource fragmentation” problem based on our analysis of this paper.
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Abstract. Today, millions of legacy programs are awaiting their par-
allelization. For this reason, the automatic discovery of parallelism in
sequential programs is now receiving considerable attention. However,
past efforts mainly concentrated on data parallelism hidden inside loops.
As programming models begin to support more irregular types of par-
allelism, centered around the notion of tasks in various forms, methods
are needed to identify code sections that could potentially represent par-
allel tasks. In this paper, we present a novel approach to automatically
finding parallel tasks in sequential programs. We first created a dynamic
dependence graph, then isolated tasks, and finally produced a task graph
according to the dependences we find. With the help of a source-to-source
code translator, parallel code is automatically generated. We conducted
a range of experiments to cover both tasks executing the same code and
tasks executing different code. Results showed that our method achieved
reasonable speedups on the test cases.

Keywords: Parallelism discovery · Task parallelism · Computational
unit · Data dependence · Parallel programming

1 Introduction

While writing parallel programs from scratch has always been considered a diffi-
cult task, parallelizing legacy programs written by someone else, today a common
scenario in many organizations, is even harder [8]. For this reason, many methods
have been proposed to assist programmers in parallelizing sequential programs.
The most attractive idea is to build a compiler that automatically translates a
sequential into a parallel program. Such compilers support a set of directives
that the programmer has to insert into the source code to mark sections that
can run in parallel. Although this approach requires only minor changes to the
source code, it leaves an important but time-consuming job to the programmer:
finding parallelism in the sequential program.

To support programmers also in this initial stage of the process, methods have
been proposed to discover potential parallelism automatically. So far, their main
target has been data parallelism in loops, which can be exploited by distributing
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 569–582, 2015.
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iterations of a loop among multiple threads. However, as more programming
models such as OpenMP and Intel TBB [18] aim at task-based parallelism, this
original focus of parallelism discovery becomes too narrow. In contrast to loop-
based data parallelism, task parallelism does not require that every thread to
execute the same code. Tasking can exploit parallelism between arbitrary code
sections, including parallelism within individual iterations of a loop or between
different loops.

In this paper, we present an approach to the detection of parallel tasks in
sequential programs. As the first step, we run our data-dependence profiler [14]
to extract the dynamic data-dependence graph. This graph is then transformed
into another graph, whose edges represent only true data dependences and whose
nodes are small pieces of computation without any noteworthy internal paral-
lelism. We call these nodes computational units (CUs) and we call the graph
CU graph. Then we search the graph for strongly connected components (SCCs)
and chains, we merge the CUs they contain, and label them as potential tasks.
Finally, we feed the generated task graph to a code transformation component
that can transform serial C/C++ code into Intel TBB [18] parallel code. The
code transformation component then translates the sequential source code into
equivalent parallel code using TBB flow graph template.

The remainder of the paper is structured as follows. In the next section,
we review related work and highlight the differences to our own. In Sect. 3,
we explain our approach in more detail. Evaluation results and case studies are
presented in Sect. 4. Finally, Sect. 5 summarizes our paper and discusses possible
improvements.

2 Related Work

Methods for assisting parallelization mainly fall into one of two not necessarily
disjoint categories. Methods in the first category focus primarily on data depen-
dence analysis to find parallelism, whereas methods in the second category put
more emphasis on the runtime system as their primary vehicle of parallelization.

Dynamic Dependence Analysis. After purely static approaches including
auto-parallelizing compilers had turned out to be too conservative for the par-
allelization of general-purpose programs, a range of predominantly dynamic
approaches emerged. As a common characteristic, all of them capture dynamic
dependence to asses the degree of potential parallelism. Using dependence infor-
mation, Kremlin [6] determines the length of the critical path in a given code
region. Based on this knowledge, it calculates a metric called self-parallelism,
which quantifies the parallelism of a code region. Finally, Kremlin reports self-
parallelism for each region, in the same way as an ordinary performance profiler
such as gprof would report the time. Alchemist [20] is centered around the notion
of futures, treating predefined constructs as candidates for asynchronous execu-
tion. It profiles the dependence distance (the number of instructions between the
source and sink of a dependence) to estimate the effectiveness of parallelizing
a certain construct. AutoFutures [15] adopts a similar idea, but goes one step
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further in that it automatically transforms the code. However, it seems to be
still at a preliminary stage with negative speedup results reported for some of
the test programs. Previous work [5] identified task parallelism in C applications
for multiprocessor System-on-Chip (MPSoC) platforms based on the notion of
a coupled block, which is a group of statements tightly coupled by dependences.
A coupled block is treated as a task.

All of the approaches mentioned above discover parallelism from massive raw
data dependences without respecting computation patterns. They overlook the
truth that the computation of a task usually does not contain any noteworthy
parallelism inside, and the set of variables used for communication among tasks
usually does not overlap with the set of variables used for computations.

Other approaches primarily concentrate on the efficiency of profiling depen-
dences. Parwiz [10] is an optimized data-dependence profiler that attaches the
dependences it finds to the nodes of an execution tree (i.e., a generalized call
tree that also includes basic blocks) that it maintains. Based on this execution
tree, it can identify DOALL [9] loops in sequential programs. Prospector [11] is
a parallelism-discovery tool based on the memory-efficient data dependence pro-
filer SD3 [12]. It tells whether a loop can be parallelized and provides a detailed
dependence analysis of the loop body.

Scheduling. Runtime scheduling frameworks are another way of adding paral-
lelismto sequential programs.DSWP[16] andDOMORE[2] targetDOACROSS [9]
loops, scheduling their iterations in a pipeline style according to previously iden-
tified (static) dependences. Anantpur and Govindarajan [7] profile cross-iteration
dependences for DOACROSS loops and try to accelerate their execution using
GPUs. Ye and Chen [19] profile data dependences on the superblock level.
Using a meta-reorder buffer to measure and exploit the available parallelism,
superblocks are dynamically analyzed, reordered, and dispatched, respecting
data dependences.

Generally, scheduling techniques incur a non-negligible fixed overhead, which
changes very little if the number of data dependences in the program varies.
Moreover, most scheduling approaches focus solely on DOACROSS loops, miss-
ing the potential parallelism outside such loops. While scheduling approaches
do not require any effort on the part of the programmer, the above limitations
often render the speedup they can achieve inferior to manual parallelization.

3 Approach

Our approach consists of the following steps. First, we profile the target program
to extract the dynamic data-dependence graph. This graph then undergoes two
transformations aimed at isolating tasks and dependences between them. During
both transformations, nodes are merged to simplify the graph structure. At
the end, some nodes may emerge as independent or dependent tasks. Finally,
we submit the generated task graph to a code transformation component that
transforms serial C/C++ code into Intel TBB parallel code.
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1   x = 3;
2   for (i = 0; i < MAX_ITER; i++) {
3        a = x + rand() / x;
4        b = x -  rand() / x;
5        x = a + b;
6   }

1

2

3

4

5

Boundaries:

Line 2: BGN loop
Line 6: END loop

Fig. 1. Data-dependence graph and control-structure boundaries produced by Dis-
coPoP. Vertices are source lines and edges are data dependences.

3.1 Extracting Data Dependences

To generate the data-dependence graph, we use an efficient dynamic depen-
dence profiler [14]. The nodes of the graph are source-code lines and the edges
are data dependences between them. Figure 1 shows the profiler’s output for a
sample code section. The output also includes control-structure boundaries and
the names of variables involved in dependences. Of course, relying on dynamic
dependences makes our approach input-sensitive. However, the effects of the
input sensitivity can be ameliorated by (i) running the target program with a
range of inputs and merge the outputs (ii) letting the user specify a representa-
tive input that covers the typical execution flow.

3.2 Identifying Computational Units

Thefirst transformation of the dependence graph isolates small pieces of codewith-
out any noteworthy internal parallelism, which we call computational units (CUs).
A CU is built for a collection of instructions following the read-compute-write
pattern: a set of variables is read by a collection of instructions and used to per-
form computation, then the result is written back to another set of variables. We
call the two sets read set and write set, respectively. The two sets do not have to
be disjoint. The load instructions reading variables in the read set form read phase
of the CU, and the store instructions writing variables in the write set form write
phase of the CU.

We define a CU by read-compute-write pattern because in practice, tasks
communicate with one another by reading and writing values to variables that
are global to them. Thus, we require the variables in a CU’s read set and write
set to be global to the CU, and the variables used in a CU’s computation should
be local. To distinguish variables that are global to a code section, we analyze
variable scope information, which is available in any ordinary compiler. Note
that the global variables in read set and write set do not have to be global to the
whole program. They can be variables that are local to an encapsulating code
section, but global to the target code section.
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Algorithm 1. Algorithm of building CUs (pseudocode).

1 for each region R in the program do
2 globalVars = variables that are global to R
3 isCautious = true
4 for each variable v in globalVars do
5 if v is read then
6 readSet += v
7 for each instruction Irv reads v do
8 readPhase += Irv
9 end

10 end
11 if v is written then
12 writeSet += v
13 for each instruction Iwv writes v do
14 writePhase += Iwv
15 end

16 end

17 end
18 for each instruction Ir in readPhase do
19 for each instruction Iw in writePhase do
20 if Ir happens after Iw then
21 isCautious = false
22 break

23 end

24 end

25 end
26 if isCautious then
27 cu = new computational unit
28 cu.scope = R
29 cu.readSet = readSet
30 cu.writeSet = writeSet
31 cu.readPhase = readPhase
32 cu.writePhase = writePhase
33 cu.computationPhase =
34 (instructions in R) - (readPhase + writePhase)

35 end

36 end

We further require that the load and store instructions in read phase and
write phase are cautious [17]. Cautious property is previously defined for oper-
ators in unordered algorithms. By adapting it to CU, we say a CU is cautious
if it reads all the variables in its read set before it writes any variables in its
write set. Cautious property guarantees the read-compute-write pattern. It does
not only give a clear way of separating read phase and write phase, but also
allows multiple CUs to be executed speculatively without buffering updates or
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a = x + rand() / x

b = x - rand() / x

x = a + b

x = 3

a = x + rand() / x

b = x - rand() / x

CU

INIT

Data Dependence

Node in CU Graph

x = a + b

Fig. 2. Building a CU.

making backup copies of modified data because all conflicts are detected during
the read phase. Consequently, tasks extracted based on CUs do not have any
special requirement on runtime frameworks.

CUs are built for every region. A region is a single-entry-single-exit code
block. The difference between a region and a basic block is that not every instruc-
tion inside a region is guaranteed to be executed, meaning a region could be a
group of basic blocks with branches inside. A region can be a function, a loop,
an if-else structure, or a basic block. In practice, a basic block rarely contains
noteworthy parallelism because it usually contains a small number of instruc-
tions. Code in different branches of an if-else structure are semantically exclusive,
thus rarely run in parallel. Hence, we mainly focus on regions like functions and
loops, which usually contain important computations that can potentially run
in parallel. In our approach, regions of a program are traversed by implementing
the algorithm of building CUs shown in Algorithm1 using the region pass in
LLVM [13].

Figure 2 shows a CU built from the code section shown in Fig. 1. Each loop
iteration calculates a new value of x with the help of local variables a and b.
For a single iteration, the loop region is cautious since all the read to x happen
before the write to x. Following the read-compute-write pattern, lines 3–5 are in
one CU, and the CU depends on the initialization of x, as shown in Fig. 2. Note
that CUs never cross control-region boundaries. Otherwise a CU could grow
too large, possibly swallowing all the iterations of a loop and many other code
sections, and hiding important parallelisms that we actually want to expose.

Identifying CUs simplifies the dependence graph by not only merging vertices
into CUs, but also hiding dependences that are local to the computations of CUs.
After identifying CUs, edges in the dependence graph are all inter-CU depen-
dences, which are always among instructions in read phases and write phases.
Giving the truth that the number of global variables to a code section is usually
far less than the number of local variables, identifying CUs delivers a significant
simplification for the dependence graph. We call the simplified dependence graph
CU graph.
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Fig. 3. Part of the CU graph of rot-cc.

Figure 3 shows a part of the CU graph of rot-cc, a benchmark from Starbench
parallel benchmark suite [1]. According to the figure, although it is quite clear
that some CUs can run in parallel (e.g. 8–4 and 8–5), it still requires effort to
tell whether other CUs can run in parallel. Thus, we simplify CU graph further
into a directed acyclic graph (DAG), which we call task graph.

3.3 Forming Tasks

The second transformation of the dependence graph helps identify either inde-
pendent or dependent tasks, the latter in a potential pipeline arrangement.
Whenever possible, we merge CUs contained in strongly connected components
(SCCs) or in chains. The idea of merging CUs in SCC comes from previous
work [16]. In graph theory, an SCC is a subgraph in which every vertex is
reachable from every other vertex. Thus, every CU in an SCC of the CU graph
depends on every other CU either directly or indirectly, forming a complex knot
of dependences that is likely to defy internal parallelization. Identifying SCCs is
important for two reasons:

1. Algorithm design. Complex dependences are usually the result of highly opti-
mized sequential algorithm design oblivious of potential parallelization. In
this case, breaking such dependence requires a parallel algorithm, which is
beyond the scope of our method.

2. Coding effort. Even if such complex dependences are not created by design,
breaking them is usually time-consuming, error-prone, and may cause signifi-
cant synchronization overhead that may outweigh the benefit of parallelization.

Hence, we hide complex dependences inside SSCs, exposing parallelization
opportunities outside, where only a few dependences need to be considered.
Figure 4 shows the graph simplification process by substituting SCCs and chains
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Fig. 4. Simplifying CU graph by substituting SCCs and chains of CUs with vertices.

of CUs with vertices. In step 1, CU F , G and H are grouped into SCCFGH .
After contracting each SCC to a single vertex, the graph becomes a directed
acyclic graph. Moreover, we group CUs that are connected in a row without a
branching or joining point in between into a chain of CU since a chain of CU
does not contain significant parallelism inside, and merging them can lower the
communication overhead among tasks. In step 2, CU C, D and E are grouped
into chainCDE . We call the simplified graph task graph.

Finally, we declare each vertex in the task graph a potential task. If the
task graph has more than one entries, a virtual task (task0) is added to be the
predecessor of all the entry nodes. The virtual task ensures that a task graph
has only one entry node, which simplifies the code transformation algorithm
mentioned below.

3.4 Automatic Code Transformation

In the end, we submit the generated task graph to a code transformation com-
ponent that transforms serial C/C++ code into Intel TBB [18] parallel code.
Transformation is performed at AST level using Clang libraries. The transfor-
mation module traverses the Clang AST of the source code in order to locate
the code sections targeted by the task graph. Afterwards, a source code rewrit-
ing module rewrites the targeted source code strings in the Clang AST context
using TBB flow graph templates. The transformation component also supports
DOALL loops. A DOALL loop is transformed into a TBB parallel for tem-
plate with its loop body filled as a lambda expression.

The flow graph transformation algorithm is divided into three steps:

Step 1: Identifying Code Sections Corresponding to Each Task. For each
task in the task graph, the transformation module gets all its source
code lines via the AST context and save them to CU.codeBody in the
corresponding task. Note that the virtual task does not correspond to
any code section.
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Step 2: Generating Source Code of the Flow Graph Node. The source code
rewriting module generates the flow graph node based on the following
three cases:
• The current task has a single or none incoming edge and multiple

outgoing edges. If all its successors receive the same data, we insert
a TBB broadcast node. Otherwise, a TBB split node is inserted.
When there is no input data for broadcast node or split node, the
node template uses type continue msg defined in TBB. Otherwise the
corresponding data types must be obtained via AST and be passed to
the template.

• The current task has a single incoming edge and single or none outgoing
edge. In this case, the source code rewriting module directly transforms
it to a flow graph function node using a lambda function.

• The current task has multiple incoming edges and single out going edge,
which means at least two variables need synchronization before they
are passed to the current task. Hence, we must first add a join node
to synchronize the operations on these variables and then insert the
function node. A join node has multiple input ports and generates
a single output tuple that contains a value received from each port.

Step 3: Generating Source Code of Flow Graph Edges. After all of the
flow graph nodes have been defined in the source code, the corresponding
code for edges must be added according to the task graph.

It’s worth mentioning that join node supports three different buffering poli-
cies: queueing, reserving, and tag matching. Currently the buffering policy
need to be determined by users, because it is usually semantic related and can
not be solved by our tool. When all the nodes and edges have been defined, the
transformation terminates and the parallel code is complete.

4 Evaluation

As we mentioned in Sect. 1, task parallelism does not require that every thread to
execute the same code. Like loop-based data parallelism, tasking can certainly
exploits parallelism among iterations of a loop (each task executes the same
code). However, tasking also exploits parallelism between different loops and
functions (each task executes different code). In this section, we show that our
method can handle both kinds of task parallelism.

We have mentioned that the buffering policy of TBB join node needs to
be determined by users. Another thing that has to be determined by users is
the data chunk size when data decomposition is needed. They are the only two
things our method requires. Determining data chunk size automatically requires
an auto-tuning technique, which is beyond the scope of this paper.

We conducted a range of experiments to evaluate our method. All experi-
ments ran on a server with 2× 8-core Intel Xeon E5-2650 2 GHz processors with
32 GB memory, running Ubuntu 12.04 (64-bit server edition). Time and speedup
numbers represent an average of five independent executions.
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4.1 Tasks Executing the Same Code

When tasks execute the same code, it means the parallelism comes from data
decomposition. In sequential code, such parallelism usually resides in loops,
where each iteration perform computation on a piece of input data. To determine
whether a loop in sequential code can be parallelized, we only need to check if
the partial CU graph of the loop has no circle, including edges that come from a
CU and point to itself. Otherwise, an iteration of the loop reads data produced
in the previous iteration, and the loop cannot be parallelized.

Programs containing loops where each iteration can be emitted as a task are
easy to find. In our experiments, we chose three benchmarks (BT, SP, and CG)
from NAS parallel benchmark suite [3], blackscholes from PARSEC benchmark
suite [4], and two applications (mandelbrot, ann training) that are commonly
used in parallel programming courses.

Instead of transforming each iteration into a tbb::task, we use tbb::
parallel for for loops because it utilize the thread pool in TBB for better effi-
ciency. On the other hand, tbb::task always creates a new thread for a task.

Table 1. Summary of parallelization results for tasks executing the same code.

Program # parallel loops # of threads Speedup(auto) Speedup(manual)

auto manual

BT 22 30 16 2.17 6.78

SP 26 34 16 2.03 5.07

CG 5 16 16 2.15 8.36

blackscholes 3 1 16 3.19 7.12

mandelbrot 2 2 4 2.02 3.96

ann training 4 2 4 1.91 3.07

Table 1 shows the results on parallelizing tasks residing in loops. In gen-
eral, our method exploits fewer parallelism than experienced programmers and
results in lower speedups, which is common to all of the automatic parallelization
approaches. In blackscholes and ann training, our method parallelized more loops
than the manually parallelized versions. However, all the additional loops that
are automatically parallelized are small loops doing initialization. Parallelizing
such loops does not bring any speedup, but rather incurs additional overhead in
creating and destroying threads.

An interesting case is mandelbrot, where our method parallelized exactly the
same places as the programmer did. However, the automatic parallelized version
still has a lower speedup due to imbalanced workload. In mandelbrot, whether
the matrix is divided row-wise or column-wise gives a different workload to each
worker thread. Unfortunately, there is no way to get such information before
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running a parallel version of the program. This case shows that although auto-
matic parallelization method can bring some speedup for free, user’s knowledge
is still critical for a higher speedup.

4.2 Tasks Executing Different Code

In our experiments, we found that applications containing task parallelism that
different tasks run different code are mainly from multimedia processing area.
Thus, we chose Intel CnC sample program FaceDetection, and Ogg Vorbis codec
libVorbis as representative cases.

FaceDetection. FaceDetection is an abstraction of a cascade face detector used
in the computer vision community. The face detector consists of three different
filters. As shown in Fig. 5(a), each filter rejects non-face images and lets face
images pass to the next layer of cascade. An image will be considered a face if
and only if all layers of the cascade classify it as a face. The corresponding TBB
flow graph is shown in Fig. 5(b). A join node is inserted to buffer all the boolean
values. In order to decide whether an image is a face, every boolean value corre-
sponding to that specific image is needed. Thus we configure the transformation
tool to use tag matching buffering policy in the join node. tag matching policy
creates an output tuple only when it has received messages at all the ports that
have matching keys.

The three filters take 99.9 % of sequential execution time. We use 20,000
images as input. The speedup of our transformed flow graph parallel version is
9.92× using 32 threads. To evaluate the scalability of the automatically trans-
formed code, we compare the speedups achieved by official Intel CnC (short
for“Concurrent Collections”) parallel version and our transformed TBB flow
graph version using different number of threads. The result is shown in Fig. 6.
The performance is comparable using two and four threads. When more than
eight threads are used, the official CnC parallel version outperforms ours. The
reason is that the official CnC parallel code is heavily optimized and restruc-
tured. For example, some data structures are altered from vector to CnC
item collection. As shown in Fig. 6, when using just one thread, the speedup
of official CnC parallel version is already 2× because of the optimization (Fig. 6).

LibVorbis. We also tested the encoder of LibVorbis, a reference implementation
of the Ogg Vorbis codec. In contrast to previous test cases, it contains a pipeline
pattern, which is a special case of task flow graph. Four function nodes are
constructed for the four-stage pipeline, and our automatic version achieved a
speedup of 2.41 with four threads. We got a lower speedup mainly because the
code transformation tool uses task flow graph to mimic pipeline, which is less
efficient than the specialized tbb::pipeline class. This test case enlightened us
to improve our code transformation component to support pipeline pattern. We
consider this task as a future work (Table 2).
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Table 2. Summary of parallelization results for tasks executing different code.

Program Function % of time # of threads Speedup(auto) Speedup(manual)

FaceDetection facedetector 99.9 32 9.92 18.60

LibVorbis main (encoder) 100.0 4 2.41 3.62

5 Conclusion and Outlook

Many efforts have been made to find potential parallelism in sequential programs.
However, most of them focused on loop-based data parallelism. In this paper,
we propose a novel method that can identify parallel tasks—another promising
source of parallelism but harder to find because more irregular. We extract the
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dependence graph dynamically from the program and subject it to several (sim-
plifying) transformations at the end of which the tasks emerge. The main idea of
this paper is the identification of computational units (CUs) and the localization
of strongly connected components (SCC) and chains as representations of poten-
tial tasks. While CUs hide dependences that are local to computations, SCCs
encapsulate complex dependences inside a task. The generated task graph is fur-
ther submitted to a code transformation component that translate the sequential
code into parallel TBB code. Experiment results showed that for both tasks exe-
cuting the same code and different code, reasonable speedup is secured. The
bottom line is that, we believe this work closes a gap in parallelism discov-
ery technology, which is especially important for the systematic parallelization
of larger general-purpose application portfolios, a challenge many organizations
are facing today.

In the future, we want to support further types of task parallelism includ-
ing, for example, TBB pipeline. Furthermore, we want to develop heuristics to
validate the automatically generated code before submitting them to the pro-
grammer, providing more accurate and reliable results.
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Abstract. Nowadays, more and more program analysis tools adopt pro-
filing approaches in order to obtain data dependences because of their
ability of tracking dynamically allocated memory, pointers, and array
indices. However, dependence profiling suffers from high time overhead.
To lower the overhead, former dependence profiling techniques either
exploit features of the specific program analyses they are designed for,
or let the profiling process run in parallel. Although they successfully
lowered the time overhead of dependence profiling by a certain amount,
none of them have tried to solve the fundamental problem that causes the
high time overhead: the memory operations that are repeatedly executed
in loops. In most of the time, these memory operations lead to exactly
the same data dependences. However, a profiling method has to profile
all these memory operations over and over again in order to not miss a
single dependence that may occur just once. In this paper, we present
a method that allow a dependence profiling technique to skip memory
operations that are repeatedly executed in loops without missing any sin-
gle data dependence. Our method works with all types of loops and does
not require any prepossessing like source annotation of the input code.
Experiment results show that our method can lower the time overhead
of data-dependence profiling by up to 52 %.

Keywords: Data-dependence · Profiling · Optimization · Program
analysis · Parallel programming

1 Introduction

Extracting data dependences from programs serves as the foundation of many
program analysis and transformation methods. Especially, since data depen-
dence is one of the main factors that preventing parallelism, data-dependence
analysis is the base of nearly all the tools that discover parallelism in paral-
lel programming area. Tools for discovering parallelism [6,10,11,15,18,24] iden-
tify the most promising parallelization opportunities. Runtime scheduling frame-
works [4,7,17,22] add more parallelism to programs by dispatching code sections
in a more effective way. Automatic parallelization tools [1,8,13,25] transform
c© Springer International Publishing Switzerland 2015
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sequential into parallel code automatically. Method that suggests parallel pat-
terns [9] helps programmer to choose the most promising pattern for parallelizing
code. All the tools and methods mentioned above have in common the fact that
they rely on data-dependence information to achieve their goals.

Data dependences can be obtained in two main ways: static and dynamic
analysis. Static approaches determine data dependences without executing the
program. Although they are fast and even allow fully automatic paralleliza-
tion in some cases [1,8], they lack the ability to track dynamically allocated
memory, pointers, and dynamically calculated array indices. This usually makes
their assessment conservative, limiting their practical applicability. In contrast,
dynamic dependence profiling captures only those dependences that actually
occur at runtime. Although dependence profiling is inherently input sensitive,
the results are still useful in many situations, which is why such profiling forms
the basis of many program analysis tools [3,6,10,11,15]. Moreover, input sen-
sitivity can be addressed by running the target program with changing inputs
and computing the union of all collected dependences.

However, a serious limitation of data-dependence profiling is high time over-
head. It may significantly prolong the analysis, sometimes requiring an entire
night [19]. This is because dependence profiling requires all memory operations
to be instrumented and records of all accessed memory locations to be kept.
Many solutions have been proposed to lower the overhead. The first solution is
to limit the scope to the subset of the dependence information needed for the
analysis they have been created for, sacrificing generality and, hence, discourag-
ing reuse. The second solution is sampling, also tries to analyze a subset of all
the memory operations but without losing generality. Based on sampled mem-
ory operations combined with a probabilistic model, the second solution profiles
data dependence with a sacrifice of accuracy. The last solution is to let the data-
dependence profiling process run in parallel. This is possible because some data
dependences related to one memory address do not affect other dependences
related to another memory address. It does not lose generality or accuracy, but
it surely needs much more effort to implement.

An observation is that many memory operations in loops are repeatedly
executed. In most of the time they lead to always the same data dependences,
but still need to be analyzed over and over again just because of some special
data dependences that rarely occur. None of the solutions mentioned above tried
to deal with this problem. In this paper, we present a method that allow a
dependence profiling technique to skip memory operations that are repeatedly
executed in loops without missing any data dependence. Our method works with
all types of loops, and allows nesting. Furthermore, our method can be applied in
combination with the existing overhead-reducing techniques mentioned above.
Experiments results on applications from NAS Parallel Benchmarks 3.3.1 [5] and
Starbench parallel benchmark suite [2] show that our method can lower the time
overhead of data-dependence profiling by up to 52 %.

The remainder of the paper is organized as follows. First, we summarize
related work in Sect. 2. Then, we introduce the work flow of data-dependence
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profiling in Sect. 3, providing a background of our method. In Sect. 4, we describe
the details of skipping memory operations in loops. Evaluation of our method and
a discussion on the characteristics of skipped memory operations are presented
in Sect. 5. Finally, we conclude the paper and outline future prospects in Sect. 6.

2 Related Work

In previous dynamic data-dependence profiling techniques, their overhead was
reduced through three major ways: tailoring the profiling technique to a specific
analysis, sampling memory operations, or parallelizing the profiling process.

Using dependence profiling, Kremlin [6] determines the length of the critical
path in a given code region. Based on this knowledge, it calculates a metric
called self-parallelism, which quantifies the parallelism of the region. Instead
of pair-wise dependences, Kemlin records only the length of the critical path.
Alchemist [24], a tool that estimates the effectiveness of parallelizing program
regions by asynchronously executing certain language constructs, profiles depen-
dence distance instead of detailed dependences. Although these approaches pro-
file data dependences with low overhead, the underlying profiling technique has
been tailored to the specific analysis, and has difficulty in supporting other pro-
gram analyses.

Another solution to decrease the profiling overhead is to use approximate rep-
resentation rather than instrument every memory operation. Previous work [20]
tried to ignore memory operations in a code section when it had been executed
more than 232−k times. However, when setting k = 10, only 33.7 % of the mem-
ory operations are covered, which can lead to significant inconsistency in profiled
data dependences. Vanka and Tuck [21] profiled data dependencies based on sig-
nature and also compared the accuracy under different sampling rates. In this
work, sampling was done in function level. A sampling rate of M means the next
M − 1 invocations of a function will be skipped. When decreasing the sampling
rate from 1 to 100, an obvious drain of accuracy was observed.

There are also approaches that reduce the time overhead of dependence pro-
filing through parallelization. For example, SD3 [12] exploits pipeline and data
parallelism to extract data dependences from loops. DiscoPoP [16] distributes all
the memory operations of a program among a number of worker threads based on
the accessed address, and a redistribution table is used to ensure balanced work-
load. Multi-slicing [23] leverages compiler support for parallelization. Before exe-
cution, the compiler divides the profiling job into multiple profiling tasks through
a series of static analyses. All these approaches successfully reduced the time over-
head of data-dependence profiling without losing generality or accuracy. However,
they still analyze all memory operations. At a certain time, the parallelism exist
among different memory addresses cannot be exploited further by increasing the
number of worker threads, and the huge number of memory operations that need
to be processed sequentially dominates the profiling overhead.

Like Kremlin, Alchemist, and former work [20,21], our method also profiles
only a subset of all the memory operations of a program. Unlike these methods,
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our approach does not lose generality or accuracy. The skipped memory oper-
ations are those repeatedly executed and lead to identical data dependences.
Theoretically, our approach can work with any code sections that are executed
more than once.

3 Background

A profiling techniques usually contains two parts: an instrumentation component
that inserts analysis functions into the target code following specific rules, and
a runtime library that implements the analysis functions and data structures.
In data-dependence profiling, the instrumentation component inserts analysis
functions for every memory operation. Instrumented code will be linked against
the runtime library and executed. The runtime library is further divided into
two components. The first component is called shadow memory. During run-
time, the analysis functions keep tracking each memory locations accessed in
the target application, and maintain access status of each memory location in
a separate memory space. The second component is data-dependence storage,
where data dependences are built and stored when the statuses in shadow mem-
ory are changed.

Figure 1 shows the work flow of data-dependence profiling. Among the three
phases, instrumentation can be done statically, and time overhead of instrumen-
tation is usually negligible. The main time overhead are caused by the remaining
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two phases: updating shadow memory and building dependence. Both shadow
memory and dependence storage are typically implemented based on table-like
data structures where each memory address or data dependence has an entry.
Given the truth that the number of memory operations and data dependences
are usually very large, the overhead is mainly incurred by searching, updating,
and inserting elements to the data structures. As a result, data-dependence pro-
filing typically slows the program down by a factor ranging from 100 to 150. [10]

However, not every memory operation has to be processed through all the
three phases. Let us take the loop shown in Fig. 2 as an example. After profiling
two iterations of the loop, data dependences are complete. Table 1 shows the
dependences. Source and sink are the source code locations of the former and the
latter memory operations, respectively. Type is the dependence type, including
read after write (RAW), write after read (WAR), and write after write (WAW).
Variable is the variable that causing a dependence. When source and sink of
a dependence belong to different iterations of a loop, we call the dependence a
loop-carried dependence.

Fig. 2. A simple loop where data dependences will not change over iterations.

Table 1. Data dependences of the loop shown in Fig. 2.

ID Sink Source Type Variable Loop-carried

1 2 2 write after read (WAR) sum no

2 3 1 write after read (WAR) k no

3 3 2 write after read (WAR) k no

4 3 3 write after read (WAR) k no

5 1 3 read after write (RAW) k yes

6 2 2 read after write (RAW) sum yes

7 2 3 read after write (RAW) k yes

8 3 3 read after write (RAW) k yes

Among the dependences shown in Table 1, dependence 1–4 can be obtained
within the first iteration, and dependence 5–8 will be added once the second
iteration is done. After that, no more data dependence will be built, no matter
how many iterations the loop has. In this case, profiling these memory operations
over and over again is just a waste of time. It may be necessary to keep updating
statuses in shadow memory for correctness, but we definitely do not want to
touch dependence storage after data dependences for a code section are complete.
In the next section, we show how we skip these memory operations after the
dependences are fully obtained to accelerate the profiling process.
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4 Approach

An abstract analysis function for a memory operation looks like this:

mem op(accessType, accessInfo, addr).

For a memory operation, accessType can be either read or write. It does not
change over time. In practice, two analysis functions will be created for read and
write operations, respectively. Necessary information needed to update shadow
memory are stored in accessInfo, and passed into the analysis function. Usu-
ally, accessInfo is the identifier of the associate memory operation. For exam-
ple, the address of the instruction, the source line location, the variable name,
or a combination of such information. Depending on concrete implementation,
accessInfo may or may not be unique to each memory operation. However,
for one memory operation, its accessInfo does not change. addr is the mem-
ory address accessed by the memory operation. It can change if the address is
referred by pointers.

4.1 Condition on addr

If a memory operation can be safely skipped, the memory address it accesses
must not change over time. For simplicity, we create a variable called lastAddr
for each memory operation storing the memory address accessed by the memory
operation last time. And we require

addr == lastAddr

to be a necessary condition if a memory operation can be safely skipped. last
Addr should be initialized with an address which is rarely accessed, like 0×0.

When the condition on addr holds, it only means that the current memory
operation has been profiled before. It does not mean all data dependences that
are related to the current memory operation have been obtained. Again, let
us take the loop shown in Fig. 2 as an example. After applying the condition
on addr, all the memory operations in the first iteration will be profiled, and
dependence 1–4 in Table 1 are obtained. However, from the second iteration,
memory operations are skipped because the addresses they access do not change.
Thus, we name the condition on addr a necessary condition, and we still need
other conditions to decide if a memory operation can be skipped.

4.2 Condition on accessInfo

The key to cover all data dependences is to decide when to resume profiling once
the profiling has been paused. Our solution is to have a mechanism that allows
a memory operation be notified if the access status of its memory address has
changed, so that the memory operation must be profiled again.

In order to track the access status of a memory address, the shadow memory
stores accessInfo of the last read operation and the last write operation to
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the address. We call them statusRead and statusWrite, respectively. We
then create two variables lastStatusRead and lastStatusWrite for each
memory operation, storing the accessInfo of the last read operation and the
last write operation to the memory address when the memory operation was
profiled last time, respectively. Then we require

statusRead == lastStatusRead &&

statusWrite == lastStatusWrite

to be another necessary condition if a memory operation can be safely skipped.
Both lastStatusRead and lastStatusWrite should be initialized with
impossible values for accessInfo.

When the condition on accessInfo holds, it means that the access status of
the memory address has been seen before. We say “has been seen before” because
the address may change, and the access status of the current memory address
may just coincidentally be the same as the access status of another address.
This is very likely to happen when accessInfo is not unique to each memory
operation. However, combing the two conditions on addr and accessInfo
will give the sufficient condition if a memory operation can be safely skipped: a
memory operation has been profiled before, and the access status of its memory
address has not changed since it was profiled last time.

When the conditions do not hold anymore, it means either the memory oper-
ation accesses a different memory address, or the access status of the memory
address has changes. No matter which situation it is, the memory operation must
be profiled again in order to cover new data dependences.

4.3 Example

In this section, we show how our method works on a simple example, and a
special case where a memory operation can be skipped even without updating
its status in shadow memory.

Fig. 3. A loop containing for memory operations on the same memory address.

Figure 3 shows a loop with four memory operations (op1–op4). All the mem-
ory operations access the same memory address x. We show memory operations
instead of source code so that the profiling process can be clearly illustrated.
Data dependences of the loop shown in Fig. 3 are listed in Table 2.
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Table 2. Data dependences of the loop shown in Fig. 3.

ID Sink Source Type Variable Loop-carried

1 op2 op1 read after write (RAW) x no

2 op3 op1 read after write (RAW) x no

3 op4 op3 write after read (WAR) x no

4 op1 op4 write after write (WAW) x yes

Table 3. Changing process of values of lastStatusRead and lastStatusWrite
in the profiling process on the loop shown in Fig. 3.

Op
lastStatusRead lastStatusWrite
init 1st 2nd 3rd init 1st 2nd 3rd

write x — 0 3 S — 0 4 S

read x — 0 3 S — 1 1 S

read x — 2 S S — 1 S S

write x — 3 S S — 1 S S

Table 4. Changing process of the statuses in shadow memory in the profiling process
on the loop shown in Fig. 3.

init op1 op2 op3 op4 op1 op2 op3 op4

statusRead 0 0 2 3 3 3 2 3 3

statusWrite 0 1 1 1 4 1 1 1 4

The changing process of values stored in lastStatusRead and
last StatusWrite for each memory operation is shown in Table 3. “1st”,
“2nd””, and “3rd” refer to the first, the second, and the third iteration of the
loop, respectively. An “S”means the memory operation is skipped, otherwise
the memory operation is processed and the value of lastStatusRead and
lastStatusWrite are updated.

The changing process of the accessing status of x in shadow memory is shown
in Table 4. We adopt the most common design, where for each memory address
the last read operation and the last write operation to the address are stored.
In both Tables 3 and 4, we use “1” for op1, “2” for op2, and so fort.

Let us examine the profiling process step by step. In the beginning, last
StatusRead and lastStatusWrite are initialized to “–”, statusRead and
statusWrite are 0, and lastAddr is 0×0. Now comes op1. Since addr is
not equal to lastAddr, op1 is processed. Statuses in shadow memory are loaded
into lastStatusRead and lastStatusWrite, which are both 0 in case of
op1. Then op1 updates shadow memory. statusWrite of x is now 1.

The same process happens to op2. The difference is that when op2 is exe-
cuted, statusRead and statusWrite of x has been changed to 0 and 1,
respectively. With statusWrite is no longer zero, a read-after-write (RAW)
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dependence from op2 to op1 is built, which is the first dependence shown in
Fig. 2. The profiling process continues, and dependence 2, 3 are built when op3
and op4 are profiled.

Now the profiling process enters the second iteration, and op1 comes again.
Although the condition on addr holds this time, the condition on AccessInfo
fails. The last time op1 was profiled, the last read operation (stored in last
StatusRead) and the last write operation (in lastStatusWrite) to x were 0.
After the first iteration is completed, they are 3 and 4. op1must be profiled again
in order to cover new dependences. Thus, the last data dependence in Table 2
is built. The same situation also happens to op2, but it only leads to a read-
after-read (RAR) dependence, which is ignored in most of the data-dependence
profilers.

Both condition holds when op3 is executed again, and it is skipped. No
dependence instance is built, and no query to the dependence storage. Note
that shadow memory is still updated for correctness. From then on, all further
memory accesses to x in the same loop are skipped, and no dependence is missed.
The dependence storage is touched only four times, exactly as the number of
dependences the loop contains.

Special Case. When the loop contains only op1, op2, and op3, statusWrite
to x will be always 1. This is a special case where the following condition holds:

currentWrite == statusWrite == lastStatusWrite.

In this case, a write operation can be skipped without updating shadow
memory. The same applies for read operation as well.

5 Evaluation

We implemented our method in the data-dependence profiler [16] of DiscoPoP
[14,15]. The profiler contains several different implementations of shadow mem-
ory. In this paper, we choose an implementation where statusRead and
statusWrite of a memory address are stored in two separate sets called readSet
and writeSet, respectively. Both of the two sets are non-approximate represen-
tation, meaning no false positives or false negatives will be built.

We conducted a range of experiments to evaluate the effectiveness of our
method. Test cases are the NAS Parallel Benchmarks 3.3.1 [5] (NAS), a suite
of programs derived from real-world computational fluid-dynamics applications,
and a few applications from the Starbench parallel benchmark suite [2], which
covers programs from diverse domains, including image processing, information
security, machine learning and so on.

5.1 Time Overhead

Figure 4 shows the slowdowns of the data-dependence profiler on NAS bench-
marks and kmeans from Starbench before (dp) and after (dp+opt) applying the
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(a) Slowdown on NAS.

(b) Slowdown on Starbench.

Fig. 4. Slowdowns of the data-dependence profiler of DiscoPoP on NAS and Star-
bench benchmarks with (DiscoPoP+opt) and without (DiscoPoP) skipping repeatedly
executed memory operations.

mechanism of skipping memory operations that are repeatedly executed in loops.
As it shown, our method reduces the slowdown of data-dependence profiling on
all of the test cases. The highest slowdown reduction shows in FT (52.0 %), and
the lowest shows in rot-cc (31.1 %). On average, our method reduces the time
overhead of data-dependence profiling by 41.3 %. The outputs after applying our
method were compared to the original ones using diff tool, and no difference is
observed.

Whether our method reduces the time overhead of data-dependence profil-
ing on an application depends on the computation pattern of the application.
Theoretically, the more work done in loops (or other repetitive manner), the
more effective our method will be. If a program does not have any code sections
that are executed more than once, which is obviously very uncommon for a real-
world application, our method should actually bring a minor time overhead due
to condition checking. In test cases FT, LU, and CG, the biggest hot spots are
all loops. Applying our method on these test cases give reductions on slowdown
of 52 %, 51 %, and 44 %, respectively.

Memory access pattern is another factor that can affect the effectiveness
of our method. In the worst case, accessed memory addresses change in every
iteration, which means the profiling process cannot be paused. This usually
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Table 5. Statistics of memory operations that lead to data dependence but skipped
on NAS benchmarks and kmeans from Starbench.

Benchmark
read write read+write

total skipped [%] total skipped [%] total skipped [%]

BT 743 969 748 71.94 104 153 401 22.66 848 123 149 65.89

CG 562 665 608 79.20 82 428 819 92.32 645 094 427 80.88

EP 1 268 263 496 96.75 528 633 275 89.00 1 796 896 771 94.47

FT 1 034 144 426 99.68 274 436 113 99.53 1 308 580 539 99.65

IS 26 061 226 82.69 10 596 042 73.53 36 657 268 80.04

LU 368 187 710 87.09 36 303 260 41.92 404 490 970 83.04

MG 66 160 096 82.60 5 876 449 53.88 72 036 545 80.26

SP 450 997 264 83.54 51 853 149 44.31 502 850 413 79.50

kmeans 1 124 603 733 65.27 225 500 303 87.97 1 350 104 036 69.06

md5 3 908 055 91.05 1 368 725 97.99 5 276 780 92.85

c-ray 1 251 777 658 64.77 264 217 429 48.35 1 515 995 087 61.91

ray-rot 500 462 138 56.48 133 222 408 47.65 633 684 546 54.62

rgbyuv 25 639 777 89.28 15 977 310 85.32 41 617 087 87.76

rotate 328 610 773 89.17 53 662 659 56.59 382 273 432 84.60

rot-cc 427 139 027 91.67 76 733 411 57.34 503 872 438 86.44

average — 82.08 — 66.56 — 80.06

happens when computation is based on array or matrix. Results on test cases
BT, IS, rotate, and rot-cc are affected due to this problem.

5.2 Skipped Memory Operations

In the second experiment, we get statistics of the memory operations that
lead to data dependence but skipped in each test case. As most of the data-
dependence profilers do, read-after-read (RAR) dependences are not profiled in
our experiment.

Table 5 shows the statistics. In each column group, “percent” gives the per-
cent of memory operations skipped of the type specified for the group. As it is
shown, on average 80.06 % of the memory operations that lead to data depen-
dences are skipped. It is surprising that the full data dependence set of an appli-
cation can be obtained by profiling only 20 % of its memory operations (or even
less because those do not lead to dependences are skipped already). The results
give us an insight of how much time were wasted in a classic data-dependence
profiler that profiles identical data dependences over and over again.

Although on average about 80 % of the memory operations that lead to data
dependence are skipped, the slowdown reductions shown in Fig. 4 never achieve
60 %. There are two reasons for this. Firstly, in most cases, skipping a memory
operation means skipping the data dependence building phase. Overhead is still
incurred by updating shadow memory. The second reason is that profiling a
write operation is more complex than profiling a read, and the percentage of
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skipped write operations (66.56 %) is less than the percentage of read (82.08 %).
Profiling a write operation needs to check both WAW and WAR dependences,
while profiling read operation only needs to check RAW.

5.3 Memory Overhead

Our method introduces a minor overhead on memory consumption of data-
dependence profiling because of the variables created for condition check. However,
compared to the memory overhead of shadow memory, the memory overhead of
our method can be ignored. In our experiments, one 64-bit integer (lastAddr)
and two 32-bit integers (lastStatusRead and lastStatusWrite) are cre-
ated for each distinct memory operation. However, the number of distinct mem-
ory operations is usually small comparing to the number of total memory opera-
tions due to loops and other code blocks that are repeatedly executed. For exam-
ple, kmeans has 109 memory operations in total and iterates 300 times. Thus,
the number of distinct memory operations in kmeans is roughly 3 × 106. With
16 Bytes memory overhead each, our method results in about 50 MB memory
consumption. The memory overhead of shadow memory, however, is almost ten
times of that. Memory consumption of the state-of-the-art data-dependence pro-
filers [12,16] ranges from several hundred mega bytes to several giga bytes. Using
10 % memory more to reduce the time overhead by 30–50 % is definitely a bargain.

6 Conclusion

Data-dependence profiling has a huge time overhead because it applies heavy
analysis to every memory operation of the target program. Existing solutions
to reduce the number of memory operations needed to be analyzed includes
static analysis and sampling. However, the number of data dependences that
can be determined statically is usually limited. Sampling, on the other side,
skips memory operations according to certain pre-defined rules with no respect
to the memory access pattern of the target program.

In this paper, we proposed a fast data-dependence profiling method that
can skip memory operations repeatedly executed in loops. By storing a short
profiling history for each memory operation, our method recognizes memory
operations that have been recently profiled and skips them, and, which is more
important, resumes profiling when the access pattern changes. According to the
experiment results, our method reduces the time overhead of data-dependence
profiling by 42.5 % on average. Furthermore, in contrast to sampling approaches,
our method ensures consistent state in shadow memory, lowering the time over-
head without losing accuracy. Finally, our method can cooperate with existing
overhead-lowering techniques for data-dependence profiling like static analysis
and parallelization.

We plan to develop a fast data-dependence profiler with the help of both
former techniques of reducing overhead like parallelization and the method pre-
sented in this paper. We are also interested in applying our method to profilers
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that built on top of virtual machines, where the original code without instru-
mentation can be scheduled into execution when all its memory operations are
marked as skipped.
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A., Resch, M.M., Nagel, W.E. (eds.) Tools for High Performance Computing 2014,
1st edn, pp. 1–10. Springer International Publishing, Switzerland (2015)

15. Li, Z., Jannesari, A., Wolf, F.: Discovery of potential parallelism in sequential pro-
grams. In: Proceedings of the 42nd International Conference on Parallel Processing,
PSTI 2013, pp. 1004–1013, vol. 13. IEEE Computer Society (2013)

16. Li, Z., Jannesari, A., Wolf, F.: An efficient data-dependence profiler for sequential
and parallel programs. In: Proceedings of the 29th IEEE International Parallel &
Distributed Processing Symposium, IPDPS 2015, pp. 484–493 (2015)

17. Ottoni, G., Rangan, R., Stoler, A., August, D.I.: Automatic thread extraction with
decoupled software pipelining. In: Proceedings of the 38th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 38, pp. 105–118. IEEE
Computer Society (2005)

18. Rul, S., Vandierendonck, H., De Bosschere, K.: Function level parallelism driven
by data dependencies. SIGARCH Comput. Archit. News 35(1), 55–62 (2007)

19. Rul, S., Vandierendonck, H., De Bosschere, K.: A profile-based tool for find-
ing pipeline parallelism in sequential programs. Parallel Comput. 36(9), 531–551
(2010)

20. Serebryany, K., Potapenko, A., Iskhodzhanov, T., Vyukov, D.: Dynamic race detec-
tion with LLVM compiler. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol.
7186, pp. 110–114. Springer, Heidelberg (2012)

21. Vanka, R., Tuck, J.: Efficient and accurate data dependence profiling using soft-
ware signatures. In: Proceedings of the 10th International Symposium on Code
Generation and Optimization, CGO 2012, pp. 186–195. ACM, New York (2012)

22. Ye, J.M., Chen, T.: Exploring potential parallelism of sequential programs with
superblock reordering. In: Proceedings of the 2012 IEEE 14th International Con-
ference on High Performance Computing and Communication & 2012 IEEE 9th
International Conference on Embedded Software and Systems, HPCC 2012, pp.
9–16. IEEE Computer Society (2012)

23. Yu, H., Li, Z.: Multi-slicing: a compiler-supported parallel approach to data depen-
dence profiling. In: Proceedings of the 2012 International Symposium on Software
Testing and Analysis, ISSTA 2012, pp. 23–33. ACM (2012)

24. Zhang, X., Navabi, A., Jagannathan, S.: Alchemist: a transparent dependence dis-
tance profiling infrastructure. In: Proceedings of the 7th Annual IEEE/ACM Inter-
national Symposium on Code Generation and Optimization, CGO 2009, pp. 47–58.
IEEE Computer Society (2009)

25. Zhao, B., Li, Z., Jannesari, A., Wolf, F., Wu, W.: Dependence-based code trans-
formation for coarse-grained parallelism. In: Proceedings of the 2015 International
Workshop on Code Optimisation for Multi and Many Cores, COSMIC 2015, pp.
1–10. ACM, New York (2015)



P-index: An Efficient Searchable Metadata
Indexing Scheme Based on Data Provenance

in Cold Storage

Jinjun Liu, Dan Feng(B), Yu Hua, Bin Peng, Pengfei Zuo, and Yuanyuan Sun

Wuhan National Laboratory for Optoelectronics,
School of Computer Science and Technology,

Huazhong University of Science and Technology, Wuhan 430074, China
{liujinjun,dfeng,csyhua,pengbin,pfzuo,sunyuanyuan}@hust.edu.cn

Abstract. Cold data are infrequently accessed in data centers. Cloud
storage service providers commonly store cold data and their metadata
in low-cost commodity hardware for cost-effective storage. While, there
are several kinds of storage services which need to ensure the high-
performance access and retrieval to cold data. Since some of cold data
have not been accessed for a long time, traditional metadata are not
useful for searching them. In order to solve these problems, we propose
an efficient and effective searchable metadata indexing based on data
provenance, called P-index. P-index partitions correlative files into log-
ical groups via provenance relationships of files. This method quickly
cuts off the subtrees which do not contain the query results to improve
the efficiency of metadata search. Moreover, P-index adds the metadata
extracted from data provenance into index structure to improve the effec-
tiveness of metadata search. We evaluate the performance of P-index via
two complex queries, range and k-nearest-neighbor(KNN) queries. Com-
pared with state-of-the-art metadata index methods, P-index improves
the efficiency and effectiveness of metadata search.

Keywords: Provenance relationship · Cold storage · Searchable meta-
data · Index structure · Metadata query

1 Introduction

In order to ensure data reliability or to share digital artifacts, current personal
users and enterprisers upload the enormous number of data to cloud storage
systems via various devices. At the same time, modern storage systems also
store a lot of plain copies for reliably storing large amount of data in datacenters.
While, most of the data are rarely accessed. This kind of data is regarded as cold
data.

There are at least two reasons which make us focus on the index of cold
data. First, since cold data are infrequently accessed and can not be lost, cloud
storage service providers commonly move cold data and their metadata into low-
cost commodity hardware for cost-effective data storage. While, there are several
c© Springer International Publishing Switzerland 2015
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kinds of storage services which need to ensure the high-performance accessing
and searching even if the data have become cold. For example, when users request
to access or search the photos which have not been accessed for several years in
a social media platform, the platform needs to finish the requests and returns
the results within three seconds [1]. Current storage systems commonly use the
metadata search to provide data retrieval service. Hence, cold storage systems
need an efficient metadata index structure.

Second, since the data are cold and are not accessed for a long time, cold
storage systems need to collect as much information as possible to help users
to find the data which they need. Usual method is to index the metadata infor-
mation of the data in storage systems. While, a recent study [2] reveals that
traditional metadata could be unhelpful to search data, and most of data are
uploaded with few metadata. Hence, it is a challenge for cold storage systems to
build an effective metadata index structure.

Cold storage systems of several enterprises [3,4] use database management
systems (DBMS) to store and index the metadata of files. Since DBMS must
check each B+-tree index for each attribute during searching metadata and lack
the support for scalability, existing DBMS do not fully satisfy the requirements
of metadata retrieval in the large-scale cold storage systems. There are several
kinds of index trees which are used to organize and index metadata for metadata
search. While these index trees only use the current attributes or features within
a short time to index metadata.

In order to improve the performance of metadata search in cold storage, we
propose an efficient and effective searchable metadata indexing scheme based
on data provenance, called P-index. P-index leverages two kinds of semantic
information which are extracted from provenance to improve the performance
of metadata index. The first one is the provenance relationship. Since the prove-
nance relationship is a kind of compact relationship, P-index partitions correla-
tive files into logical groups via the relationship, and then uses a tree to index the
centroids of each group. By building metadata index in this way, P-index quickly
cuts off the subtrees which do not contain the query results to improve the effi-
ciency of metadata search. The second one is the metadata information which is
extracted from data provenance. These metadata are added into index structure
for enhancing the accuracy of searching metadata. Hence, P-index improves the
effectiveness of metadata search.

Compared with state-of-the-art metadata index methods, P-index demon-
strates its efficiency and efficacy in terms of response latency and query accu-
racy. The average speed of the metadata query in P-index can be up to one order
of magnitude faster than traditional index tree structure and to two orders of
magnitude faster than DBMS.

The contributions of this paper are summarized as two aspects.

– Efficient and Effective Metadata Index Structure. We propose a novel
searchable metadata indexing scheme based on data provenance, called
P-index, which takes advantage of both the relationship and the metadata com-
ing from data provenance to speed up metadata search and improve the accu-
racy in cold storage.
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– Evaluation on Real-Word Trace. We achieve the prototype of P-index.
We evaluate the performance via using two complex queries, range and KNN
queries. The test results show that P-index improves metadata searching per-
formance by 1 - 2 orders of magnitude.

The rest of the paper is organized as follows. Section 2 shows research back-
grounds and our motivations. We give the overview of the P-index in Sect. 3.
Section 4 presents the system design and implementation. We give extensive
experimental results in Sect. 5. Section 6 describes the related work, and Sect. 7
concludes the paper.

2 Background and Motivations

In this section, we first show the research backgrounds about the cold storage
systems. We then present our motivations.

2.1 Cold Storage Systems

A cold storage system stores cold data with low storage costs and correspondingly
accepted performance levels [1], such as Amazon Glacier [5], Microsoft Pelican
[4] and Facebook Cold Data Storage [3]. Cold data are the data which can not
be lost in a long term, and rarely accessed.

According to the concerned requirements except low cost, cold storage sys-
tems are classified into two categories. The first kind of cold storage systems
pursue expected storage life, such as, archive systems and disaster recovery sys-
tems. The design of these systems mainly focuses on the reliability of systems
and data. The second kind of cold storage systems are more concerned with
access speed. For example, online social media systems and several backup sys-
tems. These systems need to provide real-time services (the response time is less
than three seconds) [1].

With the development of cloud applications, the amount of cold data become
larger and larger. There are over 100 hours of videos being uploaded every minute
on YouTube, and 2 billions of photos each day shared across Facebook sites
[3]. Since most of the data are accessed infrequently, several cheap and lower-
performance equipments are used for cost-effective storage. Hence, ensuring the
system performance becomes a great challenge in the second kind of cold storage
systems mentioned above.

2.2 Motivations

When the data that users need are “cold”, metadata search is used to find the
data. There are two methods which are used to speed up metadata search. The
first method is improving the efficiency of index structure, such as spyglass [6],
smartstore [7], vsfs [8] and so on. By using the methods, the systems quickly
cut off the branches which do not contain the query results. The second method
is collecting and storing more information of files. Once users remember a little
information about the files they need, they can find the files easily.
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Fig. 1. Provenance information

In order to improve the performance of metadata search, we use not only the
present information of files, but also their historical information. Provenance
data of a file record its historical information. We extract data correlations from
provenance data, as shown in Fig. 1. The data correlation is the provenance
relationship. Since provenance relationship is a more compact relation, we use
it to group files. The files within a group have the similar properties and access
features. Adopting this method, we build an efficient index structure to speed
up the metadata search. On the other hand, we obtain more semantic attributes
from provenance. When we use the attributes to add the metadata of index
structure, we build an effective index structure and improve the query accuracy.

3 System Overview

In current storage systems, users search files via searching file metadata in
metadata server cluster. Figure 2 shows the logical diagram of P-index. P-index
includes three parts: client-side, the metadata server cluster and the data server
cluster.

The first part mainly collects application-level provenance data. When the
applications are moved from the client-side to cloud, the provenance collector
is moved to the cloud together with applications. In order to reduce the net-
work overhead of transferring provenance data, the raw provenance need to be
preprocessed. For example, the identical records are dedupicated, and the prove-
nance data of system files are filtered.

The second part which includes three function domains provides two kinds
of metadata query services, and metadata management and storage. The first
function domain includes provenance manager module and provenance storage
module. After receiving the provenance from provenance collector, provenance
manager extracts provenance relationships of files for logic grouping, and several
searchable metadata from provenance data. The provenance manager then sends
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Fig. 2. The architecture of P-index.

the selected provenance data to the provenance storage module to store them.
The second function domain includes two metadata search modules and the
provenance-based searchable metadata indexing module. Our work focuses on
this domain. Two query modules achieve the whole processes of searching meta-
data, such as receiving the requests of range query, extracting query conditions,
searching the index structure and returning search results. The last function
domain is responsible for metadata management and storage. The metadata
manager chooses searchable metadata for all file metadata to build the search-
able metadata index structure.

The third part provides cold data management and storage. The data man-
ager is mainly responsible for accessing and migrating cold data.

4 Design and Implementation

In this section, we first present the new insights of provenance relationship and
searchable metadata. We then present our design of the efficient and effective
index structure and metadata search in cold storage.

4.1 Provenance Relationship

TheDefinition. Through the analysis of provenance data, we get the provenance
relationships, also known as ancestry relationships, dependency correlations, lin-
eage relationships or causal relationships [9]. For example, an application software
reads data from file A and then writes them to file B. We consider that B is a child
of A. There is the provenance relationship between A and B.

The Open Provenance Model defines three kinds of nodes, including artifact,
process and agent, and five types of causal dependency relationships among
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them [10]. The mode defines a directed graph of causal relationships to represent
provenance graph, and it is useful to exchange data between different provenance
systems. Since P-index groups the files which are belong to the same provenance
subgraph. We mainly focus on the file dependency relationship.

How to Get Provenance Relationship. Provenance relationships commonly
come from the analysis of provenance data. Hence, the first thing we need to do
is to collect provenance data. There are several methods to get provenance data.
First, we can derive provenance from log files [11]. Provenance can be extracted
from log files via an adaptor which is composed of a set of rules. Second, we can
design or modify systems for automatically collecting provenance [12]. According
to the particular points of modification in the software stack, we can obtain
application-level provenance, system-level provenance or dataflow provenance.

In addition to these methods, we can obtain the provenance relationships via
metadata or data analyzing. For example, in online backup systems or online
storage systems, a user uploads several files in a day and uploads other files at the
next day. If many of them are similar in pathnames or have the same filename,
like /backup/jun07/paper/main.tex and /backup/jun08/paper/main.tex, we
easily deduce that the latter is the child of the former.

In P-index, we get provenance relationship via the analysis of application-
level provenance. There are two main benefits from this method. First, collecting
and storing application-level provenance have less overhead. We do not concern
the information about operation system and file system. Second, since users
are more likely to remember the application-level information, application-level
provenance is much helpful for searching cold data. P-index collects and indexes
the metadata coming from application-level provenance to speed up file queries.

How to Use Provenance Relationship. In the present study, provenance rela-
tionship is commonly used in intrusion detection, reliability analysis and data
rebuilding. These approaches only focus on the places where objects come from
and the applications which are using or used objects. P-index takes the advantage
of the provenance correlation to achieve logical grouping of files. The files within
same provenance subgraph are partitioned into one group. Since the provenance
relationships of files reflect more compact correlations between files than the rela-
tionships that only come from file attributes, P-index exploits this kind of relation-
ships to speed up file queries. Hence P-index provides efficient metadata search.

In order to reduce the overhead of index updates, P-index uses a buffer to
temporarily store the provenance relationships. Whenever the buffer becomes
full, P-index updates the index structure and removes the records about prove-
nance relationships. Hence, P-index does not maintain and store a provenance
graph in the cold storage system.

4.2 Searchable Metadata

The Definition of Searchable Metadata. There are two concepts which are
relevant to searchable metadata. File metadata, such as size, owner, retention
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policy and timestamps, are the attributes of files. In large-scale file systems,
Metadata search is helpful to address the file management and locating [6].
Searchable metadata are a kind of metadata which can help users or admin-
istrators to accomplish complex, ad hoc metadata search about the files which
are stored in storage systems or digital libraries [13]. P-index extracts searchable
metadata from two sources, traditional file metadata and file provenance.

Extracting Searchable Metadata from Common Metadata. Not every
attributes of files really contributes to help users to find their files. A recent study
[2] reveals that concerning the time of last usage of a document, the common
search criteria, only 4.8 % of the recalls are correct and 47.6 % of the recalls are
utterly incorrect.

There are several common attributes of files which are firmly remembered
by people, such as file type, keywords and visual elements [2]. These metadata
are searchable metadata. Each file has dozens of metadata attributes. If all of
attributes are used to build index structure, the space and time overheads of stor-
ing and retrieving the index are unacceptable. P-index selects several searchable
metadata as a part of the searchable multidimensional index metadata. We call
these metadata as CSM below.

Extracting Searchable Metadata from Provenance Data. Besides extr-
acting searchable metadata from common metadata, P-index extracts several
searchable metadata from application-level provenance, PSM for short. There are
two reasons which prompt us to do this. First, since many files uploaded by users
have no or very poor metadata, it is not enough to perform precision query and
recommendation [14]. For example, most of programmers like to name the instal-
lation program as “setup.exe”. Second, application-level information is easier to
be remembered, such as receiving a PDF file from the email coming from Tom,
using Storm Codec (a popular media player software in China) to play a video
last month. Adding the attributes of PSM into the index structure improves the
accuracy ratio of inquires. Hence P-index provides effective metadata search.

Table 1. Definition of provenance semantics

Provenance
element

Attribute Definition Examples

When Time Time of the event February 24, 2013, morning, 5 PM

Where Space Location of the event where
the data came from

Dropbox, YouTube

Which Instrument Softwares or tools in the
event

Email, MS Powerpoint,

Who Agent Individuals involved in the
event

Mr. Huang, Tom, home.jpg

How Action Actions that lead to the

event

download, creation, publication
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Towards a provenance event, P-index adopts a W5 mode, like W7 [15], to
extract the PSM. We define that a provenance record include when, where,
which, who and how associated with each provenance event. Table 1 shows these
5 Ws and the corresponding attributes. For example, Towards a event “I down-
loaded a file named presentation.ppt from the email of SOHU coming from Tom
at 8 AM, June 1, 2015”, when is 8 AM, June 1, 2015, where is SOHU, which
is email, who is Tom, and how is download. We provide a string as a unique
identifier of a provenance record. Hence, P-index uses key/value pairs to store
the PSM.

4.3 P-Index Structure

After collecting the provenance relationships of files, P-index first uses k-proto
types algorithm [16] to compute the features of each provenance group-
(subgraph). The features represent each group and are treated as first-level index
nodes. The features include two parts, PSM and CSM. P-index then imports the
first-level index nodes into a KD-tree and builds the searchable metadata index
structure, as shown in Fig. 3.

In our design, the KD-tree is stored on a server cluster with distributed
shared memory. The speed of accessing data from the memory of neighboring
nodes is quicker than local disks. There are two reasons that we use the KD-tree
in P-index. First, a main memory index structure can ensure the performance
of searching metadata. It is necessary to ensure the high-performance accessing
and searching in several kinds of storage services, even if the data have become
cold [1]. Second, the distributed index structure improves the system reliability.
P-index can address the single-point-failure problem.

Fig. 3. The index structure of P-index
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Computing the Features of Provenance Group. K-prototypes algorithm
integrates the k-means and k-modes algorithms. K-means algorithm partitions
n objects with numeric attributes into k clusters so as to minimize the within-
cluster sum of squares (WCSS). K-modes algorithm addresses the objects with
categorical values. Since PSM and CSM include numbers and characters respec-
tively, P-index uses k-prototypes algorithm to partition a provenance group
(provenance subgraph) into k subgroups and obtain the centroid of each sub-
group. The attributes of the centroid can be considered as the features of each
cluster.

The usage of k-prototypes algorithm in P-index offers three advantages.
First, this method computes the features of each provenance group. Second,
this method improves the accuracy of the features of each provenance group.
When a provenance group is too large, it is inaccurate to use a mean as the fea-
ture. Third, this method increases the balance of index tree. P-index partitions
a huge group into several small groups with relatively average number of nodes.

Building Basic Index. By using k-prototypes algorithm, P-index gets the
first-level index nodes, and then uses KD-tree to index them. Since KD-tree is
not suitable for high-dimensional data, P-index adopts the median of medians
algorithm to improve the efficiency of searching metadata.

When P-index receives a new provenance relationship among files A1, A2,...,
An (n > 1), P-index can address the changes of provenance groups.

– When all files do not belong to any provenance group, P-index adds a new
group which includes the files Ai (1 < i ≤ n).

– When a part of the files belong to provenance group Gj (l ≤ j < n) and others
do not belong to any group, P-index merges the groups Gj (l ≤ j < n) into
a new group and adds other files into the new group.

– When Ai (1 < i ≤ n) do belong to group Gj (1 < j ≤ n), P-index merges the
groups Gj (1 < j ≤ n) into one new group.

In order to ensure the index robustness, P-index uses a common KD-tree
to index CMS of the files without provenance relationship. When obtaining
the provenance relationship of a file, P-index moves its CMS and PMS to the
provenance-based searchable metadata index structure.

Storing and Maintaining P-Index. To ensure metadata search efficiency,
P-index stores the index nodes in memory. Since P-index only uses PSM and
CSM, the other file metadata and provenance information (if these information
need to be stored) are stored at data server cluster. After a file is migrated to
the cold storage system, its changes of PSM and CSM are few.

When a provenance group have excessive amounts of files, The time overheads
of metadata searching and metadata update in this group far exceeds other
groups. Therefore, a huge provenance group affects the balance of index tree.
We define a threshold S to limit the size of each group. If the number of files
which belong to same group is more than S, we divide the group into several
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Range Query Algorithm(Root,R)

S = Root
if S is the first-level index node then

while ( S = NULL) do
w = Get Node(S)
w is the result if it lies in R

end while
else

if Region(Left Subtree(S))is fully contained in R then
S = Left Subtree(S)
Range Query (S,R)

end if
if Region(Right Subtree(S))is fully contained in R then

S = Right Subtree(S)
Range Query (S,R)

end if
end if

Fig. 4. Algorithm for Executing Range Query in P-index.

subgroups in which the number of files is less than S. When the number of nodes
within a provenance group is n, P-index sets k (the number of clusters) to �n/S�.

When P-index removes a file, the metadata of the file will be deleted. Once
all files of a group are removed, the first-level index node corresponding to the
group will be removed. Similarly, P-index adopts a lazy adjusting index strategy,
like LA-tree [17]. P-index uses several cascaded buffers to cache the nodes that
need to be updated. When the buffers become full, P-index starts to adjust the
index structure.

4.4 Metadata Search Based on P-Index

We present on-line approaches to satisfy two kinds of complex query requests
which are range and KNN query in this subsection.

The Range Query. The range query is to find files which contain within the
query domain. When receiving a range query request, P-index finds the first-
level index nodes which satisfying range constraints. The first-level index nodes
correspond to several provenance groups. And then P-index finds the final results
via comparing the attributes of files which belonging to the groups with the given
query domain. The pseudo-code for the range query algorithm is shown in Fig. 4.

The K-nearest-neighbor Query. The KNN query gets the files which
attributes are closest to the given query condition. The time overhead of KNN
query is O(k*log n), n is the number of index nodes. Since n is less than the
number of files due to logical grouping based provenance relationship, the over-
head is low than O(k*log n) and is O(k*log(n/v)), v is the average number of a
logical group.
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5 Performance Evaluation

In this section, we evaluate the performance of P-index by implementing a meta-
data index and search prototype. The evaluation metrics include the time over-
head of building P-index and the performance of two kinds of common metadata
queries, range and KNN query.

5.1 Experiment Setup

Since there are not authoritative datasets which record both provenance data
and file attributes of a storage system, we demonstrate our design via a trace
which comes from two resources. First, we analyze the HP trace [18] to obtain
metadata information and provenance relationships of files. For example, when
a process reads and writes several files in a short period of time, we consider
that the files have provenance relationships between them. Second, we collect a
trace recording our history of uploading our files into Baidu cloud storage which
is a cloud backup system for several months. In order to reduce the overhead of
collecting provenance, we only track the usage and uploading of several special
files, such as Word, Excel, PowerPoint and PDF. We collect the provenance and
attributes of more than 6 millions.

We compare our design with three kinds of metadata index structure. The
identifiers R-tree and KD-tree means only use KD-tree or R-tree to index the
traditional metadata of files. We also compare the performance of searching file
with DBMS.

5.2 Result and Analysis

Building Latency. The overhead of building index tree can not be ignored
by searchable file system designers. For example, when we use DBMS to index
the metadata, we first import the metadata into DB. As shown in Fig. 5a, we
find that P-index needs less time to build index structure than DBMS. We also
find that, with the increase of files, the time cost of building P-index is less
than KD-tree and R-tree, as shown in Fig. 5b. When the dataset is smaller, the
k-prototypes algorithm occupies most time overhead due to the iteration com-
puting centroids. We can reduce the time cost of building P-index via computing
the centroids of each provenance group in parallel. From Fig. 5b, we can also find
that the time overhead of computing K-prototype algorithm decreases with the
increase of dataset.

Query Latency. In the P-index prototype system, we mainly exploit the
numeric metadata and provenance data to achieve range query. Figure 6a shows
that the average time consumption of each range query in our P-index. We exam-
ine the latency as a function of the number of files from 1000 k to 6000 k with
the increase of 1000 k in dataset. The latency of P-index is one order of magni-
tude better than R-tree and KD-tree, and is two order of magnitude better than
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Fig. 6. The average latency of each metadata query

DBMS. Due to logical grouping based on provenance relationships, P-index can
quickly prune out the branches which do not contain the query results.

We compare the time efficiency of searching files of different metadata index
methods. Figure 6b shows the average time cost of each KNN query when k = 8.
We discover that P-index spends 10 × - 30 × less time than KD-tree and R-tree
to finish a KNN(k = 8) query. We also discover that P-index costs 282 × -1370
× less time than DBMS to finish a KNN(k = 8) query due to DBMS needing to
check each B+-tree index for each attribute in searching metadata.

Query Accuracy. P-index adds the large quantities of metadata extracted
from data provenance into the index structure. When users remember one or
more keywords about the history of the files which they need, the keywords
will filter many irrelevant query results and make P-index provide a relatively
high accuracy. Figure 7a shows that over 90 % range query requests are served
accurately by P-index. Since DBMS, KD-tree and R-tree lack the metadata
coming from data provenance. Their accuracy is lower than P-index. The same
conclusions about KNN query are observed in Fig. 7b
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Fig. 7. The average hit rate of each metadata query

6 Related Work

In recent years, a lot of researches have focused on the application of prove-
nance in storage systems. In the personal filesystem, provenance have been used
to improve file searching performance. Shah et al. [19] used a context-enhanced
architecture to improve the precision rate of file retrieval. The architecture was
built via the analysis of file correlations coming from provenance data. Liu
et al. [20] used a provenance graph to speed up the file search in storage sys-
tems. Their system can get the final results and do not need to access the disk
except that the result metadata are stored on the disk. These two methods store
and search the provenance graph for enhancing the accuracy ratio of inquiries.
P-index is different with them. P-index only exploits the provenance relationships
for logical grouping and exacts several searchable metadata. Hence P-index does
not need to store and search the provenance graph and reduce a lot of overhead.

There are some studies which use the keywords extracted from the provenance
data to help users to retrieve file and enhance the function of file retrieval.
Feldspar [21] allows users to easily construct, edit and visualize the connections
among entities which can obtain from provenance and to help users to retrieve
information. Keiko Yamamoto et al. [22] proposed a retrieval method based
on provenance which came from monitoring six kinds of file operations, such as,
copy, move, rename, edit, download and receive. These methods only capture the
provenance of specific applications. P-index can collect provenance of different
kinds of applications and extract searchable metadata from it.

Towards the metadata index in cold storage system, several enterprises use
database to store and index the metadata of files [3]. Pelican uses catalog, a off-
rack metadata service to store and maintain the metadata of files [4]. A metadata
catalog service commonly uses MySQL relational database as backend to store
and index metadata. While, DBMS limits efficiencies of scalability and require
lots of system resources. P-index uses key/value pairs to store the metadata and
uses KD-tree to index searchable metadata.
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7 Conclusion

As an increasing number of data have become cold data, finding the data which
you need has become increasingly difficult. To address this problem, we present
P-index, an efficient and effective searchable metadata indexing scheme based
on data provenance. P-index introduces provenance relationships of files and
the metadata coming from data provenance to improve metadata search perfor-
mance. Our evaluation shows that P-index has up to 1 - 2 orders of magnitude
faster search performance than existing designs and also has high accuracy. Since
the provenance is immutable, in future work, we seek to use SSD (Solid State
Disk) to persist the unchangeable part of P-index for lowers memory usage.
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Research 973 Program of China under Grant 2011CB302301 and National Natural
Science Foundation of China (NSFC) under Grant 61025008, 61173043, 61232004 and
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Abstract. Cloud service providers and enterprises usually deploy high
performance storage to manage the unrelenting growth of data. In this
paper, we focus on performance optimization and evaluation by using
optimal regeneration codes in such cloud storage systems. We present
an efficient data maintenance management framework to reduce network
repair traffic with the minimum data movement while keeping the desired
fault-tolerance in storage systems. In the management framework, it has
two phases including the traditional erasure coding process and the opti-
mal placement process. We formally represent the optimal placement
as a variant of the bin packing problem by bipartite graphs. Then, we
model the placement transform by the interchange graph and propose
an efficient heuristic algorithm to find the optimal solution. All feasi-
ble solutions are linked together by interchange operation and thus the
search space can be taken as an interchange graph. Finally, we evaluate
the performance of the optimal placement during data maintenance with
different practical settings in our experiments. The experimental results
show that the amount of network repair traffic can be reduced by about
10 % than the initial placement and by about 2X than traditional erasure
coding placement.

Keywords: Cloud storage systems · Data maintenance · Optimal place-
ment · Bin packing · Performance evaluation

1 Introduction

It is reported that the global total data amount is growing 40 % per year into the
next decade and will reach 44 zettabytes by 2020 [1]. The demand for large-scale
storage systems is ever-increasing to keep up with the ever-growing data amount.
Today cloud object storage is becoming popular which is ideal for cost effective,
scalable storage requirements, like Amazon S3 [2], OpenStack Storage [3], etc.
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In such cloud storage systems, storage nodes are typically built using a large
number of inexpensive commodity machines that may fail frequently. Data main-
tenance is one of the most important aspects in cloud storage systems. To main-
tenance the massive amount of data storage, it desires to have the least network
traffic to repair the lost data in case of failures. We present an efficient data
maintenance management framework to reduce network repair traffic with the
minimum data movement while keeping the desired fault-tolerance in storage
systems. Since it has the potential to improve the system performance, data
reliability and load balance, it is a very active research topic in large-scale stor-
age systems.

1.1 Motivation

Redundancy based on erasure coding techniques has been paid much atten-
tions in these systems, especially, Maximum Distance Separable (MDS) codes.
MDS codes achieve the optimal tradeoff between storage redundancy and fault-
tolerance and existing most erasure codes allow to minimize the storage overhead.

Consider that network bandwidth is more concerned than storage overhead
in distributed networks. The optimization design of the fault-tolerance in cloud
storage networks need tradeoff such constraints between storage redundancy and
network bandwidth. Even though MDS codes achieve the optimal storage over-
head, these codes may become the barrier due to the large amount of bandwidth
overhead. In fact, the majority of network bandwidth overhead is caused by the
whole file recovery and the storage node repair in cloud storage systems. The
upper-level access of the stored file needs to recover the whole file in case of the
node failure, called the whole file recovery. Their recovery only needs the mini-
mum amount of data which is the size of F . When a single node failure occurs,
it needs to replenish the lost packets on the failed nodes to a new storage node,
which is called the storage node repair. For a file F with an MDS code, the
bandwidth cost of the repair process needs is the same as the whole file recovery,
i.e., the whole size of F . As mentioned above, the failure of storage nodes may
occur more frequently and hence the repair of failures will take up much more
amount of network bandwidth for the MDS storage model.

From the philosophy above, Dimakis et al. proposed a new family of erasure
codes, called regenerating codes, which allow for efficient single node repairs
by minimizing repair bandwidth. Moreover, they discussed two extreme points
on the trade-off, minimum storage regenerating (MSR) and minimum band-
width regenerating (MBR) codes [8,9]. Thereafter the proposed constructions in
[6,7] achieve MBR for the efficient storage node repair. For example, Rouayheb
and Ramchandran called such a new family of codes, called Fraction Repetition
(FR) codes [7]. In these hybrid codes of replication and MDS codes, the optimal
placement is taken as the open problem. In this paper we study the optimal data
placement under a unified framework and evaluate its performance with various
practical experimental settings.
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1.2 Contributions

Our contributions of this paper have the following three-fold: First, we model the
optimal placement management by the interchange graph. All feasible solutions
are linked together by interchange operation and thus the search space can be
taken as an interchange graph. Second, we propose an efficient heuristic algorithm
to find the optimal placement and speedup its process. Third, the performance
of the optimal placement is evaluated during data maintenance with different
practical settings.

1.3 Paper Organization

The rest of the paper is organized as follows. In Sect. 2 we present a two-phase
framework of the data placement management. In Sects. 3 and 4, we model the
optimal problem and propose our novel heuristic algorithms, respectively. Then
in Sect. 5 we analyze the algorithm. In Sect. 6 we evaluate the proposed algorithm
and the storage performance of the optimal placement. In the final section we
conclude this paper.

2 Related Work

In cloud like distributed storage systems, much more attentions have been paid
on data management such as scalability, load balance, reliability and etc. Among
them, fault-tolerance is much more concerned. It can be provided either by
replicating data or using various MDS erasure codes [4,5]. However, neither of
them can provide the perfect solution to storage data in networks in terms of
storage redundancy, network bandwidth and coding complexity. The appropriate
storage design involves the tradeoff among these metrics which were studied
deeply. In particular, bandwidth may be the dominant constrained resource in
distributed networks.

In [8], Dimakis et al. studied their termed regenerating codes which allow
for efficient single node repairs by minimizing repair bandwidth. And they pre-
sented the extremal points on the tradeoff between storage capacity and repair
bandwidth, namely Minimum Storage Regenerating (MSR) codes and Minimum
Bandwidth Regenerating (MBR) codes. Subsequent research works paid atten-
tion to the construction of both classes of regenerating codes. Here we merely
concern about the related literature on MBR codes.

In [6] Rashmi et al. presented a construction for MBR codes which is based
on a concatenation of an MDS code with a repetition code based on a complete
graph. Rouayheb and Ramchandran [7] generalized the construction of [6] and
defined a new family of codes belong to MBR codes, called fraction repetition
codes. The node repair of an FR code can be performed not only at the minimum
bandwidth cost but also without complex coding process. At the same time,
several different design schemes were studied.

Different with the node repair of MBR codes that any fixed sized node set
is involved, the node repair of an FR code instead uses certain of fixed sized
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node set specified by an table (i.e., table-based repair). As the gain of the table-
based repair, the capacity of an FR code may exceed the storage capacity of
MBR codes and such FR codes are universally good. The upper bound of FR
codes with given parameters are presented in [6]. Several constructions have been
proposed by some combinatorial objects such as regular graphs [7], resolvable
designs [11] and cage graphs [10]. In [17,18] some algorithms to generate the
matrix of FR codes were presented. Based on these works, the constructions of
optimal FR codes are based on combinatorial designs and on different families
of regular graphs and transversal designs which attain the capacity bounds were
presented.

As stated in the recent literatures [12,13], the optimal construction is an
important problem that is still open in general. This paper makes a contribution
towards solving this problem by proposing a optimal solution that achieve the
optimal tradeoff between storage and bandwidth in cloud storage systems. To
our best knowledge, this is the first time to evaluate the storage performance by
the practical experiments.

3 Framework

In the section, we briefly present a two-phase management framework in the
data management and then formally describe the optimal problem.

For a file F , it first is encoded into θ packets by an MDS code; then these
packets are replicated ρ times and stored on n storage nodes uniformly (say d
packets on each node) such that F can tolerate any n − k node failures.

The data placement management framework consists of two phases: the tra-
ditional erasure coding phase and the replicating placement phase. During the
traditional erasure coding phase, it often employ Reed-Solomon like codes to
encode a file. Then we replicate the encoded packets into a set of storage nodes
during the replicating placement phase. This framework ensures the node repair
can be done in an efficient way without decoding and the storage nodes involved
in a storage node repair just transfer certain of packets which will be directly
stored on the new storage node.

In this paper, we focus on optimization of the placement phase and evaluating
the storage performance. The formal definition of the storage framework can be
presented into the following colored bin packing model: Here balls correspond
to coded packets and bins correspond to storage nodes. We are given a set of
balls with different n colors and each color has the same amount balls, say ρ;
then we place these balls into m bins so that each bin has an equal number of
balls, say θ. Clearly, it can be observed that the relation of these parameters
holds: nd = θρ. It can prove that FR codes exist in a wide range of parameters
constrained with the relation.

The placement of balls-in-bins ensures remained balls have certain of colors
after any n − k bins are removed. So consider the following optimal goal: What
is the minimum ball amount of distinct colors with such constraints? How can
we construct explicitly such the feasible placement?
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To formally represent the optimal goal, we define the storage capacity as
follows.

Definition 1. Given parameters n, θ, d, ρ, the storage capacity of a placement
C, denoted by Rc(k) is

Rc(k) := min
I ∈ [n]
|I| = k

|
⋃

i∈I

Vi|

where [n] denotes the integer set {1, 2, · · · , n} and Vi is a subset of [θ] such that
|Vi| = d.

From this definition, the storage capacity Rc(k) is the minimum number
of distinct packets stored in any k storage nodes. Given the same parameters
n, θ, d, ρ, the storage capacity Rc(k) may be different for different placements
C. So a feasible algorithm is needed to find the optimal storage capacity and
determine the corresponding placement. Therefore, we formally describe the fol-
lowing optimal problem: For fixed parameters n, θ, d, ρ and k, it is to determine
a placement with the maximum Rc(k).

In the following two sections, we present the graph model and propose our
search algorithm.

4 Model

4.1 Representation of Optimal Placement

We use a bipartite graph G(X ∪ Y,E) and the corresponding adjacency matrix
A to represent a placement. Recall that a bipartite graph G(X ∪Y,E) is a graph
with two classes X and Y of vertices such that edges are only connected between
vertices in X and Y . Let vertices in X be storage nodes and vertices in Y be
distinct packets; and then an edge eij ∈ E represents storage node i ∈ X stores
one packet j ∈ Y . Thus |X| = n, |Y | = θ and the degree of each vertex in X
is d and the degree of each vertex in Y is ρ. Such the bipartite graph calls the
bipartite biregular graph.

A bipartite graph G(X ∪ Y,E) can be represented by an adjacency matrix,
which is a Boolean matrix with n rows indicating vertices of X and θ columns
indicating vertices of Y , denoted by A = (aij)n×θ, where

aij =

{
1 node i stores packet j,

0 otherwise.

for i ∈ [n] and j ∈ [θ].
Thus a Boolean matrix A has constant row weight d and constant column

weight ρ, respectively. From the bipartite biregular graph and the correspond
Boolean matrix, it is obvious that nd = θρ. Figure 1 shows two examples with
the same parameters.
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1 2 3 4

1 2 3 4 5 6

V1 1 1 1 0 0 0
V2 1 0 0 1 1 0
V3 0 1 1 0 0 1
V3 0 0 0 1 1 1

(a) the bipartite graph with two C4 cycles and its Boolean matrix

1 2 3 4

1 2 3 4 5 6

V1 1 0 1 1 0 0
V2 1 1 0 0 1 0
V3 0 1 1 0 0 1
V3 0 0 0 1 1 1

(b) the bipartite graph without C4 cycles and its Boolean matrix

Fig. 1. Two examples of packet placement with the same parameters: n = 4, θ = 6, d =
3, ρ = 2.

We take the Boolean matrix A as a feasible solution. All such Boolean matri-
ces with appropriate parameters form a solution space, denoted by A = {A}. So
our goal is to find an optimal placement with the maximum storage capacity,
Rc(k).

Definition 2. A C4-cycle represents a complete subgraph K2,2 in its bipartite
graph G, i.e., a cycle of length 4.

That is, from the view of the corresponding Boolean matrix, a C4-cycle corre-
sponds to a 2 × 2 sub-matrix in a Boolean matrix A whose all elements are 1s.

As shown in Fig. 1, both examples have different cycle structures: the former
in Fig. 1(a) has two C4 cycles which has Rc(2) = 4 while the latter in Fig. 1(b)
has no C4 cycle (i.e., it is C4-free) which has Rc(2) = 5. So we get the following
observation.

Proposition 1. The different cycle structures of the placements in A with the
same coding parameters (i.e., the (0, 1) patterns in the Boolean matrices) may
result in different storage capacities Rc(k).

In the following sections, we first ensure the existence of placements with given
parameters, and then propose an efficient search algorithm to find an optimal
placement in A by so called interchange operation to transform one solution to
another.

4.2 Existence of a Placement

For the given parameters n, θ, d, ρ, we first determine whether a placement exists.
It should point out a connection of the Boolean matrix of a placement with the
class of the Boolean matrix which has prescribed row and column sum vectors.
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For a Boolean matrix of m rows and n columns, let the sum of row i be
denoted by ri for i = 1, · · · ,m and let the sum of column i be denoted by si

for i = 1, · · · , n. Thus the row sum vector R = (r1, · · · , rm) and the column
sum vector S = (s1, · · · , sm). In the past decades, the combinatorial properties
and the construction algorithm of the Boolean matrix with prescribed row and
column sum vectors were well studied by Ryser and Brualdi et al. in [14,15]
Here the Boolean matrix of a feasible placement is special that row sum vector
and column sum vector are constant vectors, R = (d, · · · , d) and S = (ρ, · · · , ρ),
respectively. We can directly obtain the following proposition.

Proposition 2. Let positive integers n, θ, d, ρ stratifying nd = θρ and ρ ≤ n;
then placement C(n, θ, d, ρ) always exists.

Note that the literature [17] also provided other proof about the existence of
feasible placements. We next will detail an efficient search algorithm in IG(A).

5 Algorithm and Analysis

In this section we first present the framework of the whole search algorithm and
then detail its implementation.

5.1 Search Algorithm

With the given parameters n, d, θ, ρ and k, our aim is to output a Boolean matrix
whose storage capacity Rc(k) is maximum. Our proposed search algorithm fol-
lows the hill climbing methodology, which belongs to the family of local search.

It is an iterative algorithm which can be described as follows: we first generate
an initial solution with the given parameters as current feasible solution; then for
current feasible solution, its neighborhood can be determined by the interchange
operation; we evaluate the storage capacity of the neighborhood solutions and
take one solution which has better storage capacity as current feasible solution.
Repeat the iterative search until the optimal solution is found.

The algorithm of the search process is shown as the pseudocode in
Algorithm 1. After checking the feasibility of the given parameters (line 1), the
algorithm generates an initial solution (line 2), set it as current optimal solution
OPT and add it into the candidate list (line 3-5). Then taking a solution A from
L, we evaluate each neighbor N of A. If N is close to OPT , then we add it to
L and set it as OPT if it is better than OPT (line 8-3). Note that if L is full,
some elements is allowed to expire in the order they are added (line 14). In the
following subsections, we will detail its implementation.

5.2 Initial Solution

When performing the search process, we consider the question of how to generate
the initial solution arises. As shown in Fig. 1, the storage capacity of a feasible
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Algorithm 1. The heuristic algorithm for finding an optimal placement.
Input:

the parameters: n, θ, d, ρ;
the number of storage nodes involved in a repair, k;

Output:
an optimal solution OPT .

1: if existence of a placement(n, θ, d, ρ) then
2: A ← generate an initial solution;
3: L ← initialize a candidate list;
4: L = L ∪ {A};
5: OPT ← A;
6: while L is not empty do
7: A ← take a solution in L;
8: for each neighbor N of A and N /∈ L do
9: if evaluate the structure of N close to OPT then

10: L = L ∪ {N};
11: if N is better than OPT then
12: OPT = N ;
13: end if
14: if L is full then
15: remove the first solution in L;
16: end if
17: end if
18: end for
19: end while
20: end if
21: return OPT ;

solution closely depends on its cycle structure. Here we define a heuristic rule
by the number of C4-cycles in a solution. So it is better to generate the initial
solution with few C4-cycles to improve the search performance. Although Ryser
gives a matrix structure in the proof of Proposition 1, the matrix is obviously very
far away from the optimal solution. There are some other methods to generate
the initial solution. In [17,18], they presented how to construct such a placement
directly. However, these constructed placements are not optimal in the storage
capacity, which we will detail them in the following experiment results.

5.3 Solution Space

In order to search the optimal solution, we need to link all solutions in A together
by a specific operation, termed the interchange operation. We are concerned with
the following 2 × 2 sub-matrices of A of the types

T1 =
[
1 0
0 1

]

and T2 =
[
0 1
1 0

]

.
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Definition 3. An interchange is a transformation of the elements of A that
changes a specified submatrix of type T1 into type T2, or vice versa, and keep all
other elements of A unchanged.

It can be observe that the interchange operation does not change the weights
of any row or column of the matrix. By the terms in graph theory, let that
A1 and A2 in A be vertices and then join them by an edge if they differ by
an interchange. The resulted graph is called the interchange graph IG(A). For
example, the matrix in Fig. 1(a) can be transformed into the matrix Fig. 1(b)
by an interchange. Thus an edge in IG(A) connect them directly. Followed the
result in [15], we get the following proposition.

Proposition 3. The interchange graph IG(A) is connected.

This proposition makes it possible to design a search algorithm to find the opti-
mal FR code in A. After applied an interchange to a matrix in A, then it
is transformed to another matrix. Since the connectivity of IG(A), the vertices
corresponded to the optimal solutions can be reached by a series of interchanges.

5.4 Heuristic Criterion

The proposed algorithm uses the following method as a heuristic criterion to
speedup the computation of Rc(k). As known, the fault tolerance of a placement
is the girth of its bipartite graph from coding theory. The bipartite graph having
the least number of 4-cycles tend to have the larger girth [16]. So we try to reduce
the number of 4-cycles in a Boolean matrix during the search process. We take
the number of C4 cycles in matrix of solution as the criterion of our algorithm.
If the number of C4 cycles in matrix X is less than the number in matrix Y , we
believe that X is batter than Y . We count C4 cycles of current solution based
on its previous solution with the time complexity of O(n2) during the search.
The number of C4 cycles of current solution is gradually decreased and tends to
a constant value in the search process.

6 Experimental Results

In the following section, we present the experimental results. We first focus on
analyzing our proposed algorithms and then evaluate the performance of the
optimal placement in our prototype storage system.

6.1 Algorithmic Evaluation

Initial Placement. As discussed in Sect. 5.2, initial placements can be gen-
erated by different algorithms. Here we first implement both algorithms and
evaluate their initial placements. The experimental results are shown in Fig. 2
in which the initial placement 1 is generated by [17] and the initial placement 2
is generated by [18], respectively.
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Fig. 2. The comparison between two initial placements during the optimization process
with the following parameters: n = 12, ρ = 3 and d = 3 . . . 12.

It can be observed that the number of C4 cycles in the initial placement
1 is much larger than in the initial placement 2 (Fig. 2(a)) and therefore the
storage capacity of the initial placement 1 is worse than the initial placement 2
(Fig. 2(b)). To reduce so many C4 cycles in the initial placement 1, it takes much
more time than to the initial placement 2 (Fig. 2(c)) by our algorithm. After
the optimization for both initial placements, both resulted optimal placements
reach the same storage capacity as shown in Fig. 2(d). The results show that
the proposed method in [18] can generate better initial placement for storage
systems; They also show that our proposed algorithm is robust to optimize the
placement. So the following experiments use it to generate the initial placement.

C4 Cycles Reduction. As we know from Subsect. 5.4, the reduction of C4
cycles helps to speedup the search process. Here consider the relation between
the storage capacity and C4 cycles during the optimization process. In both
cases shown in Fig. 3, we evaluate and record the number of C4 cycles and the
storage capacities Rc(4) during the whole process. Along with the reduction of
C4 cycles in the process, the corresponding storage capacities increase steadily.
From such the trend, it validates that the reduction of C4 cycles indeed results
to increase the storage capacity.

6.2 Storage Performance

In this subsection we evaluate the performance of the optimal placement in our
prototype system. The prototype system is implemented based Openstack Swift
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Fig. 3. The storage capacity Rc(k) and C4 cycles during the optimization process
(k = 4). In subfigure (a) and (b), n = 10, d = 7, θ = 35, ρ = 2 while in subfigure (c)
and (d), n = 11, d = 10, θ = 55, ρ = 2.

in C++ and deployed on our cluster system consisting of 6 storage nodes. We
can create arbitrary containers to emulate distributed storage nodes which are
distributed into physical storage nodes.

Experimental Settings. Consider that θ = 16 distinct packets are generated
by an MDS code, replicated ρ = 3 times and then placed into n = 12 storage
nodes uniformly, i.e., θ = 4. There are the following alternative placements repre-
sented by the adjacency matrices AG1(12, 16) and AG2(12, 16). Here AG1(12, 16)
is the optimal placement found by our algorithm from the initial placement
AG2(12, 16) which is generated by [18]. To tolerate at most any n − k failures,
we can obtain Rc(k) for both cases.

In our experiments, in both placements to tolerate 4 failures, Rc1(8) =
15, Rc2(8) = 14, respectively. Similarly, to tolerate 5 failures, Rc1(7) =
14, Rc2(7) = 12, respectively. That is, it can download the stored file by accessing
at least Rc(k) packets from any k nodes. Thus we placed packets on 12 nodes in
accordance with AG1 and AG2 for files with different sizes, 10 MB, 50 MB and
200 MB, respectively. As a comparison, we also stored these files by using the
traditional Reed-Solomon codes. As shown in Fig. 4, it plots the storage perfor-
mance of the initial placement, the optimal placement and Reed-Solomon coding
placement.
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(2)

Performance Results. We concern about the file operations including storing
files, retrieving files and repairing failed nodes.

We first evaluate the time cost to store files into the prototype storage system.
The experimental results are shown in Fig. 4 (a) and (b). It can observe that the
initial placement AG2(12, 16) takes the most time overhead to store files while
the traditional Reed-Solomon placement is the most efficient. As expected, we
observe that the optimal placement AG1(12, 16) is much more efficient than the
initial placement AG2(12, 16) by about 5%, 8% and 12% for three different kinds
of files, respectively in both cases. Since AG1(12, 16) is better than AG2(12, 16) in
the redundancy overhead, the size of each packet in AG2(12, 16) is smaller than
the size of each packet in AG1(12, 16). It is easy to understand the efficiency
of storing files by Reed-Solomon codes since it has the optimal storage cost to
achieve the required tolerant failures.

We also evaluate the performance of retrieving files. In either of these three
cases, it needs to download the whole size of each file. So it takes nearly the
same time overhead to retrieve files. Due to the space limitation of the paper,
the results are not plotted.

At last, we measure the performance of the repair of single node failure.
During the repair of a failed node, it needs to transfer some packets from other
available nodes and upload these packets to a new node. If there is more than
one failure, then we repair each failed node one by one. From Fig. 4(c) and (d),
we observe that the optimal placement AG1(12, 16) has the best performance. Its
performance is improved by at least 10% than the initial placement AG2(12, 16)
and by up to 2X than Reed-Solomon coding placement. Of course, such savings
in network overheads is at the cost of much more redundancy compared to Reed-
Solomon codes. As discussed in Subsect. 1.1, it significantly reduces much more
network traffic after the optimization of data placement.
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Fig. 4. The performance evaluation for the file operations including storing files with
different sizes and repairing failed nodes. Files are stored into 12 storage nodes accord-
ing with AG1(12, 16), AG2(12, 16) and Reed-Solomon codes, respectively.

7 Conclusion

We presented a data placement management framework for cloud storage sys-
tems in this paper. It is formulated into a variant of bin packing problem and
propose an efficient heuristic algorithm to place encoded packets of files to store
on storage nodes. The optimization ensures to obtain the maximum storage
capacity by the optimal placement. The experimental results showed that the
amount of network repair traffic can be reduced significantly. So it can effectively
reduce the maintenance overhead for the large-scale storage system.
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Abstract. In order to store and process data at large-scale, distributed databases
are built to partition data and process it in parallel on distributed nodes in a
cluster. When the database concurrently execute heterogeneous query work-
loads, performance prediction is needed. However, running queries in a dis-
tributed database heavily touches upon the network overhead as the data
transmission between cluster nodes. Hence, in this work, we take network
latency into account when predict concurrent query performance. We propose a
linear regression model to estimate the interaction when execute concurrent
query for analytical workloads in distributed database system. Since network
latency and overheads of local processing are the two most significant factors for
query execution, we analyze the query behavior with multivariate regression on
both of them at different degree of concurrency. In addition, we use sampling
techniques to obtain various query mixes as concurrency level increasing. The
experiments for evaluation the performance of our prediction model are con-
ducted over a PostgreSQL database cluster with a representative analytical
workloads of TPC-H, the experimental results demonstrates that the query
latency predictions of our model can minimize the relative error within 14 % on
average.

Keywords: Performance prediction � Concurrent workloads � Distributed
database � Distributed processing � Performance modeling

1 Introduction

As the data rapidly increased in many domains of industry and everyday life, dis-
tributed database system is needed to be able to store and manage massive data with
parallelism and highly scalability. In a distributed database system, data is partitioned
and stored at multiple, distributed nodes in a cluster, and the cluster often can be easily
scaled out by adding new nodes. A query issued to a distributed database can be
transformed into several sub-queries and then processed by many database nodes
concurrently, the partial results in each nodes will be returned and combined as final
output. In general, distributed database system is designed to support concurrent query
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execution to decrease the response time of execute analytical workloads. However,
concurrent execution brings numerous challenges as well as benefits for resources
competition, e.g., it’s become hard to estimating the interaction of multiple queries in a
distributed database cluster. For instance, there may be a positive interaction when two
queries share a table scan. In this lucky case, both of the two queries can enjoy an
appropriate speedup for the pre-fetched data. In contrary, if both two queries are incur
high bandwidth network transmission, they will be slow down by each other as the
heavy network traffic.

While build distributed database system on the cloud to provide data analytics as a
service, e.g., Aliyun’s DRDS (Distribute Relational Database Service) [27], it is sig-
nificant for service providers to offer effective resource allocation and user experience.
Thus the service provider should confer with users in term of service level agreements
(SLAs). Generally, SLAs often expressed in Quality-of-Service (QoS) as query latency.
SLAs/QoS violation often means lost revenue and reputation. Therefore, in the QoS
prediction, workload latency often choose as the critical indicator rather than
throughput or resource utilization.

In this work, we proposed a composite, multivariate regression models based on
logical I/O latency and network latency to characterize the interaction of queries in
distributed database system under concurrent environment. For the purpose of efficient
estimate the performance in heavy concurrent workloads, we revise this model by
introduce sampling technique. Our major contributions can be summarized as follows:

• We develop multivariate regression models to estimate the interaction of query
mixes and predict the query latency when query is executed in distributed database
system. During the model design and performance estimation, both logical I/O
latency and network latency are considered.

• We conduct experiments in a PostgreSQL database cluster with TPC-H workload
and comprehensively analyzed the results, we demonstrates that the effectiveness of
our predictive models minimized the relative error within 14 % on average.

The rest of this paper is organized as follows. Related work is presented in Sect. 2.
Section 3 introduces some critical performance indicators of distributed database
system with preliminary analysis. Our performance prediction model is detailed in
Sect. 4. The experimental evaluation of our models are described in Sect. 5. Finally we
conclude and discuss our future work in Sect. 6.

2 Related Work

There has been many significant studies for predict performance for database work-
loads. In this section, we briefly review the major difference between our work and
prior representative researches.

Literature [1] presented performance prediction models for database cloud to pre-
dict performance and resource utilization, which introduced multiple challenges about
deploy databases applications in the cloud. They propose primary prediction models for
the essential class of OLTP/Web workloads, while our models target OLAP workloads
and are more suitable for database cloud. A similar study for portable database
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workload performance prediction in the cloud can be found in [2], which focus on
lightweight workloads. As contrast to our work, we concentrate exclusively on
medium-weight analytical workloads.

In literature [3–6], the researchers predict the performance metrics for both short
and long-running queries by machine learning method, the involved metrics include
elapsed time, disk I/O, message count, message bytes etc. Similarly, our approach
primarily employ I/O block reads and data transfer volume to predict query latency,
which is our critical QoS metric. There are two major difference between literature
[3–6] and our work. Firstly, they do not address concurrent workloads issues, which is
a typical application scenarios of database applications. Secondly, prior research focus
on make use of the performance predication to obtain precise indicator of query pro-
gress, while our work just ignored this issue and only focus on concurrent workload
modeling.

In literature [7, 8], the researchers built models of query interactions to predict the
end-to-end latency of analytical queries. Query performance prediction for concurrent
analytical workloads was also explored in [9–14]. They primarily work on propose
regression models based on sampled query mixes to predict performance of single node
database system. In the contrary, our focus in predicting query interactions in dis-
tributed database system with take network latency into account.

3 Performance Prediction

Our target is to predict the concurrent query latency in distributed database system
which is mainly affected by resource contention as the share in fundamental resources
such as RAM, CPU, disk I/O, network bandwidth, and so on [15–17]. In this section,
we discuss the effective indicators which can be used for the query latency prediction
under concurrent workloads of distributed database scenarios. And a simple motivated
evaluation is also presented.

3.1 Indicators in Distributed Database System

We emphasize predicting query latency of concurrent queries for distributed analytical
workloads. These workloads mainly involve network latency and local processing in a
distributed database system.

Local processing is to retrieve and process the data needed for a query at the node
from which it is accessed. The local processing time is an average time when a request
for retrieving data at the node is submitted and when the required block is returned. For
logical I/O requests, the local processing needs more than thousands of interactions of
disk retrieve, a series of sequential reads and a few writes, or many cache and buffer
pool hits. Generally, most of the local processing time is used to perform I/O operations
and read operations are more than writes. In this paper, we use the average I/O block
reads as one of our query latency indicators in term of local processing according to
informed research [18–21].

As the data in distributed database system is processed in a scatter/gather pattern,
network communication is required to run a query. Data is partitioned and stored at
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multiple, distributed nodes in a cluster. Transmission could be partial results from local
node, or final results need to be sent back to the original node that issues the query
[22, 23]. The impact of query latency in distributed database system is data transfer
volume. So we use this metric as the indicator on the dimension of network response.

3.2 A Simple Motivated Evaluation

In this paper, we target medium-weight analytical workloads. We choose 10
medium-weight queries from TPC-H to form our queries mixes. The queries mixes in
our workloads focus on concurrent performance in distributed database systems. We
study the variance of the 10 queries in observed latencies (in seconds) on a four-nodes
PostgreSQL cluster, the dataset is generated from TPC-H benchmark and the scale
factor of dataset is set as 10 for different multiprogramming levels (MPLs). The results
of this simple evaluation is list in Table 1, and we can see that not all the query latency
increase linearly with the multiprogramming levels.

4 Modeling Interactions

As we discuss in the previous section, when we predict performance with different
query mixes as well as various concurrency levels, we use block I/O and data transfer
volume as the indicators of local processing and network response. We propose two
multivariate regression models to study the interaction when the query mix is executed
under concurrency in this section. Then we present a linear regression model to predict
the query execution latency by block I/O and network latency. After that, we train our
prediction models by sampling.

4.1 Prediction Query Interactions

In order to predict the impact of a query under concurrent workloads, we first examine
how their block I/O and data transfer volume are affected when they are run in pairs and

Table 1. Variance of 10 TPC-H queries

Query MPL1 MPL2 MPL3 MPL4

Q3 0.07 0.13 0.12 0.10
Q4 5.23 5.48 5.32 5.61
Q5 8.92 9.62 9.70 10.46
Q6 2.63 3.14 2.76 2.80
Q7 27.80 29.48 31.03 32.06
Q8 26.95 28.24 31.85 28.12
Q10 3.13 3.68 3.61 3.71
Q14 3.50 4.10 3.84 4.11
Q18 83.14 93.47 87.93 86.03
Q19 4.83 5.90 5.92 6.19
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generally increase the multiprogramming level. Specifically, we build our multivariate
regression model by analyzing how they affect each other in pairs. To make our model
intelligible, we classify queries into primary and complement queries. The primary
query is the query that we want to predict its performance while the concurrent query is
the complement one. To better understand our model, we introduce following four
variables that used in our models, and their values would be calculated from training
data.

• Isolated: We present the variable as indicator values when the primary query is run
in isolation which is taken as a baseline to estimate the concurrent values. For query
i, we denote the block I/O as Bi and data transfer volume as Ni.

• Complement: Likewise, the value of this variable is the accumulation of other
concurrent queries’ isolated Bi or Ni for query i.

• Direct: We adopt this variable to represent the impact of complement queries on the
primary query, it is an aggregation of the change of indicator values. For example,
as for data transfer volume of query i with concurrent query j, we take Ni=j as the
direct interaction and the change is DNi=j ¼ Ni=j � Ni.

• Indirect: We present the indirect variable to reflect the interaction between the
complement queries, its value is the accumulation of the direct variable among
concurrent queries.

Therefore, we predict average concurrent block I/O and data transfer volume for
query q with concurrent queries p1 ,…, pn as following, then we apply the ordinary least
square method to estimate the coefficients b1, b2, b3, b4 for all of the query over
training set.

B ¼ b1Bq þ b2
Xn
i¼1

Bpi þ b3
Xn
i¼1

DBq=pi þ b4
Xn
i¼1

Xn;j!¼i

j¼1

DBpi=qj ð1Þ

N ¼ b1Nq þ b2
Xn
i¼1

Npi þ b3
Xn
i¼1

DNq=pi þ b4
Xn
i¼1

Xn;j!¼i

j¼1

DNpi=qj ð2Þ

4.2 Query Latency

In this work, we build a binary linear regression model to predict the execution latency
of query by utilize both I/O block reads and data transfer volume. In general, query
latency of distributed database system is mainly consisted of network latency and local
processing overheads. While local processing overheads mainly includes overhead of
CPU time and the average time of waiting for a logical I/O. Therefore, the latency of a
query q L can be given by the equation:

L ¼ Cq þ b1 � Bq þ b2 � Nq ð3Þ
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In above equation, Cq is the CPU overhead of query q, Bq is the average block I/O
while Nq is the average data transfer volume of multiple nodes in the distributed
database system. The coefficient b1, b2 are obtained by ordinary least squares method
based on our experimental generated samples.

Let’s give a specific example to illustrate our model. If we want to predict the query
latency of query a with complement query b and c in a distributed database system, we
first need the following values:

• The average of isolated block I/O and data transfer volume of a, b, c: Ba, Bb, Bc and
Na, Nb, Nc.

• The direct variable of a with concurrent queries b and c: DBa=b, DNa=b, DBa=c,
DNa=c.

• The indirect variable: DBc=b, DNc=b, DBb=c, DNb=c.

We can respectively obtain the indicator values using the following equations.

Ba ¼ b1Ba þ b2ðBb þBcÞþ b3ðDBa=b þDBa=cÞþ b4ðDBb=c þDBc=bÞ ð4Þ

Na ¼ b1Na þ b2ðNb þNcÞþ b3ðDNa=b þDNa=cÞþ b4ðDNb=c þDNc=bÞ ð5Þ

Then we predict the query latency of query a using Eq. 3:

La ¼ Ca þ b1 � Ba þ b2 � Na ð6Þ

In order to illustrate how to get the specific models for each query, especially for
how to obtain the coefficients of our models, we present following detailed example. If
we desire to get the model to predict network latency for query a when MPL is 3, we
need to conduct experiments to obtain following three sample sets:

Ns ¼

13 21 �10 4
13 22 �12 1
13 23 �6 �10
13 22 �13 �3
13 28 2 �10
13 23 �18 �4
13 24 �9 �6
13 28 �5 �3

2
66666666664

3
77777777775

Np ¼

13
13
14
6
14
13
9
10

2
66666666664

3
77777777775

b ¼
4:3182
�1:5097
1:0895
0:1702

2
664

3
775

Ns is the sample matrixes and Np is the samples of observed network latency. Then
we can obtain the coefficients b ¼ regress Np;Ns

� �
. To be noted that, the regress

function realizes multiple linear regression using ordinary least squares. Consequently,
the model is as following:

Na ¼ 4:3128N3 � 1:5097 Nb þNcð Þþ 1:0895 DNa
b
þDNa

c

� �
0:1702 DNb

c
þDNc

b

� �
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When we predict network latency for query a with concurrent query b and c in
different MPL contexts, the method used to obtain the coefficients of block I/O and
execution latency are identical.

4.3 Training Our Models Based on Sampling

In order to obtain the query latency through Eq. 3, we need to train our prediction
models. Our experimental context is identical to Sect. 3.2. Firstly, we figure out the
features of the 10 representative TPC-H analytical queries when they are run in iso-
lation, which is also the baseline to analyze the variance with various query mixes
under different MPLs. Then we run queries in pairs, it means 55 pairwise queries are
repeatedly executed in our experiments so as to get the specific characteristics of how
they impact each other.

Towards the queries run on multiple nodes of cluster, we use Latin Hypercube
Sampling (LHS) to generate the query mix from our workload. LHS is a stratified
sampling method which can easily produce any number of samples [24]. In Fig. 1, we
give an example of LHS at MPL 2. In this example, we can see that LHS generates five
unique pairwise queries for five queries. In our experiments, we record block I/O and
data transfer volume for each query mix to constitute the samples, which are used for
estimating the coefficients of our models. For each query, we generate many query
mixes to form the samples. For example, Q3 is the mix query (Q3, Q4, Q5), while Q3
is the primary query, and Q4, Q5 are complement queries.

In our work, we generate query mixes x to form the samples by employ
X = 1+10*LHS(10, 3), while LHS is a Latin Hypercube Sampling implementation, and
the parameter 3 represents the MPL is set as 3, the parameter 10 denotes there are 10
queries will be executed concurrently in different MPL scenarios. If we repeat above
query mixes generation in three times, then we can obtain a query mixes matrix x.

We rounds each element of x to the nearest integer less than or equal to that
element, then we get matrix y, which denote the query id of query mixes. Based on the
mapping showed in Table 2, we can obtain the final query mixes as matrix z. During
our model training, query mixes as (Q14, Q8, Q8) will be discarded for the existed
same concurrent running queries. In the matrix z, the query mixes such as (Q3, Q19,

Query 1 2 3 4 5

1 X

2 X

3 X

4 X

5 X

Fig. 1. Example of 2-DLHS
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Q4) indicate Q3 is the primary query while Q19 and Q4 are complement queries, we
consider the mix query belongs to Q3. Similarly, the query mix (Q3, Q19, Q4) can also
be consider as one of query mixes of Q19 or Q4 when it became the primary query.
Therefore, we can get enough samples to train our models using the method mentioned
in the previous section.

5 Evaluation

In this section, we would like to evaluate the accuracy and effectiveness of our mod-
ules. We start with briefly reviewing our experimental setups. Then we present the
observed result of query execution latency, network latency and block I/O, meanwhile,
mean relative errors of each queries in different MPL scenarios are presented and
discussed with the corresponding predicted values.

5.1 Experimental Setup

To estimate the accuracy of our models, we run the benchmark TPC-H 2.14 over a
TPC-H data set generated by QGEN at scale 10 [25]. As we target OLAP workloads,
we choose the queries with id 3, 4, 5, 6, 7, 8, 10, 14, 18, 19, namely 10 of 22 queries in
the benchmark to make up our query mixes. Those queries are relative complex queries
and often need long time to return the result, thus it can give us more time to collect
block I/O and data transfer volume when they are running. Our distributed database
system is a four nodes PostgreSQL cluster. We implement the distributed system by
Postgres-XL, which is an open source PostgreSQL database cluster with horizontal

Table 2. Mapping of the query id which used in matrix

Query ID in query
mixes

1 2 3 4 5 6 7 8 9 10

TPC-H Query ID 3 4 5 6 7 8 10 14 18 19
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scalability and enough flexibility to handle various database workloads [26]. The
cluster is deployed on a machine with four-core Intel(R) Xeon(R) CPU E5-2620
2.0 GHz processor and 8 GB of RAM. Each node run on Centos 6.4 with kernel of
Linux 2.6.32.

During the experiments, we repeatedly issues the chosen 10 queries against the
PostgreSQL cluster to obtain the performance metrics. Specifically, we use the Linux
utility SystemTap to write scripts to dynamically track and collect performance metrics
such as block I/O and data transfer volume during query execution. Furthermore, we
moderately adjust the value of PostgreSQL’s parameter shared_buffer to ensure we can
obtain more accurate performance metrics. Part of the collected performance data will
be utilized as training sets to train our linear regression model, and the rest of them will
be used as test data to predict block I/O and network latency when the queries is
running concurrently.

5.2 Results Discussion

The fitted curve of predicted and observed query execution latency (in seconds) is
depicted in Fig. 2. We use determination coefficient (R2), one of the measures that
estimate the regression model, to evaluate whether predicted and observed values fit
well. The range of R2 is from 0 to 1. When R2 is closer to 1, it indicates that the
predicted value is closer to the corresponding observed value, and it means our model
is better. Figures 2, 3 and 4 show the fitting situation of predicted and observed query
execution latency, network latency, I/O block reads at context of MPL 3 and MPL 4.
The value of R2 are 0.94, 0.58 and 0.84. We examine our ability to predict query
latency by composing network latency with block I/O. In our experiment, we pick up
the network transmission packets between each node as the source data to evaluate data

Fig. 2. Query latency at MPL 3 and MPL 4
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transfer volume during query execution. In Fig. 4, we can found there are exist some
underestimated and overestimated network latency prediction, based on our perfor-
mance profiling and analysis, it is mainly raised for the reason that there are some
network stability issues occurred and it then lead to the packets loss during perfor-
mance metrics collecting.

As stated earlier, we apply Ordinary Least Squares (OLS) approach to estimate the
coefficients of our models. According to our experience of using OLS, we need at least
30 samples to obtain acceptable results. In most cases of our experiments, we use 120
samples. Similarly, when we predict network latency and block I/O, there are need at
least 30 samples by experiences. Actually, we use 140 samples in most cases of our
evaluation. We also tried to use more samples in model training and prediction,
however, the overall trend of results are similar, and it just makes the points denser.

Furthermore, in order to make our experimental scenarios are close to real appli-
cation environments, we don’t clear the cache during our experiments, which is one of

Fig. 3. Block I/O (×1000) at MPL 3 and MPL 4

Fig. 4. Network latency at MPL 3 and MPL 4
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the reasons why our estimates become slightly less accurate as we increase the value of
MPL. We can find this issue when we compare the mean relative error of block I/O
predication in Figs. 5 and 6.

Figures 5 and 6 depicted the mean relative error at the context of MPL 3 and MPL
4, which is calculated as |(observed-predicted)/observed|. We found that the mean
relative error of Q3 at MPL 3 and MPL 4 are relatively high. It’s mainly because the
execution time needed for Q3 is too short to accurately capture enough performance
metrics data to generate the samples needed by model training, thus the quality of

Fig. 5. Mean relative error at MPL 3.

Fig. 6. Mean relative error at MPL 4.

Table 3. R2 and mean relative error for execution latency, block I/O and network latency

Indicators R2 Relative error

Query execution latency 0.94 14 %
Block I/O 0.58 30 %
Network Latency 0.84 37 %
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samples are reduced. The total mean relative error of query latency, network latency
and block I/O are showed in Table 3, they are 14 %, 30 % and 37 %, respectively. Our
experimental results showed that our approach is promising to accurately predict the
performance of concurrent workloads in distributed database system.

6 Conclusions

In this work, we propose multivariate regression models to predict concurrent query
latency for analytical workloads in distributed database system. As far as we know it is
the first work focus on predict performance for analytical workloads of distributed
database. We first figure out the indicators in distributed database system and establish
a binary linear regression model which involve block I/O and network latency. Then
we propose two multivariate regression models to extrapolate the block I/O and net-
work latency. Our experimental results showed that our predictions approach can
minimize the relative error within 14 % on average.

Acknowledgments. This work was supported by the China Ministry of Science and Technol-
ogy under the State Key Development Program for Basic Research (2012CB821800), Fund of
National Natural Science Foundation of China (No. 61462012, 61562010, U1531246), Scientific
Research Fund for talents recruiting of Guizhou University (No. 700246003301), Science and
Technology Fund of Guizhou Province (No. J [2013]2099), High Tech. Project Fund of Guizhou
Development and Reform Commission (No. [2013]2069), Industrial Research Projects of the
Science and Technology Plan of Guizhou Province (No. GY[2014]3018) and The Major Applied
Basic Research Program of Guizhou Province (NO. JZ20142001, NO. JZ20142001-05).

References

1. Barzan, M., Carlo, C., Samuel, M.: Resource and performance prediction for building a next
generation database cloud. In: Proceedings of the Conference on Innovative Data Systems
Research (CIDR), Asilomar, California, USA (2013)

2. Jennie, D., Yun, C., Hakan, H., Shenghou, Z., Ugur, C.: Packing light: portable workload
performance prediction for the cloud. IEEE Computer Society (2013)

3. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson, D.:
Predicting multiple metrics for queries: better decisions enabled by machine learning. In:
Proceedings of the 29th International Conference on Data Engineering, ICDE 2009,
pp. 592–603, Shanghai, China, 29 March – 2 April 2009

4. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of execution for sql
queries. In: Proceedings of ACM SIGMOD/PODS 2004 Conference, pp. 803–814, Maison
de la Chimie, Paris, France, 13–18 June 2004

5. Luo, G., Naughton, J.F., Yu, P.S.: Multi-query SQL progress indicators. In: Ioannidis, Y.,
Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T.,
Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 921–941. Springer, Heidelberg (2006)

6. Luo, G., Nanughton, J.F., Ellmann, C.J., Watzke, M.W.: Toward a progress indicator for
database queries. In: Proceedings of ACM SIGMOD/PODS 2004 Conference, pp. 791–802,
Maison de la Chimie, Paris, France, 13–18 June 2004

Performance Prediction for Concurrent Workloads 637



7. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Modeling and exploiting query
interactions in database systems. In: Proceedings of ACM 17th Conference on Information
and Knowledge Management, CIKM 2008, Napa Valley, California, USA, 26–30 October
2008

8. Ahmad, M., Aboulnaga, A., Babu, S., Munagala, K.: Interaction aware scheduling of
report-generation workloads. VLDB J. 20(4), 589–615 (2011)

9. Ahmad, M., Aboulnaga, A., Babu, S.: Query interactions in database workloads. In:
Proceedings of 2nd International Workshop on Testing Database Systems, DBTest 2009,
Providence, Rhode Island, USA, 29 June 2009

10. Akdere, M., Cetintemel, U., Riondato, E., Upfal, E., Zdonik, S.: Learning-based query
performance modeling and prediction. In: Proceedings of the 2012 IEEE 28th International
Conference on Data Engineering, pp. 390–401, Washington, DC, USA, 1–5 April 2012

11. Elnaffar, S., Martin, P., Horman, R.: Automatically classifying database workloads. In:
Proceedings of 11th International Conference on Information and Knowledge Management,
CIKM 2002, pp. 622–624. ACM, New York (2002)

12. Ahmad, M., Bowman, I.T.: Predicting system performance for multitenant database
workloads. In: Proceedings of 4th International Workshop on Testing Database Systems,
DBTest 2011, Athens, Greece, Article no. 6, 13 June 2011

13. Mozafari, B., Curino, C., Madden, S.: Performance and resource modeling in highly-
concurrent OLTP workloads. In: Proceedings of the 2013 International Conference on
Management of Data, SIGMOD 2013, pp. 301–312, New York, USA, 22–27 June 2013

14. Jennie, D., Uger, C., Olga, P., Eli, U.: Performance prediction for concurrent database
workloads. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2011, pp. 337–348, Athens, Greece, 12–16 June 2011

15. Mehta, A., Gupta, C., Dayal, U.: BI batch manager: a system for managing batch workloads
on enterprise data-warehouses. In: Proceedings of the 11th International Conference on
Extending Database Technology: Advances in Database Technology, EDBT 2008,
pp. 640–651, New York, NY, USA (2008)

16. Lo, J.L., Barroso, L.A.: Eggers, S.J., Gharachorloo, K., Levy, H.M., Parekh, S.S.: An
analysis of database workload performance on simultaneous multithreaded processors. In:
Proceedings of the 25th Annual International Symposium on Computer Architecture,
vol. 26(3), pp. 39–50. ACM, New York, June 1998

17. Chaudhuri, S., Kaushik, R., Ramamurthy, R.: When can we trust progress estimators for
SQL queries? In: Proceedings of the 2005 ACM SIGMOD International Conference on
Management of Data, SIGMOD 2005, pp. 575–586, Baltimore, Maryland, USA, 14–16 June
2005

18. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacıg, H., Naughton, J.F.: Predicting query
execution time: are optimizer cost models really unusable? In: Proceedings of the 2013 IEEE
International Conference on Data Engineering, ICDE 2013, pp. 1081–1092. IEEE Computer
Society, Washington, DC, USA, 8–11 April 2013

19. Curino, C., Jones, E.P.C., Popa, R.A., Malviya, N., Wu, E., Madden, S., Balakrishnan, H.,
Zeldovich, N.: Relational cloud: a database service for the cloud. In: Proceedings of 5th
Biennial Conference on Innovative Data Systems Research, CIDR 2011, pp. 235–240,
Asilomar, CA, January 2011

20. Hacıg, H., Tatemura, J., Hsiung, W.P., Moon, H.J., Po, O., Sawires, A., Chi, Y., Jafarpour,
H.: CloudDB: One size fits all revived. In: Proceedings of 6th World Congress on Services,
SERVICES 2010, pp. 148–149, Miami, Florida, USA, 5–10 July 2010

638 H. Li et al.



21. Xiong, P., Chi, Y., Zhu, S., Moon, H.J.; Pu, C., Hacig, H.: Intelligent management of
virtualized resources for database systems in cloud environment. In: Proceedings of 2011
IEEE 27th International Conference on Data Engineering, ICDE 2011, pp. 87–98,
Hannover, Germany, 11–16 April 2011

22. Marin, G., Mellor-Crummey, J.: Cross-architecture performance predictions for scientific
applications using parameterized models. In: Proceedings of the International Conference on
Measurement and Modeling of Computer Systems, SIGMETRICS 2004, pp. 2–13. ACM,
New York, 12–16 June 2004

23. Jesper, M.: On the impact of network latency on distributed systems design. Inf. Technol.
Manage. 1, 183–194 (2000)

24. Latin hypercube sampling. http://en.wikipedia.org/wiki/Latin_hypercube_sampling (Acces-
sed: 25 November 2014)

25. Postgres-XL. http://www.postgres-xl.org/ (Accessed: 25 November 2014)
26. TPC-H. http://www.tpc.org/tpch/ (Accessed: 25 November 2014)
27. Aliyun’s DRDS (Distribute Relational Database Service). http://www.aliyun.com/product/

drds/ (Accessed: 25 November 2014)

Performance Prediction for Concurrent Workloads 639

http://en.wikipedia.org/wiki/Latin_hypercube_sampling
http://www.postgres-xl.org/
http://www.tpc.org/tpch/
http://www.aliyun.com/product/drds/
http://www.aliyun.com/product/drds/


An Energy-Aware File Relocation Strategy
Based on File-Access Frequency

and Correlations

Cheng Hu1 and Yuhui Deng1,2(B)

1 Department of Computer Science, Jinan University, Guangzhou 510632, China
hucheng public@163.com, tyhdeng@jnu.edu.cn

2 State Key Laboratory of Computer Architecture, Institute of Computing,
Chinese Academy of Sciences, Beijing 100190, China

Abstract. Energy consumption has become a big challenge of the tra-
ditional storage systems due to the explosive growth of data. A lot of
research efforts have been invested in reducing the energy consumption
of those systems. Traditionally, the frequently accessed data are concen-
trated into a small part of hot storage nodes, and other cold storage nodes
are switched to a low-power state, thus saving energy. However, due to
the energy penalty and time penalty, it takes extra energy and generates
additional delay to switch a cold storage node from a low-power state
to an active state. In contrast to the existing work, this paper proposes
a Skew File Relocate (SFR) strategy which aggregates the correlated
cold files to the same cold storage node in addition to concentrating the
frequently accessed files to the hot nodes. Because the correlated files
are normally accessed together, SFR can significantly reduce the num-
ber of power state transitions and lengthen the idle periods that the cold
storage nodes are experienced, thus saving more energy and improving
the system response time. Furthermore, other three relocation strategies
are designed to explore the performance behavior of SFR. Experimental
results demonstrate that SFR can significantly reduce the energy con-
sumption while maintaining the system performance at an acceptable
level.

Keywords: Energy aware · File relocation strategy · File-access fre-
quency · File-access correlations · Clustered storage system

1 Introduction

Commercially component-based clustered storage systems with the advantage
of high scalability become the architecture of next generation storage systems.
However, with the explosive growth of data, this system will become more and
more complex, and then it will consume enormous energy and require a mass
of storage resources. Deng [1] indicated that energy efficiency has become one
of the most important challenges in designing disk drive storage systems. EPA
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(U.S. Environmental Protection Agency) [2] estimated that about 61 billion
kilowatt-hours (kWh) are consumed by data centers in 2006 (1.5 percent of total
U.S. electricity consumption) with a total electricity cost of about $4.5 billion,
and the energy efficiency trends reveal that the power consumption keeps a
growth rate of 18 % per year.

To reduce the energy consumed by storage system, many approaches dynam-
ically transfer the power state of storage nodes [3–5]. 80/20 rule [6] indicates that
roughly 80 % of the effects come from 20 % of the causes. Cherkasova and Ciardo
[7] found that in web workloads, 90 % of the requests go to 10 % of files. Because
the storage nodes which store cold files are occasionally accessed, these nodes
can be transferred to a low-power state. Due to the extended idle length of those
storage nodes, energy conservation can be achieved.

However, those approaches did not consider the impact of file-access correla-
tions on system performance and energy consumption. In most cases, correlated
files are accessed together. And if correlated files are put into the same node
in the standby state, the number of wake-ups will be reduced, which leads to a
further reduction of energy consumption. Besides, based on 80/20 rule we can
maintain a minimal number of active storage nodes. As a result, the energy
consumption of a specific clustered storage system can be significantly reduced.

Many empirical studies [8,9] have shown that it’s viable to identify the file-
access frequency and correlations. In this paper, we design a Skew File Reloca-
tion (SFR) strategy which is energy-aware. And we present a novel method to
mine the file-access frequency and correlations, which is crucial to realize SFR
strategy. In order to explore the system behavior of the proposed strategy, we
design other three strategies for comparison. Furthermore, we simulate a clus-
tered storage system to evaluate these file relocation strategies. Experimental
results demonstrate that our strategy can significantly reduce the energy con-
sumption, while maintaining the system performance at an acceptable level. Our
main contributions are as follows:

1. We propose an energy-aware file relocation strategy—SFR which leverages
both file-access frequency and correlations.

2. Frequency and Correlations Mining (FCM) method is presented to mine file-
access frequency and correlations.

3. To evaluate SFR, we design other three strategies for comparison, and per-
form a simulation to measure the energy consumption and response time of
a specific clustered storage system.

The rest of this thesis is organized as follows. Section 2 discusses related
work. Next, Sect. 3 introduces a clustered storage system, SFR, and the FCM
method. Then, in Sect. 4 we construct a simulator, in which other three file relo-
cation strategies designed for comparison are evaluated along with SFR. Finally,
a summary is given in Sect. 5.
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2 Related Work

2.1 Energy Saving of Clustered Storage Systems

Many efforts have been made to reduce the energy consumption of clustered
storage systems. To improve the energy efficiency of server clusters, Chase et al.
[4] designed an architecture for resource management in a hosting center. They
put unused clusters into a sleep state. Pinheiro et al. [3] developed a system
that dynamically turns cluster nodes on/off to handle the load imposed on the
system. Power management techniques were implemented by Verma et al. [10]
to reduce the power consumption of high performance applications on modern
power-efficient servers with virtualization support. And Bostoen et al. [11] listed
and classified a variety of energy saving techniques.

Recent work by Krioukov et al. [12] designed a power-proportional cluster
which consists of a power-aware cluster manager and a set of heterogeneous
machines. Thereska et al. [13] presented Sierra, a power-proportional distrib-
uted storage subsystem for data centers. This subsystem powers down servers
during troughs. About 23 % of power was saved in their experiment. Zhang
et al. [5] presented a power-aware data replication strategy by leveraging data
access activities. Deng et al. [14] designed a power-aware web cluster sched-
uler which divides cluster nodes into an active group and a low-power group.
Many researches also reduced energy consumption through task scheduling
[15–17]. Power-saving storage systems based on dynamic voltage scaling (DVS)
of processors have been also proposed [17,19]. The intuition behind the power
savings is that the energy consumption of CPU is proportional to the square of
the voltage [18].

Besides, reducing the energy consumption of hard disk drives is also a widely
used way for reducing the energy consumption of a storage system. RAID [20] is
a well-known technology to resolve this issue. EERAID [21], PARAID [22] and
GRAID [23] are all based on RAID. There are also several approaches for reduc-
ing energy consumption of hard disk drives grounded on the skewed distribution
of file-access frequency [24]. Iritani and Yokota [25] further propose Placement
of files for Latency and Energy Consumption Optimization (PLECO), a novel
method achieves the goal of energy conservation by placing correlated files into
the same hard disk drive.

Different from ignoring file-access correlations or aiming to reduce the energy
consumption of CPUs or hard disk drives, in this paper, we propose a novel
method to mine the correlations among the accessed files. With this method we
design an energy-aware file relocation strategy which can significantly reduces
the energy consumption of clustered storage systems.

2.2 Mining File-Access Frequency and Correlations

In order to optimize I/O performance and mitigate the problem that the speed of
cache, memory and hard disk is dramatically unmatched, many early researchers
put forward several approaches to derive relationships between files rooted in
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access sequences. Tait et al. [26] investigated a client-side cache management
technique for detecting file access patterns, and then they exploit them to
prefetch files from servers. Lei and Duchamp [27] extended this approach and
introduced the last successor predictor. Kroeger and Long [28] used traces of
file system activity to compare four different models: last-successor prediction
model, Finite Multi-Order Context modeling (FMOC), graph based modeling
and an improved FMOC model called Partitioned Context Model (PCM). In
order to prefetch more file (not only would be accessed next time but also some
times later) and further reduce I/O latencies, Kroeger and Long [29] modified
PCM and thus create a technique called Extended Partition Context Modeling.
All these works told us, accurate prediction of future access pattern can be made
by studying the past access pattern. Ishii et al. [30] inserted a memory access
map into a prefetcher. This map is a data structure like bitmap for holding past
memory accesses whose access patterns can be detected in turn. He et al. [31]
advocated to accumulate I/O information, and then by exploring these infor-
mation they reveal data usage patterns. Jiang et al. [32] presented a disk-level
prefetching scheme, which leverages data layout and access history on disk drives
to find out access pattern.

To derive the file-access correlations, there are also several approaches.
Among them, FARMER [8] is an approach to mine file-access correlations lever-
aging file access sequence and semantic distance among files. And SUGOI (Search
by Utilizing Groups Of Interrelated files in a task), a file search system, was intro-
duced by Wu et al. [9]. SUGOI contains a task mining component, which extracts
tasks and then discovers the interrelation between them from file-access logs.

In contrast to the existing work, this paper proposes a novel method for
mining file-access frequency and correlations. The method is then employed to
design an energy-aware file relocation strategy. In order to explore the system
behavior of the proposed strategy, we design other three strategies for compari-
son. Furthermore, we simulate a clustered storage system to evaluate these file
relocation strategies.

3 System Design

3.1 System Overview

System Architecture. A clustered storage system is designed in this paper. In
terms of 80/20 rule, hot files are a small part of file set. So, in our design, storage
nodes are divided into hot ones and cold ones. Hot files are relocated into the
hot nodes. And cold files are relocated into the cold nodes with other cold files
correlated to them. We only consider the file-access correlations of cold files and
place correlated cold files together. That’s because the hot nodes never go into
a standby state, whether correlated hot files are in the same storage node has
no impact on system performance and energy consumption. The hot nodes are
kept in the active state (or the idle state when there’s no request) all the time,
owing to the accesses to hot files would be more than 80 % of the total requests.
However, the cold nodes are in the standby state unless a request is received.
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Fig. 1. System architecture.
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Fig. 2. Power state migration of a storage node.

And after all the requests are finished and there are no subsequent requests for
a predetermined period of time, they are transferred to the standby state again.

As depicted in Fig. 1, the system contains one metadata server and several
storage nodes. Hot nodes and cold nodes are divided from those storage nodes.
The metadata server is the manager of the system. For the purpose of adapting
to those relocation strategies, every storage node contains a file relocation buffer
memory. Only when the file relocation buffer is full, can the files be relocated
to the hard disk drive of this storage node. The intuition behind is that SFR
relocates related cold files to the same storage node, so the files in a relocate
buffer memory are related, thus they can be flushed to the hard disk drive
and stored sequentially, and when these files are accessed in the future, this
management will dramatically reduce the latency. We detail the process of file
relocation in Sect. 3.2.

Power State Transition of Nodes. In general, the storage nodes of a clustered
storage system have three power states: active state, idle state and standby state.
The power state migration of a storage node is presented in Fig. 2. When the data
in a storage node need to be accessed, the storage node will be switched to the
active state to serve the read/write requests. After the requests are completed
and there are no subsequent requests waiting, the storage node is then transferred
to the idle state. The power of the idle state is slightly lower than the active
state. The node will be transferred back to the active state when a new request
is received.
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To conserve energy, the node can be further suspended to the standby state,
in which the CPU, RAM and hard disk drives of the node are all switched to the
standby state. The power of a storage node in the standby state is much lower
than that in the active state or the idle state. To perform requests after entering
the standby state, the storage node must be woken up and then resumed to the
active state. Suspending a storage node to the standby state only takes a little
time and energy. However, resuming a storage node from the standby state to
the active state takes extra energy and time due to the energy penalty and time
penalty.

3.2 Mining File-Access Frequency and Correlations

FCM method is proposed to mine the file-access frequency and correlations. The
file-access frequency is easy to identify. FCM sorts all the files by the number
of accesses, then in terms of 80/20 rule, the top 20 % files are hot files and the
remaining files are cold ones. However, mining the file-access correlations is not
a simple work. Wu et al. [9] presented a method for the frequent itemset task
mining in order to search files in file systems. But here we improve it to mine
the file-access correlations.

The basic idea of the frequent itemset task mining is that files accessed within
the same period of time are related to each other. FCM applies this ideal and
improves it to mine the file-access correlations. First, FCM divides the file-access
logs into several transactions. A transaction is a series of file-accesses in a certain
duration. We use 15 min as a duration (transaction duration). Figure 3 illustrates
a instance of three successive transactions. As shown, in the first transaction
(8:00–8:15), file a, b and c are accessed. To mine file-access correlations from
transactions, a data-mining algorithm—Apriori [33] is adopted in this paper.
Apriori is a best-known basic algorithm for mining frequent item sets in a set of
transactions. Of course, it is feasible to use other data-mining algorithms.

8:00-8:15 8:15-8:30

a

b

c

d

b

a

a

c

e

8:30-8:45... ...

... ... ...

Transaction 
duration

Fig. 3. Files accessed in transactions.
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The Apriori algorithm uses two measurements (support and confidence) to
discover the rules. In this paper, we also use these two measurements, but to
discover the correlation degree of two files. We take file FA and FB as an illus-
tration. Support is the probability that the two files appear in a transaction.
Confidence is the probability that the file FB appears in a transaction when the
file FA appears.

We calculate support and confidence by adding a weighted factor α, for the
sake that FCM could adapt to the latest file-access cases. α is a weighted factor
related to the order of a transaction. E.g., as in Fig. 3, if we take the time
duration 8:00–8:15 as the first transaction and there are 3 transactions in total,
the α of the transaction (8:00–8:15) is 1 + 1/3. We calculate the α of the ith
transaction by

αi = 1 + i/n. (1)

In where, i represents the order of the transaction and n represents the total
number of transactions. Support of two files is calculated by

Support = (αi + αj + ... + αk)/(α1 + α2 + ... + αn). (2)

Confidence (short for “conf” due to the length) of two files is calculated by

Conf = (αi + αj + ... + αk)/(αi + αj + ... + αk + ... + αl). (3)

In (2), the subscripts i, j...k represent the order of transactions in which the
two files appear, and the divisor represents the sum of α of all transactions.
In (3), the subscripts i, j...k represent the order of transactions in which the
two files appear, and the divisor represents the sum of α of all transactions in
which the first file appears. In this paper, the file-access correlations of two file
is represented by the form < abc → xyz >.

The maximum value of support is 1. This happens when the two files appear
in every transaction. And the maximum value of confidence is 1 as well. This
happens when the two files appear together all the time. The minimum value of
support and confidence is 0. To filter file-access correlations, we set thresholds
for these two measurements. File-access correlations of two files whose support
or confidence is less than the threshold value will be considered to be 0. In other
words, if file-access correlations of two files are very weak, we think that is just
a coincidence, and there is no correlations between them.

When SFR relocates a cold file, for each cold node, by leveraging FCM, SFR
first get the confidences of the files in the relocation buffer and the file needs
to be relocated. Then, it calculates the sum of these confidences. Finally, the
cold node which has the maximum sum is selected as the best one, because this
node contains the most related files. We give an example in Fig. 4, the data in
the table is figured out based on Fig. 3. As shown, the best storage node for
relocation is the node B.
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File relocation buffer memory of Node B

File relocation buffer memory of Node A

Fig. 4. File relocation of SFR.

4 Simulation Setup

We take a simulation experiment to evaluate all those strategies. The experiment
models a clustered storage system which contains 16 storage nodes and one
metadata server. Among those storage nodes, two nodes are used as hot nodes,
and the other 14 nodes are cold nodes. To reduce the number of wake-ups of
cold nodes and provide a good performance, when cold nodes perform requests,
every of the them will keep in a active state (or a idle state when there is no
request to perform) for 30 s.

In fact, data-mining process is executed when the metadata server receives a
file-access request. This process can be inserted into the process of file informa-
tion retrieval. Therefore, the effect of the data-mining process on system perfor-
mance would be negligible. In the experiment, we do not include the execution
time and energy overheads of the data-mining process. In addition, relocating
files into a cold node happens when the cold node finished all the requests and
have not be suspended into the standby state. Similarly, only when a hot node
is idle, files can be relocated into the hot node. So, executing relocations almost
have no impact on system performance. We also neglect the overheads of relo-
cations in the experiment. We plan to do more accurate experiments in future
work.

In order to explore the system behavior of our proposed strategy—SFR, we
also implement other three file relocation strategies.

– High-Performance (HP) strategy is used as the baseline. HP does not divide
the storage nodes into hot ones and cold ones. So it does not suspend any
storage node to a standby state. And all the files in the storage system will
not be relocated.

– File Relocate Once (FRO) relocates files into storage nodes only once. At first,
FCM identifies the hot files and cold files after a learning stage. Then, FRO
executes the relocation only once after this learning stage. Storage nodes are
divided into hot ones and cold ones in this strategy. Hot files are relocated into
hot nodes and cold files are relocated into cold nodes. FRO does not leverage
the file-access correlations to relocate cold files.
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– Equal File Relocate (EFR) relocates files when a mismatching situation
appears, namely, hot file(s) in cold node or cold file(s) in hot node. If a hot file
is in a cold node, EFR relocates it into a hot node in a round robin method.
Similarly, if a cold file is in a hot node, EFR relocates it into a cold node in
a round robin method.

4.1 Platform Environment

We use a PC as the experimental platform, the detailed specs are showed in
Table 1. And the parameters of storage nodes used in our experiment are given
in Table 2. The transmission rate of a hard disk drive is set according to a
performance evaluation in [34]. And the RAM transmission rate is the theoretical
value of a DDR-III RAM with the frequency of 1.33 GHz. The other parameters
of the storage nodes are set based on the measured value in [5].

Real network file system traces are used in this paper. Network file system
traces trace files’ access behaviors and record those behaviors in a specific format.
In order to investigate the real situations and insure our research is universal,
we use three different traces: lair62b, home02 and deasna02. The characteristics
of these traces are given in Table 3. R/W represents the read/write request.

Table 1. Simulation platform specs

Specification

OS: Windows 7 professional x64

RAM: 4 GB DDR III

CPU: Intel i3-3240

Hard drive: 500 GB/5400rpm

Table 2. Characteristics of simulated storage node

Parameter Qualification Value

Power(Watt) Active 60

Idle 40.2

Standby 4

Energy(Joule) Suspend 4

Wake up 519

Delay(Second) Suspend 1

Wake up 10

Hard disk drive transmission rate(MB/s) Read 60

Write 50

RAM transmission rate(GB/S) Read/write 10
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Table 3. Characteristics of the Network file system traces

Trace name Size Time length R/W per hour

lair62b 11 GB 984hours 63k/h

home02 48 GB 2160hours 260k/h

deasna02 32 GB 960hours 840k/h

As shown, deasna02 has the heaviest workloads. Lake of space we do not give
the detailed information of these traces here, and it can be obtained in the web
page: http://www.eecs.harvard.edu/sos/traces.html.

4.2 Evaluation

We take the 8:00–18:00 traces of a weekday respectively from those network file
system traces. The traces of 8:00–10:00 is used as the learning sample which is
provided to FCM. So, these two hours is the learning stage of FCM. After the
learning stage, FCM keeps on updating file-access frequency and correlations
by tracing the file-access behaviors. All mentioned file relocation strategies are
adopted. Then, we test the average response time and energy consumption of the
storage nodes with remainder 8 h traces respectively. We set 0.1 as the threshold
of support and 0.4 as the threshold of confidence. We believe that the values of
thresholds will affect the result of experiment. But we do not discuss them here,
because we just want to show the availability of SFR.

Energy Consumption. Energy consumptions of the storage nodes with the
four file relocation strategies are compared in Fig. 5.

As shown, in every traces SFR consumes the least energy. This is because
that waking cold nodes up from the standby state will spend a large amount of
energy. If correlated files are scattered across different cold nodes, all these cold
nodes which have already been suspended to the standby state should be woke
up. SFR relocates correlated cold files to the same cold node, this will reduce
the number of wake-ups, thus the energy consumption could also be reduced.
HP consumes the most energy because all storage nodes work as hot nodes, and
it does not suspend any storage node to the standby state. FRO relocates files
based on file-access frequency, and it executes the relocation only once after the
learning stage. Although file-access behaviors will change as time goes by, FRO
still saved more than 11 % energy compared with HP. It reveals the locality of
file-access. In other words, file-access pattern would be kept on for a long time.
Compared with SFR, EFR does not select the optimal cold node for cold file
relocation, it relocates files in a round robin. EFR could not prevent correlated
files scattered across different cold nodes, so it consumes higher energy compared
with SFR.

Experimental result demonstrates that the file relocation strategy we pro-
posed is effective. SFR which leverages the file-access frequency and correlations

http://www.eecs.harvard.edu/sos/traces.html
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Fig. 5. Energy consumption comparison with four file relocation strategies.

Fig. 6. Average response time comparison with four file relocation strategies.

saved the most energy compared with other strategies. And compared with the
baseline—HP, SFR reduces the energy consumption of storage nodes by more
than 29 %.

Response Time. Figures 6 and 7 show the average response time and the
variance of response time of the four different file relocation strategies with the
three traces.

HP does not suspend any storage node to the standby state, so it have the
best performance. Please note that the experiment value of HP is too small, that
it is rounded to 0 by statistical software. FRO could not adapt to the latest file-
access behaviors, because it executes the relocation only once after the learning
stage. And the performance of FRO is the worst. EFR have a good performance
owe to leverage the file-access frequency. Furthermore, by relocating correlated
cold files into the same cold node, SFR could reduce the wake-ups to perform
requests for accessing cold files. And because waking up cold nodes will spend
a much long time relative to data transmission rate, SFR gains a lower average
response time. The variance of response time shows the same trend: HP is the
most steady strategy, the next is SFR, then EFR is tinier poor than SFR, and
the worst is FRO.
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Fig. 7. Variance of response time comparison with four file relocation strategies.

5 Conclusion

In this paper we proposed an energy-aware file relocation strategy—SFR. By
leveraging the file-access frequency and correlations, SFR relocates files when
mismatching situation appears. In this strategy, storage nodes are divided into a
hot node set and a cold node set. By reason that more than 80 % of total requests
go to those hot files, the hot nodes are always kept in an active state (or an idle
state when there’s no request) to satisfy the system performance. While, the
cold nodes are maintained in the standby state unless requests are received.
And the cold nodes go back to the standby state only if file-access requests are
accomplished, and there are no subsequent requests for a predetermined period
of time. Furthermore, FCM method is proposed to mine file-access frequency
and correlations.

To explore the system behavior of SFR, we implement four file relocation
strategies in a simulation experiment, including SFR. Compared with the base-
line, SFR reduced the energy consumption of storage nodes by more than 29 %.
It is demonstrated that SFR which relocates files by leveraging the file-access
frequency and correlations can significantly reduce the energy consumption while
maintaining the system performance at an acceptable level.

For future work, we would like to assign the number of hot nodes according
to the workload (increase in a heavy workload and decrease in a light one). Obvi-
ously, we could obtain a further reduction of energy consumption and provide
better service. Then due to the changes of hot/cold nodes, it is necessary to relo-
cate files among nodes, and it deserves careful study. Finally, it’s so appealing
to evaluate our strategy by real implementation instead of simulation.
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Abstract. Based on Lyapunov stability theory and impulsive control method,
this paper investigates the projective synchronization problem of complex
dynamical networks with non-delayed and delayed coupling. Some projective
synchronization rules in complex dynamical networks of non-delayed and
delayed coupling with different scale factors were proposed and testified by two
different methods, respectively. Moreover, numerical examples are presented to
verify the feasibility and effectiveness of the synchronization scheme.

Keywords: Complex dynamical networks � Impulsive control � Projective
synchronization � Non-delayed and delayed coupling � Different scale factors

1 Introduction

Complex dynamical networks have been shown to exist in many different fields in the
real world and have been intensively studied in the last few years. Common examples
of complex networks include the Internet, the World Wide Web (WWW), food webs,
scientific citation webs, as well as many other systems made up of a large number of
intricately connected parts. Indeed, complex networks are the important part of our
daily lives. Generally speaking, complex networks are made up of interconnected
nodes and are used to describe various systems of real world. Synchronization of all
dynamical nodes is an interesting phenomenon and has been intensively studied in the
recent years since Pecora and Carroll [1] introduced a method for synchronization two
identical chaotic systems with different initial conditions. Especially in recent decades,
as the Internet and the WWW are continuously expanding over our world, all things in
our world are connected much more closely than before. As a result, some new types of
synchronization have appeared in the literatures, such as global synchronization [2, 3],
linear generalized synchronization [4], cluster synchronization [5], projective synchro-
nization (PS) [6, 7], adaptive function projective synchronization [8], mixed syn-
chronization [9], impulsive synchronization [10], and so on.

The PS characterized by a scaling factor (a constant k) such that two systems
synchronies proportionally, are a generalized method of synchronization. It can be used
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to the digital communications of the secure communications. Mainieri and Rehacek
investigated the PS first. Furthermore, J. D. Cao testified to the PS for a class of delayed
chaotic systems by impulsive control and some sufficient conditions are derived by the
stability analysis of the impulsive functional differential equations [11]. Recently, S.Q.
Jiang studied on the Adaptive cluster general projective synchronization of complex
dynamic networks in finite time by time-varying adaptive control gains and nonlinear
feedback controllers [12].

In this paper, the projective synchronization problem with non-delayed and delayed
coupling between complex dynamical networks was investigated. The nodes did not
need to be partially linear. Based on Lyapunov stability theory and impulsive control
method, some projective synchronization rules in complex dynamical networks of
non-delayed and delayed coupling with different scale factors were proposed,
respectively.

The layout of this paper is as follows. Section 2 describes the networks model and
some necessary mathematical preliminaries. The projective synchronization problem
with non-delayed and delayed coupling between complex dynamical networks was
investigated in Sect. 3. Section 4 gives some numerical simulation examples to
demonstrate the feasibility and effectiveness of the proposed approach. Finally some
concluding remarks are given in Sect. 5.

2 Networks Model and Preliminaries

In this section, a complex dynamical networks with non-delayed and delayed coupling
consisting of N identical nodes with linear coupling is considered, which is charac-
terized by

_xiðtÞ ¼ AxiðtÞþ f ðxiðtÞ; xiðt � sÞÞþ
XN
j¼1

bijCxjðtÞþ
XN
j¼1

cijCxjðt � sðtÞÞ;

xðtÞ ¼ x0; t 2 ½�s; 0�:

8>><
>>:

i ¼ 1; 2; � � �N:

ð1Þ

where xiðtÞ ¼ ðxi1ðtÞ; xi2ðtÞ; � � � ; xinðtÞÞT 2 Rn is the state vector of the ith node, A 2
Rn�n is a constant matrix, f: R� Rn ! Rn is a smooth nonlinear function, sðtÞ� 0 is the
coupling delay. C 2 Rn�n is inner-coupling matrix and B ¼ ðbijÞN�N 2 RN�N , C ¼
ðcijÞN�N 2 RN�N are the weight configuration matrices. If there is a connection from
node i to node j ðj 6¼ iÞ, then the coupling bij 6¼ 0, cij 6¼ 0; otherwise, bij ¼
cij ¼ 0ðj 6¼ iÞ, and the diagonal elements of matrices B, C are defined as

bii ¼ �
XN

j¼1;j6¼i

bij; cii ¼ �
XN

j¼1;j6¼i

cij; i ¼ 1; 2; � � �N:

The response system of networks (1) can be written as
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_yiðtÞ ¼ AyiðtÞþ aif ðyiðtÞai
;
yiðt � sÞ

ai
Þþ

XN
j¼1

bijCyjðtÞþ
XN
j¼1

cijCyjðt � sðtÞÞ; t 6¼ tk;

DyiðtkÞ ¼ yiðtþk Þ � yiðt�k Þ ¼ Bik½yiðt�k Þ � aixðtkÞ�; t ¼ tk; k 2 Z þ ;
yiðtÞ ¼ yi0; t 2 ½�s; 0�;

8>>>><
>>>>:

i ¼ 1; 2; � � �N:

ð2Þ

where yiðtÞ ¼ ðyi1ðtÞ; yi2ðtÞ; � � � 2; yinðtÞÞT 2 Rn; i ¼ 1; 2; � � � ;N is the response state
vector of the ith node, yiðtþk Þ ¼ lim

t!tþk
yiðtÞ; yiðt�k Þ ¼ lim

t!t�k
yiðtÞ; ai 6¼ 0ði ¼ 1; 2; � � �NÞ is

different scale factors. Moreover, any solution of (2) is left continuous at each tk , i.e.
yiðt�k Þ ¼ yiðtkÞ:

Define the synchronization errors eiðtÞ ¼ yiðtÞ � aixiðtÞ; (i = 1, 2, …, N), the fol-
lowing errors dynamics system is obtained:

_eiðtÞ ¼ AeiðtÞþ aiFiðeiðtÞ; eiðt � sÞþ
XN
j¼1

bijCejðtÞþ
XN
j¼1

cijCejðt � sðtÞÞ; t 6¼ tk;

DeiðtkÞ ¼ eiðtþk Þ � eiðt�k Þ ¼ Bikeiðt�k Þ; t ¼ tk; k 2 Z þ ;
eiðtÞ ¼ ei0; t 2 ½�s; 0�;

8>>>><
>>>>:

i ¼ 1; 2; � � �N:

ð3Þ

where FiðeiðtÞ; eiðt � sÞÞ ¼ f ðyiðtÞai
; yiðt�sÞ

ai
Þ � f ðxiðtÞ � xiðt � sÞÞ,

eiðtþk Þ ¼ eiðtkÞ; eiðt�k Þ ¼ lim
t!t�k

eiðtÞ;

ei0ðtÞ ¼ yi0ðtÞ � aixi0ðtÞ;

Let eðtÞ ¼ ðeT1 ðtÞ; eT2 ðtÞ; � � � ; eTNðtÞÞT ;

e0ðtÞ ¼ ðeT10ðtÞ; eT20ðtÞ; � � � ; eTN0ðtÞÞT ;

Aa ¼ diagða1; a2; � � � aNÞ;

e0ðtÞ ¼ ðeT10ðtÞ; eT20ðtÞ; � � � ; eTN0ðtÞÞT ;

Aa ¼ diagða1; a2; � � � aNÞ;

Bk ¼ diagðB1k;B2k; � � �BNkÞ;

FðeðtÞ; eðt � sÞÞ ¼ ðFT
1 ðe1ðtÞ; e1ðt � sÞÞ; � � � ;FT

NðeNðtÞ; eNðt � sÞÞT :

Equation (3) can be written as
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_eðtÞ ¼ ðIN � AÞeðtÞþ ðAa � InÞFðeðtÞ; eðt � sÞÞþ ðB� CÞeðtÞþ ðC � CÞeðt � sÞ; t 6¼ tk
eðtkÞ ¼ eðtþk Þ � eðt�k Þ ¼ Bkeðt�k Þ; t ¼ tk; k 2 Z þ ;
eðtÞ ¼ e0; t 2 ½�s; 0�:

8><
>:

Throughout this paper, the following basic and useful definitions and lemmas are
required for achieving projective synchronization.

Definition 1. The complex delayed dynamical systems (1) and (2) are said to be
projective synchronized with different scale factors a¼ ða1; a2; � � � ; aNÞT ; if

lim
t!1 eiðtÞk k ¼ lim

t!1 yiðtÞ � aixiðtÞk k ¼ 0; i ¼ 1; 2; . . .;N:

Definition 2. The complex delayed dynamical systems (1) and (2) are said to be
globally exponentially synchronized if there exist constant η > 0 and continuous
function V(t) such that

V tð Þ� sup
�s� s� 0

V sð Þ
� �

expf�gtg; t� 0

Lemma 1. [11] For a r � r real symmetric matrix X;X is positive definite if and only if
all its eigenvalues are positive. Moreover, the inequality holds:

kminðXÞxTx� xTXx� kmaxðXÞxTx: 8x 2 Rn

Lemma 2. P¼ diagðp1; p2; � � � ; pnÞ is positive matrix, there exist symmetric matrix
Di; i ¼ 1; 2; such that

ðx� yÞTP½f ðx; uÞ � f ðy; vÞ� � ðx� yÞTPD1ðx� yÞþ ðu� vÞTPD2ðu� vÞ; 8x; y; u; v 2 Pn:

Lemma 3. [10] For any vectors x; y 2 Rn and positive-definite matrix Q 2 Rn�n; the
following matrix inequality holds:

2xTy� xTQxþ yTQ�1y:

3 Projective Synchronization of Complex Dynamical
Networks

In this section, we will present our main results about how to employ both synchro-
nizing and desynchronizing impulses to realize globally exponential synchronization in
mean square.
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Theorem 1. System (1) is projective synchronization with system (2) about different
scale factors a¼ ða1; a2; � � � ; aNÞT , if the following conditions are satisfied:

ð1Þ ðIn þBikÞPðIn þBikÞ � dP� 0; k 2 Z þ ; i ¼ 1; 2; � � � ;N;

ð2Þ supðtk � tk�1Þ\� ln d
kmaxðXÞ ;

where

X¼AþP�1ATPþ 2D1 þ 2kmaxðBÞCþ kmaxðCCTÞC2 þ In
d
ð2kmaxðD2Þþ 1Þ

kmaxðXÞ[ 0:

Proof. Choose the following Lyapunov function:

Vðt; eðtÞÞ ¼ eTðtÞðIN � PÞeðtÞ ¼
XN
i¼1

eTi ðtÞPeiðtÞ ¼
Xn
j¼1

pj~e
T
j ðtÞ~ejðtÞ;

where eiðtÞ ¼ ðei1ðtÞ; ei2ðtÞ; � � � ; eiNðtÞÞT , ~ejðtÞ ¼ ðe1jðtÞ; e2jðtÞ; � � � ; eNjðtÞÞT :
Under Lemma 1, we gain:

kminðpÞ
XN
i¼1

eTi ðtÞeiðtÞ�Vðt; eðtÞÞ� kmaxðpÞ
XN
i¼1

eTi ðtÞeiðtÞ:

It is easy to obtain that

Vðtk; eðtkÞÞ ¼
XN
i¼1

eTi ðt�k Þ½ðIn þBikÞPðIn þBikÞ � dP�eiðt�k Þ

þ dVðt�k ; eðt�k ÞÞ� dVðt�k ; eðt�k ÞÞ; k ¼ 1; 2 � � � :

Let uðsÞ ¼ ds;Vðt; eðtÞÞ be defined for 8s 2 ½�s; 0Þ which satisfies:

Vðtþ s; eðtþ sÞÞ�u�1ðVðt; eðtÞÞÞ;

then

eTðtþ sÞðIN � PÞeðtþ sÞ� 1
d
eTðtÞðIN � PÞeðtÞ:
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DþVðt; eðtÞÞ ¼
XN
i¼1

eTi ðtÞðPAþATPÞeiðtÞþ
XN
i¼1

2aieTi ðtÞPFiðeiðtÞ; eiðt � sÞÞ

þ 2
Xn
j¼1

pjcj~e
T
j ðtÞ � B~ejðtÞþ 2

Xn
j¼1

pjcj~e
T
j ðtÞC~ejðt � sÞ

In terms of Lemma 2, we have:

DþVðt; eðtÞÞ�
XN
i¼1

eTi ðtÞðPAþATPÞeiðtÞ

þ 2
XN
i¼1

½eTi ðtÞPD1eiðtÞþ eTi ðt � sÞPD2eiðt � sÞ�

þ 2
Xn
j¼1

pjcj~e
T
j ðtÞB~ejðtÞ

þ
Xn
j¼1

pjc
2
j
~eTj ðtÞCCT~ejðtÞþ

Xn
j¼1

pj~e
T
j ðt � sÞ~ejðt � sÞ

�
XN
i¼1

eTi ðtÞðPAþATPþ 2PD1 þ 2kmaxðBÞCPþ kmaxðCCTÞC2PÞeiðtÞ

þ ð2kmaxðD2Þþ 1Þ
XN
i¼1

eTi ðt � sÞPeiðt � sÞ

�
XN
i¼1

eTi ðtÞPXeiðtÞ

� kmaxðXÞVðt; eðtÞÞ:

Let gðsÞ 	 1; hðsÞ ¼ skmaxðXÞ; we obtain:

Z l

uðlÞ

ds
hðsÞ �

Z tk

tk�1

gðsÞds ¼ � ln d
kmaxðXÞ � ðtk � tk�1Þ[

[
� ln d
kmaxðXÞ � sup tk � tk�1f g[ 0 as l[ 0

Therefore, the error system (3) is globally asymptotically stable about zero.
Therefore, system (1) is projective synchronization with system (2). The proof is
completed.

Theorem 2. Let k1; k2; k3 and bk be the largest eigenvalue of ðI1 � AÞþ ðI1 � AÞT ;
ðB� CÞþ ðB� CÞT ; ðC � CÞþ ðC � CÞT and ðI2 þBikÞTðI2 þBikÞð1; 2; � � �Þ; respec-
tively. d
 is the minimum value of the initial feedback strength di0ðdi0 � di; 1� i�NÞ
and 0\s� infkftkþ 1 � tkg: If there exists a constant n[ 1 such that
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ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM � 2d
Þðtkþ 1 � tkÞþ lnðnbkÞ� 0:

where I1 2 RN�N ; I2 2 Rn�n denote the identity matrices. Then the drive dynamical
networks (1) and the response dynamical networks (2) can achieve synchronization.

Proof. We construct the Lyapunov function as follows:

Vðt; eðtÞÞ ¼
XN
i¼1

eTi ðtÞPeiðtÞþM
Z t

t�s

XN
i¼1

eTi ðhÞeiðhÞdh; M� kmaxðD2Þ;

M is a constant. Since 0\s� infkftkþ 1 � tkg; we gain:

Vðt; eðtÞÞ�
XN
i¼1

eTi ðtÞeiðtÞþ sM
XN
i¼1

eik k2;

where eik k ¼ sup
t�s� h� t

eiðhÞk k:
Under the condition, we need linear controllers ui and updating laws are designed

as follows:

ui ¼ �dieiðtÞ; _di ¼ kie
T
i
ðtÞeiðtÞ ¼ ki eiðtÞk k2; i ¼ 1; 2; 3; . . .;N;

where di is the feedback strength and ki [ 0 is arbitrary constant. And we choose the
linear impulsive controller Bik which is a n� n constant matrix. Then, the objective of
this Letter is to design adaptive feedback controller ui, an impulsive controller Bik and
the impulsive distances Dkþ 1 ¼ tkþ 1 � tk\1 (k = 1, 2, …) such that the state of
drive dynamical networks (1) synchronize with the state of response dynamical net-
works (2). That is lim

t!1 eiðtÞk k ¼ 0:

For t 6¼ tk; by Lemmas 2 and 3, the derivative of V (t,e(t)) along the trajectories of
(3) is

_Vðt; eðtÞÞ ¼
XN
i¼1

eTi ðtÞ½AeiðtÞþ aiFiðeiðtÞ; eiðt � sÞ

þ
XN
j¼1

bijCejðtÞþ
XN
j¼1

cijCejðt � sðtÞÞ � dieiðtÞ�

þ
XN
i¼1

½AeiðtÞþ aiFiðeiðtÞ; eiðt � sÞ

þ
XN
j¼1

bijCejðtÞþ
XN
j¼1

cijCejðt � sðtÞÞeiðtÞ � dieiðtÞ�TeiðtÞ

þM
XN
i¼1

eTi ðtÞeiðtÞ �M
XN
i¼1

eTi ðt � sÞeiðt � sÞ
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¼ eT ½ðI1 � AÞþ ðI1 � AÞT �eþ eT ½ðB� CÞþ ðB� CÞT �e
þ eT ½ðC � CÞþ ðC � CÞT �eðt � sÞþ 2

XN
i¼1

aie
T

i ðtÞI2FiðeiðtÞ; eiðt � sÞÞ

� 2
XN
i¼1

die
T

i ðtÞeiðtÞþM
XN
i¼1

eTi ðtÞeiðtÞ �M
XN
i¼1

eTi ðt � sÞeiðt � sÞ

� eT ½ðI1 � AÞþ ðI1 � AÞT �eþ eT ½ðB� CÞþ ðB� CÞT �e
þ 2ð1

2
eTðC � CÞðC � CÞTeþ 1

2
eTðt � sÞðC � CÞðC � CÞTeðt � sÞÞ

þ 2
XN
i¼1

½eTi ðtÞD1eiðtÞþ eTi ðt � sÞD2eiðt � sÞ�

� 2
XN
i¼1

die
T

i ðtÞeiðtÞþM
XN
i¼1

eTi ðtÞeiðtÞ �M
XN
i¼1

eTi ðt � sÞeiðt � sÞ

� eT ½ðI1 � AÞþ ðI1 � AÞT �eþ eT ½ðB� CÞþ ðB� CÞT �eþ eTðC � CÞðC � CÞTe

þ eTðt � sÞðC � CÞðC � CÞTeðt � sÞþ 2kmaxðD1Þ
XN
i¼1

eTi ðtÞeiðtÞ

þ 2kmaxðD2Þ
XN
i¼1

eTi ðt � sÞeiðt � sÞ � 2
XN
i¼1

die
T

i ðtÞeiðtÞ

þM
XN
i¼1

eTi ðtÞeiðtÞ �M
XN
i¼1

eTi ðt � sÞeiðt � sÞ

� ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM � 2di0Þ
XN
i¼1

eTi ðtÞeiðtÞ

� ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM � 2d
Þ
XN
i¼1

eTi ðtÞeiðtÞ

� ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM � 2d
Þð
XN
i¼1

eTi ðtÞeiðtÞ

þM
Z t

t�s

XN
i¼1

eTi ðhÞeiðhÞdhÞ

¼ ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM � 2d
ÞVðt; eðtÞÞ:

which implies that

Vðt; eðtÞÞ�Vðtþ
k�1
; eðtþk�1Þeðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt�tk�1Þ; t 2 ½tk�1; tk�
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When t ¼ tk; we have:

Vðtþ
k
; eðtþ

k
ÞÞ ¼

XN
i¼1

eTi ðtÞðI2 þBikÞTðI2 þBikÞeiðtÞ

þM
Z t

t�s

XN
i¼1

eTi ðhÞðI2 þBikÞTðI2 þBikÞeiðhÞdh

� kmax½ðI2 þBikÞTðI2 þBikÞ�ð
XN
i¼1

eTi ðtÞeiðtÞþM
Z t

t�s

XN
i¼1

eTi ðhÞeiðhÞdhÞ

� bkVðtkÞ; k ¼ 1; 2 � � � :

When k = 1 in inequality, then for any t 2 ðt0; t1Þ

Vðt1; eðt1ÞÞ�Vðtþ
0
; eðtþ0 Þeðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt1�t0Þ:

Also we have

Vðtþ1 ; eðtþ1 Þ� b1Vðtþ0 ; eðtþ0 Þeðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt1�t0Þ:

In the same way for any t 2 ðtk; tkþ 1�, we obtain:

Vðt; eðtÞ� b1b2 � � � bkVðtþ0 ; eðtþ0 Þeðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt�t0Þ:

From the assumption given in the theorem, we have

nbke
ðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðtkþ 1�tkÞ � 1:

Therefore, one finds that

Vðt; eðtÞ � Vðtþ0 ; eðtþ0 Þ½b1eðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
ÞD1 � � � � �
� ½bkeðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt�t0ÞDk � � eðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt�tkÞ

�Vðtþ0 ; eðtþ0 Þ 1
nk

eðk1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
Þðt�tkÞ:

This implies that the error system (3) is globally asymptotically stable about zero.
Therefore, synchronization of the dynamical networks (1) and the dynamical networks
(2) is achieved. The proof is completed, too.

4 Numerical Simulation Examples

In this section, the numerical simulation examples are performed to verify the effec-
tiveness of the proposed synchronization scheme in the previous section.

662 Y. Li and G. Cai



Example 1. We consider a time delayed complex networks to verify the correctness of
theorem 1.

xðtÞ ¼ ðx1ðtÞ; x2ðtÞÞT ;

f ðxðtÞ; xðt � sÞÞ ¼ BgðxðtÞÞþDgðxðt � sÞÞ; gðxðtÞÞ ¼ ðtan hðx1ðtÞÞ; tan hðx2ðtÞÞÞT ;

A ¼ �1 0
0 �1

� �
;B ¼ 2:1 �0:1

�5:0 3:0

� �
;D ¼ �1:5 �0:1

�0:2 �2:5

� �
;N ¼ 5;

and yðtÞ ¼ ðy1ðtÞ; y2ðtÞÞT ; C ¼ I2;
PN
i¼1

bijC ¼ 0, the asymmetric coupling matrix is

C ¼

�3 3 1 �1 0
3 �3 �1 1 0
1 �1 �3 1 2
�1 1 1 �1 0
0 0 2 0 �2

0
BBBB@

1
CCCCA:

Let Bik ¼ �0:5I2; d ¼ 0:26; s ¼ 0:01; tk � tk�1 ¼ 0:02;a ¼ ð�5;�1; 7; 1; 6Þ:
Based on theorem 1, the complex dynamical networks we have discussed can

achieve projective synchronization. The numerical simulation results are shown in
Fig. 1.

Example 2. We consider another complex networks with non-time-delay and time
delayed coupling consisting of the Chua’s circuit system 5 nodes to verify the cor-
rectness of Theorem 2. The Chua’s circuit chaotic system is described by _x ¼
Axþ f ðxÞ; where x ¼ ðx1; x2; x3ÞT , matrix A and the function f satisfy:
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Fig. 1. The projective synchronization errors of system (1) and system (2)
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A ¼
�a a 0
1 �1 1
0 c 0

0
@

1
A; f ðxÞ ¼

�af ðx1Þ
0
0

0
@

1
A;

where f ðx1Þ ¼ nx1 þ 0:5ðm� nÞðjx1 þ 1j � jx1 � 1jÞ the parameters ða; c;m; nÞ are
chosen to be ð9; 7

100 ;� 8
7 ;� 5

7Þ. The asymmetric coupling configuration matrix B is

B ¼

�3 2 0 0 1
1 �4 1 1 1
0 1 �2 1 0
0 1 1 �3 1
1 1 0 1 �3

0
BBBB@

1
CCCCA;C ¼ 0:

C ¼ I;Bik ¼ diagð�1:5;�1:5;�1:5Þ; ki ¼ 1; di0 ¼ 1; a ¼ ð1; 1; 1; 1; 1ÞT ; n ¼ 2;

d ¼ �1:5; kmaxðD1Þ ¼ 10:2857; kmaxðD2Þ ¼ 3:3375;M ¼ 3:49: After calculations, we
getting k1 ¼ 13:8669; k2 ¼ 0:0438; k3 ¼ 30:00860 and b ¼ 0:25: The impulsive
interval Δ can be estimated as follows:

0\D\� ln nþ lnð1þ dÞ2
k1 þ k2 þ k3 þ 2kmaxðD1ÞþM�2d
 ¼ 0:1285: Let the impulsive interval Δ = 0.1

and the time delay τ = 0.09.
Based on Theorem 2, the projective synchronization of the dynamical networks

(1) and the dynamical networks (2) is achieved. The numerical simulation results are
shown in Fig. 2.
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Fig. 2. The projective synchronization errors of the drive networks (1) and response
networks (2)
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5 Conclusions

In this paper, the problem of the projective synchronization between two complex
networks of non-delayed and delayed coupling with different scale factors via impul-
sive control is discussed, which has been used two different methods. Based on the
comparison theorem for the stability of impulsive control system, projective syn-
chronization criterions are obtained, respectively. Moreover, the weight configuration
matrix is not assumed to be symmetric or irreducible, and the inner coupling matrix
need not be symmetric. Numerical simulations are presented to verify the effectiveness
of the proposed synchronization criteria finally.
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Abstract. Cloud computing is a prevailing paradigm of service oriented
computing and has revolutionized the computing infrastructure in terms
of abstraction and usage. But its model requires significant changes in
data management systems due to the requirements on scalability, avail-
ability, performance and quality of service. Many researchers proposed
database replication techniques to address these challenges. However,
only a few existing solutions to database replication in the cloud are
attacking the issues with elasticity and quality of service. In this paper,
we concern about the problem of relational database replication in the
cloud. We present Scalable Relational Database Cloud (SRDC ), an app-
roach that adopts database replication in the cloud with elasticity. Exper-
iments with the popular benchmarks demonstrate that our approach is
viable and has achieved scalability with strong consistency.

Keywords: Cloud computing ·Database replication ·Generalized snap-
shot isolation (GSI ) · Scalability

1 Introduction

The success and popularity of cloud infrastructures are majorly contributed by
its Scalability, elasticity, pay-as-you-go and economies of scale. Many web ser-
vice providers, like Google’s Bigtable [1], Apache Cassandra [2], and Amazon’s
Dynamo [3], adopt Key-Value stores that provide more scalability and availabil-
ity than traditional Relational Database Management System (RDBMS ).

However, the Key-Value stores’ simplified data model is lack of transactional
support and attributed based accesses, which can result in considerable over-
head in re-architecting legacy applications that are predominantly based on
RDBMS technology. For those applications that rely on traditional relational
databases, features, such as elasticity, flexible deployment, or reduced capital
expenses through the use of cloud services, are severely limited. Recent studies
show that RDBMS such as Microsoft’S SQL Azure [4], and Amazon’s RDS [5]
have obtained good results in different cloud application scenarios. Relational
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 667–681, 2015.
DOI: 10.1007/978-3-319-27140-8 46
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Cloud, a scalable relational database-as-a-service for cloud computing environ-
ment, is introduced in [8,9]. It focuses on efficient multi-tenancy, elastic scalabil-
ity and database privacy and also uses workload-aware partitioning strategy. But
Relational Cloud does not have efficient strategy for replication. In this paper,
we will address the problem of relational database replication in the cloud.

Database replication techniques have been used to improve availability, per-
formance and scalability in different environments. Conventional solutions of
database replication focused on these aspects of the system using a static set-
ting of replicas. Aspects related to dynamic provisioning of capacity, such as
adding replicas on-the-fly, have received little attention. This issue is critical
and needs cost-efficient approach to handle changes of workload when initial-
izing new replicas of database [23]. We propose an architecture named SRDC
(Scalable Relational Database Cloud) which uses data partition techniques on
a cluster. With data partition, each node of the cluster is responsible for a few
partitions and every partition runs as independent instance of RDBMS server.

The consistency model describes how different replicas are kept in sync.
Strong consistency guarantees that all replicas appear identical to applications.
Although strong consistency is clearly a desirable property for building appli-
cations, it is impossible to achieve without sacrificing either availability or tol-
erance to network partitions. The CAP Theorem [7] states that among Consis-
tency, Availability, and Partition tolerance, only two out of three are possible.
For example master-slave replication is not an ideal solution at cloud scale [6].
Systems like Dynamo [3] use eventual consistency to provide high availability
and partition tolerance for cross-datacenter replication. With eventual consis-
tency, failures, network partitions, or conflicting writes can cause replicas to
diverge, and applications may see multiple versions of the same data item. As
a result, applications must be prepared to do conflict detection and resolution
themselves. The familiar isolation guarantees of ACID transactions are not sup-
ported. While a small class of applications with availability requirements may
be able to tolerate the nuances of eventual consistency.

This work presents a study of the replication techniques for partition data-
base applied in a cloud scheme to achieve transactional support combining the
high availability and scalability that characterizes cloud system. More concretely,
we make the following contributions:

� We present a prototype of scalable relational database cloud and show the
details of implementation of partition database replication in the cloud.

� We propose a solution to extract the writeset of update transactions that
prevents from distributed transaction rollback.

� We experimentally evaluate the performance of the prototype with the pop-
ular benchmark, proving the viability and elasticity.

The paper is structured as follows. Section 2 introduces the background of
this paper. Section 3 presents the related work on database replication. Section 4
presents an overview of SRDC’s architecture, and the implement of SRDC is
described in Sects. 5 and 6.
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2 Related Work

Replicated database provide high scalability and availability for storage systems.
Replication presents the problem of keeping all data stored in all replicas con-
sistent. A categorization of traditional replication techniques to minimize this
consistency problem can be done by three design criteria [15]: the first crite-
ria determines where updates take place which can be distinguished between
primary copy [21] and update everywhere [12,15,17]; the second criteria deter-
mines when replicas coordinate which can be distinguished between eager repli-
cation [11,22] and lazy replication [20]; the third criteria determines whether an
approach is based on changes to the database kernel [13] or by middleware that
uses unmodified single node DBMS engines for the replicas [14,18].

Traditional database replication protocols do not scale well for a cloud envi-
ronment. It is known that few cloud storage systems provide full transactional
support and strong consistency in order to achieve scalability and elasticity.
ElasTras [19] is an elastic transactional relational database with the character-
istics of scalability and elasticity and transactional access. ElasTras is based on
the philosophy of key-value stores and partition the data at a schema. ElasTras
has a restricted transaction semantics that is executed in one data partition.

EcStore [16] provides Snapshot Isolation applying a protocol where all trans-
actions at the commit time are validated. Each transaction at commit time is
validated against other transactions successfully committed, except for the read-
only transactions which are executed in a consistent snapshot of the database and
they do not need the validation phase. To avoid the bottleneck in the primary
copy the read-only transaction access the replicas, but the update transactions
access to the primary copy to ensure that the updates are well-behaved.

Azure SQL implements the primary copy protocol with strong consistency
[4]. Each database hosted in the SQL Azure has three replicas: one primary
replica and two secondary replicas. All reads and writes go through the primary
replica, and any changes are replicated to the secondary replicas asynchronously.

In [23] Dolly is proposed, a database provisioning system based on a virtual
machine cloning technique to spawn database replicas in the cloud. In Dolly, each
database replica runs in a separate virtual machine and Dolly clones the entire
virtual machine. [24] presents a study about data replication in a virtualized
environment, focusing on provisioning when the master database server is heavily
loaded or when it fails. This work implements primary copy protocol but does not
address other aspects of database replication in the cloud. Amazon Relational
Database Service (RDS) [5] implements the primary copy protocol and works
similar to traditional databases.

The MIT based database-as-a-service propose the Relational Cloud [8,9], a
scalable relational for cloud computing environment. Relational Cloud focuses
on efficient multi-tenancy, elastic scalability and database privacy. This work
uses a workload-aware partition strategy. Relational Cloud does not detail the
strategy of replication.
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3 Architecture

The architecture (shown in Fig. 1) consists of four main components: (1) Public
Interfaces, (2) Coordinator, (3) Virtual Machine (VM), and (4) Certifier which
are replicated mainly for higher availability. Data is divided into different par-
tition. Every partition is managed by standalone DBMS instance in a virtual
machine. A partition is replicated into other VM. If the scope of transaction
is limited to a single partition, the transaction is directly committed after the
partition is certified, otherwise the transaction will be committed only when all
partitions are certified. The goal here is to provide just enough background to
understand replication protocol, which is the main focus of this paper.

Public Interfaces receives requests from client applications using a standard
connectivity layer such as JDBC and relays responses from partition replica to
client.

Fig. 1. Architecture of SRDC
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Coordinator consists of a set of services that address the management of
replicas. Metadata stores the information of partition, the number of transaction
in every partition, the information of VM, and cohort set of which every cohort
is consisted of all replicas of a partition. Monitoring Service is responsible for
managing the information about the state of the VMs and the DBMS collected
by the proxy. Transaction Service receives SQL statements from clients, analyzes
each SQL statement, uses its metadata to determine the execution nodes and
plan, and decides the submission of update transaction by executing in partition
replica. Communication Service distributes sub-transaction based on partition,
receives the message of proxy.

VM contains DBMS employing snapshot isolation and proxies. Every instance
of DBMS manages a partition. Each proxy is thread-safe. Every partition in a
VM has a proxy that intercepts partition requests. The proxy tracks the partition
version, maintains a small amount of state for each active transaction, invokes
certification, and applies the remote writesets. Each proxy has a write-ahead log
which helps the proxy recovers from a crash.

Certifier performs the following tasks: (a) detects and prevents system-wide
conflicts, and assigns a total order to update transactions that commit, (b)
ensures the durability of its decisions and committed transactions, and (c) for-
wards the writeset of every committed update transaction or cycle affairs to
replicas of the partition in form of refresh transactions. Certifier is replicated
for availability across a small set of nodes using Paxos. The replication algo-
rithm uses a leader elected from the set of Certifier. The leader is responsible for
receiving all certification request of a partition replication group. Every cohort
has absolute certifier group.

4 Proxy

Each replica node of the partition maintains its own version number vi which
indicates the version number of its current version, and which may be different
from the current version at the certifier or other replicas. For each p-transaction
T that is active at a replica node, the replica node maintains the version num-
ber of its starting p-snapshot tx start version. To pre-commit an update p-
transaction, the node sends a certification request containing tx start version,
the p-transaction readset and writeset. The leader certifier ensures that there
is neither committed nor pre-committed update p-transaction which is read-
impacting and write-impacting.

4.1 Proxy Task

In the first phase of transaction processing, a proxy in front of each partition
database intercepts incoming partition database requests. The proxy tracks the
database version, maintains a small amount of state for each active transaction,
invokes certification, and applies the remote writesets. In the second phase of
transaction processing, a proxy receives the command of the Coordinator, com-
mit or abort the partition transaction on the partition database. The pseudo
code for actions at the proxy is shown in Algorithm 1.



672 X. Zou et al.

4.2 Extracting Writeset

Writeset is used for certification and for update propagation. We assume that each
tuple in database is identified by its primary key value. Tuples in the writeset can
be introduced by UPDATE, INSERT or DELETE SQL statements in a trans-
action. A writeset is a list of tuples, including the old and new values for each
attribute in the tuple. If certification is successful, the certifier adds the writeset
to its database, and sends the writeset to replicas for update propagation.

Algorithm 1. the pseudo code of the proxy

1. On proxy intercepting partition transaction T from the
Coordinator:

1.1 T receives a snapshot of the database;
1.2 T.tx start version ← replica version

of partition database;
1.3 extracting writeset;
IF T.writeset is empty(i.e., T isread − only)
THEN send T commits to the Coordinator;
ELSE
{confirm the readset;
invoke certification request(T.tx start version, T.writeset, T.readset);
Empty the temp table; }

2. Receiving the reply from the Coordinator
2.1 If commit
{Apply writetset;

V i ← T.tx commit version;
Empty the temp table;
Send < T, commit > to the Certifier; }

2.2 if abort
{Clear the temp table;
Send < T, abort > to the Certifier}

3. Receive the answer <decision,writesets,T.tx commit version>
from certification:

3.1 if decision = “abort”
{Apply < writeset >;
V i ← T.tx commit version;
Send < T, abort > to the Coordinator; }

3.2 if decision = pre − commit
Send < T, commit > to the Coordinator;

3.3 if decision = “refresh”
{Apply writeset;
V i ← T.tx commit version; }

4. cycle ending:
4.1 T.tx start version ← replica version

of partition database;
4.2 invoke certification request(T.tx start version, null, null);
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There are several approaches to extract writeset, including triggers, log sniff-
ing or direct support from the database engine (e.g., in Oracle). Although the
methods are usually preferred all methods have limitations and disadvantages.
For example the system performance will be degraded as the inserted and deleted
tables are created dynamically and the records are inserted in these tables in
triggers. It is difficult to access and to parse database log file for most database
vendor because of database security. More importantly, all methods obtain the
writeset through executing the transaction on the database, but the transaction
must rollback regardless of being certified in order to keep the total order of dis-
tributed transaction. In our prototype the writeset is extracted by converting the
update statements to two steps. Firstly the update statements are transformed
the select queries, the results of the select queries are inserted into a temp table.
And then the update statements are executed on temp table, these transaction
need not rollback.

We observe that the UPDATE, INSERT or DELETE SQL statements involve
only one relation, it is easy to create corresponding temp table. In order to per-
form the query transformation and extract the writeset, the proxy separates the
UPDATE, INSERT or DELETE SQL statements from the transaction. TEMP-
I-R and TEMP-D-R respectively stores the new value and the old value of tuples
which the UPDATE, INSERT or DELETE SQL statements involve.

(1) INSERT statement:
The basic form of insertion statement is not modified, only corresponding

temp table instead of the original relation:
INSERT INTO TEMP-I-Ri (A1, A2,, An) VALUES (v1,v2,,vn) or
INSERT INTO TEMP-I-Ri (A1, A2, , An) SELECT expr list FROM Rj,Rk
WHERE pred;

(2) DELETE statement:
The basic form of deletion statement is:

DELETE FROM Rd WHERE predd; where predd denotes a predication.
The DELETE statement will be executed the following INSERT statement

on corresponding temp table.
INSERT INTO TEMP-D-Rd (A1, A2, , An) SELECT * FROM Rd WHERE
pred.

(3) UPDATE statement:
The basic form of deletion statement is:

UPDATE Ru SET attrj=valuej where pred; or
UPDATE Ru SET attrj=case pred1 then value1j

case pred2 then value2j
· · · · · ·

case predn then valuenj;
The UPDATE statement will be divided into the following INSERT state-

ment UPDATE statement:
INSERT INTO TEMP-I-Ru (A1, A2, , An) SELECT * FROM Ru WHERE
predd; or
INSERT INTO TEMP-I-Ru (A1, A2, , An) SELECT * FROM Ru WHERE
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pred1 and pred2 and · · · and predn;
INSERT INTO TEMP-D-Ru (A1, A2, , An) SELECT * FROM Ru WHERE
predd; or
INSERT INTO TEMP-D-Ru (A1, A2, , An) SELECT * FROM Ru WHERE
pred1 and pred2 and · · · and predn;
UPDATE TEMP-I-Ru SET attrj=valuej where pred; or
UPDATE TEMP-I-Ru SET attrj=case pred1 then value1j

case pred2 then value2j
· · · · · ·
case predn then valuenj;

TEMP-I-Ru stores the new value of UPDATE statement and TEMP-D-Ru
stores the old value of UPDATE statement. The writeset of p-transaction is
consisted of a set of TEMP-I-R and TEMP-D-R.

Readset of p-transaction is consisted of SELETE statement, values of INSERT
statement, predicate of DELETE and UPDATE statement in the transaction.

5 Certifier

5.1 Certification Algorithm

We present the SRDC certification algorithm for the partition replication model.
Read-only transactions do not need certification. We certify the readset and
writeset of the update transaction in order to ensure that the updated trans-
action executes on the latest version; that is, no concurrent update transaction
committed writes into the readset and writeset. In order to detect and prevent
conflicts, the certifier manages the writesets produced by the committed and pre-
committed transactions together with the commit order. The certifier maintains
two databases: the persistent database in the disk and the memory database.
The two databases have a schema similar to that of the partition augmented
with a version attributed in each relation. Every schema of the two databases
has two tables named as C-I-Ri and C-D-Ri which respectively store the new
value and the old value of tuples which the UPDATE, INSERT and DELETE
SQL statement of the p-transaction.

After a successful pre-commit of which the writeset of an update p-transaction
has no read-write and write-write conflict with the persistent database and the
memory database, each tuple in the p-transactions writeset is extended with a
new version number assigned by the certifier forming the global commit order of
the partition and inserted in the corresponding relation of C-I-Ri and C-D-Ri.
Once when the transaction is committed, the corresponding memory tables of
the p-transation are bulked into the persistent database. The data with versions
older than the minimum for all partition replicas in the persistent database will
be truncated.
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Algorithm 2. ceritfication algorithm

INPUT: a certification request having <T.tx start version, T.writeset, T.readset > or a

certification command having <T, command>;

OUTPUT: < decision, writesets, T.tx commit version>

1. IF T.writeset is not empty

1.1 IF it is true that the input T.writeset and T.readset are tested for conflict

detection against entries of the persistent database whose tx commit version is greater

than T.tx start version

THEN

{decision ← “abort”;

writesets ← null;

T.tx commit version remains unchanged;

go to step 5; }
1.2 ELSE IF it is true that the input T.writeset and T.readset are tested for

conflict detection against entries of the memory database

Then suspend the transaction;

1.3 ELSE

{decision ← “pre-commit”;

writeset ← union writeset of the persistent database from T.tx start version

to system.version;

increment System version;

writeset ← writeset unionT.writeset;

T.txcommit version ← System version;

Write < T.writeset, System.version > into the

memory database;

Go to step 5; }
2. IF T.writeset is empty

then{decision ← “refresh”;

writeset ← union writeset of the persistent database from T.tx start version

to system.version;

T.tx commit version ← System version;

Go to step 5; }
3. if <T,commit>

{Flush the memory table into the persistent table;

abort all conflicting suspend transactions;

decision ← “abort”;

writesets ← null;

T.tx commit version remains unchanged;

go to step 5; }
4. if <T,abort>

{delete tuples of T from the memory table;

select the oldest transaction of the conflicting suspendtransactions;

decision ← “pre-commit”;

writeset ← union writeset of the persistent databasefromT.tx start version

to system.version;

writeset ← writeset union T.writeset;

increment System version;

T.tx commit version ← System version;

Write < T.writeset, System.version > into the memory database;

Go to step 5}
5. The output of the procedure contains:

Output (writesets, decision, T.tx commit version);

}

As presented in Algorithm 2, the certifier receives a certification request
containing the writeset, the readset and the version number of a replica
node. Given a certification request from replica nodej for a transaction with
p-snaphot(T )=tx start version, firstly the certifier accesses all committed write-
sets with a version greater than in the persistent database, because writesets with
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version number smaller than p-snaphot(T ) belong to transactions that commit-
ted before the snapshot of T was taken and transaction T sees their effects.
For each accessed writeset item X of the persistent log, the certifier checks if
X ∈ writeset(T ) and X ∈ readset(T ), in which case T is aborted since its
commit would introduce an impacted transaction in the history and an abort
message is send to the replica node. Otherwise the certifier again access the
memory database, for each accessed writeset item X ′ of the memory database,
the certifier checks if X ′ ∈ writeset(T ) and X ′ ∈ readset(T ), in which case
T is suspended until the conflicting pre-committed transaction is committed or
aborted.

To avoid the long delay led by no transaction at replica node, we set a counter
in node and periodically pull data from the certifier. Once a new sub-transaction
is executed at the node, the counter is cleared. If the counter reaches a prede-
termined value, the node sends a certification request only with p-snapshot(T )
to the lead certifier. The leader certifier accesses all committed writesets with a
version greater than p-snapshot of the persistent log and send sets of writesets
to the node.

If the certifier receives the reply of commit from the proxy of the pre-
committed transaction, the memory table of pre-committer is bulked into the
persistent table, and all conflicting suspend transaction is aborted meanwhile
the proxy aborts the transaction. If the certifier receives the reply of abort from
the proxy of the pre-committed transaction, the oldest suspend transaction is
pre-committed.

5.2 Conflict Detection

If only checking write-write conflicts without detecting read-write conflicts, phan-
toms might be introduced, causing the anomalies under SI. But in contrast to
writesets, identifying readsets using the tuples is a poor choice, because the read-
set of a transaction is typically much larger than the writeset, and it is expensive
to send the set of rows read in a transaction from the replica to the certifier. [22]
introduced novel techniques to provide a stronger global isolation level, namely
readset extraction and enhanced verification that prevents read-write and write-
write conflicts in a replicated setting [22] The readset is extracted by applying
an automatic query transformation to each SQL statement inside an update
transaction. The transformation creates the certification queries which are eval-
uated during the certification process. We make use of the idea based on our
data model and architecture.

(1) SELECT Queries The readset of a SELECT statement includes any tuple
that matches the predicate pred(Query) on the certifier. The certification query
uses the original SQL statement by combining the version predicate [22]. The
certification query can be rewritten as:
Certification Queries : SELECT Query

select ∗ from C-I-Ri, C-D-Ri

where pred(Query)
and system-version > p-snapshot(T );
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FROM clause includes all the corresponding tables with the original SQL
statement. The certification query will be performed on the persistent database
and the memory database respectively.

(2) Update Statements In [22] proved that certifying the readset of update
statement also detects write-write cnflicts and it is, therefore, not necessary to
certify the writeset.

The readset of an UPDATE SQL statement includes any tuple matches the
predicate on the target table. Similarly, the readset of a DELETE statement con-
tains any tuple that matches the deletion predicate. The readset of an INSERT
statement is identified the primary key of the new inserted tuples, based on the
fact that the database checks the uniqueness of the primary key. These conditions
are captured by the following certification queries:

Certification Queries : Update Queries
(1) select ∗

from C-I-Ri, C-D-Ri, T emp-I-Ri

where TEMP -I-Ri.key = C-I-Ri.key
and TEMP -I-Ri.key = C-D-Ri.key
and system-version > p-snapshot(T );

(2) select ∗ from C-D-Ri

where pred(Ri)
and system-version > p-snapshot(T );

(3) select ∗ from C-I-Ri, C-D-Ri

where pred(Ri)andsystem-version > p-snapshot(T )
The certification query will be performed on the persistent database and the

memory database respectively.

6 Performance Evaluation

Our main objective is to show the proposed approaches of SRDC are practical
replication algorithms with competitive performance. We investigate its overhead
and scalability. We use the TPC-W benchmark to assess performance as it is
widely used to evaluate replicated database system.

6.1 Experimental Setup

We use a cluster of virtual machines to deploy the replicated database system.
The master and clone VMs used in our evaluation are running MySQL 5.0 with
1 GB of RAM, one virtual CPU, and a 10 GB disk. Each is hosted on a SunFire
X4450 with 4 intel xeon DPes, 128 G RAM, and 8 SCSI RAID. Xeon processors
are running on Fedore core 12 with version 2.6.31 of Linux Kernel and dual
gigabit Ethernet NICS.

We experiment with the TPC-W benchmark. TPC-W is designed to evaluate
e-commerce systems and it implements an on-line bookstore. It consists of three
workload mixed that differ in the relative frequency of the transaction types.
The browsing in the relative frequency of the transactions, the shopping mix
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has 20 % update transactions, and the ordering mix has 50 % update transac-
tion. The shopping mix is the most representative mix, while the ordering mix is
update-intensive and therefore is the most challenging mix for replicated data-
bases. TPC-W is widely used to evaluate replicated database system. We use
one machine running the application server and another hosting a remote termi-
nal emulator. The application server (TOMCAT 6.0) executes the requested JSP
pages that access the database. The remote terminal emulator is a multi-threaded
eclipse program in which each thread represents one client issuing requests in a
closed loop.

We adopt the following metrics: system throughput, which is the number
of completed transactions per second (TPS), and response time, denoting the
time taken from receiving the transaction at the Coordinator until knowing the
commit or abort time at the Coordinator (in ms). The proposed approaches
of SRDC shortened the response time. It will increase the throughput under a
certain condition.

6.2 Performance Evaluation

Response Time: we report response time results for the shopping and ordering
mix in Fig. 2. The X-axis gives the number of replicas that varies between one
and eight, while the curves represent the performance of each partition when the
load is fixed. The Y-axis shows response time in million second (ms).

The results of the TPC-W shopping mix (20 % update transactions) and
ordering mix (50 % update transactions) are shown in Fig. 2.

Fig. 2. Response time
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When the load is fixed, response time gradually decrease and stabilizes when
using five or more replicas. When the number of replicas increases, the number of
partition has less effect on response time. The number of partition decreases the
time of every sub-transaction, but the time of the message transport increases,
so the delay time of the global certifier increases.

Throughput: We report throughput for the shopping mix under different num-
ber of partition and different number of replicas, the result is shown in Fig. 3. The
shopping mix has 20 % update transaction and 80 % read-only transaction. Our
manual partitioner attempted to minimize the number of distributed transaction.

From Fig. 3, the partitioning system has higher throughput than no partition-
ing system. But the throughput is not improved with the number of partition.
That is because the number of distributed transaction increases with the number
of partition. The number of distributed transaction will reduce the throughput.

Fig. 3. Throughput for TPC-W shopping mix

Figure 3 showed that the throughput for the shopping mix almost rises lin-
early as the number of replicas increase. But it is not difficult to find by analysis
that the conflict probability of update transactions will increase when the num-
ber of update transaction increases, because the time of certification to com-
mit transaction will delay. So the benefits of replication depend on the ratio of
update.

The result of experiment and analysis shows that SRDC is applied the data-
base with the lower ratio of update transaction and needs an algorithm of data-
base partitioning for transactional workloads.

7 Conclusion

This research investigates providing a serializable snapshot isolation in the cloud
stronger than eventual consistency. We introduce a concurrency control tech-
nique that ensures one-copy serializability in partition replicated database
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system (SRDC) in which each replica is snapshot isolated. We employ novel tech-
niques to extract transaction readsets and writeset, and perform enhanced certifi-
cation. We build a prototype SRDC and implement algorithms of extract data set
and certification, and evaluate its performance. The performance results under
the TPC-W workload mixes show that the response time gradually decrease
using the appropriate number of replicas and the appropriate number of parti-
tions, and that the prototype SRDC has higher throughput with the lower ratio
of update transaction.
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Abstract. In wireless sensor networks, preserving energy requires utmost
attention due to their high resource constraint feature. Clustering is commonly
considered as one of the most efficient energy conservation technique. Firstly,
considering Rician channel model for inter-cluster communication and a shortest
path routing protocol, we analyze the optimization of network lifetime by bal-
ancing the energy consumption among different cluster heads (CHs). It is found
that cluster radius of each level has significant role in maximization of network
lifetime. To meet the requirement of optimization of network lifetime, we devise
a routing aware clustering strategy. We also identify Archimedes’ spiral, based
on which a deployment function is proposed for distributing member node
(MN) and CH. Simulation results demonstrate that the proposed technique
significantly outperforms two competing schemes in terms of energy balance,
network lifetime and throughput.

Keywords: Clustering � Energy balance � Network lifetime � Node deploy-
ment � Wireless sensor network

1 Introduction

Due to the impetuous advancement of technologies in recent years, wireless sensor
networks (WSNs) have become a reliable and mature technology, widely used in several
applications ranging from industry to military and home [1]. Almost for all the available
platforms of WSNs, sensor nodes are designed to run on batteries, which have very
limited energy. Due to the limited on-board energy supply of sensor nodes, the design
objective of these systems is normally to conserve as much energy as possible to achieve
prolonged network lifetime.

Node deployment is a fundamental issue in WSNs that affects many facets of
network operation, including energy management, routing, security. Based on the
means of deployment, there are broadly two types of deployment: (i) random deploy-
ment, and (ii) predetermined deployment [2]. Random deployment is typically used for
inhospitable environments e.g., battlefields surveillance, environmental monitoring [2].
On the contrary, many applications of WSNs serve in controlled setups where prede-
termined deployment of node is feasible and desirable [2]. Examples of these applica-
tions include habitat monitoring, safety assessment of factory floor. The controlled
nature of the application allows pre-planning and careful selection for node placement.
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To improve scalability and energy efficiency, sensors in WSNs are often organized
into clusters [3] that reduce channel contention and packet collisions, resulting in better
network throughput under high load [3]. The role of CHs in the clustering paradigm
increases the burden on the CHs, forcing them to drain out their energy much faster. Even
if the CH is equipped with a more durable battery than the MNs, the large difference in
energy consumption between the two can lead to its shorter lifetime. Once the CH dies,
no communication can take place between the MNs in that cluster and the rest of the
network. The clusters with comparable area coverage and node density have roughly the
same volume of intra-cluster data traffic. Nevertheless, the traffic from far away CHs
needs to be relayed via CHs closer to the sink. Thus, CHs closer to the sink drain their
energy reservoir faster than the other CHs, resulting in energy hole problem [1, 2] that
may effect the whole network leading to premature decrease in network lifetime. To
avoid this, care should be taken during deployment such that energy dissipation in all
nodes takes place uniformly ensuring load balancing throughout the network.

Many works [4] - [8] reported so far deal with the issue of balancing the energy
consumption in WSNs, by dividing the network into clusters. Nevertheless, except [4],
none of the existing works consider optimization of cluster radius of each level while
devising clustering structure. Further, to the best of our knowledge, no attempt has been
made yet to identify a mathematical model and design a deployment scheme based on
which MNs and CHs are deployed at some predetermined locations. The main con-
tributions of this paper are as follows: Initially, different from [4] - [8], we analyze the
energy balancing approach for optimization of network lifetime by jointly considering
Rician fading channel and a shortest path routing protocol. Based on the analysis,
principle of optimal clustering structure is derived and that in turn computes the
optimal cluster radius of each level using a linear program. Similar to [8], we propose a
deployment strategy based on Archimedes’ spiral using which both CH and MN are
deployed at some predetermined locations. Finally, performance of the optimal clus-
tering strategy is evaluated through quantitative analysis under both ideal and realistic
scenarios.

The rest of this paper is organized as follows: In Sect. 2, literature review is provided.
The system model considered for the present work is described in Sect. 3. Section 4
theoretically analyzes the network lifetime optimization problem and obtains the clus-
tering strategy. The proposed clustering structure including a deployment strategy based
on Archimedes’ spiral is described in Sect. 5. In Sect. 6, simulation results under ideal
and more realistic scenarios are provided. Finally, concluding remarks are given in
Sect. 7.

2 Literature Review

The state-of-the-art works that deal with the issue of balancing the load throughout the
network, by dividing the network into clusters are elaborated in this section.

Shu et al. [4] provided energy balanced alternatives that try to maximize network
lifetime directly by accounting for the interaction between clustering and routing. To
obtain balanced power consumption, two mechanisms are proposed, viz. routing-aware
optimal cluster planning and the clustering-aware optimal random relay. Unlike [4],
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Lai et al. presented a cluster based routing protocol, ACT (arranging cluster sizes and
transmission ranges for wireless sensor networks) [5]. The protocol aims in reducing
the size of the clusters with closer proximity to the sink as they take the burden of
relaying more data than the clusters farther away from the sink. This is achieved by
keeping cluster radii near the sink smaller while the clusters located farther away from
the sink have larger radii. In another work to conserve energy, Darabkh et al. [6]
proposed three clustering algorithms namely adaptive head, static head, and selective
static head for mobile target tracking in WSN. Among these algorithms, the static and
selective static heads algorithms follow static clustering while the other one follows
dynamic clustering. Recently, in order to maximize the lifetime of deployed nodes,
Li et al. [7] investigated the problem of constructing optimal clustering architectures in
homogeneous WSNs. Most recently, in [8], authors proposed an optimal clustering
technique to maximize the lifetime of WSNs. Initially, the authors analyzed the energy
balancing approach. Based on the analysis, they derived the principle for optimal
clustering structure which, in turn, decides the number of clusters in each layer and the
number of MNs associated with each cluster.

Similar to [4, 5, 8] we derived clustering structure by computing the optimal cluster
radius. Unlike [4, 5, 8], we analyzed the energy balancing approach for optimization of
network lifetime by jointly considering Rician fading channel and a shortest path
routing protocol. Further, similar to [8], we propose a deployment strategy based on
Archimedes’ spiral using which both CH and MN are deployed at some predetermined
locations.

3 System Models

3.1 Network Model

We virtually cover the network area χ of radius R by a disk sector of angle φ (Fig. 1). The
disk sector is divided into i number of ring sectors or slices, where i = 1,…,N. In this
network model, the sink is considered to be located at the vertex, as shown in Fig. 1 and
responsible for collecting data from sensors. Sensors are uniformly deployed across χwith
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Fig. 1. Network area division into slices.
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density ρ. Although, we assume a slice based network area, we argue this slice shape is
general enough to approximate many other shapes e.g., triangle, square, rectangle etc.

In this work, we assume deployment of static heterogeneous node where nodes are
organized into clusters. The nodes are heterogeneous in terms of both functionality and
battery capability. By functional heterogeneity, we mean a cluster consisting of two
types of nodes: MNs and CHs. Similar to [6], we assume a WSN where nodes are
divided proactively into many clusters at the time of node deployment. Each MN senses
the environment, generates data, and periodically transmits the data to its CH. On the
contrary, the CH fuses and forwards the data received from both its MNs and neigh-
bouring CHs which are farther away from the sink. In this way data from a MN reaches
the sink through intermediate CHs. We consider that MNs have limited battery capa-
bility, whereas CHs are equipped with more durable battery. Without loss of generality,
we assume that each CH is located at the centre of its cluster [4]. Because of the
symmetric nature of area χ and uniform deployment, the formation of clusters in a slice
is also symmetric i.e., any two clusters with the same distance from the sink to their
centres cover the same area. We divide the area χ into N number of slices; therefore,
N types of clusters exist in the network. Here, the clusters located closest to the sink are
placed in 1st slice (1st type) and farthest from the sink are placed in Nth slice (Nth type).
Finally, we assume that in ith slice, there are j j[ 1ð Þ number of clusters.

3.2 Network Operation

We assume that each MN generates data at a rate n bits/sec. Further, we assume that a
CH transmits data to the sink via the shortest path. Precisely, a CH in the ith slice
forwards the data packet (formed by fusing the data received from its MNs and CH of (i
+1)th slice) to the closest CH in the (i-1)th slice. Next, the CH in the (i-1)th slice
employs the same procedure to choose the next forwardee CH for sending its data
packet. This process repeats till the data packet arrives at the sink. From the network
operation, it is clear that the CH bears more data pressure than the MN and hence, the
CH depletes its energy at a much faster rate than the MN. As a strategic point of view,
the role of a CH is more critical in maintaining network connectivity than the MNs.
Therefore, in this work, we focus our attention on energy depletion at the CHs.

3.3 Energy Model

We consider the first order radio model [7, 8] as the energy model, where energy
consumption of a node is dominated by its wireless transmissions and receptions; so the
other energy consumption factors such as for sensing is ignored. In addition to
transmission and reception, a CH also consumes energy for data fusion. According to
this radio model, energy consumed by a node for transmission and reception is as
follows: Energy consumption for transmitting a n bits packet over a transmission range
Rc is etr n; Rcð Þ ¼ eelec þ eamp R2

c

� �
n ¼ et n, where et ¼ eelec þ eamp R2

c and et is the
energy required to transmit one bit of data. Whereas, the energy consumption for
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receiving a n bits packet is ere nð Þ ¼ eelec n ¼ er n, where er ¼ eelec and er is the energy
required for receiving one bit of data. Finally, energy consumption for fusing n bits
packet is eda nð Þ ¼ ea n, where ea is the energy required for fusing one bit of data.

3.4 Channel Model

Motivated by [9], we use a Rician fading channel model to describe the channel
between two CHs and also between the CH and the sink. In this channel model, the
probability density function of the received signal amplitude is given by:

fR nð Þ ¼ n
r2

e� n2 þ s2=2r2ð ÞI0
n

ffiffiffiffiffiffiffi
2Rf

p
r

 !

where n is a normalized random variable that represents the fluctuation in the fading
process, r2 is the variance of the multipath components, s is the amplitude of the
Line-of-Sight component, I0 �ð Þ is the zero-order Bessel function of the first kind and Rf

is the Rician factor, given by: Rf ¼ s2
�
2r2. In this channel model, for a

transmitter-receiver separation distance l, channel gain is given as:

h lð Þ ¼ GtGrx2

4pl0ð Þ2
l
l0

� ��g

n ¼ L l0ð Þ l
l0

� ��g

n ð1Þ

where L l0ð Þ ¼ GtGrx2

4pl0ð Þ2 is the path loss of the close-in distance l0, Gt and Gr are the

corresponding gains of the transmitting and receiving antennas, x is the wavelength of
the carrier signal, g is the path loss exponent 2� n� 6ð Þ. Since n is random, correct
reception of a signal can be guaranteed only when it is represented on a probabilistic
basis. Accordingly, in our work, reliable reception of a signal is represented as
Pr erx � sf g� dr, where erx is the energy of the received signal, s is a predefined energy
threshold and dr is the required link reliability.

4 Analysis of Network Lifetime Optimization

We consider the definition of network lifetime as follows:

Definition (Network Lifetime): The network lifetime is defined as the time until the
first CH dies [4]. A CH is considered as dead when the residual energy is less than a
predetermined threshold. The threshold value for a CH is considered as when it is
neither able to transmit nor able to receive any data.

The average intra-cluster and inter-cluster traffic load carried by the CHs in the ith
i ¼ 1; . . .;N � 1ð Þ slice is given by p r2i � r2i�1

� �
q nu=2p and p R2 � r2i

� �
q nu=2p,

respectively. On the contrary, the average intra-cluster traffic carried by the CHs in the
Nth slice is given by p R2 � r2N�1

� �
q nu=2p. Let Ci be the number of CHs in the ith

slice. Therefore, Ci is approximately given by 2 ri
ri�ri�1

u
2p. Let Eij be the expected energy
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consumed by jth CH in the ith slice for transmitting all of its traffic to the nearest CH in
the (i−1)th slice and li be the physical distance between these two CHs. Therefore, the
expected energy consumed by jth CH in the ith i ¼ 1; . . .;N � 1ð Þ slice is given by:

Eij ¼ p R2 � r2i�1

� �
q n

u
2p

ri � ri�1ð Þ
2ri

2p
u

er þ et þ eað Þ

Eij ¼
R2 � r2i�1

� �
ri � ri�1ð Þ

2ri
q n er þ et þ eað Þ ð2Þ

where et ¼ eelec þ eampl2i . The expected energy consumed by jth CH in the Nth slice can
be calculated applying (2) and using the standard convention that a sum of terms is zero
if its lower index is greater than its upper bound.

Let eti be the over-the-air RF energy consumed when transmitting one bit from jth
CH in the ith slice to jth CH in the (i-1)th slice. So, the above (2) can be rewritten as:

Eij ¼
R2 � r2i�1

� �
ri � ri�1ð Þ

2ri
q n er þ et þ ea þ etið Þ: ð3Þ

According to the network model, the distance between two CHs in the ith slice and
the (i-1)th slice is given by:

li ¼
ri
2 for i ¼ 1; 2

ri�ri�2
2 for i ¼ 3; 4; . . .;N

�

Now, for given li and channel model (1), the over-the-air RF energy consumed for
receiving one bit, eri, is given as:

eri ¼ eti L l0ð Þ li
l0

� ��g

n:

For a Rician fading channel, the link reliability requirement can be expressed as:

dr ¼ Pr eri � sf g

¼ Pr n� s
eti L l0ð Þ

li
l0

� �g� 	

¼ e
�s

eti L l0ð Þ
li
l0


 �g

From the above expression, we can express eti as:
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eti ¼ �s
L l0ð Þ log dr

li
l0

� �g

Under shortest path routing, the maximum number of links of an end-to-end path is
N (i.e., maximum number of slices). Therefore, to generate the constraint on path
reliability, dp, the minimum link reliability must be:

dr ¼ d
1
N
p

Therefore,

eti ¼ �Ns
L l0ð Þ log dp

li
l0

� �g

¼ b lgi

where b ¼ �Ns
L l0ð Þ lg0 log dp

and it is a constant. Consequently, the energy consumed by jth CH

in the ith slice, given in (3), can be rewritten as:

Eij ¼
R2 � r2i�1

� �
ri � ri�1ð Þ

2ri
q n er þ et þ ea þ b lgið Þ ð4Þ

From (4), the expected energy consumption of a CH in a slice can be approximately
represented as a function of cluster radius. Our objective is to determine the optimal
radius of a cluster in slices that minimizes the expected energy consumption among all
CHs. This optimization problem can be formulated as follows:

min
r1;r2;...;rN

E1j; E2j; � � � ;ENj
� 

such that r1\r2\ � � �\rN ¼ R

8<
: ð5Þ

subject to

p r2i � r2i�1

� �þ XN

h¼i
r2hþ 1 � r2h
� �
 �

q n
u
2p

h i
� p

XN

h¼i�1
r2hþ 1 � r2h
� �

q n
u
2p

¼ 0 8 1� i�N
ð6Þ

n
XN

i¼1
p r2i � r2i�1

� �
q

u
2p

¼ n pR2q
u
2p

8 1� i�N ð7Þ

The constraint (6) guarantees inter-cluster flow preservation i.e. all data packets
generated at or forwarded to a slice are pushed out of it. The constraint (7) specifies that
the sum of all data packets generated at a given time duration in the network is
constant. If we examine both the function to be optimized and the constraints given
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above, we see that its objective function is monomial and the constraints are signo-
mials. Hence, its optimal solution can be found using generalized geometric pro-
gramming (GGP) as introduced in [10]. Once the radius profile of clusters is obtained
by solving the above optimization problem, we can ensure that all CHs deployed in the
sensor field deplete their energy at minimum rate and hence, optimal network lifetime
is achieved.

It has been observed in the recent past state-of-the-work [11] that, except mitigating
energy hole problem, predetermined node deployment shows significant improvement
in end-to-end delay, throughput, etc. Motivated by [8, 12], we proposed a predeter-
mined deployment strategy based on Archimedes’ spiral. We have examined different
standard geometric models e.g., Gaussian distribution and found Archimedes’ spiral to
be one that can be modeled as slice based network architecture because the successive
circular turns of Archimedes’ spiral have a constant separation distance. This feature
primarily motivates us to consider Archimedes’ spiral as a node distribution function.
The detailed features of the said spiral is given in the next section where we have
shown how Archimedes’ spiral based node deployment can be mapped or used for ring
sector based network architecture.

5 The Clustering Technique

The proposed energy balanced clustering strategy consists of evaluation of optimal
cluster radius, MNs/CHs deployment, cluster setup and routing path formation phases.
The evaluation of optimal cluster radius and routing path formation are already dis-
cussed in Sect. 4 and Sect. 3.2, respectively. In this section, we describe MNs/CHs
deployment and cluster setup phases.

5.1 Deployment Phase

In this section, a deployment function based on Archimedes’ spiral is proposed.

5.1.1 Archimedes’ Spiral
A spiral is defined as a curve, which emanates from a central point, getting progres-
sively farther away as it revolves around the point. An Archimedes’ spiral is a con-
tinuous spiral [8, 12] with polar equation Rd ¼ h B where Rd is the radial distance, h is
the polar angle and B is a real number whose value is constant. The distance between
two successive circular turns can be calculated using the value of B. One of the features
of the Archimedes’ spiral is that its successive circular turns have a constant separation
distance equal to 2πB (Fig. 2)

5.1.2 Deployment with Discrete Archimedes’ Spiral
As the Archimedes’ spiral is a continuous curve, to use it as a deployment function, it
should be transformed into discrete form so that MNs/CHs may be deployed at those
discrete locations. We propose the discrete spiral, as in (8) and (9), to be used as the
node deployment function.
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f hkð Þ ¼ hk B ð8Þ

where hk 2 2 k � 1ð Þp; 2 k p½ � for k ¼ 1; . . .;K:
Now, within the designated range of locations in each circular turn, discrete points

need to be identified for deployment. We propose to decompose hk for each k into
m discrete locations and at each discrete location nodes are deployed. The decompo-
sition of hk is given as follows:

hk mð Þ ¼ 2 k � 1ð Þpþmuk½ � ð9Þ

for k ¼ 1; . . .;K and for each k, m ¼ 1; . . .; 2puk
: In (9), uk represents the angular gap

between two adjacent nodes in kth circular turn as shown in Fig. 2. While deploying the
nodes at m discrete locations in each circular turn, we assume that deployment starts at
location m = 2p

uk
and ends at m = 1.

Our objective is to model Archimedes’ spiral as a node deployment function in
such a way that it approximately represents the ring sector based network area (Fig. 1).
In order to achieve our goal, we propose to decompose the ith slice into multiple
regions of size wi � wi, where wi ¼ ri � ri�1. Each of the regions would hold an
Archimedes’ spiral. We consider this spiral as a cluster, where point of origin of this
spiral is CH. MNs are deployed uniformly at discrete locations in each circular turn.

– The radius r0k
� �

of circular turn (Fig. 2) of proposed Archimedes’ spiral is con-
sidered approximately as:

1
2
2p k Bþ 2p kþ 1ð ÞB½ � ¼ p 2kþ 1ð ÞB

r0k ¼ pð 2kþ 1ÞB:

Therefore, the separation distance between two successive circular turns of
Archimedes’ spiral is r0k � r0k�1 ¼ 2pB.

– The relationship between the width of two successive circular turns in the proposed
Archimedes’ spiral and Rs is pB�Rs (Fig. 2).

– For the proposed node deployment function, the number of MNs and CHs deployed
in clusters of ith type is r2i � r2i�1

� �
uq
�
2 and ri u= ri � ri�1ð Þ, respectively. Fur-

ther, the number of MNs in any cluster is deployed uniformly at discrete locations
using a point as the centre where CH is located by controlling the values of hk and
uk , respectively.

Once the optimal cluster radius of each slice is obtained by solving (5)-(7), it is
required to know K and uk to implement the deployment scheme. The following
lemmas derived K and uk for a given region while maintaining coverage and con-
nectivity.
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Lemma 1: For a given region wi � wi, the required number of circular turns (K) should
stand in relation with wi as K � wi

�
2
ffiffiffi
2

p
pB

� �
, where B�Rs=p.

Lemma 2: In a given K circular region, for Archimedes’ spiral based node deployment
function, the angular gap uk between two adjacent MNs in kth circular turn stands in
relation with Rs as follows:

uk ¼ 2 cos�1 f hkð Þð Þ2 þ r0k
� �2�R2

s

2 f hkð Þ r0k

 !
:

Due to page limitation, the proofs of Lemma 1 and 2 could not be incorporated.

5.2 Cluster Setup Phase

Since the number of clusters in a slice, number of MNs under any cluster and
deployment locations are known a priori, no separate algorithm is designed for the CH
selection. Once the CH and MNs are deployed in a circular region based on the
proposed deployment function, a cluster is formed. In each such region, nodes (i.e.,
both MN and CH) are deployed using (8) and (9). The CHs are deployed at the origin
of each circular region. We claim that the proposed deployment is feasible. As reported
in [13], air-dropped deployment in a controllable manner is feasible even in an inac-
cessible terrain. We propose to compute the optimal cluster radius of each slice and
number of nodes in each circular region of the network off-line prior to the actual
deployment. At last, the pre-computed nodes are to be dropped (e.g. from helicopter)
using a point (i.e., CH) as the centre following the proposed deployment function. Real
life applications e.g., precision agriculture [11] implement node deployment using such
methods.

2πB 

( )kf θ at  m=1 

CH 

kϕ  

( )( )kf mθ  
( )( )Kf mθ  

ir′  

1ir+′  

sR  

( )kf θ at m= 2

k

π
ϕ

 

Fig. 2. Node distribution function based on Archimedes’ spiral.

A Predetermined Deployment Technique for Lifetime Optimization in Clustered WSNs 691



6 Performance Evaluation

Performance of the proposed Lifetime Oriented Clustering Structure using Archi-
medes’ spiral based node deployment (LOCS), reported in Sect. 5 is measured through
simulation. Simulation results of LOCS scheme are compared with two existing
clustering approaches namely Energy Balanced Clustering Approach (EBCA) [4] and
ATC [5]. During simulation of EBCA, CH is deployed at the centre of each cluster and
MNs are deployed random uniformly around the CH. On the contrary, during simu-
lation of ATC, CH is deployed at the middle of the square and MNs are deployed at
predetermined locations around the CH forming a grid topology.

6.1 Simulation Environment

The evaluation is performed using Matlab 7.0.1 simulator. We model all the three
schemes, under both ideal and realistic scenarios. Here, by ideal scenario we mean the
scenario considered during theoretical analysis in Sect. 4. On the contrary, in realistic
scenario, in addition to ideal scenario we consider a medium access control
(MAC) protocol which includes idle/sleep schedule of the nodes. Moreover, in realistic
scenario, energy consumption is considered for idle, sleeping and sensing in addition to
transmission, reception and fusion. The MAC protocol is implemented by IEEE 802.11
carrier sense multiple access with collision avoidance (CSMA/CA) [14]. This MAC
protocol defines two medium access mechanisms viz. distributed coordination function
(DCF) and point coordination function. Considering the decentralized nature of WSN,
DCF is the considered mechanism while simulating all the schemes. Further, we
considered a network area consisting of 6 slices. To bring all the schemes in the same
platform, during simulation, we have deployed same number of MNs and clusters in a
slice. Extensive simulation is performed with a confidence level of 95 % and average of
200 independent runs is taken while plotting the simulation graphs.

6.2 Simulation Metrics

To evaluate the performance of all the three schemes, energy balance, network lifetime
and throughput are considered as performance metrics. In our experiment, energy
balance is measured by the parameter energy consumption rate per CH in a slice as
given in (4). We define throughput as the amount of data (in terms of bits) received at
the sink per unit time and it is measured over a period of 1 s. We conducted three sets
of experiments where first set measures energy balancing in the network, second set
verifies the enhancement of network lifetime and third set measures the throughput.
During simulation, we consider initial energy of a CH and a MN as 50 J and 5 J,
respectively. Further, similar to [4], radio and channel models parameters are consid-
ered as et ¼ 60 nJ, er ¼ ea ¼ 50 nJ, l0 ¼ 10m, Gt ¼ Gr ¼ 1, g ¼ 4, τ = 10−17 J,
dr ¼ 0:99, x ¼ 0:125m and Rf ¼ 20 [9]. Finally, similar to [2], we assume Rs ¼ 10m
and n ¼ 400 bits. Unless, specified otherwise, we use the same parameters with same
values of the DCF mechanism as described in [14] during implementation of MAC
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protocol e.g., queuing delay, saturation point. In plots, scheme names with ‘(R)’ signify
performance under realistic scenario and without it under ideal scenario.

6.3 Energy Balance

Figure 3 shows ECR per CH for network consisting of 6 slices. We observe from the
plot that the nature of the graph for the LOCS is fairly straight. Further, it is observed
that in LOCS, for both ideal and realistic scenarios, the plot is almost constant for all
slices. For example, in ideal scenario, ECR per CH is 35.70 μJ/sec whereas in realistic
scenario, it is 62.48 μJ/sec. On the contrary, in both EBCA and ATC, it is observed that
ECR per CH varies abruptly in different slices. Also, in both the competing schemes, it
is observed that CHs in the 1st slice have maximum ECR per CH and CHs in the 6th
(farthest) slice have the lowest ECR per CH. This justifies that LOCS is relatively more
energy balanced compared to the competing schemes viz. EBCA and ATC. Now, for
all the schemes if we compare the results of both scenarios, it is observed that ECR per
CH (realistic) in all the cases is higher compared to ECR per CH (ideal). The additional
energy usage for realistic scenario is due to the implementation of MAC protocol.

6.4 Network Lifetime

The graphs illustrated in Fig. 4 represent the network lifetime. For ideal scenario, it is
observed that the network lifetime of LOCS is 11.57 % and 23.67 % more than that of
EBCA and ATC, respectively. On the contrary, for realistic scenario, it is 10.82 % and
19.74 % more than that of EBCA and ATC, respectively. Moreover, in LOCS the flat
nature of the plot ensures that in all the slices, network lifetime terminates in more or
less the same time as compared to EBCA and ATC. This ensures that energy in LOCS
is balanced to a greater extent than both the competent schemes. Now, if we compare
the simulation results of network lifetime both for ideal and realistic scenarios, network
lifetime is reduced in realistic scenario, as there is additional energy consumption due
to the implementation of MAC protocol.

15

25

35

45

55

65

75

0 1 2 3 4 5 6 7
Slice Number

E
C

R
 p

er
 C

H
 (

µJ
/s

ec
)

LOCS LOCS (R)
EBCA EBCA (R)

ATC ATC (R)

Fig. 3. Energy consumption rate per CH under ideal and realistic scenarios.
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6.5 Throughput

Figure 5 shows data throughput of LOCS, EBCA and ATC as measured at the sink
under the multi-hop benchmark. It is observed from Fig. 5 that for each of the com-
peting schemes’ throughput rises, then becomes steady and finally falls. Nevertheless,
in case of LOCS, once the curve becomes steady, it remains more or less steady
compared to all the competing schemes. It is due to the fact that in LOCS, nodes are
deployed in a more controllable manner compared to the methods used in both EBCA
and ATC. The controlled deployment handles the traffic intensity more judiciously than
other means of deployment resulting in reducing the possibility of packet collision and
congestion. We observed that the performance of average throughput improves over
EBCA and ATC by 10.46 %, and 39.32 %, respectively using LOCS.
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7 Conclusion and Future Work

In this work, we analyzed the problem of network lifetime optimization by balancing
energy consumption at different CHs in a clustered WSN. Analysis revealed the cluster
radius of each level have significant role in optimization of network lifetime by
avoiding energy hole [2]. Considering the results of this analysis, we developed a joint
deployment and routing aware optimal clustering strategy. Our proposed optimal
clustering strategy considered the deployment of both CH and MN at some predeter-
mined locations. To deploy both CH and MN at some predetermined locations, we
identified Archimedes’ spiral, based on which a deployment function is proposed for
distributing MN and CH. Simulation results clearly demonstrate our strategy’s domi-
nance over the existing two competing clustering strategies [4, 5] in terms of all the
three performance metrics viz. energy balance, network lifetime and throughput. In
future, the proposed clustering strategy may be made more realistic by considering 3-D
environment.
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Abstract. Building a controllable, reproducible, and flexible network envi-
ronment is essential for network behavior research. One key is to generate real
traffic data in a virtual network; this helps a virtual network perform as physical
network, and further facilitates analysis of the traffic characteristics. However,
due to the divergence between physical and virtual network topologies, the
traffic generated in virtual network are far from practice. In this paper, we
propose a traffic generating approach called IP-Mapping Traffic Replay. We
attempt to find an optimal IP mapping from physical network to virtual network
by computing the similarity. Once the mapping is known, we replay the traffic
data collected from a physical network on associated nodes in the virtual net-
work, so that the generated traffic in the virtual network reflects the trace in
physical. We implement IP-Mapping Traffic Replay in a simulated virtual net-
work using NS-3, and conduct a set of experiments to show its effectiveness.
The results demonstrate that our approach can replay the traffic data effectively
and efficiently in a virtual network that is mapped from physical network.

Keywords: Virtual network � Traffic generating � Traffic Replay �
IP-Mapping � Network simulator

1 Introduction

The explosive growth of information contains valuable information, but at the same
time, a huge amount of information would generate harmful traffic which poses a great
threat to cyber security. Recording the traffic data and then replaying them when
necessary is an important tool for analyzing the traffic characteristics. Mathematical
model, historical traffic [1, 2], Tcpreplay [3] and Tcpopera [4] provide approaches to
generate traffic data and replay the data in a network. Unfortunately, these existing
approaches cannot always capture the changing behavior of network attacks. First,
most proposed approaches such as network security tools testing, network attack
scenario building is extremely difficult to be fully implemented in a complex physical
network. Second, the historical traffic data are still not fully utilized due to the difficulty
of data replaying in a physical network. Finally, these works focus on the unit of traffic
upon replaying, and ignore the network environment impact on data replaying. As a
result, they cannot reflect the practical communication scenarios.
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One well known approach in cyberspace research nowadays is to build a con-
trollable, reproducible, and flexible network environment using virtualization tech-
nology and then conduct research in the virtual network. These virtualization tools
include Xen [5], KVM [6], etc., network simulators NS-3 [7], Omnet++ [8], etc.
Although a virtual network provides several features such as easy deployment, isola-
tion, scalability and flexibility, it is still difficult to satisfy the practical requirement of
researchers on replaying the network traffic collected from physical network, mainly
due to the divergence between virtual and physical network topologies.

In this paper, we focus on how to generate real traffic data in a virtual network. We
collect the trace data from a physical network, and use the trace as the traffic to be
generated. Then we build two models from physical and virtual network topologies
respectively, and formulate an interface similarity to describe the similarity between the
two. We then present the algorithm to solve the problem for acquiring the mapping
from physical network into virtual network. The mapping with the largest interface
similarity promotes the generated traffic data in virtual to approximate the real data in
physical. Lastly, we replay the data on the nodes in the virtual network for retrans-
mitting the traffic.

The main contributions of the paper are two-fold:
First, we formulate an interface similarity problem to match the physical and virtual

network topologies, and propose IP-Mapping Traffic Replay approach to generate
traffic data in virtual network.

Second, we implement the approach in NS-3 simulator, and conduct a set of
experiments to justify its effectiveness.

The rest of this part is organized as follows. The next section introduces the
background and existing works related to traffic data generation. Section 3 presents the
design of IP-Mapping Traffic Replay approach, and Sect. 4 reports the experimental
results. Finally, we conclude our work in Sect. 5.

2 Related Work

Tcpreplay is currently the most widely used traffic replay tool. It sequentially replays
traffic in a specific format at the link layer; the upper layer protocol does not need to
know the details. Similar to Tcpreplay, NBTRL [9] reads the packet file in pcap format
using Libpcap [10] to a certain replay point, then uses Libnet to send packets on the
replay point previously chosen.

Tomahawk [11] extracts client and server packets respectively from the original
traffic data, and sends the packets at the server node and client node. Tools such as
Monkey [12] send HTTP traffic to evaluate the performance of web service.
WireReplay [13] extends Tcpreplay to replay traffic at the transport layer rather than the
link layer. Tcpopera and improved Tcpopera [14] extract the TCP netflow from the raw
traffic file for building a sequence of status messages, they then replay the traffic upon
status change of client and server in the netflow unit. [15] designs and implements
ProxyReplay system to replay application layer traffic to test application proxy network
device.
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The essential difference of these traffic replay systems lays in the replay units. For
example, Tcpreplay and other similar tools replay traffic in the packet unit on the link
layer to create a complete reproduction of the original packet, but they cannot reflect
the interaction in the data transmission. Other tools that replay data at transport layer
focus on replaying TCP/UDP protocol sessions, but they ignore other protocols. Other
than the packet unit upon replaying, environmental effects also play an important role
upon traffic replay. Unfortunately, the existing replay systems always neglect the
environment elements; they simply replay the traffic using two roles: one server part
and several client parts. Figure 1 is a common example of a traffic replay system.

The importance of the authenticity of traffic is emphasized on [16] and the authors
design the LegoTG system, but without the environmental support, we still need to
feature extraction from the traffic trace. Mahimahi [17] records and replays HTTP
traffic and using multi Unix network namespaces to simulate clients and servers, but the
network topologies is limited. Van et al. [18] propose an approach based on IP
aggregation to improve the throughput, but, due to lack of environmental considera-
tions, the replay results do not reflect the details of network behavior which should be
signified by the raw data. For example, replaying the data that contain a DDoS attack
with the characteristics of a group attack behavior can only be used to test the func-
tionality of security devices, but they cannot reflect the characteristics of the attack
itself. Therefore, their approach cannot replay real traffic data well. The approach
proposed in [19] takes both replay control and environment emulation into account, it
models the WLAN environment and involves complex state transitions, but it is not a
common replay method to be straightly used in the virtual network platform.

3 IP-Mapping Traffic Replay

In this section, we will first present the overview of IP-Mapping Traffic Replay
approach, and then we introduce how to build the physical network model and virtual
network model. With the two models, we formulate the network mapping as interface
similarity problem and describe an effective solution. Finally, we describe the imple-
mentation details on data replaying and prove the complexity.

Traffic replay serverTraffic replay server

Traffic fileTraffic file

Interface A
Client

Interface B
Server

Traffic fileTraffic file

Traffic replay server BTraffic replay server BTraffic replay server ATraffic replay server A Traffic replay serverTraffic replay server

Traffic fileTraffic file

Client Server

Fig. 1. Common design of traffic replay systems
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3.1 Design Overview

We capture the real traffic data from a particular router interface named as traffic
capture point. The traced data contain multiple endpoints and communication details
which can be distinguished by the IP addresses. It is worth noting that we cannot
acquire the whole physical network topology, since we just get the data from one
interface of the router. In contrast to the physical network, the virtual network is built
on demand by the administrator, so the topology is known.

Motivated by this, upon replaying the real traffic in a virtual network, we can map
the physical network endpoints into virtual network endpoints; replace the physical
endpoint IP addresses extracted from traffic data with virtual endpoint IP addresses.
Then, each endpoint in the virtual network fetches the traffic data collected from the
associated physical node, and replays them following the physical traffic sequence.

Figure 2 shows the overall framework of IP-Mapping Traffic Replay method. The
physical router takes charge of capturing traffic data from the interface, after the data
are acquired; a physical network model is built by parsing the data that records the IP
addresses. Then, the network is split into two sets according to the communication
direction, i.e., R_IPA and R_IPB. For the virtual network, because the topology is
known, it can be divided into several candidate pairs by different virtual interfaces, e.g.,
v_interfacei and v_interfacej will generate two different pairs of sets. To determine the
best pair, we calculate the interface similarity between physical sets and each pair of
virtual sets, and denote the one that is the largest similarity. This will generate a
mapping between physical nodes and virtual nodes. Finally, we replay the physical
traffic data in the virtual node, thereby helps the virtual network performs as real.

Fig. 2. Framework of IP-Mapping Traffic Replay
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The challenges of this method mainly consist of three parts: (i) how to map the
traffic capture physical point to a virtual interface (called virtual capture interface),
(ii) how to assign real IP addresses to virtual nodes, and (iii) how to replay the packets
in physical traffic order. We will describe our solution in the following sections.

3.2 Practical Network Modeling

We employ network capture tools like Libpcap to analyze the traffic in an offline
manner; we record the source IP address, destination IP address, as well as the
timestamp of each packet. After removing the duplicated IP addresses, we can acquire
the set defined as below:

R IP ¼ R IP1;R IP2; . . .R IPnjn[ ¼ 2f g ð1Þ

We define the traffic capture interface as r_interface, therefore, R_IP1,R_IP2,…,
R_IPn are the IP addresses in the traffic data captured over r_interface.

Take the R_IP as vertices, considering that each req packets is always associated
with an ack packet, we view each packet as an undirected edge, i.e., e=(R_IPi, R_IPj).
Then, we get the edge set E= {e=(R_IPi,R_IPj)| R_IPi,R_IPj2R_IP}. Finally, we can
construct an undirected graph R_Graph=(R_IP,E) from the real traffic data.

Proposition 1: R_Graph is a bipartite graph, i.e. R_IP can be partitioned into two
disjoint subsets R_IPA and R_IPB which satisfy: R_IPA\R_IPB = ¢, R_IP=
R_IPA[R_IPB. That is, each edge (R_IPi, R_IPj) in R_Graph is associated with two
vertices, R_IPi and R_IPj which belong to two different sets for R_IPi2R_IPA,
R_IPj2R_IPB.

Proof: To prove Proposition 1, we should firstly prove that R_Graph has least two
vertices, and its length of all circuits is even [20].

Sufficiency: Without doubt, |R_IP|>=2, C is a circuit in R_Graph, so that C=(R_IP0,
R_IP1, R_IP2,…, R_IPn-1, R_IPn, R_IP0). Consider that R_Graph is a bipartite graph,
the element in R_IPA (or R_IPB) does not communicate with IP addresses in the same
set. R_IPi (i = 0, 1,…, n) must occur alternately in R_IPA and R_IPB. We can provide
{R_IP0, R_IP2, R_IP4,… R_IPn}2R_IPA, {R_IP1, R_IP3,R_IP5, …, R_IP n-1}2R_IPB,
suggesting that n is even; therefore, the number of edges in C is even.

Necessity: Apparently, |R_IP|>=2. If the graph R_Graph is not completely connected,
then all the branches of R_Graph follow the discussion below.

We suppose that R_IPx, R_IPy, R_IPz2R_IP. If R_IPx communicates with R_IPy

and R_IPy communicates with R_IPz, then R_IPz cannot communicate with R_IPx

over the interface of physical router, so that the circuit number will be 0 which is even.
As a result, R_IPx and R_IPz can be put into R_IPA, while R_IPy can be put into
R_IPB. Otherwise, if R_IPz communicates with R_IPx, the circuit length is odd, the
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edge connecting vertices R_IPx and R_IPy indicates that there exists a communication
packet in the traffic data, as well as R_IPy and R_IPz,. If R_IPx communicates with
R_IPz through r_interface and R_IPy communicates with R_IPz through r_interface as
well, according to the routing definition, R_IPx and R_IPy should be placed in the
same side of the r_interface and they should not communicate across the r_interface.
Therefore, the communication data between R_IPx and R_IPy should not exist in
the real traffic. This contradicts the assumption, so that the necessity is established.
Finally, Proposition 1 is proved.

The algorithm described in Algorithm 1 partitions the bipartite graph R_Graph into
two disjoint sets R_IPA, R_IPB. First, all the nodes are not marked and regarded as not
being visited. Then the algorithm traverses all nodes. If it finds that a node has not been
accessed, it sets the node’s color BLACK, and then employs the depth first search

Algorithm 1. Partition Algorithm  
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algorithm (DFS). In the DFS procedure, the root node and its children nodes will be
marked with an opposite color. Note that if the node and its children nodes cannot be
marked with the opposite color in the procedure, which means the pcap file is mixed
with muti interfaces captured traffic, this occasion cannot be handled in this paper.
Finally, all nodes will be traversed. The nodes labeled as BLACK will be put into
R_IPA and nodes labeled as WHITE are placed into R_IPB.

3.3 Virtual Network Modeling

As mentioned before, the virtual network topology is known upon deployment. Similar
to the physical network model, there exist two disjoint IP address sets associated with a
virtual network interface. The virtual router’s interface set is determined by:

V INTERFACE ¼ v intreface1; v intreface2. . .V intrefacenjn[ 2f g

The problem is that there exist several cuts to divide the virtual network. For
example, as shown in Fig. 3.

For any virtual router’s interface v_interfacei, virtual nodes communicating through
v_interface can be partitioned into two disjoint sets: V_IPA and V_IPB. We calculate
the virtual network model under the assumption that the global routing information is
known. The algorithm described in Algorithm 2 traverses each routing path between
the virtual network subnets. The main idea behind is that each skip will encounter one

Router 1 Router 4

Router 3

Router 2 Router 5

A1

A2

A3

A4

A5

B1

B2

B3

Traffic
replay

A4 traffic file

A5 traffic file

A3 pcap file

B3 traffic

A2 traffic file

A1 traffic file

B1 traffic file

B2 traffic

Subnet 1

Subnet 2

Subnet 3

Subnet 4

Traffic file

Fig. 3. Topology of virtual network
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interface; so that we can insert nodes of different virtual subnets into V_IPA and V_IPB
of the encountered v_interfacei. After a two-for-loop, the algorithm calculates the
V_IPA and V_IPB for all interfaces in V_INTERFACE.

3.4 Interface Similarity

After obtaining the virtual network model, we should determine one v_interface from
V_INTERFACE that performs most similar with the physical interface r_interface, and
treats it as the virtual capture interface. To map a v_interface into the r_interface, there
are two ways: (R_IPA→V_IPA, R_IPB→V_IPB) or (R_IPB→V_IPA, R_IPA→
V_IPB). For simplicity, we assume that|V_IPA|>=|V_IPB|,|R_IPA|>=|R_IPB|. For any
v_interfacei in V_INTERFACE we will encounter three conditions:

1. |V_IPAi| >= |R_IPA|, |V_IPBi| >= |R_IPB|
2. |V_IPAi| <= |R_IPA|, |V_IPBi| <= |R_IPB|
3. |V_IPAi| >= |R_IPA|, |V_IPBi| <= |R_IPB| or |V _IPAi| <= |R_IPA|, |V_IPBi| >=

|R_IPB|

Algorithm 2. Virtual Network Partition Algorithm  
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We need to define a measurement metric to calculate the comprehensive similarity of
the two sets, for acquiring the best-fit mapping. In this paper, the similarity is defined by
a_factor, which is the absolute similarity of mapping (R_IPA → V_IPA, R_IPB →
V_IPB). To avoid the absolute similarity deviation of condition 3, we introduce x as a
smoothing factor, and define s_factor as a smooth similarity. If |V_IPA|>=|R_IPA|,
|V_IPA|/|R_IPA |=x. In the case of fewer gaps between a virtual network model and a real
network model, generally select x = 1. Then, a_factor and s_factor are determined by:

a factor ¼ ðjV IPAj=jR IPAjÞ � ðjV IPBj=jR IPBjÞ

s factor ¼ ðjV IPAj=jR IPAj[ 1?x :ðjV IPAj=jR IPAÞ � =ðjV IPBj=jR IPBjÞ

The similarity comparison is conducted as follows. We compare the smooth sim-
ilarity s_factor first. If s_factor is different to the previous value, the v_interfacei with a
larger s_factor suggests that it is more similar with r_interface. If the s_factori is the
same with s_factorj, we need to further compare a_factor. Similarly, if the value of
a_factor is larger than the previous one, the v_interface would be more similar with the
r_interface. We sort the v_interfaces in V_INTERFACE set according to the steps above
and finally choose the best v_interface whose s_factor and a_factor are the largest
among all interfaces. This interface will be regarded as the mapping point for the
physical capture point.

Let the virtual capture point be v_interfacem, the corresponding map is (R_IPA →
V_IPAm, R_IPB → V_IPBm). We can map elements of R_IPA and V_IPAm one-to-one,
so as to R_IPB and V_IPBm. If either condition 2 or condition 3 occurs, implying that
multiple IP addresses in R_IPA (or R_IPB) will be mapped into the same virtual IP
address, we can continue to scratch the elements of V_IPAm or V_IPBm from the
beginning of the set.

3.5 Traffic Replay

We replay the traffic data in IP layer and only replay non-broadcasting IP packets. Once
the mapping from physical nodes to virtual nodes is known, the real traffic will be
retraversed for data replay. The source and destination IP addresses in the real traffic
will be re-placed with the corresponding virtual IP addresses, meanwhile, the traffic
data will be split by the virtual source nodes. The traffic data after being split will be
transmitted by the virtual nodes using socket APIs, which are provided by the virtu-
alization tools.

To guarantee that the replayed traffic in the virtual network can arrive at the virtual
capture point following the order in real traffic, the recorded timestamps should be
recalculated. For each packet pkti, ti is referred to as the original timestamp of packet,
and pkti will be send by v_nodej. According to global virtual network routing infor-
mation, we can calculate the link delay delayj from v_nodej to interface v_interfacem,
so the new timestamp of pkti in the virtual network should be ti-delayj. In order to avoid
negative relative, let t_off be a global non-negative time offset. Consequentially, pkti
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will be transmitted in the virtual network at the timestamp Ti, where Ti=ti-delayj+t_off.
Finally, the virtual network system will unify the sequential order and control the
transmission speed when replaying the packets.

3.6 Complexity

The IP-Mapping Traffic Replay approach mainly consists of the IP-Mapping phase and
the Traffic Replay phase. The Traffic Replay phase just takes charge of sending packets
and is easy to implement. Therefore, we mainly discuss the complexity of IP-Mapping
phase.

Let n be the total number of the packets in the original traffic from the physical
network, m is the number of IP addresses (i.e., |R_IP|), and k is the number of the
subnets in virtual network topology. As mentioned before, the IP-Mapping phase can
be divided into four phases, and the time complexity of each phase is discussed as
follows:

Phase 3.1: Real traffic handle. The time of this phase should be the sum of the time to
traverse real traffic and the time to remove the duplicated IP addresses. The complexity
of data traversing is O(n). The IP address is an unsigned long integer. The time
complexity of IP addresses removal using a sorting algorithm will be O(nlog2n); thus,
the complexity of phase 3.1 is O(n)+O(nlog2n);

Phase 3.2: Calculate R_IPA and R_IPB. The time of this phase is directly related to the
complexity of R_Graph. In our implementation, we leverage the adjacency table to
store the graph. Therefore, the complexity is O(m+e), where e is the number of edges;

Phase 3.3: Calculate V_IPA and V_IPB of each v_interface. Phase 3.3 compromises
two level loops for k, to the overhead of these loops is O(k2). The inside loop traverses
the routing information to implement set division (O(k2*log2k)). Let x be the average
length of routings, the total time complexity will be O(k2*log2k);

Phase 3.4: IP-Mapping. Time for mapping the real IP to the virtual IP will be O(m).

Consequentially, the time complexity of IP-Mapping is O(n) + O(nlog2n) + O(m+e) +
O(m) = O(nlog2n) + O(m+e) + O(k2*log2k).

The above analysis demonstrate that the IP-Mapping processing time is mainly
affected by the number of packets in the real traffic, the number of IP addresses, and the
complexity of the virtual network. Since the number of packets (i.e., n) is far larger than
the other parameters, the overall complexity is considered to be O(nlog2n).

4 Evaluation

4.1 Experimental Setup

We use the widely used LLS_DDOS_1.0 attack scenario data set from MIT Lincoln
Laboratory [21], and adopt their method to process the LLS_DDOS_1.0 attack. The
five phases of the attack scenario are:
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(1) IP Sweeping: Sending ICMP Requests to multi-type IP addresses and determining
the active hosts through the ICMP replies; (2) Probing: Probing the live IP addresses to
search the Sadmind daemon that are running on these hosts; (3) Breakin: Breaking in
the hosts via the Sadmind vulnerability; (4) Installation: Installing Mstream DDoS
[22] attack software into three hosts selected from phase 3); (5) Attack: Starting attack.

Our case chooses the internal network scanning data LLS_DDOS_1.0-inside.-
dump. We use this data because it contains an integrated attacking scenario, which will
help to clearly present how to replay traffic in a virtual network. Our experiments aim
to demonstrate the attack behavior through traffic replaying in one case of virtual
network topology, as shown in Fig. 4.

To construct the virtual network, we employ NS-3 simulator which provides suf-
ficient APIs for simply scheduling a specific event at a specific time. In addition, it also
provides a tracing mechanism for acquiring traffic file in pcap format from any
expected interface.

4.2 Experimental Results

First, LLS_DDOS_1.0-inside.dump was processed, and the error in Algorithm 1 is
occurred. This error indicates that LLS_DDOS_1.0-inside.dump is mixed with traffic
from multi-interfaces. According to the information provided from [21], the data should
mix the communication traffic between inside and outside hosts and the mirror traffic of
the inside switch. We filter the packets that don’t satisfy the prerequisite. The
LLS_DDOS_1.0-inside.dump described below is referred to as the filtered data.
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Fig. 4. Virtual network topology
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In the original file, there exist 30744 IP addresses to be mapped. The number after
bipartite graph partition is 34055 for R_IPA and 319 for R_IPB. The partition result
illustrated in Fig. 5 indicate that the set of IP addresses of this traffic is very large,
implying that it is in full compliance with the characteristics of the attack.

Finally, the interface v_interface4 which is marked shadow in Fig. 4 is selected as
the virtual capture interface. |V_IPA|=50, |V_IPB|=27, real factor=0.000124265,
smooth factor=0.000124265. As a result, |V_IPA|<|R_IPA|, |V_IPB|<|R_IPB|, so that
multi real IP addresses would be mapped to a single virtual IP address. Some cases of
the mapping are illustrated in Table 1.

There are 77 virtual nodes for transmitting the traffic, so the original traffic file will
be split into 77 smaller files. The source IP and destination IP address would be
replaced with the corresponding virtual IP address. We use NS-3 APIs to capture the
traffic flow over each router interface, with the aim to analyze the results upon data
replaying.

|R_IPA|=34055 |R_IPB|=319

r_interface

33.221.109.20
53.172.111.20
83.106.112.20
43.61.114.20

119.124.114.20
172.16.115.20

192.168.1.20
206.3.63.20

197.182.91.20
134.205.131.20
135.13.216.20
194.7.248.20

Fig. 5. Model of real traffic

Table 1. Part of the mapping results

R_IPA V_IPA R_IPB V_IPB

172.16.115.20
99.32.44.0
…

11.0.0.38 216.40.24.2
206.3.63.20
…

14.0.1.12

172.16.116.20
15.107.45.0
…

11.0.0.35 192.254.26.2
197.182.91.20
…

14.0.1.8
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IP Sweeping Phase: We observe the ICMP Request packets in Virtual_LLS_DDOS.
pcap, and then we pay particular attention to packets whose ping destination is multiple
IP addresses. Finally we find that the source IP of these packets is 14.0.5.7, as shown in
Fig. 6. We identify that 14.0.5.7 is the attacker who is in charge of the whole attacking
process. Figure 7 shows several replies of Ping command that are recorded in the traffic
attacker.pcap captured at this node.

Probing Phase: We search for the Sadmind and Portmap packets in attacker.pcap to
find out which node has the Sadmind vulnerabilities. As we can see from the results
illustrated in Fig. 8, the attacker has probed 11.0.0.38, 14.0.7.4, 11.0.0.27, 14.0.7.5,
11.0.0.12, 14.0.6.8, 11.0.0.29, 11.0.0.21, 14.0.7.6, 14.0.6.4 respectively, and gets
responses from 11.0.0.38, 14.0.6.8, 11.0.0.29, 14.0.6.8, 11.0.0.12 etc.

Breakin Phase: Attackers choose the victims according to the list of hosts that exhibit
Sadmind vulnerability, so we filter the packets associated with the Telnet protocol.
Figure 9 shows a fraction of the communication data. As we can see, the attacker chose
11.0.0.38, 11.0.0.29 and 14.0.6.8 and begins to take charge of these three hosts.

Fig. 6. IP Sweeping generated by 14.0.5.7

Fig. 7. Ping replies to 14.0.5.7

Fig. 8. Probing phase
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Installation Phase: Fig. 10 shows that the attacker selects 14.0.6.8, 11.0.0.38,
11.0.0.29 as victims to install MStream DDoS attacking program. We mark 14.0.6.8,
11.0.0.38, and 11.0.0.29 as victim1, victim2 and victim3, respectively. Figure 10
illustrates a part of the RSH communication process. As we can see, WireShark tells
that the application layer information is a Server->Client Data of hacker2.

Mstream DDOS Attack Phase: Before sending a large amount of sequential TCP
packets, we search for packets that satisfy: (i) the source is one of 11.0.0.38, 11.0.0.29,
14.0.6.8 and (ii) the destination is the other two IP addresses respectively. From the
filtered result we can observe that the Master program is installed in the host with IP
11.0.0.38, i.e., victim2. From the results of attack process shown in Fig. 11, we are
confirmed that 14.0.3.10 was attacked. The attacked port is not fixed, and the source IP
addresses in the attacking traffic are not limited to the three victims. All these infor-
mation obtained from the replayed traffic in the virtual network conform to the sig-
natures of MStream DDoS attack.

Fig. 9. Breakin Phase

Fig. 10. Installation Phase

Fig. 11. Mstream DDOS Attack Phase
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According to data obtained from the virtual network we can infer the following
conclusions. (1) The IP address of the attacker is 14.0.5.7. (2) The IP addresses which
are controlled by the attacker are 11.0.0.38, 11.0.0.29, 14.0.6.8. (3) The MStream
DDoS Attack master node’s IP is 11.0.0.38. (4) The node who is being attacked is
14.0.3.10. The IP-Mapping Traffic Replay approach maps the real traffic completely to
the virtual network so that users could get data from any expected interface and then
handle these data on demand. This mapping between IP addresses mentioned above
and the real IP addresses is shown in Table 2.

The labeled data set provided in [21] also indicate the results in practical scenario:
(1) The IP address of the attacker is 207.46.179.15. (2) The inside network nodes
controlled by the attacker are 172.15.115.20, 172.16.112.10, 172.16.112.50. (3) The
node that is attacked is 131.84.1.31. It is different from the fact that the source IP
addresses of the attack packet are spoofed in LLS_DDOS_1.0-inside.dump, however,
in the virtual network, these spoofed IP addresses are mapped into the corresponding
virtual IP addresses, and the attack traffic is send by all these mapped nodes, but these
do not influence the replay process and result.

It is worth noting that we only present one case to show how to replay real traffic in
a virtual network. In practical scenarios, users can change the virtual network topology
and modify the properties of virtual network elements such as adding an ACL function
for a virtual router or changing the routing protocols so that the traffic information is
free to access and process. This suggests that our approach will provide great conve-
nience to users with the high controllability and flexibility which are introduced by the
virtual network.

5 Conclusions and Future Work

In this paper, we analyze the traffic replay problem in a virtual network, and propose an
IP-Mapping Traffic Replay approach to generate real traffic in the virtual network based
on IP-Mapping which maps the physical nodes into virtual nodes. We implement a
prototype system and evaluate it on an NS-3 built virtual network. The results show
that our approach greatly improves the reality of the network emulation or simulation
by replaying the traffic collected from the physical net-work. We believe that this
approach help researchers to build a more authentic virtual network for further
exploring the potential value of real traffic.

Table 2. Mapping relation

Mapped IP Real IP

14.0.5.7 207.46.179.15
11.0.0.38 172.16.115.20
14.0.6.8 172.16.112.10
11.0.0.29 172.16.112.50
14.0.3.10 131.84.1.31
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In the future, we plan to collect real traffic from multiple physical interfaces, and
replay them over multiple interfaces in a virtual network. In addition, we plan to
implement distributed traffic replay system in a virtual network to improve the capa-
bility and scalability of IP-Mapping Traffic Replay.
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Abstract. Fault tolerance is one of the crucial challenges for HPCs to achieve
exascale. In this paper, we consider the impact of the predictions that fail to
precisely identify the fault-occurrence time on uncoordinated proactive
checkpointing/restart (C/R). We extended Aupy’s model in the presence of the
uncoordinated proactive C/R and distorted predictions. We then propose optimal
strategies for deciding when to accept the predictions, and provide algorithms
for the optimal storage interval for the periodic C/R. The results show that the
proposed method can significantly improve the performance of the system.
Furthermore, our case study indicates that the recall of the predictor is more
important than precision for our system.

Keywords: Proactive fault tolerance � Uncoordinated checkpointing � Predic-
tion � High performance computer (HPC)

1 Introduction

Fault tolerance is a crucial technique for high performance computer (HPC) to achieve
exascale. The overall mean time between failure (MTBF) of HPCs decreases with the
system size since the reliability of modern processors is not perfect [1, 2]. This issue
will threaten the productivity of extreme-scale systems [3]. The most widely used fault
tolerance approach is coordinated periodic checkpointing/restart (C/R) which will be
prohibitively expensive for extreme-scale systems [5]. Thus, the multi-level check-
pointing technical [6–8] was proposed to alleviate this issue. Although this technique
can reduce the system-downtime caused by C/R, it remains a reactive technique: these
methods cannot handle the failure until system has been suspended by the failure [12].
Thus, the rework overheads are huge if the failure occurs at the later part of the
computing fragment. In cooperation with failure prediction methods, proactive fault
tolerance techniques handle failures by performing proactive actions before the failure
occurs. Even though remarkable failure prediction methods have been introduced over
the past few years [9–11], none of them can perfectly predict all failures. Therefore,
proactive fault tolerance and failure prediction methods have to be used in conjunction
with reactive fault tolerance (e.g. periodic C/R). This paper focuses on the system with
both proactive and reactive fault tolerance.
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The coordinated proactive C/R [12] is a popular technique for reducing the rework
time by writing a checkpoint right before the failure occurs. Although this technique is
reliable, it is also costly. One ideal mechanism is the uncoordinated proactive C/R.
However, the system needs to deal with the domino effect [16]. In this paper, we
consider only the case of fault tolerant protocols that provide a consistent recovery (by
using message logging techniques), immune to the domino effect [14].

This paper aims at providing a better understanding of the uncoordinated proactive
C/R method with prediction. The key contributions of this paper are as follows.

• We extend Aupy’s model [13] to characterize the proactive fault tolerance system
using the uncoordinated proactive C/R.

• Based on our model, we design the optimal periodic C/R and proactive action
policies.

• We propose policies that determine whether the prediction should be accepted.
• We propose a method for determining the optimal length of the computing frag-

ment. When we choose the optimal length of the computing fragment the fault
tolerance overheads will be minimized.

• We evaluate our method under different system settings using a discrete event
simulator.

• Our case study shows that the recall of the predictor is more important than the
precision in the context.

The main notation of this paper is presented in Table 1.

Table 1. Description of symbols

Symbol Decription

r, p Recall(precision) of the predictor
q Probability to take prediction into account
τ Time inverval of periodic checkpoint
Ts The effective operating time
Tnf The fault-free execution time of the application with periodic C/R
Tlost The average extra overhead induced by one failure
D The average prediction distortion
Dl The overhead factor of message loading during recovery
∅ Uncoordinated recovery factor
m MTBF of the platform
m’ MTBF of single component
mlost Mean time between unpredicted failures
mhit Mean time between predicted failures
C The overhead of writing a periodic checkpoint
R The restart time
Cp The overhead of writing a uncoordinated proactive checkpoint
t fault-occurrence time
Ttotal The expected execution time
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2 Related Work

There are two key techniques of proactive fault tolerance: the failure prediction and the
proactive action. Considerable researches in the field of failure predicting method have
been proposed in the past few years. In order to analyzing the system logs, a dynamic
meta-learning approach was introduced by Gu [17]. Depending on different rules, the
predicting engine can switch between different methods. Nakka [18] investigated the
logs of a productive system and proposed an approach which is able to extract the past
and future failure distributions for each failure event. Based on these methods, they use
different decision tree classifiers to predict the failures. However, these two methods
are difficult to implement in practice since they require the precise overview of the
system architecture. Based on signal analysis concepts, Gainaru [9] proposed Event
Log Signal Analyzer (ELSA). ELSA is a toolkit which can get a more realistic over-
view of the entire system. The experimental results showed that this approach improve
the effectiveness of proactive fault tolerance. By using data mining techniques, the
ELSA has been improved in [19].

The most widely used techniques of proactive action are the C/R and migration.
Remarkable optimization strategies had been developed for reducing the overheads of
C/R techniques [6–8]. There are also many studies focus on modeling uncoordinated
reactive C/R [15].

Few studies focused on the impact of prediction and proactive action on the
periodic C/R. Gainaru [10] studied the influence of prediction on the periodic C/R.
However, they only replace the MTBF by the mean time between unpredicted faults of
an existing model. Mohamed [12] studied the combination of failure prediction,
coordinated proactive C/R and coordinated periodic C/R. A model that reflects the
expected computing efficiency of fault tolerance has been proposed by them. They also
optimized the periodic checkpointing interval by the model. Aupy [13] further
extended the classical first-order model by providing the optimal strategy to decide
whether and when to accept the prediction. They also derived the optimal length of the
computing fragment in this context. Compared to a fault tolerant method without
prediction, their approach is capable of improving system productivity significantly.
All of these studies considered the coordinated proactive C/R method as the proactive
action. These methods can be further improved, because it is prohibitively expensive
for extreme-scale systems [5].

The uncoordinated C/R has been less frequently modeled. Zheng [4] proposed a
local C/R technique and prove it has a positive impact on the proactive C/R overheads.
However, the midplanes of the system they considered are independent. Thus, the
model doesn’t consider the overheads of message logging. Bosilca [15] introduced a
unified model to characterize both coordinated C/R and uncoordinated C/R (with
message logging). The results of their analytical comparison proved the validity of the
model. However, all these studies only consider reactive C/R methods.

Unlike all the previously mentioned studies, we focused on improving the
uncoodinated proactive C/R approaches with message logging. To the best of our
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knowledge, this paper is the first to consider the mathematics of the combination of
failure prediction, uncoordinated proactive C/R with message logging and coordinated
periodic C/R. We have also provided a model and a detailed analysis of the extra
overheads caused by the fault tolerance approach and failures.

3 Framework Design

This paper aims at a combinative fault tolerant method including fault prediction,
uncoordinated proactive C/R and coordinate periodic C/R. Our objective is to minimize
the expected execution time (Ttotal) of the application. For simplification, we wish to
minimize the waste ratio. The waste ratio is the time that the platform is not executing
effective applications divided by Ttotal of the execution.

3.1 The Strategy of Checkpointing

Like [13], this study considers a HPC system subject to a fault tolerance and failure
events, and ignores the specific architecture of the system. A failure event is defined as
an event that immediately interrupts the system. We consider a system with N pro-
cessors that work concurrently, and use coordinated periodic C/R for back up fault
tolerance. The periodic checkpoints are written to stable storage at fixed intervals of
length τ. The average overhead of taking a periodic checkpoint is denoted as C. We
enforce that τ > C in this study. Periodic C/R is responsible for the failures that fail to
be forecasted by the predictor. When a failure interrupts the platform, the application
must recover from the last checkpoint.

3.2 Prediction and Proactive Action

Different from most related works, this paper dose not assumes that the predictor can
precisely predict the failure-occurrence time. The average prediction distortion is
denoted as D. In fact, if the predictor can precisely predict the fault-occurrence time,
the system states are always consistent because we can write a checkpoint just before
the fault occurs. Thus, there is no orphan process in the system. In this case, the system
can be characterized by Aupy’s model [13], and one only needs to reset the cost of
proactive C/R. Thus, we only model the system with imperfect predictor. As shown in
Fig. 1, if process P2 rolls back, P1 and P3 become orphan process because their state
depends on the messages (m4 and m5) that are seen as not sent yet. In this paper, we
consider the system use an improved pessimistic message logging technique to deal
with this issue. Instead of logging all messages of the application, the system only log
the messages that sent and received by the suspected processes after an accepted
prediction.
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The duration of writing a uncoordinated proactive checkpoint is Cp. The recall and
precision of the predictor are defined as Tp

Tp þFn
and Tp

Tp þFp
; respectively. Tp is true

positive events. Fp is false positive events. Fn is false negative events. The reliability of
the platform is characterized by the system MTBF. The system MTBF is denoted as
m. Consider a platform with N processors whose individual MTBF is m

0
, then m ¼

m
0
=N [13]. To characterize the impact of the failure prediction and proactive actions,

we consider two quantities: mlost (mean time between missed failures) and mhit (mean
time between predicted failures). Thus, the rate of missed failures is 1

mlost
¼ 1�r

m , and the

rate of identified failures is 1
mhit

¼ r
m�p.

4 Model

4.1 The Model Without Failure Prediction and Proactive Fault Tolerance

In this section, we revisit Aupy’s approach. If the waste ratio is defined as O, and
O ¼ Ttotal�Ts

Ttotal
. Their work [13] proposed that

O ¼ C
s
þ 1� C

s

� �
1
m

s
2
þR

� �
: ð1Þ

The τopt that minimizes O is approximated as sopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 m� Rð ÞCp

.

4.2 The Complete Model

In this section, we propose a mathematical model that characterizes the platform with
failure prediction, uncoordinated proactive C/R, and coordinated periodic C/R.

m1

m2

m3 m4

m5

P1

P2

P3
distortion

fault-occurrence time

predicted 
occurrence 

time

Cp

C

C

C

C

C

C

Fig. 1. Uncoordinated proactive C/R with imperfect prediction
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We consider the following policies.

• The length of computing fragment is denoted as τ.
• If there is enough time to finish the proactive operation, the system may still ignore

the prediction. This happens with a probability 1 − q. Thus, the system accepts the
prediction with probability q.

• The average prediction distortion is denoted as D. D ¼ t � t
0
where t denots the

actual fault-occurrence time and t
0
denotes the fault-occurrence time predicted by

the predictor.
• Remain that we consider only the case of fault tolerant protocols that provide a

consistent recovery (by using message logging techniques), immune to the domino
effect. The overhead of message logging is characterized by an overhead factor Dl.
Thus, the overhead of message logging can be denoted as D� Dl.

• The recovery overheads of the uncoordinated C/R is ∅R. ; 2 0; 1½ � is the unco-
ordinated recovery factor.

Our objective is to derive an expression for the waste ratio. Obviously, the
fault-free overheads are unchanged: Onf ¼ C

s . We only need to refine Of. There are three
scenarios of Of:

(1) Unpredicted failures: Obviously, the waste due to false negative events is
1

mlost

s
2 þR
� �

.
(2) Reject the prediction: This extra overhead occurs because the system rejects the

prediction, it happens in two different scenarios. First, if there isn’t enough time to
perform the proactive action (which is the uncoordinated proactive checkpointing
in this paper), the system surfer an overhead if the prediction is a true positive
event. All the work done between the fault-occurrence time t and the completion
of the last periodic checkpoint will be lost. The expected time lost is

L1 ¼ 1
s

Z cp

0
p tþRð Þ½ �dt: ð2Þ

Second, if the system can implement the proactive action, the platform will also
suffer an extra overhead if the prediction is correct. Recall that the probability of
accepting the prediction is q. Then, the expected time lost can be defined as follows.

L2 ¼ 1
s

1� qð Þ
Z s

cp

p tþRð Þ½ �dt: ð3Þ

(3) Accept the prediction: These extra overheads happen when the system accepts the
prediction. If the prediction is a false alarm, the time lost will be the overhead of
the proactive action. On the contrary, if the prediction is valid, the system loses
time because of performing the proactive action and recovery. Thus, the expected
time lost can be defined as follows.
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L3 ¼ 1
s
q
Z s

cp

p Cp þDþD� Dlþ;R� �þ 1� pð ÞCp
	 


dt ð4Þ

Using the law of total probability, the waste ratio of fault (Of) can be derived from
the disjunction of all possible cases. The final value of Of is

Of ¼ 1
mlost

s
2
þR

� �
þ 1

mhit
L1 þ L2 þ L3ð Þ ð5Þ

4.3 Identify the Probability of Accepting the Prediction

In practice, the system cannot always accept the prediction even though it is true
positive event. The recovery overheads may be less than the avoiding overheads if the
failure occurs at the beginning of a computing fragment. On the contrary, the prediction
may be a false alarm. This means we will lose time by performing an extra proactive
action. If the system chooses to accept the prediction, the waste is

Op ¼ p Cp þDþD� Dlþ;R	 
þ 1� pð ÞCp: ð6Þ

If the proactive action is not performed, the waste is Onp = p(t + R).
Obviously, the platform can only benefit from the proactive action if Op < Onp. By

solving this inequality, we get

Cp

p
þ 1þDlð ÞDþ;R� R\t: ð7Þ

Let 1þDlð ÞDþ;R� R ¼ d and ɛ = Cp/p + δ. Thus, the probability that the system
accepts the prediction within a computing period is defined as

q ¼
0 t� e

1 t[ e

8<
: : ð8Þ

Let us refine the former model with this Eq. (8). If the inequality τ ≤ ɛ holds, the
system always rejects the prediction. In this case, it seems that the platform adopted no
proactive action, and the waste ratio is given by Eq. (1). If τ > ɛ, the system rejects all
prediction in the interval [0, ɛ] and accepts all predictions in the interval (ɛ, τ]. Thus, the
waste due to failures is

Of ¼ 1
mlost

s
2
þR

� �
þ 1

mhits

þ Ze

0

pðtþRÞdtþ Zs

e

p Cp þDþD� Dlþ;R� �þ 1� pð ÞCp
	 


dt

( )
:
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For simplicity, we only consider the case that ɛ > Cp. In fact, this assumption is
reasonable except the most extreme cases. The proactive checkpoint cannot be taken if
the time interval between the fault-occurrence time (t) and the beginning of the com-
puting fragment is less than Cp. Plugging all these values into Eq. (1), we obtain the
refined expression for the invalid-overhead ratio:

O1 sð Þ ¼ C
s 1� R

m

� �þ R�C=2
m þ s

2m if s� e

O2 sð Þ ¼ rCe 2Cp þ 2pd�peð Þ
2p � 1

ms2 þ 2C m�dr�Rð Þþ er e�2dð Þ
2ms

þ 1�r
2m sþ drþR�ð1�rÞCpd2

m þ rCp

pm 1� Cþ e
t

� �
if s[ e

8>>>><
>>>>:

ð9Þ

Obviously, O2(τ) equal O1(τ) if the recall of the predictor is zero. If we set ∅ = 1
and D ¼ Dl ¼ 0, Eq. (9) become Aupy’s approach.

5 Optimization Algorithm

In this section, we propose an optimization algorithm that minimizes the waste ratio. As
before, we assume that τ > C holds.

We first consider the case when C > ɛ. Obviously, τ > ɛ. The optimal solution can
be found by differentiating O2 with respect to τ. In this paper, we only consider the case
where O

00
2 sð Þ[ 0 O

00
2 ¼ @O2 sð Þ=@s� �

, because this is typical for realistic parameter
settings (we will discuss the case when y is negative later). Actually, we do have
O

00
2 sð Þ[ 0 for the whole range of simulations. When O

00
2 sð Þ[ 0;O2 sð Þ must be a

convex function on the corresponding interval, and we can obtain a unique minimum
τopt_o2 using Cardano’s method [13]. Furthermore, we must add the constraint τ > ɛ.
Then, the optimal computing period is max(τopt_o2, ɛ). Recall that we assumed that
τ > C and C > ɛ, in this case. Thus, the optimal computing period for Cpd > ɛ is

ŝp 2 ¼ max sopt o2;C
� �

: ð10Þ

When C ≤ ɛ, we divide it into interval s 2 C; e½ � and τ > ɛ. For the case
s 2 e; þ1½ �, we only need to replace C by ɛ because the constraint C > ɛ no longer
holds. For the case s 2 C; e½ �, the optimal value can be determined using classical
algorithms, because the system rejects all predictions.

Combining all these terms, the optimization algorithm can be expressed as follows.

ŝp 2 ¼ max sopt o2;C
� �

if C[ e

ŝp 2 ¼ max sopt o2; e
� �

if C� e\s

ŝnp ¼ max C;min sopt; e
� �� �

if C� s� e:

8>><
>>:

ð11Þ
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We only need to replace m by mlost when m is very large. In fact, the system works
well without the predictor and proactive fault tolerance if m is very large.

If we cannot ensure O
00
2 sð Þ[ 0; we only need to compute all the non-negative real

roots of the corresponding polynomial [13]. The optimal value of τ is either a root or a
sub-interval bound (the roots divide the admissible interval into several sub-intervals).

6 Evaluations

Our experiments were based on a simulation framework used by previous works
[4, 13]. Section 6.1 describes the simulation framework and our parameter settings, the
experimental results are reported in Sect. 6.2, and our observations are discussed in
Sect. 6.3.

6.1 Simulation Framework

• The simulator: The simulator is a discrete-event simulator which is driven by
various events (e.g. failure events, fault tolerance events etc.). First, we input a
random trace of faults in the simulator. Then the application will be executed by the
simulator. When a failure event occurs, the simulator suspends the application and
calculates the corresponding overheads. Then the system will resume the task and
add the time delay into the task completion time. A random trace of failure pre-
dictions according to the failure trace (we assumed the prediction arriving time
follows a uniform distribution [4, 13] ) is generated by the simulator. The accuracy
of the predictor is characterized by the recall and precision. A proactive action event
is driven by a prediction which is accepted.

• Synthetic failure traces: We used random fault traces with Exponential distribution.
The MTBF of the single processor was set as 120 years. In this simulation, the
number of processing units of the platform varied from 65,536 (64 k) to 2,097,152
(2M). Thus the system MTBF m varied from 481 min to 30 min.

• Checkpoint and recovery: we took C ¼ 10 min and R = 5 min. We considered two
scenarios for proactive action: Cp = 0.2C or Cp = 0.6C. We only considered
D = 3 min and Dl ¼ 0:8 in the tests. In fact, this is sufficient for the proof of validity
of our model.

• Failure prediction: we used two predictors: one ‘ideal’ predictor with very high
accuracy (r ¼ 0:85 and p ¼ 0:80), another ‘practical’ predictor with r ¼
0:60 and p ¼ 0:35 [4].

• In the simulations, we mainly considered two proactive strategies. UPC is the
proactive strategy of our work. The SPA is the refined algorithm of Aupy’s work
[13]. The proactive action of CPC was proactive checkpointing.
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• To assess the quality of our model, we compared the ‘OPTIMAL’ results with its
‘BEST’ counterparts (defined as the same strategy but using the best possible period
τ). The former was computed via our algorithm which is described in Sect. 4. The
latter was computed via a numerical search for the optimal period.

6.2 Simulation Results of Synthetic Traces

To evaluate our work, we compared the results using the proposed method with the
fixed proactive action method. Figures 2 and 3 show the average results for the two
proactive policies as a function of the number of processors (N). We used MatLab to
compute and plot the optimal value of the waste for different N. The left plots show the
results calculated by using our model. The right plots show the simulation results for
the exponential distribution via the discrete-event simulator.

(a) MatLab (b) Simulation 

(c) MatLab (d) Simulation 

Fig. 2. Simulation results with r ¼ 0:85; p ¼ 0:80, Cp = 0.2C, ∅ = 0.2 (first row), ∅ = 0.8
(second row) and with a failure trace generated via different failure distribution.
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We first observed that there was a very good correspondence between the theo-
retical results and simulation results. This proves the validity of our model. Due to the
conceptual similarity and space limitation, we don’t show the results obtained via
Cp = 0.6C. We also observed that ‘OPTIMAL’ produced similar results to the corre-
sponding ‘BEST’ counterparts, even in the most extreme cases. These results
demonstrate the accuracy of our optimization algorithm. What’s more, Figs. 2 and 3
also show that the uncoordinated proactive C/R is more efficient than the coordinated
proactive C/R. Compared with Aupy’s model, our approach can dramatically reduce
the waste ratio for the large platform.

6.3 Case Study

In this section, we assess the impact of the recall and precision on the system. We first
ran simulations with synthetic traces for both predictors. One parameter of the predictor
was fixed while the other varied. We chose a small platform with 256 k processors

(a) MatLab (b) Simulation

(c) MatLab (d) Simulation

Fig. 3. Simulation results with r ¼ 0:60; p ¼ 0:35, Cp = 0.2 C, ∅ = 0.2 (first row), ∅ = 0.8
(second row) and with a failure trace generated via different failure distribution.
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(m = 240.6 min) and a large platform with 2M processors (m = 30.075 min). In both
cases, we studied the impact of the recall and precision assuming an exponential fault
distribution, under scenarios Cp = 0.2C and Cp = 0.6C. We first fixed the precision and
let the recall vary from 0.2 to 0.99, as shown in Fig. 4. In these four plots, we can see
that the recall significantly affected the performance.

Figure 5 shows the results when we fixed the recall and let the precision vary from
0.2 to 0.99. We observed that, like most studies [12, 13], the precision had a minor
effect on the performance for the platform.

We conclude that it is more important to focus on improving the recall rather than
the precision for the uncoordinated proactive C/R method.

Fig. 4. Waste as a function of the recall for a fixed precision with δ = 0.4
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7 Conclusion

In this paper, we studied the impact of the predictions that cannot precisely identify the
fault-occurrence time on the uncoordinated proactive C/R. First, we analyze the
characteristics of the uncoordinated proactive C/R method. Then we have determined if
a prediction should be accepted or rejected. We found the cross-over point ɛ to simplify
the arbitrator that decides if the prediction should be accepted.

We ran simulations involving synthetic failure traces following exponential dis-
tribution. These experiments proved that our model is valid. The evaluation results also
indicate that our approach can effectively reduce the waste caused by failures and fault
tolerance operations. In our case study, we showed that the recall of the predictor is
more important than the precision.

In the further, we will expand this work to hierarchical C/R protocols.

Fig. 5. Waste-overhead as a function of the precision for a fixed recall with δ = 0.4

726 L. Zhu et al.



References

1. Robert, F.: What it’ll take to go exascale. Science 27, 394–396 (2012)
2. Sato, K., Moody, A., Mohror, K., Gamblin, T., et al: Design and modeling of a non-blocking

checkpointing system. In: The 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC 2012), Article No. 19 (2012)

3. Cappello, F.: fault tolerance in petascale/exascale systems: current knowledge, challenges
and research opportunities. Int. J. High Perform. Comput. Appl. 23, 212–226 (2009)

4. Zheng, Z., Lan, Z., Gupta, R., Coghlan, S., Beckman, P.: A practical failure prediction with
location and lead time for blue gene/p. In: Dependable Systems and Networks Workshops
(DSN-W 2010), pp. 15–22 (2010)

5. Varela, M.R., Ferreira, K.B., Riesen, R.: Fault-tolerance for exascale systems. In: 2010 IEEE
International Conference on Cluster Computing Workshops and Posters (CLUSTER
WORKSHOPS), pp. 1–4 (2010)

6. Leonardo, B.G., Seiji, T., Komatitsch, D., Cappello, F., Maruyama, N., et al.: FTI: high
performance fault tolerance interface for hybrid systems. In: Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1–32 (2011)

7. Moody, A., Bronevetsky, G., Mohror, K., Bronis, R., et al.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC 2010), pp. 1–11 (2010)

8. Jangjaimon, I., Tzeng, N.F.: Adaptive incremental checkpointing via delta compression for
networked multicore systems. In: The 27th IEEE International Symposium on Parallel &
Distributed Processing (IPDPS 2013), pp. 7–18 (2013)

9. Gainaru, A., Cappello, F., Kramer, W.: Taming of the shrew: modeling the normal and
faulty behavior of large-scale HPC systems. In: IEEE 26th International Parallel &
Distributed Processing Symposium (IPDPS), pp. 1168–1179 (2012)

10. Gainaru, A., Cappello, F., Kramer, W., Snir, M.: Fault prediction under the microscope—a
closer look into hpc systems. In: The 2012 International Conference for High Performance
Computing, Networking, Storage and Analysis(SC 2012), Article No. 77 (2012)

11. Yu, L., Zheng, Z., Lan, Z., Coghlan, S.: Practical online failure prediction for bluegene/p:
period-based vs event-driven. In: Dependable Systems and Networks Workshops (DSN-W),
pp. 259–264

12. Mohamed, S.B., Gainaru, A., Leonardo, B.G., Franck, C., et al.: Improving the computing
efficiency of HPC systems using a combination of proactive and preventive checkpointing.
In: The 27th IEEE International Symposium on Parallel & Distributed Processing (IPDPS
2013), pp. 501–512 (2013)

13. Aupy, G., Robert, Y., Vivien, F., Zaidouni, D.: Checkpointing algorithms and fault
prediction. J. Parallel Distrib. Comput. 74(2), 2048–2064 (2014)

14. Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery
protocols in message-passing systems. ACM Comput. Surv. 34, 375–408 (2002)

15. Bosilca, G., Bouteiller, A., Brunet, E., Cappello, F., et al.: Unified model for assessing
checkpointing protocols at extreme-scale. Concurrency Computat 26, 2772–2791 (2014)

16. Ifeanyi, P., Egwutuoha, D.L., Bran, S., Shiping, C.: A survey of fault tolerance mechanisms
and checkpoint/restart implementations or high performance computing systems.
J. Supercomputing 65(3), 1302–1326 (2013)

Optimizing the Overheads 727



17. Lan, Z., Gu, J.X., Zheng, Z.M., Thakur, R., et al.: Dynamic meta-learning for failure
prediction in large-scale systems: A case study. In: Proceedings OfInternational Conference
on Parallel Processing, pp. 157–164 (2008)

18. Nakka, N., Agrawal, A., Coudhary, A.: Predicting node failure in high performance
computing systems from failure and usage logs. In: IEEE Workshop on Dependable Parallel,
Distributed and Network-Centric Systems, pp. 1557–1566 (2011)

19. Gainaru, A., Cappello, F., Snir, M., Kramer, W.: Fault prediction under the microscope: a
closer look into HPC systems. In: proceedings of the International Conference on High
Performance Computing (SC 2012), Article No. 77 (2012)

728 L. Zhu et al.



Tunneling-based Multi-path Routing
Mechanism in Packet-Switched

Non-Geostationary Satellite Networks

Guyu Hu1, Zhaofeng Wu1(B), Fenglin Jin1,
Bowei Yang2, Yu Song1, and Yinjin Fu1

1 PLA University of Science and Technology,
Nanjing 210007, People’s Republic of China

qqk20080915@163.com
2 School of Aeronautics and Astronautics, Zhejiang University,

Hangzhou 310027, People’s Republic of China

Abstract. A new tunneling-based multi-path routing mechanism tai-
lored for the packet-switched non-geostationary (NGEO) satellite net-
works is proposed and evaluated. The proposed routing mechanism
exploits both the predictable topology and inherent multi-path prop-
erty of the NGEO satellite networks to construct the tunnels between
satellites. The ingress satellite distributes the traffic along the tunnels
to the egress satellite while the egress satellite sends the feedback pack-
ets periodically along the tunnels. The maximum link utilization along
each tunnel is retrieved via the feedback packet, thus the ingress satel-
lite could form a partial global view of the network congestion status
and adaptively move the traffic from the over-utilized tunnels to the
under-utilized tunnels. The simulation results corroborate the improved
performance of the proposed mechanism compared with the existing in
the literature, and also verify the proved convergence property corre-
sponding to the Wardrop equilibria.

Keywords: NGEO Satellite Networks · Dynamic routing · Load bal-
ancing · Tunneling · Multi-path routing · Traffic engineering · Wardrop
equilibria

1 Introduction

The packet-switched NGEO satellite networks with inter-satellite links (ISLs)
are of particular interest among researchers for its advantages, such as the com-
parable end-to-end delay with the terrestrial networks and the relaxed power
requirement for the hand-held devices. Notwithstanding all its merits, the draw-
backs induced by the dynamics of the NGEO satellite networks, e.g. the variance
of the ISL length and the discontinuous operation of the ISLs, make the rout-
ing a daunting challenge. Several routing mechanisms of the early works were
proposed to shield the dynamics of the constellations [1]. Yet due to the non-
homogeneous distribution of the users around the globe, the satellites covering
c© Springer International Publishing Switzerland 2015
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the dense population areas may easily get congested while others are under-
utilized at the same time [3], it is also pivotal for the routing algorithm to be able
to achieve a balanced traffic distribution in the NGEO satellite networks. This
paper proposes the tunneling-based multi-path routing (TMPR) mechanism in
the NGEO satellite networks. TMPR makes use of both the predictable topology
and multi-path property of the NGEO satellite networks to construct the tunnels
between satellites. The ingress satellite distributes the traffic along the tunnels
according to the splitting ratio associated with each tunnel and adjusts the split-
ting ratios periodically based on the feedback packets initiated from the egress
satellites. Compared with the existing researches, TMPR shows the following
advantages: (1) adaptability, each satellite could form a partial global view of
the network congestion status and adapt proactively to the unbalanced traffic
distribution across the satellite network; (2) convergence, the NGEO satellite
networks employing the TMPR mechanism could converge to the Wardrop equi-
libria [14,25]; (3) the signaling overhead in TMPR is also carefully managed. The
simulation results corroborate the improved gains of the proposed mechanism.

This paper is organized as follows. Section 2 presents the related works along
with the motivation of the proposed mechanism. Section 3 describes the net-
work model briefly while the detailed TMPR mechanism is delineated in Sect. 4.
Section 5 gives the simulation results and discussion. Finally, concluding remarks
are drawn in Sect. 6.

2 Related Works

Routing in NGEO satellite networks has been the subject of considerable study
since 1990s [1]. The routing mechanisms originally proposed were connection-
oriented [27]. As the IP traffic gradually dominates the Internet, the connection-
less routing becomes the hot topic. The former studies mainly focused on the
mechanism to shield the dynamics of the NGEO satellite networks and found
a feasible path to reduce the end-to-end delay, e.g. the datagram routing algo-
rithm based on the virtual node routing strategy [8] and the Dijkstra’s shortest
path (DSP) routing based on the virtual topology routing strategy [6,17]. This
type of routing algorithm assumes the light traffic load on the NGEO satellite
networks and the propagation delay between neighboring satellites is the main
factor that contributes to the whole end-to-end delay. As the earth is mostly
covered by sea and the majority of the hot spots are located in the northern
hemisphere, the routing with load-balancing capability is of great importance to
avoid congestion, thus improves the efficiency the NGEO satellite networks.

As has been pointed out in [11] that the first consideration of the routing in the
satellite network is the dissemination of the network state information. From this
point of view, Franck et al. [12] firstly provided the criterion for the classification of
the routing algorithm, that is the static routing vs. the adaptive routing which can
be further classified into the isolated routing vs. the non-isolated routing. Then,
they evaluated a number of routing strategies and pointed out that the adaptive
and non-isolated routing is superior provided that the signaling overhead of the
distribution of the network status is properly managed.
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Motivated by the traffic concentration at the higher latitudes, Mohorčič et al.
[18] proposed the alternate link routing (ALR) strategy. ALR tries to distribute
the traffic via alternate links and reduces the traffic peak effectively. However,
the ability of ALR to achieve a better traffic distribution across the network is
limited. Then Mohorčič et al. [16] proposed the traffic dependent routing (TCD)
which classifies the traffic as different classes. TCD tries to optimize the routes
for each traffic class with specified QoS requirement, e.g. routing the throughput-
intensive traffic via the path with the maximum available bandwidth. The simu-
lation model in [16] assumes that the network state is updated before the routing
tables are calculated. Yet the signaling overhead induced by the network status
distribution, as pointed out in [12], could also harm the routing performance
significantly.

Bai et al. [3] proposed the compact explicit multi-path routing (CEMR)
algorithm for the LEO satellite networks. CEMR assigns an orbit speaker for
each orbit to periodically collect and exchange the link status of its represen-
tative orbit. Based on the network status from the orbit speaker, CEMR cal-
culates two disjoint paths to the destination satellite and evenly distributes the
traffic along these two paths, which takes limited advantage of the multi-path
properties of the satellite networks. Aiming at reducing the routing overhead,
Papapetrou et al. [19] presented the location-assisted on-demand routing
(LAOR). On receiving the user’s communication request with specific QoS
requirement, the satellite searches for the path to the destination satellite proac-
tively. The satellite set reached by the request packets is limited to the area
formed by the request area formation process, thus reducing the signaling over-
head compared with that incurred by the periodic distribution of the network
status. Yet for a large number of users with frequent requests, the routing over-
head could still be staggeringly high. Rao et al. [20] proposed the agent-based
load balancing routing (ALBR). ALBR employs two kinds of agents, i.e. the
mobile agent to explore the available paths and the stationary agent to calculate
the routes based on the information from the mobile agents. The mobile agent
explores the random-chosen destination, thus could cause unnecessary routing
overhead if there is no traffic to the corresponding destination. Besides, although
LAOR and ALBR actively probe the satellite network status, yet considering the
relative long propagation delay of the satellite network and the highly variable
traffic pattern, both mechanisms could fail to obtain the actual network status.

Taleb et al. [24] proposed the explicit load balancing (ELB) scheme which
capitalizes on the congestion information exchanged between neighboring satel-
lites to avoid the packet dropping due to the already congested neighboring
satellite. Once receiving the congestion notification from the neighboring satel-
lite, a proper portion of packets whose next hop is the congested satellite are
diverted to another path that excludes the already congested neighboring satel-
lite. Guanghua et al. [23] extends the idea of ELB and brought forward the
traffic light based routing (TLR) mechanism. Moreover, TLR introduces the
public waiting queue to exploit the fact that often one or two links of the satel-
lite are highly utilized while the rest are used lightly or even idle. Both ELB



732 G. Hu et al.

and TLR effectively reduce the routing overhead due to the information
exchanged between the neighboring satellites, but the diverted traffic could pos-
sibly incur cascaded congestion on other satellites.

Yet for the already proposed routing mechanisms, either the multi-path
property of the NGEO satellite networks is not effectively utilized or just local
congestion information is used lacking even the partial congestion status of the
satellite network. In this paper, we propose the tunneling-based multi-path rout-
ing mechanism for the packet-switched NGEO satellite networks. The simulation
results show that the proposed mechanism not only achieves a balanced traffic
distribution across the satellite network, but could also converge to the Wardrop
equilibria which denotes a stable network state [4].

3 Network Model

The topology of the NGEO satellite network is dynamic due to the motion of
the NGEO satellites, and the virtual topology strategy [27] is adopted to shield
the dynamics of the NGEO satellite constellation in this paper. The dynamic
topology of the NGEO satellite network can be regarded as a series of snapshots
each of which corresponds to a static yet temporary topology of the satellite
network. In each snapshot, the satellite network can be denoted as a directed
graph G = (V,E) where V is the set of the satellites and E denotes the set of the
inter-satellite links in the network. Each directed link e, e ∈ E is with a positive,
continuous and non-decreasing cost function ce : R+ → R+. We define the
commodity i ∈ I = {1, . . . , n} as the traffic demand from the source node si to
the destination node di, thus each commodity i can be represented by the ordered
source-destination pair 〈si, di〉 ∈ V × V . For each commodity i ∈ I, Di > 0
denotes the demand from si to di. Let tunnel t be defined as an acyclic directed
path from node si to node di, and there exists multiple tunnels to deliver the
demand Di in the network G. All the tunnels from node si to di form a set which
is denoted by Ti. Figure 1 depicts just a pair of source and destination satellites
sending data and feedback packets respectively. Note that there could exist a
number of source-destination pairs simultaneously in the network and the inter-
satellite links are highly coupled. Let ft, t ∈ Ti represent the flow on the tunnel t
connecting the node si to node di and T = ∪i∈ITi denotes the available tunnels
in the network. Then the load on the directed link e ∈ E can be represented by
fe =

∑
t∈T,e∈t ft. For the tunnel t, the cost function, which is also known as the

payoff function, corresponding to the tunnel thus can be the combination of the
link cost along the tunnel, i.e. ct(f) = com{ce(fe), e ∈ t} where com{·} can be
the summation of the delay over the links, e.g. in the transportation system, or
any other metric imposed on the tunnel, e.g. the maximum link utilization along
the tunnel. Then the weighted average cost of commodity i ∈ I is given by:

Ci(f) =
∑

t∈Ti

ft
Di

ct(f) (1)
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Fig. 1. The TMPR mechanism.

A non-negative flow vector (ft), t ∈ T is feasible if it satisfies the flow
demands, i.e., ∑

t∈Ti

ft = Di ∀i ∈ I

ft ≥ 0 ∀t ∈ T

(2)

In the evolutionary game model [26], the flow vector (ft), t ∈ T is interpreted
as a population vector. Specifically, we assume infinite number of agents each of
which wants to send an infinitesimal amount of data through the network, and
ft is the fraction of agents sending their load over the tunnel t. Agents aim at
minimizing their own cost without considering the effect on the global congestion.
One could fairly assume that the agents would come to a flow allocation where
no agent could improve its own gains by deviating from its current tunnel. This
is exactly what the Wardrop equilibrium trying to convey. Formally, we have:

Definition 1 (Wardrop Equilibrium [25]). A feasible flow vector (ft), t ∈ T
is at Wardrop eqilibrium if for every commodity i ∈ I and tunnels t1, t2 ∈ Ti

with ft1 > 0 it holds that ct1(f) ≤ ct2(f).

In the NGEO satellite networks, each satellite acts as a router connected with
one or more terminals on the ground while each terminal could send data up to
the satellite which we call the ingress satellite. In spite of the dynamic topology
of the satellite networks, TMPR takes advantage of the predictable topology of
the NGEO satellite networks to construct the tunnels, i.e. the control center
on the ground could in advance use proper methods, e.g. the top K-shortest
path algorithm, to compute the K tunnels that connect any two satellites in
each snapshot. With proper technique, e.g. the multi-protocol label-switching
routing mechanism [7] or the source routing [23], the ingress satellite thus could
determine the tunnel where the packets take to reach the egress satellite from
which the packet are sent down to the destination terminals.

As has been previously noted that the routing mechanism with load balancing
capability is of great importance in the NGEO satellite networks, and TMPR
is designed for the satellite router to be able to adapt to the variable nature of
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the traffic due to both the dynamics of satellite network and the inhomogeneous
distribution of the population. As the satellite network spans across the globe,
the routing coordination of all the satellites under the central control paradigm
is obviously insensitive to the outburst of the traffic that is especially common
in the NGEO satellite networks. TMPR is thus a distributed routing mechanism
employed on each satellite. Although each satellite under the TMPR mechanism
acts on its own behalf to minimize the cost Ci(ft) on any of its tunnels, there
still exists a flow vector (ft), t ∈ T that converges relatively fast to the Wardrop
equilibria under the collective cooperation among the satellites.

There has been lots of researches on the Wardrop equilibria under the replica-
tor dynamics [2,4,10,15,21,22] all of which adopt the additive path cost, i.e. the
cost of the path is the sum of the link cost along the path. As we focus on the load
balancing of the NGEO satellite networks, the tunnel cost in the proposed mech-
anism is the maximum link cost along the tunnel, i.e. ct(f) = max{ce(fe), e ∈ t},
which can also be denoted as bottleneck game [5,9,13]. However, the relation
between the bottleneck game and the replicator dynamics hasn’t been well inves-
tigated, e.g. although the work in [9] considers the maximum link utilization, the
backing theory is still the Wardrop equilibria with the additive path cost. In this
paper, we point out explicitly that the bottleneck game with the link cost as the
simple link utilization conforms to the non-atomic potential game whose equi-
librium state, i.e. Wardrop equlibria, can be reached by the replicator dynam-
ics. The convergence property of the TMPR mechanism is also verified by the
simulations.

4 Proposed TMPR Mechanism

There are three schemes, i.e. cost information gathering (CIG), splitting ratio
adjustment (SRA) and satellite status monitoring (SSM) in the TMPR mecha-
nism. The CIG scheme is responsible for the dissemination of the network status
information while the SRA scheme is used for the route computation. The SSM
scheme reduces the signaling overhead effectively.

4.1 Cost Information Gathering

In the CIG phase, the ingress satellite delivers the traffic along the tunnels
according to the splitting ratio associated with each tunnel once the data arrives
at the ingress satellite. For the satellite acting as an egress point, the satellite
maintains a feedback timer which fires at regular interval denoted by Icig. When
the timer times out, the egress satellite sends the feedback packets along all
the tunnels to the ingress satellite. The feedback packet gathers the maximum
link utilization along the tunnel where the intermediate satellite checks if its
output link utilization along the tunnel is greater than the link utilization in the
packet in which case it overwrites the utilization with its own. Once the feedback
packet reaches the ingress satellite, the latest tunnel utilization denoted by ut,k
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is recorded as the kth value corresponding to the tunnel t. Then the utilization
of the tunnel t represented by ut can be updated using the iterative exponential
averaging:

ut = (1 − λ)ut + λut,k,∀k ∈ N (3)

where 0 < λ < 1.

4.2 Splitting Ratio Adjustment

The SRA phase involves only the ingress satellite which maintains the splitting
ratio adjustment timer that fires at regular interval Isra. When the timer fires,
the ingress satellite updates the splitting ratio corresponding to each tunnel
based on the maximum link utilization along the tunnels. The updating proce-
dure is similar to that in [4,13]. Specifically, suppose there is the stable traffic
demand Di > 0 between the ingress satellite si and egress satellite di during a
short period. ∀i ∈ N, t ∈ Ti, pt represents the traffic splitting ratio associated
with the tunnel t such that

∑
t∈Ti

pt = 1. Then Ci(f) becomes the weighted
average maximum link utilization of the tunnels between the ingress satellite si
and egress satellite di and can be reformulated as follows:

Ci(f) =

∑
t∈Ti

ft · ut

Di
(4)

Then the ingress satellite updates the temporary splitting ratio p̃t corresponding
to the tunnel t as follows:

p̃t = max{0, pt + Δpt + ξ} (5)

where 0 < ξ 
 1 is a random variable enabling the ingress satellite to explore
the alternate tunnels and Δpt can be calculated as follows:

Δpt =
ft
Di

(Ci(f) − ut) (6)

Finally, the ingress satellite normalizes the new splitting ratio pnewt correspond-
ing to the tunnel t:

pnewt =
p̃t

∑
t′∈Ti

p̃t′
(7)

It is emphasized that the feedback packet is treated as normal data packets and
could be dropped due to the link congestion. When the splitting ratio adjustment
timer fires, there could be no feedback packet corresponding to the tunnel t
during the last Isra interval, in which case the value ut is simply set to 1.0
indicating that the tunnel is congested.
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4.3 Satellite Status Monitoring

The SSM module monitors the status of the ingress satellite s that whether
the satellite s is actively sending the traffic destined to itself. Each satellite
maintains the satellite status monitoring timer and the timestamp vector

−→
TS

with length |V | − 1. The element tss ∈ −→
TS represents the most recent time that

the satellite has received data destined to itself from the satellite s. When the
satellite received a packet from the satellite s, the value tss is updated as the
current time. When the timer that fires at regular interval Issm times out, the
satellite checks each value tss ∈ −→

TS and sees if the current time is larger than
the value tss beyond Issm in which case the satellite stop sending the feedback
packets to the satellite s. It is in this way that the SSM scheme avoids the
unnecessary exploration of the tunnels and reduces the signaling overhead.

4.4 Convergence of the TMPR Mechanism

Let Ce, Cmax and Cmin denote the capacity of the link e ∈ E, the maximum and
minimum link capacity of the whole network respectively. As has been noted in
Sect. 3 that the payoff function of the tunnel t ∈ T for any mixed strategy profile
f is:

ct(f) = max{ce(fe), e ∈ t} (8)

where ce(fe) = fe
Ce

, e ∈ E. It is clear that the payoff function ct(f) is a Lipschitz-
continuous, convex and non-decreasing scalar function. Although not everywhere
differentiable, the value of the sub-differential of ct(f) is bounded between 1

Cmax

and 1
Cmin

. The typical capacity of link in the production network is Mbps or
even Gbps, so the value of c′

t(f) can be approximated as zero. Thus for any two
commodities i, j ∈ I, we have:

∂ct(f)
∂t̂

≈ ∂ct̂(f)
∂t

, t ∈ Ti, t̂ ∈ Tj (9)

So the game considered in this paper can be regarded as the potential game [22].
If we ignore the boundary condition max{·} and the random variable ξ, the

Eq. (5) then translates into the following equation:

p̃t − pt = Δpt =
ft
Di

(Ci(f) − ut) t ∈ Ti, i ∈ I (10)

The splitting ratio pt corresponding to the tunnel t is proportional to the flow
ft, thus if the Isra interval is small enough, then the left side of the Eq. (10)
becomes the differential of the splitting ratio pt corresponding to the tunnel t.
We thus have:

p′
t = pt(Ci(f) − ut) t ∈ Ti, i ∈ I (11)

where pt(0) = pt,0 is the initial traffic splitting ratio corresponding to tunnel
t, t ∈ Ti, i ∈ N . Equation (11), i.e. the replicator dynamics, is a set of differential
equations representing the dynamics of the whole network.
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As has been proved in [10] that the Eq. (11) can converge to the Wardrop
equilibria provided that the initial traffic splitting ratio satisfies pt,0 > 0. More-
over, the variable ξ can be regarded as the dynamic perturbation mentioned in
[15] which states that the time-average of the traffic flows of sufficiently patient
agents is still concentrated in a neighborhood of evolutionary stable equilibria.
Thus TMPR has the provable convergence property.

4.5 Considerations Regarding the TMPR Mechanism

The TMPR mechanism is similar to some parts of the TeXCP [13] proposed
for the terrestrial networks. Yet there are three crucial aspects in the TMPR
mechanism different from the load balancing mechanism of the TeXCP. First
and foremost, TeXCP employed sophisticated measures to stabilize the link uti-
lization of the network while TMPR mechanism is in fact a discrete version
of the replicator dynamics which has been proved to be able to converge to
the Wardrop equilibria in the potential game. Secondly, instead of the probing
packets initiated by the ingress router in the TeXCP, TMPR adopts the feed-
back packets originating from the egress satellites to obtain the maximum link
utilization along the tunnels. The underlying reason lies in the relatively large
end-to-end delay of the satellite networks compared with that in the terrestrial
networks such that the probing packets could probably get a stale link utilization
of the network when reaching the ingress satellites. Finally, as the buffer in the
satellite is limited, Isra is set to a value slightly larger than the value of Icig,
thus enabling the ingress satellites to react timely to the congestion of the satel-
lite network before its dropping packets. All in all, TMPR is a self-sustaining
routing mechanism suitable for the NGEO satellite networks and can adapt to
the variable traffic in a simple and efficient way.

5 Performance Evaluation

5.1 Simulation Setup

To evaluate the proposed TMPR mechanism, we use the NS2 as the simula-
tion tool to conduct the simulations in an Iridium-like NGEO satellite network.
The polar constellation contains 6 orbits each with 11 satellites. Each satellite
typically maintains 4 ISLs to its neighbors. The capacity of ISLs and the link
capacity between satellite and terminal are set to 25Mbps. The average packet
size is set to 1000Bytes and the queue length is set 100 packets. We adopt the
virtual topology mechanism [27] to shield the dynamics of the satellite network
and therefore the topology of the satellite network is represented by a series of
snapshots each of which corresponds to a static yet temporary topology of the
satellite network. In each snapshot, we exploit the top K-shortest path algorithm
to construct the tunnels between any two satellites. At the end of each snap-
shot, the tunnels in the next snapshot is loaded and used for routing. Besides,
the source routing technique is employed in the TMPR mechanism to simplify
the actual implementation of the tunnel in the NS2.
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We utilize 1200 ON-OFF flows and the ON/OFF period of each flow follows
a Pareto distribution with the shape of 1.5. The average burst and idle time
are both set to 200 ms. The source terminals send data with varying rates from
0.3 Mbps to 0.75 Mbps. The ξ is a random variable uniformly chosen from (0, 0.1).
The tunnel number K between any two satellites is set to 4 while the values of
Icig, Isra and Issm are set to 200 ms, 210 ms and 4 s respectively. The value of
λ is set to 0.9 and the reason is to comply with the latest network congestion
status as accurate as possible. The initial traffic splitting ratio pt,0 corresponding
to the tunnel t ∈ Ti,∀i ∈ I is simply set to 1/K. The user distribution model is
the same as that in [23,24].

We also evaluate the TLR mechanism and the DSP routing algorithm under
the same scenario for the comparison. The performance metrics considered in this
paper are the packet drop rate, ideal packet drop rate, throughput, average delay
and traffic distribution index. The ideal packet drop rate is the total number of
the dropped packets without the dropped packets between the satellites and the
terminals divided by the total packets sent out by the source terminals. The
average delay denotes the mean of the end-to-end delay between all the sending
and receiving terminals on the ground. The traffic distribution index is used
to indicate how well the traffic is distributed across the network and has been
defined in [24]. The higher the traffic distribution index is, the better the traffic
distributes across the network. We finally analyze the stability of the TMPR
mechanism. The simulation duration is 20.51 s the same as that in [23] and the
simulation for each of the three routing mechanisms under different sending rates
were conducted 10 times.

5.2 General Performance Metrics

Figures 2, 3, 4, 5 and 6 show the packet drop rate, ideal packet drop rate, through-
put, average delay and traffic distribution index for both the three routing mech-
anisms. From Figs. 2, 3, 4, 5 and 6 we could in general conclude that both TLR
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and TMPR mechanisms are more effective compared with that of the DSP algo-
rithm excluding the average delay. In terms of the packet drop rate and the
ideal packet drop rate, both TLR and TMPR are more or less the same under
the light network load, yet as the network load increases, the packet drop rate,
especially the ideal packet drop rate, under the TMPR mechanism grows more
slowly compared with that of the TLR mechanism. It is because the TMPR
could form a partial global view of the network to react to the congestion of
not only the neighboring satellites, but also the core satellites along the tunnels.
Moreover, the ideal packet drop rate curve shows that a large portion of the
packets under TMPR mechanism has reached the egress satellites, yet has been
dropped due to the limited downlink rate and the buffer size between the egress
satellites and the ground terminals. The asymmetric nature of the uplink and
downlink rates exist in both the GEO satellites as well as the wireline networks
on the ground. The future NGEO satellite networks could, to a large extent, be
as asymmetric as current networks, thus the TMPR mechanism could be more
suitable for the future NGEO satellite networks. The reduced packet drop rate
results in the increased throughput, as shown in Fig. 4. However, as both the
TMPR and the TLR mechanisms try to send the packets to its destinations via
alternate tunnels and links, the average delay is large compared with the DSP
algorithm, as shown in Fig. 5. Since the TMPR mechanism attempts to send the
traffic on all its tunnels, the average delay is large compared with the TLR mech-
anism even at the light traffic load. As the number of the hops that the packets
take under the TMPR mechanism are bounded by the tunnels, the average delay
thus is bounded resulting in the reduced average delay compared with the TLR
mechanism under higher traffic load. The traffic distribution index for the three
mechanisms is shown in Fig. 6. Because the DSP algorithm only tries the short-
est path, the traffic is thus distributed across a limited set of the links in the
network, so the traffic distribution index is low compared with the TMPR and
TLR mechanisms. As the users’ sending rate increases, the former under-utilized
links gradually become over-utilized while the former over-utilized links remain
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unchanged, so the traffic distribution index of DSP increases. The TLR could
avoid congestion of neighboring satellites dynamically and it is also confirmed
by the traffic distribution index of TLR which increases in accordance with the
users’ sending rates. For TMPR, the ingress satellite tries to balance the traffic
all the time, so the traffic distribution index is high under light traffic load. As
the tunnels in TMPR are fixed, the increased traffic could only distribute across
the same limited links, so the traffic distribution index is almost constant. All
in all, the TMPR mechanism shows the overall improved performance compared
with the that of the TLR and DSP routing mechanisms.

5.3 Convergence Property of the TMPR Mechanism

We pick the inter-satellite link between two neighboring satellites randomly and
measure its link utilization during the simulation period. The corresponding link
utilization under the data transmission rate 0.65 Mbps is shown in Fig. 7. It is
clear that the link utilization under both the TMPR and DSP mechanisms are
relatively stable while the link utilization under TLR mechanism shows dras-
tic oscillation. The traffic between any two satellites under the DSP routing
algorithm follow the same paths due to the static routes generated by DSP, so
the link utilization under the DSP routing algorithm shows less variance. How-
ever, as TLR reacts to the congestion provided the queue length of the link is
beyond a certain threshold which signifies a certain congestion on the correspond-
ing satellite, and the simultaneous congestion avoidance measures taken by the
neighboring satellites of the congested satellite can easily cause the oscillation
on the congested link and the cascaded congestion on other satellites, as can be
seen from the link utilization curve of TLR in Fig. 7. The TMPR mechanism, on
the other hand, tries to balance the traffic on all the available tunnels, thus the
link utilization curve shows less variance compared with the TLR mechanism.
The perturbation of the link utilization under TMPR and DSP mechanisms are
mainly from the variable nature of the ON/OFF traffic pattern. The utilization
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of the rest of the links in the network show similar results and are omitted here
for brevity. The simulation results also verify that the TMPR mechanism could
converge relatively fast to the Wardrop equilibria, thus stabilize the network
under the dynamic traffic pattern.

6 Conclusion

This paper proposes and evaluates the TMPR mechanism proposed for the
packet-switched NGEO satellite networks. The core idea, i.e. tunnels, behind the
proposed mechanism relies on the exploitation of the predictable topology and
the inherent multi-path property of the NGEO satellite networks. The tunnels
acting as the manageable resource not only collaboratively support the traffic
but could also limit the routing overhead. Ample simulation experiments provide
corroboration of the enhanced performance along with the convergent property
corresponding to the Wardrop equilibria for the proposed mechanism.
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Abstract. Large computing systems where globally distributed can be best
characterized by their dynamic nature particularly in terms of resource provi-
sioning and scheduling. Users of the systems normally aim to maximize their
own interest when consuming the shared resources. Apart from that, the pro-
cessing requirements that submitted by the systems’ users are diverse in their
properties (e.g., size, priority). This condition makes the resources in distributed
system overwhelmed by heterogeneity of task to be processed; that leads to
fluctuation in resource availability. There are researchers’ proposed scheduling
algorithms and evaluated through simulation system in order to improve
resource availability. It is because the simulation system is able to save cost
rather than real test bed experimental. In response to this, we proposed
priority-based scheduling algorithm for improving resource availability that
developed using discrete-event simulation approach. We defined several events
in the simulation to represent various execution statuses that used to monitor
resource state in the distributed systems. Our simulation system successfully
gives better performance in terms of waiting time compared than other works
that also used simulation as their experimental platform.

Keywords: Discrete event simulation � Task scheduling � Cost-Effective
computing � Distributed systems � Heterogeneous resources

1 Introduction

Along with rapid growth of modern distributed system (e.g., Grid, Cloud), IT com-
munity is also facing an operational cost problem in order to provide comprehensive
computing support. In response to the issue, some organizations have introduced an
ideology of computational-effective resource allocation [1, 2]. One of its aims is to
provide comprehensive processing activity without excessive operational cost. Basi-
cally, in the distributed systems there are massive computations that happen mostly
24/7 to process large number of users’ tasks. Therefore, it is a huge challenge to sustain
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better performance and fulfil all processing requirements in distributed systems
especially in dynamic computing environment. The computing resources are also
needed to be regularly maintained to sustain their processing power. Therefore, in order
to stabilize computing expenses, we needed effectively to consider heterogeneity in
both resources and users’ tasks in resource management.

Task scheduling algorithm is one of the important factors that influence the system
optimal performance [3–5]. A task scheduler is important in managing distribution of
users’ tasks to available resources that according to scheduling policy. In scheduling
algorithm for heterogeneous environment, basically, the schedulers consider several
criteria of the tasks and resources in order to find the best suitable match between them.
It aims for providing an efficient resource management while improving the resource
utilization. The efficiency of resource management can be achieved through effective
scheduling and allocation decision strategies. In order to satisfy the systems’ users,
both strategies are typically used several performance metrics, such as response time,
speedup, or throughput. Meanwhile, better performance in execution becomes an
indicator for the resource providers to show their reliability in processing. It mainly
involved many evaluation processes for analyzing processing satisfaction for users and
providers in resource management.

In order to analyse the effectiveness in processing activities in distributed system,
many researchers are used simulation approach for their experimental system. The
fundamental advantage of the simulators is their independence to the execution plat-
form while constructing large and complex network model. It has been used exten-
sively as a way to evaluate and compare scheduling strategies as simulation
experiments are configurable, repeatable and generally fast. The authors in [6] has
listed three advantages of implementing simulation as follows:

• Experimental cost of time is compressed:
It takes lengthy of time to implement dynamic task scheduling in real distributed
systems but through simulation, the duration of operation or execution is shorten
and can be controlled and save cost.

• Reduced analytic requirements:
Researchers from wider background of expertise have an opportunity to perform
analysis systems without to study complex systems in prior.

• Models can be easily demonstrated:
Researchers are capable to understand the simulation system that they developed for
analysing experiment results. The interpretation of the results also can be made
easily and reduced time.

One of popular simulation approach that used for investigating task scheduling
problem is Discrete Event Simulation (DES) [7–9]. Basically, DES approach drives
toward an analytical study with an overall understanding of the behaviour of a system.
Through DES, a visualization of a scheduling algorithm can be obtained and respon-
sive solution can be planned and assigned to any understandable problem. DES
improves the flexibility of the system that make it easier to use. We can manipulate
scheduling and execution parameters (e.g., response time, waiting time, and through-
put) with respect to investigational purposes for producing different results of study.
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In this work, we addressed cost-effective scheduling through prioritization of queue
in resource site. Our task scheduling approach has been modelled through Discrete
Event Simulator (DES) that develops by using C++ programming language. We
defined the scheduling events in the simulation that aims to control task-resource
matching process while monitoring system performance. Next, we embedded the
queuing policy as part of our scheduling approach to identify the effect of the queue
size towards waiting time. Results from our simulator demonstrate that the task waiting
time is subjected to the number of available resources in the system. The scheduling
events of our simulator are capable to deal with heterogeneous computing environment
while achieving better waiting time.

The remainder of this paper is organized as follows. Section 2 describes related
work on energy management using scheduling approach. Section 3 details the models
used in the paper. Our design of event-based simulator is presented in Sect. 4.
Experimental settings and results are presented in Sect. 5. Finally, Sect. 6 concludes the
paper.

2 Related Works

Many researchers exercised simulation as part of their methodology in distributed
systems. One of the factors promoting this approach is because there are several of
good simulation tools that use to model the distributed computing environment. The
authors in [10] introduced SimJava simulation toolkit for heterogeneous resource
modelling and scheduling simulation that uses a basic discrete event simulation
infrastructure. The Simgrid version 2 gives a higher level abstraction to build a com-
plex simulation with the ability to support large number of resources and applications.
The GridSim toolkit [8] has also been widely used in distributed computing system that
means to study issues in Grid. Particularly, they provide scalable and extensible sim-
ulation engine to make them possible for simulating the arbitrary network topologies,
dynamic compute and network resource availabilities, as well as resource failure.
Expectedly, the simulation tools are difficult to use by others contexts than the ones for
which they were intended. Moreover, only few of them are sufficiently documented and
maintained over time that hinder the comparison of published results. In response to
that, we developed our own scheduling simulator using discrete event approach.

There are studies on dynamic task scheduling that developed using their own
simulation systems. Zikos and Helen [11] performed their experimental results by using
a simulation model to evaluate the performance and energy behaviours in three dif-
ferent scheduling policies. Their scheduling policies are applied on Local Scheduler
(LS) for distributing tasks to resources with assumption that LSs have all the infor-
mation of resources in the system. Our work also applied the same assumption for
studying our scheduling strategy. Authors in [12] evaluated the scheduling perfor-
mance using DES for heterogeneous environment. The simulation events in their
simulation system are identified through arrival and departure events. Their work
initialized computing environment that runs the arrival of tasks through class Cluster.
Each of the tasks that arrive into the system is denoted by class Transaction where the
information of task is kept. Each of processors is represented by class Processor.
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There are two arrays that assigned for class Processor are service rate and power
consumption. Unlike from their work, we do not dedicate any class for our system
component in order to simplify our simulation system.

3 The Models

3.1 System Model

Our system model consists of users that submitted their tasks to the available resources.
The tasks initially submitted to global scheduler (GS) that is connected to other
resource sites. In order to handle the tasks distribution successfully, the system model is
designed based on hierarchical structure. There is local scheduler (LS) at each resource
site that connected directly to GS. The LS in the site is responsible to assign tasks to its
processors for execution. Figure 1 shows the hierarchical structure of our system
model.

With the intention to address the heterogeneity of distributed systems, the resource
sites contain a set of processors and each processor composes with different number of
cores. The speed of all cores in a particular processor is homogeneous but may different
with core speed in another processor. Hence, there is heterogeneity issue in task
scheduling that required to handle for effective resource allocation decisions.

In response to two schedulers; GS and LS, there is various queue sizes that needs to
take into account in making the allocation decisions. Both schedulers have their own
task queues; global-queue (gq) that resides in GS while local-queue (lq) occupying for
LS. For each LS in the systems, there is other three local queues, lq (i.e., low -pq,
med-pq and high-pq) for handling the tasks that have different priorities. Note that, the
tasks are been prioritizing only in local-queue, lq. Hence, LS is responsible to generate
task’s priority when the task arrived at the resource site. The tasks prioritization

Users

Global 
Scheduler

Local 
Scheduler

Local 
Scheduler

Local 
Scheduler

Processor

Fig. 1. System model
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technique is based on our previous work [9] that used both requested time (rt) and
actual runtime (art) of each task. Specifically, if art of a task is at least 70 % of rt, it is
determined as high priority; meanwhile if its art is at most 20 %, the task is determined
as low priority. Otherwise, the task is considered as medium priority. We use Eq. (1) to
identify the priority of tasks in lq.

task priority ¼ artrx100% ð1Þ

3.2 Dynamic Scheduling Model

In response to improve system performance while managing cost-effective processing
in the system, we designed dynamic scheduling model in our simulation system. Due to
there are different priorities among tasks, we designed an adaptive queuing policy in
both queues (i.e., gq and lq). For each incoming task in the system, the GS will be
provided a sign based on its arrival time. The sign of a task si is used to monitor the
current status of the task in the system. For example, GS can checked either the task is
still in the local-queue or already been processing. Basically, there are three stages of
task completion; (i) arriving, (ii) waiting and (iii) executing. The task will be monitored
according to those completion stages. We assumed that each task completion stage
represents as a fraction 1/3; ratio 1:3. The value of sign si will be reduced according to
fraction of reduction as given in Table 1. Hence, for each task, the value of si denotes
arrival time subtracted fraction of reduction for the stage.

Meanwhile, the queuing policy in local-queue, lq is based on first-come-first-serve
(FCFS) queuing policy. It is because the tasks in lq are already in their particular queue
that depends on their priority. For the resource allocation, we implemented several
policies as follows:
Policy 1: Every task is assigned based on the processing capacity of available

processor. The fitness value is created to identify the suitability between
processor capacity and task priority. This policy is concerned on tasks with
high priority from high-pq. It will be assigned to the processor that gives
the highest fitness value.

Policy 2: In this policy, the tasks are randomly assigned into available processors.
It improves the resource allocation by minimizing task waiting time and
maximizing resource utilization. This policy is meant for low priority task
that queued in low-pq.

Table 1. Fraction of reduction in completion stage

Stage of completion Fraction of reduction

Arriving 0
Waiting 1/3
Executing 2/3
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The LS uses the first policy to schedule the tasks in med-pq. However, if it is
detected that the waiting time keeps increasing, it will switch into the second policy for
scheduling the task. In response to cost-effective processing, we used a
power-threshold [8] to define processing power limit for every processor. It aims to
prevent the processors from overwhelmed from the executing process. The processing
power limit is defined based on the system’s load; either light-loaded or weight-loaded.
The lightly loaded in the system is identified when the difference of average task
waiting time and minimum waiting time is at least 80 % of average waiting time; else,
the system is in heavy loaded. To ensure the effectiveness of our priority-based task
scheduling, every processor’s power limit is monitored. If a processor reaches its power
limit, the newly incoming task will be then assigned to other available processor.

4 Event-Based Scheduling Simulator

4.1 Simulation Model

We designed our simulation structure by identifying key events. There are several
events in our DES that identified to fulfil task queuing and task-resource matching
processes. We used a main function called scheduler() for controlling alternation
between the queuing and matching processes. The scheduler() mainly checked the all
event schedule that provides the information of arrival time, waiting time, requested
processing time, execution time and finish time. If the actual execution time is smaller
than the requested time, the scheduler() will then updated the number of tasks,
otherwise the task is considered as null value. It aims to calculate the number of
successful task that meets their processing requirements. To ensure that the right event
occurs at the right time, the scheduler() function spots the closest event time and calls
the appropriate events according to the time order. Through the simulation, the
scheduler() checks the event time regularly and the nearest or the smallest event time
will be called by returning the type of event to be called back to the system. Initially,
the simulation defines all the variables including random number and simulation clock.
The arrival time of every task is set to be in random manner and independent from each
other’s. It allows then to be in sequential and processed separately.

Specifically, the main events in our simulation model are arrival() and departure()
events. The arrival() event denotes the submission time of task into the system and the
departure() event refers to time when the task leaves the system. The arrival() event is
focusing on obtaining the task information from the workload trace, then scheduled
them into the respective queue (i.e., gq and lq). We introduced two sub-events are GS()
and LS() that represent procedures for Global Scheduler and Local Scheduler,
respectively. The system used GS() event for obtaining task parameters (e.g., requested
time (rt) and actual runtime (art)) from the workload trace. The event also capable to
schedule the tasks into gq according to FCFS policy. In response to monitoring the
stage of completion status, we designed a function called sign() function inside GS()
event in order to calculate and trace all tasks in the systems. The information of the
current completion status of each task will be kept in a table at GS() event. Note that,
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the sign() function merely activated when the task departed from gq for matching
process at LS. The table is frequently updated in order to gain up-to-date information of
tasks that are still in operating in the system. In the GS() event, there is power()
function to identify light-loaded and weight-loaded of the system workload. Hence, the
tasks from gq will be assigned to the resource site that gives light-loaded state. It aims
to avoid the tasks been dropped by the LS; due to full occupied queue in lq. The
calculation of light-loaded and weight-loaded is same as discussed in Sect. 3 (Fig. 2).

The tasks are then assigned to the resource site where the LS() event started to
operate. The LS() event calculated the priority of the incoming tasks and scheduled into
respective lq that according to the level of task’s priority (i.e., (i.e., low-pq, med-pq and
high-pq). We assumed that the LS have the information about its processors. It allows
LS() event to perform resource-task matching process to find the most suitable pro-
cessor for the task. When the processor is allocated for the task and started the

Fig. 2. DES Structure
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execution process, the LS() event will the blocked the processor by changing the
processor’s flag to 1 (occupied). When the execution process is completed, the main
function, scheduler() calls the departure() event to send back the task to user. Once the
departure() event is activated, the LS() event will set the processor’s flag to 0 (free).
Hence, the LS() event can assigned another task into the processor to fulfil the user’s
demand. The process continues until all the tasks have been executed.

5 Performance Evaluation

We conduct a performance evaluation on our developed simulator to identify its level
of performance. The performance metric used to analyse our simulator is queue waiting
time that measured in second (s). The queue waiting time, or sometime known as
queuing delay [9, 13], is defined as the total period of time task spends from the
beginning of its arrival into gq until the time it starts to be executed in processor. We
used two different existing workload traces the High Performance Computing Center
North (HPC2N) and San Diego Supercomputer Center (SDSC) Blue workload traces
with the workload factor 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6.

We refer our previous work for setting up our simulation parameters, as in Table 2.
The different in this work from the work in [9] is regarding the simulation system,
where in this work we designed our own simulation system using DES. Meanwhile, in
[9] they used GridSim as their evaluation tool. There are open source network simu-
lators or commercial simulators that are now widely available, that released by several
developers. Note that, the well-develop simulation tools provide a library of functions
that can be utilized for conducting simulation experiment.

6 Result and Discussion

In this section, we discuss the result of the performance evaluation from the simulation
system. We analysed the effectiveness of our scheduling approach that investigated
through our simulator (CEDES) compared to simulator that developed using Grid

Table 2. Simulation parameters

Parameter Description

Workload trace SDSC blue horizon
Resource sites 4 to 8
Number of processors 8 to 20
Number of cores 2 to 8
Core speed of a processor 50 to 100 MIPS
Number of tasks 200, 400, 600, 800 and 1000 tasks
Programming language C++
Inter arrival time Poisson distribution
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simulation toolkit (GridSim). Next, we study the impact of number of resource sites
that involved in the system towards queuing time.

6.1 Result 1: Priority-Based Scheduling in Two Different Simulation
Designs

Figures 3 and 4 show the queue waiting time between CEDES and simulation tool, Ref.
Tool that used in [9]. Both studied on the HPC2N and SDSC Blue workload traces with
load factor of 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6. It shows that the queue waiting times for
both simulations are increased when the load factor increases. Interestingly, the queue
waiting time of CEDES generates same pattern of the results of Ref.Tool for both
workload traces. However, the queuing time shows better result when it is been
investigated using simulation tool. It is due to the different specification of machine that
used to run the simulation. Furthermore, programming library from the simulation
toolkits helps the queuing policy to approximately emulate real task scheduling.
Meanwhile, our simulation system is designed with effective functions and procedures
using C++ programming language. We conclude that discrete event simulation approach
is capable to use for analysing scheduling problem in heterogeneous environment.

6.2 Result 2: The Impact of Waiting Time Towards System Size

In this experiment, we investigate on how waiting time is influenced by the size of
resource sites that setin CEDES. Results from the Figs. 5 and 6 shows that both
workload traces give comparable output. From the figures, it clearly demonstrates the
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minimizing of queuing time when there is many resource sites in the systems; it
assumed that many resources are available to perform task execution. This also can be
happened when the scheduling decisions are able to comparatively allocate the task into
its suitable resource that reduces task waiting time in the queue. It indicates that the
waiting time is explicitly effected by the system sizes. We claimed that our simulator
closely represent the real scheduling scenario.

In Fig. 5 we noticed that there is a slope of average queuing time after the load
factor 0.5 in both range of total resource sites (i.e., 4-5 sites and 7-8 sites). Meanwhile,
Fig. 6 shown degradation pattern when the load reached to factor 0.6. The primary
source of this performance gain is consequence of the workload pattern of HPC2 N—
considering the overall size of task is relatively small. Meanwhile, the SDSC Blue
workload exhibits huge variation in size of task and load pattern. Hence, the queue
capacity becomes overloaded that results lengthy queuing time in the systems.

6.3 Result 3: The Impact of Waiting Time Towards Resource Availability

Table 3 shows result of the processing ratio of resources in both HPC2N and SDSC
Blue workload traces. In this experiment we set the number of sites into two different
mode; static (i.e., 4 sites) and dynamic (i.e., 4-6 and 4–8). As expected, the processing
ratio is increased when we have fixed number of resource sites in the systems. With the
dynamic resource site setting, it indicates that our simulator works well with the
fluctuation of resource availability with minimal task waiting time. The also demon-
strates the waiting time of SDSC workload is slightly higher than HPC2N workload
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which gives the same performance pattern in the previous experiment (Result 2).
Hence, we claimed that our simulation system that designed through DES provides
cost-effective processing without needed complex and comprehensive functions and
procedures for queuing policy while effectively improving the system performance.
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7 Conclusion

Distributed systems consists thousands of heterogeneous computing machines with
diverse kind of tasks that submitted by the system users. There are various experi-
mental strategy used to evaluate the task scheduling approach in distributed system,
and one of it is through simulation system. In this paper, we developed our simulator
using the Discrete Event approach with C++ programming language. We compared the
scheduling results between our simulator and the existing simulation tool, GridSim.
From the simulation system, our DES successfully proves that there is comparable
result in terms of waiting time. We claimed that the cost-effective scheduling also can
be developed and tested using DES and able to gives better performance. This paper is
only an initial work of our study and in future, we will consider more concerns into the
study to map the dynamic heterogeneous attribute of a more complex and large system.
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Abstract. Due to the increasing energy consumption in cloud data centers,
energy saving has become a vital objective in designing the underlying cloud
infrastructures. A precise energy consumption model is the foundation of many
energy-saving strategies. This paper focuses on exploring the energy consump-
tion of virtual machines running various CPU-intensive activities in the cloud
server using two types of models: traditional time-series models, such as ARMA
and ES, and time-series segmentation models, such as sliding windows model
and bottom-up model. We have built a cloud environment using OpenStack, and
conducted extensive experiments to analyze and compare the prediction accuracy
of these strategies. The results indicate that the performance of ES model is better
than the ARMAmodel in predicting the energy consumption of known activities.
When predicting the energy consumption of unknown activities, sliding windows
segmentation model and bottom-up segmentation model can all have satisfactory
performance but the former is slightly better than the later.

Keywords: Cloud computing � Energy consumption prediction � Time-series
model � Time-series segmentation

1 Introduction

Cloud computing is a new and popular platform used in industry and academia which
refers to a business model for delivering resources (e.g. computing, storage, network
and software services) in the form of utility over the Internet [1]. Cloud computing
adopts a pay-as-you-go model, which provides available, convenient, on-demand
network access to the sharing resource pool. This model makes the interaction among
the data center, network, service providers and users more rapidly and implements the
self-management of computing systems. Users can obtain and release their computing
and storage resources in a more flexible and economical fashion. However, with the
promising application of cloud computing and the growing demands for big data
processing, the amount of energy consumed of cloud infrastructure is rising at a fast
speed [2]. According to a study in China Net (http://www.china.com.cn/), the elec-
tricity consumed by China Unicom data center is 9.9 billion KWH each year. Globally,
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the total power consumed by information and communication technology accounts for
roughly 8 % of the world’s total power consumption. Clearly, there will be a surprising
result if we consider all the power consumption of the cloud computing systems in the
world together. Therefore, improving the energy efficiency and reducing the power
usage is a critical challenge and concern for cloud computing.

Currently, many efforts have been made to improve the energy efficiency in cloud
systems [3–5, 7, 8]. It is well known that the more the number of active servers, the
higher the energy consumption is in the cloud. Based on this, the virtualization tech-
nology used to manage the cloud resource try to reduce the number of active servers to
save energy [3]. Besides, using Dynamic Voltage/Frequency Scaling (DVFS) to adjust
the voltage dynamically according to the requirement of processing speed is another
feasible solution to reduce the processor energy consumption but it has limited range of
application [4]. Some technology reduces the energy consumption from the perspective
of resources utilization, such as live migration, task consolidation, resource consoli-
dation. Live migration refers to a process of moving a running virtual machine or
workload between different servers [5, 7, 8]. The under-utilized resources can merge
into a new one by live migration, which has reduced the resource waste and improved
the energy efficiency. Combining task consolidation or resource consolidation can get
better resource utilization. And furthermore, it can reduce the energy consumption by
turning off the servers or put them into sleeping mode. However, all these technologies
did not consider the relationship between system energy consumption and the char-
acteristics of the system configurations and the application workloads.

In addition, the quality of service (QoS) is an important requirement in designing
the system. Guaranteeing the targeted QoS is a condition before reducing the energy
consumption. Some research has devoted to exploring the relationship between system
performance and energy consumption. Swinburne University has designed an auto-
matic performance and energy consumption analysis tool for cloud applications, named
StressCloud. It can model the cloud application workloads, and generate the load tests
automatically, and finally profile the system performance and energy consumption [6].
Besides, many attempts have been made to model the energy consumption of cloud
system. The most commonly used method is modeling the energy consumption with
the multiple linear regressions [9, 10]. However, there are many uncertainty factors
affecting the energy consumption of the system, some of which is difficult to monitor.

In this paper, we focus on the energy consumption of the cloud system for running
CPU-intensive activities. As a fact that the power series can be gotten directly, we use
the time-series models to address this problem. Overall, we analyze and model the
energy consumption from two aspects. First, for a known CPU-intensive activity, we
can use its historical power data to model its energy consumption and further make a
prediction by using traditional time-series models such as ARMA(Autoregressive-
Moving-Average) and ES (Exponential Smoothing). Second, for a new-coming
CPU-intensive activity, we can find its similar statistical time-series pattern from the
historical time-series patterns obtained by the time-series segmentation model such as
sliding windows and bottom-up. Afterwards, we can make a prediction about the power
consumption of the new activity. Finally, we demonstrate and compare the prediction
results with different models which are essential for the relationship analysis between
different workloads, different system configuration and system energy consumption.
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To the best of our knowledge, this paper is the first to apply time-series segmentation
models to predict the energy consumption of CPU-intensive activities in the cloud.

The rest of the paper is organized as follows: Sect. 2 presents some related work of
the energy research in cloud. Section 3 describes the background and the overview of
energy consumption prediction strategy. The process of predicting the energy con-
sumption based on time-series model is shown in Sect. 4 in detail. Section 5 shows the
experiment environment and the performance evaluation results. Finally Sect. 6 offers
the conclusion of the paper and a discussion of the future work.

2 Related Work

Energy consumption in cloud systems is a hot research topic for the past several years.
Many policies and technologies have been taken to save the energy consumption of
cloud system. Virtualization [11, 12] is a mature technology which is a key feature of
cloud systems that can improve the system efficiency and save the computing resource.
Different with the other environment, the virtualization technologies in the cloud
contains the computing resource virtualization, the network resource virtualization and
the storage resource virtualization and so on [13, 15]. Virtualization is considered as the
preconditions to resource or power management in cloud data center. The work in [9]
designs an energy saving approach which combines task consolidation into virtual-
ization, considering that the energy consumption of under-utilized resources in the
cloud is wasted and abundant. But it does not consider the characteristics of the tasks
and the resource configuration. The work in [14] explores the energy cost of the virtual
machine and proposes an energy-efficient framework concerned with cloud architec-
tures which can save 25 % of the computing nodes’ electrical consumption. Dynamic
voltage and frequency scaling (DVFS) is a feasible solution to reduce the processor
energy consumption in the cloud server side. Depending on the circumstances, it can
not only decrease or increase the voltage used in a CPU dynamically, but also change
the clock frequency. During some idle time, energy consumption can be reduced by
lowering the clock frequency and decreasing the voltage [17]. Live migration between
different virtual machines greatly improves the efficiency of resource management and
reduces the waste of cloud resources. First-Fit Decreasing (FFD), Best-Fit and Worst-fit
are frequently used algorithms [16]. These technologies are able to reduce the system
energy consumption and improve the resource utilization to a large extent. However,
no specific energy consumption models have been proposed so far.

Some existing study has made efforts on analyzing the relationship between the
system performance and the energy consumption in the cloud. The work in [21] explores
the performance and energy consumption data with different system configurations and
three types of tasks: computation-intensive, data-intensive and communication-
intensive in the cloud system. Furthermore, it proposes an analysis tool StressCloud
for cloud system to profile and visualize the relationship between system performance
and energy consumption with different tasks and system configurations. The results of
these studies can be used for designing energy monitors and guiding the system con-
figurations. But these research works did not analyze the energy data further and propose
an efficient energy consumption model.
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Extensive studies have been dedicated to predicting the energy consumption of
cloud system. The work in [18] proposed a system-wide energy consumption model for
servers by combing the server energy consumption with its thermal envelope. Most
existing predicting approaches represent the power consumption as a linear model that
correlates with CPU utilization, memory access count, hard disk I/O rate and network
I/O rate and so on. Study has proved that 60 % of the power can be used when the CPU
is at full speed [20]. Based on this phenomenon, many researches establish the energy
consumption model related with the peak power and the idle power [19]. These studies
have proposed an energy consumption prediction model based on a linear model or
polynomial models. However, time-series models and the type of the tasks have been
ignored. In this paper, we analyze the energy consumption data in cloud for
CPU-intensive activities and predict the energy consumption with time-series models.
Furthermore, we investigate the energy model from two aspects: traditional time-series
models (AMRA, ES) [22, 23] for known activities and the time-series segmentation
models for unknown activities respectively. The experimental results show that the
performance of ES model is better than AMRA model for predicting the energy
consumption when there are historical power data available. Meanwhile, the perfor-
mance of sliding window segmentation model is a slightly better than the bottom-up
segmentation model in the prediction of unknown activities.

3 Strategy Overview

There are various types of activities running in different quantities in the cloud. To
reduce energy consumption, when we are planning to run a specific CPU-intensive
activity in the cloud, we need to predict its energy consumption before we reserve the
resource and schedule the task. If the activity has been run before and its historic
energy consumption has been recorded, its energy consumption can be calculated and
predicted by the traditional time-series models, such as the ARMA (p, q) and ES, which
are depicted as T (short for traditional as in this paper). As for a new activity, traditional
time-series models are not practical since there is no historic trace for their energy
usage. However, by a test run for a small period of time, we can obtain its similar
statistical time-series pattern from the historical time-series patterns using the
time-series segmentation model, which is depicted as S (short for segmentation in this
paper). In the meantime, we notice that some systems record the power for running an
activity on some discrete time points while some other may record the energy con-
sumption in a continuous fashion. Since the energy consumption can be simply cal-
culated with the power and the duration of the activity, we focus on the power
prediction of CPU-intensive activities in this paper without losing generality.

The prediction process is described as follows. Our prediction strategy is consisted
of four phases: power series building, power series segmentation, power pattern
recognition & matching and power predicting, just as shown in Fig. 1. The inner ring
represents the main factors which influence the energy consumption of system. It
contains three basic aspects: the characteristics of workload activities (like the number
of the requests, the problem size etc.), the performance of the various resources (in-
cluding metrics such as CPU use, disk reads and writes, storage resource etc.), and the
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feature information of the environment (e.g. the network traffic and the bandwidth). As
depicted in Fig. 1, the traditional time-series model does not contain phase 2 and 3,
while the time-series segmentation model contains all the four phases.

Phase 1: Power series building. For each kind of time-series models, designing a
time-series according to the historical data is necessary. In this paper, the power series
of a specific activity is built by repeatedly running the activity and colleting the relevant
historical power data at equal observation unit. Adopting this periodical sampling plan,
we can obtain a representative power series by the sample mean of each unit.

Phase 2: Power series segmentation. This phase is only applied to time-series pattern
segmentation model (S), which is the key and basis step. The representative power
series will be segmented into several segmentations using sliding window model and
bottom-up model respectively.

Phase 3: Power pattern recognition and matching. This phase contains two steps: one
is power pattern recognition which is to discover the power-series pattern and the other
is power matching to find out the closest pattern for a new power series sequence. This
phase is only applied to the time-series segmentation model (S), but not to the tradi-
tional time-series model (T).

Phase 4: Power predicting. Power predicting is applied to both the traditional
time-series model and the time-series pattern segmentation model. The main task of
this phase is to predict the descendant power sequence of the limited power series for a
new-coming activity using the models.

4 Energy Consumption Prediction Based on Time-Series
Models

As demonstrated in Sect. 3, the energy consumption prediction based on traditional
time-series models contains two phases: power-series building and power predicting
And the energy consumption prediction based on time-series segmentation models

Fig. 1. Strategy overview
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contains four phases: power-series building, power series segmentation, power pattern
recognition and matching and power predicting. This section will introduce the pre-
dicting process in detail.

4.1 Power-Series Building

For both traditional time-series models and time-series pattern segmentation models,
the first step is designing a power-series according to the historical data. The
power-series is built by recording the power data in the cloud server center at equal
observation unit and this process is repeated numerous times. Then the representative
power-series can be built with the sample mean of each observation unit. There is a
little difference in this phase from the traditional models and segmentation models. For
traditional time-series models, the power data is recorded when the cloud system is
running a specific CPU-intensive activity. But for the time-series pattern segmentation
models, the power data is recorded when the cloud system is randomly running several
CPU-intensive activities.

4.2 Power-Series Segmentation

For a new-coming activity, its historical power data doesn’t exist and using the tra-
ditional time series models is not ideal. And we need to find out the similar time-series
segment with the similar features by the aid of time-series segmentation model. In this
section, we introduce the time-series segmentation models for these activities in detail.

Time-series segmentation refers to these types of models, whose input is a time
series and output is several segmented sub time-series or a piecewise linear repre-
sentation (PLR). Its main idea is that time series T can be divided into several segments
and get the best representation after using some models. First of all, how to describe the
features of these time-series segments? In statistics, the factors, such as sample mean,
standard deviation, and median value etc., can be used to characterize the behavior of
each time-series sample. Based on this, we use statistical features to describe the
segments and chose two basic statistical features (sample mean and standard deviation)
to represent each segment. Next, we will introduce the two segmentation models used
in this paper.

Sliding Windows. For a time-series T, the sliding window model is anchoring the left
of its first window at the first data of T. And try to find the right of the window by
increasing the length of segments according to a given threshold. The series from the
anchor to the point i is transmitted as a segment until the standard deviation of the
possible segment larger than the given threshold.

Bottom-Up. For a time-series T, the first step is to connect the adjacent points in the
time-series and get the finest segmentation method. Then calculate the fitting error of
all the segments, and merge the two adjacent segments with the minimum fitting error
into one segment until all the fitting error larger than a given threshold. The fitting error
in this paper is the residual value of the time-series.
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4.3 Power Series Pattern Recognition and Matching

After segmenting the time-series into several segments, the next phase is to recognize
the power pattern and to do a match. Power pattern recognition aims to ensure that the
segmented patterns are valid. The Algorithm 1 describes this process.

Power matching is built to find out the most similar power-series pattern from the
whole segmented patterns for the current activity. First of all, the new power-series is
built for the current activity. Then the new power-series matches with the validation
segmented patterns. Finally, the most similar series sequence is identified based on the
mean and standard deviation. The detail is presented in Algorithm 2.
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4.4 Power Predicting

After the above phases, the last step is predicting the power consumption for the current
activity. As presented in Sect. 3, phase 3 is applied to both traditional time-series models
and time-series pattern segmentation models. For an activity which has historical power
data, the power is predictable to a certain degree from the past recording data using the
traditional time-series models. But for an activity which a new-coming, we can obtain its
limited power sequence and find out the most similar power-series pattern to predict the
descendant power sequence using time-series pattern segmentation models (as described
in Sect. 4.2). The whole predicting process is described as follows:

Power Predicting Process for an Activity which has Historical Power Data. The
AMRA model and the ES model can be trained by the historical power sequence data
of the activity. According to the smoothing coefficient, the ES models can be divided
into simple exponential smoothing (SES), double exponential smoothing model
(DES) further. Thus, we use AMRA, SES and DES models to analysis the power
sequence. In this process, we obtain the parameters of the models using the tool:
Eviews. In the end, the power sequence in the future can be predicted by the models.

Power Predicting Process for an Activity which is a New Coming. After phase 2, we
can obtain the most similar power-series pattern for this new-coming activity. Then the
descendant power sequence is built. Thus the whole power-series pattern is seen as the
new-coming activity’s power-series.

5 Evaluation

In order to evaluate the proposed energy consumption prediction strategy, we design a
simulation testbed where we deploy and run some benchmarks. At the same time, we
record the power consumption by a physical power meter. In this section, we introduce
the experimental environment firstly, and demonstrate the prediction results in detail.

5.1 Experimental Environment

Our experiments were designed on OpenStack (https://www.openstack.org/), which is a
free and open-source cloud computing software platform. In the private cloud estab-
lished by OpenStack, we created three virtual machines. We assign 2 virtual cores for
each of the VMs. The amount of RAM is 4 GB and the amount of hard disk is 40 GB
assigned for each VM. Recording the power consumed in cloud system requires an
external physical power meter. In our work, we use the HP-8713 power meter connected
with the server by USB interface. We use Linux operating system in the experiment.

Our paper focuses on the energy consumption of CPU-intensive activities running
in the cloud. The major cloud resources consumed by CPU-intensive activities are CPU
cores and RAM. In order to obtain valid samples, we use Prime 95 (http://www.
mersenne.org/) as the benchmark running in the system. Prime 95 is dedicated to test
the stability of the CPU by loading the test procedure incrementally and the test
environment of Prime 95 is very cruel. Thus Prime 95 can be used as different kinds of
CPU-intensive activities loading on the server one by one.
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5.2 Results Using Traditional Time-Series Models

We run Prime 95 test standard procedure in the VM. The experiment process and
results are as follows:

Power Series Building. The step one is to build the power series. In the experiment, the
collecting time unit is 1 s for Prime 95 and we collect the power value for 2 min.
Finally, we obtain the representative power series of the training data by the mean of
the 7 times observations.

Power Predicting. In this section, the regression results of the traditional models,
including ARMA, SES and DES, will be depicted and analyzed. The power series of
Prime 95 is nonstationary sequence, based on the correlation test and unit root test. The
results of autocorrelation partial autocorrelation test shows that AR(3) model can used
to fit the power series of Prime 95. The predicting result is as shown in Fig. 2.

 (a) the real and predicted power by AR(3)  (b) the relative error by AR(3) 

 (c) the real and predicted power by SES  (d)the relative error by SES 

 (e) the real and predicted power by DES  (f)the relative error by DES 

Fig. 2. Comparison of actual and predicted power by different regression models of Prime 95
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The relative error of the training data shows that the fitting efficiency of the model
and the smaller the relative error is, the better the fitting efficiency of the model is.
Figure 2 shows the fitting results by different regression models, such as AR(3), SES
(Simple exponential smoothing model) and DES(Double exponential smoothing
model), for the power series of Prime 95. Figure 2(a), (c) and (e) depict that the fitting
results of SES and DES are better than AR(3). And the fitting result of SES is pretty
close to DES. In addition, the linear regression AR(3) model is not ideal for fitting the
power series of Prime 95. From the Fig. 2(b), (d) and (f), the relative error has a great
fluctuation. The relative error of AR(3) changes from -12 % to 20 %. There are no big
differences between the relative error of both SES and DES, which ranges from -10 %
to 10 %. Overall, the performance of ES is better than ARMA.

5.3 Results Using Time-Series Segmentation Models

The test standard procedure, Prime 95, is deployed on the VMs. The process is
repeatedly 7 times at the same running pattern. And the collected power data is used for
training the time-series segmentation pattern model.

Power Series Building. As depicted in Sect. 5, the first step is to build the power series.
We collected 7 groups of power data in the same observation time unit. The power data
sampling frequency is 10 s. In the observation time unit, the VMs in the cloud system is
in turn started and Prime 95 is running on the VMs in order. Obviously, the power series
is consisted of several segmentations, which is a basis of the time-series segmentation
pattern model. The representative power series is obtained by composing the mean of
samples in each observation unit sequentially, which will be analyzed in the future.

Power Series Segmentation. In this phase, we conduct two segmentation models:
sliding window model and bottom-up model to find out the potential pattern sequence
set for the representative power series.

Table 1 shows the segmentation results of sliding window model. First of all, we
assign the value for the parameter: max_error = 1.000, that means the standard devi-
ation of the sub-segment is no more than 1.000 in the final results. As depicted in
Table 2, the representative power series has been segmented into 10 segments. Each
mean of segments is 67.2455, 84.1934, 78.1096, 84.6891, 78.5088, 84.7123, 80.0286,
9.1854, 116.5964 and 124.9851. And the standard deviation of the segments is 0.3080,
0.3166, 0.2404, 0.3737, 0.2268, 0.2993, 3.1171, 0.5677, 0.2632 and 0.4340
respectively.

Table 2 shows the segmentation results of bottom-up model. First of all, we need
assign the value for the parameter: the number of the segments. The number of the
segments is a decisive parameter of the model. In the experiment, we estimate the
number of segments from the scatter of the representative power series and set the value
for the parameter: num_of_segments = 12. As depicted in Table 2, the representative
power series has been segmented into 12 segments. Each mean of segments is 67.2679,
75.3765, 84.2099, 78.1096, 84.4829, 78.5092, 84.7123, 79.4077, 98.7849, 108.3705,
117.2054 and 125.0000. The standard deviation of the segments is 0.3150, 11.8165,
0.3095, 0.2404, 1.1876, 0.2369, 0.2993, 0.2885, 1.1844, 11.0797, 2.1791 and 0.4426.
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Power Pattern Recognition and Matching. After segmentation the representative
power series, we verify the correction of these patterns firstly. In the experiment, the
minimum length of each pattern in Algorithm 1 is set as 3. The results of pattern
validation are shown in the right of Tables 1 and 2. As present in Table 1, all the 10
patterns segmentation with sliding windows are valid. But Table 2 shows that 10 valid
patterns are identified from 12 segments with bottom-up model. The step two of this
phase is pattern matching. The latest power series is built by randomly running the
Prime 95 in one of the VMs and recording the power sequence in 2 min. The recording
frequency is 10 s. We select the first five data to match the patterns and the last 7 data
value is used as the target to be predicted.

The matching result shows that segment 9 of Table 1 is the most similar pattern with
the latest power series and the segment 11of Table 2 is the most similar pattern with the
latest power series. Finally, we use the average value of these two segments to predict
the last 7 data value and the relative error of the prediction is shows as Fig. 3. The
maximum relative error is 1.5 % for sliding window and the maximum one for
bottom-up is around 2 %. The relative error of sliding window is less than that of
bottom-up and thus the performance of sliding window is better.

Table 1. The segmentation results of sliding window model

Representative power series Mean= 89.3189, Standard Deviation= 15.7208, Length=193
Segmentation model sliding window model, where max_error=1.000
segments description mean Standard Deviation Length validation
Segment 1 67.2455 0.3080 11 true
Segment 2 84.1934 0.3166 29 true
Segment 3 78.1096 0.2404 12 true
Segment 4 84.6891 0.3737 29 true
Segment 5 78.5088 0.2268 13 true
Segment 6 84.7123 0.2993 28 true
Segment 7 80.0286 3.1171 25 true
Segment 8 99.1854 0.5677 14 true
Segment 9 116.5964 0.2632 14 true
Segment 10 124.9851 0.4340 18 true
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6 Conclusion and Future Work

Energy saving in cloud computing is an important goal for scheduling the cloud
resources and designing the cloud applications. This paper explored the energy con-
sumption of CPU-intensive activities in the cloud from two aspects: one is traditional

Table 2. The segmentation results of bottom-up model

Representative power series Mean= 89.3189, Standard Deviation= 15.7208, Length=193
Segmentation model bottom-up model, where number of segments is 12
segments description mean Standard Deviation Length validation
Segment 1 67.2679 0.3150 10 true
Segment 2 75.3765 11.8165 2 false
Segment 3 84.2099 0.3095 28 true
Segment 4 78.1096 0.2404 12 true
Segment 5 84.4829 1.1876 30 true
Segment 6 78.5092 0.2369 12 true
Segment 7 84.7123 0.2993 28 true
Segment 8 79.4077 0.2885 24 true
Segment 9 98.7849 1.1844 14 true
Segment 10 108.3705 11.0797 2 false
Segment 11 117.2054 2.1791 14 true
Segment 12 125.0000 0.4426 17 true

Fig. 3. Relative error of the prediction by different segmentation models
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time-series models and the other is time-series segmentation models. The traditional
time-series model, such as ARMA and ES, is used for predicting the energy con-
sumption of these activities which have historical power data. The experimental results
show that the performance of ES model, including SES and DES models, is better than
the ARMA model. Meanwhile, the time-series segmentation models, such as sliding
windows and bottom-up, are used for forecasting the energy consumption of
new-coming activity in the system. The experimental results show that the relative error
of the prediction is small and the performance of sliding windows is slightly better than
bottom-up. These results can provide some fundamental guidelines for scheduling the
cloud resources and improving the energy efficiency.

While this paper focused on the CPU-intensive activities, in the future we will
study the energy consumption of I/O-intensive or Memory-intensive activities in the
cloud. In addition, we will compare the results and further explore the energy con-
sumption of an entire business process instead of a single activity in the cloud.
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Abstract. Small, medium and large companies all face three well-
identified problems, precisely: (i) the data deluge, (ii) the large number
of interacted exploratory queries and (iii) the economic crisis. Hence, it
becomes a real necessity to consider those problems and develop low-cost
database deployment solutions. Data parallel architectures are one of the
relevant deployment platforms that may manage efficiently this deluge
of data. The process of designing such architecture has to integrate the
interaction that may exist between queries. Although, the state-of-art
on parallel data warehouses is quite rich, to the best of our knowledge,
the query interaction is not highlighted. Amazingly, the queries are in
the core of the parallel design. Ignoring their interaction may impact
the quality of the final design. In this paper, we propose a new scal-
able hyper-graph approach, called HYPAD, for designing cluster ware-
houses by considering concurrent analytical highly interacted queries.
Our approach is validated through a data warehouse cluster simulator.
The obtained results show the effectiveness and efficiency of our proposal.

Keywords: Parallel data warehouse design · Fragmentation · Alloca-
tion · Big queries management · Query processing

1 Introduction

With rising of Big Data era, we are facing a data deluge. Multiple data providers
are contributing to this deluge. We can cite three main factors: (i) the massive
use of sensors (e.g. 10 Terabyte of data are generated by planes every 30min),
(ii) the massive use of social networks (e.g., 340 million tweets per day), and
(iii) transactions (2.5 Petabytes in the Wal-Mart databases per minute). The
decision makers need fast response times to their very large number of queries in
order to predict in real time the behaviour of users, so they can offer them ser-
vices via analysing large volumes of data. This situation generates Big Queries
phenomenon. These queries are highly interacted, since they may share several
sub-expressions (joins, selections). The causes of this interaction are multiple:
(i) the OLAP queries defined on relational data warehouses (RDW) modelled
by a star schema or its variants pass through the fact table, (ii) the interac-
tive DW exploration generates more personalized and recommended queries [9].
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 770–783, 2015.
DOI: 10.1007/978-3-319-27140-8 53
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The query interaction is one of the important field in databases. It has been
widely studied in all generations of databases (traditional databases [19], Object
oriented databases [14], semantic databases [10], and data warehouses [22], etc.).

Considering three above cited dimensions: data deluge, big queries phenom-
enon and the economic crisis, deploying RDW on conventional platforms (e.g.
centralized) becomes obsolete, even with the spectacular progress in terms of
advanced optimization structures (e.g., materialized views, indexes, storage lay-
outs, etc.). Despite this, the sole use of these structures is not sufficient to gain
efficiency during the evaluation of complex OLAP queries over relational DW.
As a consequence, distributed and parallel platforms are one of the relevant
robust and scalable solutions to store, process and analyse data, with the lay-
ers of modern analytic infrastructures [8]. Editors of DBMS already propose a
large choice of solutions to companies to adopt these solutions (e.g., Teradata)
or to go to the Cloud (e.g. Amazon Redshift). Note that these solutions may
become rapidly expensive when data size grows. For instance, the cost of stor-
ing 1 Terabyte of data per year in Amazon Redshift is about 5 500 USD. Several
efforts have been deployed to ensure a balance between low cost and high per-
formance solutions to manage this deluge of data. Even large companies like
Alibaba work towards this direction. In their recent works published in VLDB
2014 [7], they propose a MySQL driven solutions to deal with the data deluge
over the Cloud.

In this study, we follow this direction by designing parallel data warehouses
over clusters and considering the two dimensions: Big and Interacted Queries.
The query interaction has been incorporated in selecting optimization structures
in the context of relational DW (e.g. the work of [23] for selecting materialized
views), query scheduling [22], query caching in the context of distributed data
stream [20], etc. To deal with Big queries phenomenon, we recently proposed a
scalable hyper-graph data structure to manage both dimensions [6]. This struc-
ture contributes in selecting materialized views by considering many interacted
queries.

In this paper, we propose and experimentally assess an innovative methodol-
ogy guided by the big query interaction for designing Parallel RDW (PRDW)
on shared nothing database cluster architecture. To explore the large number
of queries, we use the hyper-graph structure that helps us in visualizing our
workload and partitions it, if necessary, into several components to reduce the
complexity of the design. Our main contributions are: (i) establishment of strong
coupling between Multiple Query optimization (MQO) problem and PRDW
design, (ii) the use of hyper-graph data structure to handle the large search
space of all possible Unified Query plans (UQP) and (iii) the elaboration of a
modular joint design including the data partitioning and the fragment allocation.

The rest of the paper is organized as follows. Section 2 provides an overview
of related work. Section 3 depicts a motivating example. Section 4 contains the
details of the PRDW design methodology HYPAD, which represents the main
contribution of our research. Section 5 provides our experimental results obtained
from testing the performance of HYPAD using dataset of the Star Schema Bench-
mark (SSB). Finally, Sect. 6 concludes the paper and discusses some open issues.
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2 Related Work

In this section, we review the most important state-of-art studies on PRDW
design and MQO. At the end of discuss the projection of MQO on this design.

PRDW Design . It consists first in fragmenting the warehouse schema using any
partitioning algorithm [16] and allocating the so-generated fragments over the
processing nodes using a particular algorithm such that the allocation scheme
generated must optimize the workload performance [13]. Then, the designer
duplicates the generated fragments on processing nodes to ensure high avail-
ability of data and the high performance of the system [24]. Once the fragmen-
tation and allocation schemes are generated, a load balancing policy is applied
to optimize the workload and achieve a high performance of the system [1,17].

Note that the different phases of the parallel design life-cycle (fragmenta-
tion, allocation, replication and load balancing) have the merit to be largely
studied, in an isolation way, over all database generations [13,18]. Afterwards,
iterative PRDW design approaches were proposed [21]. Recently, some research
efforts recommended combining some phases of the life-cycle in order to get
benefit from the interaction between these phases [3]. In our previous studies,
we proposed a methodology for designing PRDW that considers the depen-
dency issue between fragmentation and allocation phases of the parallel design
life-cycle. This methodology has been implemented on Teradata machine – a
shared nothing DBMS with proven scalability and robustness in real life user
environments [2]. The obtained results outperform the iterative design.

Multi-Query Optimization. The MQO has been widely studied by in the
literature. At first, it has been dealt as a problem of reusing intermediate results
of some queries to optimize other queries [19]. Researchers used this philosophy to
recommend materializing intermediate results [23], proposing query scheduling
strategies based on the intermediate results that may exist in the buffer [17,22].

The Projection of the MQO on the PRDW design . When this projection
is done, we figure out that it shows its impact in phases in isolated way. In the
work of [4], the authors show the contribution of MQO in selecting the best
horizontal partitioning schemes of a DW. Mehta et al. [12] tackle the problem
of scheduling queries in a parallel database by considering batches of queries.
The authors propose to divide the batch of queries into sub-batches, so that
the memory requirement of the queries in each sub-batch adds up to available
memory.

To the best of our knowledge, even there exists some works that consider
interaction when designing PRDW, none of them considers the Big Interacted
Queries Phenomenon. In this paper, we propose to study the impact of this
phenomenon in designing of PRDW; especially for data partitioning and frag-
ment allocation. To deal efficiently with the big queries, we propose the use of
hyper-graph structure that contributes in splitting the workload into disjoint
components collaborating to partition and allocate data over the nodes of the
cluster. To illustrate this approach, we consider a motivating example in the
next section.
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3 Motivating Example

We assume the following configuration of our parallel warehouse:

– A star schema composed of one fact table: Lineorder and four dimension tables
: Supplier, Dates, Customer, and Part.

– On the top of this schema, 10 star queries {Q1, .., Q10}. The unified plan
is described in Fig. 1-a. Three types of nodes of this plan are distinguished:
a selection operation (with the form Attribute θ value, where Attribute ∈
Table, θ ∈ {=, <,>, ...} and V alue ∈ Domain(Attribute)), denoted by Si, a
join operation, denoted by Ji and a projection operation denoted by π. We
note that seven (7) selections and joins are identified.

– The candidate attributes with their respective domains to perform the parti-
tioning are given in Fig. 1-c.

– A cluster with four nodes N = {N1, .., N4}.

Fig. 1. UQP representation example

By examining the UQP, we figure out that the queries can be regrouped into
two main groups called components (Fig. 1-b): C1 = {Q1, Q2, Q5, Q7, Q8, Q10}
and C2 = {Q3, Q4, Q6, Q9}. Each component contains a set of queries that share
at least one join operation. The first shared join node is called the pivot node
of the component and the set of selection predicates of its branches called set of
landmark predicates. In our case, we have two pivot nodes (J1 for the component
C1 and J2 for the component C2) with their sets of landmark predicates are
{s region = “America”} and {d year = 1998}, respectively.

Note that the pivot node notion is quite important, since it guides the par-
titioning process of a component by the means of its set of landmark pred-
icates. A landmark predicate partitions its corresponding table (a leaf node
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of the plan) into two partitions, one with all instances satisfying the predi-
cate (e.g., s region = “America”) and another representing the ELSE partition
(s region �= “America”). Note that the partitioning of dimension tables will
be propagated to partition the fact table. This partitioning is called derived
partitioning [3]. This initial partitioning schema of a component will be refined
by considering other predicates of the set of landmark predicates and other pred-
icates do not belonging to pivot node (e.g., S4). In the case, where the obtained
fragments of each component are allocated over these nodes in round robin fash-
ion, the maximum number of algebraic operations will be executed over all the
cluster nodes. Therefore, queries of a given partitioned component (e.g., C1) will
get benefit from this process.

The remaining fragment of the initial component (F5 in our example) will
be concerned by the partitioning process of the component C2. The above parti-
tioning and allocation reasoning applied to C2 (Fig. 1-g). Note that the queries
of the component C2 need fragments of the component C1.

A partitioning order has to be defined among components. In our proposal,
we give more importance to component that involves most costly queries. The
components with an empty landmark predicate set are not considered for the
partitioning process.

4 HYPAD: PRDW Design Approach Driven by UQP

In this section, we describe in details our design of PRDW (called HYPAD)
that considers the big interacted queries phenomena. Recall that the problem of
designing a PRDW can be described as follows [3]:

Given a workload of L star join queries Q = {Q1, Q2, .., QL}, a DW with
a fact table F and a set of d dimensions tables D = {D1,D2, ..,Dd} and a
cluster DBC with M processing node N = {N1, N2, .., NM}, where each node Ni

has its storage capacity. Our problem consists in fragmenting the fact table F
of DWS in W fragments and assigning them to different processing nodes in
order to minimize the execution time of the workload Q over DBC and satisfy
all constraints related to storage and maintenance.

Our proposed approach aims at ensuring an equitable node processing by
generating effective data placement schema (data partitioning and fragments
allocation schemes) using query interaction. HYPAD is based on the cluster-
ing of the workload in several small components to ensure the scalability of
the design. The partitioning process is guided by sharing operations, so their
tables (determined by the means of the predicate landmarks) are partitioned
and distributed over cluster-nodes.

The sharing operations are described using the UQP, where they are divided
in several components. Thus, the partitioning is driven by one operation shared
by one or more components (called component area). Each component area
becomes the subject of a module of sub-partition and sub-allocation. So, the
PRDW designing consists on the following tasks: (1) capturing the interaction
between queries, (2) data partitioning and allocation using disjoint modules of
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sub-partition and sub-allocation. The flowchart for our proposed PRDW design
methodology is sketched in Fig. 2.

Fig. 2. Flowchart for our proposed PRDW design methodology

4.1 Construction of the Unified Query Plan (UQP)

To generate the UQP, we have used our previous work [6]. We use hypergraph
data structure issued from VLSI layout design [11]. Both queries and theirs oper-
ations are represented by a hypergraph (see Fig. 3-a). To ensure the scalability
of our algorithm when dealing with big queries, we regroup the queries in many
connected components, such that queries belonging in the same component shall
have a high interaction and minimal interaction with others components. This
problem is known in VLSI domain as k-way hypergraph partitioning with min-
imum cut problem. We have used HMETIS1 [11] that can partition efficiently
hypergraph of millions nodes using recursive multi-level partitioning. The result
of the partitioning is several disjoint sub-sets (sub-hypergraphs), called connected
components (Fig. 3-b). Each component can be processed independently to gen-
erate a local UQP by ordering the nodes using a cost model [6]. At the end, the
global UQP is generated by merging the sub-hypergraphs (Fig. 3-c).

4.2 Annotation of UQP

Note that a potential fragment of a component, generated by a landmark predi-
cate, can be shared by many components. This is because landmark predicate lp

1 http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
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Fig. 3. An overview of capturing of interaction method

is associated to one or more components, but each component has one landmark
predicate. We call Components Area of lp (CAlp) all components involved by lp.
Note that a given workload may have a set of landmark predicates, denoted by
LP . Each landmark predicate lp, is labelled by a weight (w(lp)) representing the
sum of processing cost, in terms of Inputs/Outputs, of all queries of its compo-
nent area (CAlp). The LP is sorted in the descending order based on the weight
of its landmark predicates.

A candidate fragment of a component (generated by a landmark predicate)
can be shared by many components. To maximize its benefit, it will be interesting
if it affects the components with higher query processing cost.

4.3 Generation of Partial Data Partitioning Schema

Each component of our hyper-graph is concerned by the partitioning process. For
each component, a fragmentation preparation is needed. It consists in decompos-
ing the fact table based on landmark predicates into two fragments: one defined
by the clause of landmark predicates (noted CandidateFrag) and the second con-
taining the rest of the data (ELSE Clause), (noted by NoCandidateFrag). The
partitioning process will use this fragment by considering other predicates. This
partitioning passes through two main steps: preparation and iterative splitting.

– Preparation of Attributes Partitioning. We identify all possible attributes,
which have more than one value in their sub-domains in the definition of the
fragment object to the partial partition. These attributes are divided into two
categories: the first one, called first candidates (FC ), contains attributes that
are not used by the queries in the component area. The second one contains
the remaining attributes (called second candidates (SC )). The partition starts
using first attributes (FC ) to split the fragment such that each query can be
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processed by the maximum of cluster nodes. When none attribute exists in FC,
the partition process uses SC to select the attributes used in the partitioning
process.

– Iterative Fragment Splitting. The partial partitioning is a sequence of
splitting operations, where each split is applied on one fragment to produce
two fragments. So, the partial partition schema starts with a fragment and it
increases by one in each splitting. Each split is applied on the most volumi-
nous fragment. The volume is defined by the selectivity factor calculated as
the multiplication of selectivity factors of all attributes participating on the
definition of the fragment. The selectivity of a given attribute is the sum of
the selectivity of their sub-domain [3].
The splitting attribute corresponds to the attribute that has the minimum
values in its sub-domain. The splitting operation divides the sub-domain of
n values into two sub-domains, each one has n/2 values if n is pair else one
sub-domain has (n + 1)/2 values and the other has (n − 1)/2 values. The
splitting process continues till M fragments (M is number of cluster nodes)
are produced.

– The previous steps are repeated for all components.

4.4 Generation of the Partial Fragment Allocation Schema

The fragments of a Partial Data Partitioning Schema is allocated in round robin
fashion over the cluster nodes. Once allocated, the maintenance constraint (rep-
resented by the number of fragments W that the designer wants to have) is
verified. If this constraint is violated (W > M), the merging operations of small
fragments are necessary.

4.5 Evaluation of the Partial Fragment Placement Schema

An analytical cost model measures the quality of the selected placement schema
by estimating the number of inputs/outputs required for executing the workload.
More precisely, this model receives as input a horizontal fragmentation schema
SF , an allocation schema AS and a set of queries W , it returns the execution
cost of the workload W . The processing cost of all queries equal to the maximum
execution time of the processing nodes.

Indeed, the coordinator nodes of the Shared nothing database cluster ensure
the execution of the queries. For each query Qi of W , an optimal execution plan
is generated by:

– identifying the appropriate facts fragments;
– identifying the necessary joins;
– defining the join execution order and specifying the data access methods.

The so-generated sub-queries are allocated to the processing nodes. Since the
allocation is not redundant, the so-generated sub-queries are allocated to only
one processing nodes.

– Finally, all intermediate results are submitted to a suitable coordinator node
that merges them and accomplishes the needed aggregations.
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5 Experimentation

This section reports the results of an experimental evaluation of our proposed
approach. Our simulation conducted on a computer with 3.4 GHz Intel(R)
Core(TM) i7-3770 equipped with 8 GB RAM. Algorithms were carried out in
Java programming language. For the hardware architecture, we simulate a homo-
geneous Database Cluster of 8 to 128 nodes. We use the dataset of the Star
Schema Benchmark (SSB) [15] with different sizes (from 100 GB to 2 TB). Sev-
eral workloads randomly generated are used with a size varying from 32 to
10,000 queries. Our star join queries are generated from the 13 queries pro-
posed by the star schema benchmark (SSB). Specifically, we convert each refer-
ence query to a template, by replacing each range predicate with a parameter.
Thereby, to obtain a workload query, we just replace the parameter in the query
template with a random value.

In all experiments, we use the same cost model, estimating the number of
inputs/outputs (I/O) when executing a given workload, developed in [3]. Our
tests have two objectives: (i) compare the performance of HYPAD approach
with a recent design approach called (F&A) that shows its efficiency in Teradata
machine [2] and (ii) check the quality and scalability of HYPAD, where workload
and the size of dataset changes.

5.1 Comparing HYPAD Against F&A
As a first experiment, we study the performance of our proposed methodology
HYPAD, compared against F&A approach [3], where allocation phase is done
at partitioning phase. In this approach, the fragmentation phase uses a Genetic
Algorithm and the allocation phase is based in innovative matrix-based formal-
ism and a related fuzzy k-means clustering. For each PRDW design methodol-
ogy, we set the fragmentation threshold W to 500 and we measured the query
execution time versus the variation of the number of database cluster nodes M
over the interval [8:32]. Figure 4 shows the obtained results. We can see that
HYPAD approach performs 18 %–39 % better than F&A.

Fig. 4. Computational overhead performance of HYPAD against F&A Design
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Fig. 5. Performance of HYPAD against F&A design approach

To check the quality of the placement schema generated by HYPAD when
changing the number of cluster, we conduct the same experiment and we calcu-
late the speed up factor for each approach. Figure 5 shows that this factor is not
linear, since HYPAD does not perform the load balancing processing. To deter-
mine the cause of this imbalance processing and to see how data is distributed, we
run a second experiment. We fix the number of nodes to M=8 and we check the
amount of data stored in each node. As sketched in the Fig. 6, both approaches
(F&A, HYPAD) suffers by data placement skew with 43 % and 48 % respec-
tively. This is due to the selectivity skew. Indeed, both approaches are based
on the multi-level partitioning that is based on the splitting of the attribute’s
domain. This type of splitting depends on the nature of the distribution of the
attribute’s domain. As shown in [5], the solution of this problem requires remov-
ing from the list of partitioning attribute candidates the attributes that suffer
from selectivity skew problem.

In the third experiment, we study the effect of the size of the workload
on the performance of HYPAD comparing with the F&A approach. Here, we
fix the number of nodes to M = 16 and we range the workload size over the
interval [30:60] in order to study how the HYPAD query performance varies
accordingly. Figure 7 gives more details for executing a workload with 30 queries.
For HYPAD, all queries get benefit from the partitioning schema, whereas in
F&A, only queries involving fragmentation attributes get benefit. This result
shows the efficiency of our approach.

5.2 Influence of the Workload Query Pattern in Query Performance

To evaluate the HYPAD scalability, we have to vary several parameters: the
number of queries, the number of nodes, and the size of datasets. We perform
these experiments on HYPAD and not in the F&A; since it does scale when the
number of queries is high.
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Fig. 6. HYPAD data placement distribution

Fig. 7. Queries makspen

The first experiment aims to evaluate the impact of the workload size on the
quality of data distribution. We consider the following configuration: a cluster
with 32 nodes, a 2 TB dataset and two workloads with 100 and 1000 queries,
respectively. The obtained results are given in Fig. 8. The main lesson of these
experiments is that the data placement skew of HYPAD may be improved when
more queries are involved.

The second experiment aims to check the scalability of HYPAD. Intensive
tests were applied using different configurations by varying the number of cluster
nodes ([8:128]), number of queries (from 100 to 10 000 queries) and the size of
dataset (100 GB, 1 TB and 2 TB). In each configuration, the simulator estimates
the total cost of query processing. To check the scalability of HYPAD when
database size increases, we fix the number of query on 1 000 queries. Figure 10,
shows that HYPAD scales-up when the data size increases.

To check the scalability of HYPAD when the workload size increases, we
fix the size of dataset to 2 TB. The obtained results in Fig. 9 confirm that an
increase of the workload size results in raising the speed-up and making it more
linear.
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Fig. 8. The impact of workload size on data distribution quality.

Fig. 9. Scale-up of HYPAD when the workload size increases

Fig. 10. Scale-up of HYPAD when database size increases
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6 Conclusion

In this paper, we motivate the consideration of query interaction in designing
parallel data warehouses under concurrent analytical queries. We proposed a new
scalable PRDW designing approach that can generate effective data partition
and data placement schemes. The main steps of our HYPAD approach are: (i)
capturing of interaction among queries. (ii) Generation of landmark predicates
that performed by using connected components that compose the UQP. (iii)
Elaboration of modular data partition and data allocation, guided by the com-
ponents of UQP. Our approach is compared against the most important state of
art works and the obtained results show the efficiency and effectiveness of our
approach. It has been tested under big size workload (10000 queries), that shows
its scalability.

Currently, we are working into two directions: (i) introducing the replication
of fragment to ensure the availability and the (ii) applying query interaction to
on-line load balancing in parallel database.
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S., Basl, J., Tjoa, A.M. (eds.) DEXA 2013, Part I. LNCS, vol. 8055, pp. 278–292.
Springer, Heidelberg (2013)

7. Cao, W., Yu, F., Xie, J.: Realization of the low cost and high performance mysql
cloud database. Proc. VLDB Endow. 7(13), 1742–1747 (2014)

8. Eavis, T.: Parallel and distributed data warehouses. In: Liu, L., Ozsu, T. (eds.)
Encyclopedia of Database Systems, pp. 2012–2018. Springer, US (2009)

9. Eirinaki, M., Abraham, S., Polyzotis, N., Shaikh, N.: Querie: collaborative database
exploration. IEEE Trans. Knowl. Data Eng. 26(7), 1778–1790 (2014)
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Abstract. Phase change memory (PCM) has emerged as a promising candidate
for next-generation storage media, owing to its low power consumption,
non-volatility, and high scalability. However, PCM has limited write endurance,
or more particularly, it can only undergo a limited number of write operations.
This problem is much critical to the lifetime of PCM. Aiming to solve this
problem, in this paper we propose an efficient space management scheme for
PCM-based storage systems, which is able to level the write operations to PCM
and lengthen the lifetime of PCM. In particular, we propose a new structure
(called dual dynamic bucket lists) to manage the spaces of PCM, and further
devise an efficient page management policy for page allocation, migration, and
swaps. With these mechanisms, write operations are distributed to PCM chips in
a balanced manner and the write amplification ratio of PCM incurred by page
swaps is decreased, yielding less write operations to PCM and longer lifetime of
PCM. Our experimental results on a simulated PCM-based device show that our
proposal is effective in lengthening the lifetime of PCM, and thus offers a more
practical solution for the space management on PCM-based storage systems.

Keywords: Phase change memory � Space management � Wear leveling

1 Introduction

Phase change memory (PCM) is a new kind of storage media that has received much
attention from both academia and industries in recent years [1]. PCM is non-volatile
and has fast read/write speeds than other storage media such as flash memory and
magnetic disks. As I/O latency is always a performance bottleneck in computer sys-
tems, PCM is expected to be incorporated into future storage systems, which we call
PCM-based storage systems, to offer much higher I/O performance than the existing
storage media.

However, PCM has some special properties compared to existing storage media
like flash memory and magnetic disks, such as byte-addressable and limited write
endurance [2]. Specially, PCM can only undergo a limited number of write operations.
This is much critical to the lifetime of PCM, as well as to its practicability.
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Although flash memory is also regarded to have limited write endurance, we cannot
simply use existing flash-memory-optimized techniques such as hot-DL [3] for
PCM-based storage systems. For example, flash memory offers page-level read/write
operations and block-level erase operations but has to use the erase-before-write policy
when updating data, which is called out-of-place updating [4]. However, PCM supports
in-place updating because of its byte-addressable feature.

In this paper, aiming at leveling write operations to PCM and therefore lengthening
the lifetime of PCM, we propose an efficient approach for the space management on
PCM-based storage systems. In brief, we make the following contributions in this
paper:

1. The spaces of PCM are organized by a unit of page and we propose a new structure
(called dual dynamic bucket lists) to manage these pages. With this design, all the
pages of PCM are organized into a free dynamic bucket list for maintaining free
pages and an allocated dynamic bucket list for allocated pages. (Section 3.1)

2. Based on the dynamic bucket lists, we propose a page management algorithm for
page allocation, page migration, and page swaps. With this mechanism, write
operations are distributed to PCM chips in a balanced manner and the write ampli-
fication ratio of PCM incurred by page swaps is decreased, yielding less write
operations to PCM. (Section 3.2)

3. We conduct experiments on a simulated PCM-based storage system to compare our
proposal with several existing approaches including PTL [5], the bucket-based WL
algorithm [6], and the random swapping algorithm [7]. The results show the effi-
ciency of our approach. (Section 4)

2 Background and Related Work

As a kind of non-volatile memories, PCM is a promising candidate for storage and
main memory because of its non-volatility, high density and so on. A PCM cell uses
phase change material that can switch the state between amorphous and crystalline with
electrical pulses to store a bit information. Write a PCM cell includes two operations
called SET and RESET. SET operation requires wild pulse and low current to crys-
tallize the phase change material. RESET operation is controlled by high-power pulse
to make the material amorphous. While reading a PCM cell is done with very low
power by sensing the resistivity of phase change material. Basically, the great
advantages of PCM are non-volatile, low idle power, high scalability, bit addressable
and low read latency. However, the long SET operation increases the write latency, and
the PCM cell can only sustain a limited number of writes which is known about 106-
108 in general [8]. Therefore, frequently writing to PCM will impact the performance
and lifetime.

Some researchers believe that PCM will not completely replace DRAM and design
new memory architecture either using a small amount of DRAM in front of PCM to
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cache PCM data [9, 10] or use PCM as an alternative main memory [11, 12]. In the
hybrid memory systems, DRAM is used to store frequently accessed or write intensive
data by effective memory management that consists of data partition methods, page
replacement and migration policies. There are a large number of buffer managing
policies based on different storage media and different kinds of architecture. For
example, the classical LRU policy [13] is widely used in modern systems. Lazy-write
organization [9] and CLOCK-DWF [12] are proposed for PCM-based hybrid memory.
These buffer managing policies aim to the assumption that there is a big read/write
latency gap between buffer and secondary storage, so that every request must be cached
in the buffer. Finally, request for a cold page may evict a frequently accessed page
because of the behavior of mandatory buffering.

As PCM has limited write endurance, many researchers proposed approaches to
overcome the PCM write-endurance problem. These approaches can be roughly divi-
ded into two categories: write count reduction and wear leveling. The combination of
DRAM and PCM described above is one way to reduce write count. But this cannot
prolong the life-span of PCM if the writes to PCM are seriously localized. Thus wear
leveling is necessary. In the past years, many policies such as DAC [14], PWL [15],
and Hot-DL [3] have been proposed for flash memory, which are based on dynamic or
static wear leveling. However, wear leveling researches on PCM are not like
flash-based wear leveling methods because PCM is different from flash in some fea-
tures like byte-addressable and in-place updating.

One kind of PCM-based wear leveling methods is the deterministic algorithm based
on the age of pages. The age of a PCM page can be estimated by recording the write
count information of the page. If one page whose life exceeds a given threshold, then
we swap it with another page on which few write operations occur [16]. Park et al. [10]
proposed an adaptive multiple data swapping and shifting scheme for PCM. They
monitor the write pattern of PCM to determine whether swapping and shifting should
be performed or not, and then perform page-level swaps and line-level shifting oper-
ations. This scheme implements wear leveling in multiple granularity and performs
well, but it brings heavy storage overhead for maintaining the write counts of PCM.
Zhou et al. [16] proposed two methods, row shifting and segment swapping, to achieve
wear leveling of PCM. Comparing to literature [10], the two methods spend less
storage to maintain metadata. However, they will introduce high search costs for the
segments to be swapped if the PCM capacity becomes large, and swapping pages at a
fix swap interval might not prevent wearing out the PCM pages from the attacks of
malicious processes. Space overhead is the main drawback of age-based wear leveling
schemes if they use a fine-granularity. To solve the space overhead, wear leveling
policies that utilize random algorithms to swap data to another randomly selected place
[7] are proposed. In these techniques, the accurate determination of a random algorithm
and a swapping interval is important because they highly impact time performance and
the effect of wear leveling.

Unfortunately, both age-based swapping and random-based swapping algorithms
will incur the write amplification problem. Choi et al. [5] proposed PRAM translation
layer (PTL) that dynamically translates logical addresses to physical addresses.
Although PTL avoids write amplification, the age difference between read-only pages
and frequently updated pages will become bigger if there is no update.
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3 Space Management for PCM-Based Devices

Figure 1 shows the overall architecture of a PCM-based device. Though the PCM-
based device can support multi-grained accesses, such as line-level or page-level
access, we manage all spaces of PCM using a page granularity. If a request needs to
access x-bytes data, we first check which pages the x-bytes data belong to. If these
pages have been cached in the DRAM buffer, we just need to read or update the
requested x-bytes data in the buffer. If the pages are not in the buffer, we read the pages
from PCM to DRAM and then operate the x-bytes data in the buffer.

Figure 2 shows the detailed structure of our space management scheme. The spaces
of PCM are divided into two parts: a data area and a metadata area. The data area is the
actual physical space available for data storage. The metadata area maintains two kinds
of metadata about the pages in the data area. The first kind of metadata is the age
information of the pages in the data area. The age of a page is determined by its write
count. Every time when a page is updated, its corresponding write count is increased.
The second kind of metadata is a reversed mapping table that maps physical page
numbers (PPN) to logical page numbers (LPN). This mapping table is dynamically
reconstructed when the device is initialized. The reason for storing PPN-LPN reverse
mapping table instead of LPN-PPN mapping table is explained as follows. If we store
mapping table and the mapping relationships of LPN to PPN change frequently,
the wear counts of the cells which are used to store the LPN-PPN mapping information
are uncontrollable and mapping table area may be worn out if no finer granular wear
leveling method is performed. On the contrary, storing PPN to LPN reverse mapping
table will not incur such wearing problem because the write count of PCM cells storing
the reverse mapping information is always less than the wear count of the corre-
sponding data area page.

In addition, the pages in the data area are grouped into three categories: young
group, middle-age group, and old group, according to the write count of the pages.

PCM chip array

DRAM buffer

Page-level 
Read/Write

Read/write

Buffer 
management

space managing 
structure

page management 
policy

controller

PCM-based device

byte/page-level 
write

byte/page-level 
read

Fig. 1. Overall architecture of a PCM-based device
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We design a new structure called dual dynamic bucket lists to classify the pages into
the three categories, which is discussed in Sect. 3.1. The detailed page management
algorithm based on the structure of Fig. 2 will be described in Sect. 3.2.

3.1 Dual Dynamic Bucket Lists

The dual dynamic bucket lists are proposed to organize all the pages in the data area.
Particularly, we design two dynamic bucket lists, with one for free pages (called free
dynamic bucket list) and another for allocated pages (calledallocated dynamic bucket list).

The two lists have the same structure but with different lengths, as shown in Fig. 3.
Each node in a list is a bucket, and each bucket is associated with a number denoting the
age information of the pages in the bucket. We set w as the basic value of the age of a
page. Once a page is updated n times ( i� 1ð Þ � w� n\i � w), its age is updated to i � w.
Then, we put the pages whose write counts are within a certain range into the same
bucket. For example, if the write count of a page is between n*w and (n + 1)*w, we put
the page into the bucket whose associated number is (n + 1)*w (its age is (n + 1)*w).
With the increasing of the write count of a page, we may need to move the page to a new
bucket. Note that in the structure shown in Fig. 3, the pages among different buckets are
ordered, while the pages in the same bucket are disordered. At the beginning, there is

Data area Metadata area

PPN-LPN Write count

Buffer management

Old group

Middle-age group

Young group

old

Middle-age

young
LRU

Fig. 2. Detailed structure of PCM space management
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Fig. 3. Dual dynamic bucket lists
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only one bucket node in the free dynamic bucket list containing all available pages in
PCM. The allocated dynamic bucket list is initially empty because there is no real data
stored in PCM.

The purpose of wear leveling is to prevent old pages from being worn out, thus we
need to identify the oldness of the pages in the data area. For this purpose, we divide
the pages in the lists into three groups: young group, middle-age group, and old
group. Each group contains a set of pages and is denoted by the dotted boxes in Fig. 4.
The partitioning of the three groups is based on average write count of pages. As we
have maintained the write count of each page within the data area in the dynamic
bucket lists, we can calculate the average write count of all the pages in PCM by (3.1).

averagewritecount ¼ totalwritecount
totalpages

ð3:1Þ

Then, given the average write count AW, we say a page is within the middle-age
group if the absolute difference between the write count of the page and the average
write count AW is less than a threshold TH. Similarly, a page whose write count is over
(AW + TH) is identified as an old page and is put in the old group, and pages with write
counts less than (AW + TH) are put in the young group. The group to which the pages
belong may change as AW will increase after several writes.

Thus, for ensuring wear leveling, we can simply select the pages from the youngest
bucket in the free dynamic bucket list if a request of page allocation arrives. However,
the challenging problem is that this policy will lead to poor effectiveness if the free
dynamic bucket list only contains old pages (pages in the old group). This is because
allocating old pages may bring more writes to these pages and worsen the write
endurance of PCM. Therefore, we propose a new effective approach for page man-
agement, which is described in Sect. 3.2.

3.2 Page Management for Wear Leveling

In this section, we introduce a novel PCM page management based on the dual
dynamic bucket lists.

Previous PCM-based wear leveling policies, such as segment swapping [16],
random swapping [7], and adaptive multiple data swapping and shifting scheme [10],
relied on the parameters of operation timing and the number of swapping pages which
have a high impact on the performance of wear leveling. Differing from previous
approaches, our proposal does not need such parameters and the swapping or migration
operations are controlled by page allocations. In addition, we perform in-place updates
on young pages and out-of-place updates on old pages, which can improve the per-
formance of wear leveling.

We use an LRU list to maintain the request information about each data page. Thus,
for each write to PCM, we can easily identify the exact group to which the updated
page belongs based on the write count information of pages in the LRU list. Generally,
in order to improve the performance of wear leveling, we aim to make the write counts
of each page close to the average write count. Therefore, young pages should absorb
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more write requests than old pages. For this purpose, we let young pages be updated by
the in-place updating policy, but old pages have to be updated in the manner of
out-of-place updating, because we need to reduce writes to old pages. For example, in
Fig. 4, a dirty page C which belongs to the old group is evicted from the buffer, and an
out-of-place writing operation to C is performed. Figure 4 shows the procedure of
writing back an old page from the buffer to PCM. The parts marked by (1) show the
initial state when C is evicted from the buffer. The parts marked by (2) are the states
after page C has been written back to PCM. We can see that page C was stored in
physical page PPN10 which belongs to the old group before performing the update
operation. We allocate a new empty young page PPN7 for the required out-of-place
write and update the mapping table. Then, we write page C to PPN7. Finally, PPN10 is
reclaimed to be a free page. With this mechanism, the write count of PPN10 does not
increase, yielding better performance of wear leveling for PCM.

Generally, a page allocation command originates from either an updating of an old
page or a new logical page mapping, both of which may introduce write operations.
Thus, the allocated new page is first regarded as a hot page due to the temporal locality

CB
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PPN7 PPN 10

B-PPN3
C-PPN10
D-PPN16

B-PPN3
C-PPN7

D-PPN16
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LRU list
lrumru
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Maplist Maplist

Allocate PPN7 to C, Free PPN10

(1)
(1)

(2)
(2)
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Fig. 4. The procedure of out-of-place updating
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of page requests. If the newly allocated page belongs to the old group, possible write
operations will worsen the performance of wear leveling. Therefore, we suggest that
only the pages in the young or middle-age groups can be allocated as new pages. If a
page allocation request arrives but the free dynamic bucket list only contains old pages,
a young page in the allocated dynamic bucket list needs to be released. Since the page
to be released is relatively young, meaning that it will not be written frequently in the
near future, we move the page to a free old page, so that the young page can be released
and reallocated. As a consequence, a page allocation request will introduce additional
page migration and page swapping operations.

Algorithm 1 shows the detailed process of page allocation. When a free page is
needed, a page p in the youngest bucket of free dynamic bucket list is selected. If
p belongs to young or the middle-age group, it is allocated directly (Line 1-3).
Otherwise, if p belongs to the old group, another page q in the youngest bucket of the
allocated dynamic bucket list is selected as victim. In order to allocate q to response the
page allocation request, p should be allocated to store the data of q, and the LPN of q is
updated to link to p (Line 4-6). Finally, q is released and reallocated (Line 7-8).

Figure 5 shows an example of data migration caused by a page allocation. In Fig. 5,
each cycle represents a physical page number, and the letter in the cycle denotes the
associated logical page number of the physical page. For instance, the physical page
PPN4 is mapped to the logical page A. Figure 5(a) shows the initial state of the dual
dynamic bucket lists before executing the data migration, PPN4 is a young page, and
all the free pages in the free dynamic bucket list belong to the old group. When a page
migration is performed, the page PPN4 in the allocated dynamic bucket list is selected
as the victim. The mapping information of its logical page A is changed to a new page,

Fig. 5. An example of data migration incurred by allocating command
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namely PPN16, which is selected from the free dynamic bucket list. The data in PPN4
is then copied to PPN16 and PPN4 is reclaimed and put into the free dynamic bucket
list, as shown in Fig. 5(b). After that, the free dynamic bucket list has a free young page
that is used to response the page allocation request.

We summarize the storage overhead for managing 4 GB PCM. The information
stored in metadata area includes age information of all pages and the reverse mapping
table from PPN to LPN (To reduce space overhead, we set the basic managing unit as a
page). Since our system allows byte-level reading or writing, if the system updates
several bytes, we increase the wear count of the pages which these updated bytes
belong to. For a 4 GB PCM storage, the page size is set to 4 KB, so there are 220 pages.
We use 4B to store the age information per page since the write limitation is 106-108,
the space used to store age information is 4 MB. Meanwhile, 4 B is also enough to
maintain the reverse mapping information per a page, so another 4 MB is needed. So
the total space overhead to store metadata for a 4 GB PCM storage is 8 MB.

4 Performance Evaluation

4.1 Experimental Settings

We implemented a PCM simulator according to the architecture of Fig. 1. The page
size of the DRAM buffer as well as PCM is set to 4 KB. The DRAM buffer is managed
by the LRU policy. We compare our proposal with several existing algorithms
including the random swapping algorithm [7], PTL [5], and the bucket-based WL
algorithm [6]. The random swapping algorithm swaps the page to be written with a
randomly selected page after every 512 write operations to PCM. The bucket-based
WL algorithm uses 500 buckets to maintain the pages in use and free pages, and the age
difference of pages in the same buckets is 10. All the algorithms are executed with the
same parameters shown in Table 1.

We use two synthetic traces and two real traces in the experiments. The charac-
teristics of these traces are shown in Table 2. The memory footprint in Table 2 refers to
the number of different pages that are referenced by a trace. For example, the T1982
trace consists of 10 % read operations and 90 % write operations, and 80 % requests
within the trace are focused on 20 % different pages. These synthetic traces are gen-
erated by DiskSim (http://www.pdl.cmu.edu/DiskSim) within setting the parameters of
read/write ratio and locality. And the OLTP and ZIPF traces are generated from real
database systems when the systems access to disk data.

Table 1. Parameters in the experiments

Parameters Value
Synthetic traces Real traces

PCM size 12000 pages 52000 pages
DRAM buffer size 1000 pages
w 10
TH 30
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4.2 Experimental Results

4.2.1 Impact of the Parameter TH and W
We first conduct an experiment to see the impact of the parameter TH and w. In this
experiment, we run our algorithm on the four traces with various values of TH and w.
We focus on measuring the maximum write count on one PCM page after the execution
of a trace. This metric is an important factor that affects the lifetime of PCM. Figure 6
shows the results of maximum write count by varying TH from 10 to 80 and varying w
from 10 to 20. We can see that the maximum write count increases with w and TH in
most cases, especially when TH is over 30. This is because the numerical age range of
pages that belong to the middle-age group becomes larger as TH and w increases, and
the pages can tolerate more writes before they belong to the old group, making the
maximum write count larger. This also causes a degradation of the total migration
count. In the following experiments, we set TH to 30 and w to 10.

Table 2. Synthetic and real traces used in the experiments

Trace Memory Footprint Read/Write Ratio Locality Total Requests

T1982 10,000 10 % / 90 % 80 % / 20 % 300,000
T1955 10,000 10 % / 90 % 50 % / 50 % 300,000
OLTP 51,880 77 % / 23 % * 607,390
ZIPF 47,023 51 % / 49 % * 500,000

Fig. 6. Impact of TH and w on maximum write counts of PCM
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4.2.2 Maximum Write Count on PCM
Figure 7 shows the maximum write counts on PCM for various traces. We can see that
the maximum write count of our proposal is much less than that of competitor algo-
rithms, indicating that our algorithm brings less writes to each PCM page, which is
helpful to lengthen the lifetime of PCM. The random swap algorithm gets the worst
result because in this algorithm, the page to be accessed may not be the oldest pages
when a page swapping is triggered. Note that when T1955 is used, our proposal has
similar result with PTL. This is because of the special feature of T1955, in which the
trace all the requests are evenly distributed.

4.2.3 Distribution of Write Requests
In this section, we will show the distribution of write count in PCM after implementing
the same number of requests. Figure 8 shows the comparative results on T1982, and the
results on other traces are similar with that on T1982. In Fig. 8, the y-axis refers to the
number of writes on each page and the x-axis refers to the physical page numbers. Note
that the value range of y-axis is different in each sub-figure. For the bucket-based WL
algorithm, the difference between maximum write count and minimum write count is
about 5000 and the writing distribution is about from 4700 to 10000. PTL adopts the
strategy of out-of-place updating, although most of the pages are worn evenly (from
7700 to 8200), there are still a few pages that have been tolerated a large number of
write operations. The random swap method shows the largest deviation of the write
count than others (from 0 to nearly 25000) because old pages may not be selected to
swap and some empty pages are not likely to be allocated for page swapping. As shown
in Fig. 8(a), our proposal narrows the deviation of write operations. All the pages have
been written at least 7190 times, but the maximum number of write operations is only
7284. A red line shown in Fig. 8(a) is formed by a large number of points gathering
together. Actually, this line is the boundary of the old group and the middle-age
group. The result of our proposal shows that the average age is 7247 after applying
T1982, and the pages whose write count is over aveþ TH (that is, 7247 + 30 = 7277)
belong to the old group, indicating that our proposal can guarantee most of the pages
are below the line.

Fig. 7. Comparison of maximum write count
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4.2.4 Lifetime of PCM
The life time of PCM is evaluated based on the first failure time, that is, the first time
that a PCM page is worn out. Previous literature has reported that a PCM cell can
tolerate about 106 * 108 writes in general [5]. In this experiment, the write limitation
of a PCM page is set to 104. Since some write requests are cached in the buffer before
being written back to PCM, we do not use the overall number of write requests but use
the actual writes to PCM. If a page management scheme can undergo more writes than
others, it is considered to be a better policy. The number of pages in PCM is set to
12000, thus the total number of write operations that PCM can tolerate in the ideal case
is pages� limitation (12000� 10000). Table 3 shows the comparative results. Our
approach can tolerate more write operations before a PCM page is worn out than other
three methods, and achieve about 99.5 % and 96.9 % of the ideal lifetime when T1955
and T1982 are executed. By contrast, PTL, the bucket-based WL, and the random swap
algorithm only achieve 89 %, 75.5 %, and 37 % of the ideal lifetime. The experiments

Fig. 8. Distribution of write count in PCM after applying T1982 (Color figure online)
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also shows that the write amplification ratio of proposed method is very small. Par-
ticularly, the maximum amplification ratio is only 2.7 % on T1982. The random
swapping algorithm incurs more extra writes than others on T1955 because it invokes
periodically page swaps. On the contrary, in our proposed method, whether wear
leveling is invoked depends on the number of writes to a PCM page instead of the total
number of write operations to PCM.

In addition, we change the write limitation of a page from 10000 to 50000 and
measure the lifetime of PCM to see the influence of write limitation on our algorithm.
The results are shown in Fig. 9, which shows that our proposal can supply more writes
than other three methods when varying the value of write limitation. To this end, our
proposal is able to suit different kinds of PCM media that have different metrics in term
of write limitation.

5 Conclusion

In this paper, we propose a PCM-based device and present an efficient approach for the
page management of PCM-based device. Specially, we propose a new structure (called
dynamic bucket list) to manage the pages of PCM. With this design, all the pages

Table 3. Lifetime under synthetic traces

Policies Write count of wearing out
PCM
1955 T1982

Our Proposal 119,511,349 116,328,780
PTL 117,628,266 95,740,849
Bucket-based WL 94,416,434 86,691,668
Radom swap 62,941,008 26,001,132

Fig. 9. Life time of PCM when varying write limitation
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of PCM are organized into a free dynamic bucket list for maintaining free pages and an
allocated dynamic bucket list for allocated pages. Based on the dynamic bucket lists, we
propose a page management scheme for page allocation, page migration, and page
swaps. With this mechanism, write operations are distributed to PCM chips in a bal-
anced manner and the write amplification ratio of PCM incurred by page swaps is
reduced. We conduct experiments on a simulated PCM-based storage system to com-
pare our proposal with several existing approaches including PTL, the bucket-based WL
algorithm, and the random swapping algorithm. The results show the efficiency of our
approach.
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Abstract. The objective of this paper is to investigate two existing
variants of the double bit-flip error models and their impact on program
execution. The two variants are (i) flipping two bits in a given word or
register and (ii) flipping one bit in two different words or registers. The
goal of the study is to determine whether there is relevance for considera-
tion for both variants during program validation. Specifically, we seek to
determine if the profile failures induced on software by the variants are
different. This then motivates that both are needed for validation. We
conduct a large-scale experiment on five different software systems from
two target systems. Our results show that each variant induces a differ-
ent failure profile in software. Hence, we conclude that both variants are
important during validation.

Keywords: Multiple bit-flip errors · Fault injection · Failure profile ·
Evaluation

1 Introduction

The rate of hardware transient faults is increasing with reducing hardware sizes
and with issues such as temperature hotspots [3,15,20]. These transients faults
cause errors to exist in running programs [9] by subverting bits in CPU registers
or memory words [5,8]. To emulate these errors, system execution is artificially
perturbed by injecting bit-flip errors into program state during a process called
fault injection [6]. Traditionally, a single bit is flipped in a single run of the
program. This typically involves selecting a location and inverting a bit at that
location at some given time. However, the occurrence of multiple transient faults
limits the usefulness of single bit-flip errors in uncovering vulnerabilities and, in
turn, necessitates the injection of multiple bit-flip errors in a single run. To
evaluate the ability of software to tolerate these faults, fault injection is widely
used for the validation of dependable systems. Its recommendation as a highly
valuable assessment method in the recently published ISO 26262 standard [7]
for functional safety of road vehicles supports the recognition of its increasing
importance.

There is some evidence that shows several bit upsets occurring within a single
memory word and single bit upsets occurring across several memory words, while
c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 799–813, 2015.
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also there has been observations that errors may occur chip-wide [11,17]. On the
other hand, there is lack of field data on the manifestation of multiple faults
in registers. Several works have started investigating double bit-flip errors fault
models, in anticipation of hardware being susceptible to multiple faults [1,2,19].
The works in [2,19] focused on the variant of double bit-flip errors occurring at
a given location (i.e., memory word or register), where two bits are selected and
are subsequently flipped. We call this variant the double bit-flip model (DBF).
A novel variant of the double bit-flip error model called the Double Single Bit-flip
(DSB) fault model was considered in [1], where two locations are selected and
a single bit-flip error is injected at each location. Hence, we need to investigate
whether the DBF and DSB give rise to different failure profiles and in turn
determine whether both variants need to be considered during validation.

The utility of a fault model lies in its ability to discover weaknesses in a
system during validation. In particular, it is common that the error sensitivity
of a software system is evaluated with respect to the errors being introduced
according to the assumed fault model. Error sensitivity is often defined as the
likelihood that a software component, as a result of a hardware error, will produce
an error that may go undetected by the system. This type of error is called a
silent data corruption (SDC).

It has also been observed that different fault models will induce different
failure profiles in software, thereby motivating the need to consider various fault
models for coverage [13]. Thus by injecting double faults variants the coverage
of double bit-flips is expected to increase thereby decreasing inaccuracy. Hence,
we have conducted an extensive fault injection campaign, in excess of one and a
half million fault injection experiments on five different software modules from
two different target systems, each with different software structures, to test our
hypothesis.

The objective of our study is to determine whether the failure profile induced
by DSB differs from DBF. As such, our main contributions are (i) we provide
a categorisation based on injection location, (ii) we conduct a large scale fault
injection experiments for DSB and DBF errors, and (iii) we conduct traditional
SBF fault injections as a baseline comparison. The main result shows that DSB
induces a failure profile different from the one induced by DBF.

The remainder of this paper is structured as follows: We describe our system
and fault models in Sect. 2. In Sect. 4, we describe the fault injection conducted,
including target programs used and input set processed during fault injections
and the experimental setup used. We present the results of our experiments in
Sect. 5. Section 6 discusses the limitations of our study and overarching issues.
In Sect. 7, we conclude the paper, and provide some areas of future research.

2 Models

We now present the system and fault models we assume in the rest of the paper.
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2.1 System Model

We consider modular software systems, i.e., software that consists of a number of
components which offer discrete software functions. Each component may consist
of one or more sub-components. These components interact with each other to
deliver the requisite functionality. We consider a component to be white-box,
i.e., the codebase is available, having possibly multiple inputs and outputs. We
do not assume knowledge of the implementation details though. The codebase is
only needed to enable the software to be instrumented to enable artificial bit-flip
errors to be injected.

Components communicate with each other in some specified way using differ-
ent forms of signalling, e.g., shared memory, parameter passing etc. A component
performs computations using the inputs received on its input channels to gen-
erate the outputs, which are then placed on the requisite output channels. At
the lowest abstraction level, a component may be a procedure or a function and
a process at the highest level. Such type of software is commonplace nowadays
and can be seen in many different applications areas, such as embedded systems.

2.2 Fault Model

In this paper, we consider transient hardware faults originating at the transistor
level, that ultimately impact on the software modules. These faults are usually
caused by issues such as temperature hotspots and cosmic ray or alpha particle
strikes. Also, the faults impact on the program state by altering the content of
memory and registers, and through the process of error propagation results in
errors [9] existing in the software modules. These errors are usually mimicked by
injecting bit-flip errors in memory and registers. We consider faults that occur in
the data, sdata, bss, sbss and stack segments of the Static Random Access Mem-
ory (SRAM), which, hereon, we refer to as words. In addition, we consider faults
that occur in general purpose registers, stack pointer registers and Arithmetic
Logic Unit (ALU) input and output registers. The general assumption is any
number of bit-flip errors may occur in any number of locations. In this paper,
we only consider two bit-flip errors occurring. We implemented this as either
double single bit-flips (DSB), where we flip one bit in two different target words
or registers or DBF, where we flip two bits within one target word or register.

3 Problem Statement

In this paper, we investigate the differences in impact on software of two variant
implementations of the double bit-flip errors fault models (the double single
bit-flip (DSB) proposed in [1] and double bit-flip fault (DBF) model variant
used in [2,19]), injected in the same injection locations (an injection location
being either one main memory word or register, or two main memory words
or registers). The overall objective of the study is to determine whether there
is need for considering the two variants during software validation. Specifically,
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if the variants induce different failure profiles on the target software, then we
conclude that there is a need for both variants.

To achieve this objective, we consider the following goals:

– We study the impact of the injection location with respect to the failure mode
of the program.

– We study the failure profiles induced by both DSB and DBF on programs and,
subsequently, compare the induced failure profiles. However, the comparison
does not extend to decide which of the models is better.

– As a baseline comparison, we study the failure profile induced by SBF errors.

4 Fault-Injection Experiments

In this section, we provide details about the fault injection experiments con-
ducted, including details about target modules and the input set that are
processed by the modules during fault injection, and experimental setup and
procedure.

4.1 Target Programs

We conducted fault injections for five different modules selected from two differ-
ent software systems1.

SUSAN (Smallest Univalue Segment Assimilating Nucleus). The first
system is an image recognition package2, developed for noise filtering and for
recognising corners and edges in Magnetic Resonance Image (MRI) of the
brain [16]. In SUSAN, we targeted three different modules for corners detection,
edges detection and noise filtering, for simplicity we refer to them as corners,
edges and smoothing respectively in this paper.3

Flight Control. The second system we instrumented is a flight longitudinal
motion control system of an aircraft. First order linear approximations of the
aircraft and actuator behaviour are connected to an analog flight control design
that uses the pilot’s stick pitch command as the set point for the aircraft’s pitch
attitude and uses aircraft pitch angle and pitch rate to determine commands. To
perturb the system, a simplified Dryden wind gust model is incorporated [12].

1 One is a soft computing application, SUSAN [16] and the second a safety-critical
system, Mathwork’s implementation of a flight control system for the longitudinal
motion of an aircraft [12].

2 SUSAN is available as self-contained C program from [16]. SUSAN is also available
as a program in the automative package of the MiBench suite [4].

3 Each module is ran with input files of varying sizes, small, medium and large. The
medium file comes with the SUSAN package from [16], while the small and large
files comes with the SUSAN package in the MiBench suite [4].
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Within the flight control system, we used two modules for instrumentation, one
for updating derivatives for the root system and the other for updating the model
step, we refer to the two modules as derivatives and step respectively in the rest
of the paper.4

Description of the input set used in the fault injection experiments is provided
in Table 1.

Table 1. Sizes of target modules and description of their input set

Target Module Size (bytes) Input description Output

Corners 7975 File format: PGM

Edges 6053 Input set: A simple four-sided
geometric shape (7292 bytes)

PGM file

Smoothing 3488 Multiple geometric shapes of
various shapes and sizes (65551
bytes) An image (111666 bytes)

Derivatives 2915 Input format: Pilot Frequency in
rads/secs

Step 10249 Input set: Variable of type
unsigned long long between
0.030000000000000000 to
0.1199999999999999

MAT logging file

4.2 Experimental Setup

In this section, we provide details about the experimental setup and the fault
injection experiments that we conducted.

System Specification. The experiments were executed on a Darwin (Kernel
version 14.1.0) machine having a 22 nm Haswell 3.0 GHz Intel Core i7 processor,
with dual independent processor cores on a single silicon chip, with 16 GB of
1600 MHz DDR3L SDRAM and 500 GB solid state drive.

Fault Injection Tool. Faults were injected using LLVM Fault Injection Tool
(LLFI)5 [18]. LLFI is a LLVM-based fault injection tool that works at the LLVM
[10] compiler’s intermediate representation (IR) level6.

4 Each module is ran with three different pilot frequencies, small, medium and large.
5 An extended version of LLFI (extended FR-LLFI ) as reported in [1] was used for

the experiments.
6 The IR is a low-level programming language similar to assembly. The IR is a strongly

types RISC instruction set which abstracts away details of the target platform.
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Instrumentation. To perform fault injection, we first compiled the source files
of the software system into a single IR file. The IR file along with a fault injection
configuration script7 are passed through to the instrumentor of the extended FR-
LLFI to produce an instrumented IR files and executable C/C++ object files.
The profiling executable C/C++ object file generated by the instrumentor is
fed to the profiler of the extended FR-LLFI to generate setup files to be used
for the injection phase and to execute the golden run, i.e. a fault-free execution
of the program. Finally, the setup files generated in the profiling phase together
with IR file and fault-injection executable C/C++ object files produced in the
instrumentation phase and the initial configuration script are passed to the fault-
injector of the extended FR-LLFI to execute the fault-injection experiments. The
output of the fault-injector is the fault injection experiments, including program
output, log and stat files8. Figure 1 depicts the workflow of the extended FR-
LLFI [1].

Fig. 1. Extended FR-LLFI fault-injection workflow

Experimental Procedure. To achieve the goals we stated in Sect. 3, we exe-
cuted a number of fault injection experiments into a number of different variables
(or combination of variables) in five different modules. We executed each target
module on three inputs to cover all parts of the module’s source code.

Before commencing these experiments, we choose six variables at random,
since we do not have any implementation knowledge. We define a target location
as a particular word in memory or a particular register. Alternatively, it also
means a variable at a particular location in the program. An injection location is
the target location(s) selected to inject faults into, according to the assumed fault
model. When a DBF error is injected, a single target location is selected, whereas
two target locations are selected when injecting a DSB error. A fault injection
experiment is the injection of an error at the selected location(s), according to

7 Written in PyYaml format [14].
8 The log files captures execution information including program exceptions and sys-

tem crashes etc., while the stat files stores execution information such as injected
fault type, injection location etc.
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the assumed fault model. A fault injection campaign is a set of fault injection
experiments on a given input set using the same fault model. Errors are only
injected in target location(s) immediately before the target location is read to
avoid unnecessary overwrites.

For each of the chosen variable, two injection locations are selected, the word
in memory it corresponds to and a register it correlates with. For each injec-
tion location, we exhaustively inject double bit-flip errors to cover all possible
combination. For the DBF fault model, we conducted

(
n
r

)
experiments in each

injection location, n being the size of (number of bits in) the word or register and
r = 2 (the number of bits to flip). We injected a total of 278,208 DBF errors
across the five different modules. For the DSB fault model, for each injection
location we ran n×m experiments, m,n being the size of its target locations. In
total, we injected 1,332,686 DSB errors over all the target modules. We injected
a total of 9,984 SBF errors across the different modules.

Injection Location Data Categorisation. We categorised an injection location as
follows:

– Control. If it holds a control data in at least one of its target locations and
neither target locations is a pointer. Control data items are usually loop ter-
mination condition and branching condition.

– Pointer. If it holds a pointer data in any of its target locations and neither
target locations is control. Pointer data include pointer, array and struct data
items.

– Control and Pointer. If it holds control data in one of its target locations and
pointer data in the other. DBF errors do not get categorised as such since
they only have a single target location in their injection location.

– Neither. If it holds neither control nor pointer data in any of its target loca-
tions. The data under this category are usually normal data such as signed
and unsigned integer numbers etc.

Target Register Categorisation. We partitioned injection location having register
target locations into:

– General Purpose. If at least one of its target locations is a general purpose
register. This target location stores either data or address.

– Stack Pointer. If it has a stack pointer register as one of its a target location.
This target location stores addresses.

– ALU Input. If either of its target locations holds the input operand for the
ALU.

– ALU Output. If at least one of its target location holds the result of an ALU
operation, including address computation.

Fault Injection Outcome Categorisation. We classified the outcome of each fault
injection experiment as follows:

– Safe Run. If the program execution terminates normally, and the output pro-
duced is identical to that of the golden run’s.
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– Data failure. If the program execution terminates normally, but fails to pro-
duce an output or produces an output that differs from that of the golden
run’s.

– Time Out failure. If the program execution hangs, i.e. fails to terminate within
predefined time. We set this time to be approximately 15 times larger than
the execution time of the golden run.

– Crash failure. If the program execution is terminated due to an exception
either by the program or by the OS.

Table 2. Average number of fault injections according to injection locations

Control & Pointer 174080

Control 199632

Pointer 1164125

Neither 83808

General purpose 272384

Stack pointer 379946

ALU intput 202666

ALU output 541085

5 Experimental Results

In this section, we analyse the results of the various fault injection experiments,
as presented in Tables 3, 4 and Figs. 2, 3 and 4. Specifically, we wish to analyse
the results in light of the goals defined in Sect. 3.

5.1 Failure Profile of DSB Errors Vs. DBF Errors.

The first goal of the paper was to evaluate the impact of DSB errors on programs
compared to that of DBF errors in the same variables. The results for all the
modules are summarised in Table 3, while an overall summary is presented in
Fig. 2.

Figure 2a shows the failure profile across all campaigns for DSB, and Fig. 2b
shows that of DBF. As observed in these figures, there is no noticeable overall
difference between the failure profile induced by DSB errors compared to that
by DBF errors. The Safe Run category has the most observed difference of only
1.6%.

However, at the module-level, the failure profile induced by the two variants
differs considerably, specifically in the Crash failure outcome. Table 3 shows fault
injection outcomes between DSB errors and DBF errors per different target
location across the modules.



An Investigation of the Impact of Double Bit-Flip Error Variants 807

Fig. 2. Average fault injection outcome distributions over all target modules

Flight Control Modules. In the modules from the flight control, we observe
that the proportion of Crash failures is ≈ 7% higher for the DSB errors than
for DBF errors. On the other hand, the Data failure outcome is ≈ 7% higher
for the DBF errors than for DSB errors. Also, we observe no difference between
the two fault models for the Time Out and Safe Run outcomes.

SUSAN’s Modules. We observe in the edges and corners modules from
SUSAN that the Crash failure outcome is ≈ 8% higher for DBF errors. On
the other hand, the Crash failure outcome is only 1.5% higher for DSB errors in
the smoothing module. We observe no considerable difference between the two
types of errors in the other fault outcome categories. However, in the corners
module the Safe Run outcome is ≈ 9% lower for the DBF error. Further, we
observe in the edges module the Data failure outcome is ≈ 9% higher for the
DSB error.

Baseline Comparison. Figure 2c shows the failure profile across all campaigns
for SBF. We observed that there is marked difference between the failure profile
induced by both DSB and DBF errors to that of SBF errors. Further, the pro-
portion of Safe Run under SBF is more than double compared to that observed
under DSB errors and almost three times more compared to the proportion of
safe run under DBF (see Fig. 2). Whereas, the proportion of Crash failure is
considerably higher (≈ 18%) under DSB errors and (≈ 20%) under DBF errors
than under SBF errors. On the other hand, we observe a reduction in the occur-
rence Data failure (≈ 9%) under DSB and DBF errors. We conjecture that this
is due to the fact DSB and DBF errors induce more Crash failure, which cause
the program to prematurely exit and hence such executions cannot display Data
failures. We reckon that similar with the Data failures because DSB and DBF
errors mostly causes the program to prematurely exit, little and no executions
tend to hang. We conclude that DSB and DBF errors induce a failure profile
different to that induced by SBF errors. As such, we conclude that both DSB
and DBF errors uncover new vulnerabilities in the system, and hence, need to
be considered when validating dependable software systems.



808 F. Adamu-Fika and A. Jhumka

Table 3. Average fault injection outcome distribution between DSB, DBF and SBF
for all target modules

Target

Module

Safe Run Data Failure Time Out Crash Failure

DSB DBF SBF DSB DBF SBF DSB DBF SBF DSB DBF SBF

Corners 19.2% 10.3% 33.1% 3.9% 5.2% 2.9% 0.1% 0.0% 0.6% 76.7% 84.6% 63.4%

Edges 11.5% 12.3% 28.6% 15.6% 6.9% 11.5% 0.0% 0.0% 1.1% 72.9% 80.8% 58.8%

Smoothing 2.2% 2.2% 11.5% 19.6% 18.3% 39.0% 0.3% 0.2% 2.5% 77.9% 79.4% 47.0%

Derivatives 0.0% 0.0% 0.0% 20.9% 28.0% 37.1% 0.0% 0.0% 1.8% 79.1% 72.0% 61.2%

Step 0.0% 0.0% 0.0% 62.7% 63.5% 76.3% 0.0% 0.0% 0.2% 37.3% 36.5% 23.4%

5.2 Impact of Injection Location on Failure Profile

Here, we evaluate the effect of injection location on fault outcome as shown in
Figs. 3, 4 and 5 and Table 4.

Impact of Data Category on Fault Outcome. Figure 3 shows the average
results for each fault model across modules for different failure categories, while
Table 2a shows the average number of injections across campaigns per different
data categories.

Data categorisation for the two fault models differs in the sense that both
bits for DBF errors are flipped from the same data item while, for DSB errors,
the two bits are either flipped within the same data item or in a combination of
two data items having different data types.

As can be observed in Fig. 3, the failure outcome distribution for the different
data categories follows the following trend:

Control. For DSB errors, errors in control data leads to a high proportion of
Time Out-related failures. We notice errors in control data also leads to a high
proportion of Safe Run outcome, however it is lower to that observed for Time
Out outcomes. We also observe that errors in control data lead to failures in the
other two fault categories in similar proportion.

For DBF errors, we notice that errors in control data leads to high proportion
of Safe Run outcome. Similar to DSB errors, we notice that the errors in control
data induce similar proportion of Crash and Data failures. However, we notice
that unlike for DSB errors, errors in control data do not induce Time Out failures.

Pointer. We observe pointer errors lead to a high proportion of Crash or Data
failures but only a small proportion of Time Out failures under the DSB error
model. We observe a very similar pattern for the DBF model.

Control and Pointer. We observe that a combination of errors in control and
pointer data is only possible under the DSB model. We observe that this causes
a relatively high proportion of Crash failures and a non-negligible proportion of
Data failures.
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Neither. We observe that when errors are injected in locations that are neither
control nor pointer items under the DBF, the proportion of Time Out failures
is very high, around 97 %.

Fig. 3. Average fault injection outcome distributions between DSB, DBF and SBF
experiments per different data categories for all target modules

Impact of Register Category on Fault Outcome. Figure 4 shows the aver-
age results for each fault model across modules for different fault outcomes, while
Table 2b shows the average number of injections across campaigns per different
register categories.

The difference between register categorisation for DBF errors and DSB errors
is for DBF errors both bits are flipped within the same target register, while for
DSB errors, the two bits are flipped in a combination of two target registers,
either of the same type or of different types.

From Fig. 4, we make the following observations:

General Purpose. We observe that errors injected in general purpose registers
are often harmless under the DBF model. We observe also, they cause Data
failures only under the DSB model. However, under both the DSB and DBF
models they induce a similar proportion of Crash and Time Out failures.

Stack Pointer. We observe that most Time Out failures are caused by errors in
the stack pointer under the DBF model. Errors in the stack pointer under the
DSB model induce a higher proportion of Crash failures than under the DBF
model. We also observe that errors in the stack pointer under the DSB model
give rise to a high proportion of Safe Runs.

ALU Input. We observe that errors in ALU input registers do not cause any
Time Out failures under the DBF model while, under the DSB model, it induces
a higher proportion of Crash failures than under the DBF model. Errors in the
ALU input registers cause a higher proportion of Data failures under DBF model
than under the DSB model.
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ALU Output. We observe that errors in ALU output registers do not cause any
Time Out failures under the DBF model, while under the DSB model, it induces
about 15 % of Time Out failures. Otherwise, errors in ALU registers under either
model shows similar failure profile.

Fig. 4. Average fault injection outcome distributions between DSB and DBF experi-
ments per different register categories for all target modules

Word Vs. Register Target Locations. Figure 5 and Table 4 summarises the
results per target location for different failure categories.

Figure 5a shows the failure profile across all fault models for injections in
word locations, Fig. 5b shows that for register locations and Table 4 shows fault
injection outcomes between errors in word and register target locations per fault
model across all campaigns. We observe that the Data failure outcome rate is
more than halved when errors are injected into registers, irrespective of fault
model. Further, we observe Safe Run outcome is significantly lower for errors
injected into registers. However, we observe up to ≈ 33% higher rate of Crash
failures for errors injected in registers.

Fig. 5. Average outcome distributions per injection location across all modules

From both Fig. 5 and Table 4, we observe no considerable difference between
the two locations for the Time Out fault outcome.
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Table 4. Average fault injection outcome distribution between memory word and
registers for all target modules

Fault Model Safe Run Data Failure Time Out Crash Failure

Word Register Word Register Word Register Word Register

DSB 7.2 % 4.1 % 43.0 % 13.1 % 0.0 % 0.1 % 49.8 % 82.7 %

DBF 6.0 % 2.9 % 40.6 % 14.0 % 0.0 % 0.0 % 53.3 % 83.1 %

SBF 14.6 % 12.0 % 48.9 % 22.5 % 1.0 % 1.4 % 35.4 % 64.1 %

5.3 Related Work

Single and/or multiple bit-flip errors were injected in main memory and reg-
isters of software programs and their impact on the programs execution were
investigated [1,2]. These studies have shown that multiple fault injections can
be very effective in detecting software vulnerabilities. However, both studies did
not investigate the impact of variations of multiple bit-flip errors on program
execution, which is our goal.

6 Discussion and Limitations

We first discuss some observations about the results and then provide some
limitations of the work.

6.1 Discussion

We make several important observations:

1. The failure profile induced by the DSB model is very different to that induced
by the DBF model. For example, errors injected in control under the DSB
model tends to cause a high proportion of Time Out failures.

2. The failure profile induced by the DSB model cause software to fail in some
unique ways. For example, errors injected in general purpose registers under
the DSB model cause a significant proportion of data failures. On the other
hand, errors injected in the same general purpose registers under the DBF
model do not cause any data failure.

3. Errors injected in ALU registers under the DBF model do not cause any
Time Out failures, in contrast to errors injected in the same registers under
the DSB model, which causes around 50 % of Time Out failures.

4. Errors injected in both control and pointer locations induced data and crash
failures under the DSB model. This is a unique failure profile.

5. Overall, errors injected under the DSB model lead to a wider range of failures.

Although we have observed differences between the failure profiles induced
by DSB and DBF, we did not look for uniqueness.
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6.2 Limitations

A first limitation of the work is the range of applications used to evaluate the two
fault models. A wider range of software from different target systems is needed
to confirm the observations made in this paper. Nevertheless, the modules used
for this assessment are very varied and shared very little overlap in terms of
data structures. However, we believe that the results are statistically significant,
especially after conducting over 1.5 million fault injection experiments.

A second limitation in the results presented here is that, to the best of our
knowledge, there is scarcity of field data that shows how multiple bit upsets
will manifest themselves. There is however increasing evidence that the rate of
hardware errors is increasing. We only consider the two variants of double bit-flip
errors in this paper. The relevance of the results presented here is only as far as
the field data matches the pattern of error injection used.

7 Conclusion and Future Work

We consider the two variants of double bit-flip errors that have appeared in
dependability evaluation recently. The objective, in this paper, is to determine
whether there is relevance in using both variants during validation. Our answer is
positive: yes, we need both variants as they induce very different failure profiles
in software and, in some cases, the failures are unique to a given variant. We
considered errors being injected in a range of memory words or register locations
and we considered the impact of the type of locations on failures.
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Abstract. In this paper, we consider a generalized longest common sub-
sequence problem, in which a constraining sequence of length s must be
included as a subsequence and the other constraining sequence of length t
must be excluded as a subsequence of two main sequences and the length
of the result must be maximal. For the two input sequences X and Y of
lengths n and m, and the given two constraining sequences of length s
and t, we present an O(nmst) time dynamic programming algorithm for
solving the new generalized longest common subsequence problem. The
correctness of the new algorithm is demonstrated.

Keywords: Longest common subsequence problem · Dynamic program-
ming · Similarity · Constraining sequences · Time complexity

1 Introduction

The longest common subsequence (LCS) problem is a well-known measurement
for computing the similarity of two strings. It can be broadly applied in diverse
areas, such as file comparison, pattern matching and computational biology
[3,4,8,9].

Given two sequences X and Y , the longest common subsequence (LCS) prob-
lem is to find a subsequence of X and Y whose length is the longest among all
common subsequences of the two given sequences.

For some biological applications some constraints must be applied to the
LCS problem. These kinds of variant of the LCS problem are called the con-
strained LCS (CLCS) problem. Recently, Chen and Chao [1] proposed the more
generalized forms of the CLCS problem, the generalized constrained longest com-
mon subsequence (GC-LCS) problem. For the two input sequences X and Y of
lengths n and m,respectively, and a constraint string P of length r, the GC-
LCS problem is a set of four problems which are to find the LCS of X and Y
including/excluding P as a subsequence/substring, respectively.

c© Springer International Publishing Switzerland 2015
G. Wang et al. (Eds.): ICA3PP 2015, Part IV, LNCS 9531, pp. 814–821, 2015.
DOI: 10.1007/978-3-319-27140-8 56
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In this paper, we consider a more general constrained longest common subse-
quence problem called SEQ-IC-SEQ-EC-LCS, in which a constraining sequence
of length s must be included as a subsequence and the other constraining
sequence of length t must be excluded as a subsequence of two main sequences
and the length of the result must be maximal. We will present the first efficient
dynamic programming algorithm for solving this problem.

The organization of the paper is as follows.
In the following 3 sections, we describe our presented dynamic programming

algorithm for the SEQ-IC-SEQ-EC-LCS problem.
In Sect. 2 the preliminary knowledge for presenting our algorithm for the

SEQ-IC-SEQ-EC-LCS problem is under discussion. In Sect. 3 we give a new
dynamic programming solution for the SEQ-IC-SEQ-EC-LCS problem with time
complexity O(nmst), where n and m are the lengths of the two given input
strings, and s and t the lengths of the two constraining sequences. Some con-
cluding remarks are located in Sect. 4.

2 Characterization of the Generalized LCS Problem

A sequence is a string of characters over an alphabet
∑

. A subsequence of a
sequence X is obtained by deleting zero or more characters from X (not neces-
sarily contiguous). A substring of a sequence X is a subsequence of successive
characters within X.

For a given sequence X = x1x2 · · · xn of length n, the ith character of X
is denoted as xi ∈ ∑

for any i = 1, · · · , n. A substring of X from position i
to j can be denoted as X[i : j] = xixi+1 · · · xj . If i �= 1 or j �= n, then the
substring X[i : j] = xixi+1 · · · xj is called a proper substring of X. A substring
X[i : j] = xixi+1 · · · xj is called a prefix or a suffix of X if i = 1 or j = n,
respectively.

An appearance of sequence X = x1x2 · · · xn in sequence Y = y1y2 · · · ym, for
any X and Y , starting at position j is a sequence of strictly increasing indexes
i1, i2, · · · , in such that i1 = j, and X = yi1 , yi2 , · · · , yin . A compact appearance
of X in Y starting at position j is the appearance of the smallest last index in.
A match for sequences X and Y is a pair (i, j) such that xi = yj . The total
number of matches for X and Y is denoted by δ. It is obvious that δ ≤ nm.

For the two input sequences X = x1x2 · · · xn and Y = y1y2 · · · ym of lengths
n and m, respectively, and two constrained sequences P = p1p2 · · · ps and Q =
q1q2 · · · qt of lengths s and t, the SEQ-IC-SEQ-EC-LCS problem is to find a
constrained LCS of X and Y including P as a subsequence and excluding Q as
a substring.

Definition 1. Let S(i, j, k, r) denote the set of all LCSs of X[1 : i] and Y [1 : j]
such that for each z ∈ S(i, j, k, r), z includes P [1 : k] as a subsequence, and
excludes Q[1 : r] as a subsequence, where 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and
0 ≤ r ≤ t. The length of an LCS in S(i, j, k, r) is denoted as f(i, j, k, r).



816 D. Zhu et al.

The following theorem characterizes the structure of an optimal solution based
on optimal solutions to subproblems, for computing the LCSs in S(i, j, k, r), for
any 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t.

Theorem 1. If Z[1 : l] = z1, z2, · · · , zl ∈ S(i, j, k, r), then the following condi-
tions hold:

1. If r = 1 and xi = yj = qr, then zl �= xi and Z[1 : l] ∈ S(i − 1, j − 1, k, r).
2. If r > 1 and xi = yj = qr,

(1) xi = pk, zl �= xi implies Z[1 : l] ∈ S(i − 1, j − 1, k, r).
(2) xi = pk, zl = xi implies Z[1 : l − 1] ∈ S(i − 1, j − 1, k − 1, r − 1).
(3) k = 0 or k > 0, xi �= pk, zl �= xi implies Z[1 : l] ∈ S(i − 1, j − 1, k, r).
(4) k = 0 or k > 0, xi �= pk, zl = xi implies Z[1 : l−1] ∈ S(i−1, j−1, k, r−1).

3. If k > 0, xi = yj = pk and r = 0 or r > 0, xi �= qr, then zl = xi and
Z[1 : l − 1] ∈ S(i − 1, j − 1, k − 1, r).

4. If xi = yj and k = 0 or xi �= pk and r = 0 or xi �= qr, then zl = xi and
Z[1 : l − 1] ∈ S(i − 1, j − 1, k, r).

5. If xi �= yj, then zl �= xi implies Z[1 : l] ∈ S(i − 1, j, k, r).
6. If xi �= yj, then zl �= yj implies Z[1 : l] ∈ S(i, j − 1, k, r).

Proof.
1. In this case, if xi = zl, then Z[1 : l] includes Q[1 : r], a contradiction.

Therefore, we have xi �= zl, and Z[1 : l] must be an LCS of X[1 : i − 1] and
Y [1 : j − 1] including P [1 : k] as a subsequence and excluding Q[1 : r] as a
subsequence, i.e. Z[1 : l] ∈ S(i − 1, j − 1, k, r).

2. In this case, we have xi = yj = qr.
(1) We have xi = pk furthermore, if zl �= xi, then Z[1 : l] must be a common

subsequence of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a subsequence
and excluding Q[1 : r] as a subsequence. It is obvious that Z[1 : l] must also be
an LCS of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a subsequence and
excluding Q[1 : r] as a subsequence, i.e. Z[1 : l] ∈ S(i − 1, j − 1, k, r).

(2) We have xi = pk furthermore, if zl = xi, then Z[1 : l − 1] must be a
common subsequence of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k − 1] as
a subsequence and excluding Q[1 : r − 1] as a subsequence. It is readily seen
that Z[1 : l − 1] must also be an LCS of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k − 1] as a subsequence and excluding Q[1 : r − 1] as a subsequence, i.e.
Z[1 : l − 1] ∈ S(i − 1, j − 1, k − 1, r − 1).

(3) We have k = 0 or xi �= pk furthermore, if zl �= xi, then Z[1 : l] must be
a common subsequence of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a
subsequence and excluding Q[1 : r] as a subsequence. It is obvious that Z[1 : l]
must also be an LCS of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a
subsequence and excluding Q[1 : r] as a subsequence, i.e. Z[1 : l] ∈ S(i − 1, j −
1, k, r).
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(4) We have k = 0 or xi �= pk furthermore, if zl = xi, then Z[1 : l − 1] must
be a common subsequence of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k]
as a subsequence and excluding Q[1 : r − 1] as a subsequence. It is readily seen
that Z[1 : l − 1] must also be an LCS of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k] as a subsequence and excluding Q[1 : r − 1] as a subsequence, i.e.
Z[1 : l − 1] ∈ S(i − 1, j − 1, k, r − 1).

3. Since xi = yj = pk, and and r = 0 or r > 0, xi �= qr, we have xi = zl and
Z[1 : l − 1] is a common subsequence of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k − 1] as a subsequence and excluding Q[1 : r] as a subsequence. We can
show that Z[1 : l − 1] is an LCS of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k − 1] as a subsequence and excluding Q[1 : r] as a subsequence. Assume
by contradiction that there exists a common subsequence a of X[1 : i − 1] and
Y [1 : j − 1] including P [1 : k − 1] as a subsequence and excluding Q[1 : r] as
a subsequence, whose length is greater than l − 1. Then the concatenation of a
and zl will result in a common subsequence of X[1 : i] and Y [1 : j] including
P [1 : k] as a subsequence and excluding Q[1 : r] as a subsequence, whose length
is greater than l. This is a contradiction.

4. In this case we have no constraints on adding xi to Z[1 : l − 1], and thus
Z[1 : l − 1] is a common subsequence of X[1 : i − 1] and Y [1 : j − 1] including
P [1 : k] as a subsequence and excluding Q[1 : r] as a subsequence. We can show
that Z[1 : l − 1] is an LCS of X[1 : i − 1] and Y [1 : j − 1] including P [1 : k] as a
subsequence and including Q[1 : r] as a subsequence. Assume by contradiction
that there exists a common subsequence a of X[1 : i−1] and Y [1 : j−1] including
P [1 : k] as a subsequence and including Q[1 : r] as a subsequence, whose length
is greater than l−1. Then the concatenation of a and zl will result in a common
subsequence of X[1 : i] and Y [1 : j] including P [1 : k] as a subsequence and
including Q[1 : r] as a subsequence, whose length is greater than l. This is a
contradiction.

5. Since xi �= yj and zl �= xi, Z[1 : l] must be a common subsequence of
X[1 : i − 1] and Y [1 : j] including P [1 : k] as a subsequence and excluding
Q[1 : r] as a subsequence. It is obvious that Z[1 : l] is also an LCS of X[1 : i− 1]
and Y [1 : j] including P [1 : k] as a subsequence and excluding Q[1 : r] as a
subsequence.

6. Since xi �= yj and zl �= yj , Z[1 : l] must be a common subsequence of
X[1 : i] and Y [1 : j − 1] including P [1 : k] as a subsequence and excluding
Q[1 : r] as a subsequence. It is obvious that Z[1 : l] is also an LCS of X[1 : i]
and Y [1 : j − 1] including P [1 : k] as a subsequence and excluding Q[1 : r] as a
subsequence.

The proof is completed. ��
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3 A Simple Dynamic Programming Algorithm

Let f(i, j, k, r) denote the length of an LCS in S(i, j, k, r). By the optimal sub-
structure properties of the SEQ-IC-SEQ-EC-LCS problem shown in Theorem1,
we can build the following recursive formula for computing f(i, j, k, r).

Theorem 2. For any 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t, the
values of f(i, j, k, r) can be computed by the following recursive formula (1).

f(i, j, k, r) =
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max {f(i − 1, j, k, r), f(i, j − 1, k, r)}
if xi �= yj

f(i − 1, j − 1, k, r)
if r = 1 ∧ xi = yj = qr

max {1 + f(i − 1, j − 1, k, r − 1), f(i − 1, j − 1, k, r)}
if r > 1 ∧ (k = 0 ∨ xi �= pk)

max {1 + f(i − 1, j − 1, k − 1, r − 1), f(i − 1, j − 1, k, r)}
if r > 1 ∧ k > 0 ∧ xi = pk)

1 + f(i − 1, j − 1, k − 1, r)
if k > 0 ∧ xi = yj = pk ∧ (r = 0 ∨ xi �= qr)

1 + f(i − 1, j − 1, k, r)
if xi = yj ∧ (k = 0 ∨ xi �= pk) ∧ (r = 0 ∨ xi �= qr)

(1)

The boundary conditions of this recursive formula are
f(i, 0, 0, 0) = f(0, j, 0, 0) = 0 and f(i, 0, k, r) = f(0, j, k, r) = −∞
for any 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t.

Proof.
The formula (1) is a summation of the all cases proved in Theorem 1 with

a recursive formula, which is more convenient for us to implement it as the
following Algorithm 1.

The proof is completed. ��
Based on this formula, our algorithm for computing f(i, j, k, r) is a standard
dynamic programming algorithm. By the recursive formula (1), the dynamic
programming algorithm for computing f(i, j, k, r) can be implemented as the
following Algorithm 1.

It is obvious that the algorithm requires O(nmst) time and space. For each
value of f(i, j, k, r) computed by algorithm Suffix, the corresponding LCS of
X[1 : i] and Y [1 : j] including P [1 : k] as a subsequence, and excluding Q[1 : r]
as a subsequence, can be constructed by backtracking through the computa-
tion paths from (i, j, k, r) to (0, 0, 0, 0). The following algorithm back(i, j, k, r)
is the backtracking algorithm to obtain the LCS, not only its length. The time
complexity of the algorithm back(i, j, k, r) is obviously O(n + m).
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Algorithm 1. SEQ-IC-SEQ-EC-LCS
Input: Strings X = x1 · · ·xn, Y = y1 · · · ym of lengths n and m, respectively, and two
constrained sequences P = p1p2 · · · ps and Q = q1q2 · · · qt of lengths s and t
Output: f(i, j, k, r), the length of an LCS of X[1 : i] and Y [1 : j] including P [1 : k]
as a subsequence, and excluding Q[1 : r] as a subsequence, for all 1 ≤ i ≤ n, 1 ≤ j ≤
m, 0 ≤ k ≤ s, and 0 ≤ r ≤ t.

1: for all i, j, k, r , 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ s and 0 ≤ r ≤ t do
2: f(i, 0, k, r), f(0, j, k, r) ← −∞, f(i, 0, 0, 0), f(0, j, 0, 0) ← 0 {boundary condi-

tion}
3: end for
4: for all i, j, k, r , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 ≤ k ≤ s and 0 ≤ r ≤ t do
5: if xi �= yj then
6: f(i, j, k, r) ← max{f(i − 1, j, k, r), f(i, j − 1, k, r)}
7: else if r > 0 and xi = qr then
8: if r = 1 then
9: f(i, j, k, r) ← f(i − 1, j − 1, k, r)

10: else if k > 0 and xi = pk then
11: f(i, j, k, r) ← max{1 + f(i − 1, j − 1, k − 1, r − 1), f(i − 1, j − 1, k, r)}
12: else
13: f(i, j, k, r) ← max{1 + f(i − 1, j − 1, k, r − 1), f(i − 1, j − 1, k, r)}
14: end if
15: else if k > 0 and xi = pk and (r = 0 or xi �= qr) then
16: f(i, j, k, r) ← 1 + f(i − 1, j − 1, k − 1, r)
17: else
18: f(i, j, k, r) ← 1 + f(i − 1, j − 1, k, r)
19: end if
20: end for

4 Concluding Remarks

We have suggested a new dynamic programming solution for the new generalized
constrained longest common subsequence problem SEQ-IC-SEQ-EC-LCS. The
new dynamic programming algorithm requires O(nmst) in the worst case, where
n,m, s, t are the lengths of the four input sequences respectively. It is not difficult
to show that this problem can also be solved in O(min(n,m)st) space based on
Hirschbergs Algorithm [5].

Numerous other generalized constrained longest common subsequence
(GC-LCS) problems have similar structures. It is not clear that whether the
same technique of this paper can be applied to these problems to achieve effi-
cient algorithms. We will explore these problems further.
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Algorithm 2. back(i, j, k, r)
Input: Integers i, j, k, r
Output: The LCS of X[1 : i] and Y [1 : j] including P [1 : k] as a subsequence and
Q[1 : r] as a suffix

1: if i < 1 or j < 1 then
2: return
3: end if
4: if xi �= yj then
5: if f(i − 1, j, k, r) > f(i, j − 1, k, r) then
6: back(i − 1, j, k, r)
7: else
8: back(i, j − 1, k, r)
9: end if

10: else if r > 0 and xi = qr then
11: if r = 1 then
12: back(i − 1, j − 1, k, r)
13: else if k > 0 and xi = pk then
14: if 1 + f(i − 1, j − 1, k − 1, r − 1) > f(i, j − 1, k, r) then
15: back(i − 1, j − 1, k − 1, r − 1)
16: print xi

17: else
18: back(i − 1, j − 1, k, r)
19: end if
20: else
21: if 1 + f(i − 1, j − 1, k, r − 1) > f(i, j − 1, k, r) then
22: back(i − 1, j − 1, k, r − 1)
23: print xi

24: else
25: back(i − 1, j − 1, k, r)
26: end if
27: else if k > 0 and xi = pk and (r = 0 or xi �= qr) then
28: back(i − 1, j − 1, k − 1, r)
29: print xi

30: else
31: back(i − 1, j − 1, k, r)
32: print xi

33: end if
34: end if
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Abstract. Centralized and distributed evaluation approaches have been pro-
posed for Quality of Services (QoS) measurement. The centralized evaluation
approach cannot reflect the user-side QoS and the distributed evaluation
approach depend on users to provide evaluation records. In this paper, a hybrid
evaluation tool comprising two approaches is proposed. In particular, the cen-
tralized evaluation is deployed on a cloud computing platform which is the
Amazon web services (AWS). Therefore, the hybrid tool can make evaluation
from several AWS regions even if there are no test volunteers. Both the col-
laborative filtering model and the multiple regression model are implemented in
the hybrid evaluation tool for predicting the unknown QoS value. To illustrate
the advantages of the hybrid QoS evaluation tool, the scene of a traveler who
wants to evaluate and select a best web service in the real world is presented.
The results show that the hybrid tool is effective and convenient for users to
evaluate the QoS of web services.

Keywords: Qos evaluation � Qos prediction � Hybrid evaluation � Web
services � Cloud computing

1 Introduction

The web service is a software system designed to support interoperation between
machines over network [1]. Nowadays the web service gains more popularity, it has
been used widely in various areas. The need for Quality of Services (QoS) has become
a significant factor for building a dependable service application. Providers must
evaluate web services before and after release it. On the other side, users also want to
know the QoS measurements when they are using the web services. Therefore, the
evaluation tools are required for both the convenience of users and providers.

The QoS evaluation research attracts little attention contrast to the prosperity of
service selection [2], composition [3] or ranking [4], though the QoS measurements are
the basis consideration in these service application researches. Generally, the existing
evaluation approaches of web services are two kinds, the centralized approach and the
distributed approach. The centralized approach evaluates the web services from a single
place. It is proposed earlier and easy to implement [5]. However, the centralized
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evaluation cannot acquire the real user-side quality of web service as the internet
environment is quite different in various regions. For example, a user from China may
find the real experience is different to the evaluation result by using a centralized
evaluation tool implemented in USA, for the internet environment of USA and China is
quite different.

Then, the distributed evaluation approach was proposed. It can establish a user-side
evaluation when there are lots of the web services testing records from all over the
world. Zheng, Z. et al. first presented a distributed evaluation framework [6]. Noor, T.
et al. also proposed a distributed trust management method to manage the experience of
users on web service [7]. Though the distributed evaluation can reflect the different
internet environment in the different regions, when there is not enough distributed
testing records, the evaluation cannot work out. To solve this problem, Zheng, Z. et al.
employed the PlanetLab to achieve the distributed experiments [8]. The PlanetLab is a
useful platform to perform distributed experiments for it has many computing nodes
distributed around the world. But it is unsteady for every host server may crash at any
time. Moreover, there are many constraints on PlanetLab, such as bandwidth and
resource limitations.

Since evaluating all web services from all the places is impossible, there are many
cases that users want to know the QoS of web services in some places but they were not
been evaluated at there. For the distributed evaluation approach, predicting the
unknown QoS measurements is another important issue. By assuming similar users had
similar evaluations, the collaborative filtering model has been used widely to make the
QoS prediction [6, 9]. The collaborative filtering model has been widely used in
recommendation system. The Pearson correlation coefficient is often used to charac-
terize the similarity. However, it is difficult to use a simple correlation coefficient to
reflect the complex relation between different services and users [10]. Shi, Y. et al.
considered applying the linear regression algorithm for the QoS prediction based on
location and network condition [11]. But they did not demonstrating the effectiveness
of the proposed algorithm.

To improve the efficiency of centralized and distributed approach, this paper pro-
poses a hybrid evaluation tool which integrates the two approaches. In particular, the
centralized evaluation is deployed on a famous cloud computing platform, Amazon
Web Services (AWS). Thus, the centralized evaluation can test web services and
collect data from different AWS regions. Moreover, both the multiple regression and
the collaborative filtering are implemented to make the QoS prediction. For the con-
veniences of users, the hybrid evaluation tool is implemented on the internet and users
can access it on the web page for evaluating the web services easily.

The rest of this paper is organized as follows: Sect. 2 presents the architecture of
hybrid tool. Section 3 describes the evaluation and prediction of QoS. Section 4
illustrates the experiments in real world. Section 5 contains the conclusions and some
ideas for further work.
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2 The Hybrid QoS Evaluation Tool

Users can access the hybrid QoS evaluation tool through the web page1 which is
presented on Fig. 1. The tool is deployed on a famous cloud computing platform,
AWS, which is one of the most prevailing cloud computing platforms provided by
Amazon.com. AWS provides the cloud computing services in 9 regions, and China will
be the 10th region. Other cloud computing platforms, for example, Microsoft Azure
and IBM Bluemix can also be used to deploy the tool. The centralized evaluation can
be used directly on the web page. The distributed evaluation should be downloaded
from the web page before use, which is at the bottom of the web page. The User
Interface (UI) is very user-friendly. Follow the instruction on the web page, users can
evaluate the QoS of the web services from different AWS regions conveniently.

2.1 Architecture of the Tool

The hybrid tool is composed of the centralized evaluation and the distributed evalua-
tion. The centralized evaluation is implemented in the Browser/Server (B/S) mode and
it is called the B/S application in the paper. The B/S application is deployed on the

Fig. 1. UI of the hybrid evaluation tool

1 http://54.65.143.60/BSSpecificWS/evaluation.jsp.
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Elastic Computer Cloud (EC2) which is provided by AWS in 9 regions over the world.
Thus, users can achieve the evaluation of a web service from these 9 regions through
the browser. Moreover, with the help of the great computation ability of AWS, the
centralized evaluation can be achieved not only rapidly but also continuously for weeks
or months to find the varying trend of web services’ QoS. The distributed evaluation is
implemented in the Client/Server (C/S) mode and it is called the C/S application. The
user who wants to get the evaluation of web services at his place should download the
distributed evaluation program from the web page and runs it on the local computer.
Through the C/S application, the web service can be evaluated from wherever there is
a user. Furthermore, with the locating ability of the distributed evaluation pro-
gram, neighboring users can share test records and evaluate the web service in a
collaborative way.

As Fig. 2 shows, the two kinds of applications provide the same evaluating
functions and share a common database. The Amazon RDS (Relational Database
Service) is used to establish the unified database. Since the hybrid evaluation tool
deployed on the cloud computing platform, the dataset can be managed. When the new
record inserts, the QoS measurements are calculated automatically. Thus, users can
obtain the QoS analysis in real time.

2.2 Measurement of QoS

The Quality of Service is usually used for describing nonfunctional characteristics of
web services [9]. Among the QoS properties of web services, some properties are
user-independent which are identical for different users (e.g., price, popularity, relia-
bility, etc.). These user-independent properties are usually offered by the service pro-
viders or the third-party registers. On the other hand, some QoS properties are
user-dependent and have different values for different users (e.g., response time,
availability, etc.). The evaluation of these user-dependent QoS properties needs the
client-side invocation of services. The hybrid evaluation tool aims to measure these
user-dependent QoS attributes. Thus, the availability and response time are chosen to
represent it.

Fig. 2. Architecture of the hybrid evaluation tool
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Availability (A%) is calculated by the successful invocation counts (Cs) divided by
the total invocation counts (Ct) as Eq. (1) shows.

A% ¼ Cs=Ct ð1Þ

The response time (Rtt) means the time taken to receive a response after making a
request, which composes of the internet latency and execution time. We use average
response time to represent the response time of a web service which is calculated by
total response time of all successful invokes divided by successful invocation counts as
Eq. (2) shows.

Tavg ¼
XCs

i¼1
Ti=Cs ð2Þ

The response time of unsuccessful invokes is not considered in the computation of
average response time to avoid the influence of extreme large response time caused by
unsuccessful invokes.

To make the evaluation result reflecting the experience of users, the real invocations
are brought out to measure the metrics of QoS. Axis2 is employed to make the
invocation. As Fig. 3 shows, the information like WSDL and parameters of web
services are stored when request of evaluation comes. Then, the evaluation tool makes
real invocations to acquire the response time and check the return results. After cal-
culation, the availability and average response time can be obtained.

Begin

Let  w = {w1, w2,......, wn} be wsdls of n web services

o = {o1, o2,......,  on } be operations to be invoked

p =  { p1, p2,......, pn} be parameters

n =  {n1, n2,......, nn} be namespace

U = {wT, oT, pT, nT} be n use cases for invocation

wait for request.

Set  total_num to be Loop_Num

client to be the Axis invocation client.

For i = 0;i < num; i ++

For j = 0; j < n; j ++

cj make the invocation according to Ui

get and store invocation results

if (invoke successfully)

store response time and the number

End

Fig. 3. Measurement process
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2.3 Functions of the Tool

The hybrid evaluation tool includes three functions: evaluation, query record and
prediction. Figure 4 shows the workflow of the tool.

2.4 Functions of the Tool

The hybrid evaluation tool includes three functions: evaluation, query record and
prediction. Figure 4 shows the workflow of the tool.

The Evaluation Function. Both of the centralized and distributed approaches are
implemented with the same evaluating functions. As Fig. 1 shows, user need to input
the WSDL (Web Services Description Language) url, parameters information, name
space and other information of web services in the evaluation interface and click the
submit button. Then, the evaluation tool measures attributes of QoS like response time,
availability, location information of the user and web service. The evaluation infor-
mation will be shown to the user. Meanwhile, the invocation parameters, the evaluation
results and the geographical information of the user and web service are stored in the
database.

The Query Function. The query function includes two parts, 1. Query record of the
AWS regions and 2. Query record of the users’ places. Both these two parts of query
need users to input the WSDL information of web service. Part 1 will return users the
evaluation records from all AWS regions and Part 2 will return users the evaluation
records according to the users’ location. Compare to other existing QoS evaluation tool,

Fig. 4. Workflow of the tool
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the hybrid tool offers the query record function, which is very convenient for users to
find the evaluation history record.

The Predict Function. If users can’t find the evaluation record of a web service from a
specific region, they can choose this part to make the prediction. Users need to input
WSDL url and a region, then the hybrid evaluation tool will apply both the collabo-
rative fileting and the multiple regression model to make the prediction based on
history evaluation data.

3 Methods of Prediction

3.1 The QoS Evaluation Matrix

Some symbols and inventions are introduced first to discuss the prediction method
clearly. The web services set is represented by W={w1,w2,…,wl}. As the hybrid eval-
uation tool comprises the distributed approach and the centralized approach, the users
set includes the real world users and the AWS severs of different regions. Let ui denotes
a real evaluation user, and ai denotes an AWS region’s server. The user set is U={u1,u2,
…um, a1,a2,…,an}. The evaluation record is an (m+n)×l matrix which is shown as
Table 1, and qi,j is the evaluation of QoS. If user i didn’t evaluate web service j, then qi,j
is null. For example, the element qm,l in the Table 1 is null, which means the user um
did not evaluate the web service wl.

In the QoS matrix, the upper m rows are the distributed evaluation records and the
lower n rows are the centralized evaluation records. Compare to the upper m rows,
there is no null value in the lower n rows since the AWS severs will evaluate all web
services automatically. Thus, the submatrix of lower n rows is an effective supplement
to the evaluation records.

3.2 Prediction of QoS

To predict the null value in the QoS matrix, the collaborative filtering model has been
widely used [2, 6, 8–10]. The basic of the collaborative filtering model is the similar

Table 1. Matrix of QoS

w1 w2 w3 w4 … wl

u1 q1,1 null q1,3 q1,4 … null
u2 q2,1 q2,2 q2,3 null … q2,l
… … … … … … …

um null qm,2 qm,3 qm.4 … null
a1 qm+1,1 qm+1,2 qm+1,3 qm+1,4 … qm+1,l
a2 qm+2,1 qm+2,2 qm+2,3 qm+2,4 … qm+2,l
… … … … … … …

an qm+n,1 qm+n,2 qm+n,3 qm+n,4 qm+n,l
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users have a similar evaluation. The prediction of the collaborative filtering needs three
steps: normalization, similarity mining and QoS prediction. It is very complex and
when there are too many null values, it cannot work.

Shi, Y. et al employed the linear regression for predicting the unknown QoS [11].
However, they did not give any example to demonstrate it. The multiple regression
model is an classical statistics prediction method by the regression analysis to deter-
mine the interdependence of the quantitative relationship between two or more vari-
ables. It is applied here to prediction the unknown QoS value. Assuming the different
users’ evaluation of the specific web services are linear correlation. The calculate
formula of the multiple regression model is represented as Eq. (3).

Y ¼ b0 þ b1X1 þ b2X2 þ . . .þ bKXK ð3Þ

Y is the unknown QoS value to predict and X is the different users’ QoS evaluation.
First, select K users from user set U that they both evluate h web services. Then, an
K×h QoS matrix is fitted for estimating the coefficient bi. Finally, the unknown Y can be
calculated with X and the estimated bi.

The key of applying the multiple regression model is establishing an K×h QoS
matrix which is all K users have evaluated the same h web services. It is stricter than
applying the collaborative filtering model. This condition is difficult to be fulfilled
when the evaluation is carried out by the distributed users. But, for the hybrid tool, all
the web services can be evaluated from 9 AWS regions automatically. Thus, K is equal
or great than the number of AWS regions and the enough data will be acquired for the
multiple regression model fitting.

3.3 Prediction Effect Analysis

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are the metrics to
evaluate the prediction effect. The value of MAE and RMSE is less means the pre-
diction is better. As Eqs. (4) and (5) show, qi;j and qi;j in equations represent the real
value and predicted value, h represents the amount of values.

MAE ¼

Ph�1

j¼0
jqi;j � qi;jj

h
ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh�1

j¼0
ðqi;j � qi;jÞ2

h

vuuut
ð5Þ
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4 Implement and Experiments

To show the effectiveness of the hybrid evaluation tool, some experiments in the real
world are carried out. Assuming Mr. Li is a Chinese businessman. While he takes the
business travels, he always uses the web services to acquire some information.
Recently, his friend introduced him the hybrid evaluation tool of the web services
which can get the QoS measurements online easily. As Mr. Li often travels around
world, he wants to use the tool to evaluate the QoS of web services which he often uses
and find some better ones. Moreover, Mr. Li planned to travel from Beijing to Paris in
the near future. Thus, he also wants to know if the web services are available and
efficient there.

In order to solve these problems, Mr. Li invited his friends around the world to
evaluate the web services by using the C/S applications of the hybrid evaluation tool. He
also offered 12 web services which he often used to his friends for evaluation. In
particular, the web services 6, 7, 10 and 12 are weather forecasting services, Mr. Li
wanted to know which had the best QoS in Paris. His friends’ IP and geographic
information and the AWS regions’ IP and geographic information are shown in Table 2.

4.1 Evaluation of QoS

The experiment had been carried out from 2014.08.07 to 2015.02.14 and collected
1,011,234 records. Among the total records, the B/S applications on AWS contributed
864,579 records. The B/S application is deployed on AWS by using EC2.

Table 2. Users and AWS IP and Geographic Information

IP Country & Region

User 111.204.219.197 China (Beijing)
111.78.228.213 China (Jiangxi)
117.71.239.148 China (Anhui)
202.118.239.144 China (Heilongjiang)
58.53.20.186 China (Liaoning)
14.136.173.241 China (HongKong)
137.132.200.160 Singapore
83.204.131.232 France (Clermont)

AWS 54.67.9.85 United States (California)
54.68.210.18 United States (Oregon)
52.0.93.162 United States (Delaware)
54.169.89.99 Singapore
54.65.143.60 Japan
54.171.241.57 Ireland
54.93.98.189 Germany
54.94.231.75 Brazil
54.79.4.10 Australia
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The AWS RDS is used to establish the unified database. As described in Sect. 2.2,
the hybrid evaluation tool aims to measure these user-dependent QoS attributes. Here,
the QoS attributes include the availability and response time. The evaluation results
evaluated by the hybrid tool are shown in Table 3.

Table 3. Evaluation Results of 12 Web Services

w1

(CN)

w2

(CN)

w3

(CN)

w4

(CN)

w5

(CN)

w6

(CN)

w7

(US)

w8

(US)

w9

(US)

w10

(US)

w11

(AU)

w12

(IS)

u1 Rtt 324.4 290.3 509.8 537.8 639.0 205.3 3509 878.8 762.6 1557 1165.7 NaN

A% 1.000 1.000 1.000 1.000 1.000 1.000 0.924 0.992 1.000 1.000 1.0000 0.000

u2 Rtt 692.2 578.3 517.9 703.7 542.1 544.5 902.7 1075 793.1 1622 974.3 NaN

A% 0.999 0.999 0.999 0.998 0.999 0.999 1.000 0.997 0.999 0.790 0.9894 0.000

u3 Rtt 236.5 162.8 296.8 336.0 366.0 192.3 1582 1730 1014 2230 1534.4 NaN

A% 0.996 0.996 0.996 0.996 0.996 0.996 0.920 0.902 0.972 0.586 0.9375 0.000

u4 Rtt 560.9 407.1 587.7 804.4 1419 518.5 1312 1456. 832.0 1002 806.5 NaN

A% 1.000 1.000 1.000 1.000 1.000 1.000 0.930 0.991 1.000 1.000 0.9492 0.000

u5 Rtt 519.7 746.7 713.5 493.0 2010 645.0 2025 1036 709.8 1269 1188.0 NaN

A% 1.000 1.000 1.000 1.000 0.985 1.000 1.000 1.000 1.000 0.985 1.0000 0.000

u6 Rtt 1245 747.0 835.2 1221 1116 1069 738.7 651.0 670.1 1520 709.7 NaN

A% 0.984 0.988 0.988 0.988 0.991 0.916 0.904 1.000 0.998 0.995 1.0000 0.000

u7 Rtt 543.5 421.1 417.5 606.5 504.7 421.3 539.6 627.8 545.1 1004 742.4 NaN

A% 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 0.9997 0.000

u8 Rtt 3495 1736 1632 2534 2052 1710 330.6 444.1 536.6 953.4 164.7 595.8

A% 0.992 0.990 0.993 0.991 0.992 0.991 1.000 1.000 1.000 1.000 1.0000 1.000

a1 Rtt 3708 2300 2415 2606. 2109 2217 200.0 163.0 197.6 506.9 470.3 598.2

A% 0.993 0.993 0.994 0.995 0.993 0.995 1.000 0.997 1.000 1.000 1.0000 0.465

a2 Rtt 1439 685.9 698.2 1009. 669.2 674.3 173.2 179.8 237.1 426.2 489.0 621.5

A% 1.000 0.999 0.999 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.0000 0.298

a3 Rtt 2863 1406 1396 2058 1435 1419 25.1 80.2 202.0 475.1 302.6 466.6

A% 0.999 1.000 0.999 0.999 0.999 0.999 1.000 0.999 1.000 1.000 1.0000 0.400

a4 Rtt 979.4 518.1 511.3 752.4 523.8 522.8 523.5 535.7 512.6 716.0 769.0 1007

A% 0.999 0.999 0.999 0.999 0.999 0.999 1.000 0.999 1.000 0.999 1.0000 0.425

a5 Rtt 665.6 221.2 217.5 446.2 226.5 240.3 399.1 405.4 373.4 456.9 633.6 781.9

A% 1.000 0.999 0.999 1.000 0.999 0.999 1.000 0.999 0.999 1.000 1.0000 0.429

a6 Rtt 4146 2888 3639 3785 3411 3740 252.5 234.3 408.8 791.6 153.4 322.4

A% 0.979 0.980 0.992 0.988 0.979 0.984 1.000 0.998 1.000 1.000 1.0000 0.603

a7 Rtt 3706 1757 1719 2664 1821. 1779 214.1 261.3 1288 1726. 104.5 280.1

A% 1.000 0.968 0.998 1.000 0.967 0.999 1.000 0.998 0.990 0.992 1.0000 0.543

a8 Rtt 2460 1251 1289 1841 1287 1271 454.4 360.5 773.1 1056 540.7 719.0

A% 1.000 1.000 1.000 1.000 0.999 0.999 1.000 1.000 0.997 0.999 1.0000 0.437

a9 Rtt 1442 704.3 693.5 1042 714.8 701.9 585.8 553.1 567.5 736.7 811.0 962.4

A% 1.000 1.000 1.000 1.000 1.000 0.999 1.000 0.999 1.000 1.000 1.0000 0.260
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As the 1,011,234 experiments records are brought out by the users and AWS
servers for 12 web services. In Table 3, the first column is the users u1-u8 and AWS
servers a1-a9 which are listed in Table 2, and the first row is the web services w1-w12.
Underlined w6, w7, w10, w12 are weather forecasting services and underlined u8 is the
country France where Mr. Li plans to travel.

Every QoS value qi,j includes two attributes, the availability (A%) and response
time (Rtt). The availability is the success accessing ratio. The response time is the time
duration between the request and the response. Here, the unit of the Rtt is the mil-
lisecond which is abbreviated to “ms”. To avoid the influence of large response time
introduced by fail access cases, the response time only considers the successful
invocation cases. Therefore, when there is no successful invocation, like u3-w12, the
A% is 0.0 and the Rtt is represented as NaN. Moreover, there is not the NaN value in
Table 3 as all the web services have been evaluated by the users.

In Table 3, most A% values are more than 0.99 and most Rtt values are less than
2000 ms, which means the majority web services work well in all regions. However,
some web services show quite different Rtt and A% value in different regions. For
example, the last column is the QoS values of w12. w12 is a weather forecasting web
service in Israel. The A% values of the users u1-u6 for the w12 are 0.0 which means w12

cannot be accessed in China. But w12 is usable in France and United States. Therefore,
the distributed evaluation approach is essential for user-sides QoS evaluation.

In addition to the QoS of web service is different in different regions, the QoS of
web service shows better to the local users from Table 3. There are two boxes in
Table 3. The upper box is the QoS values for the web services w1-w6 and users u1-u5.
Both these web services and users are in Mainland China. The QoS values in this box
show the better Rtt and A% value than other regions. Moreover, the lower box is the
QoS values for the web services w7-w10 and users a1-a3. Both these web services and
users are in United States and they show the better Rtt and A% value than other regions.
The circumstance of these two box shows that the web services and users in the same
region have a stable network environment which is a main factor influenced the QoS.

As mentioned in the beginning of this Section, Mr. Li wanted to know whether the
12 web services are available and efficient in Paris. In particular, Mr. Li wanted to find
which has the best QoS of web services w6, w7, w10 and w12 in Paris. Mr. Li can obtain
the QoS of web services in different place by the hybrid evaluation tool. From Table 3,
the A% and Rtt of w7 in France are 1.0000 and 330.6 ms, which is the highest
availability and lowest response time. Thus, Mr. Li should choose w7 to acquire the
weather information at there.

The lower 9 rows of Table 3 are the QoS value of 12 web services from AWS
regions. The hybrid tool can also provide the evaluation results even there are no users,
like Japan or Brazil. Assuming Mr. Li will go to Columbia next time but he does not
have a friend in there can test the web services. Moreover, there are no test records
from Columbia in the hybrid tool. As the neighboring region in users is Brazil, the QoS
evaluation results by Brazil AWS can be used as the QoS value in Columbia.

Hence, for the places which exit users share the test records, like Hong Kong or
Harbin, the C/S application of the hybrid tool can provide the evaluation results
straightly. On the other side, if there are not users, but in AWS regions like Brazil, the
B/S application of the tool can evaluate web services from there. The AWS platforms
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are distributed in all over the world, the neighboring AWS region can be used to make
out the unknown QoS value for the places there are no users. Hence, the hybrid QoS
evaluation tool can help to evaluate in more regions and less dependence of users when
making analysis.

4.2 Prediction of QoS

In this section, the QoS prediction effectiveness by the collaborative filtering and the
multiple regression will be analyzed. Assuming Mr. Li’s friend in France did not
evaluate the w1, and Mr. Li will use w1 to check the stock price at there. So he wants to
predict the availability and response time ranges of w1.

As introduced in Sect. 3.2, there are two kinds of the prediction methods, the
collaborative filtering and the multiple regression. Mr. Li first compares these two
methods by using the available data in Table 3, and then decides which method is used
to predict the QoS of w1 in France. By applying the hybrid evaluation tool on AWS,
Mr. Li can acquire the QoS prediction of w2-w12 in France with the two methods
respectively. The prediction results of the availability and response time are listed in
Table 4.

Then, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) are used
for evaluating the prediction effectiveness. The MAE and RMSE have described in
Sect. 3.3. The last two columns of Table 4 list the MAE and RMSE results of the two
prediction methods. The MAE and RMSE values of Rtt by the multiple regression
method are 499.13 and 604.52. On the other side, the MAE and RMSE values of Rtt by
the collaborative filtering method are 479.81 and 1360.39. Although the A% values in
Table 4 are very close to 1.0, the multiple regression also shows less the MAE and
RMSE values. Therefore, in case of France, the QoS prediction of w1 by the multiple
regression is more reliable.

Table 5 shows the two methods prediction QoS results of W1 in France, Mr. Li will
take the response time of w1 as 2691.0 ms and the availability of w1 as 0.9914. After a
few days, Mr. Li arrives Paris and uses w1. He finds the real the response time of w1 is
3495.7 ms and the availability is 0.9928. These real QoS results are more close to the
prediction by the multiple regression. Therefore, compare to the real QoS, the multiple
regression shows better predict ability than the collaborative filtering.

The collaborative filtering method uses the similar users’ QoS to predict the
unknown value. In this case, the number of web services and users is small. It is difficult

Table 4. The QoS Prediction and Effectiveness of w2-w12 in France

Prediction Methods QoS Prediction
Effectiveness
MAE RMSE

Multiple Regression Rtt 499.13 604.52
A% 0.0015 0.0038

Collaborative Filtering Rtt 798.81 1360.39
A% 0.0048 0.0050
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to find the exactly similar users to predict. On the other hand, the multiple regression can
determine the interdependence of the quantitative relationship between two or more
users. Compare to the collaborative filtering, applying the multiple regression needs
more complicate calculations. Therefore, when there are few web services and users, the
multiple regression may be more suitable than the collaborative filtering for prediction.

5 Conclusions

This paper proposes a hybrid evaluation tool to improve the centralized and distributed
approaches on their limitations. The cloud computing platform, AWS is employed to
measure QoS of web services to make sure the evaluation can be brought out from
different places around the world even when lack of volunteers. Furthermore, the
hybrid QoS evaluation tool is the first tool which provides the evaluation, query and
prediction functions on the web page. Users can access it and apply it easily. With the
hybrid evaluation data by the tool, a similarity QoS evaluation result can be made out
straightly even there are no test volunteers. Both the collaborative filtering model and
the multiply regression model are implemented in the tool for predicting the unknown
QoS. The experiments of the scene of Mr. Li show that the hybrid evaluation tool can
be used conveniently and effectively. Compare to the common-used collaborative fil-
tering, the multiple regression has better prediction ability in the case of France.

In future, more metrics will be considered in the hybrid tool, such as the process time
and throughput. For making a more accurate prediction, the predicting methods will be
improvement by location and clustering the cloud regions in the different users’ places.
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