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Abstract. While researchers have concentrated on the optimization of joint
redundancy and maintenance mechanism, maintenance in computing systems is
quite different from that in traditional systems. Considering a routine monitoring
and inspection mechanisms is conducted to detect component status and trigger
repair process, this paper pays attention to the optimization problem of joint
redundancy and inspection-based maintenance mechanism. After conducting
steady state analysis on subsystems using inspection-based maintenance, shared
repair facility and component redundancy, optimization model is built to search
appropriate system structure and maintenance policy which maximizes system
performance while meeting availability and cost constraints. Due to the com-
plexity of uncertain optimization model, genetic algorithm is used to search
optimal solution, using triple-element encoding mechanism and specifically
designed operators. Illustrative examples are conducted to show that the opti-
mization model and corresponding solution technique could be used to search
optimal system configuration under given constraints and different cost constraints
would lead to different optimization result while meeting availability constraints.

Keywords: Reliability optimization - Redundancy * System maintenance *
Monitoring - Inspection

1 Introduction

As reliability has become a major concern in most engineering and computing systems,
component reliability improvement and the provision of redundant components are often
used together to maintain system reliability [1]. Preventive maintenance, which recovers
a component from failure or degraded state, could improve the reliability of single
component and is often used jointly with component redundancy for multi-
performance-state systems [2]. Similar as traditional redundancy, the configuration of
preventive maintenance also introduces extra cost to the whole system, so a great
majority of researches have concentrated on the optimization of joint mechanism [3, 4].
Existing researches mainly assume that the repair process is taken immediately after
component failure or degradation. However, in large distributed computing systems, e.g.
cloud based systems, it is difficult to identify failures in various distributed components.
Routine monitoring and inspection mechanisms are often conducted to detect component
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status and to trigger component repair process [S]. Therefore, the inspection policy plays
a key role in the whole system maintenance, but few studies have concentrated on the
optimization of joint redundancy and inspection-based maintenance mechanism.

A lot of researches have been taken on the subject of joint traditional fault tolerance
mechanism analysis and optimization [11, 12]. For multiple kinds of redundancy
strategies, Coit [6], Tavakkoli-Moghaddam et al. [7] and Chambari et al. all [8] studied
redundancy optimization problem while simulated annealing algorithm [9] and genetic
algorithm [10] were used to get solutions. For maintenance mechanism, Soro et al.
evaluated the reliability and performance of multi-state degraded systems with redun-
dancy and imperfect preventive maintenance [2] and then Nourelfath et al. proposed a
SP/TG heuristic approach to optimize the joint mechanism in series-parallel systems [3].
Liu et al. considered the deterioration effect after maintenance in this model and conduct
optimization using genetic algorithm [4]. The mentioned researches didn’t consider
monitoring and inspection mechanism for repair process and were not applicable for
cloud computing systems. Our previous research conducted a preliminary study on joint
optimized redundancy and inspection rate [13]. Due to the computation complexity of
state transition analysis, the model was only built for subsystems with two redundant
components when inspection used. For systems with k-out-of-n redundancy architec-
ture, Martorell al. analyzed the optimal test interval of a two-component parallel system
based on availability analysis [21]. Vaurio developed the optimization on test and
maintenance interval time for k-out-of-n system with four components and series sys-
tems [22, 23]. Cepin and Mavko also conducted test strategies and maintenance opti-
mization by minimization of risk through simulated annealing [24, 25].
Torres-Echeverria et al. presented an optimization model for the maintenance and test
policy design for a system using MooN voting redundancies [26]. In these researches,
analytical availability and periodic test cycle analysis are conducted on probabilistic
methods, but the working mechanism inside the test or maintenance strategy has not
been presented.

The main objective of this paper is to define the optimal system structure and the
inspection policy for each component, so that the series-parallel system performance is
maximized, subject to the availability and cost budget constraints. The state transition
process is first analyzed for subsystems with redundant components and a routine
monitoring and inspection mechanism. Because of the recovering effect of maintenance
process, the steady state reliability and performance is analyzed from the state transition
process. The cost is a combination of redundancy cost and maintenance cost. While
original redundancy allocation problem (RAP) has been proven to be NP-hard problem
[14], the introduction of inspection-based maintenance strategy even increases the
complexity of the optimization problem. Therefore, a genetic algorithm is used to
search the optimal solution of redundancy and inspection routine for each subsystem
and illustrative examples are presented to explain the analysis and calculation process.
The following sections are organized as follows: the problem description and opti-
mization model is listed in the following section and the solution technique is then
proposed; illustrate examples are presented with experimental results analysis; con-
clusions are summarized at last with future work.
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2 The Optimization Model

Notations
m Number of sequential subsystems A; Steady state availability of
subsystem i

n; Number of redundant components in Pri Work processing rate of each
subsystem i component in subsystem i

Ai Failure rate of each component in P,; Steady state performance rate of
subsystem i subsystem i

Ui Repair rate of each component in Ga Degradation rate in
subsystem i maintenance state

Ny Maximal number of components being n, 4,, | Corresponding vectors of n;,
repaired in parallel in subsystem i n, Amis 1 in all subsystems

q; Probability of successful repair for each | 4,,; Monitoring rate of maintenance
component in subsystem i mechanism in subsystem i

Tig Steady state probability of state « in Qiap Transition rate between two
subsystem i states @ and £ in subsystem i

Hsi Component detection rate for subsystem | Ciys Overall system redundancy cost
i

Q; The generator matrix of Q; 44 M, Monitoring and inspection cost

per time unit
7 Vector of «;, Ry The repair facility cost
Py, | Average performance rate of the system | A, Steady-state system availability

2.1 Problem Description

Assume that there are m sequential subsystems in one system and for subsystem i
(1 £i < m), n; components are running in parallel or kept as backup. The structure of
such series-parallel system is shown in Fig. 1.

Fig. 1. Structure of general series-parallel system.

Following the fault tolerance mechanism design in researches [5], n; components
are running initially for each subsystem. A routine monitoring and inspection mech-
anism is used to detect the status of components. When a component fails or degrades,
it is replaced by other standby backups instantly. The switched component is repaired
or restarted in background and placed as backup components. A brief illustration of the
process in each subsystem is shown in Fig. 2.
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Fig. 2. Illustration of joint redundancy and inspection-based maintenance mechanism.
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Fig. 3. State transition diagram joint redundancy and inspection-based maintenance.

To illustration the working process of each subsystem, the state transition analysis
is conducted on the subsystem with the redundant components. Each subsystem is
presented by a multi-state model, shown as Fig. 3, where it is assumed that:

e The working and failure pattern of each component inside one subsystem is the same.
In real-world applications, there is more than one type of components inside each
subsystem and the failure pattern of these components is not the same. In this case, the
patterns of the component with the worst reliability and performance could be used as
the common pattern for calculation. Specifically, when a cloud-computing or
grid-computing system is chosen for analysis, the same CPU and memory resources
would be allocated to each virtual component in one system, it is reasonable to
assume that the time-to-failure of each component follows the similar distribution
pattern. The time to failure of components for subsystem i is exponentially distributed
with rate ;. The repair process is exponentially distributed with rate y;.

e The repair process for each component is carried out in background as long as the
system is working. At most n,; failed components could be repaired in parallel with
each repair process accomplished successfully with probability g;.

e The routine inspection mechanism is run every certain time units. An ideal approach
would be to take the time to the next inspection to be uniformly distributed. Since
the difference between normal distribution and exponential distribution assumption
for routine inspection mechanism is proven to be small [15], the periodical
inspection/detection process is approximated to be exponentially distributed with
Ami to reduce model complexity.

e The time used for component status detection is exponentially distributed with rate ;.
It is reasonable to assume that the time is much less than the time of repair process and
is not taken into consideration when repair is conducted to avoid state explosion.
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In this diagram, state k;;(1 < i<m, 1 < j < n;) represents the normal working state of
ith subsystem with j active components. State k;M stands for the corresponding repair
and maintenance state from k;;. The performance of these states would be affected by the
maintenance process running in the background while only the state of 0 and 0 M are
failure states. State transition between states k;; is triggered by the random component
failure. State transition from k; to k;M is the process waiting for the next inspection.
State transition from k;M back to k;; is the inspection/detection and the repair process.
For any state k;;M, n; — k;; components already fail in the system and repairmen process
should be taken on these components. While at most n,; failed components could be
repaired each time, the probability of only w VM is migrated successfully is denoted by

W ()" (1 —gi)"™" ", where np, is the minimal value of n; — k;; and ;.

The overall state of the whole system is determined by the redundancy, inspection
and maintenance policy on each subsystem. So, our main objective is to get the
appropriate value of this configuration policy through optimization.

2.2 System Performance Evaluation Model

The reliability of a series-parallel system is determined by the reliability of each sub-
system. Before constructing the optimization model for the whole system, the reliability
and performance evaluation on top of the state transition diagram of subsystem i is first
conducted. Since this kind of system is supposed to be running for a long time, steady
state method is used to analyze this diagram as an irreducible CTMC [15].

Let S denotes the set of all states in Fig. 3 {0, ... n;, 0M, ..., n;M}. Let m; , denote the
steady state probability of state o (a € S) in subsystem i and z; denotes the vector
(i .. o, TuiM, ..., oM. Let O; 45 denotes the transition rate between two states (a € S,
B € S) in subsystem i and Q; denotes the generator matrix of Q; ,s. The value of Q; .5 is

adi, 1 <a<nm,f=a—1

Iy 0 <o < my, f = oM

Mgy & = ninﬁ =n;

OQiop = Cﬁ’yqlﬁ_"”(l — q,-)wf(/}*"’)wui, w = min{n,,n; —y},o=yM,y < f<n;,0<y<n;
—wi;, w = min{n,;,n, —y}a = =9M,0<y<n;

M, 0= ﬁ =mM

—0di = A, 0 <o <y, o0 = f

(1)

Considering the Kolmogorov’s backward equation [15], the limits value of x;, is
calculated as

dnm;, 70, =0
m &\l ®) =( Z Qi pe) — iy Qi = 0 = { Somiy=1 (2)

oo dt Bes & pota 2€8

which could also be represented in matrix form.
Given the certain system structure, the failure and recover rate of each component,
;4 18 a function of the number of redundant components 7;, the inspection rate 4,,; and
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the maximum number of parallel repairing components n,;: @, = 7 (i, i, M-
Following the steady state analysis pattern, steady state availability A; is used to
describe subsystem reliability and the expected performance rate P,; is used to describe
the subsystem performance. Steady state availability A; is the probability of the sub-
system in the working state. Since only states 0 and O M are failure states, given the
value of n;, 4,,; and n,;, the value of A; could be calculated as:

A = Z T = Ai(ni7 )“mh n”‘) (3)
aeS & a#£0,0M

The expected performance rate P,; is the average work processing rate performed by
all the working components in the subsystem. Let S; ;; and S; 5, denotes the set of normally
working states {z,;, ... 71} and corresponding maintenance states {z,M, ..., m;M} for
subsystem i. In the normally working state o € S; ;. The work processing rate of the
subsystem is the sum of processing rate of each working component. In the maintenance
state § € S, the work processing rate would be degraded due to the inspection and
maintenance process running in the background. Assume that the work processing rate
for each component is p,; and the degradation rate is g,. The value of P,; is:

P, = Z TioDrig = Z T o0 OPri + Z qami pkpri = Pyi(ni, Aisni), p = kM. (4)

=N o€Siu BESip

2.3 Optimization Model Formulation

The main objective of the optimization model is to define the optimal system structure
and the maintenance policy for each component, so that the multi-state system per-
formance is maximized, subject to steady state availability and cost budget constraints.

The objective function is evaluated as the average performance rate of the whole
system Py, which is calculated from the performance rate of each subsystem. The
working processing time of a series system is the sum of the processing time of each
subsystem and the corresponding rate is evaluated as

Psys = I/Z (I/Pri(ni;;bmi;nri)) :f<”almvnr) (5)

i=1

where n, 4,,, n, are the corresponding vectors for each parameter in all the subsystem.

The constraint functions include the constraint of reliability, redundancy cost and
maintenance cost. The system steady state availability A,,, is the probability of the
whole system in working state, which is the product of each subsystem’s availability:

Asys = HAi(niy;Lmi;nri) = g(nvlmvnr>' (6)
i=1

The overall system redundancy cost Cy, is the cost to configure redundant com-

ponents in each subsystem, which depends on the number of redundant components.
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The monitoring and inspection cost is the cost to monitor and detect the status of each
subsystem periodically and it is related to the monitoring rate in each subsystem. While
the cost is also related to the system running time, M, stands for the monitoring and
inspection cost per time unit. The repair facility cost R, is the cost used to repair failed
components, which is determined by the maximal number of repair facilities prepared
for each subsystem. Let ¢; denotes the redundancy cost of components in subsystem i,
my; stands for the cost for one inspection and detection process and the 7; is the cost of

each prepared repair facility. The cost constraint functions are represented as

m

m m
Csys = E CiniaMfys = § mdiﬂhmiaR‘vyx = § Fily (7)
i=1

i=1 i=1

When redundancy and inspection-based mechanism are both used in one system, it
is difficult to choose the configuration settings of each kind of strategy in each sub-
system. Based on these objective and constraint functions, the parameter determination
problem is cast into an optimization problem. The optimization model is defined as
choosing appropriate system configuration parameters n, 4,,, r, to maximize system
work processing rate under the availability and cost constraints:

Max Py, = f (1, An, 1y

s.z. A.\'y.\' = g(n7 ;'m7nr) 2A07 C.vys = Z cing < CO, M.\'y.\' = mdi/lmi SMO7Rsys = Z ring < Ro

m m m
i=1 i=1 i=1

1 S Nyi S n; S nop, 0</1mi < )vm()

) ®)

Ay, Cy, My and R, represents the corresponding constraints value and ny, 4,,9 are the
value range of configuration parameters.

3 Solution Technique

Although Lagrange multiplier method could be used to solve the optimization problem
by calculating partial derivative values, it asks for the closed-form representation of the
optimization model. These is no closed-form formula of reliability and performance
without certain value of n; and n,; thus the proposed model is not a traditional
non-linear optimization problem and could not be solved using exact method. So, in
this section, a genetic algorithm is used to search the near-optimal solution.

3.1 Genetic Algorithm Framework

Among several kinds of evolutionary algorithms proposed for combinatorial optimiza-
tion problem, genetic algorithm (GA) conducts a random, yet directed search process
wherein solutions evolves according to biological reproduction rules [16]. It is superior
to gradient descent technique or random sampling algorithm and has been used in many
researches for RAP [17, 18]. The general framework of this algorithm is:
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Step I. Initialize population P, with N individuals, P, =
{p,y P,y-.rP,}. Set offspring population Q=¢, and
generation counter t=0.
Step II. While t<t_,, do the following things:

1. Use genetic operator to generate Q, from P,.

2. Combine both parent and offspring population to get
a new group of population R=P,UQ,.

3. Calculate the fitness value of individuals in R,
according to the objective values and constraints values.

4. Sort R, in descending order using fitness value.

5. Use roulette selection operator to select N
individuals in R, and £fill P, with them.

6. Set t=t+l and return to the beginning of Step II.
Step III. Stop the algorithm when it reaches the maximal
iteration number.

Following similar framework, the significant parts in genetic algorithm are the
solution encoding mechanism, genetic operators and the fitness calculation method.
The design of these parts is listed in the following subsections.

3.2 Solution Encoding Mechanism

Each individual in the population set represents a specific solution to the optimization
problem. Since there are 3 x m elements to search in the optimization model, a
triple-element encoding mechanism is used to represent each solution to the problem
[19, 20]. Each solution in our algorithm is represented by a 3 x m matrix. Figure 4
illustrates an example of the encoded solution using this mechanism with m = 6.

For the matrix shown in Fig. 4, the first row represents the redundancy of com-
ponents in each subsystem n, the second row stands for the number of repair facilities
for each subsystem n, while the third row is the inspection and monitoring rate of each
subsystem 4,,. Each column of this matrix is the redundancy and inspection-based
maintenance configuration of each subsystem. The initialization of a set of these
individuals is accomplished by randomly generating values of each element in the
matrix. The initial value of n; or n,; is a random integer which satisfies the condition of
1 < n,; £ n; < ngy. The initial value of 4, is real number randomly generate between O
and A,,.

1 2 3 4 5 6

Redundancy | 2 1 4 4 5 2
Number of

repair facility 2 1 1 3 2 3 1

InSpectriﬁg 3 0.1 0.023 0.04 0.2 0.03 0.1

Fig. 4. Example of triple-element encoding mechanism.



Joint Redundancy and Inspection-Based Maintenance Optimization 749

Crossover
mask matrix

/

1 4 2 5 1 2 2 4 4 1 2
1 1 3 2 1 1 2 1 3 2 3 1
0.1 0.11 0.04 021 0.09 0.1 0.2 028  0.07 0225 0.097 0.02

Fig. 5. Crossover operation for triple-element encoded individuals.

3.3 Genetic Operators

In the crossover operation, a 3 x m crossover mask is generated as Fig. 5. There are
only 0 and 1 in this mask matrix and this matrix is randomly composed by the two
values. For two randomly selected individuals p, and p, (1 < x, y < N), once an element
in the mask matrix equals to 1, crossover operation is conducted on the value of
elements in the same position of the two solution matrixes. For integer values as n; or
n,; simple swap operation is used in crossover operation. For real values of 4,,;, the
simulated binary crossover (SBX) operator is used to switch two elements:

]L/ o (1=B)psdmi + (L4 B)py-Ani) (20()# 0<0<0.5

P b= 9)
j/ _ <(1 +ﬁ)p)~-/1mi + (I*ﬁ)Plemi) ’ ) 0.5 S o<1

DPy-Yomi = 2 ((1=a))n+1)

where 7 is the crossover index and py.4,,; is the normalized value of py.4,,;.

In the mutation operation, similarly, a 3 X m mutation mask is generated with
randomly chosen 0 and 1, as Fig. 6. At most two elements could be set to 1 at each row
to avoid dramatic change in the mutated individual. For any randomly chosen indi-
vidual p,, if any element in mutation mask is 1, the corresponding element at the same
position of p, is changed randomly. The changing process of integer element such as n;
or n,; is similar as the population initialization process. For real numbers 4,,;, poly-
nomial mutation operator is used to make changes as:

Prdmi + (2T —1,0< r<0.5

. 10
DPrdmi+1—[2(1 — r)]W,O.S <r<l1 (10)

px.ﬂvim =

where 7,, denotes the mutation index and p,.4,,; is the normalized value.

2 1 4 4 5 27
1 1 3 2 3 P
L 0.1 0.023 0.04 0.2 0.03 014
) 0 0 0 1 0 1
Mutation
mask matrix |0 1 0 0 0 0
o2 1 4 2 5 37 9 1 @ 9 0
1 1 3 2 3 Le—
| 0.1 0.023 0.56 0.2 0.03 0.1 |

Fig. 6. Mutation operation for triple-element encoded individuals.
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3.4 Fitness Value Calculation

The optimization problem in (8) is a single-objective multi-constraint optimization
problem. The objective value represents the optimality of one individual while the
constraint value represents whether this individual meets the requirement. One indi-
vidual p, outperforms another p, if and only if the objective value of p, is larger than
the value of p,, and the constraint value of p, meets requirement. Thus, the fitness value
I of each individual is calculated as the objective value meeting constraints value:

(11)

I = RsysaAsys > A07 Csys < C(), Msys < MO; Rsys < RO
0, else

In selection process, a weight value w, is assigned for each individual so that indi-

viduals with larger fitness value will be assigned a higher possibility in selection:

N
Wy = W““*/E_:I«” (12)
y=1
0,x=0

4 TIllustrative Examples

In this section, numerical examples are listed to illustrate the optimization of joint
redundancy and inspection-based maintenance mechanism and the process of searching
near-optimal solutions. System parameters are mainly collected from a cloud-based
system used for distributed and parallel processing [27]. Data from 8 series-parallel
subsystems in this system are used for analysis. For each subsystem, the failure rate,
repair rate, job processing rate of one component are extracted from the operation
profiles and presented in Table 1. According to the maintenance schedule, the value of
U,; for each component is 30 per hour and the inspection and monitoring cost of each
component is set as 1 unit. The repair successful probability ¢; is 0.9 and the perfor-
mance degradation rate is 0.8. The redundancy cost ¢; and repair facility cost r; are
estimated and shown in Table 1.

Table 1. Component parameters for example

Subsystem | Component feature Subsystem | Component feature

No. Ai(per i (per | pyi|c;|r;| No. Ai(per | p;(per | pn|ci|ri
hour) hour) hour) hour)

1 0.00499 |0.551 2 12315 0.00431 0.782 1 (24

2 0.00818 | 0.623 312,716 0.00567 |0.445 3 1315

3 0.00466 |1.13 3 (4|57 0.0105 1.75 2 |36

4 0.00683 [0.973 2 [5]41(8 0.0150 0.237 2 |34
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4.1 Reliability and Performance Analysis

The reliability and performance analysis is first conducted on the first subsystem. The
failure rate A; and repair rate y; is 0.00499 and 0.551 per hour. The inspection and
detection rate y; is 30 per hour. Using only one subsystem, the working processing rate
p,i in this experiment is set as 1 unit. First of all, the inspection rate is set as 0.5 per
hour and the number of working repair facility is set as 3. The corresponding reliability
and performance of this subsystem with redundancy change from 1 to 10 are shown in
Fig. 7(a). Then the number of redundant component is set as 5 and inspection rate
changes from O to 1 per hour. The result of subsystem with different number of repair
facilities is included in Fig. 7(b). At last, the number of redundant component is set as 5
and the inspection rate is 0.5 per hour, the result of subsystem with the number of repair
facilities changing from 1 to 10 is shown as Fig. 7(c).

(a)n,=3, 4,,=0.5 (b) n=5, n,=3 (©) n=5, 4,,=0.5
1 ! 1
1 1
~ 1 05 ~ 1
0.9999 4 0.9999
0.9999 0.9999
0
2 4 6 8 10 0 0.5 1 0 5 10
i )‘ml ri
10 6 4.85
4 4.845
a~ 5 Q= o=
2 4.84
4
0 0 4.835
0 5 10 0 0.5 1 0 5 10
n; A n

i ‘mi i

Fig. 7. Subsystem reliability and performance change with different parameters.

It is shown from Fig. 7 that the increase of redundant components and inspection
rate has significant impact on the subsystem reliability and performance change.
However, with the continuous change of these parameters, the increase trend of both
reliability and performance rate declines and converges to 0, except for the perfor-
mance increase with redundancy increase. The change in the number of repair facility
has little impact on both reliability and performance increase. When the number of
working repair facilities is larger than then number of redundant components, there is
no change in both system metrics. The experiment data shows that three kinds of
configuration parameters have total different impact on the overall system.

4.2 Mechanism Optimization

Figure 8 illustrates the overall system reliability and performance change with the
configuration parameters change of the first subsystem. The initial redundancy and
repair facility for each subsystem is set as 1 and the inspection rate is 0.1 per hour. It is
shown that the impact of parameter change on the reliability and performance
improvement generally declines dramatically as the parameters increases.
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Fig. 8. System reliability and performance change of different groups of parameters.
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Fig. 9. The mean and best fitness value of each generation.

So in this section, the maximum number of redundant components and repairing
facilities in any subsystem is set as 10 and 5 respectively. The maximal inspection rate
is set as 1. The maximum generation in the algorithm is set as 200 and the population
size is 100. System parameters in Table 1 is used in this experiment for redundancy
optimization. Given availability constraint 0.99, redundancy cost 70, repair facilities
cost 70 and inspection cost 5, the optimal configuration of redundancy and mainte-
nance policy using the joint mechanism is calculated and the fitness value of each
generation is shown in Fig. 9. The fitness value is the negative value of performance
rate: —P;. The result in Fig. 9 indicates that the algorithm already converges within 50
generations.

The calculated optimal job performance rate is 0.7448 in this test case and the
corresponding configuration parameter for each subsystem is shown in Table 2.

In the following experiments, four kinds of cost constraints are changed to show the
different result on joint mechanism optimization. Since GA is a stochastic search algo-
rithm, five trials are performed for each experiment and the best solution is considered as



Joint Redundancy and Inspection-Based Maintenance Optimization 753

Table 2. Optimal component configuration result

Subsystem No. | Component feature Subsystem No. | Component feature
n; | Ami (per hour) | n,; n; | A (per hour) | n,;
1 3 10.4637 315 5 10.6065 1
2 3 10.7689 2 |6 310.5419 2
3 2 10.5878 17 3 10.5060 2
4 2 10.8110 2 |8 4 10.7092 2

the final solution. First of all, the availability constraint is kept as 0.99 with repair
facilities cost as 70 and inspection cost as 5. The result of maximized performance
change with near-optimal solution is drawn in Fig. 10(a) while the redundancy cost
changes from 60 to 100. Then, using the same availability constraint with redundancy
cost as 70 and changing the value of repair facilities cost, the corresponding optimization
result for performance rate is shown in Fig. 10(b). Keeping the cost constraints for both
redundancy and repair as 70 and changing the value of inspection cost from 1 to 10,
Fig. 10(c) shows the optimization result under availability constraint 0.90. Figure 10(d)
presents the result for availability constraint change from 0.90 to 0.99.

It is shown in Fig. 10 that given different cost constraint, different system con-
figuration would be get with different performance optimization result. Loosening any
kind of cost constraint could all get better result on performance optimization.
Specifically, the change of redundancy cost brings significant change on the opti-
mization result while only little change is obtained for the other two kinds of cost
constraints change. On the contrary, once the availability constraint could be met under
the same cost, different availability constraints generally lead to similar system con-
figuration and performance.

(a) Change of Co (b) Change of R, (c) Change of M, (d) Change of A,

1.4 0.75 0.76 0.75

1.2 4 0.7454
0.745 N 0.74

a1 M a a 074
0.74 0.72

0.8 A 0.735

k 0.735 0.7 0.73

60 80 100 60 80 100 0 5 10 0.9 0.95 1
Co Ry M, Ay

Fig. 10. The change of optimization result with different constraints.

5 Conclusion and Future Work

Aiming at the optimal joint redundancy and inspection-based maintenance configuration
problem in series-parallel system, this paper pays attention to the routine monitoring and
inspection mechanisms, which helps to detect components status and trigger repair
process. Considering the shared repair facilities for different component in each sub-
system, a state transition models is first built to analyze the inspection-based mainte-
nance mechanism and Markov chain theory is used to get steady state availability and
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performance metrics for the system. The optimization problem is built to search the
appropriate system structure and maintenance policy maximizing system performance
while meeting availability and cost constraints. Due to the complexity of uncertain
optimization model, genetic algorithm is used to search optimal solution, built upon
triple-element encoding mechanism. Specific genetic operators are designed for the
triple-element encoding method and illustrative examples are conducted to explain the
calculation and optimization process. Experiment results show that the optimization
model and corresponding solution technique could be used to search optimal system
configuration under given constraints and different cost constraints would lead to dif-
ferent optimization result while meeting availability constraints. This paper takes a
preliminary study on the optimization of joint redundancy and inspection-based main-
tenance model. The analysis model is simplified on top of several assumptions, such as
the exponential distribution time-to-failure. In the future, this model could be modified
to be suited for more general failure distributions. Meanwhile, some local search
operator could be combined into the genetic algorithm to improve the algorithm
efficiency.
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